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Preface

The Artificial Life term appeared more than 20 years ago in a small corner of New
Mexico, USA. Since then the area has developed dramatically, many researchers
joining enthusiastically and research groups sprouting everywhere. This frenetic
activity led to the emergence of several strands that are now established fields
in themselves. We are now reaching a stage that one may describe as maturer:
with more rigour, more benchmarks, more results, more stringent acceptance
criteria, more applications, in brief, more sound science. This, which is the nat-
ural path of all new areas, comes at a price, however. A certain enthusiasm, a
certain adventurousness from the early years is fading and may have been lost
on the way. The field has become more reasonable. To counterbalance this and
to encourage lively discussions, a conceptual track, where papers were judged
on criteria like importance and/or novelty of the concepts proposed rather than
the experimental/theoretical results, has been introduced this year.

A conference on a theme as broad as Artificial Life is bound to be very di-
verse, but a few tendencies emerged. First, fields like ‘Robotics and Autonomous
Agents’ or ‘Evolutionary Computation’ are still extremely active and keep on
bringing a wealth of results to the A-Life community. Even there, however, new
tendencies appear, like collective robotics, and more specifically self-assembling
robotics, which represent now a large subsection. Second, new areas appear.
‘Morphogenesis and Development’ which used to be the subject of only a few
papers, is now one of the largest subsections, and seems to be on the brink
of becoming a field of its own. Finally, most classical themes of A-Life re-
search like ‘Artificial Chemistry’, ‘Ant-Inspired Systems’, ‘Cellular Automata’,
‘Self-Replication’, ‘Social Simulations’ or ‘Bio-realist Simulations’ are still going
strong and are well represented within this volume.

The conference this year has proven a great success with exactly 150 sub-
missions, which is an all time high. This has allowed the programme committee
to be fairly selective in its choice with only 74 papers accepted for full publica-
tion (49.3%). To avoid delaying the diffusion of novel ideas contained in works
that were either less mature but promising, or controversial, a further 20 papers
(13.3%) will be presented as posters but are published in full in these proceed-
ings. The final selection by the organizing committee was greatly helped by the
great professionalism of the programme committee. More than 95% of the re-
views were done in time, and thus, all papers received at least 2 reviews with
more than 88% of them receiving 3. Each paper that happened to be controver-
sial was re-reviewed by the organizing committee and its acceptance or rejection
decided individually.

Finally, the ‘E’ of ECAL stands for ‘European’, but this adjective, a legacy
from its origin, remains true only in terms of the geographical location of the
conference itself. We received papers from more than 40 countries, from Japan
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to Brazil, from Norway to Australia, from Russia to China. This is great news
not only for the conference but for the vitality of the field, and this great cultural
mix will prove very fruitful at the conference.

To finish this preface, we would like to thank all the people who helped to
organize ECAL 2005, and in particular, the members of the programme com-
mittee, the secretaries of the computing laboratory, Kate Friends and Jeanny
Oatley and the webmaster, Andy Secker.

June 2005 Mathieu Capcarrere
Alex A. Freitas

Peter J. Bentley
Colin G. Johnson

Jon Timmis



Committees

Executive Committee

Conference chair: Mathieu Capcarrere (University of Kent, UK)
Program chair: Alex A. Freitas (University of Kent, UK)
Co-chairs: Peter J. Bentley, Mathieu Capcarrere, Colin G.

Johnson, Jon Timmis
Local Chair: Jon Timmis (University of York, UK)
Workshops: Peter J. Bentley (Univ. College London, UK)
Tutorials: Colin G. Johnson (University of Kent, UK)

Programme Committee

Dr. Hussein Abbas, University of New South Wales, Australia
Prof. Andrew Adamatzky, University of the West of England, UK
Dr. Uwe Aickelin, University of Nottingham, UK
Prof. Nils A. Baas, University of Trondheim, Norway
Prof. Dr. Wolfgang Banzhaf, Memorial University of Newfoundland, Canada
Prof. Mark Bedau, Reed College, USA
Prof. Randall Beer, Case Western Reserve University, USA
Dr. Peter Bentley, University College London, UK
Prof. Hugues Bersini, Université Libres de Bruxelles, Belgium
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Masoud Asadpour, Gilles Caprari, Guy Theraulaz . . . . . . . . . . . . . . . . . . 169

(Co)Evolution of (De)Centralized Neural Control for a Gravitationally
Driven Machine

Steffen Wischmann, Martin Hülse, Frank Pasemann . . . . . . . . . . . . . . . 179

Co-evolution of Structures and Controllers for Neubot Underwater
Modular Robots
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and Their Survivability 
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Abstract. The paper considers supervised learning algorithm of nonlinear 
perceptron with dynamic targets adjustment which assists in faster learning and 
cognition. A difference between targets of the perceptron corresponding to 
objects of the first and second categories is associated with stimulation strength. 
A feedback chain that controls the difference between targets is interpreted as 
synthetic emotions. In a population of artificial agents that ought to learn 
similar pattern classification tasks, presence of the emotions helps a larger 
fraction of the agents to survive. We found that optimal level of synthetic 
emotions depends on difficulty of the pattern recognition task and requirements 
to learning quality and confirm Yerkes-Dodson law found in psychology.  

 

Keywords: synthetic emotions, bio-inspired modeling, multi-agent systems, 
cognition, learning, neural networks, Yerkes–Dodson law. 

1   Introduction 

It is commonly admitted in psychology that emotions are an evolutionary mechanism 
important for learning and survival, adaptation, perception, evaluation, reasoning, 
memory and decision making [1- 5]. Simililar conclusions have been obtained while 
investigating “computer emotions“ [6-9]. Some computer scientists claim that 
feedback chains could be interpreted as synthetic emotions. So far most work was 
performed to analyse symbolic reasoning based algorithms. It was found that 
feedback chains could be useful for faster learning and cognition [8-9].  

One may hope that training speed of connectionist based learning systems is also 
affected by synthetic emotions. There exists a large amount of neural networks 
literature (mostly dating from the late 80s and early 90s) which addresses rates of 
learning with backpropagation algorithm. The speed of the algorithm can be 
significantly enhanced by using adaptive learning rate, η, and momentum [10- 12]. 
Dynamical change of η is widely used to control back propagation training process of 
multilayer perceptron (MLP) (see e.g. [13]). The training speed, a type of the 
classification rule obtained and generalization error can be affected also by input data 
scaling, preliminary data transformations and a noise injection to training input data 
(see e.g. reviews [14, 15, Chapter 4]). For a general introduction into artificial neural 
networks, training speed and a generalization error problems see e.g. [15 -17].  

In [18] it was demonstrated that training speed of the single layer perceptron (SLP) 
based classifier depends on difference s = |t1 - t2| between desired outputs, t1, t2, 
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corresponding to two diverse pattern classes. The training speed was measured as a 
number of training epochs required to train SLP. It was shown that while varying 
difference s, called stimulation, from 0 to 1 (if sigmoid activation function is used) the 
number of training epochs required to achieve a priori fixed classification error, Pgoal, 
decreases at first, saturates and then starts increasing. It is Yerkes-Dodson (YD) law 
found in psychology [19, 20].   

Up to now in psychology there is no unique definition of emotions. Significant role 
of emotions in evolution and adaptation suggests that there must be more than one 
mechanism for generating them [4]. From a variety of possible definitions of 
emotions, in present paper we relate synthetic emotions with training speed of the 
single layer perceptron used to solve pattern recognition task. We extend dynamic 
parameters’ adjustment to target values and associate synthetic emotions with 
dynamic changes in s, the stimulation. We suppose that organization of the feedback 
chain assists in an increase in the stimulation if supervised learning was successful. 
We assume also that the feedback decreases the stimulation if learning was 
unsuccessful. This process may be called self-stimulation, reinforcement [16].     

Our objective is not to investigate ways how to increase learning speed of back 
propagation algorithm. Our aim is to reveal principal mechanisms of interpretation of 
self-stimulation as synthetic emotions in connectionist learning systems. Global 
models could help in understanding factors affecting learning process in humans, 
societies and machines. They could offer to cognitive psychologists, sociologists and 
computer scientists one more model. In future they would assist in creating a variety 
of imitation situations for detailed studies of human and animal behaviors, improving 
strategies and algorithms to train single robots and groups of them.  

To achieve this goal we look for the simplest model as possible. We selected a 
nonlinear SLP and a gradient descent supervised learning algorithm. In spite of 
simplicity of the mathematical model, in point of fact, a role of synthetic emotions on 
efficiency of connectionist learning systems was not considered so far.  

 The paper is organized as follows. Section 2 gives main terms and notations used 
in SLP training. In Section 3 we consider training algorithm with the feedback chain 
from a point of view of synthetic emotions: if classification error is decreasing, the 
stimulation level is increased, if classification error is increasing, stimulation is 
reduced. We show that such simple feedback chain, the synthetic emotions, support 
faster training. The dependence of training speed on level of emotions can be 
described by Yerkes–Dodson law [19, 20] too. Section 4 considers a situation where 
there are a large number of similar artificial agents that ought to learn changing 
pattern classification tasks. We show that presence of emotions helps larger fractions 
of agents to survive, i.e. to learn to solve the task in a priori fixed number of training 
iterations. Section 5 contains discussion and suggestion for future research work. 

2   Training Peculiarities of the Single Layer Perceptron 

Classical approach in adaptive learning is rooted in psychology, going back to early 
work of Thorndike [21] on animal learning and that of Pavlov [22] on conditioning. 
Here learning takes place through a process of punishment and reward with the goal 
of achieving a highly skilled behavior. In artificial intelligence, the learning is 
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performed through continued interaction with the environment in order to minimize a 
scalar index of performance, a fitness (cost) function. To explain the principal trends, 
in present paper we start the analysis with the simplest model purposely. In order to 
explain a sense of our analysis, below we will present necessary definitions and show 
fundamental feature of gradient descent training: the weights of the single layer 
perceptron are increasing and gradually start slowing down the speed of training 
process. The weights increase is principal importance and a novelty of our analysis.  
    In our formulation, objects (situations) to be classified to one of the categories are 
described by input feature vectors, x = (x1, x1, ... xp). The perceptron calculates a 
weighted sum of inputs, sum = w1×x1+ w2×x2+ … + wp×xp +  w0.  A set of p values, w1, 
w2,… , wp, is called a weight vector, w, and  w0 is a weight threshold value. We will 
use vector notation sum = w×x + w0. Very important essential of the perceptron is 
transfer function. Weighted sum, sum, is supplied to nonlinear element that calculates 
output of the perceptron as a non-linear function of sum. As an example one can 
consider sigmoid function, output=1/(1+exp (- sum)). If sum = 0, output = 0.5 (middle 
value). If sum is large negative, output is close to 0. If sum is large positive, output is 
close to 1. Note that a slope of function output = f(sum) is the highest where sum=0. 
If sum moves toward ± infinity, the slope diminishes and approaches zero [24, 25].  

In order to use SLP practically one needs to know coefficients w0, w1, ... , wp. To  
find the coefficients, we utilize training data called a training set, the vectors of the 

categories A and B: (1)

1
x , (1)

2
x , … , (1)

1N
x  from A and (1)

1
x , ( 2)

2
x , … , (1)

2N
x  from B. In 

perceptron training, we require that for class A output ought to be close to a priori 
selected target, t1. For another class, B, we have to choose another value, e.g. t2=1- t1 
[14, 15, 23]. Traditional algorithm used to train SLP is back propagation, where 
usually a sum of squares cost function, cost, is minimized, 

 

  cost = 1 / N  
2

1=i

N

j

i

1=
( t ( )i

j   -  f( w×x j
i( )   +  w0 ) )

2
 , (1) 

 

where  w  is unknown p-variate weight vector, w0 is a bias term, both to be found during 

training process,  t j
i( )

  is a desired output (a target) of the perceptron if vector x j
i( )  is 

presented to its input.  

    In this paper we consider symmetric targets, (1)

jt =0.5–0.5s, (2)

jt =0.5+0.5s,  (0 < s  

1). If parameter s is close to 0, we have similar target values. If s is close to 1, targets 
(1)

jt and  (2)

jt are close to boundary values of sigmoid activation function 

f(sum)=1/(1+exp(-sum)), i.e. 0 and 1. Thus, parameter s is interpreted as the strength 
of training signal, the stimulation. During training (adaptation) process, new vector, 
w(t+1), is equal to the previous one, w(t), plus a correction term: 

 

  w(t+1)  = w(t)   + t
ijCT ,   (2) 

 

where t
ijCT = - η × (t j

i( ) - f(sum)× ( ( ) / ) ( / )f sum sum sum∂ ∂ × ∂ ∂w  is the correction term, η 

is called learning rate (step) parameter, t j
i( ) - f(sum)  is an error signal − a difference 
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between the desired and actual outputs of the perceptron, sum = w’ x j
i( )  + w0,  

( ) /f sum sum∂ ∂  is the derivative of the activation function and (p+1)-dimensional 
vector ( ( ) / ) ( / )f sum sum sum∂ ∂ × ∂ ∂w is called a gradient.  
    If the weights are small, the gradient, ( ( ) / ) ( / ),f sum sum sum∂ ∂ × ∂ ∂w  is large. 
Simple algebra shows that when the weights are large, the gradient becomes small. 
During training, the magnitudes of the weighs are increasing and affect properties of 
the cost function [15, 25]. Moreover, with an increase in the magnitude of the 
weights, the gradient is decreasing towards zero. It means that in situations when the 
agent (the perceptron) has learned to solve its task properly and the weights are 
already large, due to the large weights the perceptron is unable to re-learn a new 
task quickly. 

Two parameters, the learning rate parameter, η, and a difference between desired 
outputs, t1, t2, of the perceptron, s = |t1 - t2| can be utilized to control the training 
process. We are increasing η or s by multiplying/dividing these parameters by 
positive scalar γ if training was successful/unsuccessful during ninertia training epochs. 
We interpret parameter γ as self-stimulation or synthetic emotions. We remind that 
the self stimulation model is only one definition of emotions from a variety of 
possible ones. We will show that parameter γ affects training speed. Training speed is 
measured by a number of training epochs required to achieve a goal, Pgoal, an a priori 
defined classification performance. 

3   Influence of Self-stimulation on Speed of Training Process   

In order to investigate the feedback chains, we consider simple adaptation model and 
perform simulation studies utilizing uncomplicated data – two bi-variate Gaussian 
classes with mean vectors μ2 = - μ1, unit variances and correlation between the 
variables ρ=0.7. In this model, three parameters control η and s: multiplication factor 
γ, sensitivity parameter Δ (Δ > 1) and delay (inertia) ninertia after which correction of η 
or s is made. The parameter, γ, indicates relative increase or decrease of learning step, 
η, or stimulation parameter, s, if training was effective or ineffective during ninertia 
training epochs.  Let ψ = cost(t) / cost(t-ninertia) be a ratio of current cost (1) with 

previous cost value calculated ninertia epochs before. Parameters η or s are multiplied 
by factor γ, if ψ < 1/Δ. The parameters η or s are divided by factor γ, if ψ  > Δ. 

Otherwise, nothing is changed. In present paper, we report results obtained when 
ninertia = 1 and Δ= 1.01. In analysis of dynamic learning step change, at start, we select 
initial learning step value, η0.  

 

Dynamic change of learning step, η. Results of the experiments with three Pgoal 
values (0.003, 0.01, 0.03) and two starting learning step values, 0.1, and 125, are 
presented in Fig. 1 (stimulation s=1). Three graphs obtained for η0=0.1 indicate that 
dynamic change of learning step, η, speeds up training process. In spite of the fact 
that we started training from small initial η value, feedback chain results that 
parameter η grows very quickly and compensates exponential decrease of the gradient 
caused by the gradual increase of the weights magnitudes.. If starting learning step is 
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small (e.g. η0=0.1), at the very beginning we do not have notable decrease of the cost 
(1). Due to high value of sensitivity parameter (Δ=1.01) parameter η remains 
unchanged for a long time. Training process remains very slow.  If starting η value is 
too large (e.g. η0=125), immediately after the first iteration we have very large change 
of the weight vector and a saturation of the cost function. Learning becomes slow and 
unstable. In certain cases, learning even stops (graphs 1b and 2b in Fig. 3).  
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Fig. 1. A number of training epochs required to achieve Pgoal as function of dynamic change of 
learning step: 1 - Pgoal = 0.004; 2 - Pgoal = 0.01; 3 - Pgoal = 0.03. Almost non-overlapping 
classes, μ1 = (0.6 2.4); wstart = [0.08 1 2]. Curves marked by “a” start training from η0=0.1 
(stable training) and that marked by “b” – start from η0=125 (non-stable training).  

 

    We see that dynamic η change speeds up training process. In MLP training, it was 
used primary to help climb out from false local minimum [12, 13, 15, 17]. Dynamic 
η change is useful if a priori we do not know proper value of learning step parameter. 
Moderate dynamic η change assist in overcoming large weights effects if nonlinear 
soft-limiting activation function is used. We see also that sometimes dynamic η 
change could become dangerous. Therefore, we conclude that dynamic η change is 
suitable, however, sometimes imperfect model of synthetic emotions. 

 
Dynamic change of stimulation, s. For the start, relatively small stimulation value 
(sstart = 0.002) was selected, i.e. t1 = 0.499, t2 = 0.501. In Fig. 2 we have a number of 
training epochs required to achieve Pgoal as a function of parameter γs, dynamic change 
of stimulation strength (η=2.0; three values of Pgoal and two values of starting weight 
vector, wstart). In both experiments with different initial weights, position of starting 
decision boundary was the same, only magnitudes of the weights differed. To examine 
situations where large perceptron’s weights start slowing down the training speed, 
almost non-overlapping pattern classes with small classification error were 
considered.  
    In second experiment, components of the initial weight vector, wstart, w0, were 1.5 
times larger as in the first one. For that reason, at the very start we had larger sums, 

sum= wstart × x j
i( )

+ w0. Consequently, the gradients turned out to be smaller at the very 
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start of training. Consequently the training process became slower. Graphs in Fig 2ab 
indicate that in training with larger initial weights, we need higher number of training 
epochs (the learning task becomes more difficult).  
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Fig. 2. A number of training epochs required to achieve Pgoal as a function of dynamic change 
of stimulation strength, γs: 1 - Pgoal = 0.004; 2 – Pgoal = 0.01; 3 –  Pgoal = 0.03; Almost non-
overlapping pattern classes, μ1 = (0.6 2.4); a) – wstart = [0.08 1 2], b) – wstart = [0.12 1.5 3].  

    Graphs in Fig. 2 demonstrate that higher requirements to learning quality (smaller 
values of Pgoal) necessitate higher number of training epochs. Both families of the 
curves indicate that for each requirement for learning quality there exists an optimal 
level of parameter γs where training is fastest. Both larger initial weights and smaller 
Pgoal increase the difficulty of the task. We pay readers attention that in difficult tasks, 
optimal values of parameter γs are smaller. In easier tasks optimal level of parameter 
γs is higher. If the classes overlap notably (the classification task is more difficult), 
classification errors prevent excessive growth of the weights. The weights are smaller 
and the minima of the curves #epochs = f(γs) are less expressed. (Fig. 3). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. A number of training epochs required to achieve Pgoal as a function of dynamic change 
of stimulation, γs: 1 - Pgoal = 0.08; 2 - Pgoal = 0.16; two notably overlapping pattern classes: μ1 = 
[0.3 1.2]: a - wstart = [0.12 1.5 3], b – wstart =[0.08 1 2].  

     “easier”  task                                              more difficult”  task 
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4   Survivability of Population of Intellectual Agents   

A natural question that arises while analyzing biological populations, social 
collectives and multi-agent systems in context of their evolution, is an influence of 
self-stimulation on survivability of the population. Consequently, we have to consider 
a situation where there are a large number of similar artificial agents that ought to 
learn new pattern classification tasks. We assume that the agent passes away if it fails 
to learn fast enough to satisfy the a priori fixed condition Pclassif < Pgoal after the tmax 
training epochs. We show that presence of synthetic emotions helps larger fractions 
of agents to survive, i.e. to learn to solve the task rapidly. As a first step in the 
population analysis we will investigate many populations of agents having different 
self-stimulation parameter, γs.  To have larger diversity of agents we assume that each 
population of agents is composed of rf sub-families, fr agents in each sub-family. 
Thus, in each population we have r = fr × rf  agents. All agents in one sub-family 
possess similar characteristics, however, the families are to some extent different.  
    In experiments reported below, fr =200; rf = 6, r = 1200, the starting stimulation, 
sstart = 0.002, Δ = 1.01. We used two-dimensional Gaussian data with fixed mean 
vectors; μ1 =-μ2 = [0.6 2.4]

T
; correlation ρ=0.7. Initial weights, learning step η, 

variances, σ1, σ2, of the single data components, however, were random variables: 
wstart =  × [0.08 1 2], τ = (0.999+0.3 ), η = 0.5+0.05 , σ1, σ2 =1+0.1 , where all  
were independent random variables composed of sum of two random variables, A 
and B, distributed uniformly in interval [-0.15 0.15]. Variable A was individual for 
each single agent, while variable B was common to rf agents in single sub-family.  

 In the Fig. 4a we have curves: a mean number of epochs required to achieve goal 
Pgoal during itmax = 200 epochs versus self-stimulation parameter, γs. Curves 1 and 2 
remind curves 1 and 3 in Fig. 2a obtained for one single agent. A main difference is a 
scale for the number of training epochs allowed to reach the goal. In Fig. 3, learning 
step was approximately four times smaller. Therefore, we needed approximately four 
times more epochs to achieve the goals.  

 

 
 

Fig. 4. a) Mean number of training epochs required to achieve Pgoal as a function of dynamic 
change of self-stimulation, γs: 1 - Pgoal = 0.004, 2 - Pgoal = 0.03 during 200 training epochs.      
b) An effect of emotions ES on populations survivability (a fraction of agents which achieved 
desired classification error level, Pgoal=0.004): 1 itmax = 200 epochs, 2 - itmax = 600 epochs. 
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    In Fig. 4b we have “survivability graphs”, a fraction of agents (in percents) that 
succeeded achieve the goal, Pgoal = 0.004 during itmax training epochs. The graphs in 
4b also demonstrate the Y-D Law and indicate an existence of optimal values of self-
stimulation parameter, γs.  
    The graphs in Fig. 4b show that survival ratio crucially depends on a number of 
epochs allowed to achieve the goal, Pgoal. If short training is available, in order to 
survive, optimal amount of emotions depends on Pgoal notably. The stricter are 
requirements for learning quality (lower goal value), the smaller amount of emotions 
ES is necessary. For easier training tasks (high goal value, small initial weights), 
higher level of emotions is allowed. 

5   Discussion and Suggestions for Future Research 

One may assume that in process of species evolution, nature selected only these 
populations of individuals which are controlling the stimulation. This “self-
stimulation phenomenon” we interpret as emotions in our study. To be more precise, 
it is only one aspect of emotions in this paper called “emotions ES” (emotions for 
stimulation). To imitate synthetic emotions we restricted ourselves with simplest 
model: the single layer perceptron trained by back propagation algorithm and feed-
back chain utilized to modify stimulation values in dependence on a success in 
training. The new modification of the perceptron training algorithm adapts its target 
values during iterative training process: if classification error decreases for some time, 
the stimulation level is increased, if training becomes unsuccessful, the stimulation is 
reduced. Simulation studies demonstrate that values of feedback control of the targets 
affect the speed and performance of training process. Training scenario with emotions 
supports faster training. The dependence of training speed on level of emotions can be 
described by the Yerkes–Dodson law and has inverted letter “U” shape.  
    In analysis of situation where there is a large number of artificial agents that ought 
to learn different, subsequently changing pattern classification tasks, it was found that 
if short training is allowed, presence of certain amount of emotions helps larger 
fractions of agents to survive. This peculiarity of adaptive agent could be used in 
multi agent systems research. 

Simulation analysis of the optimal level of self-stimulation on requirements to 
learning quality exhibit several features that match experimental findings in humans 
[1, 4, 5]. Often the people are changing their motivation in dependence on the 
success. Children are more emotional as the grown up persons. Populations which 
settle in warm, easy to live climate raise lower requirements to learning quality. So, 
they are more emotional than ones which live in severe northern climate. In this way, 
very simple model of dynamic target value control is one more possibility to elucidate 
theoretically these important observations. Possibly, our definition of synthetic 
emotions could indicate new ways to train robots, intellectual agents that have to 
adapt and to operate in unproblematic or more difficult environmental conditions. We 
have seen that dynamic change of learning step allows speed up training process 
notably. We investigated both, dynamic change of η and s. Dynamic target value 
control, however, is easier to interpret from a point of view of the emotions.  
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    Striking conclusion derived from above analysis is that such simple element as 
single layer perceptron equipped with dynamic change of the difference between 
desired outputs could be interpreted as synthetic emotions which help the agents 
overcome difficulties that arise during training process. In the output layer of 
multilayer perceptrons, we also have SLPs trained by the same type of learning 
algorithm. One may hope that conclusions obtained for SLP classifier most likely are 
valid for MLP based learning systems. In principle, significantly larger number of 
means can be utilized to control perceptron’s training process. These means include a 
noise injection to components of training vectors, a noise injection to desired targets, 
use of weight decay term for regularization, etc. [14, 15]. Obviously, these factors 
could be included into the emotions model to make it more suitable to analyze real 
world problems. Useful extension of the model is analysis of learning process utilized 
to solve not a single, but a variety of varying pattern recognition tasks, like it was 
done in a recent research papers on aging [25] and criminality [26]. In analysis of 
populations of intelligent agents, one can consider situations where successful 
members of the populations can produce offspring, a strategy widely widespread in 
Nature [26, 27]. Including of the factors just mentioned, organizing of the populations 
into sub-groups with mechanisms of self-support of the agents inside the sub-group 
and restricted beneficial cooperation between them, and incorporation of the 
mechanisms of synthetic emotions into learning rule is a topic for future research in 
order to crate more realistic multi agent systems capable to survive in permanently 
changing environments. 

The investigation performed shows that connectionist approach to examine 
synthetic emotions can be effective enough to explain numerous phenomena observed 
in real life. Modifications of single layer perceptron based training model could be 
useful both for cognitive psychologists, sociologists, economists as a mean to 
investigate learning processes and to computer scientists which develop the 
algorithms capable adapt rapidly in unknown and everlastingly changing 
environments.  
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Abstract. Jakob von Uexküll’s theory of the Umwelt is described and it
is used to show how perceptual states can be defined. It is described how
perceptual cues are selected over evolutionary time and defined by the
organism that experiences them. It is then argued that by applying the
model of the Umwelt to describe an animat’s behaviour, we can model
the normally distributed, dynamic activations of the animat as discrete
perceptual states.

1 Introduction

This paper suggests we use a model to describe the behaviour of animats in
terms of their constructed worlds and that by doing so, we stand to gain in two
ways. The first way is that we find that have a model of the perceptual states
of an animat, and so can apply various tools associated with state machines,
including calculating the entropy of a constructed world. The second way is
that by evolving the relationships between an animat and the objects in its
environment that it interacts with, we are making the animat’s constructed
world more evolvable.

1.1 Controllers, Perceptions and the Constructed World

The nature of awareness and the mechanism of how perceptions are generated
from physical matter has provoked much debate among philosophers. The most
influential arguments regarding these subjects in the western world were made by
the philosopher Immanuel Kant [1]. His arguments are complicated but among
his conclusions is that the real nature of the world is unknowable, and we can
only classify any possible external reality of an object through our perceptions of
it rather than through direct knowledge of the object itself. Kant believed that
the subjective sense of self is constructed through the process of the organisation
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of perceptions. Whether perceptions are epiphenomena or play a causal role in
behaviour, it is commonly supposed that a constructed world’s function as part
of an organism is managing information about the organism’s environment and
physical self.

The idea of using parameters to represent perceptions, mental states, or bits
of knowledge has been highly influential for the majority of work performed in
artificial intelligence and the disadvantages of it are well known [2]. It is tempting
to use explicit representational states because of their clear information content.
It is an easy task to calculate attributes such as the entropy of a controller with
states over a period of time, or see how the states produce behaviour that result
in other states [3]. Information and its transmission has long been used to explain
animal behaviour, cognition, and evolution. It is very difficult to use these state
based methods to calculate the information within the animats we evolve in
evolutionary robotics as we do not use the concept of states, but instead allow
control to self-organise from underlying parts. How are we able to determine
that a state exists, or succeeds another state if they are not explicit? How do we
assign states to the varying activation of a distributed structure?

Presently we analyse such systems in terms of dynamic processes such as
attractors, limit cycles, etc. [4], together with the analysis of the role of spe-
cific neurons. The analysis required to understand even simple systems can be
complicated and it is not clear how general the conclusions made about one sys-
tem can be applied to another. There has been work performed in the field of
artificial life on classifying information within an animat’s distributed dynamic
controller. Research has been performed on attempting to measure and analyse
representational activations within an embodied robots neural network controller
in terms of information [5]. Research has also been performed on the application
of information theory to measure the information flow through perception-action
loops of robots [6]. However, much work in evolutionary robotics tries to explain
behaviour and perceptual organisation by analysing the dynamic activations of
structural parts of a controller.

The line of enquiry described in this paper takes a different approach. It
describes a model of the constructed world as defined by the ethologist Jakob
von Uexküll [7], and why we gain by applying it to describe the behaviour of
the animats we evolve. His theory was heavily influenced by the constructivist
ideas of Kant. If we use his theory to explain animat’s behaviour, then we have
a simplified model of the constructed world generated by the animat. It is hoped
that applying von Uexküll’s theory will help overcome the problem of defin-
ing information within complex self-organising controllers, allow us to improve
the evolvability of our animats, and perhaps lead to insights regarding the con-
structed worlds of robots and organisms.

First we will look at von Uexküll’s theory of the Umwelt. Then we will see
how we can distinguish perceptual states in his model. Finally we will argue
that we gain by applying the model of the Umwelt to the less representative
methodologies used in the field of artificial life.
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2 Negotiating Functional Circles and the Umwelt

2.1 Functional Circles and an Organism’s Constructed World

Von Uexküll explained purposeful animal behaviour by linking the organism’s
phenomenal world (the world as perceived) and its effector world (the world
as enacted) into a single closed whole, the Umwelt. The Umwelt as defined by
von Uexküll consists of a set of functional circles (figure 1). A functional circle
defines the interaction between an organism and an element or object within its
environment. They are abstract structures that tie together a subjective experi-
ence or perception (termed a perceptual cue) and the effect that the perception
has on the behaviour of the organism (called an effector cue). Von Uexküll used
the theory to demonstrate that an organism doesn’t respond to its environment,
but rather to its perception of the environment. Functional circles provide a
model of how an organism’s perceptual world is continually constructed as part
of the organism’s ongoing interaction with its environment. Using von Uexküll’s
model of the Umwelt, all of an organism’s knowledge of itself and its environ-
ment is ultimately constructed from the perceptions within the subjective world
it generates.

Von Uexküll himself provided the example of the purposeful behaviour of a
female tick [7], of which he described three functional circles. The tick waits on
a twig until a mammal moves close to the tick. The tick then jumps onto the
mammal and burrows around in the mammal’s fur until the tick finds a suitable
place on its skin to bite a hole to suck blood from. This sequence of actions can
be described using functional circles.

Fig. 1. A functional circle describes the abstract functional relationship between an
organism and an object in its world. The perceptual sign of an object (its colour, shape,
smell, or some more complex set of attributes) give rise to a perceptual cue which is
defined as the subjective experience of the object in the organism’s Umwelt. This leads
to the creation of an effector cue which drives the animal to perform some action,
thereby changing the organism’s relationship to the object. A functional circle is an
abstract description of a relationship, and it is hard to claim that a perceptual cue
exists in any particular location, e.g. within a specific part of the nervous system.
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First of all, the tick positions itself upon a suitable twig. If a mammal passes
close by, the butyric acid emitted by the mammal provides a stimulus for the
tick’s smell receptor organ. This initiates a functional circle whose perceptual
sign is the smell of the acid. A corresponding perceptual cue is produced, meaning
that the mammal exists as an object in the tick’s Umwelt. The resulting effector
cue causes the tick to drop from the twig. The shock of the tick landing on the
body of the mammal extinguishes the activation of the first functional circle.
This means that the smell of the butyric acid no longer serves as a perceptual
sign.

However, the shock of landing serves as the perceptual sign of a second func-
tional circle. This initiates the behaviour in the tick of burrowing around in the
mammal’s fur until it encounters a patch of bare skin. The heat of the skin ex-
tinguishes the second functional circle, so the perceptual sign of the recent shock
of the tick landing on the mammal no longer causes a perceptual cue and so the
tick stops burrowing.

The third functional circle has the heat of the patch of skin serving as the
perceptual sign. The heat produces a perceptual cue and so the patch of skin
is experienced in the tick’s Umwelt. The effector cue is produced and results in
biting motions of the tick’s mouth parts.

These actions can all be described as reflex behaviours with chemical or
physical stimuli initiating fixed actions. Each behaviour has been selected by a
process of natural selection to follow in the given order. We have used the model
of von Uexküll’s functional circles to explain them, which allow us to say that
there is a perceptual cue associated with each circle.

If the organism is in a state suitable to allow the perceptual sign to serve as
a stimulus, the perceptual sign causes the corresponding perceptual cue to be
present within the constructed world of the organism. This is not to say that the
perceptual sign represents some external object, or it is presented to the agent.
As we shall see, the organism has chosen its own stimuli over its evolutionary
history, and chooses whether or not to respond to it depending upon its current
state. Both the stimulus, and the significance of the stimulus to the organism,
is chosen by the organism. As a result, it may not be clear what the perceptual
sign means to the organism.

A purely reactive organism relies on certain behaviours producing a pre-
dictable sequence of events in the environment that can be used as signs, e.g.
an animal that hides in the dark depends upon the fact that the light intensity
will decrease as it moves from the light thus extinguishing the stimulus. If the
environment provided all the stimuli to cue the organism to produce its adapted
behaviour, the organism would require only a simple and unsophisticated con-
structed world. However, a complex organism must engage in different sequences
of actions at different times in an environment that provides the same potential
stimuli. The organism must therefore choose which signs to respond to. A more
complex organism is able to shape and vary how it perceives and hence responds
to the world.
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An organism with an Umwelt consisting of a small number of functional
circles will perform only simple sequences of behaviour. This does not mean that
the organism’s physical environment is simple, but the environment as perceived
by the organism is simple. The organism has selected over its evolutionary history
the stimuli to which it should respond in order to engage with the world as
reliably and efficiently as possible. Evolution acts to reduce the entropy of a
constructed world despite of presence of environmental noise.

2.2 Self-extinguishing Functional Circles

Von Uexküll defined functional circles as always being self-extinguishing; that
is, they produce behaviour in the organism that acts to remove the perceptual
cue from the constructed world of the organism (figure 2). This can happen in
two ways. The first way is that the functional circle causes the organism to alter
its physical state to directly remove the stimulus, e.g. a photophobic organism
will move away from a light, and thereby remove the stimulus that compels it
to move. The second way is that one functional circle may inhibit the activation
of another, e.g. the shock of the tick landing upon the mammal inhibits the first
functional circle, even though the sign of the smell of butyric acid is still present.

Fig. 2. The shaded region denotes that the functional circles negotiate among them-
selves as to which should be active. In the example of the behaviour of the tick, three
functional circles negotiate. The perceptual cue of the first functional circle (i.e. the
smell of the butyric acid), is inhibited and extinguished by the perceptual cue of the
second functional circle (i.e. the shock of the tick landing upon the body of a mammal),
and therefore no longer exists in the agents constructed world. This means that the
butyric acid no longer acts as a stimulus, even though it may still be present, and the
tick no longer perceives the smell of the acid. We can say that the two functional circles
have negotiated to decide which should be active.
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We can see that perceptual cues result in the creation of further perceptual
cues, which act to extinguish the originator. The tick may either land on warm
fur, or miss the mammal and hit the hard ground. The originating perceptual
cue, the smell of the acid, invokes an action that results in one of two succeeding
perceptual cues. Each extinguish the activation of the originator, and hence its
associated behaviour or action.

2.3 An Organism Defines Its Own Perceptual Cues

A simple organism has evolved to respond to certain internal and external per-
ceptual signs. The organism doesn’t respond to a particular sign, e.g. the per-
ception of heat, because it will get burnt, but because it has inherited a tendency
to do so. The species to which an organism belongs has selected over evolution-
ary time the stimuli to which the organism should respond. The meaning of a
perceptual sign may not be obvious to an outside observer, but it provides in-
formation that’s meaningful to the organism that the organism uses to regulate
or select its behaviour.

3 States of the Constructed World

3.1 It is Difficult to Classify States in Distributed Dynamic
Controllers

It is necessary for an animat to co-ordinate its actions properly if its overall
behaviour is to be purposeful. A simple behaviour is constructed from a number
of discrete actions that occur one after another. The animat must know when
to initiate which action, and at which point within the sequence, if the overall
behaviour is to be successful. Traditional artificial intelligence techniques include
the finite state machine. Using this technique, a distinct state and an action are
associated together such that an animat in state As would always produce action
Aa. Each state is linked to a limited number of other states. This reduces the
possible sequences from action to action (i.e. state to state). The controller of
such an animat is highly structured, and maps specific parts of the controller to
specific local behaviours. This means modules that are responsible for producing
individual behaviours can be programmed to react to specific stimuli and tested
individually.

A continuous time recurrent neural network (CTRNN) controller is generally
less formally structured and as a connectionist model has its activation states
and any possible representations distributed throughout its structure. The state
of each of its neurons can be altered by any other neuron it is connected to. This
means it is not easy to claim a particular neuron or set of neurons of a CTRNN
is responsible for a particular behaviour. CTRNN’s use the idea of attractors,
such that a CTRNN experiencing a particular attractor can be said to be in
a particular state [8]. Desired actions are associated with different attractors.
Attractors emerge from the dynamic activations of the CTRNN and are not
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explicitly defined. It is therefore difficult to isolate a behaviour or for a single
neuron to selectively generate a specific behaviour. It is left to the controller as
a whole to co-ordinate different behaviours within itself. This makes the robot’s
behaviour difficult to analyse and understand. It also makes it difficult to reuse
existing behaviours in different contexts, because the production of a behaviour
may depend upon the state of a number of neurons, which in turn depend upon
the state of further neurons, and so on.

Although it is an ongoing and current research issue, there is currently no
clear general method to classify the instantaneous activations of the components
of a CTRNN into states. It is a complex task to analyse even simple artificial
neural systems [8]. The alternative proposed in this paper is to explain behaviour
in terms of functional circles as emergent structures since functional circles are
a simple and direct model of perceptions and behaviour.

3.2 Perceptual Cues can be Modelled as States

A perceptual cue associated with a behaviour in the organism results in the
activation of one or more succeeding perceptual cues with varying probabilities.
The succeeding cues extinguish their originator using one of the two methods
described above (see 2.2). Using this model, the constructed world acts as a
manager and decides which perceptual signs should invoke actions and which
should be ignored.

We can classify a state of the constructed world as the instantaneous acti-
vations of its perceptual cues. The state changes as the perceptual cues run in
sequence as part of the process of the embodied animat engaging with the world.
This state doesn’t represent information about the environment. It is informa-
tion about the world as perceived by the animat. When we apply this model,
we are able to treat the perceptual world as a series of states that lead to other
states, regulated by, and influencing the behaviour of, the embodied animat act-
ing in its environment. The meaning of the perceptual cues, and therefore the
information that defines the state of the constructed world, has been chosen and
defined by the organism over evolutionary time.

3.3 Implementing an Umwelt for an Animat

The CTRNN was originally advocated as part of the methodology of minimal
cognition [10]. Minimal cognition is an attempt to study the simplest form of
cognition using the assumption that to understand a complex phenomena, we
start with something we can understand and gradually increase its complexity.
However, there is a distinct difference between the first, simplest animals, and
the animats we evolve for our evolutionary robotics experiments. Minimal cog-
nition was inspired by those simple animals with co-ordinated nervous systems.
However, it is likely that the behaviour of todays simple animals originated early
in evolutionary time from simple, reactive, independent but co-operating reflexes
(figure 4). The behaviour of simple animals is co-ordinated as they are comprised
of sequences of actions that evolved to occur in a meaningful order. This doesn’t
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Fig. 3. It is difficult adding to an evolved robot’s repertoire of behaviour because it re-
quires integrating additional sensorimotor loops to an existing connectionist controller
that defines preexisting behaviours. Sensorimotor loops in robots are partly realised as
dynamic states along components of the controller. Some of these parts may be com-
mon to the action of several sensorimotor loops. A mutation to one of these common
parts may be beneficial to one behaviour but detrimental to another; this means that
sensorimotor loops from which each desired behaviour is composed can not evolve in
isolation from each other, and this may constrain the evolution of both. Subsumption
architecture [9] was developed in behaviour based robotics partly to solve the problem
of scalability but no generally accepted methodology exists for evolutionary robotics.

Fig. 4. Simple animals do not have a controller but operate through reflex reactions
that are co-ordinated by the environment. Over evolutionary time, the organism may
evolve more complex behaviour by negotiating and therefore selecting which reflexes
to respond to.

mean that the environment is the controller of the organism. The agent within
its environment reacts in a purposeful way to individual stimuli that it expects
to occur in a certain order. The environment has to provide these stimuli in a
given order for the agent to function properly.

Organisms without explicit controllers make up almost all living things, and
yet they still manage to display adaptive behaviour. The functional circle model
provides a union between the sequencing of actions and the actions themselves.
Together with evolving perceptual cues, evolving negotiating functional circles
allows agents to chose their own stimuli, and alter and reuse sequences of actions
without altering the actions themselves. We can at some later point derive a co-
ordinated control system developed from low-level reflexes.
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Fig. 5. Although functional circles can negotiate through the environment, evolved
functional circles involving input sensors are likely to negotiate at the most mutable
point, inside the controller. We should see the controller as mostly a negotiator of
functional circles. We can view them as negotiating between perceptual cues.

It may not be possible to directly implement a model of functional circles (in-
deed every responding system can be described in terms of functional circles) but
only to use mechanisms that encourage and highlight their essential properties.
We can explain the behaviour of the emergent structures of CTRNN’s in terms
of functional circles. We often look at activated neurons that correspond with
certain behaviours [8]. But we can alter our models to encourage the production
of perceptual cues (figure 5).

The perceptual signs were clear and easily identifiable in the case of the tick.
However, we do not need to know what perceptual signs the agent is reacting
to if we chose a model whereby we can identify, by the nature of the model, its
perceptual cues. We do not need to know or understand what the perceptual cue
is actually reacting to. If we treat the controller as a negotiating part, and allow
our perceptual cues to evolve separately, then we will be able to use this model.

The functional circle model can be applied to any the behaviour of any ani-
mat, including animats controlled by CTRNN’s, even though the representation
of their perceptual cues may be distributed across a network. All controllers can
be described in functional circle terms because the Umwelt is an abstract model
of behaviour and subjective experience, and how these affect the outside world.

4 Conclusion

Von Uexküll’s original model of the Umwelt provides a model of an organism’s
constructed world. The constructed world is the environment as perceived by the



20 I. Macinnes and E. Di Paolo

organism. This is an abstract model that can be used to describe the behaviour
of any animat, regardless of how their controlling mechanisms are implemented.
If we apply this model to describe the behaviour of the CTRNN controllers of our
evolved animats, we benefit in two ways. The first is that by treating functional
circles as emerged structures of CTRNN controllers and evolving the manner in
which they negotiate together, we are evolving the relationships of an animat
with its environment. The second is that we can define varying states for the
constructed world of the animat. We can apply the tools associated with state
machines while enjoying the benefits of a non-representational controller.
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7. von Uexküll, J.: A stroll through the worlds of animals and men : A picture book
of invisible worlds. In Schiller, C., ed.: Instinctive Behaviour: The development
of a modern concept. 1957 edn. International Universities Press, Inc., New York
(1934) English Translation.

8. Beer, R.: The dynamics of active categorical perception in an evolved model agent.
Adaptive Behaviour 4 (2003) 209–243

9. Brooks, R.: Intelligence without representation. In Meyer, A.R., Guttag, J.V.,
Rivest, R.L., Szolovits, P., eds.: Research Directions in Computer Science: An MIT
Perspective. MIT Press, Cambridge, MA (1991) 249–276

10. Beer, R.: The dynamics of adaptive behaviour: A research program. Robotics and
Autonomous Systems 20 (1997) 765–776



Globular Universe and Autopoietic Automata:
A Framework for Artificial Life�
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Abstract. We present two original computational models — globular
universe and autopoietic automata — capturing the basic aspects of an
evolution: a construction of self–reproducing automata by self–assembly
and a transfer of algorithmically modified genetic information over gen-
erations. Within this framework we show implementation of autopoietic
automata in a globular universe. Further, we characterize the computa-
tional power of lineages of autopoietic automata via interactive Turing
machines and show an unbounded complexity growth of a computational
power of automata during the evolution. Finally, we define the problem
of sustainable evolution and show its undecidability.

1 Introduction

Some 50 years after von Neumann made public his result on self–reproducing
automata it appears that this result should not be merely seen as convincing
evidence of the existence of complex artificial self–reproducing structures. As
McMullin pointed out [3], von Neumann’s effort is to be also understood as
the first step towards a construction of structures which exhibit an ability of
evolutionary complexity growth “from simpler types to increasingly complicated
types”, as von Neumann put it. Unfortunately, von Neumann, in his work, did
not tackled the issue of complexity growth of self–reproducing automata in more
detail. In conclusion of his work [4] he merely indicated that these are the random
mutations which should play the role of the respective evolutionary mechanism
and included this problem into the list of problems which should be still inves-
tigated in the future (cf. [3] for a detailed discussion of that matter).

Obviously, von Neumann’s intuition was right as we nowadays know from
the theory of cellular and evolutionary biology. Nevertheless, a problem remains
whether random mutations are the only mechanism for the artificial evolution, or
whether there exists another mechanism resulting into more efficient evolution.
A related question is whether the hypothetical “other” mechanism can become a
� This research was carried out within the institutional research plan AV0Z10300504

and partially supported by grant No. 1ET100300419 within the National Research
Program “Information Society”.

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 21–30, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



22 J. Wiedermann

subject of the evolution and how this can be achieved. Last but not least, is there
an unbounded evolution, generating self–reproducing automata with increasingly
complicated behavior, from a computational complexity viewpoint? What is the
computational power of an unbounded evolutionary process? And can we decide
whether a given self–reproducing machine will give rise to an endless evolution
under given conditions? Some of these questions were discussed in [3], indicating
possible ways to answer them.

In this paper we sketch formal answers to the above mentioned questions.
For such a purpose we will present concepts and the results which emerge from
the author’s recent studies of the related problems. In their preliminary form the
respective results were presented partly in a recent workshop [6] and partly as a
technical report [7]. Contrary to these works the present paper is a survey paper
stressing the main ideas behind the respective models and results rather than
their formal description and proofs. This is so because a technical explanation
would require more space than it is available in this contribution. The interested
reader is invited to read the original sources.

In Part 2 we introduce an original model of globular universe which is the
basis for construction of so–called self–reproducing globular automata. In Part
3 we informally define a simple abstract model of self–reproducing automata —
so–called autopoietic automata — which obey self–reproducing abilities by their
very definition. From their own genetic information these automata are able to
compute new, algorithmically modified genetic information and pass it to their
offsprings. In Part 4 we show that an arbitrary autopoietic automaton can be
realized in a suitable globular universe. The reproduction of the resulting au-
tomaton proceeds, in a similar way, as the replication of a DNA strand in the
living cells. Further on, we will deal exclusively with the autopoietic automata.
In Part 5 we will characterize the computational power of the lineages of such
automata by equalling it to the power of interactive Turing machines. We also
mention the problem of a sustainable evolution and show its computational un-
decidability. Part 6 asks for the existence of an autopoietic automaton with an
unliminted “self–improvement” property. Such an automaton initiates an evolu-
tion generating subsequently all autopoietic automata. This automaton controls
its mutations is such a way that the genetic code “syntax” gets preserved; the
evolution of the mutational mechanism itself guarantees the coverage of the en-
tire evolutionary space. Section 7 is a closing part.

2 Globular Universe

The basic design idea of a globular universe comes from the following
gedanken experiment with a classical cellular automaton. Imagine a standard
two–dimensional cellular automaton and cut it by vertical and horizontal cuts
into single cells each of which is seen as a single finite–state automaton. Doing
so the cells will lose contacts with their neighbors. Let the cells freely fly around
in the space, occasionally colliding one with each other much like as under the
Brownian motion. Under a collision the cells come again into a passing contact
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and on that occasion they perform a “computation” (a state transition) similarly
as in the case when they were bound in a rigid grid of a cellular automaton. In
our case, however, the colliding cells are not allowed only to change their states,
they can also change properties of their contact domains. E.g., after the collision
the originally neutral contact domains can become “sticky” and thus both cells
will get bound together. Or the contact domains will become repulsive — the
cells will be forced to move apart from each other. Thus, as a result we get a
kind of a programmable matter, or a universe with programmable particles. The
previous picture is not quite correct yet as far as the analogy with the Brownian
motion is concerned. In our model we do not consider any kinetic aspects of
cells moving in the space (like in lattice–gas automata); we are only interested
in their final destinations, where they collide with an other object. Thus, to
simplify the model further, we will assume that a cell in a proper state (i.e.,
having the required properties) “will come flying” to a place where we need it
and at due time. Such an approach has great advantages over the probabilistic
approach where we must care about probabilities by which the required phenom-
ena occur. Our assumption resembles a nondeterministic choice: of all possible
alternatives which can in principle occur we assume that the one that suits to
our purposes will occur, indeed. Then, if adequately programmed a cell can be
incorporated into an object at hand which in this way is being built by self–
assembly. The last cosmetic change of the previous ideas is the transformation
of square–shaped cells of the original cellular automaton into globules. They are
all alike, of the same size and on their spherical surface on exactly (computation-
ally) defined locations they have contact domains whose attraction properties are
controlled by a finite state mechanism which is the same for all globules. As a
result, the globular universe is created by an infinite multiset of globules with
a fixed set of contact domains defined on their surface. The properties (i.e., the
state plus the attraction abilities of contact domains) of globules at interaction
times are controlled by so–called interaction function (or relation) which says
how the states and attraction properties of two interacting globules will change
after the interaction (for more details see the original paper [6]). A somewhat
similar experimental framework using a finite state mechanism to model con-
tact properties of polyhedral particles moving in a fluid in a simulated physical
setting has been described in [2].

It is clear that our model of globular universe is a generalization of both
classical cellular automata and contemporary models of self–assembly (cf. [1])
as used in computer science.

3 Autopoietic Automata

Our next goal will be a construction of a so–called self–reproducing globular
automaton. Its construction will be based on the principles of self–reproduction
as “discovered” by von Neumann [4]: the same “program” will be used both
for controlling automaton’s own computational behavior and as a template for
the production of an other program which will later control the offspring of
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the self–reproducing automaton at hand. In a globular universe we cannot take
advantage of the fixed grid structure underlying the classical cellular automaton
as it was the case with the von Neumann’s design. Namely, we cannot construct
a copy of the original machine at a priori computed “free” grid locations in
a sufficient distance from the parental machine. Instead, we will make use of
the self–assembly properties of the elements of a globular universe. Prior to
immerging into a design of a self–reproducing globular automaton we describe a
more abstract object, a so–called autopoietic automaton1 whose formal definition
can be found in [7]. This (mathematical) object will serve as a kind of abstract
specification of a self–reproducing globular automaton. An implementation of
an autopoietic automaton in a suitably designed globular universe we give rise
to the required self–reproducing globular automaton.

Autopoietic automata are nondeterministic finite state machines capturing
the elementary information processing, reproducing and evolving abilities of liv-
ing cells. Technically, an autopoietic automaton is a nondeterministic transducer
(a Mealy automaton) computing, in addition to the standard translation also the
transition relation of its offspring. The design of an autopoietic automaton sup-
ports working in two modes. Both modes are controlled by a transition relation.
The first of them is a standard transducer mode in which external input infor-
mation is read through an input port. In this phase the results of a computation
(if any) are sent to the output port. The second mode is a reproducing mode in
which no external information is taken into account. Instead, the representation
of a transition relation itself is used as a kind of the internal input. For this
purpose the representation of automaton’s own transition relation is available to
an autopoietic automaton on a special, so–called program tape. It is a two–way
read–only tape. The results of the computational steps in the reproducing mode
are written on a special one–way write–only output tape. Of course, both tapes
mentioned before are finite.

In general, the transition relation of an autopoietic automaton is a finite
subset of the cartesian product Σ × Q × Σ × Q × D, where Σ is an ordered
set of input and output symbols, Q is the ordered set of states and D is the
ordered set of move directions of the head on the program tape. Both sets Σ
and Q can be infinite, whereas D = {d1, d2, d3, d4}. On the program tape the
elements of these sets are unary encoded, i.e., an element σi ∈ Σ, qi ∈ Q, or
di ∈ D is encoded as 0i (i.e., as the string consisting of i zeros). It follows
that a tuple (σi, qj , σk, qm, dn) ∈ Σ × Q × Σ × Q × D is represented on the
tape as 10i10j10k10m10n1. Tuple (σi, qj, σk, qm, dn) is called an instruction of
the transition relation; a representation of an instruction on the tape is called
a segment. The semantics of an instruction is as follows: “reading σi in state qj

1 The name of autopoietic automata has been chosen both to honor the Chilean biol-
ogists Varela and Maturana who coined the term of autopoiesis and also to distin-
guish these automata by the name from the notoriously known classical notion of
self–reproducing automata which are a kind of cellular automata. The autopoietic
automata are definitely not meant to model autopoiesis in the sense of Maturana
and Varela.
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the automaton outputs σk, enters state qm and shifts its head in direction dn,”
where the value n = 1 means the shift by one cell to the left, n = 2 to the right,
n = 3 means no shift and n = 4 means “undefined”. The segments are written
on the program tape one after the other.

Formally, the mode of activities of an autopoietic automaton are derived
from the type of state that the automaton is in at that time. For such a purpose
the states of an automaton are split into two disjoint sets: a translating and
a reproducing set. To distinguish the types of individual states in their tape
representation also syntactically we will make use of the last component in the
five–tuple representing a segment. When, after entering state qm, the automaton
should work in a translating mode (i.e, when qm is a translating state), the
component in the respective instruction will take value d4 and in the respective
segment value 04. Otherwise, to indicate the reproducing states, this component
will take values d1, d2, or d3 denoting the move direction for the program tape
head. An autopoietic automaton will start its activity in an initial translating
state and while remaining in this type of states the automaton continues working
in the translation mode. The respective instructions are characterized by value
d4 in their last component signalling the absence of head moves. After the first
entering a reproducing state the automaton must stay in the reproducing mode.
The reproducing mode terminates by entering the final reproducing state. At
that moment the automaton splits into two automata by definition. The first of
the two will “inherit” the program tape of the parental automaton as its own
program tape (denoted as Program 1 in Fig.1), whereas the second one will
use, in place of its program tape, the output tape of the parental automaton
(denoted as Program 2). Then both new automata start their activities with
empty output tapes. Each new automaton is seen as an offspring of the original
automaton. Clearly, one of the offsprings will always be identical to its parent,
but the other offspring can be different from its parent, indeed. Note that it has
been the admittance of infinite symbol and state sets allowing an autopoietic
automaton’s offspring to work with a larger set of symbols or states than its
parent could. By this we have opened a possibility of an evolution leading from
simpler to more complicated automata.

Program tape

Output tape Program 2

Empty

Program 1

Empty

Input port Output port

Fig. 1. Autopoietic automaton reproducing by fission
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4 Implementing Autopoietic Automata in a Globular
Universe

Now we design a specific globular universe and show the implementation of
autopoietic automata in it. It is obvious that autopoietic automata cannot exist
in a universe which is “too simple”. For instance, a universe with only single–
state globules does not enable any interaction of globules that would result in
their state changes. Similarly, no globular complexes can be built in a universe
with only neutral globules (i.e. with those unable entering attraction states).
In the sequel a universe in which we will implement an autopoietic automaton
will not be explicitly described. Rather, the required properties of the globular
universe will be implied by the construction of the self–reproducing globular
automaton and it will be clear that such a universe does exist, indeed.

Theorem 1. There is a nondeterministic globular universe in which, for any
autopoietic automaton, there exists its implementation in the form of a self–
reproducing globular automaton.

Sketch of the proof: Let A be an autopoietic automaton and consider its
program tape with the segments of the transition relation of A written on it.
In our universe we will represent this tape as a string of globules. The length
of this string equals that of the tape. For simplicity we will first assume that
globules in our universe have enough states for directly representing the symbols
of a finite subset S ⊂ Σ and R ⊂ Q really used by the automaton. This means,
we assume that there is a one–to–one correspondence between the set of states
of globules and S or R, respectively. Moreover, assume that some extra states
still remain free. These states will be used to hold “auxiliary variables” in our
construction. Thus, in our string each globule will be in a state which uniquely
corresponds to the symbol encoded on the automaton’s program tape. The glob-
ules are designed so that they have four equidistant contact domains — poles —
around their equator. On each globule one pair of opposite poles is in a “sticky”
state forcing globules to form a sequence. Moreover, we can assume that the first
and the last globule will also stick together giving rise to a so–called basic ring
representing the transition relation of A. This ring will form the basis of the
globular automaton G implementing A.

Now it is time to describe the input “mechanism” by which G reads its
inputs. We will simply assume that G “reads” its input by its entire “body”.
I.e., we will assume that there will come a “wave” of the input globules which
will attach themselves (because they are programmed so) to the globules’ poles
located on the same side of the basic ring. We can assume the existence of such
a wave thanks to the properties of the nondeterministic universe. Afterwards,
G starts to work in the translation mode as an interpreter of the code which is
represented in the basic ring. In order to work in this way there is an additional
ring attached to the basic ring where additional globules representing necessary
auxiliary “variables” are kept. The globules in this ring serve e.g. as “markers”
denoting the current state or the segment with an instruction to be performed,
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the program head location, by their interaction “circular” signals are sent around
the rings, etc. The resulting globular automaton takes a form of a double ring;
its globules mirror the actions of a similar classical cellular automaton. The only
difference is that G is “made of” globules instead of cells, but the neighboring
spacial relations among the globules and cells are the same. The details of the
construction are given in [6]. The output from G is done in an analogous way to
the input, i.e., the original input globules are “transformed” (via a change of their
states) into required output globules and are “released” into the environment (via
a change of their attraction properties). In this way the actions of G proceed until
G enters the first reproducing state.

In the reproducing mode G slavishly interprets the instructions from its pro-
gram tape similarly as before. The difference is that now the input is read directly
from the globules of the basic ring (for such a purpose the head position must
be represented in the auxiliary ring) and the output globules (to which the in-
coming globules are transformed) are not all released into the environment but
those at proper places are subsequently “glued” together to form yet another
ring which grows in this manner. In parallel to this ring an auxiliary ring much
as the one attached to the basic ring is built. The emerging output and auxiliary
rings also form a double ring which touches the original rings at the place where
the reading head was initially located. Once G enters the final reproducing state,
the newly generated double ring detaches itself from the original double ring
and each complex starts to exist as an independent self–reproducing globular
automaton.

The implementation of A we have just described works in a universe with
globules having a sufficient number of states. In a universe with less states we
have to work with globules corresponding to the unary coding of states and sym-
bols as required by the definition of autopoietic automata. Thus the simulation
process gets more complicated; nevertheless, its main features will remain the
same. �

Even from the previous sketch one can see that in order to realize a self–
reproducing globular automaton a nondeterministic universe with a certain min-
imal number of states is needed. The upper bound on this number could be in-
ferred from a more detailed description of our construction. On the other hand,
it is also clear that in universes with too small a number of globular states it
might not be principally possible to build a self–reproducing automaton.

„Parent“

„Offspring“

Transition 
relation 
segment 

Copying 
site

Fig. 2. Self–reproduction of a globular automaton
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5 The Computational Power of Autopoietic Automata

In order to get an idea of the computational power of self–reproducing globular
automata we will study the power of autopoietic automata. The next theorem
will characterize the computational power of the so–called lineages of autopoietic
automata with the help of interactive Turing machines. A lineage of autopoietic
automata is an infinite sequence of autopoietic automata in which each mem-
ber has exactly one immediate successor which is an immediate offspring of
that member. A lineage corresponds to a single path, starting in the root, in
a “genealogical” tree consisting of all possible offsprings of a given autopoietic
automaton which is located in the root. In this tree, parents are linked to their
immediate offsprings. A tree will emerge due to the fact that a single autopoi-
etic automaton can give rise to several offsprings. An interactive Turing machine
(ITM) is a Turing machine reading a potentially infinite sequence of its inputs
via an input port and sending its outputs to the output port [5]. Both in the case
of autopoietic automata and ITMs we allow so–called empty inputs that corre-
spond to a situation when no symbol from Σ appears at some port at that time.
We say that an ITM simulates a given autopoietic automaton (or vice versa) if
and only if both devices compute the same translation (mapping) from the input
symbol sequence to the output symbol sequence, with empty symbols deleted
from both sequences.

Theorem 2. The computational power of a lineage of (nondeterministic) au-
topoietic automata equals to that of a nondeterministic interactive Turing ma-
chine.

Sketch of the proof: The proof of the left–to–right implication is relatively
simple. The simulation of a given member of a lineage is carried out by the uni-
versal ITM which, on its first working tape, has a representation of automaton’s
program tape and interprets the instructions from this tape. In the translation
mode the machine reads its inputs from the input port and sends the outputs
to its output port. In the reproducing mode the machine reads its first tape and
writes the output to the second working tape. After reaching the automaton’s
final reproducing state the machine changes the role of its tapes, empties the
second tape and the simulation of the next member of a lineage can resume.

The reverse simulation is more complicated. The idea is to see the ITM’s
computations performed in the space of size i as those of the finite state au-
tomaton Ai, for i = 1, 2, . . . . . The automata Ai are realized by corresponding
autopoietic automata. What must be designed is the reproducing instructions for
autopoietic automata which, as one can see, are the same for all automata. Their
task is to “compute” the transition relation for Ai+1 given the transition relation
of Ai. Then, along with the growing space complexity of the Turing machine in-
creasingly bigger autopoietic automata are generated giving the members of the
required lineage we are after. For more details see the original report [7]. �

It is obvious that the halting problem for an ITM is undecidable. Thus,
it is undecidable whether, given an infinite input sequence and an ITM, the
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machine will ever halt on that input. A similar question for a given autopoietic
automaton and a given infinite input sequence would be the following problem of
a sustainable evolution: is it decidable whether the automaton will generate an
infinite lineage of its offsprings on that input? Referring to the previous theorem
the following result holds:

Corollary 1. The problem of a sustainable evolution is undecidable.

6 Unbounded Evolutionary Complexity Growth

The previous corollary shows that for a given input sequence we cannot in general
decide whether an autopoietic automaton will generate an infinite lineage. It
is trivial to see that the situation changes dramatically if we submit to the
automata suitable inputs that will cause their entering final reproducing states.
To see this it is enough to consider an automaton which replicates on some input
and to submit the same input to that offspring which equals its parent. But now
we present a much less obvious result — we show an unbounded complexity
growth of automata during an evolution by constructing an automaton which in
a suitable nondeterministic universe generates all possible autopoietic automata.

Theorem 3. There exists a nondeterministic autopoietic automaton which, in a
suitable nondeterministic universe, generates all existing autopoietic automata.

Sketch of the proof: We design an automaton whose code contains only the
reproducing instructions. These instructions read the segments from the au-
tomaton’s program tape, modify them and rewrite them onto the output tape.
The modifications do not concern the syntax of the segments, i.e., the separa-
tors (symbols 1) between the sectors as well as the number of sectors remain
unchanged. Then the modifications are threefold:

– A change within a sector: when copying a sector the automaton adds or
omits one zero; it follows that the successor automaton will work with other
symbols or states than its parent;

– Adding one segment whose contents is nondeterministically generated; this
will potentially give rise to a “more complex” automaton;

– Omitting a segment (the automata get “simplified”).

It is clear that the initial automaton will subsequently generate autopoietic
automata with all possible transition relations. Those of these automata which
could in principle reach the final reproducing state on some input will indeed
get such an input and hence will self–reproduce. The other automata will not
reproduce. Again, for the details see the original report [7]. �

It is important to realize that the construction just described enables an evo-
lution of the mechanism which is responsible for the algorithmic modification of
the transition relation. Thus, what we got is a mechanism for the evolution’s evo-
lution. Putting it differently, in our latest autopoietic automaton the evolution
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is not guided by a fixed set of rules; rather, these rules themselves are subjects
of an evolution. This is a property not possessed by the automata constructed
in the proof of Theorem 2. Last but not least, note that for covering the whole
evolutionary space of autopoietic automata it was of fundamental importance
that both components of an autopoietic automaton’s control — the translating
and the reproducing one — were a subject of an evolution.

7 Conclusion

In the paper we surveyed several fundamental results concerning the self–
reproducing automata. All these results were based on a new formal framework
enabling computational modelling and mathematical analyzing of the respective
phenomena. The results show the viability of the approach, bring new insights
into the nature and power of evolutionary processes and thus are of interest both
from the artificial life as well as from the computational complexity theory point
of view.
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Abstract. The contribution provides an example of how a formal model of 
some life-like functions – the so called eco-grammar (EG) system – provides a 
framework in which it is formally provable that the computational power of the 
model – under some very natural circumstances derived from the specificities of 
living systems, esp. from their embodiment – may overcome the computational 
limits of traditional computing models, perhaps also the computational power of 
the universal Turing machine.  

1   Introduction 

Starting from the original inspirations and ideas of the Artificial Life (AL) we are 
concerned with tuning the behaviors of low-level machines so that the behavior that 
emerges at the global level is essentially the same as some behavior exhibited by 
natural living systems [5, p. 4]. During the history of AL many of experiments and 
theoretical frameworks have been proposed in order to discover or to describe such 
type of emergence of the life-like behaviors from the machine-like behaviors. In [6] 
several suitable examples of the proposed approaches are listed as well as a hint – in 
the form of a specific test of emergence – how to valuate them in order of answer the 
question whether or not the life-like behaviors emerge from the machine-like ones. 
The test of emergence requires some principal surprise when we compare the 
behavior of simple machines forming the whole systems, and the behavior of the 
whole system. In fact, esp. this principal surprise proves that the behavior of the 
whole really emerges from the behaviors of its parts.  

At least a part of AL research is in experimental level concerned to computers and 
in the theoretical level to tools and methods provided by theoretical computer science. 
From the point of view of theoretical computer science abstract machines – and 
formal models theoretically equivalent with them in formally well-defined sense, e.g 
formal grammars; cf. [4] – cannot do more as produce (accept, recognize) behaviors 
which can be produced (accepted, recognized) by the universal Turing machine. This 
is the core statement of the so called Church-Turing Thesis; cf. [8]. All of the 
arguments for the thesis, as Sieg pointed out, take for granted that the computations 
are being carried out by human beings, and that the computations are taken 
mechanical. Ideas about incorporation of certain variant of “parallelism” and of 



32 J. Kelemen 

overcoming in certain way the limits of the “mechanical” seems to be helpful for 
speculations on some new type of computing devices, might be inspired by some 
approaches of AL.    

Going back to the test of emergence, it will be principally surprising, at least from 
the point of view of theoretical computer science, if in a well-formalized theoretical 
model of computations or computing machines it happens to prove that processes 
correctly described in the frame of this model go beyond the computational power of 
the universal Turing machine, if so – following the terminology proposed in [1] – the 
models are super-recursive, and the processes executed by them are hyper-
computations; for some examples see [1]. 

In this contribution we will sketch a formal framework of eco-grammar systems 
proposed in [2] inspired by some features of living systems, and developed for 
studying the interplays of (formal) descriptions of behaviors of simple machines, and 
the results of these interplays. Then we will recall a result from [9] in order to 
illustrate the surprise: Eco-grammar systems, when we include a very natural feature 
of living systems – their embodiment – into them in certain way, are super-recursive 
models, and they are able to execute hyper-computations. So, by the example we will 
try to provide a formal proof supporting the intuitive idea that behaviors of living 
systems may have in certain situations the character of super-computations, so that 
they may go in certain situations beyond the behaviors of individually recursive 
abstract machines which, working together, may form super-recursive computing 
devices.   

2   Eco-grammar Systems 

According [2], an eco-grammar (EG) system  consists, roughly speaking, of  

- a finite  alphabet V,  
- a fixed number (say n) of agents, and evolving according set of rules P1, P2, ..., Pn 

applied in a parallel way as it is usual in the theory of L-systems [7], and of  
- an environment of the form of a finite string over the set V (the states of the 

environment are described by strings of symbols wE, the initial state of the 
environment is described by the string w0 ). 

The rules of agents depend, in general, on the state (on the just existing form of the 
string) of the environment. The agents act on a shared string (the state of the 
environment) by sets of their own sequential rewriting rules R1, R2, ..., Rn as it is usual 
in the traditional formal language theory; cf. [4]. 

The evolution of the state of the environment, caused by agents, proceeds in the 
following way: 

By the definition, a string wi is rewritten into the string wj (wi, wj ∈ V+) according 
the mode of rewriting t (in short wi 

t
 wj) iff all agents which are competent to rewrite 

symbols if the corresponding EG system  works in the rewriting mode t are also able 
to execute the rewritin. The simplest case of the mode t is the one according which all 
of agents which can rewrite a symbol must execute the rewriting. 

After the execution of a step of rewriting process by agents it follows the parallel 
rewriting according the rules from the set PE. 
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The environment itself evolves thanks to and according the set PE of rewriting rules 
applied in parallel as usual in L systems.1  

The model is schematically depicted in the figure Fig. 1. We note, that the role nor 
the definition of the functions  and  appearing in the formal model of eco-grammar 
systems as defined in [2] as well as in Fig. 1 will not be discussed in the following, so 
we will pay no attention to their definitions as well as specifications of their roles. 

 

 
 

Fig. 1. A schematic view of a traditional EG system [2] 
 

The evolution rules of the environment are independent on agents’ states and of the 
state of the environment itself. The agents’ actions have priority over the evolution 
rules of the environment. In a given time unit, exactly those symbols of the 
environment that are not affected by the action of any agent are rewritten.  

In the EG-systems we assume the existence of the so called universal clock that 
marks time units, the same for all agents and for the environment, and according to 
which the evolution of the agents and of the environment is considered.  

3   Teams in Eco-grammar Systems  

In [3] a special variant of EG systems have been proposed in which agents are 
grouped into subsets of the set of all agents – into the so-called teams – with fixed 
number of agents. A more adequate from our perspective model has been proposed in 
[9] where a variant of EG systems without internal states of agents is studied, the 
fixed number of members proposed in [3] is replaced by a dynamically changing 
number of agents in teams.  

                                                           
1 So, the triplet (V, PE , wE) is (and works as) an L system. 
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As the mechanism of reconfiguration in the proposal by D. Wätjen, a function f is 
defined on the set N of integers with values in the set {0, 1, 2, … n} (where n is the 
number of agents in the corresponding EG-system) in order to define the number of 
agents in teams: For the i-th step of the work of the given EG-system, the function f 
relates a number f(i)∈ {0, 1, 2, … n}. The subset of the set of all agents of thus EG-
system of the cardinality f(i) is then selected for executing the next derivation step of 
the EG system working with Wätjen-type teams.  

Wätjen in [9] proved, roughly speaking, that there exist EG systems such that if f is 
(in the traditional sense) non-recursive function, then the corresponding EG system 
generates a non-recursive (in fact it may be also a super-recursive) language. 

The language is defined in the case of Wätjen’s type EG systems, say a system , 
using in each derivation step only agents from the corresponding subset of the 
cardinality f(i) of the set of agents of , so: 

L( , f) = {v  w0  f(1)
 w1  f(2)… wr  f(r) = v, r∈ N, w0 … wr  ∈ V*} 

Consider the following example of a Wätjen’s type EG-system which uses a 
function f  [9]:  

 = (V, PE, R1, R2,..., Rn, wE ) 
where 
V = {a,  b , b1, b2, ..., bn},    
PE = {a→ a2, b→ b2 } ∪ { bi → b2  i = 1, 2,…, n}, 
Ri = {b → bbi }, 1 ≤  i ≤ n, 
w0  =  a2b2n+3m , m,n∈ N. 

This EG-system generates the following language: 
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This language is recursive, if the function f is recursive. Then Wätjen supposes that 
in the case of a non-recursive f the language L( , f) remains recursive, and 
demonstrates a contradiction which follows from this: If L( , f) is recursive, then all 
the words of it can be effectively listed in some order. Now, chose an arbitrary k∈ N. 
Then there exists a word wk in L( , f) listed after a finite number of steps, so, we can 
compute the value f(k) for it. From this fact follows that f is computable. This is, 
however, a contradiction! Because of this, the language L( , f) is non-recursive if f is 
non-recursive.  

4   Concluding Notes on Embodiment   

Incorporation of physical bodies of agents into the pure formal framework proposed 
for study of emergent computational properties of multi-agent systems consisting of 



 May Embodiment Cause Hyper-Computation? 35 

embodied individually autonomous agents is in general a hard problem for the formal 
models proposed in AL, esp. because there are no adequate formal tools at hand for 
involving the agent bodies into computational frameworks. EG systems in the form 
proposed in [2] incorporate several life-like features, but not the embodiment of 
agents.  

However, in the context of EG systems with agents organized into teams as 
proposed in [3] and in [9] we may imagine and suppose – in a very intuitive level – 
that the physical bodies of agents are the very things we want for prohibition of agents 
activities in certain extent during the rewriting process. In the case of the fixed 
number of agents in teams [3] this kind of modeling the embodiment have no 
principal influence to the computational power of the EG systems. But in the case of 
changing number of agents in teams – as proved in [9] and as we sketched in the 
previous Section – the computational power of the EG systems basically depends on 
the computational properties of functions which define the number of active agents in 
teams. Non-recursive functions appearing in this model cause the possibility of 
generation of non-recursive languages – behaviors – using the corresponding EG 
systems. The non-recursivness of the functions f in the model can be interpreted as 
certain level of incorporation of the randomness into the models.  

We conjecture that if this randomness incorporated into the EG systems will be at 
the level expressible only through hyper-computable functions f, then the 
corresponding EG systems which will use such type of functions will be – using the 
terminology proposed in [1] – super-recursive, so that they will be able to perform 
hyper-computations. 

In any case, the interpretation of the result from [9] concerning the computational 
power of EG systems proves that embodiment of agents significantly influences the 
computational power of communities of agents in comparison with the individual 
computational power of agents forming these communities and participating on their 
activities. In certain sense the difference between the behavior of the agents and of the 
whole communities formed by them may be comprehended as a surprise required in 
the test of emergence formulated in [6], and the non-recursivity (or the hypothesized 
above super-recursivity) of the societies of agents as an emergent effect of agents 
embodiment. 
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2 COSTECH Université de Techonologies de
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Abstract. In this paper, we propose a formal definition of the percep-
tion as a behavioral dynamical attraction basin. The perception is built
from the integration of the sensori-motor flow. Psychological considera-
tions and robotic experiments on an embodied “intelligent” system are
provided to show how this definition can satisfy both psychologist and
robotician point of view.

1 Introduction

The classical conception of perception refers to a parallel and passive computa-
tion of an input flow of information. In this frame a cognitive system is consid-
ered only as a computational system receiving inputs (namely the “sensations”)
to identify objects or events and producing output representations useful for rea-
soning and leading to appropriate actions. In this paper we investigate an alterna-
tive approach where perception is linked to dynamical laws between actions and
sensations [22,14]. But the lack of a formalism leaves the community without tools
to analyse this kind of concept. Therefore, taking avantage of a generic formalism
developped to analyse cognitive systems [5], and refeering to psychological and
neurobiological assumptions, we propose to define the perception as a dynamical
sensori-motor attraction basin. Specifically, the formal description of a sensori-
motor system leads us to define the perception in regard of the dynamics of the
sensori-motor system. Moreover, we will show that a sensori-motor learning in a
competitive neural network allows to approximate such an attraction basin. The
immediate benefit is to be able to explore the concept by observing the resulting
perception in robotic experiments and to confront it to psychological experiments.

2 Background Considerations

We briefly wish to recall that our formalism of perception inherits from a recent
philosophical and scientific tradition. Indeed, during the 19th century, and more
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definitively during the 20th century, a whole philosophical work [9,17] states that
the conscious experience and knowledge are the fact of a construction (third per-
son) or constitution (first person). This poses that to know and perceive in an
organized way is not given and supposes developmental and learning processes.
Moreover, this epistemology of the construction or constitution which renews
the statute of objectivity deeply affirms the role of the action and its effects as
a condition of possibility and constraint [16]. And very radically, it poses that
the lived experience of the world and oneself (and their relation) are defined by
the properties of the actions system available to the agent which organizes the
organism-environment relations. This led to the idea that the causality of the
experience cannot be reduced to a strictly active or passive internal construc-
tion. In the scientific field, this approach had some eminent representatives so
much in the life sciences [12,4] that in the social sciences [15,21,13]. There is
obviously no question of developing the whole of this work here. We simply pro-
pose to specify the importance of the action and more precisely of some to know
about this same action so that the process of perceptive genesis can take place.
The perceptual knowledge associated with the action is classically described like
concerning the proprioception. The latter indicates a system of coupling which
intervenes in the perception of the movement (kinesthesis) and body positioning
(statesthesis). Like any system of coupling, it implies a whole of elements which
are not limited to particular sensors (neuro-muscular spindles, neuro-tendinous
bodies or articular sensors) and their mode of transduction. This system implies
a nervous network (cortex included in particular sensory-motor, premotor, left
parietal, cingular bilateral cortex and supplementary motor area), effector (the
muscles) and includes the environmental constraints (gravity, friction). Without
going into the details of the operation of this coupling, it is possible to mention
some significant points:

– Each movement is associated to a specific reafferent sensory flow which can
be defined like a true signature.

– This signature is currently described in the shape of a vector which includes
acceleration, speed, direction and duration of each movement.

– Formally, the relation between movement and sensory reafferences is bijec-
tive what guarantees a great stability of the invariants that this coupling
authorizes.

– This system is continuously activated but some forms of adaptation at the
time of prolonged immobility can be observed.

The proprioceptive coupling thus allows the constitution of reliable invariants
relative to the body by convening the body itself. This sensitivity of the proprio-
ceptive system to the only directed deformations of the body confers a particular
statute to him to the glance of two other systems (the vestibular and tactile sys-
tems) implied in the general sensitivity to the movement and the position. These
two systems can indeed generate flows independently of the active or passive de-
formation of the body. Being given this specific property, it is not surprising
that Roll [19] suggested the founder role of this system in the emergence of
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one experienced body. In addition to the very early functionning of the motor-
proprioceptive loop during the foetal life, the question of the basic statute of the
proprioception does not seem to be any doubt if one considers work of Held and
Hein [8] and especially of Buisseret and collaborators [2]. However, and very ba-
sically, it is significant to consider that, on the level more strictly empirical, the
description of the constitutive role of the action remains problematic. Indeed,
the control condition (absence of action) can be only exceptionally satisfied and
with much difficulties what justifies besides the possible recourse to artifacts
like robots to validate radically constructivist assumptions. Moreover, it should
be considered that this integrating statute of the proprioception is frequently
threatened by reafferent co-occurrent flows which can introduce confusions (ex-
teroceptive flow associated the displacement of the environment) or supplant
this statute (exteroceptive flow associated to the movement of the body itself
which can induce vection illusion). Thus, to pose the funding statute of the pro-
prioception seems admissible only in the terms of a developmental process. We
have to note that these important questions are not directly studied in robotic
research. Moreover, the movement situates the subject in a temporal unit which
resounds on a multitude of natural coupling systems. The unicity of the action
is a vector of multimodal integration by way of redundancy, of complementarity.
And this point echoes two concepts, suggested by Gibson [7], complementary
and extremely relevant to advance in the way of a formalisation of the per-
ceptual learning. These two concepts are those of proprioceptive function and
co-perception. Briefly, the first one suggests that the whole of the sensory flows
(visual, tactile, vestibular, auditive, etc...) associated to the movement intervene
at the same time in the regulation of postural tonicity and the experienced body
one. The second one is further posing that, if these flows intervene in the con-
stitution of one oneself (ecological self), they specify simultaneously the world.
The proprioceptive function mainly implies low spatial and high temporal res-
olution (peripheral visual way, tactile spinothalamic way, etc...) sensors of flow.
A flow can be defined like the continuous variation of a source of energy on the
surface of a sensor. The variation is necessary and it is related to the variation
of the sensor position and orientation and/or to the variation of the afferent
sensorial flow. The relevant point for the subject is to be able to dissociate these
sources of variations; the question of the agentivity defined as the capacity of
an agent to perceive that some transformations of the world are directly tied
to its proper action is posed at this level. In fact, the organism has signals per-
manently relating to its positioning in space (deep muscular sensitivity, angular
values of the articulations). Exteroceptive flows will be associated, integrated
into this major sensitivity. This is the coordination of these two flows which con-
stitutes at the same time the proprioceptive function [3] and co-perception [18].
And the possible detection of temporal coincidences between these two flows
constitute the base of the learning of the regularities within the sensory-motor
loops (importance of the spatio-temporal redundancies). The formalism that we
present at the continuation is inspired very directly by these conceptual evolu-
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tions specific to a better understanding of the developmental processes which
link motor-sensorial loop, proprioceptive function and perception.

3 Mathematical Definition of Perception

Previous works have focused on mathematical tools to formalize pure behaviorist
or reactive systems (see Steels, Smithers, Wiener, Ashby, etc...). The most in-
teresting tools are presented in the classical NN literature and in the dynamical
system theory[20]. But these tools are dedicated to specific parts of what we will
call a cognitive system (CS)1. We summarize here the basis of our mathematical
formalism of CS. A CS is supposed to be made of several nodes or boxes associ-
ated with input information, intermediate processes and outputs (command of
actions). Each element presents a degree of complexity that ranges from a sim-
ple scalar product (or distance measure) to a more complex operator such as an
“If...then...else...” statement (hard decision making), a recurrent feedback in the
case of a dynamical system, a mechanism to control focus of the attention, etc...
Whatever the complexity of an element is, we state it as a “neuron”. The inputs
and outputs of a CS are represented by vectors 2 in the “bracket” notation3. An
input or output vector noted |x〉 with |x〉 ∈ R+m while its transposed vector is
noted 〈x| . Hence 〈x|x〉 represent the square of the |x〉 norm. We can consider
that any element of a CS filters an input vector according to a matrix of weights
A and a non linear operator k. This operator represents the way to use the A
matrix and the pattern of interactions between the elements of the same boxe.
For instance, in the case of a simple WTA (Winner Takes All) boxe, its output
|y〉 is wta(A|x〉) with |y〉 = (0, ..., yj , ...0) and j = ArgMax(qi) and qi = 〈Ai|x〉.
Different kinds of inputs/outputs connections with their weight summarized in
the matrix A exist. Basically, we distinguish 2 main kinds of inputs/outputs
connections:

– “one to one” connections named I used to transmit information (uncondi-
tional stimulus US) from one group to another one, and seen as a reflex
pathway which can not be affected by learning.

– “one to all” connections used for transmiting conditional stimuli (CS), having
learning capabilities and used for categorization, etc...

Finally in the case of a complex competitive and conditioning structure with
1 unconditional (US) and 2 conditional (CS) inputs, we simply write |y〉 =
c(A1|CS1〉, A2|CS2〉, I|US〉). This allows to be sure a particular matrix is al-
ways associated to the correct input vector but it does not mean the matrix has
to be multiplied by the vector (this computation choice is defined by the operator
1 The term cognitive is used in the sense of the study of particular cognitive capabilities

(cogitare - to think) and does not induce any a priori cognitivist approach.
2 We consider the components of the different input/output vectors can only be pos-

itive/activated or null/inactivated. Negative activities are banned to avoid positive
effects when combined with a negative weight matrix.

3 The choice of this notation will be explained in the conclusion of the paper.
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itself). Interestingly this formalism emphasises the fact that an operator is work-
ing on 2 different flows of information moving in opposite directions. The first
one transforms sensory information in an output code while the second one acts
on the group memory in order to maintain an equilibrium defined by the learning
rule. Reaching an equilibrium allows the system to have a stable behavior ac-
cording to its environment but also to adapt itself to environmental variations.
These properties echo the psychologic assumptions previously overviewed and
show that a percept can only be built if there are interactions between a subject
and his environment. Based on these considerations we propose to define the per-
ception as a dynamical attraction basin allowing stable behavior through time.
In robotic homing experiments, a similar phenomenon was already observed as
learning the construction of a behavioral attraction basin surrounding the goal
is enough to allow the robot to return to a place without being able to statically
recognise it [6]. Also in visual perception [7], an affordance can be defined as
building or accessing to an invariant caracterizing one particuliar sensori-motor
behavior. In this case, perception is considered as the result of the learning
of sensations/actions associations allowing a globally consistent behavior while
facing an object.

For instance, let us consider a sensori-motor system of an agent acting in a
given environment (or state space), and having 2 sensation vectors |Sr〉 and |Sg〉.
First, |Sr〉 represents the proprioception, a coarse feedback information from the
execution of the motor command or the direction of the goal (if the goal is in
the immediate neighborhood). It can be considered as a reflex or regulatory
pathway linking a proprioceptive sensor to the motor command |Ac〉. Second,
|Sg〉 represents a more global information about the environment allowing to
build a local but robust distance measure (metric). This measure is learned and
computed by a competitive recognition group R (|R〉 representing its output
activity). This basic sensori-motor architecture, used as well for a homing task
as for a focus on a target, can be described by the diagram fig. 1a and its
corresponding equations.
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Fig. 1. a) An exemple of a simple sensori-motor system and its corresponding equa-
tions. b)left Theoretical system actions after learning 2 sensation/action associations
and their competition according to the system spatial position. b)right Theoretical
perception and attraction basin computed by integration of the action shown on left.
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The operator c represents a competitive structure (soft-WTA) able to self-
organize itself according to one sensory data flow (also in the case of c2 fig. 1,
to condition one input data flow according to an unconditional flow ). After
the competition, the activity of R reflects the recognition level. The decision
is delayed at the motor level and must be understood according to the global
temporal dynamic of the system. Let us notice the system behavior does not
directly depend on the absolute level of recognition of the learned views or places.
Only the rank in the competition process matters which allows some robustness
to perturbations until the noise as an effect on the rank in the competition. The
output of such a sensori-motor system is an action realized by the agent in its
environment. Consequently, the agent modifies its state and then its sensations:
the agent and its environment can be viewed as a dynamical system [1]. It is
important to notice that in the dynamical systems theory, the action is defined
as the derivative of a potential function [10,20]. Considering the psychological
background (section 2), we can precise the definition of the perception we gave
as an attraction basin: we call this potential function perception. Consequently,
agent’s actions derivate from its state of perception. Formally action |Ac〉 can
be deduced from perception Per with this relation :

|Ac〉 = −m
−−→
grad Per(p) (1)

where p is the agent state and m is associated to a “virtual” mass which deals
with the agent’s embodiment. For instance, m should change while considering
two different agents with different morphologies. This mass which allows ho-
mogeneity of equation(1) will be considered as a constant in the following. Of
course equation (1) can be rewritten: Per(p) = − 1

m
〈Ac|p〉 = − 1

m

∫
p+δp

Ac dq.
which corresponds to our intuition of the recognition as an attraction basin. An
illustration of a perception basin can be viewed on fig. 1b-right where only two
actions were possible (“go left” and “go right”). The basin results from the nu-
merical integration of the curve proposed fig. 1b-left and represents the learned
sensori-motor associations and their effects. According to the agent point of view,
its perception is built from the integration of its actions relative to its state p.
In consequence p refers to the agent proprioception and other internal variables
which can be implicit in the system. But considering an external point of view,
the integration of the agent’s actions relative to his spatial position allows to vi-
sualize a posteriori a perception which keeps meaning: we obtain a visualization
of the dynamical behavioral attraction basin of the agent.

4 Robotic Application

In order to appropriate our definition of perception and understand its full de-
tails, we propose a simple robotic application using a Koala robot with a CCD
camera. The robot task is to learn how to return to a given object which can be
interpreted as the fact the robot “perceives” the object. The robot only learns
affordances [7] linked to the target; an explicit recognition of the object is not
required. During the experiment, we propose to evaluate the global behavior of
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the robot by observing its trajectories. An external observer we will conclude
that our robot succeeds in its task if its global behavior is consistent while facing
the learned object: a particular affordance is then observed. We also propose to
a posteriori compute the robot’s perception according to the equation (1). These
two observations are in fact complementary: the first one focus on a robot tra-
jectory, which corresponds in a way to descend the perception basin computed
by the equation (1).

In order to provide useful and simple sensori-motor associations, the visual
features extracted from the visual flow require some robustness as a function
of the robot task. As the robot has to move towards an object in unknown en-
vironmental conditions, it has to face large non linear transformations of the
images (scale, perspectives, etc...). To achieve scale, contrast and luminance in-
variance, keypoints are extracted on the input images by a multi-scale algorithm
inspired by Lowe’s work [11]. They fit with the local extrema of the scale-space
images filtered by DOGs (Difference Of Gaussians). Finally, at each keypoint,
a local feature is coarsly extracted: the first two moments of the orientations of
the gradient image in the 4 neighbourhoods of each keypoint are kept. These
informations are gathered from all the scales and normalized on neuronal maps
which constitute the visual sensory data of the sensori-motor system.
In order to learn object affordances, the robot associates its actions to reach
the target object with its sensori data (here visual information). This learning
phase is supervised as the direction of the action is provided by an operator
via a joystick (fig. 2). This unconditional stimulus corresponds to the “propri-
oception” pathway reported in section 2. Finally, the association is performed
by a conditioning mechanism based on the classical LMS (Least Mean Square
algorithm) [23]. The decision about the action is given by a competitive neural
group (WTA).

We can notice that the capacities of (linear) separation of such a mechanism
are coarse. A simple way to generalize this mechanism in a task involving multiple
objects, is to duplicate the group called LMS (for instance one per object selected
by the context given by the operator even if it is not a good solution in term
of efficiency and biological plausibility). We verify that only a few sensori-motor
associations enable the robot to reach the learned object.

As proposed previously, fig. 2 shows one of the robot trajectory recorded
after the learning phase was acheived. We can notice that the robot has a direct
trajectory when the learned object is in its visual field but zigs zags when the
object is not. As the robot doesn’t have an explicit object recognition module nor
a tracking one, it can’t search for the target absent of its visual field. When this
happens it just makes its way toward what looks similar to the learned object
relative to its perception. Due to the robot movements, the target eventually
can be seen again as in fig. 2. Of course the robot visual field is modified by the
dynamic of the sensation/action/environment loop.

Finally, we propose to compute the a posteriori perception of the robot. The
state of the robot is defined by its spatial location in the environment and by
its body and CCD camera orientation relative to the learned object. In order
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Fig. 2. Top Left : Example of an input image and of its keypoints (the circle size
indicates the scale where the keypoints were found) Top Right : Overview of the archi-
tecture with the conditioning mechanism. Down Left : Example of a learning phase:
the circled object has to be learned. Down Right : A robot trajectory (white line). The
black cross represents the place where the target (the circled box) enters in the robot’s
visual field.

(a) (b)

Fig. 3. (a) : Visualization of the perception at different learning steps. The different
curves of iso-perceptions (right down) associated with the drawing of learning places
underline the system capacity to generalize. (b) : Visualizations of the perception de-
pending on the orientation of the robot. Top : 2 basins are present even if just the
object box (full-line circled) was learned. The object lamp (dot-line circled) creates the
second basin. Down: the robot’s orientation is modified after a few of its actions. The
robot is in a new state of perception without ambiguity
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to record the action at each spatial location, we impose the robot’s trajectories.
Then according to equation (1), perception is given by the integral of the robot
action over space. Several measures with a constant orientation of the CCD
camera have been successively made during a learning phase. The learning can be
considered like the creation of a dynamical attraction basin. The latest is created
only after few sensori-motor associations. The shape of the final basin (fig. 3-a)
fully explains the globally consistent behavior of the robot: the robot “falls”
down the perceptive basin and consequently reaches the learning object. These
measures corroborate in a quantitative way the results observed on trajectories.
Furthermore the good generalization capability of the given architecture can be
easily displayed out of the learning places.

The sensory data extracted are coarse and their small number eases the learn-
ing of the sensori-motor associations without allowing a good discrimination of
objects. While facing the object which was learned previously and an object
which was not, neurons activities coding the robot’s action are quite similar.
Even if the learning allows to dig a deeper basin in the case of the learned object,
the difference in depth between the attraction basins we compute is too small to
explain the global consistent behavior of the robot: it reaches its learned target
independently of its starting spatial location (assuming the learned object is in
its visual field). In fact the previous measures do not take into account all the
dynamic aspect of the system. In particular, the robot modifies its orientation
(and so its sensations) relative to the object according to its state of perception
while moving towards the object. These movements allow to disambiguate the
visual flow (figure 3-b). This dynamic of the sensori-motor loop ensures a con-
sistent behavior which is impossible to obtain in a static way. This experiment
clearly shows how essential it is to consider the 3 dimensions of the problem (the
spatial location (2 dimensions) and the orientation relative to the object). Only
then the notion of a sensori-motor invariant can be grasped but unfortunately
the 4D basin cannot be drawn.

5 Conclusion

This paper is an attempt to fill the gap between the psychological concept of
perception and the dynamic of a sensori-motor system and the behavior of a
robot acting in its environment by proposing a formal definition and an ex-
perimental measure of the perception. In this context, learning some particular
affordances can be seen as building an attraction basin. A system is in a sta-
ble state of perception if it is able to maintain itself in the associated attraction
basin. Hence recognizing an object (from visual, tactile, auditory... informations)
is seen as choosing to stay in a given basin. The choice of the formalism inspired
by quantum mechanics (vectors noted with brakets) is linked to the idea that
manipulating vectoriel information represents somehow a wave function. An ob-
servation of the perception by the agent could be seen as to trigger one particular
behavior or in other words to freeze a state of perception (attraction basin). Tak-
ing into account this dynamic extends the frame of active vision since the agent
becomes an active actor itself. Therefore future works will study how could the
agent autonomously construct its own perception of its envronment.
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Toward Genuine Continuity of Life and Mind 
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Abstract. The strong continuity thesis was introduced into the artificial life 
literature in 1994, [5], but since then has not received the attention and further 
development it merits. In this paper, I explain why if we are to identify genuine 
continuity between life and mind, a shift in perspective is needed from thinking 
about living and minded things and processes, to thinking about Life itself and 
Mind itself. I describe both life and mind as self-preserving processes and argue 
that this notion accounts for their purported continuity, drawing on research in 
embedded and embodied cognition to make my case. I then respond to Peter 
Godfrey-Smith’s observation that any view on which thought requires language 
is inconsistent with the strong continuity thesis by arguing that although such a 
view of thought might be rendered consistent with the thesis, a dynamic 
systems approach to cognition, i.e., one wherein thought is language-
independent, is much more conducive to identifying genuine life-mind 
continuity.  

1   Introduction 

Just over ten years ago the thesis of strong continuity between life and mind was 
introduced into the growing literature on artificial life [5]. This continuity thesis was 
not developed in any depth then but was simply explained as follows: life and mind 
differ in degree and not kind, thus the functional properties of mind are an enriched 
version of the functional properties of life. Furthermore, since life and mind have in 
common an abstract pattern or set of organizational properties, “mind is literally life-
like” [5]. These basic theoretical tenets suggest a fundamental principle that has both 
ontological and methodological significance, namely that since mind is fundamentally 
like life, our efforts to understand the mind are continuous with our efforts to 
understand life in general. This paper explores what evidence there is for accepting 
such a principle.  
    The first task I take on in this paper is to identify what it is about life and mind that 
could account for their purported continuity. Andy Clark has noted that perhaps the 
most difficult task in naturalizing the mind in the way prescribed by the strong 
continuity thesis is in finding a balance between the explanatory needs of seeing 
continuity in nature while somehow still recognizing that the mind is special [3]. 
Evolutionary theory tells us that consciousness evolved much later than did life itself, 
which suggests at least developmental and historical continuity between living things 
and ‘minded’ things, but I believe the significance of the thesis in question lies in its 
trying to identify continuity at a much more fundamental level. The appropriate level 
of analysis is not living things and minded things, but rather Life itself and Mind 
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itself; our concern is with the two like phenomena rather than with the entities that 
instantiate such phenomena. Research in embedded and embodied cognition is most 
amenable to identifying continuity between life and mind, so work in this area is 
drawn on to help elucidate the contours of the strong continuity thesis. 
    The second task in the paper is to revisit the original (brief) formulation of the 
strong continuity thesis and respond to a curious assumption made about it by the 
author. Peter Godfrey-Smith takes all views on which thought requires language to be 
views that are necessarily inconsistent with the strong continuity thesis. His intuition 
here apparently is that human language is too different from the principles of life for 
the two phenomena to be rendered conceptually consistent. But it seems that in order 
for the continuity thesis to be fully comprehensive, it must either provide an account 
of language-dependent thought, or show why such a view of thought is mistaken. I 
argue that although either model of thought might conceivably be rendered consistent 
with the strong continuity thesis, the latter option, i.e., that thought does not require 
language, is much more conducive to genuine life-mind continuity. This claim is 
supported with insights from dynamic systems theory. 

2   (Not Much) Background on the Strong Continuity Thesis 

Since publication of the article in which appears the strong continuity thesis, only 
passing references have been made to it in the literature. I do not believe this lack of 
discussion results from a corresponding lack of interest in the subject, but rather is 
due to the fact that the identity the thesis postulates between the composition of mind 
and the composition of life is a notion implicitly accepted by the artificial life 
community, perhaps most clearly expressed in its attempts to distinguish itself from 
the older (and some believe, failed) AI program. Christopher Langton expresses just 
this point when he says, “From the very beginning artificial intelligence embraced an 
underlying methodology for the generation of intelligent behavior that bore no 
demonstrable relationship to the method by which intelligence is generated in natural 
systems ([6], p.41).” Since AL is concerned with simulating natural systems, its 
programs by contrast are designed to generate lifelike behavior which may or may not 
produce behavior we would deem ‘intelligent’. Strongly influenced by ideas from 
cognitive science and dynamic systems theory, A-Lifers recognize that the organism-
plus-environment creates a unified, living system, and that to abstract intelligence 
away from this dynamic is to completely miss the big picture.  
    It is a theme of cognitive science, and to some extent of AL, that intelligent 
behavior emerges given a certain level of complexity within systems, whether natural 
or artificial. Rodney Brooks draws on evolution to make the point that while it took 
forever for living systems to develop, it took comparatively far less time for thinking 
systems to do so; “Problem-solving behavior, language, expert knowledge and 
application, and reason are all pretty simple once the essence of acting and reacting 
[is] available ([2], p.396).” The significant insight expressed here is that life preceded 
mind, and although one might postulate that their order is contingent, in other words 
that mind could have preceded life, the fact of the matter is that life is necessary for 
mind, that mind could not exist without life. Although this notion amounts to a direct 
and necessary kind of continuity between life and mind, it is nevertheless a weaker 
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notion than what is called for by the strong continuity thesis, and is in fact what 
Godfrey-Smith calls the weak thesis [5], namely that anything that has a mind is alive 
(although the converse, of course, does not hold). From these cases, I believe it is 
evident that the sentiment concerning life-mind continuity is already in the literature, 
thus what is needed is a more explicit account of it. 

3   The First Step: Defining Life 

The life-mind continuity sought is, I take it, indicative of the larger project to 
naturalize the mind, that is, to explain the ‘mystery’ of consciousness by appealing to 
nothing but the familiar principles of life of which we have a pretty good 
understanding. As Clark puts it, “the thesis of strong continuity would be true if, for 
example, the basic concepts needed to understand the organization of life turned out 
to be…those very same concepts and constructs…central to a proper scientific 
understanding of mind ([3], p.118).” Of course what is wanting is an identification of 
those particular concepts or constructs that account for the purported life-mind 
continuity and, to my knowledge, no arguments of this kind have yet been put forth. 
We are not completely in the dark however; the extensive literature on the related 
question of how to define and understand life itself should provide helpful insight into 
finding the most promising candidates to account for the continuity between life and 
mind, since after all the claim is that the very same principles will be central to an 
understanding of both. 

Claus Emmeche, Mark Bedau, and others have noted the preponderance of 
definitions of life including biochemical, thermodynamic, physiological, metabolic, 
and genetic definitions, all of which identify what seems to be a necessary 
characteristic of life, yet none of which identifies a sufficient one [4]. For example, 
Emmeche explains how the metabolic definition fails to define life uniquely because 
it states that, “a living system is one that is distinct from its external environment and 
that exchanges material with its surroundings…without changing its general 
properties,” which, he points out, also accurately describes a whirlpool in a river ([4], 
p.34).” The other definitions suffer the same fate of applying not only to living 
systems like organisms but also to complex systems that are not living. It is 
reasonable, based on these musings, to propose (and some have) that life may be a 
cluster concept, best understood as a unique state or process emerging from a special 
combination of requisite characteristics. And based on the particular continuity sought 
by our thesis, mind too then would have such a multifarious nature.  

A relatively early and very influential account of life comes from Maturana and 
Varela and their notion of ‘autopoiesis’ [7]. I understand this term to mean roughly 
‘self-reproduction’, so that a system of this kind is continuously making and remaking 
itself by maintaining its own boundaries and carrying out complex interactions within 
to produce essential materials. Bedau’s notion of supple adaptation is closely related: 
“Individual living entities (organisms) maintain their self-identity and their self-
organization while continually exchanging materials, energy, and information with 
their local environment ([1], p.332-333).” Supple adaptation is to be distinguished 
from simple interaction between an entity and its environment, as in the case of a 
thermostat’s calibration with a room’s temperature, or the constancy of a whirlpool in 
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a river, in that “supple adaptation involves responding appropriately in an indefinite 
variety of ways to an unpredictable variety of contingencies ([1], p.338).” This notion 
of continual interaction with and adjustment to the environment serves to uniquely 
mark out living from nonliving systems. 

4   Toward Genuine Continuity 

I believe that trying to define life in terms of its multifarious characteristics is an 
inherently flawed project because of what it implies about the nature of life. All of the 
above definitions of life (metabolic, genetic, etc.) identify not what life itself is, but 
rather what living entities do. Organisms metabolize nutrients, reproduce, etc., and if 
what one seeks is a better grasp on the determining characteristics of being alive, then 
such definitions are useful. However, such an approach does not get us any closer to 
identifying continuity between life and mind because even if we were able to define 
life once and for all in terms of its necessary characteristics, this would only then 
leave us trying to identify those same characteristics in the mind, and such efforts to 
bridge the gap, so to speak, between life and mind could only ever succeed in 
identifying likenesses or similarities, and not genuine continuity. This is because, for 
example, my car’s being blue and the ocean’s being blue does not constitute some sort 
of car-ocean continuity; instead what is established is merely their having one feature 
in common. But what if life were a cluster concept, realized only when the requisite 
dozen characteristics were present? Still, the objection holds. There are many features 
common to all of the major cities in the United States, for instance, but this of course 
does not establish genuine continuity among them. Something more than mere feature 
sharing will account for life-mind continuity if anything will. If what is sought is an 
understanding of the phenomenon of life itself, with the intention of at the same time 
coming to a better understanding of mind itself, then it seems that a change in 
perspective is called for.  

 
a.   Life as Process 
It is a fundamental intuition of AL that there may be more to life than our earthbound 
biology has been able to teach us. It has been suggested that life is a process 
potentially instantiated by a variety of complex, self-organizing systems in different 
media. A-Lifers seems to think of life in more fluid terms than do biologists, 
emphasizing that life is an attribute of the organization of particulates and not of the 
particulates themselves. There are reverberations of this notion of life-as-process even 
in the traditional sub-disciplines of biology. Talk can be heard in genetics, for 
example, of patterns of genes, rather than individual genes, effecting phenotype; the 
focus has shifted from trying to identify a single gene for eye color to instead 
recognizing that blue eyes may result from a set of complex interactions among 
several genes. Following this line, phenotypic traits are better conceived as familiar 
patterns in the overall process of life. I mention all of this only to suggest that 
conceptualizing life as the sum total of various processes is not radically new; what is 
radical, however, is the notion of life in general being a process, which breaks with 
the tradition of thinking about life in terms of living things and forces us to think of 
the phenomenon of life itself. 
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What bearing would such a conceptualization of life have on the notion of 
continuity between life and mind? Clearly, it would imply that the two phenomena 
were themselves processes; the focus would shift from life processes like metabolism 
and reproduction, and mental processes like imagining and remembering, to 
conceptualizing life and mind as processes in and of themselves. Put another way, 
while the current definitions of life and mind presuppose the two phenomena to be 
things with attributes, the shift in perspective I am proposing would instead have us 
think about life and mind as processes with characteristic natures. 

But, one should be thinking at this point, lots of things count as processes—
making coffee and doing one’s taxes for example—yet no one would argue that, as 
processes, these activities therefore have something fundamental in common with life 
and mind. Fair enough. But instead of abandoning the notion of conceptualizing these 
phenomena as processes, I propose that there is something that distinguishes them 
from all other processes, and identify the fact that they are self-preserving processes 
as this crucial something. What does it mean to be ‘self-preserving’? The notion, I 
would concede, is very similar to that of autopoiesis or supple adaptation, introduced 
above, wherein the organism preserves itself as distinct from its environment through 
mechanisms characteristic to it. What is different, however, is the context; I want to 
apply the notion of a self-preserving process, intrinsic to many definitions of life, to 
mind, and thus identify their purported continuity.  

Many things are non-processes; a book keeps on being a book in virtue of 
nothing it does but rather in virtue of the laws of physics that ‘allow’ it to maintain its 
given form. And likewise many things are processes yet not self-preserving ones; the 
process of making coffee is not self-preserving because it does not occur 
independently of an agent (excepting of course the timed, automatic coffee makers 
that some of us are lucky enough to own!). But life (and below I will argue, mind) are 
not so; they preserve themselves in virtue of various necessary sub-processes that 
keep working for the duration.  

I think it is straightforward enough to conceptualize life as a self-preserving 
system; multiple examples can be drawn from the cellular, organismic, and (possibly 
even) special level. Living biological cells spontaneously participate in a whole host 
of processes that keep them alive, likewise with organisms (i.e., all those already 
discussed, e.g., metabolism, etc.), and species, that engage in reproduction and other 
less obvious processes that keep their genetic lineages alive. I like the idea, motivated 
by AL insights, that Life may be an abstract process, potentially instantiated by the 
multifarious life forms we know from biology, the others we create in silico, and still 
others we invent in thought experiments and science fiction stories. Perhaps shifting 
our focus from one of trying to learn about the features of living things, to the nature 
of the abstract process of which they are all instantiations, will allow us to arrive at a 
better, more fundamental, understanding of life. 

b.   Mind as Process 
But even if we can conceive of life as a self-preserving process, do we have any 
reason to believe that the mind may be of the same nature? Yes, I believe we do. 
Cognitive features like intelligence, learning, and memory can easily be conceived as 
ones that facilitate survival, by helping one navigate one’s environment successfully 
for example, an ability dualistically measured as intelligence in humans and 
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functionality in robots. But, one might say, don’t abilities like these simply amount to 
the preservation of one’s body, and not one’s mind? Yet even to acknowledge this 
objection as a problem for our view is to abandon it in spirit; since we are trying to 
establish life and mind as being fundamentally continuous phenomena, it does little 
good to pose questions that presuppose dualism. The mind needs the body to survive; 
put metaphorically, the body is a vessel that keeps the mind afloat. While we do have 
empirical evidence of mindless bodies (think either of humans in a permanent 
vegetative state or any non-human animal that is not purported to have a mind), we 
have none of the reverse. True, bodiless minds abound in talk of gods, spirits, and 
ghosts, but herein I am concerned only with identifying continuity between the kind 
of mind with which we are familiar, namely our own, and the kind of life (whether 
natural or artificial) with which we are also familiar.  

What empirical evidence do we have to support the claim that mind is a self-
preserving process? A distinction was emphasized above between the older AI 
paradigm of simulating abstract, intelligent behavior, and the newer paradigm in AL 
of generating lifelike systems that may or may not behave ‘intelligently’. The key 
claim resulting from embedded and embodied cognition studies is that intelligence in 
humans (and functionality in robots) emerges dynamically as a function of the degree 
of interactiveness between creature and environment; in both cases success is 
measured by how well the subject navigates and/or manipulates its environment. A 
good example of such work comes from Brooks and his research team at MIT who 
created the robots Allen and Herbert. These robots are antithetical to former AI 
projects in several ways: they reside in the real world rather than inside a computer, 
they are controlled by simple rules and virtually no memory so that reliance on an 
internal cognitive map is out of the question, and they successfully ‘rise to the 
occasion’ when faced with unexpected challenges. In sum, they are the embodied 
examples of ‘intelligent’ systems whose “intelligence is determined by the dynamics 
of interaction with the world ([2], p.418).” The world (albeit mindlessly) supplies the 
robot with information, for example where obstacles are, and the robot continually 
reacts to that information and adjusts its direction accordingly.  

An insight we can draw from such studies is that the mind preserves itself, 
indirectly as it were, by preserving the body that hosts it. Of course explaining it in 
this way inadvertently implies a dichotomy between the living organism and the mind 
to which it is host but this need not trouble us—the strong continuity thesis allows 
that the mind is an enriched version of life and that the two differ in degree; the claim 
is not that life and mind are numerically or otherwise identical but rather that their 
natures substantiate a genuine continuity between them. 

So far we have looked at the notion of mind’s preserving itself via its direction of 
the body. But if we want to postulate mind as a self-preserving process, need we 
identify reasons why the mind should want to preserve itself for itself? I do not think 
so. While the survival instinct is often cited as an explanation for self-preservation 
behaviors in animals, our analysis focuses on Life itself, and no simple explanation 
can be given for why Life in general sustains itself, it just does. Rather than an entity 
driven to self-preservation in and of itself, mind, being an enriched version of life, is 
better conceived as a sophisticated facet of life’s preserving itself. Human intelligence 
is a measure of how well we function in our environment; while an earthworm has 
only to dig, eat, and excrete, the multifarious environment that is home to humans is 
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demanding in much more complex and complicated ways that necessitate a flexible 
and adaptive mind. 

c.   A Note on AL and AI. 
It has already been mentioned that it is a notion familiar to the AL community that 
life may be an abstract process instantiated by either natural or artificial systems, so 
long as the appropriate complexity (and other conditions) are met. It should also be 
noted that the notion of mind as process is familiar to some: Clark borrows Marvin 
Minsky’s unpleasant phrase for the brain, i.e., ‘meat machines’, to entitle the first 
chapter of his book Mindware [3]. Clark explains the basic idea: “Mindware, it is 
claimed, is found “in” the brain in just the way that software is found “in” the 
computing system that is running it ([3], p.8)” and goes on to say, “the brain may be 
the standard…implementation—but cognition is a program-level thing ([3], p.13).” 
The relevant comparison herein is not between brain and computer, but cognition and 
program—the focus is on the behavior of the system rather than on the system itself, 
and both computer programs and cognition are processes rather than things. 

Also, a case could be made for Alan Turing’s research being amenable to the idea 
of mind as process. He was interested in the abstract concept of ‘machineness’ (my 
term), i.e., the idea that the function performed by the machine mattered far more than 
its material instantiation, captured well by his thought experimental Turing Machine 
[10] (as it came to be called). He was concerned with the question of whether 
machines could think in a way like humans (indeed, enough like us to fool us, i.e., the 
famous Turing Test). Although Turing’s language did not include references to 
mind’s being a process, it is a notion that does not seem inconsistent with his research 
into the similarities between machine functionality and human thought. 

5   Avoiding Discontinuity 

I turn to the second task of the paper. In his 1994 paper, Godfrey-Smith mentions that 
he takes all views on which thought requires language to be views that are necessarily 
inconsistent with the strong continuity thesis. I believe Godfrey-Smith is appealing to 
intuition (his own and the reader’s) to make the point that although thought may 
require language, it is too foreign a notion to suggest that life too could require 
language, and furthermore that if thought does in fact require language, this leaves no 
room for life-mind continuity. Although I am sympathetic to the intuition here, it 
nevertheless is one that begs for further explanation; if thought were language-
dependent, could it still in some way be made consistent with the strong continuity 
thesis? Alternately, is a different model of thought more conducive to genuine life-
mind continuity?  

If the notion of thought’s being language-dependent can be justifiably reduced at 
least for the sake of analysis to its being symbol-dependent, the result might look 
something like Newell and Simon’s physical symbol system hypothesis [9]. This 
hypothesis, quite powerful in its time, was criticized by the later wave of embodied 
cognition, which emphasized the importance of the unique dynamic created by 
creature and environment to generating intelligent behavior. The following quotation 
from Newell and Simon (1976) is telling: “Thought was still wholly intangible and 
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ineffable until modern formal logic interpreted it as the manipulation of formal tokens 
([9], p.108).” Thought is symbol manipulation, pure and simple. Although I find this 
explanation of thought problematic and limited, I will grant it for the sake of 
argument because the question at hand is whether continuity between life and mind 
could be identified given the structure of thought entailed by the PSSH. To answer 
this question, we need to take a look at the other side of the equation: life. 

Can life be conceived as a form of symbol manipulation? It seems the most 
promising route to developing such a thesis would come from genetics; DNA and 
RNA are strings of symbols responsible for exchanging essential information and 
directing the development of the organism. So perhaps then thought and life are both 
instances of symbol manipulation and information exchange? There are two main 
reasons why such a thesis strikes me as potentially problematic: 1) the notions of 
symbol manipulation and information exchange are too broad—too many nonliving 
and non-minded entities fall into these categories; and 2) such an approach is an 
instance of trying to identify shared features, objected to earlier—symbol 
manipulation may describe certain types of thought, but not mind itself, and likewise 
certain life processes, but not life itself. 

There are two notions from research in dynamic systems theory I would like to 
draw on to argue why a non-computational model of thought, i.e., one wherein 
thought does not require language, provides a much more promising route to the 
requisite, genuine continuity between life and mind. The first I will call 
‘transparency’, as distinct from representation. The central idea has already been 
referred to throughout the paper and is nicely summed up in the title of Brooks’ 1991 
article, “Intelligence Without Representation” [2]. The basic idea is that intelligent 
behavior need not result from abstract symbol manipulation, but rather can emerge 
from basic interactiveness with one’s environment. Brooks tested this model of 
cognition empirically with his robots Herbert and Allen and claims that the key idea is 
“to use the world itself as its own best mode, ([2], p.405).” These robots were CPU-
less so they had no central memory store by which to encode a cognitive map of their 
surroundings—their success was due entirely to their real-time interaction with their 
environment. Another well-known example of transparency comes from van Gelder’s 
argument that the same function can be performed by a standard Watt governor as a 
computational one [11]. What follows by implication is that although a PSSH may 
seem to capture certain features of thought, or some might say, thought itself, it is 
most likely another example of mistaking flight for mere wing-flapping [2]. 
Conceptualizing thought as symbol manipulation does seem to capture certain 
cognitive functions, like doing logic problems and writing sheet music for example. 
But it is not clear how such a model of thought could ever adequately describe other 
abstract, presumably non-computational, cognitive functions like humming a tune or 
thinking about a friend, much less how it could describe basic cognitive functions like 
maintaining balance, clapping hands, or smiling.  

The second notion from dynamic systems theory relevant to developing a non-
computational, that is, language-independent, model of thought, is what Clark calls 
“cognitive incrementalism” ([3], p.135), and Brooks calls “incremental intelligence” 
([2], p.401). Although the authors might want to distinguish the two notions (e.g., 
Clark’s notion is more theoretical and Brooks’ is empirical), for our purposes it 
suffices to understand these related notions as the idea that more involved and 
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difficult cognitive abilities build on more basic ones, so the type of mental processes 
that account for simple tasks like breathing and walking are continuous with those 
that account for abstract thinking and planning. Such a model of thought presupposes 
the importance of the subject’s being embodied and embedded in its surroundings; 
bottom-up approaches that generate behavior we recognize as ‘intelligent’ are favored 
for being more realistic than top-down approaches that simulate bodiless minds 
excelling at chess or other abstract tasks.  

The concept of cognitive incrementalism more or less shadows the concept of 
strong continuity between life and mind. It was stated in the beginning of the paper 
that the few theoretical tenets of the strong continuity thesis, e.g., that the functional 
properties of mind are an enriched version of the functional properties of life, and that 
therefore mind is life-like, suggest a methodological principle, namely that if the 
thesis is right, our sciences of the mind should be continuous with our sciences of life 
in general. Empirical work in the field of embedded and embodied cognition has 
produced the most promising evidence for the validity of cognitive incrementalism 
and thus for the validity of the strong continuity thesis. Such studies show rather 
compellingly that intelligence may be much more transparent a concept than we once 
believed, mistakenly conceived at first as abstract and immaterial until securely 
grounded in reality by the realization of how natural systems actually exhibit 
intelligence. Conceptualizing mind not as an abstract symbol system but rather as life 
preserving itself through the most effective means possible is conducive to 
recognizing genuine continuity between life and mind. 

6   Conclusion 

The field of AL has made many contributions to several disciplines but its most 
important contribution to philosophy has been its insistence, from the outset, on 
challenging our familiar conceptualizations about life and mind. AL forces us to 
question long held definitions and distinctions often founded in deep tradition, and is 
for this reason, I believe, sometimes met with resistance from philosophy. However, it 
is in the true spirit of philosophy to allow one’s picture of the world to come apart at 
the seams and then still try and make sense of it all. Insights from AL and AI provide 
some promising avenues to reconceptualizing the phenomena of life and mind in 
ways conducive to identifying their continuity and herein I have given one such 
account.  
    A worthwhile project would be to explain how the fields of AL and AI are 
themselves conceptually continuous and thus flesh out more interesting ways in which 
our sciences of life and our sciences of the mind are methodologically continuous. 
One philosophical question that might be enlightened by such a project is whether 
personhood or consciousness is abstractable from the body in the same way that a 
program is abstractable from the machine. Turing’s conceptual ‘universal machine’, 
and all contemporary computer programs, provide good evidence for the claim that 
‘machineness’, i.e., the essence of the machine, is indeed an abstractable quality. Yet 
when we put the question to ourselves, i.e., whether we are dependent on, or identical 
to, our bodies, or whether our being is abstract, like a soul or consciousness that just 
happens to be instantiated by our biological bodies, the answer is far from clear. 
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Probably AI’s most important contribution to philosophy is that it enables us to 
objectify what is so elusive and opaque when we try to understand it subjectively, 
namely the human mind. The metaphor I like to use for AI is that of erecting a mirror 
that reflects back to us what was difficult, if not impossible, to see without it. 
Undoubtedly AI will continue to provide insights into the human mind, and if these 
insights are appreciated as continuous with those from AL, it may provide us with a 
deeper understanding of the continuity between life and mind that would have been 
impossible to achieve otherwise. 
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Abstract. Genetic regulatory networks (GRNs) control gene expres-
sion and are responsible for establishing the regular cellular patterns
that constitute an organism. This paper introduces a model of biological
development that generates cellular patterns via chemical interactions.
GRNs for protein expression are generated and evaluated for their ef-
fectiveness in constructing 2D patterns of cells such as borders, patches,
and mosaics. Three types of searches were performed: (a) a Monte Carlo
search of the GRN space using a utility function based on spatial inter-
estingness; (b) a hill climbing search to identify GRNs that solve specific
pattern problems; (c) a search for combinatorial codes that solve difficult
target patterns by running multiple disjoint GRNs in parallel. We show
that simple biologically realistic GRNs can construct many complex cel-
lular patterns. Our model provides an avenue to explore the evolution of
complex GRNs that drive development.

Keywords: GRN, cascading GRNs, recurrent GRNs, artificial embryol-
ogy, development, developmental programs, cellular differentiation, dif-
ferential equations, hill-climbing.

1 Introduction

Development from a single cell, the zygote, into the adult organism is a re-
markably complex and poorly understood process. One common way to create
patterns in the early embryo is through the use of diffusible morphogens that
form gradients to provide positional information to embryonic cells. Cells acquire
different identities within a developing field according the levels of morphogen
they detect. Broad divisions within the embryo can be established this way.
More elaborate and finely resolved patterns are often created later when cells
that have acquired coarse positional identities interact across membranes. These
interactions generate different cell types in arrangements that include borders,
patches and mosaics. Development in Drosophila follows this pattern, beginning
with morphogens that specify broad divisions along the anterior-posterior and
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dorsal-ventral axes, followed by cellular interactions that create sharply bounded
divisions [18].

Many investigators have developed computational models that reproduce el-
ements of development[20][19][13][15][5]. This is a relatively young field with
great potential to provide insights that complement and extend those obtained
by classical biological investigations. An important approach to modeling devel-
opment is Artificial Embryogeny (AE). One path in AE follows a grammatical
approach where sets of rules in the form of grammatical rewrite systems are
evolved [1][2]. The other path of AE research is a cell chemistry-based approach
that simulates the way structures emerge in biology e.g. [1][8][9][10][6].

Inspired by nature’s elegance and precision in solving the problem of em-
bryogenesis, we have developed a cell chemistry-based AE system to search for
biologically realistic GRNs capable of generating patterns found in embryos. We
study the effectiveness of GRNs in solving target patterns of cell types such as
borders, patches, and mosaics that are observed in biological development. The
power of this GRN search is that it allows unrestricted exploration of ways to
solve embryological patterning problems. This stands in contrast to the actual
embryo which, while solving complex problems of patterning, is a prisoner of its
evolutionary history.

2 Approach

2.1 Cell Pattern Problems

Our focus is on how GRNs can build 2D spatial patterns similar or identical to
those generated during biological development. A sample of the 43 patterns used
in this study is shown in Fig.1. The individual patterns are grouped into three
broad types: mosaic, border and patch. A mosaic pattern is defined as a periodic
pattern in one or two dimensions repeated across the sheet of cells. A border
pattern identifies single cells or single lines of cells that divides one group of cells

Mosaic Patterns Border Patterns Patch Patterns
a) b) c) d) e) f)

g) h) i) j) k) l)

Fig. 1. A sample of the 43 target patterns used in this computational study. Each
problem is represented as a 2D sheet of hexagonal cells (12 by 12, or 24 by 24). The
complete set of target patterns is given in supplementary material [27].
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from another or from the medium. A patch pattern is an aperiodic partitioning
of the sheet of cells into contiguous groups of distinct cells types. Segments
are a biologically significant subset of the patch pattern. Each of the pattern
types is common in natural development. For example, regular mosaics occur
in Drosophila epidermal neurogenic clusters where a single neuroblast becomes
surrounded by non-neuronal supporting cells [18] and in the vertebrate retina
where ganglion cells are encircled by cells of other types [24]. Patches in the form
of segmental repeats are seen in the obvious segmental divisions along the insect
anterior-posterior axis [18] and in the segmental array of vertebrate somites [26].
Borders are seen frequently, such as in the strip of cells that becomes a signaling
center at the boundary between the anterior and posterior compartments of
the Drosophila wing imaginal disc [18] and in the apical ectodermal ridge at the
division between the dorsal and ventral ectoderm of the vertebrate limb bud [25].

2.2 Modeling Biological GRNs

Space of GRNs. Biological models of GRNs can be described as a graph,
where each node represents a distinct protein’s expression level and each edge
represents influences among proteins. A protein is influenced when its production
or inhibition is controlled as a function of other protein expression levels. Since
production and inhibition are defined as rates of change, the GRN is naturally
modeled as a set of coupled differential equations. Fig.2 shows an example of a
3 protein, 5 edge GRN and its input and output protein expression pattern.

Table 1. The edges composed to form a GRN. The rate of change of protein P0 for cell
σ is defined in terms of the weighted expression of protein Pi in σ and neighboring cells,
where ωj is the strength of edge j (0.0 ≤ ωj ≤ 1.0), f(x) = x2

(1+x2) ; g(x) = 1 − f(x);
h(x) = 2

(1+e−x) − 1; n(σ) returns the set of directly neighboring cells (i.e., that share a
common membrane); nS , nW , nN , nE return the cell directly neighboring to the South,
West, North and East respectively.

Label Description Name Definition

∇ A P0 Diffusion with zero boundary
conditions

Diff0
dP0(σ)

dt
= ωj

∂2P1(σ)
∂x2 = ∇P1(σ)

B P0 Diffusion with fixed boundary
conditions

DiffX
dP0(σ)

dt
= ωj

∂2P1(σ)
∂x2 = ∇P1(σ)

C P0 direct expression by P1 ExprDirect
dP0(σ)

dt
= ωjf(P1(σ))

D P0 direct inhibition by P1 InhDirect
dP0(σ)

dt
= −ωjf(P1(σ))

E P0 driven to same as P1 Same
dP0(σ)

dt
= ωj(f(P1(σ)) − P0(σ))

F P0 driven to opposite of P1 Oppos
dP0(σ)

dt
= ωj(g(P1(σ)) − P0(σ))

G P0 driven to difference in values be-
tween P1 and P2

Error
dP0(σ)

dt
= ωj(h(P1(σ) − P2(σ)) − P0(σ))

H P0 autocatalysis and reciprocal con-
trol by P1

ExprQuad
dP0(σ)

dt
= ωj(f(

P0(σ)2

P1(σ) + ψj))

I P0 quadratic inhibition by P1 InhQuad
dP0(σ)

dt
= ωj(g(P1(σ)2) − ψj)

♦ J P0 driven to same as cell neighbors
values of P1

SameNeig
dP0(σ)

dt
= ωj(f(

∑ρ∈n(σ) P1(ρ)
6 ) − P0(σ))

K P0 driven to opposite of cell neigh-
bors values of P1

OpposNeig
dP0(σ)

dt
= ωj(g(

∑ρ∈n(σ) P1(ρ)
6 ) − P0(σ))

L P0 driven to difference in opposing
cell neighbor values of P1

ErrorNeig
dP0(σ)

dt
= ωj(f(

∑ρ∈n(σ) P1(ρ)−P1(op(σ,ρ))
6 ) − P0(σ))

M:P P0 driven to same as geometric
neighbor value of P1; with i ∈
N, W, S, E

SameNeigi
dP0(σ)

dt
= ωj(f(P1(ni(σ))) − P0(σ))
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Input Expression GRN Graph

Output Expression GRN Mathematical Definition

dP0(σ)
dt

= 0.56∂2P2(σ)
∂x2

dP1(σ)
dt

= 0.71f(P2(nS(σ))) + 0.56f(P0(nS(σ))) − 1.27P1(σ)
dP2(σ)

dt
= 0.94(h(P1(σ) − P0(σ)) − P2(σ))

Fig. 2. Example of a GRN. The left column shows the input and output protein expres-
sion patterns, where the color of each cell is computed by mapping protein expression
directly onto the RGB values. The right column shows the GRN as a graph and the
associated set of coupled differential equations. The letters indicate edge types shown
in Table 1.

Table 1 illustrates the protein influences considered in this study. Within an
individual cell, protein expression can be controlled by a single protein (the direct
control edges C-F, I) or some function of multiple proteins (the combinatorial
control edges G, H). Over the sheet of biological cells, proteins influence each
other through both long-range and short-range signaling. Edges A and B imple-
ment long-range signaling through diffusion under different boundary conditions.
Edges J-P implement short-range signaling, where a cell can sense protein ex-
pression levels in directly neighboring cells across contacting membranes [20].
Notice edges M -P enable a cell to signal to a specific geometric neighbor cell.
Such capabilities are known to be utilized to build internal segment borders [13]
and rely on morphogenic gradients constructed earlier that establish anterior-
posterior and dorsal-ventral axes. There are dmpmp2p(m−p) possible GRNs with
p proteins and m edges (with d edge types). In all search studies, the GRN space
is constrained to be connected, have at least one cycle, and with each protein
having at least one in edge. A GRN is solved by first setting the protein values
of each cell from a uniform random distribution, then numerically solving the
differential equations using the Runge-Kutta method (with dt = 0.05) until ei-
ther a fixed point (where the average update error ≤ 10−8 per cell; see Fig.2),
or an instability is heuristically detected.

2.3 Determining GRN Computational Adequacy

Our goal is to characterize the space of biological GRNs and determine their
computational adequacy to solve spatial design problems found in nature. Three
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searches of the space of GRNs were performed. First, an open-ended Monte
Carlo search [13] identifies simple GRNs that form interesting or useful spatial
patterns. Second, a randomized hill-climbing search identifies simple GRNs that
solve the specific spatial patterns of Fig.1. Finally, we searched for combinatorial
codes that solve the difficult target patterns of Fig.1 by running multiple disjoint
GRNs in parallel.

When searching the space of GRNs we attempt to identify the simplest GRN
by systematically considering GRNs of increasing number of proteins and con-
nectivity. In addition, we consider the adequacy of spatial signaling mechanisms
by limiting signaling to diffusion or just cell-cell contact, or both. We define
diffusion only signaling as ∇, where edges are drawn from equations A − I of
Table 1, and contact only signaling as ♦, with edges from equations C − P of
the same table.

3 Methods and Results

Monte Carlo Search: The Monte Carlo search samples the GRN space by con-
structing a GRN as a random graph. We vary the number of proteins p, 2 ≤ p ≤ 5
and the number of edges m, p ≤ m ≤ p + 3. Each GRN is evaluated for its in-
terestingness by first solving the GRN with an initial random protein expression
then evaluating the spatial regularity of the resulting expression pattern. The
algorithm is provided in [27]. The spatial regularity is evaluated by a heuristic
measure of interestingness [14] over the frequency terms of the 2D FFT of the
protein expression pattern.

Monte Carlo Results: Fig.3 shows some high scoring GRNs and their patterns
of expression. Results suggest that the space of GRNs is indeed dense, with weak

p = 2, m = 2 p = 3, m = 3 p = 3, m = 4
a) ♦ b) ♦ c) ♦ ∪ ∇

d) ♦ ∪ ∇ e) ♦ f) ♦ ∪ ∇

g) ♦ h) ♦ ∪ ∇ i) ♦ ∪ ∇

Fig. 3. Examples of high scoring Monte Carlo results and underlying GRN
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random sampling identifying many useful GRN’s. Small GRN’s were found that
identify N,S,E,W borders, corners, diagonal partitions, alternating stripes of
period 2, 3, 4, and 6, both vertically and horizontally, and mosaics of varying
periodicity and regularity. Most interesting were the irregular patterns found
but not included in Fig.1, such as mosaic patterned patches (e.g., Fig.3f) and
irregular cell clusters (e.g., Fig.3c)

Regular mosaics, patches and borders were all found when edges were re-
stricted to direct contact signaling, demonstrating that this short-range, local
form of signaling is a powerful mechanism. Borders and simple segments were
found when edges were restricted to diffusible signals, while the irregular pat-
terns on the right of Fig.3 required both direct contact and diffusible signaling.

Just as interesting were the patterns not found. No complex orthogonally
segmented patterns such as the checkerboard pattern of Drosophila proneural
clusters [22] were found (e.g. Fig.1k). Neither were complex orthogonal mosaic
patterns, seen in the zebra fish retina [21] (e.g. Fig.1h). These results suggest
that some pattern problems may be too difficult to solve using a single simple
(p ≤ 5, m ≤ 8) GRN starting from a random distribution.

Hill Climbing Search: The hill climbing search takes target patterns from
those given in Fig.1 and attempts to find simple GRN’s that best solve each
problem. The algorithm is provided in [27]. The mutation operator adjusts the
strength parameters ωk of each edge k by a small random amount. At a lower
frequency, the edge type (Column 1 Table 1), in-protein or out-protein are ran-
domly modified. Mutation preserves the connectedness constraint and signaling
constraints of the GRN as described above.

To evaluate the fitness of a GRN, its fixed point expression distribution is
matched against the provided target pattern. In natural systems, combinatorial
codes of protein expression are used to discriminate cell types. The matching
function is designed so that combinatorial protein expression codes are discov-
ered, then evaluated as to how they identify cells of the same type, while discrim-
inating cells of different types. Let D(σ, ρ) be the Euclidian distance between
the protein values of two cells σ and ρ. First, the cells are k-means clustered
using D(σ, ρ) into bins, then the bins are matched against the types assigned
in the given target pattern. Cells clustered into the same bin are assigned a
unique identifier, B(σ). Good clusterings are identified that minimize the dis-
tance D(σ, ρ) when B(σ) = B(ρ) and maximize the distance when B(σ) 
= B(ρ).
The match is measured by comparing B(σ) with the assigned types in the target
pattern T (σ) (as in [13]) corresponding to distinct colors in Fig.1. To evaluate
robustness, each GRN is run over multiple initial random protein distributions
and over two cell array sizes (12 × 12 and 24 × 24.)

Hill ClimbingResults: Fig.4 shows a selection of results executing hill climbing
over the patterns in Fig.1. In Fig.4, combinatorial codes are denoted as Boolean
expressions over the proteins of cell Pi(σ), where H denotes a high expression, L
denotes a low expression, and M denotes an intermediate expression correspond-
ing to cluster values found by k-means. As suggested by the Monte Carlo stud-
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Signaling GRN Graph Code Target Solution

a) ♦
P0(σ) L H
P1(σ) H L
B(σ) 0 1

b) ♦ ∪ ∇
P0(σ) H L
P1(σ) L H
P2(σ) L H
B(σ) 0 1

c) ♦
P0(σ) L L H L
P1(σ) M L L H
P2(σ) H H L L
B(σ) 0 1 2 3

d) ♦
P0(σ) L H
P1(σ) L L
P2(σ) L H
P3(σ) H L
B(σ) 0 1

e) ♦ ∪ ∇
P0(σ) L L
P1(σ) H H
P2(σ) H L
P3(σ) L L
B(σ) 0 1

Fig. 4. Examples of high scoring Hill Climbing runs. Each row is the best run found
for the target pattern. The signaling constraint, simplest GRN, the combinatorial code
discovered, the target pattern and expression pattern are shown in each row.

ies, many target patterns were easily solved from initially random distributions.
For example, the GRN and combinatorial code shown in Fig.4a is the dual of the
classic solution for lateral inhibition with feedback for mosaic construction [20].
Significantly, like the Monte Carlo simulation, simple hill climbing from an ini-
tially random pattern failed to create many biologically relevant patterns, includ-
ing complex orthogonal mosaics (e.g. Fig.1h) and patches (e.g. Fig.1k).

Table 5 summarizes a systematic computational exploration of adequacy,
where the simplest GRN was identified using only direct contact signaling ♦, or
only diffusible signaling ∇, or both signaling types. Target patterns were selected
from each problem class (mosaic, patch and border).

Mosaics: Diffusion signaling alone is inadequate to create mosaics, while direct
contact signaling is both necessary and sufficient. Furthermore, GRNs for com-
plex mosaics, such as those in the zebra fish retina [21] (e.g. Fig.1h, where h
denotes the Code) are difficult to find when searching from random GRNs. This
suggests an alternative incremental evolutionary strategy of mutating GRNs that
solve related mosaics. An example of related GRNs is shown in Fig.3. The GRN
in Fig.3b that solves this complex pattern is a mutant version of the simpler
GRN in Fig.3a, the difference being the addition of one protein and one edge.
We are currently exploring the power of this evolutionary strategy.
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Mosaic GRN Solutions
Target GRN Edges
Pattern ∇ ♦ ∇ ∪ ♦ Code

• 2, 2 ◦ a cR × c

• 2, 2 ◦ b

• 3, 3 ◦ c

• 3, 4 ◦ d

• 5, 6 ◦ e bR × b

• • ◦ f bR × b

• 3, 3 ◦ g cR × b

• • ◦ h gR × b

Patch GRN Solutions
Target GRN Edges
Pattern ∇ ♦ ∇ ∪ ♦ Code

• 2, 2 2, 2 a

• 2, 2 2, 2 b

2, 2 3, 3 2, 2 c

• 5, 7 4, 7 d aR × a

• 6, 6 5, 6 e cR × c

2, 2 2, 2 2, 2 f

2, 2 2, 2 2, 2 g

5, 6 4, 5 5, 7 h f × g

Border GRN Solutions
Target GRN Edges
Pattern ∇ ♦ ∇ ∪ ♦ Code

2, 3 4, 6 2, 4 a

2, 2 5, 5 2, 2 b

2, 5 2, 2 2, 2 c

2, 4 2, 3 2, 3 d cR × cR

2, 4 2, 4 3, 5 e cR × b

2, 4 2, 3 2, 2 f cR × cR

2, 4 3, 3 2, 3 g a × cR

2, 4 4, 7 3, 5 h a × c

Fig. 5. The computational adequacy of GRN’s for solving selected mosaic, patch and
border target patterns. The GRN Edges column displays the solution found under
different signaling constraints: contact only ♦; diffusion only ∇; or their union ♦ ∪ ∇.
GRN solutions are noted: •- no solution found; p, m solution found (p proteins and
m edges); ◦- poor solutions found. The Code column gives the disjoint code solution
found, where a × cR concatenates solution a and the solution of rotated GRN c. A
GRN is rotated by replacing any directional signaling edges M:P (in Table 1) with the
signaling edge from the rotated direction (such as north goes to west, and west goes to
south etc.).

Patches: Diffusible signals are effective for finding circular (Fig. 5g,h) and 1/3
patterns (Fig. 5c), but ineffective at finding 1/2 patterns (Fig. 5 a,b). Significantly,
short-range direct contact signaling is effective at building global structures like
segments, including 1/2, 1/3 and nested circles (Fig. 5a-h). The emergence of these
global patterns as an outcome of short-range signaling is a significant result of
this work. Finally, GRNs that combine diffusion and direct contact signaling are
effective and parsimonious, and can solve all given segment problems.

Borders: Border targets appear to be the simplest to solve, with both diffusion
and cell-cell contact signaling adequate and effective. In some cases combining
both diffusion and contact signaling creates the most parsimonious GRNs.

Combining GRNs Search: In the final study we identify combinatorial codes
that solve the difficult targets of Fig.1 by running multiple disjoint GRNs in
parallel. Only GRNs identified by hill climbing are considered. To run two dis-
joint GRNs in parallel the GRNs are assigned distinct proteins then both are
run until fixed point. Next their output protein distributions are concatenated,
then the combined expression patterns are clustered and matched against the
target pattern as described in Section 3.
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Combining GRNs Results: The results of running two GRNs in parallel are
shown for each target pattern in the last column of Fig.5. Complex orthogonal
target patterns (e.g. Fig.1k), which were hard to solve using a single GRN,
can easily be solved by this method. For example, a single GRN of 5 proteins
and 7 edges (both contact and diffusion) is needed to identify the nested circular
pattern (Fig.5h), whereas two small (2 protein, 2 edge) GRNs can solve it easily.

4 Conclusions

In this work we show that simple biologically realistic GRNs are very powerful
and capable of constructing many complex cellular patterns. One significant and
unanticipated result is that cell-cell contact signaling is sufficient to form many
global patch patterns. The complexity of the cellular patterns formed by the
simple GRNs modeled here poses the question of why biological GRNs are so
complex. This study revealed some patterns that could not be solved by a single
small GRN. These patterns, however, were solvable when disjoint GRNs were
run in parallel and their protein expression levels combined. Our results support
the view that complex GRNs may have evolved in nature by combining simpler
modules. Our model provides an avenue to explore the evolution of complex
GRNs that drive development.
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Abstract. A developmental Artificial Neural Tissue (ANT) architec-
ture inspired by the mammalian visual cortex is presented. It is shown
that with the effective use of gene regulation that large phenotypes in
the form of Artificial Neural Tissues do not necessarily pose an im-
pediment to evolution. ANT includes a Gene Regulatory Network that
controls cell growth/death and activation/inhibition of the tissue based
on a coarse-coding framework. This scalable architecture can facilitate
emergent (self-organized) task decomposition and require limited task
specific information compared with fixed topologies. Only a global fit-
ness function (without biasing a particular task decomposition strategy)
is specified and self-organized task decomposition is achieved through
a process of gene regulation, competitive coevolution, cooperation and
specialization.

1 Introduction

Evolving open-ended variable-length neural systems with large phenotypes re-
mains a significant challenge in the field of Alife [20,8]. One of the problems
encountered with large phenotypes is the bootstrap problem [18]. The boot-
strap problem occurs when the EAs are unable to pick out incrementally better
solutions for crossover and mutation resulting in premature stagnation of the
evolutionary run. The answer to the evolution of controllers for complex prob-
lems has often been to introduce more supervision ad hoc, where the experi-
menter decomposes a complex task into a set of simpler tasks based on domain
knowledge of the task at hand. In biological systems, such intervention (more
supervision) does not always exist, yet these systems can adapt and thrive with
relative ease.

Other techniques involve starting with a single cell or a small phenotype and
allowing for the system to grow in size and complexity until the system can find
a satisfactory solution to a given task [14]. However in biological systems, often
there exists a brain that may already have the neural capacity (brain size) to
adapt easily to a new task/scenario. In such circumstances, starting over with a
minimalist system may be a much slower process owing to the over-reliance of
topological growth directed by evolution.
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Taking inspiration from the mammalian visual cortex, we have developed an
evolvable Artificial Neural Tissue (ANT) model. The genotype for the evolvable
ANT defines a developmental program that constructs a neural tissue (pheno-
type) and associated gene-regulatory functionality. The variable-length tissue
architecture can be characterized as a lattice of neurons arranged in a three-
dimensional (3-D) structure. A Gene Regulatory Network (GRN) controls cell di-
vision and cell death in the tissue, activates/inhibits portions of the tissue based
on external sensory input using a coarse-coding framework and express/repress
other characteristics based on gene-protein interactions.

We empirically compare the training performance (using evolutionary algo-
rithms) of various controllers for the multirobot tiling pattern formation task
(similar to a segment of the termite nest building task [4]),variant of the photo-
tactic task (with obstacles and robot equipped with a gripper) and a relatively
difficult sign-following task that requires use of memory. Each of these tasks re-
quires the evolution of emergent (self-organized) task decomposition strategies
to complete the task successfully. Only a global fitness function (without biasing
a particular task decomposition strategy) is used; the intention is for the con-
trollers to evolve innovative techniques in decomposing the global task into a set
of ‘local’ subtasks.

2 Related Work

Traditional machine learning methods for task decomposition involve the su-
pervisor decomposing the task and training separate ‘expert networks’ on the
subtasks [12]. Arbitration among the expert networks is performed using a coop-
erative (Product of Experts model) [10] or competitive Mixture of Experts model
[12,17]. The gating function and the expert networks are trained separately and
the network topology is predetermined by the experimenter.

Our previous work took this approach to the next step, where decision neu-
rons (acting like gating functions) and expert networks were evolved together
(Binary Relative Lookup architecture) using a global fitness function [21]. We
found larger BRL architectures (with more expert networks) tend to evolve faster
than comparable smaller ones for the tiling pattern formation task. The decision
neurons learned to limit the number of expert networks used thus preventing
problems in over segmentation (over-fitting) to many expert networks.

NEAT (NeuroEvolution of Augmenting Topologies) showed the potential ad-
vantage of evolving both the neuron weights and topology concurrently [13]. It
is argued that growing the network incrementally (‘complexification’) serves to
minimize the dimensional search space and thus improve evolutionary perfor-
mance. ANT is even more flexible and can be initialized with a large number
of neurons since the GRNs can effectively suppresses unnecessary/noisy neurons
while activating neurons specialized for specific input signals.

Another approach to evolving solutions to complex tasks involves use of en-
coding schemes that effectively reduces the search space. This includes a multi-
cellular developmental system by Eggenberger [5] and the Morphogenetic Sys-
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tem (MS) originally used on POEtic [19]. Eggenberger’s earlier model demon-
strates how cell differentiation, cell division and cell death can be controlled by
gene regulatory functionality and constructs a 3-D organism. In these two sys-
tems, the GRNs merely act on the developmental process in constructing the
phenotype.

A more refined model by Gomez and Eggenberger [6] uses ’ligand-receptor
interactions’ allowing for one neuron to recognize/attach to a partner neuron
and allow for emergence of Hebbian-type learning without specification of learn-
ing rules for a forveating artificial retina system. Astor and Adami’s [2] tissue
architecture consists of cells on a 2D tissue that perform logical functions. Cell
replication and connections are formed through a gene regulated developmental
and learning system using a Genetic Programming type command set.

In our ANT architecture, gene regulation occurs during the developmental
process in addition to when the tissue interacts with the environment. The de-
cision protein act much like gating neurons while helping to reduce the effects
of spatial crosstalk [12] and perform sensory preprocessing enabling selection of
’specialized’ networks of neurons depending on the sensory input.

Another class of indirect developmental encoding schemes such as Artificial
Embrogeny systems [14] produce phenotypes through recursive rewriting of the
genotype code. These systems use an artificial chemistry as a grammar or model
cellular metabolism and replication. Other recursive rewriting schemes include
Cellular Encoding [7] and L-Systems (see [15,11]).

It has been argued that indirect developmental encoding schemes may ef-
fectively decrease the search space (by exploiting regularities and allowing for
peleiotropy) but at the price of introducing a deceptive fitness landscape [20].
It has also been found the overhead required for indirect encoding schemes ap-
pear to result in poor performance for smaller search spaces [20]. This presents
a problem for task decomposition, where the control scheme needs to work well
for subtasks with small and large search spaces.

Fig. 1. Schematic of the ANT architecture showing gene-protein-tissue interaction
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Fig. 2. Diagram of tissue morphology and equivalent networks where O1 and O2 are
output signals

3 Methodology

The ANT architecture presented in this paper consists of a developmental pro-
gram that constructs a neural tissue and associated gene-regulatory function-
ality. The gene-regulatory network consists of parameters that control growth
and activates/inhibits parts of the genotype. All the parameters defined within
the ANT architecture are evolved. This includes parameters characterizing the
decision proteins, growth parameters, cell contents and tissue topology. Neural
networks consisting of cells within the tissue are dynamically formed through a
sequence of activation/inhibition based on the coarse-coding framework.

The artificial tissue consists of a culture of cells activated and inhibited by
a gene-regulatory network. The cells exist in a three-dimensional matrix with
each cell occupying a cube (Fig. 2). Each cell contains genes specifying weights,
thresholds/biases, choice of activation function (modular neuron model [21]) and
probability ratios for instructing cell division. Cell division requires a parent cell
(selected with highest replication probability using GRNs). The new cell can be
located in one of 6 neighbouring locations (top, bottom, north,south,east,west)
sharing a common side with the parent and is not occupied by another cell.

The base layer of cells within the tissue are fully connected to all the sensory
neurons or memory neurons. While the top layer of cells triggers a set of prede-
fined basis behaviours such as to perform motor control or pass data to memory
neurons. Connection between cells from one layer to another is local, with each
cell from layer z connected to a maximum of m = 9 cells from layer z−1 (spatially
localized). px,y,z =(

∑x+1
i=x−1(

∑y+1
j=y−1 wi,j,z−1si,j,z−1))/(

∑x+1
i=x−1

∑y+1
j=y−1 si,j,z−1)

and sx,y,z = [φn(p, t1, t2)]x,y,z where wx,y,z is a neuron weight and sx,y,z is
the current state of a neuron. The modular neuron model used consists of two
threshold parameters t1 and t2, where each neuron outputs one of two states
s = (s1, s2). A choice of four threshold activation functions for φn is given below:

φ1 :
sout =

{
s1, if p ≤ t1
s2, if p > t1

φ2 :
sout =

{
s1, if p ≥ t2
s2, if p < t2

φ3 :
sout =

{
s1, if t2 < p < t1
s2, otherwise

φ4 : sout =

⎧⎨⎩
s1, if p > (1 − p)

rand(s1,s2), if p = (1 − p)
s2, if p < (1 − p)

(1)

enabling a single neuron to simulate AND, OR, NOT and XOR functions.
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Fig. 3. Diagram showing network with neuron 5 (layer 2) with highest activation
concentration (due to coarse activation of decision protein 1 and 2) being selected

3.1 Decision Proteins and Coarse Coding

Albus argued that the mammalian brain uses tile (coarse) coding to represent
multidimensional space [1,9]. Hinton [9] and Ballard [3] point to the importance
of modularity in the coarse-coding framework as an increase in the number of
neurons in a fixed volume limits the number of dimensions represented. We show
in our model, the potential advantages of coarse-coding as a means of arbitration
between modular networks.

The activation and inhibition of genes occur through a coarse-coding frame-
work. Decision proteins (modeled as single neurons with ability to choose be-
tween threshold activation functions) get activated and inhibited due to sensory
input. The decision proteins act by diffusing through a coarse column (receptive
field) as shown in Fig. 3. The receptive field parameters specifying position and
dimensions (Di[x, y, xlength, ylength]) for each decision protein Di is also evolved.

Once a decision protein is activated, the activation concentration Ci[cactive]
of each neuron cell i is incremented by k (a constant). With multiple decision
proteins acting together, a consensus is reached when the activation concentra-
tion (summed over multiple activated proteins) is highest for a particular output
neuron (cell at the top layer of a column). A network is dynamically formed from
all the neurons connected to the selected output neuron (in a scheme shown in
Fig. 3) with activation concentration (cactive > 0). This characteristic is inspired
from the columnar pooling of neurons within the mammalian visual cortex. Simi-
larly, if there are multiple output neurons with the same activation concentration,
selection occurs among the output neurons according to a uniform distribution.

3.2 Introns

The accumulation of nonsense genes or introns has been described to be a major
problem in the field of Genetic Programming. However, introns allow for genetic
neutrality, an important facet of evolution. With current GP approaches, intron
accumulation results in increased computational inefficiency over time. Current
techniques in controlling introns has been to prune the genotype regularly or
explicitly impose a size limit on the genotype using the fitness function. Both
strategies either lack biological plausibility or translate into more supervision.

It is noted that with GP approaches, program size increases according to
the square power law in generations [16]. For ANT, the program size growth is
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Fig. 4. A crossover operation between two ANT parents. ‘Compatible’ cells are inter-
changed as shown resulting in two offspring

controllable and increases linearly due to the growth model used. Our genotype-
to-phenotype mapping scheme avoids intron accumulation due to the crossover
operator. In GP, a node is chosen from each genome and genetic code is ex-
changed about the node. In our methodology , only a ‘compatible set’ of genes
get interchanged during crossover. Each cell has a unique position parameter
[x, y, z] relative to rest of the cells within the tissue. A crossover is performed by
drawing a plane (with normal vector parallel to the x or y-axis) separating the tis-
sue and exchanging ‘compatible’ cells (Fig. 4). Thus genes for cell C1 from Tissue
A and C2 from Tissue B could be interchanged iff CA,1[x, y, z] = CB,2[x, y, z].

4 Example Tasks

The evolutionary performance of our ANT architecture is compared with fixed
network topologies (direct-encoding schemes) for three different robotic tasks.
All three robotic tasks were chosen because it could be argued that self-organized
task decomposition strategies may be necessary to accomplish the tasks given a
‘global’ fitness function. In addition, these tasks are inspired by some remarkable
behaviours evident in the insect world. The tasks include a multirobot tiling pat-
tern formation task [21] that involves redistributing objects (blocks) randomly
placed in a two-dimensional world into a desired tiling structure (see Fig. 7). The
robots need to come to a consensus and form one ‘perfect’ tiling pattern. This
task is similar to a segment of the termite nest construction task that involves
redistributing pheromone filled pellets on the nest floor [4].

The tiling formation task may be decomposed into a set of subtasks such
as foraging for blocks, redistributing block piles, arranging blocks in the desired
tiling structure locally, merging local lattice structures, reaching a collective
consensus and finding/correcting mistakes. In the phototactic task, the robot
must reach a goal location (light source), but it also needs to negotiate obstacles.

In the sign-following task, the robot needs to evolve the ability to decipher
the signs relative to the robot’s current frame of reference,to remember the
current sign while looking for the next one, and negotiate obstacles. Each sign is
a waypoint that gives direction to the next waypoint leading ultimately to a goal
location. Of the three tasks, this task is the most complex and requires the use
of memory. This task is inspired by honey bees ability to waggle (communicate
with other bees) and describe directions and waypoints to a food source.
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Fig. 5. Schematic of 2D robot model. B1 detects whether robot is carrying a block,
D1 is a compass sensor and S1 reads the colour of the sign off the floor.

The signs are posted on a fixed frame of reference and the robot based on its
current heading needs to interpret the signs accordingly. For the phototactic task
and the sign-following task, the fitness function is simply the number of times
the robot reaches and stays at the goal location and for the tiling formation task
the fitness is the Shannon’s entropy over all the tiles [21].

The robots are modeled as Kheperas equipped with a gripper turret. We
have developed a fast two-dimensional grid world simulator for our robotic ex-
periments and we have verified the performance of the evolved controller for the
phototactic and tiling pattern formation task using Cyberbotic’s Webots (Fig.
5). The basis behaviours chosen for all three tasks are shown in the table below:

4.1 Experiments

The evolutionary performance of various control system architectures is com-
pared for the three tasks (see Fig. 6). The fixed network architectures (Table 1)
were determined based on the number of neurons required for triggering each
basis behaviour and the size of the networks were limited to avoid the ‘bootstrap
problem’. BRL2 consist of 2 monolithic networks (Table 1) arbitrated by a deci-
sion neuron. ANT is initialized with individuals between 40 to 400 cells (uniform
distribution) for the tiling formation task and 20 to 100 cells for the phototactic
and sign-following task. This procedure is intended to determine wether there is
evolutionary preference for smaller phenotypes over larger ones.

Fig. 6. Basis behaviours for the three robotic tasks and monolithic network topology
shown. A combination of these behaviours can be activated at each timestep.
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The EA population size for all three experiments is P = 100, crossover prob-
ability pc = 0.7, mutation probability pm = 0.025 and tournament size of 0.06P
(for tournament selection). For the phototactic task and the sign-following task
the success rate is averaged over 100 different initial conditions (consisting of
20 × 20 world, 80 blocks) and for the tiling formation task, the fitness is aver-
aged over 15 initial conditions. For the sign-following task ‘mines’ (undetectable
by robot) are randomly laid throughout the gridworld except along the pathway.

5 Results and Discussion

The evolutionary performance (number of successful epochs) of the ANT ar-
chitecture for three different robotic tasks is better than smaller fixed network
topologies (Fig. 6). In addition, ANT with its ability to grow in complexity
(depending on task) and exploit modularity managed to find solutions to the
sign-following task (memory dependent) where fixed topologies appear to fail.

Analyzing the 3-D morphology, active segments (consisting of specialized
networks) are distributed sparsely throughout the tissue. These networks do not
appear to decompose the task according to ‘recognizable’ distilled behaviours
but as a set of emergent proximal behaviours (proximity in sensor space) [18].

Fig. 7. Evolutionary performance comparison for the tiling-formation (a), phototactic
(b) and sign-following tasks(c). Also shown, a histogram (d) of number of cells within
the tissue (population best, after 200 generations), for the tiling formation task.
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Large tissue structures do not seem detrimental to the evolutionary per-
formance because the GRN quickly evolves the ability to suppress unneces-
sary/noisy neurons within the tissue. There appears to be a steady reduction in
the number of active neurons with a convergence to a solution (Fig. 7b). During
the early phase of evolution, there is greater network activity enabling sampling
of more neurons. Convergence appears to result in the inhibition of cells that
add noise to the system (reduction in spatial crosstalk [12]).

There appears to be a noticeable improvement in evolutionary performance of
large tissue structures over smaller ones. A histogram of population best during
successful runs (with a success rate of > 0.9) compared to population best during
unsuccessful runs (success rate < 0.1) appear to confirm these observations (Fig.
6d). The ANT architecture is more effective at being able to decompose a task
and handle the subtasks using simpler specialized networks consisting of few
neurons than the fixed architectures. This results in fewer weights having to be
tuned and thus a smaller search space.

The most promising result from our experiments is the successful exploitation
of global memory by the ANT architecture. While a fully connected feed for-
ward network and the BRL architecture were unable to exploit this functionality
resulting in lower performance (due to a larger search space). This observation
corroborates Nolfi’s experiments for the garbage collection task [18].

The ANT architecture consists of cells interconnected locally but with access
to global memory, specialized networks separated by distance have a means of
communication, resulting in output signals that are maybe less contradictory.
Access to global memory allows for some emergent (self-organization) properties
to appear with one segment of the tissue able to ‘veto’ or override another
segment of the tissue independently. This is evident from significant performance
improvement for the phototactic task when only the decision proteins were able
to read the memory neurons (Fig. 6b).

It is also observed that the number of active decision proteins steadily in-
creases even after convergence to a solution thus creating a redundant protec-
tive mechanism against adverse mutation (Fig. 7b). Redundancy is an important

Fig. 8. Tissue growth characteristics (a) and max number of active cells/decision
proteins (b). (c) 3D morphology of a tissue (solution for tiling formation task). Top
view (d) showing all the decision proteins/cells and top view (e) of decision proteins.



76 J. Thangavelautham and G.M.T. D’Eleuterio

characteristic of biological systems that enable a system as whole to be robust
despite the fragility of its parts. From an evolutionary standpoint, the artificial
tissues evolve not only to solve the intended task, but also steadily develop ways
to ensure its survival and successful transfer of its genes.

6 Conclusion and Future Work

A developmental Artificial Neural Tissue architecture, with the ability to per-
form emergent task decomposition is presented in this paper. The evolutionary
performance of the ANT architecture is better than smaller fixed network topolo-
gies for three different robotic tasks. Our experiments indicate improved evolu-
tionary performance of ANT with access to memory neurons. It is hypothesized
that memory neurons allow for communication among the specialized networks,
enabling one network to override another. We are currently planning to port
ANT onto hardware and hope to compare our architecture with other variable
length topologies for tasks such as soccer, mining and surface exploration.
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Abstract. Plant morphogenesis is the development of plant form and structure 
by coordinated cell division and growth. We present a dynamic computational 
model of plant morphogenesis at cellular level. The model is based on a self-
reproducing cell, which has dynamic state parameters and spatial boundary 
geometry. Cell-cell signalling is simulated by diffusion of morphogens, and 
genetic regulation by a program or script. Each cell runs an identical script, 
equivalent to the genome. The model provides a platform to explore coupled 
interactions between genetic regulation, spatio-mechanical factors, and signal 
transduction in multicellular organisation. We demonstrate the capacity of the 
model to capture the key aspects of plant morphogenesis. 

1   Introduction 

Plant morphogenesis is the formation of shape and structure by coordination of cell 
shape, growth, and proliferation by mitosis. The control mechanisms involved in 
regulating morphogenesis are complex, and reverse engineering them from 
experimental data is an extremely difficult task. Thus, computational and 
mathematical models are becoming increasingly important tools for developmental 
biologists. 

1.1   Plant Morphogenesis 

Plant cells are enclosed in a semi-rigid cell wall composed of cellulose microfibrils, 
other polysaccharides and proteins[1]. They secrete an extracellular matrix which 
binds the walls of neighbouring cells into fixed relationships - each cell is firmly 
bound to its neighbours[1]. The partition between two cells is double-walled, with 
each cell's wall having independent composition, architecture and properties [2]. 
Division of plant cells occurs, after the chromosomes have been duplicated and a 
phragmoplast formed, by the synthesis of a new wall segment splitting the cell into 
two halves[1]. 

Cells maintain hydrostatic pressure, or turgor, which produces strain in the 
walls[1]. Growth is an interplay between this pressure driven stretching of walls and 
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biosynthetic processes that modify the walls' protein structure [3]. Enzymes and other 
agents maintain the mechanical strength and extensibility of cell walls until they cease 
growing [4]. The two processes occur on different time scales; biosynthesis occurring 
over hours or days, and elastic stretching over seconds or minutes [3]. The interface 
between two neighbouring plant cells is typically linear in cross-section (figure 2), 
suggesting minimal pressure differences between neighbours. 

Plant cells are often polar, that is they organise their behaviour along directional 
axes. Growth and division are coordinated with respect to these axes.  

Factors that regulate cell behaviour (e.g. via gene expression), such as hormones, 
transcription factors and other molecules are transported from cell to cell. These 
signalling pathways have been shown to play a role in directing many developmental 
processes including cell shape, growth, movement, and proliferation [5], as well as 
cell polarity orientation[6, 7].  

Signalling and other mechanisms provide key positional information, which 
coordinates differential cell behaviour. Although lineage plays some role in cell fate 
specification, it seems positional information is of primary importance in plant 
development [8, 9]. 

1.2   Modelling Approaches 

Several approaches to modelling cell shape mechanics and multicellular organisation 
have been developed. Although not particular to plant cells, these models provide a 
basis on which to elaborate specific techniques for examining plant morphogenesis. 
Fleischer and Barr [10] used a spherical geometric representation of cells, 
concentrating their efforts on cell proliferation and subsequent multi-cellular 
organisation. They took a rule-based approach to cell behaviour and used diffusion for 
cell-cell signalling. Although useful, the spherical (or any other primitive-based) 
model cannot properly capture the range of cell-cell relations that forms the basis for 
the intercellular signalling that is thought to direct plant growth. In particular, the 
Fleischer representation limits cells to sphere packing arrangements, which are not 
typical of plant cells. 

Honda et al [11, 12] and Kawasaki and Okuzuno [13] developed 2- and 3-
dimensional vertex methods for modelling cell shape. These models describe the cell-
boundary as a collection of linear (2D) or polygonal (3D) faces. They considered the 
effects of cell division in [12], but did not consider cell behaviour in any detail. The 
linear representation of cell-cell interfaces fits well with observed plant cell shapes, 
and allows realistic multi-cell arrangements. 

We take a hybrid approach, using a similar geometric representation to [12] and 
[13], with the diffusion signalling used in [10]. We add anisotropic cell behaviour and 
a system for specifying arbitrary models of genetic regulation. 

2   Computational Model 

Each cell is defined by a set of dynamic state parameters (including morphogen 
levels, growth rate, etc.) and a closed boundary. The state of the cell determines its 
behaviour at any point in time. Cell behaviour is expressed as the transformation of 
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cell state parameters to proceed to a new state. These transformations are defined in 
the genetic script, which is the same for each cell.  

The boundary of the cell describes its shape, and is decomposed into a set of walls. 
Each wall is the interface between two cells. Morphogens move from one cell to the 
other via the wall, and both of the adjacent cells have equal influence on its properties. 
Cell growth is the process of increasing the lengths of the walls to varying degrees. 

The state parameters provide feedback between the cell shape, cell-cell signalling, 
and the regulation of cell behaviour. The nature of the coupling of these feedback 
processes is arbitrarily defined in the genetic script. 
The model is iterated as follows: 

1. Execute genetic script for each cell 
2. Iterate the morphogen diffusion system over N time-steps 
3. Adjust the mechanical properties of the walls 
4. Find the equilibrium wall configuration 
5. Repeat from step 1 

2.1   Cell Shape 

We model cell geometry in 2-dimensions – approximating a layer of cells. The cell 
walls are modelled as two linearly elastic elements (springs) bound together at the end 
points. Each of the adjacent cells influences the properties of only one of these 
springs. Each spring has stiffness K and natural length Ln determined from the state 
parameters of the appropriate cell. Simulated forces are computed at each vertex as 
shown in figure 1A. The magnitude of the turgor force is PL, where P is the cell 
pressure and L is the wall length. 

A B  

Fig. 1. (A) Forces on a vertex due to turgor (F) from one cell, and elastic tension (T). (B) Cell 
division consists of inserting a new wall across the centre of mass of the cell. Existing walls w1 
and w3 are split in two by the division. 

Cell growth is achieved by increasing the natural lengths of the springs associated 
with the growing cell, simulating biosynthesis of wall materials. At each time step the 
cells' growth rates are used to compute the natural lengths of each of the springs, using:  
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where λ  is a function of growth rate defined on [0,1] (see next section), and 
superscripts denote time step.  

Synthesis of wall constituents continually maintains wall strength [4]. In order to 
model this we impose the limit on Ln: 
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where o is the maximum strain the wall tolerates without reinforcing its structure.  
The model assumes that cell growth occurs at a much slower rate than that at 

which forces propagate through the cell wall matrix. This means that a kind of 
temporary equilibrium can be assumed at each time step, such that the walls have 
rearranged themselves so as to minimize the forces on them. We use a Runge-Kutta 
algorithm [14] to find the equilibrium vertex positions at each time-step. 

2.2   Cell Polarity 

We maintain a pair of orthogonal unit polarity vectors, 1v̂  and 2v̂ , for each cell. 

These are initialised arbitrarily, and then updated each time step to reflect the rotation 
of the cell as it grows. Cell growth, division, and the separation of morphogens after 
division, are each organised about one of the polarity vectors (which one to use is 
determined by the genetic script).  

Cell growth is polarised by defining the function  in equation 1 as: 

( )[ ]2ˆˆ1 wv ⋅−= aRλ  (3) 

Where R is the cell growth rate, v̂  is the polarity vector, ŵ  is the unit direction of 
the wall (anti-clockwise with respect to the cell), and a is the degree of anisotropy 
defined on [0,1]. With a=0 we get isotropic growth, and with a=1 we get growth 
mostly in walls aligned closely with the polarity vector v̂ . 

Cell division is achieved by inserting a new wall positioned to pass through the 
centre of mass of the cell, and aligned in the direction of the chosen polarity vector. 
Figure 1B illustrates the process. Two new cells are created on either side of the 
dividing wall. The morphogen levels of the mother cell are split between the two 
daughter cells. Each cell receives ½(1+ si) (daughter cell 1 in figure 1B) or ½(1- si) 
(daughter cell 2) of the mother cell morphogen, where si is the asymmetry factor on  
[-1,1] defined by the genetic script. 

Inheritance of morphogen levels allows the model to capture cell lineage, and 
asymmetric separation of morphogens makes it possible to consider branching 
of`lineages. 

2.3   Genetic Regulation 

The genetic script is implemented via an embedded Tcl system. It may perform any 
sequence of Tcl instructions (e.g. logical conditions, resetting) on the cell state 
parameters. In addition two procedures are defined. The divide procedure instigates 
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cell division, instructing the spatial model to adjust itself accordingly. The script may 
also cause the cell to die via a kill procedure. 

The parameters that define the state of each cell and which are available for 
transformation by the genetic script are: morphogen production rates, morphogen 
localisation asymmetry si, growth rate R, anisotropy a, growth axis, division axis, and 
turgor pressure P. Other values are available as read only variables: volume V, and 
morphogen concentrations

 
ui. 

The system is general enough to allow implementation of genetic regulation on 
many levels, from differential equations to rule-based models. 

2.4   Signal Transduction 

We consider cell-cell signalling by passive diffusion transport of morphogens 
produced by the cells. Diffusion allows us to model long-range (high diffusion rate), 
short-range cell-to-cell (low diffusion rate), and cell-autonomous (zero diffusion rate) 
signal molecules within the same mathematical framework. 

The signalling system is iterated at each cell j for each morphogen i using: 

( ) +−= j
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j
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where j
iU   is the morphogen concentration, iγ  (units [distance]-1[time]-1) is the rate 

of transport per unit length of wall per unit difference in concentration across the wall, 
L is the length of the wall. The sum is over the walls forming the boundary of cell j 

and neighbour is the cell adjacent to j across each wall. The term j
ipU  is the rate of 

morphogen production.  

3   Results and Discussion 

We performed simulated experiments to assess the performance of the model in four 
key aspects of plant morphogenesis: cell proliferation, coordinated growth, cell 
lineage, and cell position specification. Parameter settings P=0.1, K=1 were used 
throughout. 

3.1   Proliferation 

Simple cell colonies were generated from initial conditions of a single unit square 
cell. All cells were grown at the same rate (R=0.1) and divided when their volume 
doubled. Cells inherited polarity from initial vectors: up (axial) and right (lateral). All 
growth was indeterminate; analysis was limited to the first few hundred time-steps. 

Figure 3A shows a colony generated by alternating the cells’ division axes and 
maintaining growth axes perpendicular to it. After each division the growth and division 
axes were flipped from axial to lateral or vice versa. Cell growth was isotropic. The 
resulting colony shows regular cell size and shape and its boundary maintains the square 
shape of the initial cell. The cell walls show the characteristic zigzag wall pattern seen 
between adjacent cell files in plant roots and shoots (figure 2A). 
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A 

 

B 

 

C                                                  D 

Fig. 2. Examples of cell arrangements in plant tissues. (A) Cell walls show a characteristic 
zigzag pattern caused by lateral tension forces at T-junctions. (B) Scale range of cell cross-
section area, ranging to approximately 1:100. (C, D) Initial or stem cells (i) are maintained at 
fixed positions in the meristem. (C) Coleochaete scutata (a simple green alga), the stem cells 
are maintained at the thalus margin. (D) Arabidopsis thaliana root meristem [Reproduced 
courtesy of Sarah Hodge]), initials remain in fixed positions relative to the root tip after 
divisions producing other cell types. 

Random cell colonies were generated by choosing division axes from a pseudo-
random number, with equal probability of axial or lateral division. Again, the cells’ 
growth axes were maintained perpendicular to their division axes. Cell growth was 
polar, with a=0.9.  

Figures 3B and 3C show three colonies generated by different pseudo-random 
seeds. As expected, the cells have a broader range of shapes compared with colonies 
generated by alternating division. Given equal probability of lateral and axial division, 
we might expect little average change in colony shape over time. However, overall 
colony shapes varied widely between random seeds.  

The elongated form of figure 3B was caused by constraints on growth imposed by 
cells on their neighbours. An early sequence of in-line divisions established the long 
thin shape of the cell colony, which was maintained by the combination of anisotropic  
growth and coordination of growth by the two-spring model. To illustrate this, 
consider a line of three cells. If the two end cells are growing along the line and the 
central cell opposite to the line, growth of the central cell will be retarded. This is 
because its lateral walls each consist of one growing spring and one non-growing 
spring. Growth along the line therefore takes place at a much greater rate than lateral 
growth. In figure 3C similar growth constraints caused an asymmetry in cell-number 
on the left and right flanks, which was amplified through cell proliferation, causing a 
dog-leg similar to gravitropism in plant roots. 
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A B  

D C  

Fig. 3. Indeterminate growth organised by inherited polarity, scale bar shows 10 units. (A) 
Alternating division axis with growth axis perpendicular: steps 0, 27, 69, and 203 (130 cells). 
(B,C) Division axis chosen randomly with growth axis perpendicular: clockwise - step 312 
(135 cells), step 314 (50 cells), step 390 (210 cells). (D) Growth as in B and C, with two cells 
(inset) chosen to stop dividing whilst continuing to grow.  

Figure 3D shows the effect of manually specifying mitotic inactivity in a few cells. 
The selected cells (shaded) continued to grow at the same rate but did not divide. The 
colony showed scale differences in cell size not uncommon in many plants tissues, as 
illustrated in figure 2B. 

3.2   Coordinated Growth 

There are several examples of processes in plants (e.g. lateral root development) in 
which a zone of proliferating cells is established within a mature or slowly growing 
region. In order to examine this process we triggered proliferation in a single cell and 
its descendents by injecting a non-diffusing morphogen. The genetic script was 
configured to trigger growth at R=0.1 on presence of this morphogen. Growth was 
polar (a=0.9), and all cells divided on doubling their initial volume.  

The effect of the maximum wall strain parameter was examined, keeping all cells 
turgor pressures equal. Figure 4A shows the results with o=0.1 (approximately the 
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strain level produced by the cells’ turgor). Growth continues indefinitely and 
surrounding cells are stretched to the point where they divide. With o=0.5 (figure 
4B), there is no proliferation and minimal cell growth. These results suggest that 
zones of varying growth rates could be coordinated via transmission of forces and 
passive cell wall biosynthesis, without requiring differential turgor. 

A   B  

Fig. 4. Cell proliferation  zone (shaded) surrounded by non-growing cells (grey tones not 
significant). Scale bars show 10 units. (A) Cell maximum strain o=0.1; growth is indefinite 
with surrounding cells stretched: step 0 (13 cells), step 44 (37 cells), step 76 (135 cells). (B) 

o=0.5, equilibrium reached in right-hand image, cell proliferation constrained. 

A B C D  

Fig. 5. Morphogens controlling development by inheritance and positional information. In all 
cases morphogen level shaded from white (zero) to black (one), and scale bar shows 10 units. 
(A) Inheritance of stem cell character; morphogen inducing 1-D growth and division inherited 
by only one daughter cell, other cells inactive (steps 0, 156, 242, 311, and 1915). (B) 
Morphogen gradient; morphogen produced by stem cell, diffuses to other cells where it is 
degraded (steps 0, 195, 400, 1315). (C,D) Gradient of lateral growth inhibitor; inhibition 
threshold at 0.5 (C) (steps 0, 461, 832, 1154)  and 0.75 (D) (steps 605 and 817). 

3.3   Cell Lineage and Positional Information 

The relative roles of cell lineage or inheritance, and cell-cell signalling mechanisms 
and their interactions are important in understanding plant development.  We 
demonstrate both mechanisms in our model independently and in combination. 

A stem cell lineage was established using a non-diffusing morphogen with division 
asymmetry of si=1 (figure 5A). The morphogen was used to trigger growth and 
division in 1-dimension. This maintained an active cell at the end of a line of inactive 
cells, in a similar manner to a plant root- or shoot meristem (figure 2D). 
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In figure 5B, the stem cell was used to generate a morphogen gradient. The stem 
cell produced the morphogen shown so as to maintain constant concentration. The 
morphogen diffused into non-stem cells where it was degraded at a rate proportional 
to its concentration. The result was an approximately linear gradient along the length 
of the cell line. 

The combination of lineage generated stem-cell and morphogen gradient was used 
to establish morphogenetic zones along the cell line (figures 5C and 5D). Non-stem 
cells were scripted to proliferate laterally (R=0.05) if the morphogen was below a 
threshold value. The threshold fixed the distance from the stem-cell up to which 
lateral growth was inhibited. A higher threshold made the inhibited zone smaller and 
vice versa. Similar zones of varying growth and division can be identified at 
characteristic positions across plant meristems (figure 2C,D), and the traffic of plant 
growth regulators is known to be involved in their delineation. 

4   Conclusions 

A method has been developed for simulating the particular features of cellular scale 
plant morphogenesis. The method builds on previous models of cell shape and 
multicellular organisation with the addition of polar cell behaviour. Although no 
specific model of genetic regulation has been put forward, a system which can 
integrate any such model with both a spatio-mechanical and a signalling model has 
been demonstrated.  

The capacity of the system to reproduce key features of plant morphogenesis has 
been demonstrated using simple rule-based genetic logic. Initial experiments confirm 
that the model can produce plant-like cell proliferation, coordination of growth zones, 
and specification of cell behaviour by lineage and position. Thus the system provides 
a sound basis on which to investigate the complex interactions of all of these elements 
operating together. 

The system has been implemented as interactive software, and as such provides a 
valuable tool for hypothesis testing in a controlled setting. It also provides a test bed 
for evaluating models of genetic regulation operating within, as well as controlling 
cellular development. Work is currently underway on integrating a gene network 
model into the system, and an evolutionary algorithm for generating networks that 
produce particular developmental systems. 

The results presented here suggest that spatio-mechanical interactions place 
significant constraints on the shape formation potential of genetic control and 
patterning. Initial asymmetries in growth were amplified throughout development, 
and cell growth opposing early growth patterns was constrained. Further work 
remains to be done in quantifying and analysing these constraints in order to 
determine the organising potential of mechanical interactions alone, and in 
combination with genetic regulation in cell colonies. 
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Abstract. Developmental models simulate the spatio-temporal development of 
a complex system. The system described in this paper combines the advantages 
of a number of previously disparate models, such as timed L-systems and cellu-
lar programming, into a single system with extensive modeling flexibility. The 
new system includes the ability to specify dynamic hierarchies as part of the 
specification, and a decoupling of cell development from interpretation. Exam-
ples in application areas of computer animation and music synthesis are  
provided. 

1   Introduction 

We are interested in generalized models that simulate the continuous development of 
some complex system in space-time. This paper describes a new developmental sys-
tem for the dynamic simulation of organic forms and processes. By decoupling the 
generative process from the generated output, dynamic models can be created in a 
variety of different application domains, including biological and botanical simula-
tion, music composition, interactive animation, and computer graphics. 

The developmental system described in this paper is strongly influenced by related 
work in developmental modeling using L-systems, in particular parametric, timed and 
differential L-systems. The original formulation of L-systems by Lindenmayer in 
1968 was a conceptually elegant, discrete, symbolic model of development in cellular 
biology [1]. In 1990, Lindenmayer and Prusinkiewicz published The Algorithmic 
Beauty of Plants, with an emphasis on three-dimensional, visually realistic models of 
herbaceous plants [2]. This introduced a number of variations and extensions to L-
systems in order to overcome the discrete, symbolic nature of basic constructs such as 
D0L-systems1. Subsequent developments incorporated other continuous developmen-
tal control, such as the use of differential equations to model growth and signaling in 
modules [3] and the effects of environmental constraints [4]. More recent work uses 
Chomsky grammars in combination with interactive curve editing software to obtain 
greater visual modeling flexibility and control [5]. 

Timed L-systems were proposed by Prusinkiewicz and Lindenmayer [2] as an ex-
tension for modeling continuous development with D0L-systems. Their description 

                                                           
1 D0L-systems are deterministic and context free. 



 A Developmental Model for Generative Media 89 

was limited to D0L-systems without parameters and they restricted their modeling 
examples to the development of the simple cellular structure of Anabaena catenula. 
The cellular developmental model described in the following section follows naturally 
from timed, parametric, stochastic L-system models developed by the author. Further 
details on these specific extensions can be found in [6, 7]. 

In parallel with these developments, a number of cellular models of development 
have been proposed. The cellular model of Fleischer and Barr [8] modeled developing 
cells that exchanged chemicals by diffusion with simple ‘cell programs’. This re-
search was applied to areas such as three-dimensional texture synthesis [9]. More 
recent work combines related cellular development models with evolution to create 
structures that grow into target shapes [10]. 

One area that these systems have difficulty in addressing is in the design of a hier-
archy – a mechanism often observed in natural systems. Additionally, they are typi-
cally designed for some specific simulation or application and are not necessarily 
applicable to generalized development. The system described in this paper addresses 
these issues. The following sections describe the model in detail. 

2   The Cellular Developmental Model  

2.1   Cell Definitions 

In developing this system, we will consider a basic automaton, which is referred to as 
a cell. The name is used as a metaphorical interpretation of cells as found in biologi-
cal life. The model is ‘biologically inspired’, but is not designed to reflect a literal 
interpretation of cellular development. This cellular abstraction is capable (as a simu-
lation) of functions a biological cell does not have, and reciprocally, the biological 
cell is capable of many functions not possible with the model described here. Cells 
exist in an abstract entity called the world. The world is responsible for the creation, 
removal, and interpretation of cells that exist within it. Details of these terms and the 
world itself will be discussed shortly. 

A cell is composed of four principle components (refer Fig. 1): 

• A label, s ∈ VT , where VT  is an alphabet that is specific to the cell type (approxi-
mately corresponding to the single alphabet of an L-system). The type of a cell is 
distinguished by its ability to develop or be interpreted; 

• A state, ΣT ∈ ℜ* × ℑ*( ) — a set of variables that reflect measurable properties 

(both internal and external) that the cell possesses. The state will change dynami-
cally subject to the mechanisms of the cell; 

A set of predicate rules or productions, PT ⊂ V × Σ*( )× C Σ( )× V × E Σ( )*( )*

, 

where C Σ( ) and E Σ( ) are respectively the set of logical and arithmetic/functional 

expressions using parameters from Σ . Rules specify developmental changes to the 
cell, and may consider the cell state as well as the state of neighbouring cells (the 
concept of a neighbour is defined shortly); 
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• An interpretation, I ⊂ VI × E ΣT( )( )*
, which is a set of instructions as to how the 

cell is to be realised in the world (VI  is the alphabet of a particular set of interpreta-
tive symbols). The interpretation can make use of the cell’s state. 

 

Master Cell

Instance Cells

Interpretation

Label

State

Rules

A

int i;
float level;
vector pos;

: level < 2.0: -> rate level = 1.0;
B(x) me B(y) : x + y < level -> 
 A(i+1, level * 2.0, pos);

{  F(level) . G shift(pos) }
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int i;
float level;
vector pos;

: level < 2.0: -> rate level = 1.0;
B(x) me B(y) : x + y < level -> 
 A(i+1, level * 2.0, pos);

{  F(level) . G shift(pos) }
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: level < 2.0: -> rate level = 1.0;
B(x) me B(y) : x + y < level -> 
 A(i+1, level * 2.0, pos);

{  F(level) . G shift(pos) }

A

int i;
float level;
vector pos;

: level < 2.0: -> rate level = 1.0;
B(x) me B(y) : x + y < level -> 
 A(i+1, level * 2.0, pos);

{  F(level) . G shift(pos) }

 

Fig. 1. Master and instance cells, and their principle components 

    Cellular instantiation follows the class/object model used in object-oriented pro-
gramming [11]2. Cells are instantiated into pools (spatial data structures), and there 
may be many instance cells with the same label, but each cell carries its own state, 
which develops independently. Conceptually, each cell also carries its own copy of 
the rules and interpretation defined for a cell of that label, although in most situations 
these are references to the rules and interpretation contained in the master cell. Thus, 
normally no distinction needs to be made between master cells and instance cells. 

A special type of cell is called a system. A system has a label and contains state in-
formation, but does not have any rules or interpretation. Unlike a normal cell, a sys-
tem cell may contain other cells, including other system cells. Thus, the system cell is 
capable of forming a hierarchical structure (Fig. 2). Systems contain an initial state 
(or axiom) that consists of a sequence of instance cells with particular state initializa-
tion information. They also maintain a pool wherein cells may be created, replaced, 
and deleted. A root system contains all other cells and systems and is created auto-
matically by the world upon initialization. The root system’s age will automatically 
reflect the developmental time of the entire system. 
System cells may contain other cells (which may be systems too), but they cannot 
contain instances of themselves, nor can sub-systems contain instances of parent cells. 
This ensures the cellular hierarchy maintains a tree structure (rather than a cyclic 
graph, which would permit illegal circular definitions). A hierarchical structure is a 
good way of describing many natural patterns and forms [13]. 

Cells within a system develop asynchronously, however cells may synchronize de-
velopment based on examination of each other’s state. In addition, cells have access 
                                                           
2 Alan Kay, inventor of the Smalltalk programming language, used biological metaphors in its 

design, likening the concept of objects to ‘cells’ with walls, with the class providing a well-
defined boundary between co-operating units [12]. 
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to the state of any parent cells, including the state of the root system. Specific compo-
nents of the cell will now be described in more detail. 
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vector pos;
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float y;
vector k, j, l;
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Fig. 2. A system cell may contain other cells, which in turn may be system cells. Thus the 
cellular hierarchy is formed. 

Cell State 
Cell state captures the measurable components of a cell. The state is a vector com-
posed of both user- and system-defined quantities. The user may define the cell state 
as required by the cell’s particular type. In addition, all cells maintain a number of 
internal states that are defined and managed by the cell itself. Internal states are ‘read-
only’ — available as symbols for use in productions, but they cannot be modified, 
hence they provide an introspection of various fixed components of the cell. The 
internal state includes the cell age, a continuous scalar that is automatically updated to 
reflect the age of the cell during its lifetime. An internal status contains four discrete 
states affecting overall cell behaviour: (i) dormant where no state changes are effected 
(the usual state of master cells); (ii) birth where state is initialized and the cell appears 
in its parent system’s pool; (iii) alive where state development proceeds continuously 
(e.g. states such as the cell’s age are continuously updated); (iv) dead where the cell 
will be removed from the current pool it resides in. 

Cell Rules 
Cellular rules, denoted ri  are ordered sets of predicate-action sequences of the form: 

ri : context{ } : predicate :
predicate component

state calculations | cell actions( )
action component

 (1) 

    Rules are numbered implicitly in the order of their declaration. While a cell is in 
the alive state, its set of rules is evaluated in ascending order. For a rule to be consid-
ered, first, the context requirements must be satisfied. Following this, if the predicate 
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component evaluates to TRUE (non-zero), the action component is executed. The 
action component may consist of calculations that change the cell state, or actions that 
the cell should perform. The following sections describe each component in more 
detail. 

Context 
A context statement involves the position in the pool of the current cell in relation to 
other cells. A special reserved word, me, is used to represent the current cell. This 
allows cells with the same label to be used in context specifications. Context state-
ments also specify the public state variables of cells involved in the context specifica-
tion, and these identifiers may then be used in state calculations involving the current 
cell, i.e. a cell may update its state based on the state of its neighbours. Access to the 
state of neighbouring cells is read-only. Changing another cell’s state directly is not 
permitted. 

Here is an example context sensitive rule, where a cell maintains a component of 
its state to be the average of its neighbours3, provided it exceeds some minimum 
threshold: 

A(y) me B(z) : y > kmin & & z > kmin : x = y + z

2
 (2) 

which assumes the cell that owns this rule has a state variable, x. The rule first checks 
if the context is satisfied — that cells with labels ‘A’ and ‘B’ are at the ‘left’ and 
‘right’ of the current cell. If that relationship is TRUE, the state parameters are then 
checked to see if they exceed some minimum constant value ( kmin ), if so the current 
cell’s state variable x is updated to be the average of the values of it’s neighbours. 

Context relations have a more flexible meaning than with context sensitive L-
systems where the derivation string is a one-dimensional array, and so context 
matches are decided on by matching symbols to the left and right of the current sym-
bol in the derivation string (a one-dimensional context). The pool in which the cells 
exist is designed in an abstract way, where the interpretation of neighbour relation-
ships is flexible. This is achieved using polymorphic functions to match context based 
on pool type. It is important to match context dimension to pool dimension (e.g., a 
two-dimensional context relation makes no sense to a one-dimensional array). 
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Fig. 3. Higher dimensional context relations and their specification 

 

                                                           
3 This example uses a one-dimensional context relation; higher dimensional relations are de-

fined in this section. 
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    In the cellular developmental system, context may include other spatial relation-
ships where context relations are satisfied when the spatial position of the cell is less 
than some Euclidian distance, or topological relationships such as the Von Neumann 
neighbourhood (Fig. 3) used in cellular automata simulations [14]. The use of paren-
thesis demarks dimensions when specifying context. 

As the system described here uses polymorphic objects to represent the pool (e.g. 
linear set, multi-dimensional array, spatial structure), the interpretation of context is 
determined by the way the specific pool interprets the context statements. This per-
mits flexibility in the types of simulations the system can perform. For example, such 
context relationships can be used in music generation where context relations work in 
two dimensions: pitch and time (hence context matching can be with chords, rather 
than notes. 

State Calculations and the Differential Operator 
State calculations are mathematical expressions that affect a cell’s state. They are 
expressed in a similar manner to expressions in the C programming language. A rich 
set of functions is provided, including basic mathematical functions, trigonometric 
functions and a variety of stochastic and noise functions. A unary differential opera-
tor, rate, performs a specific form of ordinary differential equation solving with 
initial values. The operand for rate is a local cell state variable. The variable is inte-
grated based on its initial value at birth according to the mathematical formula speci-
fied in the state calculation. The differential operator is useful for simulating proc-
esses such as chemical diffusion between neighbouring cells. 

Actions 
Actions correspond to the re-writing process in L-systems, being similar to the suc-
cessor word of L-systems. However, the concept of rewriting can be misleading, due 
to the way cell actions are handled and cells are placed in the pool. In the case of L-
systems, symbols are always replaced by rewriting productions. Whereas, for the 
cellular developmental model, in addition to replacement, cells may continue to exist 
in the pool while their actions cause new cells to be added (i.e. the cell action does not 
necessarily replace (rewrite) the cell instigating that action). Possible actions are out-
lined in Table 1. 

Table 1. Rule actions 

Type Description Example action syntax 
None No action (the current cell remains) → me  
Replace The current cell is replaced → A x, y( ) 

Add New cells are created and the current cell 
remains in the pool. 

→ A x, y( ) me B x + y( ) 

Delete The current cell is deleted → ∅ (empty string) 

2.2   Cell Interpretation 

Thus far, cells have been considered in abstraction, without any method of realising 
them in the world. The interpretation component specifies how the cell will be inter-
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preted as the system develops. In the case of L-systems, developmental words are 
interpreted by a turtle, which creates geometry as it interprets the list of symbols. The 
case here is similar, with the exception that each cell may contain multiple instruc-
tions to the turtle, permitting individual cells to create more complex geometry with-
out polluting the cellular developmental model with cells used only as part of some 
complex geometry building sequence. 

The interpretation system is extremely flexible, in the sense that interpretation con-
tains a list of special cells representing instructions. These cells are of a different type 
than normal developing cells (they do not develop), but may have associated parame-
ters. These parameters may be set with expressions involving the cell’s state. If a 
cell’s state is changing over the lifetime of that cell (the age component for example), 
then the interpretation permits the ability to animate the parameters of interpretive 
instructions as the cell state changes. This is a more flexible and general form of the 
development functions associated with timed L-systems [7]. There is no direct de-
pendence between cell development and interpretation, so a number of different inter-
pretative sets can be used on the same developmental system. For example, a musical 
interpretative set issues musical instructions rather than geometric building ones. 

This flexibility allows users of the system to realise their developmental system in 
a variety of ways, without the need to completely re-specify the grammar. The use of 
multiple instruction sequences in a single cell is a different solution to a similar prob-
lem encountered by Prusinkiewicz and colleagues in the development of their interac-
tive system to model plants [5]. Here they combined a C-like programming language 
and Chomsky grammars to enable sequential rewriting of strings, rather than the par-
allel development specified by L-systems. 

3   Examples 

Complex structures are often modeled by decomposing them into a hierarchy. In this 
section, an example of this method is shown for developing a model of a multi- seg-
mented,  articulated  animal  with  a  walking  gait.  By  using  a  hierarchical  descrip- 
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Fig. 4. Hierarchical specification of system cells (grey boxes) and module cells (left); the ar-
ticulated creature in motion (right) 
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tion, it is possible to specify structure in an intuitive way. The hierarchical structure of 
the animal is shown in Fig. 4. 
    This structure is specified using the cellular programming language, containing cell 
definitions in a human readable form. The system simulates forward kinematics, with 
locomotive drivers at the joints to create legged gaits. The drivers function like a state 
machine controlling gait movement in each leg. The key advantage of the develop-
mental system is in the flexibility of specification, permitting morphological changes 
to be made easily. For example, the number of body segments is controlled by a sin-
gle parameter. Geometry is constructed using generalized cylinders; the shape and 
configuration controlled by lower-level cells driving geometry construction. A resul-
tant still from the animated output of this system is also shown in Fig. 4. 

4.2   Music Generation 

Interpretation of cell states is not limited to geometric constructs. Using an object-
oriented approach allows the interpretation of cell states by methods other than a 
turtle interpretation. To provide different interpretations a collection of global mod-
ules are imported into the namespace of a particular system (the root system by de-
fault). These modules are directly interpreted as generative commands. 

The musical commands use the concept of a state-based player, which is responsi-
ble for converting commands into actual music. The player maintains a state that 
includes the current pitch (note) and volume. The player converts incoming com-
mands into midi4 messages, enabling any midi compatible device to play music gen-
erated by the system.  

4   Summary 

The developmental system described here unifies a number of previous L-system and 
cellular models in the application domain of temporal developmental systems. Based 
on both discrete cellular changes and continuous state development, the model suc-
cessfully integrates these two modes of development, and permits complex temporal 
sequences not achievable using previous techniques. 

The hierarchical nature of the cellular developmental system allows management 
of complexity from the point of view of the user specifying a system model. Hierar-
chical ordering increases the control over structure at variety of levels, hence reduc-
ing the ‘brittleness’5 of a flat grammar specification. This permits a more intuitive 
control over creation of modeled systems. As show in Fig. 5, the complex nature of 
cell development stands in contrast to the more simplified discrete D0L-system 
model. 

                                                           
4 MIDI is a low-level serial communication protocol for musical instruments and musical con-

trollers — see [15]. 
5 That is, more robust to configuration changes — a change at one level in a hierarchy can have 

fewer side effects than for the equivalent description in a non-hierarchical system. 
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Fig. 5. Time-state diagram contrasting the developmental differences between discrete L-
systems and the cellular developmental system described in this paper. The diagram shows the 
temporal development (from left to right) of each system. Shaded rectangles represent the 
symbols present (vertical axis) at any given time (horizontal axis). Both examples start from a 
single symbol or cell (the axiom). In the case of the DOL-System (top) each iteration is clearly 
synchronized and regular as the rewriting process proceeds in discrete time steps. In the case of 
the developmental cellular system, the sequence quickly becomes irregular and ‘fractal’ due to 
the individual developmental nature of cells. A single cell at the top level is shown expanded as 
a segment of a developing sub-system, illustrating the complexity that is contained by the  
hierarchy. 
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Abstract. Maternal influence on offspring goes beyond strict nuclear
(DNA) inheritance: inherited maternal mRNA, mitochondria, caring and
nurturing are all additional sources that affect offspring development,
and they can be also shaped by evolution. These additional factors are
called maternal effects, and their important role in evolution is well es-
tablished experimentally. This paper presents two models for maternal
effects, based on a genetic algorithm and simulated development of neural
networks. We extended a model by Eggenberger by adding two mecha-
nisms for maternal effects: the first mechanism attempts to replicate
maternal cytoplasmic control, while the second mechanism replicates in-
teractions between the fetus and the uterine environment. For examining
the role of maternal effects in artificial evolution, we evolved networks for
the odd-3-parity problem, using increasing rates of maternal influence.
Experiments have shown that maternal effects increase adaptiveness in
the latter model.

1 Introduction

Traditionally, when considering traits’ variation in organisms, sources for varia-
tion are divided into genetic contributions and effects due to the environment.
Recently, another important source for variation has been increasingly consid-
ered, that occurs when the environment for the organism is provided by another
(usually con-specific) phenotype. Indirect genetic effects [7] occur when this envi-
ronmental influence is genetically based, that is, the genes of an individual affect
another individual indirectly through the provided environment. Among these
effects, maternal effects, that is, effects that occur between mother and offspring
are the most extensively studied. Maternal effects are ubiquitous in metazoans
and also found extensively in plants. Besides supplying half of the DNA to their
offspring, mothers additionally contribute essential factors for their early de-
velopment, nutrition, rearing, and cultural conditioning [6]. For instance, early
developmental stages in all metazoans are under exclusive control of maternal
gene products deposited in the egg during oogenesis (egg formation). Even after
the transition to zygotic gene regulation, products resultant from early mater-
nal cytoplasmic control still take important roles in development. Additionally,
in mammals, interaction between the placenta and the fetus can be an impor-
tant influence. All of these factors can be additional sources for affecting the

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 98–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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glands),
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Fig. 1. Summary of the maternal contributions to offspring development

offspring’s phenotype in addition to strict nuclear inheritance. A summary of
the major maternal effects are shown in figure 1.

Maternal effects can influence evolution significantly in two ways, both pro-
ducing unusual outcomes. First, contrary to what is expected from standard
Mendelian genetics, traits in the mother and in the offspring may be negatively
correlated [5]. The end result from this is that selection for a specific trait may
in fact produce a temporally reversed response, that is, selection for a larger
trait in mothers would produce offspring with smaller traits, and selection for
smaller traits would produce larger traits. This was observed experimentally by
Falconer [3], who performed artificial selection experiments for larger litter size
in mice: In his experiments, selection for larger litter size resulted in mothers
having larger litters, but that developed into smaller adults; in contrast, mice
from smaller litters would grow into bigger adults, when compared to the ones
developed from the larger litters. Falconer inferred that this should be due to
increased competition for milk in the larger litters, that would create smaller
adults due to less available milk from their mothers.

Second, maternal effects can create time lags in selection response, generat-
ing a kind of “evolutionary momentum”, where a trait may continue evolving
even if selection ceases. Kirkpatrick and Lande [5] created a quantitative genetics
model, taking into account maternal inheritance, where this effect is observed.
In their model, evolutionary momentum occurs whenever traits between mother
and offspring are related, with either a trait present in the mother directly affect-
ing the same trait in offspring, or indirectly through other traits. The direction of
evolutionary momentum, or how the affected trait evolved after selection ceases,
depends on whether the traits are negatively or positively correlated.

In this article, we introduce two models for maternal effects, both focusing
on how these effects occur at the molecular level, i.e. due to exchange of gene
products between mother and offspring, and resultant affected gene regulation
(Figure 1, boxes (1) and (3)). The first model attempts to replicate maternal
cytoplasmic influence in the early stages of metazoan development, while the
second models the exchange of chemicals between the mother and the fetus
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in mammals. For this, we adopted a developmental model by Eggenberger [2],
that uses simulated gene regulation and cell communication for generating neural
networks. Coupled with a genetic algorithm, we then evolved networks for solving
the odd-3-parity problem, with increasing maternal influence in both models.

2 The Models

2.1 Overview

A conceptual overview of both models, compared with the one based on the
standard evolutionary perspective, is shown in figure 2. In these models, both
mother and offspring undergo development, that maps their genotype to their
final phenotype. There are two sources accounting for variation in the final off-
spring phenotype, the first being the standard maternal genetic contribution,
and the second being an additional mechanism, depending on the model.

The first model attempts to replicate maternal cytoplasmic control as it
occurs in the early stages of development in all metazoans. During metazoan
oogenesis, the mother places mRNA and proteins in the egg, that directs early
development until transcription from the zygote (the fertilized egg) starts. The
stage where this occurs depends on the species, being the Mid-Blastula Transi-
tion (MBT) stage in amphibians, flies and fish, and the 2-cell or 4-cell stage in
mammals. Depending on the species, in these early stages, there can be a signif-
icant interaction between the maternal gene products and the zygote, but there
are at least some species where maternal control is exclusive. In these species, the
eggs are able to develop normally in the early stages, even if the sperm and zy-
gotic nucleus are artificially removed. In a similar way, we decided to model this
early maternal control by using the mother’s genotype as the exclusive source
for the offspring’s early development. After mt time steps are reached, the real
offspring genotype is used for resuming development until dt time steps, where
it is considered the final phenotype. Using the maternal genome directly, as it
occurs in this model, is a significant abstraction from the way real cytoplasmic
control works, because maternal mRNA, responsible for early development, is a
product from maternal genes, and not the maternal genes themselves. We believe

G PDevelopment

G' P'Development

Nuclear inheritance

Initial development

G P

G' P'

Nuclear inheritance

Epigenetic interactions

b) Cytoplasmic model c) Placental model

mt dt0 mt dt0

G PDevelopment

G' P'Development

Nuclear inheritance

Mother
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dt0

a) Standard  evolutionary perspective

mt

Fig. 2. Conceptual overview. (a) Standard evolutionary perspective. (b) Cytoplasmic
model. (c) Placental model.
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that this abstraction is still able to preserve the two essential points for this kind
of maternal influence, namely: 1) Early development is controlled by maternal
genes; 2) It is mainly unidirectional, occurring from the mother to the offspring.

The second model attempts to model interactions between the mother, the
growing fetus and the placenta, as it occurs in mammals. In mammals, placenta
development occurs after the embryo is formed, and is regulated by both the
mother and the embryo. Placental influence works both ways, not only affecting
the embryo, but also affecting the mother herself — for instance, by adapting her
morphology to nurture adequately after giving birth. Influence in fetus develop-
ment has been extensively studied in embryo transfer experiments: for instance,
Cowley [1] performed embryo transfers between two different mice strains, one
significantly larger than the other. In his experiments, mice transfered into the
larger strain were always able to grow larger, regardless of their own genotype.
An example of influence in the mother are the hormones oestrogen and prolactin,
produced by the placenta, and that are responsible for preparing the breasts for
milk production in humans. For the sake of simplicity, in our model we decided
not to add the placenta as a mediator, and instead to allow the mother and
offspring to influence each other directly. In our model, therefore, development
occurs concurrently for the mother and offspring; during offspring development,
the mother’s development is resumed, and epigenetic interactions occur between
them for mt time steps. This still allows for changes both in the mother and
offspring as described before, without having to model an additional entity.

2.2 Development and Evolution

For implementing the models described before, we used a simulated developmen-
tal model for neural networks, based on gene regulation and cell communication.
Our developmental model is based on a previous one by Eggenberger [2]. We used
boolean neural networks with thresholds as either 0 or 1, and the connections
being either -1 or 1. Neurons are activated if the sum of the values on their incom-
ing connections is above their threshold. Development proceeds in a rectangular
grid, each slot possibly having a neuron, depending on the experiment settings.
Each neuron contains a copy of the same genome. Chemicals are generated by
gene activity inside each neuron, and diffuse through the grid. Although all neu-
rons contain the same genome, different parts of the genome may be activated
on each neuron, due to interactions through chemical diffusion.

All the simulated substances contain a real valued geom parameter, with pos-
sible values ranging between 0 and 1. This geom parameter is used for describing
the geometric properties of the substance (for instance, as an abstraction for pro-
tein structure), and for attributing a binding between two substances. This is
used, for instance, for computing the binding of substances to regulatory re-
gions, and also between Cell Adhesion Molecules (CAMS) as it will be explained
later. The affinity between two substances affinity(geom1, geom2) is computed
by e−|geom2−geom1|, where geom1, geom2 are the geom values for the two sub-
stances. If this affinity is 1 for any two given substances, then they match evenly,
while the minimum value, 1

e , represents no match at all.
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Fig. 3. a) Sample genome structure. In the structural regions, class indicates the kind
of substance that is produced if the gene is activated, while geom represents the geom-
etry of the generated substance. Range and strength are only expressed in the CAMs:
range indicates the search range for the CAMs, while strength indicates the strength
of the synapse (-1 if less than 0.5, 1 if greater than 0.5). Concentration indicates
the amount produced on each time step, if the gene is activated. As for the regulatory
regions, geom is used for template matching with the molecules, while threshold rep-
resents the minimum required affinity for activating the structural gene. b) Neurons
connecting to each other. Due to gene regulation, each neuron expresses CAMs in their
surfaces, with different geom values. Connections are established between (ACAM,
DCAM) pairs that have the strongest affinity(geom1, geom2).

The genome is real-valued, and organized in an operon-like structure with
structural and regulatory regions. Structural regions are responsible, if activated,
for generating chemical substances; regulatory regions are used for activating the
associated structural regions, depending on the substance’s concentration in the
cell. A sample structure is shown in figure 3 a).

On each developmental time step, substances inside the neuron compete for
binding in the regulatory regions of the genome. The one with the highest affinity
to the corresponding regulatory part successfully binds to it. If their concentra-
tion times the affinity is above the threshold, then the corresponding structural
genes are activated. One regulatory region controls several structural regions,
with the number of structural regions per regulatory parts fixed, and defined
as a parameter for the experiments. Structural genes can produce three kinds
of substances: transcription factors remain inside the neuron, signaling molecu-
les diffuse out of the neuron, and CAMs are used for connecting neurons with
synapses. Diffusion is simulated by using a discrete version of Fick’s law, with the
same diffusion and evaporation coefficients for all the substances. The diffusion
equation is:

c(x, y, t + 1) = (1 − 4D − E) · c(x, y, t) + D · (c(x − 1, y, t) +
c(x + 1, y, t) + c(x, y − 1, t) + c(x, y + 1, t)), (1)

with c(x, y, t) the concentration of a substance at position (x, y) in the grid
at time t, D the diffusion rate, and E the evaporation rate. Concentrations
at the boundaries are assumed to be 0. CAMs are expressed at the surface of
each neuron, and used for connecting them. Besides the geom parameter, they
also contain a strength and a range. They are further divided into two different
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kinds: ACAMS (axom) and DCAMS (dendrite). If two cells express CAMs with
enough affinity between them, then a connection is established. On each time
step, neurons with expressed ACAMS will search on their neighborhood for
neurons with suitable DCAMs. If the affinity is high enough, a connection will
be established between the pair with the highest affinity, from the ACAM to the
DCAM. The search range for each neuron is encoded in the range parameter,
as a percentage of the whole grid size. strength specifies the strength of the
connection. An example is shown in figure 3 b).

For simulating evolution, we use a genetic algorithm coupled with the devel-
opmental model defined before. No crossover operation was applied, only repro-
duction and mutation were used. Therefore, the individuals between subsequent
generations are always connected by a reproduction operation, and alternate
roles between mother and offspring in each generation: that is, an individual
in generation m connected to another individual in generation m + 1 takes the
maternal role for that individual in generation m + 1.

Figure 4 shows how both models are implemented. For simulating early cy-
toplasmic control, development occurs in two discrete stages: in the first stage,
the maternal genome is used exclusively in all the cells of the grid until mt
time steps are reached. Afterward, the offspring’s genome replaces the previous
genome in all the cells and guides the remaining development. For the placental
model, development for the mother is resumed, and occurs concurrently with
the offspring, during mt time steps. During this stage, chemicals are exchanged
between the mother and offspring, on each corresponding cell in both grids, us-
ing a mD exchange rate. After this stage, development occurs for the offspring
as usual, without any further maternal influence.

(1) (2) (3)

mt time steps

dt time steps

mD

mD

mD

Mother

Offspring

Maternal genome Offspring genome

(1) (2) (3)

mt time steps
dt time steps

a) Cytoplasmic model b) Placental model

Fig. 4. Diagram for both models. In both models, (1) represents the initial stage, (2)
the stage where until maternal influence occurs, and (3) the final stage. Please note that
in the placental model, all maternal cells exchange chemicals with their corresponding
offspring cell, although this is only shown for the the leftmost column.
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3 Experiments and Results

Using this model, we evolved networks for the 3-odd-parity problem. The solution
is defined as a neural network with at least 3 inputs, that outputs true whenever
the number of true inputs is odd. All the grids were initialized with a neuron
configuration sufficient for this problem: 3 input neurons, 5 hidden neurons (3
with threshold 0, 2 with threshold 1), and 1 output neuron.

A fitness function based on the number of wrong outputs did not produce
a good performance so we used a fitness function used by Gruau in [4]. It is
defined by:

f(outeval) =
I(outright, outeval)

H(outright)
, (2)

where outeval is the output vector of the evaluated network and outright is the ex-
pected correct output vector for the problem. I(X, Y ) is the mutual information
between X and Y , and H(X) is the information entropy of X :

I(X, Y ) =
1∑

x=0

1∑
y=0

PXY (x, y) · log2

(
PXY (x, y)

PX(x) · PY (y)

)
, (3)

H(X) =
1∑

i=0

PX(i) · log2(PX(i)), (4)

with PX(x) as the probability of X = x, and PXY (x, y) as the joint probability
of X = x and Y = y. This fitness function is defined in the range [0, 1], with
1 as the best fitness. Due to using mutual information, both the correct output
and its negation will have the same best fitness.

We conducted three sets of experiments: one using the cytoplasmic model,
and two using the placental model with two different mD values (0.2 and 0.8). For
understanding the role of maternal effects in network development, in each set we
conducted experiments with dt fixed at 30 time steps, and used increasing values
of mt. The used mt values correspond to periods of initial maternal influence for
0%, 10%, 30%, 50%, 70% and 100% of the total developmental time (mt/dt).
Each case was conducted 10 times, with different random seeds in each run. The
experiments were conducted with the ECJ (Evolutionary Computation in Java)
package. Evolution was conducted for 300 generations with a population size of
600. Roulette wheel selection was used, and selected individuals for reproduction
had a 50% chance of being mutated. The mutation operator, if it was applied,
generated a new random value in only one slot (chosen at random) in the genome.
The genomes used in the experiments contained 6 regulatory regions, with each
region having 5 structural regions attached. The grid size was 5x5 units long,
using D = 0.06 and E = 0.1 for diffusion. Fitness graphs for some typical runs
are shown in figure 5 a). As it can be seen from the graph, evolution tends
to occur with sudden jumps in fitness, but this can be justified by the fitness
function alone, and it should not be related to the model itself. The currently
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Fig. 5. a) Fitness graph b) Offspring sensitivity to maternal effects (both for the
placental model with mD = 0.2)

used fitness function does not allow for a wide range of different values, therefore
dynamics of this kind will always occur whenever this fitness function is used.

For further establishing the influence of maternal effects, we devised a simple
distance measure between the neural networks. As the number and type of neu-
rons are fixed for all the neural networks, we defined the distance between two
networks as the total number of links that are unshared between them. Using this
distance measure, we picked up the best individuals on each generation, grow
them again without any maternal influence (mt = 0), and computed the distance
between them. By doing this, we could therefore estimate the degree of sensi-
tivity to maternal effects in each offspring. Typical results for a run are shown
in figure 5 b). As it can be seen, offspring sensitivity tends to oscillate widely in
the first generations, until eventually becoming stable. These oscillations, how-
ever, are only following dynamics in individual diversity, and on themselves do
not show sensitivity to be adaptive. That is, diversity in offspring sensitivity in
the earlier generations is only reflecting the larger diversity in the individuals
in the initial population pool; as evolution progresses, the population diversity
decreases, and therefore offspring sensitivity to maternal effects becomes stable.

For investigating any further influence in adaptiveness, we computed the av-
erage fitness over all generations, in all runs sharing the same mt parameter, with
the results depicted in figure 6 a). Although this process may hide any special
dynamics that may happen during evolution, at least it is able to show if there
is any strong influence from the increasing mt values. All the three sets exhibit
different effects on adaptiveness, with the two different models showing, in fact,
opposite effects: the cytoplasmic model has an overall negative adaptive effect,
while the placental model shows a positive one. For the mD = 0.2 experiments,
maternal influence above 70% shows a roughly 30% increase in average fitness, a
significant improvement (p = 0.03 with ANOVA). For mD = 0.8, however, this
influence becomes stale, probably due to the mD value being too high.

In our opinion, there are three possible reasons for this improvement. Mater-
nal influence may be positively affecting: 1) sensitivity to mutations, 2) develop-
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Fig. 6. a) Average fitness value for the runs, classified by increasing maternal influ-
ence. b) Robustness to mutations with increasing maternal influence. (average value +
standard error)

ment, or 3) selection response. For checking the first hypothesis, we performed
mutation experiments in the best individuals, and computed the average distance
created by mutations. We picked up all the best individuals in all generations,
mutated them once (generating children), and computed the distance between
the original individual and its child. The procedure for mutation, and for comput-
ing the distance between the networks were the same as explained before. This
process was repeated 10 times for each individual, and grouped by maternal in-
fluence. This, however, is not a good metric for computing mutation sensitivity,
because development in the best individuals still has a strong influence from
their own mothers. Therefore, we also performed mutation experiments where
the individual was mutated twice in a serial fashion, yielding a grandchild; the
distance computed was then between the original individual and its grandchild.
Both experiments turned out to yield similar results, and the results for this
latter case can be seen in figure 6 b). Maternal influence increased slightly the
mutation sensitivity (except for the extreme case of 100%, in the cytoplasmic
model), but this does not seems to be related to the adaptiveness increase. As
for the second hypothesis, the placental model may be positively affecting de-
velopment, by increasing diversity in the connections between neurons. In our
model, redundant connections are ignored in the networks, and therefore increas-
ing the number of connections can be a suitable strategy employed by evolution.
Because the mother and offspring genotypes are different, they express different
kinds of substances, that could increase link diversity in the offspring as the sub-
stances are exchanged. If the exchange rate is too high, however, it may prove
too disruptive and therefore the effect is lost. We are currently checking this
hypothesis, and also if delay in selection response occurs.

4 Conclusion

We presented two different models, reflecting two different mechanisms for ma-
ternal effects, using simulated development and a genetic algorithm. In our ex-
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periments, the cytoplasmic model exhibited decreased adaptiveness in finding
solutions, while the placental model showed significant adaptive improvements,
especially with higher values of maternal influence, and with low exchange rates
between mothers and offspring. This positive effect, however, was shown not
to be related to any effect in mutation sensitivity. We are currently checking
other possibilities for this effect, namely if maternal effects are influencing link
diversity in the networks, or if they are delaying response to selection.
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Abstract. We introduce METAMorph, an open source software plat-
form for the experimental design of simulated cellular development
processes using genomes encoded as genetic regulatory networks (GRNs).
METAMorph allows researchers to design GRNs by hand and to visualise
the resulting morphological growth process. As such, it is a tool to aid
researchers in developing an understanding of the expressive properties
of GRNs. We describe the software and present our preliminary obser-
vations in the form of techniques for realising some common structures.

1 Introduction

Genetic regulatory networks (GRNs) [6] have recently become a popular model
of gene expression employed in genetic algorithms to study artificial developmen-
tal processes [2,3,1,4]. GRNs model the natural processes of intra- and inter-cell
protein signalling during gene expression. However, the dynamics produced by
GRNs and the properties of the associated morphological search space are diffi-
cult for researchers designing evolutionary systems to understand. The expressive
properties of any encoding used as a basis for an evolutionary process impose
a bias on the kinds of solutions that process is likely to find. It is therefore
difficult to understand the dynamics of evolutionary GRN models without an
understanding of the kinds of shapes that GRNs are biased toward expressing.

In this paper, we present METAMorph, an open source software application
that allows for the hand-design and execution of artificial genomes that express
cellular growth through GRNs. METAMorph aims to provide an environment
within which we can experiment with one model of a GRN in order to under-
stand its natural dynamics and the kinds of structures it is biased toward. It is
also potentially valuable as a interactive teaching tool for understanding cellular
growth processes. In the following sections we describe the GRN model used
in METAMorph, provide a demonstration of its use in designing the develop-
ment process of a cigar-shaped organism, and present a few design techniques
for creating common structures.

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 108–117, 2005.
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2 Computational Development and Genetic Regulatory
Networks

The field of computational development is the study of artificial models of em-
bryonic cellular development, with the aim of understanding how complex struc-
tures and forms can develop from a small group of seed cells [4]. The natural
way to study development is through the simulation of some abstract model of
the dynamics of the cellular development process, often within the context of an
evolutionary process.

GRNs model the interaction between genes, proteins, and the cellular envi-
ronment. Each cell contains the same genome, but a potentially different set of
active proteins, distributed across a fixed set of diffusion sites on the cell. Each
gene has a set of enhancer and inhibitor proteins, which increase or decrease its
activation, respectively, and when activated, produces some protein, using some
output function (which scales its protein output according to its activation) and
some distribution function (which places produced proteins at the cell’s diffu-
sion sites). Protein levels are also subject to attenuation (where protein levels
decay) and diffusion (where proteins at diffusion sites move to other sites, in the
same cell or on adjacent cells). Proteins can also be used as sensor mechanisms
(where the cell produces them by itself under certain conditions), and as actu-
ation mechanisms (where sufficient concentrations cause a cellular event, such
as cell division, to occur). These processes are summarised in Figure 1. In this
way, genes form a network whereby the interaction of the elements they produce
regulates further gene expression. Variants of this basic abstract idea have been
used in conjunction with an evolutionary process for a variety of applications,

Outgoing diffusion

Proteins

Genome

Diffusion Site 

Incoming diffusion
of proteins

of proteins

Cell

Fig. 1. Cellular GRNs. The same genome is expressed at all sites of all cells. However,
local protein concentrations affect the production of new proteins at each site by en-
hancing and inhibiting genes. Proteins can diffuse between sites within a cell, and in
some cases, between cells.
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such as simulated cellular development [2,3,1,4], real-time robot control [5] and
for the control of groups of underwater robots [7].

GRNs are thus a natural model for cellular development, and appear to
possess desirable properties for acting as an evolutionary substrate [6] (e.g.,
they show a strong tendency towards modularity [1]). However, evolved GRNs
are difficult for humans to understand, and we do not even have a qualitative
measure of how difficult some natural structures are to achieve using them. In
the following section, we introduce METAMorph, which aims to facilitate the
accumulation of such knowledge through experimentation.

3 METAMorph

In the METAMorph (Model for Experimentation and Teaching in Artificial Mor-
phogenesis) framework, multicellular artificial organisms are grown from a single
cell (the zygote) using GRNs, with some subset of the proteins produced being
able to trigger cell-level actions such as cell division or death. Many details are
omitted for brevity; the interested reader is referred to the URL given above.

3.1 Proteins

A protein is defined by a unique name, a type (internal or external) and two
constants: decay (τ) and diffusion (λ). Internal proteins may only diffuse within
a cell, whereas external proteins pass through the cell membrane and can hence
be used for inter-cellular signaling.

Internal Proteins. The proportion of the protein that is lost due to decay at
each timestep is specified by τ :

concprot(t + 1) = (1 − τ)concprot(t)

The concentration of each protein at 12 sites around the cell is stored; thus
proteins may be unevenly distributed within the cytoplasm. The genome is ex-
pressed separately at each of these sub-cellular sites based on the local protein
concentrations. The diffusion constant specifies the proportion of the protein
that diffuses to neighbouring sites at each timestep. Due to the isospatial lay-
out of the sites (see Figure 2), each one has exactly four equidistant neighbours
between which this diffused protein is equally shared.

concprot(p, t + 1) = (1 − λ)concprot(p, t) +
∑

q

neighbour(p, q)
λ

4
concprot(q, t)

External Proteins. Concentrations of external proteins are represented by
isotropic 3D Gaussian distributions centred on the cell-site at which the protein
originates. The diffusion constant specifies how much is added to the variance at
each timestep. The decay constant determines how much the total concentration
(i.e. the integral of the Gaussian function) should be reduced at each timestep.
Note that external proteins diffuse freely through cells.



METAMorph: Experimenting with Genetic Regulatory Networks 111

Fig. 2. The 12 protein sites (filled circles) are located at the corners of three mutually
orthogonal squares centred on the centre of the cell (open circle)

3.2 Genes

All cells have the same genome comprising a number of genes. Each gene pro-
duces exactly one protein, although the same protein may be produced by several
genes. The amount produced by the gene depends on zero or more promoter se-
quences attached to that gene. Each promoter sequence consists of a protein
name and a weighting. Thus a weighted sum of protein concentrations at that
site is calculated:

aprot =
promoterseqs∑

prot

weightprotconcprot(x, t)

This value is the input for a sigmoid function with a certain bias and steepness
defined in the gene:

concprot(x, t + 1) = concprot(x, t) +
1

1 + e−steepness(aprot−bias)

3.3 Cells

Cells are represented as spheres of set radius. They each occupy a position on
an isospatial grid in three dimensions (the same geometry as is used for the
sites within cells), meaning that each cell can potentially have 12 equidistant
neighbours. Cells can perform a number of actions, with an action being triggered
when a specific protein’s mean concentration in the cell exceeds a threshold value.
These actions are as follows:

– Cell division When a cell divides it produces a daughter cell in the adjacent
grid space in the direction of the mitotic spindle (see below), as long as
that space is vacant. Cytoplasmic proteins may be shared unequally between
mother and daughter, as the spatial distribution of proteins in the cell is
taken into account during the split.
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– Mitotic spindle movement Each cell has a ‘mitotic spindle’ that points
in one of the 12 grid directions at any given time and defines the direction
in which cell division takes place. This spindle may be moved forwards or
backwards one step along an equatorial line around the cell as a result of a
protein threshold being reached. Another action changes which ‘orbit’ the
spindle is on. Alternatively, the spindle can be made to point in the direction
of the sub-site where the concentration of a given protein is either highest
or lowest.

– Programmed cell death (apoptosis) The cell is removed from the world
leaving a vacant grid space.

– Differentiation Cells can have various different types. The type of a cell
has no effect on its function, but is visualised by its colour. This feature is
included to allow the investigation of how heterogeneous organisms can be
created, e.g. in animals cells specialise as skin cells, blood cells, neurons, etc.

4 An Example Organism

This section describes how a cigar-shaped organism consisting of around 700 cells
can be made. This is a fairly simple shape to create, as it is radially symmetric
in all dimensions but one. It is included to give the reader a flavour of the tech-
niques that can be used in morphogenetic design. A more detailed account (and
downloadable demo) is available online, along with examples of more complex
shapes.

The basic method of building the shape is as follows. A line of approximately
10 cells is created, which will form the central ‘axis’ of the cigar (Figure 3(a)).
These cells all emit an external protein (Figure 3(b)). Cells will then grow wher-
ever the concentration of this signal protein is above a certain level, which will
result in a cigar shape being produced (Figure 3(c)).

To make cells proliferate in all directions, we can set up a genome where
proteins that trigger division, spindle movements and orbit switches (let us call
them split, turn and switch, respectively) have genes with thresholds ≤ 0, i.e.
they will be expressed unless actively inhibited. An unchecked cell will therefore
frequently move its spindle, switch the spindle’s orbit, and divide. However, this
behaviour must be prevented in some situations or we will just have an ever-
growing ball of cells.

The cells comprising the axis are functionally different from the rest, as they
must emit an external protein (call it signal). We can code this distinction by
the expression of a protein: cells with a high concentration of axis belong to the
axis. Axis can then enhance signal. It can also inhibit turn, since we require the
axis to grow in a straight line. Finally, by making axis an enhancer for itself, we
can lock cells in the axis state once the level of axis exceeds some threshold.

To limit the length of the axis, we ensure (by a process of trial and error)
that the cells divide slightly more frequently (sharing their axis) than the auto-
catalytic nature of axis is able to replenish. Thus axis will become diluted with
each division until it dips below the threshold needed to sustain itself. This cell
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Fig. 3. Development of the cigar embryo. (a) Early in development, showing the
METAMorph GUI. The light-centred cells are those with a high concentration of axis.
The lines show the orientation of each cell’s mitotic spindle; note that the axis cells’
spindles are aligned as axis inhibits turn. Cells have started to proliferate from the
zygote end of the axis (bottom right). (b) Cells are now growing from both ends. The
cloud surrounding the axis represents the concentration of external protein signal. (c)
The completed cigar, consisting of 684 cells. Note the existence of some offshoot cells
which will soon die due to excessive levels of far.
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will therefore become ‘ordinary’, i.e. it will not express signal, but will move its
spindle, as will its daughters. In fact, by careful initial placing of proteins in the
zygote, we can make the first cell become ordinary too, allowing the cigar to be
‘filled out’ from both ends.

All that remains to be explained is how we limit the outward growth of these
cells to produce the desired shape. For this we need a protein (which we shall call
far) that triggers apoptosis. It is inhibited by signal, so when the concentration of
signal becomes too low (because the cell is far from the axis), far will accumulate
and kill the cell. The organism therefore never reaches a stable configuration,
but continually grows and kills cells at its periphery. Note that axis (or some
other initially plentiful protein) must inhibit far, as there is no signal gradient
set up at the beginning of the simulation.

One can now see how a few simple changes could be made to alter the eventual
form of the organism. To make the cigar thicker, for example, one would simply
set the threshold of the far gene higher, meaning that less signal would be needed
to keep cells alive. Making the cigar longer is a little more complex, but could
be achieved by setting the threshold of axis ’s self-enhancing gene lower so that
the cells of the spine could sustain more splits before the concentration of axis
was too low to sustain the process.

To give an indication of the complexity of the algorithm, it requires 55 time-
steps to reach a size of 680 cells, which takes approximately 7 minutes on a PC
with a 2.4GHz Athlon processor.

While there is nothing very conceptually difficult about designing organisms
in METAMorph, we have found that it typically involves a considerable amount
of time-consuming trial and error. This is due to the inherently parallel nature
of the morphogenetic processes. GRNs can suffer from a deleterious ‘butterfly
effect’ whereby a seemingly innocuous change can have large unforeseen effects.
For these reasons, designing a more complex ‘quadruped’ shape, consisting of a
body with four appropriately sized and positioned limbs (see website), took one
of us around a week.

Although our intention in this work was to investigate morphogentic
processes by hand-designing organisms, METAMorph could be easily adapted
to evolutionary experiments by adding code to generate candidate genomes and
assess the resultant organisms according to some fitness function.

5 General Techniques

In this section we discuss a number of principles and techniques in morphogenetic
‘programming’, based on our preliminary experiments attempting to constuct
various shapes. Some may exploit peculiarities in our model, but it is our hope
that some may represent general mechanisms for morphogenesis, applicable to
other multicellular GRN models, and perhaps even having analogues in biology.

Growth in all directions, with boundary control by external protein
gradient. This technique for generation and maintenance of form is described
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in section 4. It is robust due to its dynamic nature, as legitimate cells that are
killed for any reason will grow back. Furthermore, the shape of the embryo can
be easily altered during a simulation by changing the distribution of the signal
protein.

Functional differentiation of cells. Since all cells share the same genome,
it can be difficult to make some subgroup behave differently to the others. A
good way to achieve this effect is to use a ‘marker’ protein (e.g. axis in the
cigar example) whereby cells which have a non-negligible level of this protein
will behave one way, the rest another. By making this protein autocatalytic (i.e.
an enhancer for a gene producing itself) and using a substantially positive bias,
this differentiation can be made to last indefinitely while still allowing cells to
be switched either way by the use of other promoters. Note that this mechanism
means that cell function will generally be inherited when a cell divides, which
may or may not be desirable depending on the situation.

Delays. In some situations it can be useful for a cell to wait for a period of time
before initiating an action. For instance, in creating a hollow shape, we may want
to give cells a chance to grow outwards before killing off those that are too close
to the centre. A way to achieve this effect is to create an ‘accumulator’ protein
with a low decay constant. A fully-activated gene produces the accumulator for
a number of time-steps, then another protein is produced when the accumulator
finally reaches some threshold. Even longer delays can be created by using a
chain of accumulators.

Quasi-binary processing. Protein concentrations and gene activations are
continuous. While this is potentially useful, in many situations we require a sharp
cut-off between states; e.g. a cell’s membership of the cigar’s ‘axis’ is a binary
variable. A first step towards achieving this kind of behaviour is to use high
steepness values for genes. Typically around 90% of the genes in our programs
have step-like activation functions (steepness > 10). A typical situation is that
where we have a continuously varying concentration of a ‘primary’ protein (often
an external one), with a ‘secondary’ protein being produced in an all-or-nothing
manner when its concentration is above or below a certain threshold level.

If we set the decay constant of this secondary protein high, its concentra-
tion at any time will depend chiefly on whether its gene was active on the last
time-step (assuming that only one gene produces the protein). In this way, the
presence or absence of that protein approximates a binary signal. If we have bi-
nary values, it is natural that we might want to perform simple logical operations
upon them. This is not entirely straightforward. The problem lies in the fact that
there is no well-defined concentration corresponding to ‘1’ in protein logic. Any
substantially non-zero concentration encodes ‘1’, but the actual level depends
on factors such as the decay constant, how recently the cell has divided, etc. It
is therefore difficult to design, for example, an AND mechanism that will fire
when both of its inputs are non-zero but not when just one of them is unusually
high. (Note that devising an inclusive-OR mechanism is trivial.)
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The key to solving the problem relies on the fact that there is a well defined
‘0’ value, namely a concentration of 0.0. Thus, logical operations where all the
clauses are negated can be carried out. It is straightforward to make a NOT
mechanism by using a gene with a slightly negative bias, high steepness, and
a large negative weighting on the input protein promoter. Hence, P ∧ Q can
be expressed as ¬(¬P ∨ ¬Q). For example, when trying to pick out cells at a
certain distance from a signalling cell (see below), we have found it useful to
have a ‘right distance’ protein that is expressed when neither a ‘too close’ nor a
‘too far’ protein is present.

Location-specific cell selection. To build all but the simplest shapes, it is
necessary to pick out cells to perform special functions according to their posi-
tion in the embryo. A single cell can only produce a radially symmetric signal
gradient, and hence any specific level of external protein is shared by a sphere
of cell-sites. Uniquely pinpointing one location requires the intersection of four
spheres, which requires four cells in different places emitting different signals.
However, we have a chicken-and-egg problem: how can we position these cells,
since they are required for positioning?

One solution we have found to be useful is as follows. Assuming one signal cell
is already set up, the first cell which finds itself at the correct distance out can
become the second signal cell, hence breaking the symmetry arbitrarily. Then,
the first cell to find itself at appropriate distances from both existing signal cells
can become the third, and so on. Of course, it is essential that once one cell has
assumed a particular signalling role, none of the others do. This can be achieved
if the presence of its signal inhibits other cells from emitting that signal. But
this presents a problem: the concentration of the signal protein is obviously at
its highest at the signalling cell. So how can we prevent it from inhibiting itself?

One method is to use an accumulator protein to create a delay (see above).
Being at the correct distance from the existing signal cell(s) causes a certain
protein to be produced. This protein triggers the production of the accumula-
tor. Once the accumulator reaches a threshold level, an autocatalytic marker
is produced, locking the cell into its role and causing the signal to be emitted.
If, however, the signal is detected at any point during the waiting period, the
process is immediately terminated. This mechanism ensures that only the first
cell to end up in a suitable position will start signalling.

Once the multi-signal system is set up successfully, similar techniques can
then be used for placing morphological features on the embryo. Returning to the
cigar example, it would be possible to identify an outer cell and produce proteins
which would lead to the production of axis and to the spindle being oriented in
the direction of least signal. In this way, a ‘limb’ extending outwards from the
central ‘body’ could be created (see the ‘Quadruped’ demo online).

In some cases, we may not want to globally inhibit other cells from respond-
ing when one does. For instance, we might want to set up two or more sites
from which limbs will grow. In this situation we can alter the sensitivity to the
signal such that only cells within a certain radius will be inhibited. Such lateral
inhibition is useful for creating regularly-spaced structures, e.g. hairs on skin.
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6 Summary

We have introduced and described METAMorph, a software platform for the
experimental design of genomes encoded as genetic regulatory networks, given
an example model of the development of a cigar-shaped body, and presented
some of the design techniques that we have found useful. Although these are
only a small step towards qualitatively characterising the expressive bias of the
model of GRN used in METAMorph, we expect that further experimentation
and open development will contribute to a more complete picture over time.
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Abstract. This paper focuses on the environmental role in morphogen-
esis in dynamic morphologies (DM). We discuss the benefits of morpho-
logical plasticity (MP) and introduce our Environment-Phenotype Map
(E-P Map) framework in order to investigate and classify the contin-
ual development in DMs and morphologically adaptive behaviour. We
present our MP-capable system the Artificial Cytoskeleton (ArtCyto),
housed within our DM the ‘Cellanimat’, with an E-P Map closely based
on MP examples from cell physiology. We provide experimental results
to demonstrate that with this single E-P Map a bifurcation in morphol-
ogy can occur, caused only by a difference in the environment, mirror-
ing evidence from physiological data of fibroblast cell chemotaxis and
macrophage cell phagocytosis.

1 Introduction

The central theme of ‘New AI’ [1], that embodiment is an integral part of in-
telligence, has resulted in increasing interest in system morphologies and their
generation (morphogenesis). We classify morphologies into two groups based on
the following criteria: if the morphological structure, by which we specifically
mean the morphology’s sub-component connectivity, can continually change in
relation to the environment then it is a dynamic morphology (DM); otherwise
it is a static morphology (SM). For example, a morphology grown with a de-
velopmental algorithm before entering the testing environment is classed as an
SM (e.g. [2,3]); for the system’s actual ‘lifetime’ (within the environment) there
is no mechanism for the morphology’s sub-component connectivity to change.
Similarly, the linear-cluster robot ‘morpho-functional machine’ presented in [4]
also classes as an SM with our definition, since its observably different ‘straight
form’ and ‘clustered form’ are nevertheless structurally isomorphic.

DMs have morphological plasticity (MP). We can subdivide existing exam-
ples of DMs into two categories, based on MP concepts from physiology [5]. 1)
irreversible: the DM can alter sub-component connectivity in relation to the en-
vironment; once set however, connections cannot be reversed (e.g. temperature-
related sex determination in salmon). Investigations with L-systems in environ-
ments (e.g. [6] and those reviewed in [7]), are examples of irreversible MP in a

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 118–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Morphological Plasticity: Environmentally Driven Morphogenesis 119

DM; once plant branches have grown, in accordance with environmental inter-
actions, they cannot be changed. 2) Reversible: among DMs with reversible MP,
where the same connectivity can be continually altered by environmental inter-
action, we count our Artificial Cytoskeleton (ArtCyto) model [8], other examples
can be found in Artificial Chemistry (e.g. [9]).

MP allows organisms a greater chance of survival in fluctuating, changeable
niches. A genotype capable of changing form by quick, lifetime responses to the
environment has a selective advantage over one dependent on the slow process of
evolution alone [10]. In a DM system, genetic information relating to morphology
continually combines with the wealth of information in the environment, so with
increased MP genotypes become more scalable, morphologies are kept relevant to
current environmental conditions and adaptive behaviour can be morphological
not solely controller-based.

A systematic measure of the DM environmental interface would not only
provide a comprehensive framework for understanding and explaining morpho-
genesis mechanisms, but could help clarify, and indeed quantify, the level of
embodiment of a system (as proposed by Quick in [11]). Therefore, in the next
section we define our Environment-Phenotype Map (E-P Map) framework. We
then present an example of environmentally driven morphogenesis using our
DM model with reversible MP: the ArtCyto housed within the ‘Cellanimat’. We
provide experimental results to demonstrate that with a single E-P Map a bifur-
cation in morphology can occur, caused only by an environmental difference. We
discuss the inter-relation of observed morphologies, behaviour and environment
using our E-P Map framework. The mechanisms in this example are firmly based
on the physiological mechanisms in fibroblast cell chemotaxis and macrophage
cell phagocytosis.

1.1 MP Framework: The E-P Map

Here we introduce a general framework for understanding MP in DMs based on,
and extended from, the open L-system approach for plant-environment interac-
tions and classifications of morpho-functional machines (described in [7,12]). We
introduce our term Environment-Phenotype Map (E-P Map) to describe environ-
mentally driven morphogenesis (as appose to the genetically driven ‘genotype-
phenotype map’) of a particular feature. An E-P Map is a set comprised of
distinct environment phenotype interactions, or ‘EP functions’, whose competi-
tive/cooperative combination within a specific environment can be used to ex-
plain observed morphological behaviours and structural changes.

We can define three possible types of EP function: 1) The morphological
structure is affected by global environmental factors (e.g. gravity, temperature)
2) The morphological structure is affected by local environmental factors (e.g.
obstacles, gradients) 3) The morphological-structural change has a reciprocal ef-
fect on the environment (e.g. depletion of environmental sources by uptake for
growth). We further classify an EP function as either passive or active. Passive
interactions do not cause or require the activation of new information-processing
pathways in the DM. For example, a collision that simply blocks a DM’s growth
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(addition of connected sub-components), is a type 2-passive interaction, a colli-
sion that triggers sensor activation resulting in new sub-component behaviours
and connectivity is a type 2-active interaction.

1.2 Chemotaxis and Phagocytosis

Fibroblast cell chemotaxis is an example of reversible MP. The cell detects a
chemical gradient and transforms morphology in order to follow it to the source.
The first stage of this requires the formation of a convex ‘leading edge’ with
microspikes (protrusions) [13]. Phagocytosis, also reversible, is the process of en-
gulfment of a foreign particle for degradation or ingestion; it is a fairly universal
cell function also relying on profound rearrangements of the cell membrane. In
macrophage cell phagocytosis (to ingest foreign particles), cell surface receptors
trigger and bind to the particle, tethering it; this causes reactions involving the
same proteins downstream as in fibroblast chemotaxis, but leads to a different
morphology — in this case an enclosing concave morphology called the ‘phago-
cytic cup’ [14]. Chemotaxis (movement morphology) and phagocytosis (ingestion
morphology) are distinct both topologically and functionally yet are controlled
by the same underlying mechanism of continual environment-morphology inter-
action, thus the environmental difference causes the bifurcation in morphology.

2 The Cellanimat Model

The Cellanimat is our DM; morphology is determined at each timestep by an
E-P Map for reversible MP. The Cellanimat differs from the traditional animat
approach as it has no separate controller (processor) from the body (effector):
instead the body acts as a combined processor/effector. The Cellanimat is a
dynamical hierarchy, modelling real cells at three levels: 1) the cell and its envi-
ronment; 2) the cell’s subsystem interaction (membrane, transduction pathway,
cytoskeleton, cytoplasm); 3) the subsystem’s macromolecular interactions.

The key subsystem for structural change in all real, eukaryotic cells is the
cytoskeleton, a complex, dynamic network of protein filaments which extends
throughout the cytoplasm. In particular actin cytoskeleton microfilaments are
involved in rapid changes to membrane shape in response to environmental sig-
nals [13]. We presented the ArtCyto in [8], designed to model these dynamics.
The ArtCyto is the core processor/effector of the Cellanimat. It consists of struc-
tural proteins modelled as agents (actin and a nucleator), which make up the
filaments, and accessory proteins, which regulate filaments’ behaviour (e.g. in-
hibiting, activating, severing, bundling) [13]. Accessory and structural protein
behaviour and connectivity, can be controlled by environmental signals. Signals
filter into the cell via the transduction pathway (TP), a cascade of reactions
triggered by cell-surface-receptor activation (sensors), dramatically altering fila-
mentous structure. This in turn affects the shape and structure of the cell as a
whole. See Fig.1(a) for a schematic of the Cellanimat.

The Cellanimat and its environment are implemented as a 3D voxellated
world. It is an idealized model of Nature (partially inspired by artificial chemistry
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(a) (b)

Fig. 1. (a) Schematic of the Cellanimat with environmentally driven membrane shape
change (b) EP1 from the E-P Map as in [8], abstracted from the biological pathway
for fibroblast chemotaxis

techniques [15]) that concentrates on the computational process of adaptation;
the mechanisms of macromolecular interaction are faithful to a subset of those
in fibroblast cells, but it is not an exact model of a cell. The voxels can be in
one of three states: environment (outside the cell), cytoplasm (inside the cell),
and membrane (the cell border). In the Cellanimat, the TP is nested within
the membrane and the ArtCyto within the cytoplasm. Changes in morphology
are evident from the distribution of membrane voxels. The ArtCyto structural
agents have knowledge of their position, binding sites and time spent in the
current filament. All other Cellanimat components are modelled within a cellular
automata. All macromolecules (agents or CA) exist in single voxels and interact
with their 26 nearest neighbours (NNs) according to given rules. Thus all voxels
have sub-states, indicating the presence and properties of macromolecules, and
where appropriate their concentration (which may diffuse to neighbouring voxels,
calculated using the method in [16]).

2.1 The Protrusions E-P Map

The experiments in this paper use the E-P Map described more fully (e.g. with
exact local rules) in [8], which closely models the underlying mechanism con-
trolling MP in fibroblast chemotaxis and macrophage phagocytosis. The pro-
tein selection was as follows: environment voxels may contain a concentration of
chemoattractant (C) or denote a foreign particle (P); membrane voxels may con-
tain a receptor, WASP and/or PIP2 (TP proteins); and cytoplasm voxels may
contain, from the ArtCyto, either a structural agent (actin/nucleator), or a con-
centration of the accessory protein ‘activator’. The E-P Map can be subdivided
into the following three EP functions.

EP1: ‘filament formation’, type 2-active. For the protein state change rules
upon receptor activation by C or P, see See Fig. 1(b) and [8] for full details.
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Fig. 2. Diagrams of EP1 rules: (a) inactive nucleator (N) binds to a WASP neighbour
becoming active W-N ‘pushing out’ the membrane; (b) W-actin and W-N bind, starting
a filament. Local membrane is ‘pushed out’; (c) W-actin continues to bind to a filament,
‘pushing out’ membrane, as F-N and F-actin fall off and deactivate at the other end.

Actin agents cycle through a succession of four states: inactive, active (bound to
activator), active and bound to WASP (W-actin), active and bound to a filament
(F-actin). The rules for nucleator agents cause them to cycle through: inactive,
active and bound to WASP (W-nucleator) and active and bound to a filament
(F-nucleator). The default agent state is inactive with random movement. A
W-nucleator starts a fresh filament by binding W-actin, Fig. 2(b). Thereafter,
filaments grow by accruing W-actin, even if the nucleator is lost. Filaments
may grow in any direction, but as WASP-bound agents (W-agents) are needed,
filaments grow preferentially towards the cell membrane (containing WASP).

Over time, agents disassociate from the nucleated end of a filament (the fil-
ament continues to grow at the opposite end) and may then be recycled for use
in the same or another filament, Fig. 2(c). Filaments appear to move towards
the membrane due to this process. When an agent in a filament has membrane
in its NNs, it replaces these with cytoplasm voxels and reassigns all current ex-
posed environment voxels to membrane state, thus it has ‘pushed-out’ the mem-
brane locally, Figs 2 (a),(b). To conserve cytoplasm volume, membrane voxels
are simultaneously pulled in at the furthest point in the cell having no adjacent
filaments (a simple model of surface tension effects).

EP2: ‘collision’, type 2-passive. Local membrane ‘push out’ is blocked by
solid environment voxels (P or environment boundary) in its NNs, blocking ad-
dition of agents to that filament. EP3: ‘redistribution’, type 3-passive. Any
concentration of C in the environment voxels that ‘push-out’ overwrites are re-
distributed to their NNs first (conserving C volume).

In each timestep the Cellanimat first performs a CA-synchronous update:
1) C in the environment is diffused; 2) membrane voxel TP proteins are acti-
vated or deactivated, activated PIP2 releases activator into a cytoplasm NN;
3) activator is diffused. Then the Cellanimat performs, in sequence, agent-
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asynchronous update: 1) agent connectivity is updated based on NNs (e.g.
nucleator becomes W-nucleator if it has a WASP NN (Fig. 2(a)); 2) if not in
a filament, agents perform random movement to an NN; W-agent movement is
constrained to ensure WASP NNs; 3) local membrane and environmental ad-
justments are made as necessary.

3 Experiments and Results

We aimed to test the multifunctionality (in behaviour and morphology) of the
protrusions E-P Map. Our primary investigation therefore used the E-P Map
for chemotaxis and applied it to a phagocytosis problem, by replacing only the
environment (C with P). We also performed two further investigations: (i) im-
proving the E-P Map and (ii) exploring the limits of phagocytic cup morphology.
All results were averaged over 100 runs. For all experiments the Cellanimat was
cylindrical (radius 20 voxels, height 6 voxels). Agents occupied 75% of the cyto-
plasm volume, 35% of which were nucleators, all initiated at random positions
(there were 4,924 structural agents in total). Receptors occupied 20% of mem-
brane voxels. See Table 1 for a breakdown of all results.

Table 1. Averaged behavioural results (distance or engulfment); Chemo t=100, Phago
t=250

Experiment Description Mean dist/engulf Standard deviation
Exp 1 Chemo 78% 12%
Exp 2 Phago 41% 7%
Exp 3 Chemo WASP r=2 78% 3%
Exp 4 Phago WASP r=2 92% 6%
Exp 5 Phago WASP r=2 large particle 86% 7%

(a) (b)

Fig. 3. (a) Average distance covered at each timestep (%) over 100 runs of chemotaxis:
Exp 1 (lower) Exp 3 (upper) (b) Average engulfment at each timestep (%) over 100
runs of phagocytosis: Exp 2 (lower) Exp 4 (upper) Exp 5 (middle)
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(a) (b) (c)

(d) (e)

Fig. 4. WASP (Black); filaments (white); active actin (grey); membrane(grey). slice
view of first 3 layers only (a) Exp 1: chemotactic leading edge, white voxels outside cell
contain C, timestep t=90 (b) Exp 2: Phagocytic cup t=250 (c) Exp 4: t=250 (d) Exp
5: t=125 (e) Exp 5: full top view t=250.

3.1 Multifunctionality

The Cellanimat was first tested at chemotaxis (Exp 1). A plume of diffusing
C was dropped 30 voxels away from the Cellanimat’s centre and the distance
covered by the Cellanimat to reach the plume was calculated as its ‘move-
ment behaviour’. Fig. 3(a) shows that by 100 timesteps (t=100) the Cellanimat
had, on average, moved its centre of mass 78% of the distance towards the C
plume. The leading edge morphology is shown in Fig. 4(a). The morphology
returned to a cylindrical form and further distance was not covered due to EP3
being of type 3; redistribution caused the Cellanimat to become completely sub-
merged in C triggering EP1 in all directions, evening out the form and inhibiting
movement.

The Cellanimat with the same E-P Map was tested at phagocytosis, the
‘engulfment behaviour’ was measured as the number of available particle voxels
with membrane NNs. A particle with radius 10 voxels and height 3 voxels was
initiated, tethered to the Cellanimat, on the floor of the environment with its
centre of mass at the location of the initial plume drop site in Exp 1. Cup
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(a) (b) (c) (d)

Fig. 5. The two morphologies (Exp 3, Exp 4) and their medial axis functions (envi-
ronment omitted)

morphology is visible in Fig. 4(b). We can see from Fig. 3(b) that the behaviour
reaches a plateau, resulting from the competition of EP1 and EP2; particle P
both activates and inhibits growth.

Morphometrics. A clear difference in observable morphology is evident from
Figs. 5(a) and 5(c), the chemotaxis morphology (Morph 1) is convex, whereas
the phagocytosis morphology (Morph 2) is concave. In a convex morphology
advancing membrane voxels assist the advance of neighbouring membrane voxels.
By contrast in the concave Morph 2, leading membrane voxels are prevented from
moving ahead by the particle itself (EP2). A cup morphology is thus intrinsically
more difficult to achieve. The difference can be quantified by calculating a Medial
Axis Function (MAF) [17] for both morphologies; see Figs. 5(b) and 5(d). In
Morph 1, the illustrated medial axis contains a middle “body” section, whereas
the Morph 2 medial axis has none. Futhermore, the radius functions of circles
forming the medial axis “legs” in Morph 1 are four times Morph 2’s. A further
difference results from EP3 in Exp 1, C is eventually displaced so Morph 1 starts
to grow haphazardly, whereas Morph 2 remains smooth and controlled.

3.2 Improving the E-P Map

In order to allow filaments to form just to the side of the particle, and thus avoid
inhibition by EP2 we hypothesized that an increase in the radius of WASP ac-
tivation, upon receptor activation, would increase the viable range for filament
formation, as W-agents are needed for filaments. We therefore re-tested the Cel-
lanimat, with WASP activated in all membrane voxels within a radius of 2
voxels (rather than 1) from an activated receptor, in Exp 3 (chemotaxis) and
Exp 4 (phagocytosis). See Table 1, increasing the WASP radius had little effect
on chemotaxis as EP2 inhibition was never a problem, but it greatly increased
engulfment in Exp 4, see Fig. 4(c) for full cup morphology.

Wider WASP recruitment in Exp 4 increased the range of viable locations for
EP1 (as EP2 inhibits growth into the particle). However, engulfment ability in
real cells is more likely due to two factors: 1) the property of nucleators to stick to
an already formed filament, starting a branch and 2) the flexibility of filaments.
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Flexibility and further branching would allow filaments to grow around the side
of the particle, rather than stubbornly trying to grow in straight lines into it
and failing. Branching is possible in the Cellanimat, but nucleators deactivate
when disassociated from WASP, thus branching is actually very rare. It is not
known whether nucleators stay active after WASP disassociation in real cells;
this would seem worthy of further investigation. Increased WASP radius was a
simple way to fully achieve engulfment with the model as it stands, but deeper
reworking of the model may be useful.

3.3 Extreme Ingestion

In the paper ‘How to Eat Something Bigger Than Your Head’, Aderem showed
that a cell can engulf a particle larger than itself through the recycling of internal
membranes [18]. In Exp 5 we tested our improved system against a particle equal
in radius to the Cellanimat, as the membrane can stretch indefinitely in our
model. See Table 1 and Figs. 4(d) and 4(e); the Cellanimat stretched its entirety
around the particle engulfing an astonishing 86% on average.

4 Summary and Conclusions

We have argued that, in a DM, morphogenesis is an adaptive behaviour. We
have discussed benefits and mechanisms of morphological plasticity (MP) and
introduced our E-P Map framework in order to formalize and understand mor-
phologically adaptive behaviour. We presented our DM model the Cellanimat,
and its core processor/effector the ArtCyto, closely based on eukaryotic cell
physiology. We demonstrated its effectiveness with experimental results to show
that with a single E-P Map a bifurcation in morphology, and behaviour, can
occur, caused only by a difference in the environment.

We believe that the Cellanimat and E-P Map approach leads to improved
understanding of morphogenesis and adaptive behaviour; our Cellanimat cur-
rently models a subset of cell physiology, we are exploring which further aspects
of biological fidelity are useful for achieving more complex adaptive behaviour.
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Abstract. Inspired by the recent advances in evolutionary biology, we have de-
veloped a self-organising, self-adaptable cellular system for multitask learning.
The main aim of our project is to design and prototype a framework that facilitates
building complex software systems in an automated and autonomous fashion.
The current implementation consists of specialised programs that call (co-operate
with) their local neighbours. The relationships between programs self-assemble
in a symbiotic-like fashion.

Specialisation is achieved by stochastic exploration of alternative configura-
tions and program space. A collection of global and local behaviours have been
observed and investigated. Based on preliminary experimental results, certain
behaviours that spontaneously exhibit self-organisation and self-assembly are
discussed.

1 Motivation: Multitask Learning

The artificial life system presented in this paper aims at solving multiple problems. It
is especially efficient in multitask learning. Multitask learning is an area of machine
learning which studies methods that can take advantage of previously learned knowl-
edge by generalising and reusing it while solving a set of possibly related tasks [2].
Multitask learning has already shown promising results when applied to Artificial Neu-
ral Networks [4].

Some argue that multitask problems that share similar internal structure are much
more common than one could imagine [16]. Most likely this maybe a certain feature
of all living systems. The human being, for instance, is continuously confronted with
new tasks. Human has to solve these tasks in parallel, using a single brain that has accu-
mulated experience about all the previous tasks encountered since the birth. On another
level, populations work in similar way. In computer science, traditionally multiple prob-
lems are translated into single task problems. The main advantage of multitask learning
is the ability to reuse the previous acquired knowledge. Solutions (or parts of them) of
previous problems, can be reused to solve the current tasks. The system can shift its bias
to search for a hypothesis space that contains good solutions to many of the problems
in the environment.

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 128–137, 2005.
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Requirements. In order to be efficient in a multitask context, our model should fulfill
the following requirements:

1. All tasks must be solved (eventually).

2. Solving difficult tasks should lead to greater rewards than solving easy ones.

3. Computational resources should focus on unsolved tasks.

4. Solutions must not be forgotten, as long as they are useful.

5. Knowledge diffusion should be facilitated (previous solutions must be accessible).

6. Dynamic environments should be supported: tasks can be added and/or removed at
any time, dynamically.

Experiments. For preliminary testing, we used a set of simple arithmetical tasks like
2x, |x|, 3x + 2y, 49 − x, etc. These tasks enable the creation of related, incremental
problems, that will highlight the main features of our model. What’s more, it is straight-
forward to tune the desired difficulty level according to the computational resources at
disposition.

2 Biological Inspirations

Symbiosis is defined as the interaction between two organisms living together. At least
one member benefits from the relationship. The other member (the host) may be pos-
itively or negatively affected. Proponents of symbiogenesis argue that symbiosis is a
primary source of biological variation, and that acquisition and accumulation of ran-
dom mutations alone are not sufficient to develop high levels of complexity [6, 7].

K. Mereschkowsky [9] and I. Wallin [18] were the first to propose that independent
organisms merge (spontaneously) to form composites (new cell organelles, new organs,
species, etc). For example, important organelles, such as plastid or mitochondria, are
thought to have evolved from an endosymbiosis between a Gram-negative bacterium
and a pre-eukaryotic cell. A similar hypothesis can also be made regarding the origin of
the nucleus [5]. According to Margulis [8], ”Life did not take over the globe by combat,
but by networking”.

Another phenomenon widely spread in nature, that occurs at all levels of biologi-
cal organisation from molecules to populations, is specialisation. As an example, the
cells of a vertebrate body exhibit more than 200 different modes of specialisation [1].
Specialisation is the process of setting apart a particular sub-system (reducing its com-
plexity) for better efficiency of a particular function. Our working hypothesis is, that
specialisation together with symbiosis is necessary to reach higher complexity
levels.

Recent work in incremental reinforcement learning methods also advocate reten-
tion of learnt structures (or learnt information) [12]. The sub-structures developed or
acquired during the history of the program self-improvement process are kept in the
program data-structures. It is therefore surprising that this general procedure is not
being exhibited by any of the (standard) evolutionary programming models, such as
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Fig. 1. The dark cell executes its program. Arrows show instructions that call neighbours’
programs.

Fig. 2. Instruction set I for the dark cell’s program. Instructions 21 to 24 execute programs of its
neighbours. The von Neumann neighbourhood is used for this example. A program can thus look
like the following: add dup leftNeighbourProgram mul rightNeighbourProgram.

GP or GAs [17]. Although these evolutionary programming models are inspired by
biological evolution, they do not share some significant aspects that are recognised in
current evolutionary biology, neither can they be used (directly) in an incremental self-
improvement fashion1.

1 GA and GP maintain some developed substructures during the course of evolution towards
a particular solution, however, as soon as the equilibrium is reached, or the optimal solution
found, all the intermediate substructures are quickly “forgotten”. When trying to learn a new
task, the search process must start from scratch again, and the common practice in the applica-
tion of GA/GP is to restart the search from a random population. In contrast, self-improvement
in multitask environment never restarts the search from a random population for new tasks. The
idea is to maintain and reuse previously evolved structures.
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Fig. 3. Typical run exhibiting self assembly. 3 tasks: 2x, 3x, and 3x + 2y. After 5,000 iterations,
several cells can solve the two simple tasks (2x and 3x). After 10,000 iterations, one cell (C1,3)
uses its left and down neighbours to solve the hard task (3x + 2y), and all these 3 cells share
the rewards (symbiosis). Shortly afterwards, some of its neighbours take advantage of it: they
simply solve the task by calling C1,3 (parasitism). Finally, after 20,000 iterations, we can observe
another cluster of solutions at the bottom of the grid.

3 A Self-organising, Self-adapting Cellular System

Cellular systems are characterised by many locally interacting components (cells),
therefore performing a parallel, decentralised, highly redundant computation [13]. In
biology, cellular systems such as insect colonies, cellular tissues, or brain, have proved
to be efficient, adaptive, and robust. Because of the absence of global, central control,
they are not prone to major failure. Their emergent properties have been successfully
applied in diverse fields of computer science, e.g. Cellular Automata [19], Membrane
Computing [14], or Ants Algorithms [3].

A cell is the fundamental component of our system. All cells run asynchronously
and in parallel. They react to local interactions with their neighbours and with the en-
vironment. Every cell maintains a program2 P . The cell’s goal is to find a successful
program: one that, by solving a task, yields enough rewards (food) to survive. Programs
can call neighbours’ programs (Figure 1 and Figure 2). Moreover, if a program gets a
reward, it will share it with any neighbour’s program used to compute the solution. Both
of them will benefit from their relationship. In other words, symbiotic relationships may
appear between programs. This ability to access neighbours’ programs has thus opened
the door to complex hierarchical organisation (self-assembly). As a consequence, cells
are now able to collaborate to solve complex problems (Figure 3).

Topology. There is no particular constraint on the topology of the web of cells. It
can be n-dimensional and the neighbourhood can be as big as desired. In the extreme
case, we could imagine a network in which every cell can access every other cell. Even
dynamic topologies, that change in time, are possible. For our experiments, we use a

2 A program is a sequence of instructions. For our implementation, we used a stack-based
assembly-like programming language with universal computation capabilities [10].
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Fig. 4. The random search mechanism has two states. In the first, initial state, it randomly
generates a new program for P . If a selected program p is rewarded, the mechanism transits to
the second state. In the second state, p is always selected for P . It will stay (’survive’) in that
state as long as p remains successful. It is implemented by storing the cumulative rewards (called
provisions) gained by p. At every time step, a fixed amount is subtracted from provisions.
If the cumulative rewards drops below zero, p is considered unsuccessful and the mechanism
transits back to state 1 (the cell dies).

toroidal grid of cells with a von Neumann neighbourhood (4 neighbours: right, left, up,
and down).

Cell specialisation consists in finding a successful program for the cell. In other
words, the cell self-adapts to a particular task in the environment. Several specialisa-
tion mechanisms have been studied by the authors: classic genetic algorithm, ad-hoc
stochastic search maintaining a tree of probabilities of potential building blocks, or an
adaptation of an environment-independent reinforcement learning method proposed by
Schmidhuber [11]. However, since this paper focuses on the global behaviour of our
system, we will present only the results obtained with the simplest specialisation mech-
anism: random search (Figure 4).

4 Environment

The environment represents the external constraints on our system (Figure 5). Its role
is to keep the system under pressure to force it to solve the tasks. We have designed the
environment as a set of resources. There is a one-to-one mapping between the resources
and the tasks to solve (every resource corresponds to a task). The purpose of these
resources is to give rewards to the cells when they solve their task. How many rewards
are given and how accessible are the resources is the topic of this section. Every resource
has two attributes: quantity and quality. Values for these attributes specify how much
food (reward) will be given to the cell that consumes the given resource.

Resource’s quantity. This parameter (QUANTITY , capitalized to highlight its
static nature) represents the abundance of resources in the environment. This value is
set ab initio and is the same for each of the resources. It allows us to tune the amount of
cells that will be able to survive.

Resource’s quality. The resource’s quality has to reflect how difficult a task is. It
facilitates a mechanism to give more rewards for hard tasks (requirement 2) as hard
tasks may involve several cells that have to share the rewards. There are several ways of
measuring the difficulty of a task. Some are ab initio (using expert knowledge), but it is
more interesting to adjust it dynamically based on the observed difficulty. For example,
the resource’s quality may be set based on the observed average time it takes to solve
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Fig. 5. The global view of our system. A dynamic set of tasks is provided to the system (re-
quirement 6). Tasks are mapped to environmental resources. A web of cells interacts with the
environment trying to solve the tasks. We use a schematic representation for the web to stress its
flexible connections.

it, or on how many cells can solve it, etc. We decided to set the resource’s quality to the
current minimal number of cells required to solve the task. It will reflect dynamically
the task’s complexity without depending on randomness and without the use of extra
parameter that would need to be tuned for the search process.

Food. When a cell consumes a resource, it gets the following amount of food (re-
wards):

food =
QUANTITY · quality

consumers
, (1)

where consumers is the number of cells consuming the resource. Moreover, a cell has
to share its food with all the neighbours it used to solve the task. Every cell used will
get the same share of food.3

At every iteration, a cell needs to eat one unit of food. If it eats more, it can makes
provisions by storing it. On the other hand, if it eats less it will die from starvation once
its provisions are empty.

provisiont = provisiont−1 + food − 1 (2)

This environmental model is the result of our previous investigations with different
models and parameters. It ensures that all the tasks will eventually be solved (require-
ment 1)4. This may take a long time. However, if there is something in common between
the tasks, our system will take advantage of it by reusing it, therefore speeding up the
search process by exploiting correlations between tasks.

3 For these early experiments, we have chosen a very simple reward mechanism. More compli-
cated models will be investigated in our future work.

4 In some of the previous models, cells tend to specialise in easy tasks only.
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Fig. 6. Example with two different density settings: 10% and 30%. The parameter DENSITY
enables to hand-tune the maximum percentage of cells that will be able to solve a task.

Fig. 7. Knowledge diffusion. Thanks to its parasites, the cell that manages to find the solution
to 49 − x can diffuse it (a and b). A cell that computes 3x + 2y does the same (c). Eventually,
in special spots surrounded by solutions to both problems, solutions to 49 − (3x + 2y) are
likely to appear (d). In the long run, new solutions to 3x + 2y and 49 − x will appear (e and
f). It thus becomes more difficult for parasites to survive. Parasites connected to the solution of
49 − (3x + 2y), however, receive more rewards from that solution and won’t disappear. Cells
with thick border are hosts.
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5 Observations

Density. The two main environmental parameters: the resource’s quantity and the food
needed for a cell to survive can be represented as one parameter DENSITY .

DENSITY =
QUANTITY

SIZE
, (3)

where SIZE is the total number of cells. This simplifies the model, because only the
respective ratio is really important. DENSITY controls the utilisation of the cells in
the web. Figure 6 depicts two different settings for that parameter.

This parameter may be tricky to tune, since it involves a trade-off between require-
ments 5 and 3. Indeed, if it is too small, knowledge won’t be accessible (few cells
solving tasks). On the other hand, if the density is too large, there will be no room left
to solve complex tasks.

Parasites and knowledge diffusion. There is another interesting behaviour of interacting
cells that can be observed (see Figure 7). When a cell Cs solves a difficult task for
the first time, the solution is almost immediately parasited by its neighbours (Figure
7b). That phenomenon enables to diffuse a solution around the successful cell Cs, thus
rendering this solution accessible to an increasing number of cells. Since some cells
may need this solution to compute a more difficult problem, knowledge diffusion is
highly desirable. Competition between parasites is very intense. They usually appear,
survive a couple of iterations, disappear, and after a while appear again, and so on. The
dynamism exhibited looks like Cs is trying to reach something in its neighbourhood.
For instance, if the diffusion manages to reach the neighbourhood of a cell C1 that needs
it, it will be used and thus the whole chain of parasites from Cs to C1 will receive a lot
of rewards and survive (Figure 7e).

Once some other cells in the web solve the same task as Cs by their own (without
parasiting), it becomes more and more difficult for the parasites of Cs to survive (as they
always have to share their food with the cells they use). As a consequence, knowledge
diffusion will progressively decrease.

Equilibrum/stability. Another parameter, PROV ISIONMAX , has been added. It sets
a maximal bound for provisions stored by a cell. Its value highly affects the dynamism
of the web. If PROV ISIONMAX is high, most of the cells are stable and only a
few appear and disappear (regime A). If PROV ISIONMAX is low, we observe much
more dynamic structural patterns on the web, with cyclic episodes similar to a kind of
catastrophe scenario [15]. Good solutions spontaneously appear in the web, and after
awhile there are too many cells competing for the same resource. As a consequence, the
quantity of the resource they are consuming decreases below 1. Since they don’t have
enough provisions, they will soon almost all disappear. New cells can then start a new
cycle (regime B).

There seems to be no smooth transition between these two dramatically different
regimes. Regime A represents a stable and fixed solid state, similar to Wolfram’s class
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1 of cellular automata (CA) classification [19]. Regime B represents a cyclic state, and
is similar to Wolfram’s CA class 2.5

Robustness. Our system exhibits high levels of robustness. First, multiple solutions to
the same task are available in the web. Due to this redundancy, losing one of them is not
dramatic. Also, more food will be available for this resource (since consumers have
decreased in Equation 1), creating a new solution to replace the lost one (a kind of self-
repair). Second, if part of the solution is lost (e.g. one cell dies in a 5-cells solution),
the provision variable enables the rest of the solution to survive for a short period,
allowing the defective cell to have enough time to recover.

Locality. In living systems, locality has been shown to be an important factor for
evolutionary processes (e.g. ecological niches). It also plays a prime role in our sys-
tem. To compute solutions of higher complexity that reuse previously acquired knowl-
edge, a cell has to be surrounded by useful neighbours (requirement 5). Parameters like
DENSITY , but also the topology (neighbourhood) or the program length for a single
cell, have a direct impact on it. It may be tricky, even impossible, to find a good value
for the general case. Issues in scalability are to be expected, too.

The risk is that solutions to simple problems that have to be assembled remain too
far from each other. In such circumstances, spontaneous catastrophe events, like regime
B, may be useful to reset part of the system when it seems to be stuck in a suboptimal
situation.

6 Conclusion

In this paper, we have presented a general self-adaptable architecture designed for mul-
titask learning. The architecture can be implemented in various ways. Our prototype
implementation uses the Evolvable Virtual Machines (EVM) [10] framework as the
underlying virtual machine. The EVM is itself implemented in Java programming lan-
guage. The implementation is composed of a network (a web) of interconnected com-
puting programs, cells. Unlike existing cellular models, our cells are capable of univer-
sal computation on Turing-like virtual machines, and can modify and manipulate their
own code via self-reflection. The cells can also autonomously self-specialise into sim-
pler and more efficient instruction sets, allowing better exploration of the overall search
space. Cells contain programs that can call each other, therefore the architecture facil-
itates collaboration in a symbiotic fashion. This system is self-adaptable in the sense
that it can adapt to a dynamic environment without human input and/or predefined be-
haviour. It is also self-organising, as its internal structure emerges from the symbiotic
interactions between cells. These symbiotic interactions enable reuse of previously ac-
quired knowledge. Our architecture is designed to performs well in a multitask context.
Up to now, interesting features have been observed at both the cellular and macro-
scopical levels. This includes, but is not limited to, parasitism, knowledge diffusion,

5 Wolfram’s Classes 3 and 4 can be achieved by tuning an extra parameter
PROV ISIONINITIAL, which specifies the initial amount of food a cell receives
when it solves a task for the first time.
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self-assembly of inter-dependent symbiotic structures, and self-organising utilisation of
resources. An interesting phenomenon regarding the cells connectivity has also been
observed – the cells connectivity becomes an intrinsic (emergent) resource in its own
right. Future research includes investigations of different topologies within cells’ local
environments. We plan to make our system fully parallel and asynchronous, thus facil-
itating potential hardware implementations. More extensive and complex experiments
with the existing architecture are also planned for the near future.
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[9] Konstantin Sergeivich Mereschkowsky. Über Natur und Ursprung der Chromatophoren im

Pflanzenreiche. Biol. Zentralbl., 25:593–604, 1905.
[10] Mariusz Nowostawski, Martin Purvis, and Stephen Cranefield. An architecture for

self-organising Evolvable Virtual Machines. In S.Brueckner, G.Di Marzo Serugendo
A.Karageorgos, and R.Nagpal, editors, Engineering Self Organising Sytems: Methodolo-
gies and Applications, number 3464 in LNAI. Springer Verlag, 2004.

[11] Juergen Schmidhuber. Environment-independent reinforcement acceleration. Technical
Note IDSIA-59-95, IDSIA, Lugano, 1995.

[12] Juergen Schmidhuber. A general method for incremental self-improvement and multiagent
learning. In X. Yao, editor, Evolutionary Computation: Theory and Applications, chapter 3,
pages 81–123. Scientific Publishers Co., Singapore, 1999.

[13] Moshe Sipper. The emergence of cellular computing. IEEE Computer, 32(7):18–26, 1999.
[14] Christof Teuscher. Information processing in cells and tissues. BioSystems, 76:3–5, 2004.
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Abstract. This paper is part of a larger project whose main objective is
to demonstrate experimentally that the following hypothesis holds: com-
putational developmental systems on a cellular structure are a) naturally
fault-tolerant and b) evolvable. By naturally we mean that the system is
not fault-tolerant by explicit design nor due to evolutionary pressure, but
rather that the framework insures a high probability of fault-tolerance
as an emergent property. In this paper, we propose to study the self-
repair capacities of a specific developmental cellular system introduced
in [13]. More specifically we compare the toroidal and the non-toroidal
cases. Their evolvability is to be presented in details in a further ar-
ticle. All the examples studied here have been evolved to configure an
abstract digital circuit. The evolved organisms are subjected to a series
of different fault models and their self-repair abilities are reported. From
the results exposed here, it can be concluded that, while not systematic,
perfect self-repair, and hence fault-tolerance is a highly probable prop-
erty of these organisms and that many of them even exhibit fully perfect
self-repair behaviour under all tests performed.

1 Introduction

Obtaining resilient computing systems that self-organise around faulty elements
to keep on functioning has great potential benefits but remains hard to design by
hand. Besides, hand-designed systems, while usually being provably safe on fore-
seen errors, are often brittle when encountering unplanned errors. Biological sys-
tems, on the other hand, display a great adaptability to changing conditions and,
in general, great resilience to harsh and uncertain environments. The evolution-
ary reasons for this state of facts are obvious and one approach to obtain resilient
computing systems, if one is ready to forego the provability element, is to evolve
programs in uncertain/changing/faulty environments. Their resilience is then the
by-product of the evolutionary process. While this has had some successes in the
past [15], constraints on time and resources (and maybe more fundamental rea-
sons) have limited the results obtained using this strategy to a few very specific
examples. Another means of adaptation in biological systems is development.Con-
tinuing the bio-inspired route, we propose in this paper to experiment a framework
based on development and cellularity to obtain resilient computing systems.

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 138–148, 2005.
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In this paper, we present encouraging recent investigations on a developmen-
tal structured cellular system in terms of evolvability, that is:– abstract, i.e., we
do not pursue biological realism; – usable, in the sense that it is evolvable; –
developmental, in the sense that it is able to self-configure from minimal or no
environmental information; – stable, in the sense that it is actually continuously
configuring itself, the working configuration being a stable state of development;
– cellular, it is based on a cellular structure where each unit is relatively simple
and all units are identical, though they may differentiate; – structured, i.e., the
neighbourhood of the units is fixed.

We will first quickly review existing systems in section 2 and present the
system and the experimental set-up in the following section. In section 4, we
then present the experimental results averaged on almost 100 toroidal and 100
non-toroidal organisms successfully evolved to configure a circuit that fits a given
random truth table. From these, we establish the main strength and weaknesses
of such systems, and delineate rough probabilities to obtain fully “perfect” self-
repair ability within such a framework. While concentrating on a specific model
of developmental system, the breadth of experiments presented here allows one
to conclude that they go beyond the anecdotal or the circumstantial.

2 Background

Growth is usually defined in biology as “a purely biological unfolding of events
involved in an organism changing gradually from a simple to a more complex
level”. Within the realms of this paper we will consider growth to be the unfold-
ing of events that leads a system, more specifically a cellular system, to configure
its global state in a complex, stable and useful pattern. Complex means that the
system should start with a minimal amount of environmental information com-
pared to the information in the ’adult’ state. Stable means that the growth
process should stop by itself, or rather, that the process continues, but does not
alter the global state of the system anymore. This is very much like development
in biology: once an organism has reached its adult size, cells are renewed con-
tinually, but the organism as a whole remains (more or less) unchanged. Finally,
useful means that this final configuration of the whole system fits some prereq-
uisite needs, which may be a pattern to display, but also the configuration of
an FPGA, or even that given some input and output cells, the system is able
to compute some useful functions. These three characteristics are at the heart
of the system. We can note here that while biology is an inspiration, we are not
aiming to model it. In fact, Lewis Wolpert [20] has explicitly argued against the
idea that reconstruction is a growth process. However these considerations do
not affect our interpretation of growth. Our main aim in the long run is to ob-
tain a practical, usable software framework. Growth in its most general meaning
has recently attracted a number of studies, ranging from biological modelling
[2, 18] to abstract developmental systems [1, 8, 14] via morphogenesis [4, 10, 17].
The reasons for this interest are multiple, ranging from code compactness and
scaling problems[17, 19] to the biological understanding of development[3, 5]. As
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we will detail below, some studies have tried to exploit growth as a means of
self-repair [6–8, 16].

Fault-tolerance & self-repair: A fault-tolerant system is a system that func-
tions as specified despite the presence of faults. This is often achieved by some
sort of redundancy in the system, thereby allowing the demise of faulty parts.
This redundancy may be explicit such as twin-engine aircraft able to fly on one
engine, or implicit, such as the evolved messy gates circuit [11] where the circuit
is not explicitly evolved to be fault-tolerant, but experience proves that parts
may be removed without affecting the function of the circuit. A Self-repairing
system is a system that is able to “reconstruct” a faulty part so that function
is restored when a fault occurs. Hence, self-repairing systems are by definition
fault-tolerant. Existing self-repairing systems in computer science obviously do
not physically reconstruct, but rather reconfigure available spare parts to recon-
struct the original circuit/logic/etc. This project concentrates on reconfiguration.
Fault-detection is not a prerequisite of fault-tolerance, but is a necessity to trig-
ger a self-repair. This detection is either done by knowledge of correct outputs
or manual intervention. In contrast, the framework presented here removes this
major weakness through a continuous growth process.

Existing developmental cellular models for self-repair: A few abstract,
non realistic, developmental models on a cellular substrate have been researched
with the aim of gaining self-reconstruction or self-reorganisation to handle faults.
We propose in this subsection to briefly review them and highlight the differ-
ences with our system. In [9], Miller and Thompson present a further study of
the system developed earlier [10] which is a rather complex abstraction of the
growth process based on the diffusion of chemical within a CA-like structure.
This research has obtained interesting results in terms of morphogenesis and
self-repair, however it lacks greatly in both stability and the quality of the self-
repair. Our current results tend to show that simpler systems actually perform
better. Nevertheless it is the first attempt that we know of that tries to assess,
albeit in a limited way, its evolvability. Liu et al [6] try to evolve a morphogenetic
system but on a hardware base (FPGA), an interesting cellular base. The model
is similar to that of Miller but goes further in terms of functionality. A single
example shows that the system presents some self-repair capability. This result
illustrates the potentials but is a long way away from demonstrating the prop-
erty, being based only on one experiment on one organism. A very interesting
approach is that of Macia and Durbeck [7] where they present the design of an
FPGA that is able to completely (re)configure itself on spare parts. Nevertheless
it obtains its perfect error recovery at the price of requiring a full specification of
its expected input/output pattern to detect that an error occurred, thereby im-
plying a great waste of the logic available. Another interesting hardware system
is that of Mange et al, [8], but it also implies explicit fault detection. Finally, to
complete this rapid tour of the few works within the field, Roggen and Federici
[16] compared different types of developmental process in terms of scalability
and robustness, but their study is also very limited.
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3 Experimental Set-Up

The cellular and developmental model: The model is an extension of the
well-known model of cellular automata. The system is both discrete in space
and time. Each cell lies at the vertex of a 2-dimensional lattice and possesses
a x-bit state that is readable and modifiable by any one of the 8 neighbouring
cells (Moore neighbourhood). x is dependent on the given problem. All cells act
according to the same memoryless program whose inputs are the 9x bits of the
states of the cell itself and of its 8 neighbours. Like a classical CA, the result of
this internal program execution determines the new state of the cell. However,
unlike the CA model, this cell may also alter the state of its 8 neighbouring cells.
Given that all the states’ bits are considered individually, this internal program
could be best described as a 9x-bit input, 9x-bit output function.

Both toroidal and non-toroidal grids are used. In the non-toroidal case, to
the program, the “virtual” cells beyond the borders appear to have a 0x state
that cannot be altered by a neighbour. This 0x state is not specific to border
cells, and is thus indistinctive.

The neighbour’s state rewriting property, which is at heart of the whole pro-
cess, entails a series of questions on the order of update of the cells. It forbids a
fully parallel update. A single model of asynchronous updating was studied up to
now. Each cell reads in parallel its neighbourhood and tries to write its state and
its neighbours’ state in parallel. However, to solve the problem caused by many
cells wanting to rewrite a cell’s state, only the right-most, bottom-most cell requir-
ing an update has priority. This is a fully deterministic model. A more interesting
model from a research viewpoint, but less practical from a hardware viewpoint,
would be a random asynchronous update mode. This is currently under study.

The developmental aspects rely on that rewriting property, but more funda-
mentally in the way the system is both evolved and tested. In effect the state
of all the cells in this grid start at 0x, where x is the length of the state of each
cell. The disruption in the uniformity, necessary to obtain non uniform config-
uration of the grid, is due to this rewriting priority which implicitly defines a
relative order. This disruption in uniformity is sufficient to obtain any kind of
configuration. This is helped in the non-toroidal case by the borders which also
create a non-uniformity. The fact that the circuit configures itself from minimal
environmental information is essential to obtain resilient circuit. Development
in this context is thus really self-organisation.

The evolutionary algorithm: All solutions studied in this paper were evolved
using a straightforward extension to Cartesian Genetic Programming (CGP),
coincidentally first designed to evolve digital circuits [12] and thus well suited
for problems involving binary inputs/outputs. It presents the great advantage of
not suffering from the bloat problem.

Each individual represents the program to be executed in all the cells of the
system. Basically we have to evolve a 9x-bit input, 9x-bit output program. Each
bit is considered as a separate input/output. We refer the reader to [13] for the
precise setting, the evolvability not being our object in this paper.
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Tasks & Faults Models
The systems subjected to faults have been evolved to configure an abstract 3-
input, 2-output, circuit model to fit a truth table. Ten random truth tables have
been chosen as goals. In this task, the fitness is judged on the functionality of
the circuit, not on its specific configuration, while its repair ability is judged on
its specific configuration not only the functionality of the circuit. This circuit is
tested on both toroidal and non-toroidal grids. We first describe the circuit model
and then detail the fault-model to which we subjected the organisms evolved.

The digital circuit abstract model: The developmental system presented
earlier rely on a cellular structure. It is natural to design a circuit model topo-
logically equivalent. The circuit model therefore relies on basic units (see fig.1.a)
arranged along a cellular structure (see fig.1.b). Straightforwardly, each basic
unit is then configured by the state of its corresponding cell in the developmen-
tal model. Conceptually, it is important to distinguish the two-layers. One is
the developmental model, which, when run for a certain number of time steps,
reaches a stable state. In this stable global state each cell has its own x-bit long
state. The second layer is the circuit. Each basic unit of the circuit behaviour is
determined by an x-bit long configuration string. As the first and second layer
are homoeomorphic, the state of the cell of the first layer is the configuration
string of the corresponding basic unit of the second layer. Hence, during the
developmental process, the circuit is not yet configured in a working state. Ob-
viously, these two layers can be merged. In some experiments, a further few bits
are used in the developmental layer. These are free bits that can be used for
development but do not affect the configuration of the circuit.

The basic unit (fig.1.a) used for the results presented in this paper has n
vertical lines and 1 lateral line coming in. Whatever its configuration, each unit
propagates the lateral signal through, unchanged. The number of vertical inputs,
n, is the same as the number of global outputs of the whole circuit. While this
restricts the complexity of the possible circuits, it already allows for reasonably
complex functions, as a 16-bit or 32-bit bus would not be unrealistic.

The configuration string of each unit is 4 + n-bit long. For each incoming
wire, a bit determines whether a look-up table (LUT) is applied to it or whether
the signal is just propagated through. If a LUT is applied, the inputs to this
LUT are the lateral input and the vertical line concerned. 4 more bits determine
the outputs of the LUT. The same LUT is applied to all the wires.

As can be seen in figure 1.b, the vertical lines run through the whole circuit
and its values out of the last unit are read as the output of the whole circuit.
Each basic unit is evaluated sequentially from top-to-bottom and left-to-right.
For the experiments described in this paper, the value of the two vertical lines
at the end of the first column are fed back into the circuit as lateral inputs.

The fault model: In any studies wishing to assess robustness and self-repair
qualities, a precise fault-model should be defined to delineate the scope of va-
lidity of the study. The fault model used in this paper is at the same time
simple and rather exhaustive. First, we only test here self-repair abilities con-
cerning the configuration process. In fact, it could be said that we test the self-
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(a) (b)

Fig. 1. In (a) one can see the model of a basic element of the circuit. In this example,
each of them have 3 inputs and 3 outputs. It always propagates its lateral input (In
0). Its configuration string determines what the look-up table is and whether or not
it is applied to each of the wire. In (b), one can see a full 5x5 circuit, with 3 global
inputs and 2 global outputs. f denotes a constant false value. The circuit is evaluated
sequentially top-to-bottom, left-to-right.

reconfigurability process. Therefore we are not concerned with faults in the map-
ping configuration-function and assume this mapping is perfect, which is by far
not unreasonable. Within the scope of our study, the main limitation of our fault
model is that it is a strike-once model. After a fault occurred, the reconfiguration
of the circuit, the repair phase, is done in a safe environment. Again such a model
is perfectly reasonable as long as this reconstruction process is fast and perfect.

The fault-model simply consists in choosing a certain number of cells affected
by faults. A cell can be affected by 2 types of faults: – reset disruption, the state
is reset to 0x; – random disruption, the state of the cell is set to any random
value. These models may seem over-simplified, however they encompass many
faults. First, obviously a fault in the workings of the internal cell program that
would entail writing the wrong state for itself and/or for its neighbours. Second,
it also models a reading error. In effect if a cell misreads its environment, it takes
a wrong decision (in interesting cases), and therefore the circuit has at the next
time step one or more cells in the wrong state. Finally it also models writing
errors. The number of cells affected are 1, 4 in a 2x2 block, and 5 randomly
chosen cells. In this paper, each successfully evolved organism was subjected to
4 kinds of faults: a one-cell reset, a five cell reset, a five cell random fault and
a 2x2 block random fault. Therefore while gentle time-wise, this error model is
rather complete space-wise and working-wise.

4 Results

While previous studies have often concentrated on one or a very few numbers
of individuals, the results presented here have been established on roughly 100
individuals for each of the set of experiments to give some generality to the
results found. In the same way, rather than choosing a specific task, to avoid
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bias, all experiments are averaged out over 10 different random version of the
goal. The aim of the evolutionary runs is to find an organism that develops into
the configuration of a circuit (see fig. 1) whose behaviour fits a given truth-
table. This was repeated 10 times over 10 randomly chosen truth tables. These
100 experiments were repeated twice, once with a non-toroidal developmental
grid, and once with a toroidal one.

Random truth tables experiments: The task here is to configure the circuit
presented above so that its behaviour fits a given complete 3-input, 2-output
truth table. The circuits are made up of 5x5 basic units. Each basic unit of the
circuit needs 5 bits to be configured. Hence a 120 bits configuration is needed to
configure the whole circuit. The developmental layer is thus 5x5, but each cell
contains 7 bits. The first five bits configure the circuit unit while the remaining
2 are ignored by the circuit layer and can be used freely for the developmental
process. The fitness for the evolutionary runs is how well the circuit, configured
by the adult organism, i.e, once it has reached a stable state, fits the truth table.
For this task two models of configuration grids are studied, a toroidal and a
non-toroidal one. Ten evolutionary runs were done for each of the truth table.

Each grid is let to develop for 7 time steps before the fault strikes. There is
no specific fault signal, and it is only the perturbations provoked by the fault
that trigger the healing process.

4.1 Non-toroidal Grids

Firstly it can be noted that whatever the truth table, the system is highly evolv-
able as 99 out of the 10x10 runs ended up with a successful organism, thereby
giving us a reasonable sample to test out the self-repair ability of the model.

Each of the 99 organisms were subjected to the 4 kinds of faults described
in subsection 3, 1000 times, except for the reset-one-cell fault which is tested
exhaustively on the 25 possibilities. Even though only 120 bits out of the 175
bits are used for the circuit layer configuration, the repair process is considered
perfect if and only if the whole 175 bits are restored to their original adult/stable
state. Hence it is often the case that even when perfect self-repair is not achieved
the circuits keep on functioning as normal, but this is not our main concern in this
paper. Perfect self-repair provides several advantages, including, no degradation
of the performance in the long run and generalisation of the results to tasks
where all the bits are necessary.

As one can see in figure 2, the amplitude of variation between truth tables
is minimal. This entails that the self-repair ability observed results from the
nature of the system rather than the specific task and results can be expected
to replicate for any other truth tables. The second striking fact is the really
extraordinary capacity of these organisms to cope with the reset faults. If one
only considers organisms that repair themselves perfectly in all of the 25 one-
cell reset cases (fig. 2(a), col 1) and all of the 1000 5-cell reset cases tested (fig.
2(a), col 2), we still have 88% of the organisms evolved, and this result does
not vary much from one truth table to another, as the lowest one is 63% and
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(a) (b)

Fig. 2. For both graphs, in bold are the percentage of fully perfect organisms that self-
repair perfectly in all test cases; in column 1, for the 1-cell reset test (x25), in column 2,
for the 5-cell reset (x1000), in column 3, for the 5-cell random disruption (x1000), and
in column 4, for the 2x2-cell block random disruption (x1000). The error bars highlight
the minimum and maximum value found. In figure (a), results for the non-toroidal
grid are represented. In figure (b) results for the toroidal grid are presented. In that
second figure, for exp 3 and 4, the thin line plots are the average number of times the
organisms self-repair perfectly out of the 1000 tests.

highest is 100%. The result is particularly surprising as none of the organisms
were specifically evolved to display that self-repair property. Nevertheless as the
organisms develop from an empty grid these resetting faults are gentler than
purely random disruption. This can be checked in the lower percentage of fully
perfect organisms found for random errors (fig. 2(a), col 3 & 4). This said, even
in these harsher conditions, the resilience abilities are still striking as 46.3% of
the organisms fully repair in all the 1000 5-cell random disruption tests (fig. 2(a),
col 3) and 47.3% of the organisms fully repair in all the 1000 2x2-block random
disruption tests (fig. 2(a), col 4). As could be expected, all organisms perfect
in these latter experiments behave perfectly in the former experiments. Hence
almost half of the organisms evolved for circuit configuration display absolutely
perfect self-repair behaviour on all the 3025 tests, every time restabilising into
their stable, original, working conditions. It is interesting to note that if we look
at the organisms that fully repair themselves but not in all of the 3025 tests, there
is still a high degree of resilience exhibited. For instance, the average percentage
of perfect self-repair out of 1000 5-cell random disruption tests among non-fully
perfect organisms is still 56.1%.

4.2 Toroidal Grids

Toroidal developmental grids do not display much difference in terms of evolv-
ability as 98 organisms out of the 10x10 runs were successfully evolved. This
success allows us to test their self-repair abilities on a significant sample. To
allow meaningful comparison with the non-toroidal case, the 10 truth tables
chosen at random above were reused for this experiment.
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As one can see in Figure 2.(b), in columns 1 and 2, the ability to cope with
reset type errors is also very high in the toroidal case. 78.7% of the organisms
evolved self-repair perfectly in all of the 1000, 5-cell reset tests. As before, this
means that one using this framework is very likely to evolve not only good, but
fully perfect organisms for this type of error. Interestingly the overall average
in the toroidal-case is about 8% less than the average in the non-toroidal case,
and the minimal value found for one truth table for the former is 9% less (53%)
than the minimal value found for one truth table for the latter. This tends to
confirm that, while good, the toroidal case is not as good as the non-toroidal case
to produce resilience. Another interesting fact emerges from this comparison of
minimal value: they are not happening for the same truth table. This further
reinforces the idea that the fault-tolerance results exhibited here are totally
independent on the function of the circuit sought.

The excellent ability to cope with errors however collapses when one considers
the more general random disruption. In that case only 2% (2 organisms) exhibit
fully perfect self-repair for the 1000 5-cell random disruption test case, and a
slightly better 4% for the 2x2 block random disruption case. These results bear no
comparison with the non-toroidal ones. The reasons for this difference are hard to
assert with any degree of certitude. Obviously the first idea that springs to mind
is that borders favour stability, thereby favouring self-repair. However, the results
in terms of evolvability contradict somehow this hypothesis. In effect, evolution
is considered successful if the organism develop into the required configuration of
the circuit, but only if it does so in a stable manner. Here, unlike in other works,
there is no explicit growth phase with a stopping time. The process stops itself by
reaching a configuration that is stable. If toroidal grids were truly more unstable
than their non-toroidal counterpart, their evolution should prove harder1, which
is not the case both in terms of the percentage of successful runs and in terms
of the speed of the evolution. Besides, becoming stable too fast, i.e, stable in
a wrong state, is not better. If the reasons of these differences remain unclear
at the moment, we should moderate them. The fact that we compare only fully
perfect organisms discard almost perfect ones, such as an exemplar that self-
repair perfectly in 999 of the 1000 test cases for the 5-cell random disruption
test. Actually if we look at the average percentage of perfect self-repair out of
the 1000 tests (figure 2.(b), col. 3 & 4, thin lines), the inability to cope with
random disruption is mitigated. On average, the organisms self-repair perfectly
half the time (52.8%) for the 5-cell case, and three-quarter of the time (78.9%)
of the time for the 2x2 block case. More importantly, the worst result for a
truth-table is 44.1%, and for a single individual 21% while for the best table it is
66.3% and 100% for the best individual. Finally if one looks at the block random
disruption, this spread of the self-repair ability is even clearer, with at worst for
one truth table, perfect self-repair in 42% of the tests for the worst organism.
This highlights both the very good ability to cope with strong disruption even
in the toroidal case, and that this ability is well spread among all the organisms
found.

1 one should note that if the task evolved is too simple, this weakness may not appear.
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5 Concluding Remarks

While these results are preliminary given the sample, their consistency across
all organisms successfully evolved allows us to draw some conclusions.

Firstly, developmental cellular systems always exhibit some self-repair ability.
Within a few evolutionary runs, it is possible to find, with a very high probability
in the non-toroidal case, a fully perfect organism that is stable even under the
worst conditions. This obviously calls for further investigations on bigger grids
and for different tasks. Secondly, it is clear that a non-toroidal grid should be
adopted within a framework that has resilience as an aim. While results for
toroidal grids are not bad in themselves, they do not bear comparison with the
non-toroidal case. Nevertheless, this advantage on resilience may be lost on the
evolvability ground with bigger grids, where signal flow is more important.

There are still many questions that remain open. Most notably the decoupling
between the developmental layer, and the circuit configuration, in other terms
between the developmental process and the fitness criteria may be one of the
important factors both in terms of evolvability and of self-repairability. The
number of stable patterns that give rise to the correct output is surely enormous.
Therefore, one may hypothesise that it leaves a lot of room for the evolution to
fall into a large basin of attraction that configure the circuit properly. This
facilitates the evolution but also surely the re-stabilisation after perturbation.
A pattern as a goal would introduce a lot more constraints in the evolutionary
runs, and may be harder to evolve, and the evolved organisms may be brittler.
Results do not allow us yet to answer this question.
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Abstract. An evolutionary system is presented which employs an em-
bryogeny model to evolve phenotypes in the form of layout of cells in
specific patterns and shapes. It is shown that evolved phenotypes exhibit
robustness to damage. How and why these traits appear is discussed and
it is conjectured that it is the result of the effects of a complex mapping
upon simulated evolution.

1 Introduction

Most simulated evolutionary systems use the idea of survival of the fittest to per-
form directed searches toward optima. An individual in an evolutionary process
has only one aim - to survive and propagate. In order to do this it must be ca-
pable of adaptation. The most obvious form of adaptation is through beneficial
mutations or exchange of useful genetic material with other individuals. This
is dependent on the genotype, the representation used by an individual within
the evolutionary process. However, this is not the whole story since there is a
second form of adaptation which is heavily used by natural evolution, of which
humans could arguably be considered the pinnacle. Phenotypic adaptability de-
fines the capability of an individual to be robust to varying environments and
circumstances. This adaptability is expressed through the mapping of the genetic
representation of an individual to its physical representation or its phenotype. In
essence it is the phenotype which determines the likelihood of an individual prop-
agating further through the evolutionary system and it is the genotype which
determines how this propagation is conducted. Therefore, ensuring the survival
of the phenotype inherently results in the same for the genotype. This has largely
been ignored by the evolutionary computation field since the genotype is often
considered as the direct basis for representation of a potential solution.

This mapping is a product of developmental growth processes and as such
can be considered complex relative to the type of representations traditionally
used for simulated evolution. With the existence of such complex mappings, for
evolution to be anything more than a blind search, it must find a way to relate
useful phenotypic traits to structures in the genotypic representation. The work
conducted here investigates some of the evolutionary effects of introducing such a
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mapping process between genotype and phenotype. In particular, the ability for
a phenotype to be adaptable to change, measured here as robustness to damage,
is examined.

2 The Embryogeny Model

The mapping from genotype to phenotype in natural evolution is a develop-
mental growth process. This work considers the initial part of this process, em-
bryogeny, which describes the growth of an embryo from a single stem cell to a
functioning multi-cellular organism. This form of developmental modelling has
been termed computational embryogeny [6] or embryonics [8,11]. As with any
such model a number of abstractions and assumptions are required. The critical
point is to find a suitable way of representing what can be observed in nature
such that it is both computationally feasible and yet still exhibits the required
characteristics that make it useful to model.

2.1 The Physics

The model exists in a real valued 2-dimensional Cartesian space. The embryo-
geny mapping requires that the phenotype consist of discrete processing blocks
(cells). Each cell is modelled as a circle with a given radius and can exist at
any real valued position. This allows the potential for cells to overlap and so a
simple Verlet algorithm [13] is used to shuffle cells in a realistic fashion to min-
imise overlap. The state of a cell is primarily described by a set of 20 chemical
concentrations independently stored for each cell. Cells can only interact either
through physical forces modelled by the shuffle algorithm or through the diffu-
sion of these chemical states. Chemical diffusion is modelled as a simple Guassian
distribution which ensures that the diffusion of a specific chemical from a specific
cell can be calculated instantaneously for any point in the 2-dimensional space.
The growth process itself is modelled in parallel across all cells and calculated in
n discrete growth steps. A cell can only divide once at each step so there is the
potential for a total of 2n cells. Division is directional with respect to a division
spindle vector stored independently in each cell. When a cell divides it produces
a daughter cell which is an exact replica in every aspect except position.

However efficient the code may be, computational costs will obviously in-
crease with the number of cells in the model and so the number of iterations of
growth, for the purposes of evolution, has been fixed to n = 7. Also the envi-
ronment in which these cells are modelled is of fixed size preventing cells from
extending outside of this range and this is observed by the shuffle algorithm. The
simplest way to enforce this is to define a ratio between cell radius and boundary
size, in this case a ratio of 20 : 1 allows a string of 11 cells in width or height
as measured from the cell centres. In this work this ratio is fixed across all cells
ensuring they are each of equal size and shape.

The work presented here specifically investigates various patterns and shapes
that cells can form. This requires some method to enable the visualisation of
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differences between cells. Three of the chemical concentrations stored within the
cell are used to represent red, green and blue values for visualisation purposes.
Also two further chemicals are utilised for spatial differentiation as orthogonal
morphogens carrying both vertical and horizontal gradients [1]. The remaining
15 chemical concentrations are sufficient to store any variables which may be
utilised for pattern formation in whichever way evolution deems useful.

Overall, this approach offers significant improvements over previous prob-
lems encountered with such models by removing issues such as cell overwriting,
expensive diffusion algorithms and serial artefacts [3,9].

2.2 The Genetics

The Operon model is a tool used by biologists to explain how genes form networks
of complex interactions termed Genetic Regulatory Networks (GRN) [1]. In this
work a much simplified version of the Operon model is used as a basis for the
genetic representation. As shown in figure 1, the genome can be broken down
into a set of genes each represented as a pair of integers, the first describing the
genes function A and the second the dependent protein B.

The genome is processed as follows. The first gene in the genome is always
expressed and so its function A is carried out dependent upon the value stored for
the concentration of protein B in that particular cell. A gene’s function can be to
alter the local cell state and/or to control the expression of the next gene in the
genome. In this manner the genes are linked in a chain of expression dependent
upon their position in the genome. There are 26 genes in total consisting of the
following functions:

– Terminal genes are always expressed. They end a current chain of expression
and begin a new chain by controlling the expression of the next gene directly
without dependence on the cell state.

– Expressive genes are similar to terminal genes but their function is dependent
upon a given protein. This allows the cell state to determine whether or not
a chain of expression becomes active.

– Evaluative genes are dependent on expression from a previous gene. They
control the expression of the next gene based on some evaluation performed
upon a given protein. These genes control the expression within a group of
genes and can be chained together to form more complex functions.

– Functional genes consist of those genes that can be controlled by expression
but their function is to directly alter the cell state such as to cause the cell
to move its division spindle, divide or die.

Fig. 1. The genetic representation showing gene structure and chain of gene expression
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Each cell in the model has an identical genome so differences in cell behaviour
directly relate to differences in cell states. Therefore two cells with identical cell
states will perform identical actions.

3 The Evolutionary Algorithm

We can imagine genotype space consisting of all possible ways of constructing
a genome from the set of available genes and phenotype space consisting of all
possible ways of constructing all possible cell states into some form of pattern.
Considering that these two spaces are linked by the embryogeny mapping pro-
cess there are two points to be considered which may have a direct impact on
evolutionary performance.

Mapping Coverage is a potential issue since the phenotype space is likely to be
much larger than the genotype space. This problem is further compounded by the
opportunity for multiple redundancy in the genetic representation which causes
large numbers of many-to-one mappings from genotype to phenotype. The result
is that genotype space will only map to certain areas of the phenotype space
and leave areas of the phenotype space unmapped and therefore inexpressible
by the genetic representation. It is imperative to ensure that global optima in
the phenotype space are expressible by this mapping.

Neighbourhood structures at the phenotypic level produce smooth fitness land-
scapes since it is in this space that an individual is evaluated. However, the
mapping process does not conserve neighbourhood structure and so when fit-
ness values are mapped back to genotype space the resulting fitness landscape
may be very noisy and discontinuous.

A difficult problem associated with evolving a complex mapping, such as the
one described here, is the computational cost of performing the genotype to phe-
notype mapping. In order to overcome this several computational clusters were
utilised with a simple parallel genetic algorithm [10]. This is realised through a
distributed fitness evaluation using a simple server-client architecture in which
evolution is conducted upon the server. When a population evaluation is required
the population is simply divided into a set of sub-populations which are then
passed to and then processed by a set of client machines before being returned
and combined to recreate the original population. For the work presented here
10 client machines were used with a total population size of 200.

Another difficulty of a complex mapping is that the many-to-one relationship
between genotypes and phenotypes leads to the potential for large numbers of
genotypes to map to identical phenotypes and thus have equal fitness. The overall
result is, that for a representation such as this, the evolutionary search space is
fractured into networks of neutrality [5]. If a population occupies one of these
neutral networks then selection pressure becomes redundant. It is important
therefore to ensure that the population avoids stagnation in these areas. By
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using random selection and continued use of search operators a neutral drifting
of the population can be achieved.

A simple genetic algorithm is utilised which selects the best 50% of the pop-
ulation. Each of these selected individuals is subjected to a random two point
crossover operation with another of the selected individuals. The product of this
crossover is then subjected to a further random single point mutation. The re-
sulting offspring then replace the worst 50% of the population. This ensures a
consistent generational selection pressure during adaptive evolution whilst also
enabling random selection during neutral evolution. Fitness of an individual is
evaluated as the number of cells present in a phenotype which are correctly
spatially differentiated according to a predetermined target template.

4 Simulation Results

The aim of this work is to investigate how introducing an embryogeny mapping
process affects the robustness of an evolved individual. Several templates are
utilised against which evolved individuals are evaluated (figure 2). This allows
for the analysis of how robustness varies dependent upon the actual structure of
the target phenotype.

For each template two results are recorded. The phenotype robustness is a
measure of the ability of a phenotype to repair from damage. This is calculated as
the percentage of cells which match the original template after first culling cells
randomly from a fully developed phenotype until a given percentage of cells are
removed, in this case 50%, then reapplying the embryogeny growth process until
cells have recovered to their previous numbers. Genotypic robustness measures
the effect of single point gene mutations on the overall phenotype. A single gene
in the genome is mutated and then a phenotype is grown and the percentage of
correct cells is then calculated. For each evolved genome, these values are taken
over an average of 100 samples. For each template, 10 genomes were examined.
These values are also exhibited in figure 2 along with their standard deviations.

Figure 3 shows the typical behaviour of a phenotype in response to damage
corresponding to the template show in figure 2D, at various stages of growth and
repair. In this example the phenotype is grown to be much larger and contain
more cells than it was originally evolved for, highlighting the scalable capabilities
of evolved solutions. The model is also capable of handling overgrowth (figure
3I), where too many cells exist to fit within the available space. The form of dam-
age used here is obviously random and distributed across the entire phenotype.
Previous work [3] has however shown that there is a similar robust response to
localised damage.

5 Discussion

The results from figure 2 consistently show that the embryogeny model produces
individuals with remarkable robustness to phenotypic damage, considering that
50% of the phenotype was removed at random. They also show, to varying
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Fig. 2. The various templates used for evaluation and their genotypic and phenotypic
robustnesses

degrees, robustness to genetic mutations. However this is hugely dependent upon
which gene is mutated as evidenced by the large standard deviations.

Since fitness evaluation is simply a numerical measure of how close an indi-
vidual fits to a particular template then there is no direct constraint on selection
pressure to ensure robustness is evolved. It is also true that the genetic represen-
tation can support mappings which result in less robust individuals. Therefore
these robust characteristics must be a direct consequence of some bias inherent
in the embryogeny representation. This raises the interesting questions of why
these abilities are displayed and why they vary across different target templates.

The introduction of such a complex mapping into a simulated evolutionary
framework allows for the potential of individual genes to interact with multiple
aspects of the phenotype, a principle termed pleiotropy [2]. It is reasonable to
assume in this case, that the genetic representation enables some combination
of genes in the genome to result in some specific structure in the phenotype.
It is also reasonable to assume that if the interaction of these genes with other
genes in the genome is high, then mutations elsewhere in the genome are more
likely to be destructive to the phenotypic structure for which these genes are
useful and hence result in higher levels of pleiotropy. Therefore, it can be argued
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Fig. 3. The typical behaviour of a phenotype in response to damage

that genetic structures with lower levels of pleiotropy should be more likely to
result in viable offspring when subjected to search operators. We would expect,
given the evolutionary regime, that during both adaptive and neutral evolution
selection will cause such a bias towards genes that not only contribute to fitness
but which are more likely to stay fit when subjected to search operators.

Figure 4 shows a measure of pleiotropy averaged over 10 evolutionary runs
for the template shown in figure 2D. It is measured as the average dependence of
various traits in the phenotype on specific genes in the genome. This dependence
is considered to be the average percentage change in the distinct characteristics
of a phenotype as a result of the removal of an individual gene. This is calculated
by removing individual genes from the genomes in turn and then observing the
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Fig. 4. Average dependence of phenotype and fitness on individual genes

changes in the phenotype. If the changes are large amongst a number of pheno-
typic characteristics then the pleiotropy will be high whilst small changes across
fewer phenotypic characteristics will result in a smaller measure of pleiotropy. It
is clear that, as evolution progresses, this measure of pleiotropy decreases and
then levels out once the optimal solution is found.

The results of figure 4 suggest that evolved genomes tend to consist of sets
of genes exhibiting low levels of pleiotropy, which build specific structures in the
phenotype that are identifiable through the target template e.g. areas of colour
or shape. This effect can be seen in genomes evolved in this work. For example,
genomes tend to have independent sets of genes controlling cell differentiation
to each of the colours contained in the phenotype.

Looking at the results across each of the templates from figure 2, it appears
that the robustness qualities seem to reduce as the pattern structure becomes
more complex. Since fewer genes will be required to express simpler patterns
then their genomes have potential for greater redundancy.

6 Conclusion

This paper has demonstrated the integration of an embryogeny mapping process
into an evolutionary framework. It has been argued that the mapping process
itself has specific impacts upon how evolution will perform, more specifically
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maintaining low levels of pleiotropy. This characteristic of the genomes results
in phenotypes which are more robust to noise since changes in the environmental
state only impact on those relevant parts of the genome and hence relevant parts
of the phenotypic structure, which makes the phenotype more resistant to noise
and thus more capable of self-regulation and self-maintenance.

The evolutionary bias towards low pleiotropy is dependent on how sets of
genes in the genome form parts of the structure in the phenotype. For more
complex phenotypes, a greater number of constructional gene sets may be re-
quired, with greater levels of interaction, in order to express a more complex
shape. It is likely that the impact of this bias towards lower pleiotropy will have
a diminishing impact on the overall ability of a phenotype to be robust to noise
and damage.

Most importantly, this work has demonstrated a direct relationship between
phenotypic robustness and an embryogeny mapping approach. These kind of
characteristics may prove to be useful for research areas such as evolvable hard-
ware [12] and artificial neural networks [14]. Indeed recent work in both these
areas has shown promising results [4,7]

Future work is to try to produce a comparative model which does not bias
towards low pleiotropy. This would enable the analysis of the statistical signifi-
cance of the robustness observed in the results presented here. At this stage it
is not clear how this can be done without irrevocably damaging the model.
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Abstract. This paper demonstrates some examples that show the abil-
ity of reaction-diffusion mechanism to code the curvature of forms of
multi-cellular systems. The simulation model consists of two layers: the
first generates reaction-diffusion waves and the second diffuses chemical
substances. The results show that topology changes feedback information
to the reaction-diffusion mechanism allowing the control of the morpho-
genetic process.

Keywords: morphogenesis, reaction-diffusion, geometric topology.

1 Introduction

Multicellular organisms usually consist of a large number of cells, which are able
to form the shape of an organism by an intricate web of cell-cell interactions,
a process called morphogenesis. As each cell contains the same genome, this
feat is realized in a distributed and autonomous way with the absence of any
centralized control. Although the elucidation of the molecular mechanisms made
big progress in biology, an overall picture is still lacking.

In this paper, we hypothesize that morphogenesis depends on the following
two conditions:

1. Chemical substances (morphogens) play a role in encoding directly mor-
phological information. In this paper we hypothesize that some substances
transmit information by its concentration.

2. Morphogenesis is an autonomous, distributed process without any central-
ized control for all cells.

We used these two conditions as guidelines to screen the existing literature
of morphogenetic models. Alan Turing’s reaction-diffusion model [1] uses two
chemical substances able to produce spatial patterns in space. As this model
uses gradients the first condition is fulfilled, but was not used to form shapes.
Essentially reaction-diffusion mechanisms are means of breaking the symme-
try among homogenous cells in autonomous and distributed way and therefore

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 159–168, 2005.
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it also fulfills the second condition. L.Wolpert suggested the concept of posi-
tional information enabling the cells to know where they are [2]. Gierer and
Meinhardt [3] used Turing’s model for pattern formations. Murray [4,5] also
presented a possible mechanism for pattern formation in animal markings us-
ing reaction-diffusion. Crampin [6] explored the patterns of reaction-diffusion
wave accompanied by the extension of space. Kondo [7] pointed out that the
change of the stripe pattern in angelfish is driven by reaction-diffusion mecha-
nism. C.Furusawa and K.Kaneko [14] found the phenomena of dynamical cell
differentiation by creating their own model. However, all the above examples
are mainly focused on pattern generation and not on shape forming. There ex-
ist many approaches for morphogenesis - especially in the field of Artificial Life
- which can be divided into several types: Lindenmayer grammars [11], cellu-
lar automata [12,18], strictly mechanical approaches where physical interactions
between the cells were programmed to simulate morphological processes [10],
recurrent diagram networks to express the bodies of simulated creatures [13].
However, the correspondence between these models and real organisms has been
considered less seriously. More recently there was renewal of interest in the re-
lations between gene regulatory networks and morphology [15][17][16][19][20],
but these models pay little attention to the relation between morphogenesis and
reaction-diffusion mechanism. The reason may be that only a few people noticed
a possible link between pattern generation and morphological form of creatures.
In this paper the linking between reaction-diffusion mechanisms and cell divi-
sion and physical interactions between the cells can be used to produce shapes
of organisms. We focused our research on the change of the geometric topology
of cellular networks and found that topology changes can be used to feedback
information from the transformed field to the reaction-diffusion mechanism. This
feedback made it possible to create a model of the gastro-intestinal tract as an
example to show how each homogeneous cell realizes global shapes by computer
simulation. The main point of this paper is that the feedback of information
of topological changes about the reaction-diffusion mechanism is an essential
ingredient to model morphogenetic processes by reaction-diffusion approaches.

This paper is constituted as follows: First biological background is explained,
reaction-diffusion system and the developed model are presented in the next
section 2. In the third section, the simulation results are shown and the fourth
section discusses the results and the conclusions are presented in the last section.

2 Model

In general, multicellular organisms, especially animals, have a gastrointestinal
tract, which is essentially a tube from mouth to anus. A cross section of the gas-
trointestinal tract in humans can be divided into three layers. Going from the
inside to outside, the first layer is the epithelium that covers the surface with
epithelial cells, connective tissue, and a muscular coat that takes on a role of con-
traction [8]. Epithelial cells are connected to each other through tight junctions,
adhesion belts by cadherins and desmosomes, and gap junctions through which
small molecules can pass. Epithelial cells connect to a matrix below (Extra-
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Cellular-matrix:ECM) via hemidesmosomes or integrins. For a long time, the
ECM had been considered as a physical crutch or anchorage. Recently, however,
it became clear that the ECM has more active functions such as passing some
specific molecules or controlling the form of a cell that is attached to it. Taking
the human gastrointestinal tract as an example, three kinds of curvatures of
different scales on epithelium layer can be observed. They are called plicae cir-
culares, villi and microvilli in descending order. This architecture increases the
surface area, which facilitates the uptake of food by the gastrointestinal tract.
Focusing on this hierarchical form of the epithelial surface, H.Honda advocates
that in general the form of multi cellular system is realized as two-dimensional
sheets rather than three-dimensional solids [9].

2.1 Two Layer Reaction-Diffusion Model

The cross-section of the gastrointestinal tract can be modeled as two layers for
simplification, the epithelial layer and the ECM, which includes submocosal layer
and the below. The simulations are performed on a one-dimensional cell array.
Fig.1 shows a schema of this model and its correspondence to the biological gas-
trointestinal tract. Upper nodes represent cells, lower ones represent connection
points of each epithelial cells and ECM. Both are expressed as mass points. Links
between them are represented as chemical and mechanical connections (chemical
substances only diffuse through horizontal and vertical connections, see Fig.1).
The mechanical interactions are expressed as spring and damper connections.
Epithelial cells contain two chemical substances that react and diffuse, in order
to generate reaction-diffusion waves. A reaction-diffusion wave is a periodic spa-
tial concentration pattern (see [1]). The general form of a two chemical reaction-
diffusion system can be expressed as partial differential equations (eq.1,2).

u̇ = f(u, v) + Du∇2u (1)
v̇ = g(u, v) + Dv ∇2v (2)

epithelial layer

ECM layer

A

B

u1

U1 Uk Uk+1 UN

ur ur+1 uN

v1 vr vr+1 vN

Epithelial layer

ECM layer

Fig. 1. Two layer model. Upper layer represents epithelial cells and lower layer rep-
resents ECM. Epithelial layer can generate reaction-diffusion wave. ECM just diffuses
chemical substances.
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f(u, v) ≡ +5u − 6v + 1−(u − 1)3

= +2u + 3u2 − u3 − 6v + 2 (3)
g(u, v) ≡ +6u − 7v + 1−(v − 1)3

= +6u − 10v + 3v2 − v3 + 2 (4)
u̇ = D∇2u (5)

Where u, v represent concentrations of the two chemicals, f(u, v) and g(u, v)
represent reaction parts between chemicals u and v, respectively. ∇2u and ∇2v
represent the Laplacian of u and v respectively. Du, Dv and D represent diffu-
sion coefficient of activator, inhibitor and also activator, respectively. Usually a
proportion Dv/Du plays a key role in the behavior of reaction-diffusion system.
Since chemical substances diffuse to neighboring cells and the ECM via differ-
ent channel, it seems reasonable to assume that the diffusion coefficients differ
among internal epithelial connections and among epithelial-ECM connections. We
set that only the activator can pass through the connection between epithelial cell
and ECM. Eq.3,4 is applied for the reaction part, which adds the non-linear term
(underlined in eq.3,4) to the Turing’s model in order to be more stable fulfilling
a definition of activator and inhibitor

(
∂u
∂v < 0, ∂v

∂u > 0
)
. The equilibrium points

are the same as Turing’s (u = 1.0, v = 1.0). The function of the ECM is just
to diffuse chemical substances. Its general form can be expressed in eq.5. To the
system, Dirichlet boundary conditions were applied, which set the chemical flow
at the boundary to zero

(
du1
dx = duN

dx = 0, dv1
dx = dvN

dx = 0, dU1
dx = dUN

dx = 0
)
. Here,

u1, uN , v1, vN , U1, UN represent the concentrations of boundary cells and ECM.

2.2 Cell Cycle and Cell Division

Cell cycle is determined by various factors, in this paper, the condition for cell
division depends on the concentration and a specific threshold. Cells divide when
the concentration of the activator is kept over a specific threshold for a certain
time. The concentration of each chemical substance right before division is ap-
plied to the concentration of the cell divided.

Fig.2 illustrates the rule controlling how cells reconnect after they divided.
Where a represents distance from epithelial cell to ECM and b represents connec-
tion length between two cells. Fig.2 a) shows that after each cell divides, a new

division
curved

a

b 2sin(b/2a) [rad]

division

Extracellular matrix (ECM)

epithelial cell

a) b)

Fig. 2. Reconnection by cell division. a)After each cell divides, a new link is added,
then an 2sin(b/2a)[rad] angle of curvature is created depending on the ratio of the
length of horizontal and vertical links. b)Correspondence to real tissue.
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link is added, then an 2sin(b/2a)[rad] angle of curvature is created depending
on the ratio of the length of horizontal and vertical links. Since the operating
mechanism of the extend speed of ECM hasn’t been clear, the ECM’s extension
speed is assumed to be constant. Fig.2 b) illustrates the correspondence to real
tissue after the curvature is created.

3 Simulations

dur/dt = +2ur(t) + 3u2
r(t) − u3

r(t) − 6vr(t) + 2
+ Duepi{ur−1(t) + ur+1(t) − 2ur(t)} + Duepi−ECM (Uk − ur) (6)

dvr/dt = +6ur(t) − 10vr + 3v2
r(t) − v3

r (t) + 2
+ Dvepi{vr−1(t) + vr+1(t) − 2vr(t)} (7)

dUk/dt = Duepi−ECM

∑
r

(ur − Uk) + DuECM (Uk−1 + Uk+1 − 2Uk) (8)

By discretizing the space the eq.6,7 can be obtained from eq.3,4. In the same
way, eq.8 can be obtained from eq.5. These equations are used to calculate the
dynamics of the chemicals, where, ur and vr represents the concentration of
activator and inhibitor in epithelium cell, respectively. Uk represents the con-
centration of activator in ECM. Subscript r and k is an identification num-
ber of the cell and the ECM, respectively. The parameters are set as follows:
Duepi = DuECM = 1.0, Dvepi = 3.0, Duepi−ECM = 0.53, uthreshold = 1.035, initial
concentration (u, v) = (1.0, 1.0)(equilibrium point). If the concentration exceeds
a division threshold for more than 50 steps (step is defined below), a cell divides.
Initial perturbations are always added at the center of the epithelial layer.

mq̈i + c
∑

j

(q̇i − q̇j) + k
∑

j

(
1 − l

|qi − qj |
)

(qi − qj) = 0 (9)

Cells move on a two-dimensional space. The equation of motion for the cell
i is expressed in eq.9 where subscript i, j is an identification number of the
cell or connection point to ECM. The position of the cell qi is defined as a
vector. The cell which exists in neighbor of cell i is denoted as j. m, c, k, and l
denote mass, damper coefficient, spring coefficient and natural length of spring,
respectively. These parameters are set as follows: m = 9, c = 30, k = 50, lhor =
18, lver = 40. Every differential equation is integrated by the Euler method
(δt = 0.05, 1step=20δt). Mechanical forces are calculated assuming in vivo time
scales (δt = 0.005, 1step=60δt).

Fig.3 a),b), and c) show the simulation results in chronological order. The
number of initial epithelial cells are set to 8,64 and 128, respectively. White
colored cells represent those in which the concentrations of activator exceed the
threshold. Fig.3 a) shows a sectional side view of the gastrointestinal tract (Fig.1
B). It can be seen that the curvature is created depending on the difference
of the extension speed between epithelial layer and ECM. Fig.3 b) shows the
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A
B

1step 128cells

80steps 142cells

130steps 178cells

330steps 298cells

1steps 8cells 60steps 12cells 120steps 16cells 180steps 18cells

1step 64cells          280steps 78cells  380steps 138cells         440steps 158cells

a)

b)

c)

Fig. 3. Simulation results in chronological order. a)Sectional side view of the gas-
trointestinal tract (Fig.1 B). It can be seen that layers bend by cell division. b)The
longitudinal section of the gastrointestinal tract (Fig.1 A). Curvatures are also created
independently of the boundary condition. c)Sectional side view of the gastrointestinal
tract (Fig.1 B). Unexpectedly, two different curvatures of different scales are formed
like Koch-curve. In all results, epithelial cells stop dividing automatically at the end.

longitudinal section of the gastrointestinal tract. The internal layer corresponds
to the epithelial layer and the external layer to the ECM (Fig.1 A). Perturbation
is added on the top. Curvatures are also created independently of the boundary
condition. Fig.3 c) shows a sectional side view of gastrointestinal tract (Fig.1
B). As time passes, unexpectedly, two different curvatures of different scales are
formed on the surface. Finally, fractal hierarchies like Koch-curve are observed
(We shall return to this point later). In all results, it can be seen that epithelial
cells stop dividing automatically at the end.
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Fig. 4. Transition graph. a)Transition of concentration of activator. b)Inhibitor. These
concentrations converge as time passes and no concentration of activator exceeds di-
vision threshold after 329 steps. c)d)Increase of the number of cells. c)To quantify the
role of the ECM, the diffusion coefficient between the epithelial layer and the ECM is
changed from 0.0 to 0.8 and plotted on it. As the figure shows the smaller the coefficient
is, the faster the cells grow. d)Only the initial number of cells differs. It is revealed that
the mechanism of growth convergence is not dependent on the initial number.

Fig.4 a) and b) show the concentration transition of all cells that start at
128 cells. a) and b) show concentration of activator with division threshold and
inhibitor, respectively. X-axis represents time and Y represents concentration.
As time passes, these concentrations converge and none of the concentrations of
activator exceed division threshold after 329 steps. c) and d) show the increase of
cell number. The X-axis represents time and Y-axis number of cells in logarithmic
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Fig. 5. Maximal amplitude of the activator’s concentration. Increase of the curvature
suppresses reaction-diffusion wave.
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scale. (lines pointed by arrows in c) and d) show this model). To quantify the
role of the ECM, the diffusion coefficient between the epithelial layer and the
ECM changed from 0.0 to 0.8 and plotted on c). The figure shows the smaller the
coefficient is, the faster the cell grows. When the diffusion coefficient is 0.8, the
number of cells doesn’t change, because none of the concentrations of activator
exceed threshold. This indicates that the diffusion coefficient between epithelial
layer and ECM influences the speed of cell growth. Initial number of cells is
changed and plotted in d). It can be seen that the growth mechanism converges
independently of the initial number of the cells. The growth rate doesn’t change
after each transition (around 220% to 250%).

4 Discussions

4.1 The Suppression of Amplitude of Reaction-Diffusion Wave

Fig.5 shows the maximal amplitude of the activator’s concentration generated
by the epithelial layer after the number of cells increased from 5 to 11 in different
cell topologies (A and B). The X-axis represents the number of cells and the Y-
axis the largest concentration. It can be seen that the increase of the curvature
suppresses the reaction-diffusion wave. When the number of cells becomes larger
than 8, all concentrations of activator become below threshold. This is because
the ECM, which connects several cells plays a role of averaging activator that
is contained in epithelial cell (Eq.8). Thus as the number of connecting cells
increases, concentration of ECM becomes closer to the average of all concentra-
tions that connect (usually u = 1.0). Consequently, the reaction-diffusion wave
is inhibited. This can also be confirmed by settling all concentration of activator
of ECM 1.0 when layers are straight.
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Fig. 6. Growth speed of epithelial cells depending on two parameters. a) The X-axis
represents diffusion coefficient, Y represents division threshold and Z represents growth
speed. b) X-Y plane area of the same figure. Though it seems these parameters have
thin range, note that the curvature depends on the ratio of horizontal-vertical length
of the links (see Fig.2).
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Fig.6 shows the growth speed of epithelial cells depending on two parame-
ters: the division threshold and the diffusion coefficient between epithelial layer
and ECM. The growth speed is defined as follows: the number of cells at 300
steps/initial number of cells (this time 8). In fig.6 a), X-axis represents diffusion
coefficient, y division threshold and z growth speed. In fig.6 b), X-Y plane area
is also represented with contours and its forms when the growing speed is 1.5,
2.0, and 2.25. By shifting diffusion coefficient to smaller, the ratio of reaction-
parts/diffusion-parts gets lager in their reaction-diffusion system. This makes the
amplitude of reaction-diffusion wave bigger: the smaller the diffusion coefficient
becomes, the faster growth speed becomes.

4.2 Hierarchy of the Form

In Fig. 3 c), two different scales of curvatures are formed (A and B). The small
curvatures are formed because the epithelial layer and the ECM have differ-
ent extending speeds. The large scales are created due to mechanical interac-
tions between cells, which extend initial small mechanical perturbations due to
cell divisions. This large curvature is always observed, when the layers have a
certain length. Each curvature is formed based on their mechanisms and this
is the reason why the scales vary. Since friction between gastrointestinal or-
gans and its outer has not been modeled, external forces can erase the large
curvature.

5 Conclusions

This paper focused on geometric topology changes of cell networks and shows
that topology changes enable reaction-diffusion mechanisms to control morpho-
logic process. In other words, the shape that is driven by reaction-diffusion can
build up a feedback loop back to reaction-diffusion mechanism. The model is
comprised of two layers: one is the epithelial layer that generates reaction diffu-
sion waves and the other is the ECM that diffuses chemical substances. Cells
divide depending on the reaction-diffusion mechanism. Once the shape gets
round, chemical substances are averaged at middle point, inhibiting the am-
plitude of the reaction-diffusion wave. Since the cell division depends on the
concentration of activator in this model, it restricts system’s growth. This closed
feedback loop is one of the autonomous distributed ways to code morphogen-
esis by supposing that chemical substances act as a transmitters of positional
information.
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Abstract. In group-living animals, aggregation favours interactions and
information exchanges between individuals, and thus allows the emer-
gence of complex collective behaviors. In previous works, a model of a
self-enhanced aggregation was deduced from experiments with the cock-
roach Blattella germanica. In the present work, this model was imple-
mented in micro-robots Alice and successfully reproduced the agrega-
tion dynamics observed in a group of cockroaches. We showed that this
aggregation process, based on a small set of simple behavioral rules of
interaction, can be used by the group of robots to select collectively an
aggregation site among two identical or different shelters. Moreover, we
showed that the aggregation mechanism allows the robots as a group to
“estimate” the size of each shelter during the collective decision-making
process, a capacity which is not explicitly coded at the individual level.

1 Introduction

Since the last 15 years, collective robotics has undergone a considerable devel-
opment [18]. In order to control the behavior of a group of robots, collective
robotics was often inspired by the collective abilities demonstrated by social
insects [3,15]. Indeed, nature has already developed many strategies that solve
collective problems through the decentralized organisation and coordination of
many autonomous agents by self-organized mechanisms [4].

Among all these self-organized behaviours, aggregation is one of the simplest.
But it is also one of the most useful. Indeed, aggregation is a step towards
much more complex collective behaviours because it favours interactions and
information exchanges among individuals, leading to the emergence of complex
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and functional self-organized collective behaviours (for some examples, see [4]).
As such it plays a keyrole in the evolution of cooperation in animal societies [6].

Such self-organized aggregation processes were regularly used in collective
robotics. For instance, foraging tasks (i.e. clustering of objects scattered in the
environment) were used to study the impact of the group size [12] or of a simple
form of communication [17] on the harvest efficiency. But even more complex
consequences of aggregation processes were studied with groups of robots. For
instance, [1] showed that division of labor can emerge in a group of foraging
robots when the size of the group grows. [8] showed that an object clustering
paradigm based on stigmergy [7] can lead a group of robots to order and assemble
objects of two different types.

In this paper we address a new collective behavior that is based on self-
organized aggregation of robots themselves. We show that a self-enhanced ag-
gregation process, which leads groups of cockroaches to a quick and strong ag-
gregation [10], can be used by a group of mini-robots Alice to select collectively
an aggregation site among two identical or different shelters. We show that,
even though these robots have limited sensory and cognitive abilities, they are
still able to perform a collective decision. It has already been shown that such
self-enhanced mechanisms are used by insects to make collective decisions: for
instance in food source selection in bees [16] or in resting site selection in cock-
roaches [2]. These collective choices appear through the amplification of small
fluctuations in the use of two (or more) targets.

We first describe the biological model of aggregation we have used and the
way this model was implemented in a group of mini-robots Alice. We then show
that this implementation indeed results in a collective aggregation behavior that
is quantitatively indistinguishable from cockroach aggregation. Finally, we show
that, when this aggregation behavior is restricted to certain zones in the envi-
ronment (for instance by natural preferences for dark places as in cockroaches
[14]), the robots preferentially aggregate in only one of these zones, i.e. they
collectively choose a single “rest” site. When these zones are of different sizes,
the robots preferentially choose the biggest of the two, but without being in-
dividually able to measure their size. The results of our experiments were also
used to calibrate a computer simulation model of Alice robots that will allow us
to extend the exploration of this collective decision model in further studies.

2 Self-organized Aggregation

The aggregation process cited above is directly inspired by a biological model
of displacement and aggregation developed from experiments with first instar
larvae of the german cockroach Blattella germanica [9,10]. This model was built
by quantifying individual behaviors of cockroaches, that is their displacement,
the interactions among individuals and with the environment in a homogeneous
circular arena (11 cm diameter) . Each of these individual behaviors was de-
scribed in a probabilistic way: we measured experimentally the probability rate
for a given behavior to happen.
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This analysis showed that cockroaches display a correlated random walk (con-
stant rate to change direction and forward oriented distribution of turning an-
gles) in the center of the arena [9]. When reaching the periphery of the arena,
cockroaches display a wall following behavior (thigmotactic behavior) with a
constant rate to leave the edge and return into the central part of the arena
[9]. In addition, cockroaches can stop moving at any moment, stay motionless
for some time and then move again. Analysis showed that the stopping rate for
an individual increases with the number of stopped cockroaches in the direct
neighbourhood (within the range of antenna contact) [10]. On the other side,
the rate to leave an aggregate decreases with this number [10]. Thus, this dual
positive feedback leads to the quick and strong formation of aggregates (see Fig.
1). A more detailed description of the model can be found in [9,10].

The first part of our work was to implement this biological model of aggre-
gation in the micro-robots Alice. These robots were designed at the EPFL (Lau-
sanne, Switzerland) [5]. They are very small robots (22mm x 21mm x 20mm)
equipped with two watch motors with wheels and tires allowing a maximum
speed of 40 mm s−1. Four infra-red sensors are used for obstacle detection and
local communication among Alices (up to 4 cm distance). Robots have a micro-
controller PIC16LF877 with 8K Flash EEPROM memory, 368 bytes RAM but
no built-in float operations. To determine the number of neighbors (upon which
the aggregation process relies), each robot owns a specific identification number
and counts the number of nearby neighbors in a distance roughly less than 4
cm. Intrinsic differences between the perception area of robots and cockroaches
and imperfect neighbor counts due to noise in IR devices required some fine-
tuning of the behavioral parameters in order for the behavioural output of the
robots to correctly match the cockroach individual behaviors. This behavioral
output of robots was measured using the same experimental methods (10 to 30
experiments depending on the studied behavior) as those used to characterize
the individual behavior of cockroaches [9,10].

However the true validation of the model implementation must be done at
the collective level by comparing the aggregation behavior of robots to the ag-
gregation behavior of cockroaches. To this aim, we ran the following aggregation
experiment: groups of robots (10 or 20 individuals) were put into a homogeneous
white circular arena (50 cm diameter) during 60 minutes. This experiment is
similar to the one done by [10] with cockroaches. To draw a parallel between
cockroach aggregation behavior and robot aggregation behavior, we scaled the
dimensions of the arena so that it matches scale differences between robot and
cockroach sizes. The experiment was repeated 10 times for each group size. The
aggregation dynamics were characterized through three kinds of measurements
(sampled every minute): size of the largest aggregate, number of aggregates and
number of isolated individuals (see [9,10] for a detailed description of these mea-
surements). The experimental results showed a very good agreement between
robots and cockroaches, confirming that the cockroach aggregation process was
well implemented in the Alice robots (see Fig. 1).



172 S. Garnier et al.

Fig. 1. Aggregation dynamics.A: number of aggregates. B: size of the largest aggregate.
C: number of isolated individuals. 1: experiments with 10 individuals. 2: experiments
with 20 individuals. Black dots represent data for robots; white dots represent data for
cockroaches. Each dot represents the mean ± standard error (s.e.). Initial differences
between starting points of robot and cockroach dynamics are solely due to the way
cockroaches have to be brought into the arena as explained in [10].

3 Collective Choice

This aggregation process implemented in robots can occur anywhere in the whole
experimental arena, with no preference for a given location. Actually, in nature
some places are more attractive for cockroaches, thus promoting aggregation in
particular sites. For instance, cockroaches preferentially aggregate in dark places
[14]. Experimentally, if one puts a dark shelter in a lighted arena (as the one
used for the study of cockroach aggregation), one can observe that cockroaches
strongly aggregate under this shelter. And if two or more dark shelters are placed
in the arena, one can observe that a majority of cockroaches aggregates under
only one of these shelters, rather than spreading evenly among all the aggregation
sites [11]. Hence cockroaches are able to perform a collective choice for a given
aggregation site, even if these sites are identical.

Though the mechanisms leading to this collective choice are not yet fully
understood, we suggest that this choice could strongly rely on the self-enhanced
aggregation process described above and tested with robots. In a recent paper,
[2] showed that the simple modulation of the resting period on a given site
by the number of individuals on that site leads the group of cockroaches to the
choice of one shelter among two or more identical ones. We suggest here that this
modulation can be implemented easily through the aggregation process described
above. To test our hypothesis, we ran three sets of experiments during which a
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Fig. 2. Snapshots of an experiment (top) and a simulation (bottom) taken every 20
minutes during 60 minutes. These snapshots correspond to the experiment with two
identical shelters (14 cm diameter). As can be seen, the experiment ended with the
choice of one of the two shelters by both real and simulated robots.

group of robots faced the choice between two potential aggregation sites. Besides
proving that a collective decision can appear in robots from a simple aggregation
process, these experiments were also used to calibrate a simulation tool which
will be used in further studies to identify the behavioral parameters that control
collective choice (see Fig. 2 for some pictures of both experiments wih robots
and simulations). In the following, all statistical computations will be made in
the free software R [13].

The first set of experiments was designed to ascertain whether the cockroach
aggregation behavior is able to lead a group of robots to a collective choice
between two identical targets. To that aim, we put a group of 10 robots in the
same arena as the one used for aggregation experiments, except that we added
just above the arena two dark shelters. These shelters were of the same size
(14 cm diameter) and each of them can house the whole population of robots.
Robots used the same behavioral algorithm as the one previously tested for its
aggregation ability, except that, now, robots only stop under dark shelters (that
is when IR light intensity falls under a given threshold). 20 experiments were
performed, each lasting 60 minutes.

The number of stopped robots under each shelter was measured every minute
to characterize the aggregation dynamics under each shelter. In addition, we also
computed the percentage of stopped robots under each shelter at the end of each
experiment to characterize the collective choice of the group of robots. From this
last measurement, we derive what we call a “choice distribution”. For a given
shelter, this choice distribution corresponds to the number of experiments ending
with a given percentage of stopped robots under this shelter (the choice distribu-
tion being symmetrical for the other shelter). Note that a robot can be in one of
these three locations at the end of an experiment: under shelter 1, under shelter 2
or outside the shelters. In the case of each robot choosing randomly a shelter (i.e.
without any influence of its conspecifics), the result will follow a trinomial law
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with parameters mtot = 10 (number of robots), pa = (mtot−ms)/mtot (pa, prob-
ability for a robot to be outside the shelters; ms number of robots stopped under
any shelter, estimated from the experiments), ps1 = (1−pa)(r2

s1/(r2
s1+r2

s2)) (ps1,
probability for a robot to be under shelter 1; rs1, radius of shelter 1; rs2, radius
of shelter 2) and ps2 = 1 − ps1 − pa (ps2, probability for a robot to be under
shelter 2). The choice distribution resulting from this trinomial law can be ob-
tained through Monte Carlo simulations (10000 simulations of 20 replicates). In
the case of identical shelters, this choice distribution displays a centered peak as
can be seen in Fig. 3 B.1, meaning that a majority of experiments should end
with no choice for a particular shelter.

Contrary to the trinomial resulting choice distribution, the choice distribu-
tion obtained in experiments with two identical shelters displays two peaks, one
at each side (see Fig. 3 B.2). A chi square test shows a strong difference between
the trinomial and experimental distributions (χ2 = 367.7, df = 4, p < 0.0001).
Similar results are obtained with simulations (see Fig. 3 B.3) and a chi square
analysis of contingency tables shows no difference between experiments and sim-
ulations (χ2 = 2.1, p = 0.7322, p-value simulated with 10000 replicates). This
U-shape distribution corresponds to two different “populations of experiments”,
each of them preferentially ending with the choice of one of the two shelters. Fur-
thermore, in this case with two identical shelters, the symmetry of the U-shape
means that each shelter is randomly chosen from one experiment to another.
The dynamics of this choice can be seen in Figs. 4 B.1 and B.2. It shows that
the choice occurs very rapidly within the first minutes of the experiments. It also
shows that this choice is very strong, since 75.5 ± 3.36% (mean±s.e., n = 20)
of the population of robots is under the chosen shelter at the end of the ex-
periments (78 ± 0.53%, n = 1000, in simulations). Thus this set of experiments
clearly shows that the aggregation process described above (with very simple
individual behaviors) can lead a group of robots to perform a collective choice
between two aggregation sites.

The two other sets of experiments were designed to assess the impact of a
qualitative difference between the two shelters on the collective choice. As in the
previous set of experiments, a group of 10 robots faced a choice between two
shelters. But this time, while one of the shelters kept the same size as in the
previous experiment, the size of the other was altered.

In a first set of 20 experiments, we confronted a 14 cm diameter shelter
(able to house the whole robot population) with a 10 cm diameter shelter (too
small to house the whole population of robots). As can be seen in Figs. 4 A.1
and A.2, robots quickly and strongly choose the shelter able to house their
whole population. Thus, at the end of the experiments, 68± 3.29% (mean±s.e.,
n = 20) of the population is under the 14 cm diameter shelter (72.7 ± 0.79%,
n = 1000, in simulations). The choice distribution shows a strong shift towards
the 14 cm diameter shelter (see Fig. 3 A.2). This shift is the result of more than
the simple difference between the area of the two shelters. Indeed, a comparison
between the experimental distribution and a trinomial distribution (Fig. 3 A.1)
taking into account this difference in size shows a strong difference (χ2 = 365.4,
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Fig. 3. Choice distributions. In these distributions, each block represents a number
of experiments ending with a given percentage (0-20, 20-40, 40-60, 60-80 and 80-100
percent) of robots under one of the two shelters. Top: trinomial distributions (random
choice). Middle: experimental distributions (n = 20). Bottom: simulation distribu-
tions (n = 1000). Columns A and C represent choice distributions for the 14 cm
diameter shelter against either the 10 cm diameter shelter (column A) or the 18 cm
diameter shelter (column C). For each of these distributions, blocks on the right mean
choice of the 14 cm diameter shelter and blocks on the left mean choice of the other
shelter (either 10 or 18 cm diameter). Column B represents the choice distribution
for a 14 cm diameter shelter against an other 14 cm shelter.

df = 4, p < 0.0001). Similar results are obtained with simulations (see Fig. 3
A.3) and a chi square analysis of contingency tables shows no difference between
experiments and simulations (χ2 = 9.4, p = 0.0595, p-value simulated with 10000
replicates [13]). The disappearance of the U-shape of the distribution means
that it remains only one “population of experiments” preferentially ending with
the choice of the 14 cm diameter shelter, i.e. the one able to house the whole
population of robots.

In a second set of 20 experiments, we confronted a 14 cm diameter shelter with
a 18 cm diameter shelter. Both shelters are able to house the whole population
of robots. As can be seen in Figs. 4 C.1 and C.2, robots choose the 18 cm
diameter shelter. Thus, at the end of the experiments, 70.5± 7.56% (mean±s.e.,
n = 20) of the population is under the 18 cm diameter shelter (61 ± 1.12%,
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Fig. 4. Choice dynamics: number of robots aggregated under each shelter. Top: exper-
imental data (n = 20). Bottom: simulation data (n = 1000). In column A and C,
black dots represent data for the 14 cm diameter shelter; white dots represents data for
either the 10 cm diameter shelter (column A) or the 18 cm diameter shelter (column
C). In column B, black dots represent data for the chosen shelter (i.e. the shelter
which is chosen at the end of each experiment); white dots represent data for the “not
chosen” shelter. In all cases, each dot represents the mean ± s.e.

n = 1000, in simulations). The choice distribution shows a shift towards the 18
cm diameter shelter (see Fig. 3 C.2). This shift is the result of more than the
simple difference between the area of the two shelters. Here also the comparison
between the experimental distribution and a trinomial distribution (Fig. 3 C.1)
taking into account this difference in size shows a strong difference (χ2 = 373.8,
df = 4, p < 0.0001). And similar results are obtained with simulations (see
Fig. 3 C.3) and a chi square analysis of contingency tables shows no difference
between experiments and simulations (χ2 = 5.4, p = 0.2301, p-value simulated
with 10000 replicates). But contrary to the previous experiment, the U-shape of
the distribution has not disappeared and the two “populations of experiments”
still exist: one that preferentially ended by a choice of the 14 cm diameter shelter,
the other that preferentially ended by a choice of the 18 cm diameter shelter,
the latter prevailing on the former.

From the two latter sets of experiments, we can conclude that the group
of robots will choose preferentially a shelter that is sufficiently large to house
all its members. But when the group is confronted with two sufficiently large
shelters, the self-enhanced aggregation mechanism can lead the group to two
stable choices, with a preference for the larger shelter. This implies that the group
of robots is able to “sense” and “compare” the size of the shelters during the
collective decision process, a performance that is beyond the direct scope of the
simple aggregation process used in these experiments and that is not explicitly
implemented in individual robots. We hypothesise that this relies on the higher
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probability for the robots to encounter this shelter in the arena. Indeed, the more
robots encounter a shelter, the more likely they will stop spontaneously under
it. Thus, there will be more individual stopped robots under the bigger shelter
that will act as “seeds” for new clusters.

4 Conclusion

In this work, we achieved the implementation of a biological model of self-
enhanced aggregation in a group of mini-robots Alice. Despite the strong differ-
ences in terms of sensory abilities between biological and artificial models, the
aggregation dynamics observed in robots closely match those observed in cock-
roaches. This result is obtained by measuring robot and cockroach behaviours in
terms of behavioural probabilities, thus taking into account sensory and motor
abilities of the two systems. Then, by calibrating the behavioural probabilities
programmed in the robots, we reproduced both individual displacement and
stop behaviours of the biological system with the artificial one. And the aggre-
gation dynamics emerge from these individual behaviours, as is expected from
the model described in [9,10]. With this method, it is thus only required that
the robot features approximatively reproduce cockroach features to accurately
reproduce their aggregation behaviour.

Moreover, we achieved a collective decision process from this simple biological
model of aggregation. We showed that a self-enhanced aggregation process asso-
ciated with a preference for a given type of environmental heterogeneity (here a
preference for dark places) can lead a group of robots to a collective choice for
an aggregation site. Furthermore, this choice can be related to a collective abil-
ity to “sense” and “compare ” the sizes of the aggregation sites. This is a very
interesting robotics example of an interaction between a simple self-organized
mechanism and an evironmental template, leading to the emergence of a far
more complex collective behaviour and of new collective abilities not explicitly
coded in the basic model of aggregation.

This work opens some interesting perspectives for collective robotics. Collec-
tive choices could be associated, for instance, with an ordering behavior of the
same kind than the one described in [8], so that robots would assemble objects of
different types in different places. We argue that such associations are new chal-
lenges to take up if this collective robotics, based on self-organized mechanisms
and/or biologically inspired behaviors, must become an efficient and robust way
to achieve complex tasks with groups of numerous small autonomous robots.
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Abstract. Using decentralized control structures for robot control can
offer a lot of advantages, such as less complexity, better fault tolerance
and more flexibility. In this paper the evolution of recurrent artificial
neural networks as centralized and decentralized control architectures
will be demonstrated. Both designs will be analyzed concerning their
structure-function relations and robustness against lesion experiments.
As an application, a gravitationally driven robotic system will be in-
troduced. Its task can be allocated to a cooperative behavior of five
subsystems. A co-evolutionary strategy for generating five autonomous
agents in parallel will be described.

1 Introduction

The Artificial Life (AL) approach to Evolutionary Robotics (ER) provides
promising methods for optimizing a variety of control problems [8,11]. This in-
cludes the optimization of structure and parameters of artificial recurrent neural
networks (RNNs), morphology parameters of robots, or even co-evolution of
many different populations. Within our approach to AL and ER we are using
evolutionary techniques for generating RNNs controlling robot behavior [9]. We
are aiming at artificial systems with so called minimal cognition [2,5]. In this
context we are trying to deal with minimal models of non-linear dynamical con-
trol that can offer a variety of behavioral patterns. To investigate the dynamical
properties of such control structures we study relatively simple artificial systems
to gain deeper insights into the essence of dynamical systems such as RNNs and
robot-environment interactions.

In this paper we will present an example offering investigations of basic
cooperation mechanisms among artificial agents coupled through a common
body. There are many examples, where cooperation within a group of homo-
geneous or heterogeneous agents may have advantages over single agents in solv-
ing complex tasks [3]. One reason is the possibility of task decomposition and
task allocation. To give an example for task allocation, we use the artbot mi-
cro.eve (http://www.sphericalrobots.com). Among other intentions, Julius Popp
designed micro.eve to provide a benchmark system for control architectures
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c© Springer-Verlag Berlin Heidelberg 2005
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where a simple body-consciousness emerges. Considering embodiment as a funda-
mental aspect of creating artificial autonomous agents [4,10], the system can be
described as a set of five agents, which are able to act locally and independently.
Hence the agents are connected to a common body, their local actions affect not
only themselves but also the behavior of the common body and consequently also
the behavior of the other agents. They have to cooperate to solve the task, which
is a well known problem in collective robotics [7,12]. For instance, in [1] an exam-
ple of physically linked robots solving a common task is given. Here, the system
seems much simpler. But due to this simplicity it allows detailed analysis of the
underlying control structure. We will show two different kinds of control. First,
we evolve one central RNN which controls all the agents. Second, we evolve a
RNN for each separate agent in co-existing populations, whereas each agent can
sense the action of the other agents only by sensors providing information about
the common bodies’ behavior. There is no explicit communication among the
agents. We will analyze two resulting architectures with respect to performance,
structure-function relations, and robustness.

2 Methods

Figure 1 illustrates the artbot micro.eve as well as its simulated model. The
robot consists of five movable arms, which are connected to a common body.
The center of mass of these arms can be actively translated by a servo motor.
Through a coordinated motion of the five arms the overall center of mass of
the robot can be translated in such a way, that the ring starts to rotate on two
supporting rollers. Here, we defined the task of the system as rotating as fast
and as harmonically as possible.

The control structures have to produce the motor signal for each arm. The
sensory system consists of potentiometers in each motor, a gyroscope located
inside the ring, and five hall sensors equally distributed over the ring. Each hall
sensor is located between two arms, respectively. These hall sensors are binary

Fig. 1. The artbot micro.eve. Left: Hardware, Right: Simulation
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switches emitting a peak if they pass a magnet placed at the bottom of the ring.
We merged all five hall sensor to one sensory input relative to the arm index,
i.e. for each arm the next hall sensor to the right has the index 1. The arm
and hall sensor indices are incremented counterclockwise. The mapping (i, si),
where i denotes the index of the last activated hall sensor and si the according
sensor value, is as follows: (0, 0.0); (1, 1.0); (2, 0.66); (3, 0.33); (4,−1.0); (5,−0.33).
Hence the output of the input neuron, which provides the hall sensor information,
should be zero if no hall sensor is activated at all (i = 0) the use of this discrete
mapping was chosen instead of a monotonic function. Accordingly, within the
decentralized control approach each agent has it its own sight of the hall sensor.
To reduce the amount of input neurons for the centralized control structures
the sight of the first arm is provided as sensory input. The sensor values of the
potentiometers are linearly mapped to the interval [−1.0, 1.0]. The gyroscope
values are transformed to an angular velocity of the ring with a maximum at 0.5
rounds/secs. For the input of the neural network these values are also mapped
to the interval [−1.0, 1.0], where negative values indicate a counterclockwise and
positive values a clockwise rotation.

For our control approach we used discrete-time artificial recurrent neural
networks with standard additive neurons with sigmoidal transfer function σ =
tanh. For generating these controllers we used an evolutionary algorithm that
allows variation of the network’s structure and its parameters at the same time.
A full description of the algorithm and some other applications can be found
elsewhere [6]. Here, to solve the robot’s task we defined the following fitness
function:

F = |ω| ∗ (1 −
∑n

t=0 |ω(t) − ω|
2n

) (1)

where ω is the angular velocity of the ring represented by the output of the
mapped gyroscope sensor value. The left term (|ω|) rewards a high mean ve-
locity and the right term rewards a harmonic rotation. Due to the use of tanh
as transfer function the output of the velocity sensor neuron is in a range be-
tween −1 and +1. Accordingly the range of the fitness value is between 0.0 and
+1.0. Note that we are using an implicit fitness function, i.e. no global knowl-
edge is used. Parameters of the fitness function are solely determined by sensor
information that are accessible by the agent.

To avoid dominance of specialists we evaluated every individual on 20 dif-
ferent randomly (uniformly distributed) generated starting conditions. For this
purpose the ring angle is varied in the full range of 2π, and the angle of each
arm is varied within its complete working range. The resulting fitness value is
the mean fitness of these 20 evaluation cycles. One evaluation cycle lasted 1200
evaluation steps (corresponds to 120 secs real time).

For generating the decentralized control architectures we applied a simple
co-evolutionary strategy. Each arm is controlled by one autonomous RNN. The
sensory input of the RNNs is reduced to one relative hall sensor input, as pre-
viously described, the ring velocity, and the arm’s potentiometer. A single con-
troller has one output neuron controlling the according motor signal. Every agent
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Fig. 2. Evolution of the angular ring velocity with time and their variance for the
decentralized (A) and centralized control structures (B), starting from several initial
conditions.

is evolved in a separate population. The evolutionary process for a single pop-
ulation is the same as for the evolution of the centralized control structure, i.e.
every population has its own selection, reproduction, and variation operators.
In every population the individuals are sorted according to their fitness values,
starting with the highest. The offsprings get no fitness value after selection, they
are appended at the end of the sorted list. For evaluation, one agent of each
population is selected and applied to the arm related to its population, i.e. a
group of five agents, each from a different population, is evaluated together at
the same time. The selection of the group members is rank based related to the
fitness value, i.e. the agents taking the first place in each population are evalu-
ated together, than the agents on the second place and so on. In such a way the
evaluation of i populations needs j evaluation cycles, where j is the number of
individuals within the largest population. The fitness function (equation (1)) re-
gards the performance of a group of agents, which have to cooperate. Therefore
every agent within one group gets the same fitness value, regardless which local
acting network gives the most or even the least contribution to it.

3 Results and Discussion

Figure 3 shows the outcome of the evolutionary process for the centralized and
decentralized control approach. Both control techniques are successful in solving
the given task. The mean fitness F and its variance σ2 for 100 evaluation cycles
with random starting conditions is 0.900 (σ2 = 0.001) for the centralized and
0.884 (σ2 = 0.003) for the decentralized control architecture. After transferring
these RNNs unchanged to the real machine, the observed behavior was qualita-
tively the same, although the evolution of these RNNs was completely done in
simulation with a very simplified motor model, and only roughly approximated
friction and noise. We observe that once the ring started to rotate from a given
starting position, it harmonically rotates for the whole evaluation time, i.e. a
mean fitness of 0.9 indicates that this agent can handle about 90 percent of
different starting conditions. Note, that it is nearly impossible to reach a fitness
value of 1.0 due to the time the agent needs to initiate a rotation. During this
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Fig. 3. RNNs of the centralized (A) and decentralized (B) control architectures. Input
neurons are indicated by white circles and output neurons by grey circles.

initialization the rotation cannot be harmonic. Therefore the first 10 seconds of
an evaluation cycle did not contribute to the fitness value.

Figure 2 illustrates the evolution of the angular ring velocity with time.
The average of 100 runs with random, uniformly distributed, starting condi-
tions (ring angle, arm angles) and the variance are given for both control ar-
chitectures. The centralized RNN as well as the decentralized RNN performs
only counterclockwise rotation and approaches the maximum angular velocity
(|ωmax| = 0.5rounds/sec) in about 10-15 seconds. The decentralized RNN seems
to have a smoother transition to ωmax whereas the centralized RNN needs about
2.5 seconds for initializing a rotation at all but than reaches ωmax slightly faster.

In the following we will discuss the dynamics of the RNNs and their effect
on the robot behavior. Focusing on the motor neurons, we can determine two
main mechanisms controlling two behavioral states: (1) Oscillations to initialize
the rotation, and (2) Strong impact of the hall sensor to maintain the rotation.

Looking at figure 3 and 4, we find one neuron with a period-2 oscillation
in both control structures. For the centralized control this is N12, and for the
decentralized control N4 of module 4. The period-2 oscillation is due to a over-
critical negative self-connection and persists for all the time (see figure 4). The
strong impact of the hall sensor within the other modules of the decentralized
control can be seen in figure 3. For the centralized RNN N9 and N11 are mainly
controlled by the hall sensor input, N8 receives its strongest input from N11, and
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Fig. 4. Motor signals, hall sensor and ring velocity input of the decentralized (left) and
centralized (right) control structures. The according neurons can be found in figure 3.

N10 gets a strong input from N3 which is directly influenced by the output of
N8. In figure 4 we can see the correlation between the hall sensor input and the
signal of all these motor neurons.
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What does this mean for the behavior of the robot? At the beginning the
hall sensor is inactive, hence the signal of the according input neuron is zero.
Referring to figure 4, most of the motor neuron signals stay around an out-
put value according to their bias terms or the input of other neurons. There-
fore the overall center of mass of the ring is translated once and thus, the ring
may rotate a little. Depending on the starting condition this rotation may be
enough to activate a hall sensor, if this is near the magnet (see figure 1). If
the hall sensor stays inactive, the rotation will stop because most of the motor
signals depends on this input and the according arms will not move at all. In
this case the period-2 oscillating motor neurons will move the ring very slowly
until the hall sensor is activated. Than the rotation starts and is maintained
as it can be seen from figure 4. For most of the time we observe two pairs of
output neurons producing opposed signals. This means that two arms trans-
lating their masses to the center of the ring, and at the same time two other
arms translate their masses to the ring periphery. This action maintains the
ring rotation. In the decentralized control modules the two pairs get negative
feedback from their hall sensory input, in contrast to the centralized control,
where we find positive and negative feedback leading to the opposed move-
ments. In the decentralized control, the opposed movement is based on the fact
that each module has its own, relative, sight of the hall sensor as described
in section 2, whereas the centralized control has only one sight of the hall
sensor.

What is the advantage that one neuron is oscillating all the time? We can find
a good reason, if we perturb the system, i.e. manually stop the ring rotation.
Hence, most of the motor neurons are mainly influenced by the hall sensory
input, as we saw before, most of the arms will stay at their positions when the
ring stops because the hall sensor stays active at its last value. If we than release
the ring, a slow movement can be observed, due to the still oscillating motor
neuron, until the hall sensor changes its value, and that gives rise to a change
in the other motor signals until the ring rotates harmonically again.

There is another interesting fact in the presented control structures. We saw
that there are not as many interesting dynamical features as one could expect
by using RNNs, which is possibly due to the simplicity of the task. On the one
hand we have a period-2 oscillator and on the other hand the behavior of the
others neurons seems to depend more or less directly on one sensor input. But
for instance, if we look at the motor neuron of module 1 in the decentralized
control architecture, we see, while the hall sensor is still inactive, the occurrence
of an oscillation (see figure 4) which is not provided by the structure of the
RNN. This oscillation is based on the input neuron which provides information
about the position of the arm, which is controlled by the motor neuron. At the
beginning the arm moves to a certain position according to the bias term, but
than the motor neuron gets a strong negative feedback from the position sensor
leading to an opposed movement and so on. Here we have a negative feedback
loop through the environment that is depressed when the hall sensor becomes
active due to the much stronger connection from this input neuron.
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Table 1. Mean performance and its variance of the lesion experiments

Lesion Centralized Control Decentralized Control
F σ2 F σ2

none 0.900 0.001 0.884 0.003
Motor 1 0.005 0.000 0.740 0.121
Motor 2 0.702 0.120 0.776 0.018
Motor 3 0.739 0.060 0.671 0.085
Motor 4 0.006 0.000 0.572 0.185
Motor 5 0.579 0.140 0.753 0.082

It is interesting that we can detect similar control principles in two different
designs of control. But then one can ask, what is the advantage of one method
over the other. First, we can see decentralization leads to less complexity in the
structure of the single RNNs (figure 3). And second, due to the autonomy of
the single control modules, there is no explicit communication between the de-
centralized control units, as we discussed it for the centralized RNN, which may
lead to more robustness. To demonstrate the second point lesion experiments
were done with the two introduced results of the different control designs. Both
architectures were tested on 100 random, uniformly distributed, starting condi-
tions. Each run lasted 1200 evaluation steps, i.e. 2 minutes in real time. Here,
lesion means the fixation of one motor neurons output to zero value during the
whole evaluation time. This could be considered as the simulation of a motor
breakdown of the real hardware. Table 1 gives the mean performance, calculated
with the fitness function (equation 1), and its variance for all lesion experiments
performed on both control architectures.

Considering the centralized control structure, lesions of motor 1 and 4 have
the strongest impact. The agent can handle no starting condition. If we look
at the structure (figure 3 (A)) of the RNN, we can see that setting the output
of N8 to zero leads to zero output of N3 as well, which consequently has a
strong impact on N10. Setting the output of N11 to zero will also have a strong
influence on N8 due to the strong connection between these two neurons. We
can see, the fixation of one output neuron also affects the dynamics of other
output neurons. On the contrary, the decentralized control structures have no
inter-connections between the output neurons, which is reflected in the results
of the lesion experiments. In the worst case it still can handle about 57 % of the
starting conditions. The worst case is the lesion at the oscillating neuron (module
4). Interestingly, lesion of the oscillating output neuron N12 of the centralized
control structure leads to a similar performance. That the system is still able
to handle about half of the different starting conditions in this case is due to
the initialization process described earlier in this section. For lesion of motor 2
and 3 at the centralized control structure, where the according motor neurons
have no or only a small influence on other neurons, we observe a performance
comparable to the decentralized one.

It is important to note that the described perturbations were not part of the
boundary conditions during the evolutionary process. If these perturbations were
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included, we would expect a more robust behavior of the centralized control as
well. But one should be aware of that it could be highly difficult to pre-estimate
every possible kind of perturbations in real systems. In the presented example the
robustness against motor breakdowns is an innate property of the decentralized
control approach.

4 Conclusions

In this paper we demonstrated the evolution of a centralized and decentralized
control architecture for the gravitationally driven artbot micro.eve. Both were
able to successfully solve the given task. We could show that minimal structures
arise out of the evolutionary process without any prior assumptions about the
structure of the RNNs. By analyzing the structure-function relations, we identi-
fied similar control principles in both designs, mainly based on two mechanisms,
periodic oscillations, mainly responsible for a robust initialization and robustness
against perturbations, and a strong coupling of the hall sensory input, mainly
responsible for maintaining the ring movement. We found that this strong cou-
pling is also determined by inter-connections between the output neurons in the
centralized RNN. Because for the decentralized control no communication was
allowed, this mechanism was determined by direct connections to this sensor in-
put. Due to this fact we could show that the autonomy of the subsystems of the
decentralized control approach leads to more robustness against motor break-
downs. We saw that the action of one agent indirectly influences the action of the
other agents. We think, it should be possible to handcraft a centralized control
structure containing similar autonomous subsystems. But we argue that it is hard
to expect such a result from an evolutionary process if no specific assumptions
about the structure and parameters of RNNs are made. By identifying the main
properties of the control structure one could manually transfer the properties
of decentralization, such as autonomous substructures, to centralized control ar-
chitectures. Another step would be to evolve homogeneous decentralized control
structures, where it should be more obvious that their properties are applicable
to a centralized control exhibiting more robustness to lesion experiments.

We saw that decentralization gives rise to less complexity, concerning the
structure of the RNNs, and more fault tolerance in the presented example. We
are not claiming that these principles could be generalized for all kinds of de-
centralized control problems. But as it is known, these issues are crucial points
for many of other examples concerning decentralized control as well [13].

Even though the presented results do not directly lead to general solutions
of problems in AL and ER, they provide a simple model of minimal cognition
for an unconventional machine. Due to the few system parameters it provides a
platform for studying first steps in neural control of autonomous robots, basic
cooperation mechanisms, and robot-environment interactions. Furthermore, we
showed how to apply the same evolutionary algorithm to the development of
centralized and decentralized control architectures. We introduced a simple co-
evolutionary strategy, for which the evaluation time does not increase with the
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number of populations. We are aware of the fact that evolution of competitive
behavior may require a more complex evaluation strategy, but to solve simple
cooperative tasks the presented strategy is sufficiently good.
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Abstract. This article presents the first results of a project in under-
water modular robotics, called Neubots. The goals of the projects are to
explore, following Von Neumann’s ideas, potential mechanisms underly-
ing self-organization and self-replication. We briefly explain the design
features of the module units. We then present simulation results of the
artificial co-evolution of body structures and neural controllers for lo-
comotion. The neural controllers are inspired from the central pattern
generators underlying locomotion in vertebrate animals. They are com-
posed of multiple neural oscillators which are connected together by a
specific type of coupling called synaptic spreading. The co-evolution of
body and controller leads to interesting robots capable of efficient swim-
ming. Interesting features of the neural controllers include the possibility
to modulate the speed of locomotion by varying simple input signals, the
robustness against perturbations, and the distributed nature of the con-
trollers which makes them well suited for modular robotics.

1 Introduction

This article presents an adaptive scheme for underwater navigation of modu-
lar robots based on the artificial co-evolution of body structures and neural
controllers for locomotion. The modular robots used in this paper are part of
a long-term project [1] aimed at conceiving robots capable of self-construction
and self-reproduction, as first proposed by John von Neumann. Therefore, we
call such robots Neubots from von NEUmann roBOTS, which also means New
Robots in German.

The neural controllers studied in this paper are central pattern generators
(CPGs), which are networks capable of producing coordinated patterns of rhyth-
mic activity while being modulated by simple non-oscillatory signals. Our CPGs
represent an interesting framework for modular robotics because of (1) their dis-
tributed nature, (2) the locality of their interactions, (3) their robustness against
perturbations, and (4) their ability of coordinating multiple degrees of freedom
while being modulated by simple input signals.

In this article, the controllers are designed incrementally, with first the design
of a neural oscillator which serves as the building block for the complete CPGs.

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 189–199, 2005.
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In a second stage complete CPGs are co-evolved with the body structure. Dur-
ing this second stage, the neural oscillators embedded into each robot unit are
coupled to oscillators in neighboring units using synaptic spreading, which corre-
sponds to projecting connections between two types of neurons to the same type
of neurons in neighbor neural oscillators. This type of intercoupling is well-suited
for modular robotics because of its locality and because it can be described in
fewer parameters than an all-to-all coupling between oscillators.

Neubots and Related Modular Robots. More than 50 years ago, John von
Neumann investigated the possibility of designing physical robots that can self-
assemble and self-reproduce. He arrived to the conclusion that such robots should
be composed of a dozen different types of simple modules produced in hundreds
of thousands of copies [3]. Von Neumann also argued that the control system of
such modules should be composed of some sort of McCulloch-Pitts neurons [4].
However, von Neumann abandoned this line of research because of technological
limitations of that time and concentrated on the computational aspects of such
systems, which eventually resulted on the birth of cellular automata. We think
that today’s technology and science of complex self-organizing systems is ripe
for the realization of physical self-assembling and self-reproducing robots. In the
Neubots project, which is described more extensively elsewhere [1], we continue
from where von Neumann left and redefine some of his intuitions in light of
recent scientific and technological advancements.

The Neubot project rests on three main principles: 1) an heterogeneous and
large pool of simple and specialized modules that can be combined in various
ways to form a multicellular artificial organism; 2) a set of mechatronic and con-
trol mechanisms that allows the active recruitment and release of modules by the
growing and self-reproducing organism; 3) a process of intrinsic and open-ended
evolution of the organism mediated by its cells (modules), which possess the
entire genome of the organism. In order to simplify the recruitment and release
of modules, we conceived the early prototypes as underwater units. In this paper
we investigate candidate solutions for simple navigation of the Neubot modules
and we focus our investigation only on one specific module, which operates as
a joint. The modules are made of faceted hull with 6 actuators (Figure 1). The
connectors are based on a magnetic system composed of one permanent mag-
net and three yokes. A motor allows switching connectors between attractive,
repulsive, and neutral states. Physical prototypes of the module have been con-
structed and tested [2], but only simulation experiments will be presented in this
article.

Neubots belong to the larger family of self-organizing modular robots. In
particular, the Neubot modules described here are similar to the M-Tran and
Hydron robotic systems. The M-Tran system is composed of several identical
modules that can connect to each other by means of active magnetic surface
[6]. Robots made of such components can autonomously transform themselves
into different shapes and use the joints to walk. However, the detaching process
requires a lot of energy and is rather slow. The Hydron robotic system instead is
composed of several identical waterproof and spherical units that are suspended
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Fig. 1. Left: Schematic view of a Neubot’s module and its actuation. Right: Schematic
view of the connector.

in water and can move by means of water jets. These robots are currently used
for exploring principles of self-organization [7], but cannot connect to each other.
The Neubot modules used here are underwater units that can connect to each
other by means of active magnets that require considerably less energy to detach
and attach. Furthermore, the contact interface of the Neubot modules can rotate,
thus permitting a complex articulation of the entire system.

Adaptive Locomotion for Modular Robots. A promising way to control
locomotion is provided by the Central Pattern Generators (CPGs) observed in
invertebrate and vertebrate animals [10].

CPGs have been used in the modular M-Tran system described above [11,12],
in ”monolithic” robots [13], and in simulated robots [14]. CPGs are interesting for
modular robotics because of their distributed nature and their ability to generate
efficient locomotion for complex multi-DOF structures while being modulated by
simple control signals. One of the novelties of our approach is the use of neural
oscillators connected by synaptic spreading (see next sections). The approach
is well suited for a distributed implementation and for the optimization by a
genetic algorithm.

In this paper we will co-evolve the body structures and the locomotion con-
trollers of the modular robots in a three-dimensional simulation. Other exam-
ples of co-evolution include Karl Sims seminal work [8], Framsticks, a three-
dimensional simulation project which offers various genotypes and fitness func-
tions, to co-evolve morphology and control of virtual stick creatures [15], the
work by Pollack and colleagues [16], and other interesting projects [17]. Our ap-
proach differs from previous work mainly in the type of neural controllers that
we use (see above).

2 Co-evolving Structures and Controllers for Locomotion

2.1 Neuronal Simulation of the CPG, Evolution of Oscillators

The CPG models are designed incrementally. In a first stage, we evolve a canoni-
cal neural oscillator, which produces stable oscillations and whose frequency can
be adapted by simple tonic signals. In a second stage, we co-evolve the body
structure and the neural controller of multi-unit robots.
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As in [14], neural oscillators are evolved from neural networks which have
a left-right symmetry (cf Fig. 2) with three neurons of different ”type” (A, B
and C) and one motoneuron (M) on each side. Each neuron receives a tonic (i.e.
non-oscillating) input BS representing the driving signals produced by the brain
stem in vertebrates.

Neuron model. The neuron units are modeled as leaky integrators. According to
this model, the mean membrane potential mi and the short-term average firing
frequency xi of a neuron i are governed by the equations:

τi
dmi

dt = −mi +
∑

j wi,jxj and xi = (1 + e−(mi+bi))−1

where bi is the neuron’s bias, τi is a time constant associated with the passive
properties of the neuron’s membrane, and wi,j is the synaptic weight of a con-
nection from neuron j to neuron i. Both the neuron parameters and the synaptic
weights are evolved.

Genetic Algorithm. GALib [20] was used for the real-number genetic algorithm
(GA). The GA begins with a population of N = 100 randomly created individ-
uals. At each generation, crossover, mutation and pruning operators are applied
for creating C = 50 new children. For parent selection we used a rank-based
roulette wheel method which chooses a parent with a probability which is in-
versely proportional to its rank. The crossover operator takes two parents and
for each position exchanges the genes at that position with probability PC = 0.5.
Mutation changes, with a probability PM = 0.4, the real value of a gene accord-
ing to a Gaussian distribution (SD = 1.0) around the old value. The pruning
operator is specific to the neural network optimization and prunes a connection
(probability PP = 0.05) by setting the gene corresponding to the weight of this
connection to zero. The children are then evaluated and, as the population size is
fixed, the C = 50 worst individuals are rejected from the total population (par-
ents and children). The GA is stopped when the difference between the current
best-of-generation score and the one 10 generations back in time is less than 1
percent.

Encoding. The parameters of a neural network are encoded into chromosomes
which are fixed-length strings of real values. The genome encodes both the neural
parameters of each neuron type —the time constant (τ), the bias (β), and the
sign (excitatory (+) or inhibitory (−))— and the connectivity of the network
— the synaptic weights of the outwards connections from itself to other neurons
(including self-connections) and the synaptic weights from the tonic drive (BS,
left and right). The motoneurons M are forced to be excitatory and do not have
connections to other neurons. The total number of genes is 43.

Fitness Function. The fitness function is defined to reward solutions that (1)
oscillate regularly with left and right motoneurons out-of-phase, (2) have as
few connections as possible, and (3) have a frequency of oscillation that can be
varied monotonically with the level of BS. Mathematically, the fitness function
is a product of six factors:

fit = nb connect · oscil · regularity · oscil phase · freq range · ampl
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Fig. 2. Left: The neuronal oscillator. A black point indicates an inhibitory connection,
a fork indicates an excitatory connection. The neurons of type B are not connected to
any other neuron and can therefore be removed from the network. Right: Evolution
of the frequency and amplitude when varying the input drive (BS). The vertical lines
determine the region in which the amplitude and frequency increase monotonically.

where nb connect corresponds to the inverse of the number of connections from
a neuron, oscil to the number of optima (in order to favor oscillating networks),
regularity to the inverse of the Standard Deviation of periods, oscil phase
to |θoscil − 0.5| with θoscil the phase between the left and right motoneuron,
freq range to max freq/min freq with min freq ≥ 0.8 and finally ampl cor-
responds to the mean of amplitude. Each factor varies linearly between, and is
bounded by, 0.05 and 1.0.

The network is evaluated during 6 seconds after a stabilization time of 6
seconds. The original input (BS) is set arbitrary to 1.0, but the network is
evaluated multiple times with small BS increments and decrements in order to
evaluate the capacity of the network to modify the amplitude and the frequency
monotonically with the input.

Results. Fifteen runs were carried out until convergence (approximately 1000
generations per run) with populations of 100 randomly initialized individuals.
All runs converged to networks capable of generating regular oscillations whose
frequency can be modulated using the tonic drive (BS). One of them, the best,
had the same topology as the network found in [14], but with small differences
on the weights and thus on the neural activity.

Since the second design step is to evolve the connections between multiple
neural oscillators by projecting internal connections to neighboring oscillators,
it is important that the number of internal connections (from a neuron of type
A, B or C to neurons of type A, B, C or M) is as small as possible. We therefore
chose another one, with a smaller range of frequencies but with only 8 internal
connections instead of 14. Figure 2 shows the topology of the chosen evolved
network. The level of tonic drive (BS) can be varied between 0.2 and 1.13 (the
frequency and the amplitude increase monotonically in this range of input), and
a range of frequencies from 0.8 to 3.3 Hz can thus be covered. The amplitude
then ranges from 0 to 0.21. Each neural oscillator will drive one motor in the
mechanical structure by using the difference between left and right motoneurons
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(ML and MR)): i.e. the desired angle (in radians) is defined as θ = γ(ML −
MR) + δ where δ is an angular offset and γ = 5.

2.2 Co-evolution of Body and Brain

In this section, the structure of simulated multi-unit robots and their loco-
motion controllers are co-evolved. The locomotion controllers are constructed
out of the neural oscillators presented in the previous section, with one os-
cillator per robotic module. The coupling between the different neural oscil-
lators is based on synaptic spreading similar to that used to model the lam-
prey’s CPG in [5,9,14]. The idea is to project the connection between two neu-
rons within one oscillator to corresponding neurons in neighboring oscillators.
The synaptic spreading can be to the nearest neighbor oscillator only or even
further.

An interesting property of this type of coupling is that it is specified by
relatively few parameters compared to a scheme using all possible connections
between different neural oscillators. Synaptic spreading only requires for each
connection within one oscillator integers determining the extents of the projec-
tions (i.e. to first, second, third, ... neighbors).

Genetic Algorithm and Encoding. The genetic algorithm is the same as the
one used for the neural oscillator but with several different parameters: PC =
0.2; PM = 0.05; PP = 0.0, and a probability of structural mutation Pstruct =
0.025 is added.

The genotype is a tree (no cycle allowed) as in [8] and [18], each node rep-
resenting a module (see fig. 3 for details). It is thus a direct encoding which
strongly correlates the phenotype and the genotypes. The simulation and evolu-
tion environment uses the genotype as the internal representation of the robot.
In addition, a chromosome of real numbers, which we will call High Level Pa-
rameters (HLP), encodes the left and right input drive (BS). These genes specify
the best BS in order to achieve the fastest locomotion. Crossover is simply done
by exchanging two randomly chosen subtrees of the parents.

Fitness Function. The individuals are tested during 30 simulated seconds in a
simulated 3D world. The simulation is a physics-based simulator (articulated
rigid body dynamics with a simplified hydrodynamics model) built using ODE
[19]. Throughout the evaluation period, the robot must cover as long a distance as
possible. As the simple measure of the straight distance from the initial location
to the final location seems not to be sufficient because of the risk to return
to starting point after 30 seconds, the fitness function is based on the covered
distance plus the cumulated distance:
f = α · ‖p(N)−p(1)‖+ β ·∑N−1

t=1 ‖p(t + 1)−p(t)‖ where p(t) is the tth point
sampled on the trajectory of the robot, N is the total number of recorded points,
and α = 1 and β = 0.3 are coefficients that modulate the weights of the absolute
and integrated distances.
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Fig. 3. Genome of a robot: It is designed as a tree with a node for each module of the
robot. As we use a tree, each module has one and only one face which is actuated (the
face attached to the parent) and therefore only one neural oscillator. Thus each node
contains a chromosome of 55 genes containing the following information: positions of
the children (5 binary genes whether or not a child module is attached to one of the
5 faces), angular offset of the joint between the module and its parent (1 real number
gene), one binary gene indicating if the motor of the module must be actuated, and 48
integer genes encoding the synaptic spreading, i.e. coding the extent of the projections
in the six possible directions for each oscillator.

2.3 Results

Two sets of 5 runs each, called A and B (view table 1), were carried out until
convergence with a population of 100 robots. The first generations of the runs A
and B start with randomly initialized populations of 5-unit robots, and 10-unit
robots, respectively. Of course, the size of the robots can then be increased or
decreased during the evolution. All runs converged to interesting robot structures
capable of progressing in water (Table 1). The minimal number of generations
required for the convergence is 128 (B5) and the average number of generation
is 860.

Description of the most efficient robots. The only two robots (A5 and B3) that
are identical among all runs are, interestingly, also the most efficient, the simplest
and the smallest of all. As they are the only two robots that have the same shape
and as they are the most efficient, they probably correspond to a good optimum
in the search space. They consist of 5 modules forming two limbs of unequal sizes
(fig. 4 top left). All the oscillators are activated although this can appear useless
since only the joint number 2 is really generating thrust. However, all contribute
to the general behavior, and the fact that the limbs oscillate on themselves
reduces their rubbing, and helps the locomotion.

Diversity. Except for the best solutions of runs A5 and B3 mentioned above,
all runs evolved to different types of robots. The number of parameters to be
optimized and their relatively large intervals of values, make the search space
very large. With the ten runs presented here, we thus explore only a small part
of the search space. That, and the topology of the search space which might have
many local optima, probably explains the diversity of the results.
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Table 1. Table of the ten runs. Velocity means : Average velocity on the XY plane of
the best robot in [m/min] calculated during 15 seconds after 15 seconds for stabilization.
INM means Initial Number of Modules and specifies the size in terms of modules of
the robots of the first generation. FNM means Final Number of Modules and is the
final size in terms of modules of the evolved robots.

Set ID INM FNM Fitness Max. Fitness Av. Velocity

A

1 5 6 4.81 4.76 9.08
2 5 6 4.08 3.98 6.8
3 5 5 5.32 5.22 10.03
4 5 6 4.8 4.71 9.42
5 5 5 6.3 6.23 10.58

B

1 10 8 4.6 4.53 9.13
2 10 9 4.63 4.54 9.14
3 10 5 5.46 5.41 10.50
4 10 9 3 2.99 6.12
5 10 8 2.25 2.2 4.79

Evolution of the number of modules. The five runs of the set A did not add
or remove large number of modules to or from robots compared to the initial
populations and to a lesser extent it is also the case for runs of the set B. Simple
and effective solutions are quickly found by the GA and the addition or the
withdrawal of modules is almost never done. It is primarily the neural network
which is optimized. This ”inertia” of the size is probably explained by the fact
that adding or removing a module constitutes a significant perturbation of both
the dynamics of the body and of the global neural network.

Symmetry. In nature, the majority of animals have an axis of symmetry. For an
efficient, controllable and rectilinear locomotion it seems to be necessary. How-
ever, we made the choice not to force this symmetry and to see if it appeared
spontaneously. That was not the case here maybe because for having and keep-
ing symmetrical structures two mutations must appear at the same time and
symmetrically which is unlikely (see [21] for a related study). To go straight in
spite of this handicap, all robots follow spiral trajectories turning on themselves.
As the center of this spiral is a line, the robots go as straight as possible with
respect to the fitness function.

Evolution of the BS. The values of the left and right BS are evolved with the
robots and can be varied between 0.2 and 1.13 (cf the neural oscillator). Half
of the robots converge to the maximum value for the two inputs. Indeed, to
swim as fast as possible it seems to be important to have high frequencies and
amplitudes of the movements. The others robots have different values for the
left and right BS.

In vertebrate animals, it is known that increasing the tonic drive from the
brainstem increases the speed of locomotion. We tested if the robots which we
evolved reacted in same the manner. We noted that speed indeed increased or
decreased according to BS (cf Fig 4 top right) as awaited, although that must
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Fig. 4. Top left: Robot evolved by the run A5 (same shape as B3). Top middle:
Neural activity of the robot A5. Each curve corresponds to the difference between left
and right motoneuron of one oscillator. The four oscillators are synchronized and appear
to be able to generate a lot of different signals. Top right: Influence of the tonic input
(BS) on the velocity of the robot A5. The vertical lines determine the region in which
the velocity increases monotonically with the BS. Bottom left: Neural activity of the
robot B2. Each curve corresponds to the difference between left and right motoneuron
of one oscillator. At 3.75 seconds, a random perturbation is applied to membrane
potentials. Bottom right: Evolution of the speed of the center of mass of the robot.
The oscillations are due to the periodic flutters of the limbs.

be moderated because the trajectory also changes, i.e. if the robot goes straight
with maximum and symmetrical input values, it happens that the robot does
not swim straight anymore when we decrease symmetrically.

Resistance to perturbations. We tested the robustness of our robots to pertur-
bations by perturbing the membrane potentials of all neurons and setting them
to random values. The neural activity and the speed of the robot B2 is shown
on figure 4 on the bottom. The neural activity rapidly recovers from the pertur-
bation and returns to steady state after 2 oscillations. The velocity also recovers
although it takes a little bit more because the robot has to struggle against
the water inertia. This robustness against perturbations is one of the interesting
features of using CPG models for locomotion.

3 Conclusion

This article presented first results of a project in underwater modular robotics,
called Neubots. Body structures and neural controllers based on central pattern
generators were co-evolved for efficient underwater locomotion. The main results
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are the design of neural oscillators linked together by synaptic spreading capable
of producing robust signals for locomotion. The controllers can adjust the speed
of locomotion by the modulation of simple signals and quickly recover from
random perturbations in the neural activity.
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Abstract. Recently, brain models attempt to support cognitive abili-
ties of artificial organisms. Incremental approaches are often employed
to support modelling process. The present work introduces a novel com-
putational framework for incremental brain modelling, which aims at
enforcing partial components re-usability. A coevolutionary agent-based
approach is followed which utilizes properly formulated neural agents to
represent brain areas. A collaborative coevolutionary method, with the
inherent ability to design cooperative substructures, supports the imple-
mentation of partial brain models, and additionally supplies a consistent
method to achieve their integration. The implemented models are em-
bedded in a robotic platform to support its behavioral capabilities.

1 Introduction

The long-term vision of developing artificial organisms with mammal-like cogni-
tive abilities, has recently given impetus in brain modelling studies. The brain
of mammals consists of several interconnected modules with different function-
alities [5], which implies that models with distributed architecture should be
designed. Recently, we proposed a novel coevolutionary method [6] [8], to design
distributed partial brain models. Specifically, neural network agents are coe-
volved by distinct species (populations) emphasizing both their autonomy and
cooperability with the remaining structures.

Additionally, incremental brain modelling approaches have been proposed
[9,15,13]. However, the computational structures employed by the proposed in-
cremental approaches suffer in terms of scalability, and can not be used widely as
a brain modelling computational framework. This is because substructures are
originally designed to handle a specific amount of incoming information. Thus,
by performing incremental modelling steps, the structures are difficult to oper-
ate successfully because new modules are integrated, and additional information
volume is projected on them. Furthermore, no optimization method is employed
to support the incremental modelling process.

The coevolutionary method matches adequately the incremental modelling
processes due to its inherent ability to integrate distributed structures. In the
present work, we propose a brain modelling method focusing on the integration
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of partial models in gradually more complex ones. Specifically, in order to elim-
inate the problem of existing computational models employed by incremental
processes, we utilize neural modules with internal dynamics, which self-adapt
their performance as new structures are integrated on top of them. Intermedi-
ate link modules are employed which are connected on the key points of existing
structures, to properly modulate their performance. Furthermore, a coevolution-
ary optimization method facilitates the incremental process, offering a consistent
mechanism to support the reusability of substructures. The proposed approach
is assessed by embedding the implemented brain model in a robotic platform, to
furnish it with cognitive capabilities.

The rest of the paper is organized as follows. In the next section we present the
proposed computational framework consisting of the agent structures employed
to represent partial brain areas, and the collaborative coevolutionary scheme
which specifies the computational details of brain models. Computational ex-
periments which follow the proposed framework to design a partial brain model
are presented in section 3. Specifically, we demonstrate the implementation of
a computational model simulating posterior parietal cortex - prefrontal cortex -
primary motor cortex - spinal cord interactions in a delayed response task. Fi-
nally, conclusions and suggestions for further work are drawn in the last section.

2 Computational Framework

The proposed computational framework is inspired by the biological prototype,
while at the same time serves the special needs of incremental modelling. Specif-
ically, brain areas are modelled by flexible neural network agents. Similarly to
a phylogenetic process, an evolutionary approach is employed to specify the
computational details for each agent [14]. Instead of using a unimodal evolution-
ary process, a collaborative coevolutionary method is utilized to support neural
agent specification, offering enhanced search abilities of partial brain elements
[11]. In the following, we present in turn the computational structures, and the
coevolutionary approach.

2.1 Computational Model

We implement two different neural agents, to supply a general computational
framework: (i) a cortical agent to represent brain areas, and (ii) a link agent
to support information flow across cortical modules. Their structures are an
extension of those presented in [8], [7].

Link Agent. The structure of link agent is appropriately designed to support
connectivity among cortical modules. Using the link agent any two cortical mod-
ules can be connected, simulating the connectivity of brain areas.

Each link agent is specified by the projecting axons between two cortical
agents (Fig 1(a)). Its formation is based on the representation of cortical agents
by planes with excitatory and inhibitory neurons (see below). Only excitatory
neurons are used as outputs of the efferent cortical agent. The axons of projecting



202 M. Maniadakis and P. Trahanias

Excitatory
NeuronInhibitory

Neuron

(a)

A

B

B

(b)

Fig. 1. Schematic representation of the computational model. Part (a) illustrates
a link agent which supports information flow from cortical agent A to B. Only the
active projections are represented with an × on their termination. Part (b) illustrates
synapse definition in cortical agent B. Neighborhood radius for i) afferent axons is
illustrated by a solid line, for ii) neighboring excitatory neurons by a dashed line,
and for iii) neighboring inhibitory neurons by a dotted line. Sample neighborhoods for
excitatory neurons are illustrated with grey, while neighborhoods for inhibitory neurons
are illustrated with black.

neurons are defined by their (x, y) coordinates on the receiving plane. Cortical
planes have a predefined dimension and thus projecting axons are deactivated if
they exceed the borders of the plane. The proposed link structure facilitates the
connectivity of sending and receiving cortical agents supporting their combined
performance.

Cortical Agent. Each cortical agent is represented by a rectangular plane. A
cortical agent consists of a predefined population of excitatory and inhibitory
neurons, which all follow the Wilson-Cowan model with sigmoid activation as it
is described in [8]. Both sets of neurons, are uniformly distributed, defining an
excitatory and an inhibitory grid on the cortical plane. On the same plane there
are also located the axon terminals from the efferent projected cortical agents.

All neurons receive input information either from i) projecting axons, or
ii) excitatory neighboring neurons, or iii) inhibitory neighboring neurons. The
connectivity of neurons follows the general rule of locality. Synapse formation is
based on circular neighborhood measures. A separate radius for each of the three
synapse types, defines the connectivity of neurons. This is illustrated graphically
in Fig 1(b), which further explains Fig 1(a). All excitatory neurons share common
neighborhood measures. The same is also true for all inhibitory neurons.

The performance of cortical agents is adjusted by the experiences of the
artificial organism, obtained through environmental interaction, similar to epi-
genetic1 learning [2]. To enforce experience based subjective learning, each set of
synapses is assigned a Hebbian-like learning rule defining the self-organization
internal dynamics of the agent. We have implemented a pool of 10 Hebbian-like
rules that can be appropriately combined to produce a wide range of function-
1 Epigenesis here, includes all learning processes during lifetime.
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alities. The employed learning rules are the union of those employed in [3], [6],
and thus they are omitted here due to space limitation. Agents plasticity al-
lows synaptic adjustments at run-time based on environmental experience. The
most common, but harder to evolve, alternative of genetically-encoded synaptic
strengths, results to a rather unmanageable problem complexity.

2.2 Collaborative Coevolution

An evolutionary process determines the self-organization dynamics of partial
brain structures, enforcing the emergence of valuable behaviors during lifetime.
However using a unimodal evolutionary approach, it is not possible to explore
effectively partial solutions, which correspond to brain substructures. Coevo-
lutionary algorithms have been recently proposed to facilitate exploration in
problems consisting of many decomposable subcomponents (e.g [10,11]). Dis-
tinct species (populations) are employed to estimate solutions for each partial
component of the problem. Accordingly, increased search competencies are in-
herently available in coevolutionary algorithms, while the special characteristics
of substructures can be also taken into account. Recently, we introduced the
usage of collaborative coevolution for the design of partial brain models [6] [8],
while in the present study we demonstrate that this approach can also serve the
incremental modelling process.

Specifically, a two level collaborative coevolutionary scheme is employed. The
species representing distinct elements of the composite system are evolved inde-
pendently at the lower level. Additionally, an evolutionary process performs at
a higher level, to select the appropriate individuals from each species that coop-
eratively are able to construct a good composite solution. Thus the parameter
space is segmentally searched in the lower level by evolved species, while at the
same time, the high level evolutionary process searches within species to identify
the best collaborator schemes.

We employ two kinds of species encoding the configurations of either a Prim-
itive agent Structure (PS) or a Coevolved agent Group (CG). PS species specify
partial elements, encoding the exact structure of either cortical or link agents. A
CG consists of a group of cooperating PSs with common objectives. Thus, CGs
specify configurations of partial solutions by encoding individual assemblies of
cortical and link agents (see Fig 2).

A general purpose genotype is employed for both the lower level evolution of
species, and the higher-level collaborator selection process. According to that,
each individual is assigned an identification number and encodes two different
kinds of variables. The first kind is allowed to get a value from a set of un-
ordered numbers, e.g. {1,5,7,2}, with the ordering of the elements being of no
use. These variables are called SetVariables. The second kind of variables is al-
lowed to get a value within a range of values, e.g. [0,1]; therefore, they are called
RangeVariables. The computational details of PS (either cortical or link) and
CG structures can be easily mapped to the genotype, following a process very
similar to the one described in [8]. This is omitted here due to space limitations.
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Fig. 2. A schematic overview of the coevolutionary process. CG is represented by a
rounded box, while PSs are represented by a free shape. Identification numbers are
represented with ovals.

In order to test the performance of individuals, the population at the higher
level is accessed. The parameter values at CG-level guide collaborator selection
among PS species (Fig 2). Then collaborators are combined to form the proposed
solution which is further tested. During fitness assignment, CG-individuals are
assigned a fitness value f , representing how good is the solution formed by the
selected collaborators. Individuals of the coevolved PS-species at the lower level
are assigned the maximum of the fitness value achieved by all the solutions
formed with their membership. Thus an individual of the lower level species is
assigned the value f = max{fi} where fi is the fitness value of the i-th solution
formed with the collaboration of the individual under discussion.

Evolutionary steps are performed based on the standard evolutionary op-
erators. First, individuals of each species are sorted according to their fitness
values. Then, a predefined percentage of individuals are crossed over. An indi-
vidual selects its mate from the whole population, based on their accumulative
probabilities. Finally, mutation is performed in a small percentage of the resulted
population. Genetic operators are applied in both levels in the same way.

2.3 Discussion

The plasticity of agent structures, which stems from the assignment of learning
rules, constitute a key feature of the proposed computational model. Specifically,
it facilitates the incremental modelling process by adjusting the performance of
each module to various circumstances of incoming information, enforcing the
reusability of substructures. This is a novel feature of our approach since, al-
though neural structures with self-organization characteristics are widely used in
many different domains, their suitability on modelling incrementally distributed
systems has not been studied before.

It should be noted that coevolution is not the only methodology to approach
incremental modelling. Other optimization processes (e.g. unimodal evolution)
would theoretically be able to support the incremental process. However, coevo-
lution offers many advantages in terms of searching effectively partial solutions,
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Fig. 3. A schematic overview of the Primary Motor Cortex model. Cortical agents are
illustrated with blocks, while link agents are illustrated with a double arrow.

because it is originally designed to work with substructures instead of the com-
posite solution. As a result coevolution matches adequately to the agent-based
distributed brain modelling. This has been illustrated in [6], [8] where one-step
coevolutionary processes are employed to design brain models consisting of in-
dependent but cooperable substructures with distinct functional goals.

Furthermore, the proposed coevolutionary scheme can be hierarchically orga-
nized supporting the concurrent optimization of many substructures in one-step
[7]. The hierarchical approach can be used also to overcome the well known prob-
lem of incremental modelling where the constraints imposed by the structure of
initial models can be too hard, harming the forthcoming incremental steps. By
commencing a hierarchical coevolutionary process which loads the results of the
first incremental steps it is possible to further optimize them considering also
the needs of the new components. As a result “single-step” and “incremental”
processes can support each other, performing in a complementary way.

3 Results

The effectiveness of the proposed approach is illustrated on the design of a
partial brain computational model, which simulates posterior parietal cortex
(PPC) - prefrontal cortex (PFC) - primary motor cortex (M1) - spinal cord
(SC) interactions, emphasizing on working memory (WM) usage (Fig 3). We note
that the proposed model does not aim to be a detailed replica of the biological
prototype (e.g. premotor areas are not represented), but it serves as a guide on
how incremental coevolution can be employed to support brain modelling.

Several biological experiments highlight the behavioral organization of these
brain areas. They are based on delayed response (DR) tasks which require to re-
tain memory relative to a sample cue for a brief period, in order to decide upon
future behavioral response (e.g. [12]). M1 encodes primitive motor commands
which are expressed to actions by means of SC. PPC-PFC reciprocal interac-
tion operates in a higher level encoding WM, to develop plans regarding future
actions. PFC activation is then passed to M1 which modulates its performance
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Fig. 4. A schematic overview of the incremental coevolutionary process employed to
design the model of Fig 3. Part (a) illustrates the process employed to design the
model of M1-SC interaction, part (b) illustrates the process designing the model of
PPC-PFC interaction, and part (c) illustrates the coevolutionary process which serves
their integration.

accordingly. Thus, the higher level orders specify the expressed actions, aiming
at the accomplishment of the DR-task.

The interactions of the brain areas under discussion are modelled incremen-
tally. The process starts by two coevolutionary processes implementing separate
computational models of both M1-SC and PFC-PPC interactions. These two
models are further integrated by means of another coevolutionary process op-
erating on top of them. Both partial and composite models are embedded on
a simulated mobile robot to furnish it with cognitive abilities and prove the
validity of results. We employ a two wheeled robotic platform equipped with 8
uniformly distributed distance and light sensors.

Three tasks (adjusted to the needs of robotic applications) are properly spec-
ified, in order to demonstrate the effectiveness of the computational procedure.
The first task T 1, accounts for primitive motion abilities without purposeful
planning. For mobile robots, a task with the above characteristics is wall avoid-
ance navigation. Since M1-SC are the brain modules which serve basic motor
commands, and they are operative after lesion of the higher level structures [5],
it is assumed that they are relevant for the accomplishment of wall avoidance
navigation.

M1-SC interactions are modelled by means of a coevolutionary process il-
lustrated in (Fig 4(a)). The success of wall avoidance task is evaluated by the
fitness function:

F1 =

(∑
M

(sl + sr − 1) ∗ (1.0 − p2)

)
∗
(

1 − 2
M

∣∣∣∣∣∑
M

sl − sr

sl ∗ sr

∣∣∣∣∣
)3

∗
(

1 − 2

√
B

M

)3

where we assume that the robot is tested for M steps, sl, sr are the instant speeds
of the left and right wheel, p is the maximum instant activation of distance
sensors, and B is the total number of robot bumps. The first term seeks for
forward movement far from the walls, the second supports straight movement
without unreasonable spinning, and the last term minimizes the number of robot
bumps on the walls. A sample result is illustrated in Fig 5(a).

The development of WM-like performance specifies the second task T 2.
Working memory (WM) is the ability to hold and manipulate goal-related infor-
mation to guide forthcoming actions. The PFC and PPC are the brain structures
most closely linked to WM [1]. Thus PPC-PFC are responsible for WM develop-
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(a) (b)

Fig. 5. Part(a) illustrates robot performance on wall avoidance navigation (solid line),
and the delayed matching-to-sample task (dotted line). Targets are illustrated with
double circles. Part(b) illustrates the average activation of excitatory neurons at PFC.
Dark activation values indicate that the cell remain active during all the observed
period, while light values indicate low activity in the same period. Evidently, each side
of light cue presence is encoded by a different activation pattern.

ment in the proposed computational model. In the present experiment, a light
cue is presented in the left or right side of the robot. WM performance aims at
persistent PFC activity, related each time to the respective side of light cue.

Two different states l, r are defined, associated to the left or right side of light
source appearance. For each state, separate activation-averages over the time of
M simulation steps, aj, are computed, with j identifying excitatory neurons of
PFC agent. The formation of WM related to the side of light cues is evaluated
by measuring the persistency of activation in PFC:

F2 =
1
2
(

vl

ml
+

vr

mr
) ∗ min

⎧⎨⎩ ∑
j,al

j>ar
j

(
al

j − ar
j

)
,

∑
j,ar

j >al
j

(
ar

j − al
j

)⎫⎬⎭
where ml, vl, mr, vr are the mean and variance of average activation at the
respective states. The first term seeks for consistent PFC activation, and the
second supports the development of a distinct set of active neurons for each
state. A sample result is illustrated in Fig 5(b).

When the first two processes are completed, a third coevolutionary scheme
commences to design the intermediate link structure which integrates the perfor-
mance of the two partial models in a compound one. Following the hierarchy of
motor brain areas in mammals, the memory held by PFC activation modulates
M1 performance to develop goal directed motion [5,4]. The successful interac-
tion of substructures is demonstrated by means of a delayed response (DR) task.
Specifically, a light cue is presented on the left or right side of the robot. The
robot has to move at the end of a corridor memorizing the side of sample cue
appearance, and then make a choice related to 90o turn left or right, depending
on the side of light cue presence.
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A target location is defined in each side of the corridor depending on the
position of the initial light cue (Fig 5). The robot has to approximate the target
location without bumping on the walls. The successful approximation to the
target location is estimated by:

G =
(

1 + 3.0 ∗
(

1 − d

D

))3

∗
(

1 − 2

√
B

M

)2

where d is the minimum euclidian distance between the target and the robot,
D is the euclidian distance between the target and the starting location of the
robot, and B is the total number of robot bumps. The accomplishment of T 3 is
evaluated by means of two subtasks testing separately the right or left turn of
the robot for the respective positions of the light cue, employing each time the
appropriate target location:

F3 = Gl ∗ Gr

The third hierarchical scheme performs on the results of the previous two
processes evolving additionally the link agent L5 to support their connectivity
(Fig 4(c)). The ten best individuals of CG1 and CG2 species are used as indica-
tive partial structures to form a basis for the construction of the global model.
Thus, only two species are evolved. The lower level species encoding the struc-
ture of L5 link agent, and CG3 species which choose the appropriate collaborator
assembly. A sample result is illustrated in Fig 5(a).

It is easily observed that the self-organization dynamics of M1-SC structures
allow the modulation of their performance according to the higher level orders.
Thus, their functionality is adapted successfully from wall avoidance to goal
reaching. As a result, the proposed computational framework achieves the con-
struction of a new complex model from simple components, while the behavioral
repertory of the robot is enriched.

4 Conclusions

In the present work we proposed an incremental computational framework to
support brain modelling efforts. It follows an agent based approach able to sim-
ulate the distributed organization of brain areas. The employed cortical agents
exhibit self-organization dynamics which serve both the experience-based learn-
ing, and the incremental modelling process by adjusting the performance of
agents on circumstances with different amounts of incoming information. The
employed link agents are properly formulated to connect the key sending and
receiving points of cortical structures in order to achieve their integrated per-
formance. Furthermore, the coevolutionary design approach, which matches the
distributed architecture of the computational model, facilitates the integration
of substructures in composite ones.

The proposed computational framework exploits the inherent ability of co-
evolution to integrate partial structures, exhibiting the following advantages:
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– it offers a systematic methodology to facilitate incremental brain modelling
process by gradually adding new coevolved species to represent brain areas,

– it supports both individual and cooperative characteristics of brain areas,
– it supports the construction of complex behaviors from simple components.

Consequently, the proposed method can potentially support large-scale brain
modelling tasks and the development of competent artificial cognition mecha-
nisms. Further work is currently underway, to investigate the suitability of our
approach in large scale brain modelling tasks and the endowment of cognitive
abilities to artificial organisms.
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Abstract. We present an example of the dynamical systems approach
to learning and adaptation. Our goal is to explore how both control and
learning can be embedded into a single dynamical system, rather than
having a separation between controller and learning algorithm. First, we
present our adaptive frequency Hopf oscillator, and illustrate how it can
learn the frequencies of complex rhythmic input signals. Then, we present
a controller based on these adaptive oscillators applied to the control of a
simulated 4-degrees-of-freedom spring-mass hopper. By the appropriate
design of the couplings between the adaptive oscillators and the mechani-
cal system, the controller adapts to the mechanical properties of the hop-
per, in particular its resonant frequency. As a result, hopping is initiated
and locomotion similar to the bound emerges. Interestingly, efficient loco-
motion is achieved without explicit inter-limb coupling, i.e. the only effec-
tive inter-limb coupling is established via the mechanical system and the
environment. Furthermore, the self-organization process leads to forward
locomotion which is optimal with respect to the velocity/power ratio.

1 Introduction

Nonlinear dynamical systems are a promising approach both for studying adap-
tive mechanisms in Nature and for devising controllers for robots with multiple
degrees of freedom. Indeed, nonlinear dynamical systems can present interesting
properties such as attractor behavior which can be very useful for control, e.g.
the generation of rhythmic signals for the control of locomotion. However, con-
trollers for engineering applications usually need to be tailor-made and tuned for
each application. This is in contrast to Nature where multiple adaptive mech-
anisms take place to adjust the controller (the central nervous system) to the
body shape, and vice-versa. For the control of locomotion for instance, there are
mechanisms to adapt the locomotor networks to changing body properties (e.g.
due to growth, aging, and/or lesions) during the life time of an individual, and
this greatly increases its survival probability.

In order to endow robots with similar capabilities, we are investigating the
possibility to construct adaptive controllers with nonlinear dynamical systems.
This is achieved by letting the parameters of the system change in function

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 210–220, 2005.
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of the systems behavior, and, therefore, also in function of external influences.
Thus, we aim at designing systems in which learning is an integral part of the
dynamical system, not a separate process, in contrast to many approaches in
artificial neural networks and other fields.

In an earlier study [4] we presented an adaptive frequency oscillator as a
controller for a simple locomotion system. The motivation to use an adaptive
frequency oscillator was to deploy a controller that is able to adapt to “body”-
properties, i.e. properties of the mechanical system. In this case the body prop-
erty to be adapted to is the resonant frequency of the mechanical system. The
presented approach is especially useful when the mechanical properties of the
body are not known or changing. In such cases, properties such as the resonant
frequencies and similar are not directly accessible, but have to be inferred by
some sort of measurement.

In this paper we pursue further the idea of the adaptive frequency oscillator
used as an adaptive locomotion controller (cf. [4]). First, we will present how
the adaptive frequency oscillator can learn the frequencies of arbitrary rhythmic
input signals. The main interesting features of the adaptive oscillator are (1) that
it can learn the frequencies of complex and noisy signals, (2) that it does not
require any pre-processing of the signal, and (3) that the learning mechanism is
an integral part of the dynamical system.

Then, we will present a more complex and realistic example of a robot that is
capable of hopping, namely a 4-DOF spring-mass hopper with an adaptive con-
troller based on the adaptive frequency oscillators. Spring-mass systems have
been widely used to study fundamental aspects of locomotion [3, 11] and several
robots based on this concept have been presented [17, 8, 5]. In [12] the mechanical
stability of spring-mass systems is discussed. Recently, robots with legs including
elastic elements have been presented [10, 13, 14]. Coupled oscillators have been
extensively studied for locomotion control [7, 20, 19, 10]. However, usually the
structure and parameterization of these controllers are fixed by heuristics or are
adapted with algorithms which are not formulated in the language of dynamical
systems. One exception is [16] where learning is included in the dynamical sys-
tem. The results are, however, for many coupled phase oscillators and no direct
application example is given. Another exception is [6] where an adaptation of
the stride period is investigated, with a discrete dynamical system.

In our contribution, thanks to the adaptive mechanisms, the controller tunes
itself to the mechanical properties of the body, and generates efficient locomotion.
As we will see, the system, albeit its simplicity, shows a rich and complicated emer-
gent behavior. In particular, efficient gait patterns are evolved in a self-organized
fashion, and are quickly adjusted when body properties are changed. Interestingly,
the emergent gaits are optimal with respect to the velocity/power ratio.

2 Adaptive Frequency Oscillators

In this section we introduce our adaptive frequency Hopf oscillator, and will
show its behavior under non-harmonic driving conditions.
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The adaptive frequency Hopf oscillator is described by the following set of
differential equations. We introduce it in the Cartesian coordinate system (Eqs.
1–3) as this allows an intuitive understanding of the additive coupling. In order
to understand convergence and locking behavior it is also convenient to look at
the oscillator in its phase, radius coordinate system which in the case of the
Hopf oscillator, having a harmonic limit cycle, coincides with the representation
in polar coordinates (Eqs. 4–6).

ẋh = (μh − r2)xh − ωhyh + cFx(t) (1)

ẏh = (μh − r2)yh + ωhxh (2)

ω̇h = − 1
τh

y

r
cFx(t) (3)

ṙh = (μh − r2)r + cos(φh)cFx(t) (4)

φ̇h = ωh − 1
r

sin(φh)cFx(t) (5)

ω̇h = − 1
τh

sin φhcFx(t) (6)

where xh, yh are the states of the oscillator, ωh is its intrinsic frequency, r =√
x2

h + y2
h and Fx(t) is a perturbing force (the subscript h distinguishes the

variables of the Hopf oscillator from variables in the mechanical system). If
Fx(t) = 0, this system shows a structurally stable, harmonic limit cycle with
radius r =

√
μ for μ > 0. It can be shown [18] that such an oscillator adapts to

frequencies present in a rhythmic input signal. In the case of a harmonic signal
Fx(t) = sin(ωF t) this means ωh is evolving toward ωF . If the input signal has
many frequency components (e.g. square signal) the final value of ωh is depen-
dent on the initial condition ωh(0). The size and boundaries of the basins of
attraction are proportional to the energy content of the frequency component
constituting the basin of attraction, see [18] for further discussion of the con-
vergence properties. Our adaptive frequency oscillators have many nice features
which makes them useful for applications and a good example for the dynamical
systems approach to learning: 1) no separation of learning substrate and learn-
ing algorithm, 2) learning is embedded into the dynamics, 3) no preprocessing
needed (e.g. no extraction of phase, FFT, nor setting of time windows), 4) work
well with noisy signals, 5) robust against perturbation, 6) they possess a resonant
frequency and amplification properties.

Now we shall present a few representative results from numerical integration,
to show the correct convergence of the adaptive frequency oscillator. First, we
show the convergence for a harmonic perturbation Fx(t) = sin(ωF t). As we are
interested to show that ωh → ωF , we use ωd = ωh − ωF and φd = φh − φF

to plot the results. For all simulations τ = 1, c = 0.1, ωd(0) = 1, φd(0) = 0
and rh(0) = 1. We present results of the integration of the system Eqs. 4-
6. In Fig. 1 the behavior of variables φd and ωd is depicted. In Fig. 1(b), we
present the phase plot of the system for the harmonic perturbation. Clearly
visible is that the system is evolving towards a limit set. The limit set corre-
sponds to the phase locked case φd ≤ const and the frequency has adapted
so that ωd ≈ 0. Since we want to be sure that the convergence works for a
wide range of input signals (as in the case when the oscillator is coupled with
the mechanical system) we show then results with general nonharmonic per-
turbation by general TF -periodic functions f(t, ωF ), TF = 2π

ωF
(Fig. 2). The

system was subjected to the following driving signals: (a) Square Pulse Signal
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Fig. 1. (a) Integration of the System Eqs. 1-3 (b) corresponding phase plot, in which
the frequency adaptation and the phase locking can be seen.
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Fig. 2. On the top left panel the nonharmonic driving signals are presented. (a) Square
pulse (b) Sawtooth (c) Chirp (Note that this is illustrative only since the change in
frequency takes much longer as illustrated.) (d) Signal with two non-commensurate
frequencies (e) Output of the Rössler system. – We depict representative results on
the evolution of ωd

ωF
vs. time. The dashed line indicates the base frequency ωF of the

driving signals. In (d) we show in a representative example how the system can evolve to
different frequency components of the driving signal depending on the initial condition
ωd(0).
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f(t, ωF ) = rect(ωF t), (b) Sawtooth f(t, ωF ) = st(ωF t), (c) Quadratic Chirp
f(t, ωF ) = cos(ωct),ωc = ωF (1 + 1

2 ( t
1000 )2), (d) Signal consisting of two non-

commensurate frequency components, f(t, ωF ) = 1
2

[
cos(ωF t) + cos(

√
2

2 ωF t)
]
,

(e) Chaotic signal from the Rössler system. There are differences in the conver-
gence speed and in the limit set. Yet, in all cases the oscillators converge to the
appropriate frequencies. Very interesting cases are signals with 2 or more pro-
nounced frequency components (such as signals (a),(b) and (d)). In this case the
initial condition ωd(0) determines to which frequency the oscillator adapts (cf
Fig. 2(d)). The size of the basin of attraction is proportional to the ratio of energy
of the corresponding frequency component to the total energy of the signal (due
to the lack of space the data is not shown, but can be found in [18]). These simu-
lations show that the adaptation mechanism works despite complex input signals
(convergence under broad driving conditions). In the next section we will explore
how these interesting properties can be applied to control a mechanical system.

3 The Adaptive Active Spring-Mass Hopper

In this section we will present the spring-mass hopper. We will first present the
mechanical structure and then focus on the adaptive controller. As a general
idea we will exploit the bandpass, and amplification/attenuation properties of
both the mechanical system and the adaptive frequency Hopf oscillator.

Since our main interest is the adaptation in the controllers, we do not dis-
cuss the problem of mechanical stability of the locomotion. We avoid stability
problems by an appropriate mechanical structure (wide feet, low center of mass),
thus the feet of the robot are wide enough to ensure stability in lateral direc-
tion, i.e. the robot is essentially working in a vertical (the “sagittal”) plane.
The spring-mass hopper consists of 5 rigid bodies joined by rotational and linear
joints (cf. Fig. 3). A prolonged cubic body is supported by two legs. The two legs
are identical in their setup. A leg is made of an upper part Mu and a lower part
Ml which are joined by a spring-mass system and a linear joint. The function of
the linear joint is just to ensure the alignment of the body axes and is otherwise
passive. The spring between the two parts of the leg is an activated spring of the
form Ff = −kdl, where k = fk(t) and dl is the distance between Mu and Ml.
The damper is an ideal viscous damping element of the form Fd = −cdvd, where
cd is the damping constant and vd = vu − vl, is the relative velocity of Mu and
Ml. The rotational joints between the upper part of the leg Mu and the body
Mb are activated by a servo mechanism which ensures that the desired velocity
vref is always maintained (cf. [2]). The choice of the spring activation function
fk(t) and the choice of the desired velocity vref = fv(t) will be discussed below,
when the coupling between controller and mechanical system is introduced. Due
to the spring-mass property of the legs the contraction mechanism possesses a
resonant frequency ωF

1. In other words, this type of mechanical system can be

1 Note, that the leg can also be considered as a pendulum and thus possesses a second
resonant frequency. We will not focus on this intrinsic dynamics in this article.
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Default parameter values
parameter value parameter value
μh 0.0001 mb [kg] 0.35
τh [s] 1 mu[kg] 0.09
c [sm−1] 0.5 ml [kg] 0.0056
a [Nm−1] 10 cd [Nm−1 s] 0.7
av [rad s−1] 10 k0 [Nm−1] 40

(c)

Fig. 3. (a) The mechanical structure of the spring-mass hopper. The trunk is made up
of a rigid body Mb on which two legs are attached by rotational joints. The lower part
of the leg is attached by a spring-mass system SD. The lower part consist of a small
rigid body. The length of the body is 0.5m (b) The coupling structure of the controller
and the mechanical system used for the spring-mass hopper. The upper Hopf oscillator
is used for the activation of the fore leg and the lower feedback loop for the hind
leg. (c) This table presents the parameters that have been used for the simulations,
unless otherwise noted. Note that this parameters can be chosen from a wide range
and the results do (qualitatively) to a large extent not depend on the exact values of
the parameters. Bottom row: Snapshots of the movement sequence of the spring-mass
hopper when the frequency is adapted, i.e. steady state behavior (cf also movie [1]).

interpreted as a band-pass filter with the pass band around ωF . This fact is im-
portant for the controller to be able to activate the body [4]. This will be further
discussed towards the end of this section.

The controller of the leg consists of an adaptive frequency Hopf oscillator
(Eqs. 1–3), which is perturbed by the activity of the mechanical system (see
below for the exact form). The Hopf oscillator acts as a frequency selective
amplifier [9], i.e. frequency components of Fx(t) that are close to ωh are amplified.
Especially the setting μh = 0 is special in the sense that the system undergoes
a fundamental change at that point: For μh < 0 the system exhibits a stable
fixed point at z = 0, whereas for μh > 0 a stable limit cycle occurs with radius
r =

√
μh. This phenomenon is known as a Hopf bifurcation. At μh = 0, there

is no signal oscillating at ωh weak enough not to get amplified by the Hopf
oscillator. Therefore, for that setting the Hopf oscillator can be considered an
ideal amplifier. We use a setting μh ≈ 0. The coupling from the oscillator to
the mechanics is established via the spring constants k = fk(t) and desired
angular joint velocity vref = fv(t). The oscillator therefore drives both a linear
actuator (the spring in the leg) and a rotational actuator (the servo in the hip).
The function for the spring constant is chosen as k = k0 + axh

r , where k0 is
a constant and a a coupling constant. The function for the desired velocity
is chosen as vref = avyh where av is a coupling constant. The choice of this
function, which introduces a π

2 phase lag between the spring activity and the
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joint angular velocity is based on the observation of a phase lag between hip and
knee joints in locomoting humans and animals. The coupling from the mechanical
system to the Hopf oscillator is established via the relative velocity between
upper and lower part of a limb as follows Fx(t) = cvd Fig. 3 illustrates the
coupling scheme. Thus, by the coupling scheme a feedback loop is established
between the oscillator and the mechanical system. If the resonant frequencies of
mechanical system and the Hopf frequency match, i.e. ωF ≈ ωh, an increase of
the activity in the system is expected due to the amplifying properties of the Hopf
oscillators (cf. [4]). Instead of tuning the controller manually to the appropriate
frequency, we let the controller adapt its frequency. In order to achieve this
adaptation, we introduce an influence of the mechanical perturbation to the
evolution of ωh via an appropriate choice of Fω .

Adaptive Frequency The coupling of the perturbation of the mechanical sys-
tem to the evolution of ωh, allows the controller to adapt to the mechanical
system and is equivalent to the perturbation arriving at the oscillator projected
on the tangential direction of the limit cycle multiplied with an adaptation rate
constant: ω̇h = − 1

τh
cvd

yh

r = − 1
τh

Fx(t)yh

r . This is the same coupling as used for
the adaptive frequency Hopf oscillator before.

4 Simulation Results

The spring-mass hopper simulation was implemented in Webots, a robot simu-
lator with articulated-body dynamics [15]. In Table 3 we present the parameters
for the spring-mass hopper that were used for the simulations unless otherwise
noted. Note that this parameters can be chosen from a wide range and the
qualitative results do to a large extent not depend on the exact values of the
parameters.

We first show how the adaptation of the Hopf frequency ωh leads to an
excitation of the system and hopping is initiated. To avoid influence of the hip
movements on the generated movement the joints are, in this case, fixed at an
angle of zero degrees and av = 0, i.e. the hopper is just able to hop in place. Thus,
the experiment verifies that the frequency adaptation works. As can be seen in
Fig. 4, indeed, due to the adaptation the feet start to lift from the ground. In a
next experiment the coupling from the oscillators to the rotational hip joints is
set to its default value (av = 10). Due to the activation of the hip joints complex
movements emerge. The diversity and self-organization of the movement depends
on many factors, therefore in this article we will show preliminary results on the
most typical locomotion pattern that was observed. This pattern resembles the
bound. The movement sequence of the hopping movement is shown in a series
of representative snapshots in Fig. 3. In Fig. 5, the adaptation, feet elevation
and displacement of the body is presented. The average achieved velocity in
steady state for mb = 0.35 kg is about 0.53ms−1 (approx. one body length per
second). The next experiment shows that the controller correctly tracks changes
in the mechanical system. To demonstrate this adaptation capability the mass
of the body Mb is changed from mb = 0.2 kg to mb = 0.4 kg at time t = 40 s. The
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Fig. 4. Simulation results of the spring-
mass hopper when the rotational joints
are not activated. a) Evolution of the
intrinsic frequencies of the Hopf oscilla-
tors ωh. Note that the frequencies of both
oscillators nearly coincide and therefore
only one seems visible. b) Fore limb foot
elevation. c) Hind limb foot elevation. The
adaptation of the frequency is clearly vis-
ible and as can be seen in the feet ele-
vation measurements the activity of the
system is increased as hopping starts at
around 20 s (arrow). The dashed line de-
picts the theoretical resonant frequency of
the spring-mass system when it would not
leave the ground. Due to the lift-off of the
feet the real resonant frequency is smaller
than the calculated value.
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Fig. 5. Simulation results of the spring-
mass hopper when the rotational joints
are activated a) The frequencies of the
Hopf oscillators ωh b,c) Foot elevation
yf,h d) Displacement of the center of mass
of the body xb. The adaptation of the fre-
quency is clearly visible. As can be seen in
the feet elevation measurements and the
displacement of the body this adaptation
enhances the activity of the leg and initi-
ates a displacement of the body. Interest-
ingly there is a burst of activation (arrow)
which increases the adaptation speed be-
fore the system settles to steady state be-
havior.
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Fig. 6. Test of the adaptation capabil-
ity of the controller when the mass is
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cussion.

10 11 12 13 14 15 16 17 18 19 20
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

ωh

ef
fic

ie
nc

y
ρ

Fig. 7. Efficiency ρ vs ωh. See text for the
definition of ρ, details of measurement and
experimental protocol. The dashed line in-
dicates the frequency to which the oscilla-
tors adapt. It is clearly visible that this cor-
responds to the maximum of the efficiency.



218 J. Buchli, L. Righetti, and A.J. Ijspeert

results are presented in Fig. 6. As the mass is changed, the controller immediately
starts to adapt and settles after about 50 s to the new resonant frequency. When
looking at the displacement of the body xb it is evident that the change in the
mass slows down the system for a moment but due to the adaptation the velocity
is increased again (cf also movies of the experiments [1]). The average velocity
before change of mass is about 0.68ms−1. After the change, when reached steady
state behavior again, the velocity is in average 0.49ms−1.

In a last experiment we investigate the efficiency of the hopper for forward
locomotion. We define the efficiency as the ratio ρ = vx,b

P Σ
i.e. the ratio between

average forward velocity vx,b of the body and the average power PΣ consumed
by all activated joints. In order to assure steady state measurements, the learning
is disabled (τh = 0) and the experiment is repeated for different Hopf frequencies
ωh = [10, 10.5 . . . , 20]. The transient behavior is removed before the efficiency
is measured. In Fig. 7, the results of the efficiency measurements are presented.
The line indicates the frequency to which the system evolves if τ 
= 0, thus it is
clear that the adaptive frequency process finds the optimal efficiency. It is worth
noting, that this optimum in efficiency does not correspond to the maximum of
power consumption nor the maximum of velocity (data not shown). This is in
line with the observations on animals.

5 Discussion

When introducing adaptation into a system it is important to investigate the
convergence properties of the adaptation mechanism. From the mathematical
point of view adaptivity on one hand and convergence and stability on the other
hand are somewhat opposing requirements. We have shown, that the adaptive
frequency oscillator can be driven with general, nonharmonic signals and still
adapts to the frequency of the signal.

We have presented a 4-DOF spring-mass hopper with a controller based on
adaptive frequency Hopf oscillators which adapts to mechanical properties of
the hopper. This adaptation has the effect that the spring-mass system starts to
resonate and initiates hopping locomotion, similar to the bound. The adaptation
is embedded into the dynamics of the system and no pre-processing of sensory
data is needed. The system shows fast adaptation to body properties.

The results presented in this paper show that with a simple control scheme,
it is possible to initiate complex movements and to adapt to the body properties
which are important for this movement. In order for this simple scheme to be
successful it is important that the controller exploits the natural dynamics of the
body. This is in line with observations in nature, where the controllers are found
to be complementary to the bodies they control. In fact the adaptation can be
considered a type of Hebbian learning as it maximizes the correlation between the
signal perturbing the oscillator and the activity of the oscillator. Interestingly,
there is no direct coupling between the controllers for the hind and the fore limb.
The only coupling between the two controllers is via the mechanical structure
and the environment. Nevertheless, an efficient inter-limb coordination emerges
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and a fast, efficency-optimal locomotion is established. This is interesting as
there is no explicit notion of velocity in the system, so it is surprising that the
system optimized on velocity/power efficiency.

Immediate possible applications of such adaptive nonlinear dynamical sys-
tems are e.g. modular robotics, micro robots, robots which are difficult to model,
and adaptive Central Pattern Generators (CPG) for legged locomotion. Further-
more, it will be interesting to explore the use of such adaptive systems in other
fields such as in Physics, Biology and Cognitive Sciences, where oscillators are
widely used model systems.
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Abstract. This paper presents analysis and follow up experiments based
on previous work where a neurally controlled simulated agent was evolved
to navigate using path integration (PI). Specifically, we focus on one
agent, the best one produced, and investigate two interesting features.
Firstly, the agent stores its current coordinates in two leaky integrators,
whose leakage is partially compensated for by a normalisation mecha-
nism. We use a comparison between four network topologies to test if
this normalised leakage mechanism is adaptive for the agent. Secondly,
the controller generates efficient searching behaviour in the vicinity of its
final goal. We begin an analysis of the dynamical system (DS) responsible
for this, starting from a simple three variable system.

1 Introduction

Path integration (PI) is a navigational method available in the absence of land-
marks, and requires a compass and odometer. Information from these two sources
must be continuously integrated during a journey to maintain a running estimate
of the current position relative to some fixed reference point. In animal naviga-
tion studies the current estimated position is referred to as the home vector
(HV), and is subject to the accumulation of error.

Several equational [1],[2],[3] and neural [4],[5],[6] models of PI exist. In our
previous work [7] we presented a new neural model of PI in the desert ant
Cataglyphis fortis, whose PI behaviour has been extensively studied [8]. We
showed that it is possible, using a novel class of neural controller, to use a genetic
algorithm (GA) to produce a PI system without imposing the neural mechanism
for storing the HV. We also showed that using a complete model of the animal
and its environment allowed the model to produce a search behaviour once the
agent had returned to the vicinity of the nest. C. fortis also uses a searching
behaviour to locate its nest, thus allowing it to home in spite of the navigation
errors inherent to PI. Upon analysis we found our neural controller was very
similar to Mittelstaedt’s [1],[2] equational model. In this paper we present follow
up work aimed at reaching a better understanding of our evolved model. We
test four different network topologies to determine which one can produce the
best PI system, and examine a series of equational models intermediate between
Mittelstaedt’s and our own.

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 221–230, 2005.
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Fig. 1. Dynamics of homing using (a) equation 2 and (b) equation 3. The horizontal
axis shows the animal’s orientation θ, the vertical axis shows the animals rate of turn
dθ
dt

where (x, y) is the geocentric rectangular HV and (r, γ) is the geocentric polar
HV. This example shows the case where (a) x > 0, y = 2x and in equivalence (b)
γ = tan−12 = 1.107. Both schemes lead to one stable and one unstable equilibrium
heading with the same respective values.

1.1 Mittelstaedt’s Bicomponent Model

PI in two dimensions can be expressed in terms of the operations required to
update the HV [9], [10]. Mittelstaedt’s bicomponent model [2]:

dx

dt
= s cos θ,

dy

dt
= s sin θ (1)

uses rectangular geocentric coordinates where (x, y) is the HV, s is the animal’s
speed and θ its compass heading. We can express the same system in polar
geocentric coordinates:

dr

dt
= s cos(θ − γ),

dγ

dt
=

s

r
sin(θ − γ)

where r is the animal’s distance and γ its bearing from the origin. We can
describe the process of homing using an equation for the animal’s rate and
direction of rotation as a function of the HV. Mittelstaedt’s [1],[2] bicomponent
model uses:

dθ

dt
= x sin θ − y cos θ (2)

This causes the agent to always turn towards the origin (0, 0). Converting
this into polar form using the relations x = r cos γ, y = r sin γ we obtain:

dθ

dt
= r sin(θ − γ) (3)

During foraging the PI system passively updates the HV in response to the
animal’s movements, but when homing begins the system also directs movement,
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forming a feedback system. To produce a complete model of PI navigation we
therefore need to include a model of the animal’s motion within its environment.
Since the Mittelstaedt model updates the HV using geometrically correct formu-
lae, in the absence of noise the HV values will also be the animal’s true location.
Therefore the three equations provide a simple, complete model of PI, including
feedback.

2 Methods and Results

2.1 The Agent and PI Task

Our simulated agent has two compass sensors, CL, CR, outputting cos θ, sin θ
respectively (where θ is the agent’s current heading), and a speed sensor, S,
outputting a value between 0 and 1 indicating the agent’s normalised speed. The
agent’s motion is controlled by an output, F , controlling the forward speed and
two opposing outputs RL, RR controlling rotation (using dθ

dt = 150(RL − RR)).
To force the agent to travel at varying speeds, 70 percent noise is applied to
the forward speed, and 10 percent noise to rotation. Sensor noise is 1 percent
to ensure PI is feasible. To generate an initial outward excursion before homing
begins the agent also has two beacon sensors BL, BR for phototaxis.

For each trial the agent started at the nest with a random orientation and
was presented with a series of one to three randomly placed beacons which it was
required to visit. Each beacon was removed when the agent reached it, and the
next one activated. After the last beacon the agent’s orientation was randomised,
and it was held stationary for a short random time and then allowed to home
using PI.

The fitness function used was such that the fittest possible agent would visit
all beacons and return to the nest using direct paths at full speed, and would
also search efficiently for the nest after reaching its estimate of the nest location
to compensate for cumulative navigation errors. See [7] for full details.

2.2 ModCTRNN Neural Controller

Our previous work compared two types of neural controller on the PI task, the
Continuous Time Recurrent Neural Network (CTRNN) [11], and a new controller
the Modified CTRNN (ModCTRNN). Our results showed [7] that the ModC-
TRNN outperforms the CTRNN under the conditions tested, and was able to
evolve a much better PI system.

A ModCTRNN network consists of ordinary CTRNN neurons, governed by
the standard leaky integration equation. Weights can link from one neuron to
another as normal, but can also link from a neuron to a weight. The value
of a weight is variable, and performs a leaky integration of its inputs using
the same form of equation as the neurons. The state equation for ModCTRNN
neurons is:

τi
dvi

dt
= −vi +

∑
j

wjzj (4)
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where i indexes all neurons, j indexes all weights inputting to neuron i (if any), τi

is a time constant, vi is the neuron state, wj is a weight and zj is the activation
of the sensor or neuron attached by weight j. For a neuron zj = 1

1+e−(vj+bj)

where bj is a bias parameter. For a sensor zj is the current activation. The state
equation for ModCTRNN weights is:

αi
dwi

dt
= −wi + βi +

∑
j

wjzj (5)

where i indexes all network weights, j indexes all weights inputting to weight i
(if any), α is a time constant, β is a bias term, wj is a weight and zj is the output
of the neuron or sensor attached by weight j. All weights wi are initialised to βi,
therefore any weights which receive no inputs remain constant at this value. A
weight acting to modify another weight can itself be the target of modification,
and so on, allowing an arbitrary degree of higher order weight change to take
place.

2.3 Genetic Algorithm

An asexual GA with a population of 30 was used. Each genotype was evaluated
in 10 trials per generation. Each trial the agent was tested on the PI task and
assigned a fitness value. The genotype’s overall fitness was the mean of 10 trials.
The fittest 5 genotypes were retained unmodified in the population each genera-
tion. Each was copied 5 times to produced 25 new genotypes which were mutated
and used to replace the 25 least fit genotypes. As well as mutating network para-
meter values, the GA also changed the number of neurons and weights present in
the networks and the topology. Bilateral symmetry was imposed. Potential and
weight biases were mutated within the range [−100, 100]. Potential and weight
time constants were encoded using values between [−2, 3] and mapped to their
final values using y = 10x, giving a range of [0.01, 1000]. For further details
see [7].

2.4 Evolved ModCTRNN PI System

The topology of the best evolved network is shown (Fig. 2). If weights wL5, wR5
and wL6, wR6 are ignored, and the network can be seen to approximate Mit-
telstaedt’s model. Weights wL3, wR3 have a low time constant and small bias,
and so they are largely at equilibrium values of wL4S, wR4S. Input to weights
wL2, wR2 are therefore wR4SCR, wL4SCL respectively. Weights wL2, wR2 have
large enough time constants to remain far from equilibrium during a simulated
journey, and therefore act to integrate their inputs, approximating Eqns.1 to
act as the rectangular HV. Eqn.2 is implemented since the inputs to RL, RR

are wL2CL, wR2CR and since the two output neurons act in opposition to cause
rotation.

Here we take two differing methodologies to analyse the PI system. Firstly,
we investigate the effect of network topology on fitness, by constructing four



An Evolved Agent Performing Efficient Path Integration 225

Fig. 2. The original ModCTRNN PI network. BL/R, left/right beacon sensor, CL/R,
left/right compass sensor, RL/R, left/right rotation motor neuron, S, speed sensor and
F , forward motor neuron. Arrows are weights. Lines ending in small squares are weights
which modify other weights. wL1/R1 = 12.0720, wL2/R2 : α = 8.4355, β = 0.0001,
wL3/R3 : α = 0.0123, β = 2.0477, wL4/R4 : α = 5.1753, β = −98.7613, wL5/R5 =
65.9304, wL6/R6 = −3.5159, F : τ = 0.0489, b = 42.8689, RL/R : τ = 0.0106, b =
0.2994.

network topologies derived from the original, and evolving multiple populations
for each. Secondly, we construct simplified DS models of the original in a noise-
less, accurate numerical integration simulator and try to classify the types of
behaviour we observe.

2.5 Evolving with Four Network Topology Classes

Four network topologies were constructed: class 1 the original network topology,
class 2 the original minus weights wL5/R5, class 3 the original minus weights
wL6/R6 and class 4 the original minus weights wL5/R5 and weights wL6/R6. Thus
class 4 contains only what is neccessary to implement Mittelstaedt’s model, and
classes 2 and 3 are the two possible intermediate topologies between it and the
evolved network. These were used to re-evolve PI behaviour starting from weight
values of zero in GA runs where the network topology was not allowed to mutate.
Eight runs of 1500 generations were performed for each. The best agent in each
of the final populations was tested in 1000 trials and scored for the number of
times it reached the nest within the time limit. The best agent in each class was
then evolved for a further 20000 generations, and tested against the agent from
1500 generations. Only the class 4 agent showed an improvement, and was used
in place of the generation 1500 agent. The generation 1500 agent was retained in
the other classes. The four agents were then ranked for fitness. Each was tested
six times for 1000 trials against the agents immediately above and below it, to
determine if the ranking was statistically significant. The ranking order is class
1 > class 2 > class 3 > class 4. All differences were significant at p < 0.01 (Mann
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Fig. 3. Behaviour of the full evolved model. Left: the agent visits three beacons, start-
ing from the nest (bottom centre) travelling anticlockwise. The beginning of a search
pattern is visible before it reaches the nest. Right: a similar anticlockwise journey, but
here the nest has been removed so that the agent searches until the trial times out.

Fig. 4. Agent trajectories plotted in x, y space using the basic Mittelstaedt model with
maximum turning rate parameter k = 8, initial conditions x0 = 0, θ0 = 0 and, moving
from left to right y0 = 0.1, y0 = 0.5, y0 = 1.0. Clearly the initial condition influences
the pattern.

Whitney U test). Percentage success rates for classes 1 to 4 were 97.4, 89.1, 81.1
and 69.5 respectively over 6000 trials.

2.6 Analysis of Searching Behaviour

The ModCTRNN PI agent shows a searching behaviour when it reaches its es-
timate of the nest location (Fig.3). The shape of this trajectory is important in
determining how likely the agent is to locate its nest within the time limit. Tra-
jectories whose density profile closely matches that of the probable nest location
(which is usually not exact where the agent expects it to be due to cumulative
PI errors) should be most efficient.

In the absence of noise Mittelstaedt’s model can constitute a complete PI
system, since the HV is also the agent’s true location. We begin with this system,
assuming the agent’s speed is constant at 1, and build in further features derived
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Fig. 5. The basic Mittelstaedt model (k = 8, x0 = 0, y0 = 0.01, θ0 = 0) augmented with
a decay term in the turning rate equation, e−αt, where α = 0.01. Left, the trajectory
plotted in x, y space, right, the agent’s distance from the origin plotted over time. The
pattern clearly gets wider over time.

Fig. 6. Left: the addition of sigmoidal functions to the turning rate equation of the
basic model (k = 8, x0 = 0, y0 = 2, θ0 = 0) allows the agent to become trapped on an
outward diagonal trajectory. Right: the addition of stateful output units (τ = 1) to
the basic model (k = 8, θ0 = 0) causes the trajectories to differentiate into an initial
homing phase, followed by a searching phase whose size is independent of the initial
release point for the three cases tested here (x0 = 0, y0 = 5 and x0 = 5, y0 = 0 and
x0 = 1, y0 = 0).

from the evolved network, in order to build intuition about how the search
patterns are generated. We remove all noise from the system to aid analysis,
but note that in reality noise would cause uncertainty in the nest location, and
could knock the agent out of unstable trajectories. The three state equations to
be used are:

dx

dt
= cos θ,

dy

dt
= sin θ,

dθ

dt
= k(x sin θ − y cos θ)

where k is the agent’s maximum turning rate. Efficiency can obviously increase
the faster an agent travels since it covers more ground, but we are interested in
the efficiency of the shape of the search pattern. Therefore we transfer a degree
of freedom from the agent’s speed to its turning rate. In polar form:
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dr

dt
= cos(θ − γ),

dγ

dt
=

1
r

sin(θ − γ),
dθ

dt
= kr sin(θ − γ)

This system can be derived from the evolved network by assuming the HV
is updated without errors, that the output neurons have a linear response and
are always at equilibrium and by neglecting wL6, wR6. The rectangular and polar
systems were numerically integrated using the Runge-Kutta fourth order method
[12] using a step size of 0.00005, and plotted together to check they were identical.
The system displays behaviour similar to that of a spirograph [13] (see Fig.4).
Trajectories show no division into homing and search phases, unlike the evolved
agent. Defining δ = θ−γ, and plotting in (r, δ) phase space (not shown) all initial
conditions (except those with δ0 = ±π or 0) appear to give closed trajectories in

(r, δ) space, with no initial transient. Two fixed points are at r =
√

1
k , δ = ±π

2 ,
which linearisation shows are neutrally stable centres, corresponding to circles

in (r, γ) space. Defining φ = δ ± π
2 and ρ = r −

√
1
k we have a reversible

system, since ρ̇(ρ,−φ) = −ρ̇(ρ, φ) and φ̇(ρ,−φ) = φ̇(ρ, φ) (where ρ̇, φ̇ indicate
derivatives) [14]. It follows that all trajectories sufficiently close to the fixed
points are closed, implying that all loops of a given trajectory in (r, γ) space are
congruent in this region.

As stated in our previous work [7], the time constants of weights wL2, wR2
are small enough to allow the HV to decay significantly during the course of
a journey, but this decay is approximately compensated for by the decay of
weights wL4, wR4. We refer to this as leakage normalisation, since it scales down
the HV integrator inputs to approximately balance the decay of the HV values,
thus restoring accurate PI. If we assume this process is perfect we can derive an
extension of the above DS which includes the effect of the HV decay process.
The HV is still accurate, but is scaled by an exponentially decaying coefficient
over the course of the journey. This can be modelled by amending dθ

dt :

dθ

dt
= ke−αt(x sin θ − y cos θ)

dθ
dt will eventually reach zero in this scheme, (which does not happen in the

full network model), and the agent will stop turning, but it is sufficient to show
that the leakage normalisation mechanism can generate a search pattern which
gets wider over time (see Fig.5), as is seen in C. fortis [15].

The output units of the ModCTRNN model are sigmoidal, but do not reach
saturation during homing and search (data not shown). To see why output sat-
uration might have a deleterious effect on homing and search we can amend dθ

dt :

dθ

dt
= k (σ(x sin θ) − σ(y cos θ))

where σ(x) = 1
1+e−x . Saturation causes dead zones to appear around the two

equilibrium values of θ (the stable homeward and unstable outward directions),
where both outputs are saturated on or off, when x and y have similar magni-
tudes, thus making the unstable equilibrium neurally stable. This can trap the
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agent on an outward trajectory along a diagonal (see Fig.6). Thus we can suggest
a good reason why the outputs of RL, RR should be unsaturated during homing
and search.

The output units in the ModCTRNN are stateful leaky integrators. We have
so far treated them as being at equilibrium, but we can include stateful linear
output units in the DS model as follows:

dθ

dt
= k(RL − RR),

dRL

dt
=

1
τ
(−RL + x sin θ),

dRR

dt
=

1
τ

(−RR + y cos θ)

Now for the first time, we obtain trajectories with distinct homing and search
phases (see Fig.6). The example in the figure shows the agent converging onto
a figure of eight shape from three initial positions. The figure eight is the same
size irrespective of the initial release point. The agent is also seen to oscil-
late either side of the direct homeward trajectory during homing as the full
model does.

3 Discussion

The topology experiment results strongly suggest that the weights in the evolved
network which cannot be considered as directly implementing Mittelstaedt’s
model (weights wL5, wR5, wL6, wR6) none the less perform some adaptive role,
and that removing wL6, wR6 has a greater effect than removing wL5, wR5. Our
DS models suggest that leakage normalisation could cause the agent’s search
pattern to get wider over time, which might increase the search efficiency, but
our previous work [7] has only shown weak evidence for this, since individual
searches do not get noticeably wider as wL4, wR4 decays. We therefore still can-
not state the function of the normalisation process. Consideration of linear state-
ful output neurons shows the agent’s trajectory already significantly different
from that of Mittelstaedt’s model, and considerably more complex (now with
5 variables, not 3). Since wL6, wR6 cannot affect HV update, they must func-
tion to further modify the agent’s search pattern towards that seen in the full
model. Further work along similar lines will be needed to finally resolve these
issues.

Overall, we conclude that the use of the ModCTRNN model has proved useful
for evolving a PI agent, and that whilst the model is slightly more complex
than the CTRNN, the resulting PI network is both simple and amenable to
considerable analysis and understanding. We hope the ModCTRNN will prove
useful for other evolutionary robotics projects in the future.
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Abstract. This paper is about the design of an artificial neural network
to control an autonomous robot that is required to iteratively solve a
discrimination task based on time-dependent structures. The “decision
making” aspect demands the robot “to decide”, during a sequence of
trials, whether or not the type of environment it encounters allows it to
reach a light bulb located at the centre of a simulated world. Contrary
to other similar studies, in this work the robot employs environmental
structures to iteratively make its choice, without previous experience
disrupting the functionality of its decision-making mechanisms.

1 Introduction

Evolutionary Robotics (ER) is a methodological tool for the design of robots’
controllers. Owing to its properties, ER can also be employed to study the evo-
lution of behaviour and cognition from a perspective complementary to classic
biological/psychological methods (see [4]).

Given the current “status” of their research field, ER practitioners focus not
only on studies with an explicit bearing on engineering or biological literature
but also on studies which aim to further develop their methods. For example,
several research works have focused on the modelling and exploitation of al-
ternative controllers for autonomous robots—e.g., spiking networks [7], and gas
networks [5]. In general, these works look at how to exploit evolution to shape
these controllers rather than at the complexity and the significance of the evolved
behaviour. Contrary to these, other works are more focused on the evolution of
novel—i.e., never evolved yet—and complex behaviour. For example, some works
exploited “classic” neural structures to evolve controllers for agents capable of
non-reactive or learning behaviour [8]. The results of these studies should be
considered as a “proof-of-concept”: they show that the type of control structure
employed can be shaped by evolutionary algorithms to provide the robot with
the underlying mechanisms required to solve the task at hand.

The work illustrated in this paper belongs to the latter category. To the best
of our knowledge, this is the first study in which a single (i.e., non modularised)
dynamic neural network has been shaped to control the behaviour of an au-
tonomous robot engaged in an iterated discrimination task.1. The task requires
1 A literature review of the field can be found in [9].

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 231–240, 2005.
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navigation within a circular arena in order to approach a light bulb located at the
centre of this simulated world. The “decision making” aspect requires the robot
“to iteratively decide”, during a sequence of trials, whether or not the types of
environment it encounters allow it to accomplish its task. The difficulty of the
task lies, on the one hand, in the nature of the discrimination problem, which re-
quires the integration of sensory information over time; on the other hand, in the
design of decision making mechanisms to carry out the iterated discrimination
task. That is, this task requires the robot to possess memory structures which do
not lose their functionality due to potentially disruptive effects of the previous
experience—i.e., the nature and the amount of discriminations already made.
The results show that dynamic neural networks can be successfully designed by
evolution to allow a robot to iteratively solve the discrimination task based on
time-dependent cues. We also provide an analysis which gives some hints on the
strategy employed by the best evolved robot to solve the task.

2 Methods

Description of the task. At the start of each trial, the simulated robot is
placed in a circular arena with a radius of 110 cm (see Fig. 1). The arena is sim-
ulated as a toroidal world; that is, if the robot traverses the world’s boundaries
from one side, it comes in from the other side at the anti-diametrical position.
At the centre of this world there is a light bulb that is always turned on during
a trial. The light can be perceived up to a distance of 90 cm. Between 90 cm and
110 cm of distance to the bulb, the robot does not perceive any light. We refer to
this area of the arena as the dark zone. The robot perceives the light through its
ambient light sensors. The colour of the arena floor is white except for a circular
band, centred around the lamp, within which the floor is in shades of grey. The
circular band covers an area between 40 cm and 60 cm from the light. The band
is divided in three sub-zones of equal width but coloured differently—i.e., light

Env A Env B S-bot

Dark zone

Target

area

Way-in

zone

Dark zone

Target

area

Fig. 1. Depiction of the task and picture of a s-bot close to a 1 Euro coin. The dark zone
is the area within the dotted circles. The target area, centred on the light, is indicated by
the dashed circle. The continuous arrows are examples of good navigational strategies.
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grey, dark grey, and black. The robot perceives the colour of the floor through
its floor sensor, positioned under its chassis.

The robot can freely move within the arena as well as on the circular band,
but it is not allowed to cross the black edge of the band close to the light. This
edge can be imagined as an obstacle or a trough, that prevents the robot from
further approaching the light. Whenever the robot crosses the black edge, the
trial is unsuccessfully terminated. The light grey and the dark grey zones are
meant to work as a warning signal which indicates to the robot how close it
is to the danger—i.e., the black edge. There are two types of environment. In
one type—referred to as Env A—the band presents a discontinuity (see Fig. 1,
left). This discontinuity, referred to as the way in zone, is a sector of the band
in which the floor is white. In the other type—referred to as Env B—the band
completely surrounds the light (see Fig. 1, middle). The way in zone represents
the path along which the robot is allowed to safely reach the light in Env A. The
robot cannot reach the proximity of the light in Env B.

At the start of each trial, the robot does not know in which type of envi-
ronment it is located. It finds itself positioned in the dark zone with a random
orientation. At this time its task is to explore the arena, in order to get as close as
possible to the light. If it encounters the circular band it has to start looking for
the way in zone in order to continue approaching the light. If it finds the way in
zone, the robot has to get closer to the light and remain in its proximity for 10s.
After this time, the trial is successfully terminated and the robot is randomly
re-positioned in the dark zone. If there is no way in zone (i.e., the current envi-
ronment is Env B), the robot should be capable of (a) “recognising” the absence
of the way in zone, (b) notifying by a sound signal the absence of the way in
zone, (c) coming back to the dark zone by performing anti-phototaxis. Back in
the dark zone either because re-positioned or because returned there, the robot
has to “prepare” itself for a new trial in which the characteristics of the environ-
ment are unknown. The transition between two consecutive trials is particularly
complex in case the robot has just concluded a trial in Env B. This transition
requires the robot to turn the sound off and to switch from anti-phototaxis (i.e.,
the last behaviour performed in Env B) to random walk and then phototaxis
once the light falls again within its perceptual field.

This task is very similar to the one described in [9] since the robot is required
to make use of a temporal cue in order to discriminate between Env A and Env B.
This discrimination is based on the persistence of the perception of a particular
sensorial state (e.g., the perception of the grey floor, the light, or both) for the
amount of time that, given the trajectory and speed of the robot, corresponds
to the time required to make a loop around the light. In other words, if the
perception of a particular sensorial state common to both types of environment
lasts significantly long with respect to the speed and trajectory of the robot,
then that sensorial state might be used by the robot to “conclude” that there is
no way in zone, and a tone has to be emitted (see [9] for more details).

However, with respect to [9], this task is meant to be a step further in the
evolution of decision making mechanisms based on time-dependent structures.
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In [9], we studied the evolution of decision making mechanisms for a one shot
discrimination task by simply resetting the robot’s controller (i.e., set to 0 the cell
potential of the neurons) at the beginning of each trial. The resetting “facilitates”
the task of discriminating between Env A and Env B since (a) the integration of
the sensorial state which eventually leads to the emission of the sound signal is
not disrupted by the type and the amount of previous experience; (b) the robot
does not need to terminate the emission of the sound signal, since, given the way
in which sound is implemented, such an event is automatically determined by
the resetting; (c) the robot does not need to “recognise” the end of the current
trial and the beginning of a new one, since such transition implies the resetting
of the activation values of the neurons of its controller. In other words, each trial
is for the robot like a new life in which, starting from the same internal state, a
single decision has to be made.

The task described in this paper is made significantly more complex with
respect to what shown in [9] by (a) avoiding to impose the resetting of the robot
controller at the beginning of each trial, and consequently by (b) letting the
robot autonomously develop the conditions which set the end of a trial and the
beginning of a new one. If the robot controller is not reset at the beginning of
a trial, the decision to be made in the trials following the first one, will nec-
essarily be carried out by mechanisms which have already been “shaped” by
previous experience.2 Therefore, it is important that the functionality of the de-
cision making mechanisms employed by the robot are not disrupted by previous
experience. In other words, discriminating between Env A and Env B requires
the robot to make use of memory structures to integrate over time a particular
sensorial state. Carrying out such an iterated discrimination task requires the
robot to possess memory structures which do not lose their functionality due to
potential disruptive effects of the previous experience—i.e., the nature and the
amount of discriminations already made. Furthermore, the robot should be able
to exploit its perception in order to establish when a trial ends and a new one
starts. This is particularly important at the end of an exploration in Env B, in
which the robot should conclude the trial by emitting a tone and moving away
from the light and should begin the new trial with the sound turned off and
performing light seeking behaviour. These changes (i.e., sound on - sound off,
anti-phototaxis - phototaxis) have to be triggered by perceptual states which
ideally set the end of a trial and the start of a new one.

Several implementation details such as (i) requiring the robot to perform
anti-phototaxis in Env B, (ii) the introduction of the dark zone, and (iii) the
toroidal world, have been introduced to make sure that the robot’s sensory ex-
perience can potentially provide the support the robot needs in order to make
iterated choices. For example, a robot that successfully terminates a trial in Env
B can exploit the perceptual states associated with performing anti-phototaxis
and with its presence in the dark zone to “prepare” itself for the new trial (a) by
turning the sound signalling off, and (b) by adjusting its internal state so that it
will be ready for a new discrimination task. In particular, being repositioned in

2 In our model, it is the neuron’s cell potential to be modified by the robot’s experience.
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the dark zone after a success in Env A, or reaching the dark zone after a success
in Env B, are two events that can be unambiguously employed by the robot in
order to establish the end of the current trial and the beginning of the following
one. In the absence of a global framework of reference (e.g., a compass), the
toroidal world makes it easier for a robot to navigate in the dark zone in order
to reach the area in which the light source can be perceived.

The simulation model. The robot and its world are simulated using the “min-
imal simulation” technique described in [6]. This technique uses high levels of
noise to guarantee that the simulated controller transfers to the physical robot
with no loss of performance (see [1]). Our simulation models some of the hard-
ware characteristics of the real s-bots. The s-bots are small wheeled cylindrical
robots, 5.8 cm of radius, equipped with infrared proximity sensors, light and hu-
midity sensors, accelerometers, and omni-directional camera (see Fig. 1, right,
and also http://www.swarm-bots.org/ for more details). In particular, our sim-
ulated s-bot is provided with four ambient light sensors, placed at −112.5◦ (A1),
−67.5◦ (A2), 67.5◦ (A3), and 112.5◦ (A4) with respect to its heading, a floor
sensor positioned facing downward on the underside of the robot (F ), an omni-
directional sound sensor (S), and a loud-speaker. The motion of the robot is
implemented by the two wheel actuators. Light levels change as a function of
the robot’s distance from the lamp. Light sensor activation values are taken
from a look-up table which contains sampled information from the real robot.
The ground sensor detects the level of grey of the floor. The robot floor sensor
outputs the following values: 0 if the robot is positioned over the white floor; 1

3
if the robot is positioned over the light grey floor; 2

3 if the robot is positioned
over the dark grey floor; 1 if the robot is positioned over the black floor. The
simulated speaker produces a binary output (on/off); the sound sensor has no
directionality and intensity features. Concerning the function that updates the
position of the robot within the environment, we employed the Differential Drive
Kinematics equations, as presented in [2]. 10% uniform noise was added to the
light sensor readings, the motor outputs and the position of the robot.

The controller and the evolutionary algorithm. Fully connected, eight
neuron continuous time recurrent neural networks (CTRNNs) are used. All neu-
rons are governed by the following state equation:

dyi

dt
=

1
τi

⎛⎝−yi +
8∑

j=1

ωjiσ(yj + βj) + gIi

⎞⎠ σ(x) =
1

1 + e−x
(1)

where, using terms derived from an analogy with real neurons, yi represents the
cell potential, τi the decay constant, βj the bias term, σ(yj + βj) the firing rate,
ωji the strength of the synaptic connection from neuron jth to neuron ith, Ii the
intensity of the sensory perturbation on sensory neuron i. Four neurons receive
input (Ii) from the robot sensors: neuron N1 takes input from A1+A2

2 , N2 from
A3+A4

2 , N3 from F , and N4 from S. Neurons N1, N2, and N3 receive as input a
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real value in the range [0,1], while neuron N4 receives a binary input (i.e., 1 if a
tone is emitted, otherwise 0). The other neurons do not receive any input from
the robot’s sensors. The cell potential (yi) of the 6th neuron, mapped into [0,1]
by a sigmoid function (σ), is used by the robot to control the sound signalling
system (i.e., the robot emits a sound if y6 >= 0.5). The cell potentials (yi) of
the 7th and the 8th neuron, mapped into [0,1] by a sigmoid function (σ) and
then linearly scaled into [−6.5, 6.5], set the robot motors output. The strength
of synaptic connections ωji, the decay constant τi, the bias term βj , and the gain
factor g are genetically encoded parameters. Cell potentials are set to 0 any time
the network is initialised or reset, and circuits are integrated using the forward
Euler method with an integration step-size of 0.1.

A simple generational genetic algorithm is employed to set the parameters
of the networks [3]. The population contains 100 genotypes. Generations fol-
lowing the first one are produced by a combination of selection with elitism,
recombination and mutation. For each new generation, the three highest scoring
individuals (“the elite”) from the previous generation are retained unchanged.
The remainder of the new population is generated by fitness-proportional selec-
tion from the 70 best individuals of the old population. Each genotype is a vector
comprising 81 real values (64 connections, 8 decay constants, 8 bias terms, and
a gain factor). Initially, a random population of vectors is generated by initial-
ising each component of each genotype to values chosen uniformly random from
the range [0,1]. New genotypes, except “the elite”, are produced by applying
recombination with a probability of 0.3 and mutation. Mutation entails that a
random Gaussian offset is applied to each real-valued vector component encoded
in the genotype, with a probability of 0.13. The mean of the Gaussian is 0, and
its standard deviation is 0.1. During evolution, all vector component values are
constrained to remain within the range [0,1]. Genotype parameters are linearly
mapped to produce CTRNN parameters with the following ranges: biases βj ∈
[-2,2], weights ωji ∈ [−6, 6] and gain factor g ∈ [1,12]. Decay constants are firstly
linearly mapped onto the range [−0.7, 1.7] and then exponentially mapped into
τi ∈ [10−0.7, 101.7]. The lower bound of τi corresponds to a value slightly smaller
than the integration step-size used to update the controller; the upper bound
corresponds to a value slightly bigger than the average time required by a robot
to reach and to perform a complete loop of the band in shades of grey.

The evaluation function. During evolution, each genotype is coded into a
robot controller, and is evaluated ten times, 5 trials in Env A, and 5 trials in
Env B. The sequence of environments within the 10 trials is chosen randomly.
Each trial (e) differs from the others in the initialisation of the random num-
ber generator, which influences the robot starting position and orientation, the
position and amplitude of the way in zone, and the noise added to motors and
sensors. The width of the way in zone can vary from 45◦ to 81◦. Within a trial,
the robot life-span is 80 s (800 simulation cycles). In each trial, the robot is
rewarded by an evaluation function fe which corresponds to the sum of the
following four components:



Evolving Neural Mechanisms for an Iterated Discrimination Task 237

1) C1 rewards fast movement to the target area. C1 = di−dc

di
where di and dc

represent respectively the initial and the current Euclidean distance between the
robot and the light bulb. In Env A, C1 is set to 1 if the robot terminates the
trial less than 35 cm away from the light bulb. In Env B, C1 is set to 1 as soon
as the robot reaches the circular band without crossing the black edge in the
direction of the light.
2) C2 rewards movements away from the light. C2 = dc

dmax
if trial in Env B , 0 if

trial in Env A or if C1 < 1 (dmax = 110 cm).
3) C3 rewards agents that never signal in Env A and that always signal in Env B.
C3 is set to 1 if the robot signals properly, 0 otherwise. The robot is considered
to have signalled only if it has done so being closer than 70 cm from the light.
By doing so, we create an area between 70 cm and 110 cm from the light that
the robot can use to turn the sound off at the end of a trial in Env B.
4) C4 rewards movements toward the light. C4 = 1 − k

T if trial in Env A, 0
otherwise. k is the number of simulated time-steps the robot spent to reach the
target area, and T = 800 is the total number of simulated time-steps available
to the robot. An important feature of this evaluation function is that it simply
rewards agents that make a proper use of their sound signalling system, without
directly interfering with the nature of the discrimination strategies.

3 Results

Ten evolutionary simulations, each using a different random initialisation, were
run for 7000 generations. We examined the best individual of the final generation
from each of these runs in order to establish whether they evolved the required
behaviour. Recall that the robot is successful in Env A if it reaches the target
area without emitting any sound signal; it is successful in Env B if (a) it reaches
the circular band, (b) signals the absence of the way in zone by emitting a tone,
and (c) comes back to the dark zone (anti-phototaxis).

During the post-evaluation phase, each of the ten best evolved controllers
was subjected to a set of 252 different re-evaluations. Since a re-evaluation is
composed of 10 trials, out of which 5 are Env A and 5 are Env B, 252 ( 10!

5!·5!)
is the number of possible evaluations which differ in the order of presentation
of Env A and Env B. 2520 is the total number of trials experienced by each
robot during the post-evaluation, half of which in Env A and half in Env B.
Note that during evolution, each robot experienced only a particular sequence
of 5 trials in Env A and 5 trials in Env B. Since the robot controller is reset only
at the beginning of each evaluation, the order of presentation of the types of
environment might bear upon its performance. A robot that results successful in
the post-evaluation is one which employs a strategy which is effective regardless
the sequence of environments.

During the post-evaluation phase, we looked at the robot’s capability to reach
the light bulb (Succ.) in Env A, without making any error. Errors can be of three
types: error (I) refers to the case in which the robot emits a sound signal, error
(II) refers to the case in which the robot crosses the black edge of the band, error
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Table 1. Results of post-evaluation showing the performance of the best evolved con-
trollers of each run. The percentage of success (Succ.) and the percentage of errors (I,
II, III in Env A, and IV, V, VI, VII in Env B) over 252 evaluations are shown for both
Env A and Env B. Additionally, the average offset Δ, its standard deviation (degrees),
and the number of successful trials (n.) are shown for Env B.

run Env A Env B
Succ. Types of Error (%) Succ. Types of Error (%) offset Δ

I II III IV V VI VII Avg. Std n.
n. 1 83.17 7.77 4.76 0.15 1.42 14.92 0.00 4.12 79.52 21.25 115.86 18
n. 2 94.12 5.87 0.00 0.00 96.42 1.34 0.00 0.00 2.22 50.52 124.08 1215
n. 3 22.85 0.00 77.06 0.0 0.0 0.23 0.0 99.76 0.0 — — 0.0
n. 4 84.92 14.68 0.23 0.00 98.57 0.0 0.0 0.0 1.42 -81.12 39.32 1242
n. 5 86.19 8.33 5.23 0.07 81.58 0.07 0.15 15.23 2.93 -10.8 79.05 1028
n. 6 33.17 10.07 50.55 6.19 92.93 0.00 0.00 0.079 6.98 6.1 104.75 1171
n. 7 88.49 11.11 0.39 0.00 97.53 0.00 0.00 0.00 2.46 -15.81 80.87 1229
n. 8 82.93 16.50 0.47 0.07 96.19 1.11 0.00 0.00 2.69 -60.04 82.16 1212
n. 9 99.68 0.07 0.23 0.00 95.87 2.06 0.00 0.23 1.82 71.03 50.89 1208
n. 10 59.04 40.95 0.00 0.00 98.57 0.07 0.00 0.00 1.34 -155.86 57.36 1242

Time in sec

1 54.2 104.0 132.2 179.3

0.
0

0.
5
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0

Env. B
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Fig. 2. The graph shows the output of the neuron that controls the sound (N6, see
continuous thick line), the floor sensor reading (F , see continuous thin line), the average
values of the light sensor readings (A1, A2, A3, A4, see dotted line), during the first 5
trials of a 10 trials evaluation in which the robot did not make any error. The numbers
on the x-axis, show at which point of the robot life-span a new trial begins.

(III) refers to the case in which the robot makes both errors I and II within the
same trial. Similarly, in Env B, we looked at the performance of the robot in
completing the task as mentioned above (Succ.), without committing any error.
Four error types are possible: error (IV) refers to the lack of sound signalling,
error (V) refers to the robot crossing the black edge of the band, error (VI) refers
to the robot missing to reach the dark zone after having signalled; error (VII)
refers to the case in which the robot makes error IV, V, and VI within the same
trial. Furthermore, in Env B we also compute the offset (offset Δ) between the
entrance position of the robot in the circular band and the position in which the
robot starts to signal (see [9] for a description of how the offset Δ is computed).
This measure accounts for the precision of signalling with respect to the time it
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takes for the robot to complete a loop around the light. Offset Δ takes value 0◦

if the robot signals exactly after covering a complete loop of the circular band.
Negative values of the offset Δ suggest that the robot signals before having
performed a complete loop; positive values correspond to the situation in which
the robot emits a tone after having performed a loop around the light.

The results of the post-evaluation, shown in Table 1, shed light on two aspects
of our work: first, they give a quantitative estimate of the overall success rate
of the evolved strategies; second, they provide elements to infer the behavioural
strategies employed by our robots to solve the task. Concerning the percentage of
success in both types of environment, the results are quite encouraging. Despite
the complexity of the task, six runs out of ten—runs n. 2, 4, 5, 7, 8, 9—show
a percentage of success (Succ.) in both types of environment higher than 80%
(i.e., more than 2016 successful trials out of 2520). The strategies of run n. 2
and 9 are the most effective, with a percentage of success in both environments
higher than 94%. The performance of run n. 4, 5, 7, 8 is mainly “blurred” by
errors of type I, caused by a risk-taking behaviour, which led the robot to signal
slightly before having completed a loop around a light—see the negative values
of the average offset Δ. Among the less successful robots, the performance of
run n. 10 is also disrupted by errors of type I. The bad result of run n. 6, and n.
2 is mainly due to crossing the black edge of the circular band (error type II).
Run n. 1 is quite successful in Env A, but its performance is particularly bad
in Env B. In view of its high error rate of type VII, we can conclude that this
robot employs the strategy of never signalling in Env B, and of remaining on
the circular band circuiting around the light. It is worth noticing that the two
most successful runs (i.e., run n. 2 and 9) employ a risk-averse behaviour, since
they have the tendency to signal slightly after having completed a loop around
a light—see the positive values of the average offset Δ.

The graphs shown in Fig. 2 give us some hints on the mechanisms employed
by robot run n. 9 (a) to control the sound, and (b) to switch from phototaxis to
anti-phototaxis and vice-versa. As far as it concerns (a), Fig. 2 shows that the
output of neuron N6 increases if the robot is on the circular band. The output of
N6 crosses the 0.5 threshold—i.e., the sound is turned on—if the robot remains
on the band for a time slightly higher than the time required to make a loop
around the light. This can be inferred by the positive value of the offset Δ in
Table 1. Concerning (b), the robot performs phototaxis as long as it does not
perceive any sound. Fig. 2 shows that the perception of sound makes the robot
change strategy—i.e., from phototaxis to anti-phototaxis. Once the robot is out
of the band, the output of neuron N6 starts decreasing. However, given the rate
of change of the output of neuron N6, the robot stops emitting a tone just after
having reached the dark zone. Owing to this mechanism, the robot manages, by
the end of a trial in Env B, to set the cell potential of neuron N6 to a value
which makes it possible for it (a) to approach the light at the beginning of the
following trial, since no sound is emitted, and (b) to be in a “state” to be able
to perform another discrimination.
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4 Conclusions

In this paper, we have shown that a single dynamic neural network can be syn-
thesised by evolution to allow an autonomous robot to successfully perform an
iterated discrimination task, based on time-dependent structures. The results
illustrated here are of particular interest because, to the best of our knowledge,
this is the first study in which an autonomous robot manages to iteratively
solve a complex non-reactive task without previous experience disrupting its
decision making mechanisms. The performance of the best evolved robot was
not disrupted by the sequence of presentation of the environments. However,
the robustness of the evolved strategies with respect to other potentially more
disruptive environmental changes, such as the dimensions of the circular band,
and the dark zone, remains to be assessed.
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Abstract. All biological organisms must be able to regulate certain essential 
internal variables, e.g. core body temperature in mammals, in order to survive. 
Almost by definition, those that cannot are dead. Changes that result in a 
mammal being able to tolerate a wider range of core body temperatures make 
that organism more robust to external perturbations. In this paper we show that 
when internal variables are regulated via ‘rein control’ mechanisms, decreasing 
the range of tolerable values increases the area of observed hysteresis but does 
not decrease the limits of regulation. We present circumstances where 
increasing the range of tolerable values actually decreases robustness to 
external perturbation. 

1   Introduction 

In a biological context, the term homeostasis is applied to the inherent tendency in an 
organism toward maintenance of physiological stability.  For example, mammals 
must maintain core body temperature to within a certain range if they are to survive. 
Mechanisms to maintain a minimum core body temperature could be shivering and 
reduction of blood circulation to the extremities. If core body temperature increases to 
the upper limits of this viability range, then sweating and dilation of capillaries will 
lower core body temperature. Following Ashby [1] we define such internal variables 
as essential variables. Furthermore we define the tolerance - the range of values that 
the essential variable must be maintained within - as the essential range. For example 
core body temperature in Homo sapiens must be maintained within the essential range 
of approximately 35-41 degrees Celsius.  

In this paper we will argue that for systems that are regulated via ‘rein control’ (as 
discussed below), decreasing the essential range may not decrease the range over 
which homeostasis is performed. We will demonstrate that increasing the essential 
range may actually decrease robustness to external perturbation. Clynes [2] postulated 
that many physiological homeostatic processes operate on the basis of opposing 
control reins that each pull in a single direction in response to certain variables; in 
order to regulate for both upper and lower limits, two reins, two separate mechanisms 
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are required. For a physiological application of rein control see Saunders et al [4] who 
employ Clynes’ rein control analysis to understand the mechanisms responsible for 
the regulation of blood sugar levels in humans. 

We will show that altering the essential range changes the area of hysteresis. 
Hysteresis will be observed in a system when the output or behaviour is bistable as an 
input parameter that represents some property of the system is changed through some 
range of values; when the input is increased through that range, the output is one 
function of the input, yet if the input decreases, the output is a different function of 
the input, thus tracing out a ‘hysteresis loop’.  

In order to explore these issues, analysis will be carried out on the behaviour of a 
simple two-box ‘cable car’ model that performs phototaxis. This model is based on 
the radically simplified Daisyworld model, as detailed by Harvey in [3]. The original 
Watson & Lovelock Daisyworld model [5] was intended to demonstrate the 
homeostatic properties of a planet that is covered with varying proportions of black 
and white daisies. Watson & Lovelock employ the Stefan-Boltzmann law to 
determine the temperatures of the daisies and bare earth. While such an approach 
involves a non-linear change in temperature with respect to absorbed energy, the 
relationship between the albedo and the temperature of a body is straightforward; 
given a fixed amount of short-wave radiation, the lower the albedo, the darker the 
body, the less radiation is reflected and so the higher the temperature. When the star 
that heats the planet is dim, the planet is cool. Black daisies, having a lower albedo 
than either white daisies or the bare earth absorb more of the radiated short-wave 
energy from the star and so will be warmer than either white daisies or bare earth. If 
the brightness or luminosity of the star steadily increases, then black daisies will 
begin to grow. As the proportional coverage of black daisies increases, the net albedo 
of the planet decreases. This raises the temperature and so increases the rate of daisy 
growth. The result of this positive feedback is a population explosion of black daisies 
and a sharp increase in the planetary and daisy temperatures. If luminosity continues 
to increase, the planet eventually becomes too warm for black daisies to be able to 
grow. Only white daisies are cool enough to survive as they reflect a greater 
proportion of the incoming solar radiation. In this way, the black and white daisies 
regulate the planetary temperature, keeping it within the essential range over a wider 
range of luminosities than would be the case with a bare lifeless planet.  

Rather than formulating an abstract model of a homeostatic system, we instead 
follow the precedent of Daisyworld and present the cable car model in the form of a 
‘parable’. To that end, the simplification process begun in [3] is taken further. The 
cut-down ‘toy’ physics is reduced to simple linear responses to a light source position 
whilst the relationship between temperature and albedo is dispensed with. These 
further simplifications will aid investigation into the relationship between 
homeostasis, hysteresis, essential range values, and in particular demonstrate that 
increasing the essential range of the model decreases the area of observed hysteresis 
but does not increase the limits of self-regulation. Furthermore there are 
circumstances where increasing the range of tolerable values actually decreases the 
limits of self-regulation. 
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1.1  Organisation of Paper 

The cable car model will be introduced and compared to Daisyworld in the following 
section. Both models are composed of two control reins, loosely coupled via their 
interaction with a shared external driving force. Results from the cable car model will 
be presented in Section 3. Section 4 will analyse the results. Section 5 concludes the 
paper. 

2   The Cable Car Model 

The model is based on the cable cars found in San Francisco. Unlike the systems used 
in the Alps and other mountainous regions, the San Francisco system consists of 
cables that are located under the road surface and connect to tram like cars. In our 
model a photovoltaic cell – a ‘solar panel’ – is located on the roof and supplies 
current to an electric motor which instead of being located in a winding house, is 
carried within the cable car itself. As the motor turns, it pulls in a cable that moves the 
car up the side of a valley. The output of the solar panel, and therefore the force that 
the motor produces, changes linearly with varying inclination from a moveable light 
source. When the light source is directly overhead, maximum output is produced and 
so maximum motor output is achieved. Deviations left or right by either the cable car 
or light source result in decreasing energy production. The range of light source 
locations that produce current in the solar panel we call the activation range and is 
analogous to the essential range of viable daisy temperatures in Daisyworld. It is 
assumed that the light source is so far away (e.g. the sun) that the energy input 
depends solely on relative angle to vertical, and any distance change is irrelevant. 
This does not make any substantive difference to the behaviour of the model but does 
allow easier analysis. 

 

Fig. 1. As the light source enters the activation range of the solar panel, the motor rotates anti-
clockwise, pulling on the cable which moves the car to the left and so up the valley slope. The 
gradient of the slope can be understood to increase non-linearly, e.g. the valley has a ‘U’ shape 
and so the car experiences an increasing ‘resisting’ force due to gravity as it moves further from 
its starting position.  

As the light moves into the left-hand side of the activation range, the solar panel 
will begin to produce current. The motor will turn anti-clockwise pulling in the cable 
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and so move the car to the left. This will bring the light nearer the centre of the solar 
panel’s activation range and further increase the motor output, and move the car 
further to the left, higher up the valley slope. The cable car has a dimensionless mass 
of 1 unit. As the car moves further from its starting position, the gradient of the slope 
increases and so the ‘resisting’ force due to gravity pulling the car back to the bottom 
of the valley, γ , increases: 

.
X

l
γ η=                                                  (1.1) 

 
Where X is the position of the car in dimensionless x-units, l is the length of the slope 
and η  measures the rate of increase of the resisting force as the car travels higher up 
the slope. For the simulations presented in this paper η  was set to 1 and 
so γ increases linearly from 0 when the car is at the bottom, to 1 when the car is at the 
top of the valley.  

   α is the force produced by the motor. This was set to vary linearly from 0 to a 
maximum of 1 in response to the output of the solar panel: 

( )Max 1 2 / , 0lightX X ϕα − −=                           (1.2) 

where Xlight is the location of the light source and ϕ  is the activation range of the 

solar panel. This produces a ‘witches hat’ shaped activation function that can be 
understood as a piece-wise linear version of the original Daisyworld parabolic growth 
function.  
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Fig. 2. The output of the solar panel is maximized and so motor output is greatest when the 
light is directly overhead. As the light moves away from this point, motor output decreases 
linearly. 

The model is completed with the introduction of another cable car that moves up 
the opposite side of the valley.  

The energy provided by the solar panel turns the motor clockwise and so the car 
moves to the right. A spring is attached between the cars. As the cars move apart, the 
spring is stretched and a force is exerted that pulls the cars back together. This force is 
found with: 
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( ) .
right left

F X Xς= −                             (1.3) 

Where ς  is the ‘elasticity’ of the spring and is parameterized from 0 (infinitely elastic, 

giving F = 0), to 1 (completely rigid so that both cars move as a single unit). It is 
important to note that F is based on the horizontal distance between the cars as 
measured in x-units. This will differ from the ‘actual’ distance due to the changing 
gradient of the valley slope. Such a difference does not make any substantive difference 
to the results, but does allow simpler computations. Table 1 lists the parameters of the 
cable car and Daisyworld models and allows a comparison of the two. 

 

Fig. 3. The left car motor pulls to the left, whilst the right car motor pulls to the right. 
Depending on the strength of the spring, both cars will move independently or together. The 
solar panels remain pointing straight up irrespective of the orientation of the cable cars.  

Table 1. A comparison of cable car model and Daisyworld parameters 

Cable Car Model Daisyworld 
Motor output Daisy coverage  
Light location Luminosity of star  
Solar panel activation range Range of viable growth temperatures   
Left car Black daisies 
Right car White daisies 
Connecting Spring Flow of heat from hot to cold 

3   Results 

Steady state values over a range of light source positions were found numerically by 
employing the following algorithm: 

1. Calculate the energy produced by the solar panels from the angle of inclination of 
the light source and therefore the force of rotation of the motors. 

2. Calculate the resistance pulling both cars back to the bottom of the valley. 
3. Calculate the car’s new positions as a sum of the motor output and resisting 

forces. 
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4. Calculate the force exerted by the coupling spring connecting both cars.  
5. Move the cars towards a point midway between them in proportion to the 

coupling spring force.  
6. Go back to 1. 

For each time-step, the light source position remained fixed whilst steps 1-6 were 
iterated until changes in the position of the cable cars were vanishingly small as 
calculated at double floating point accuracy. In practice 10,000 iterations were 
sufficient. The width of the activation range was set to 20 x-units. The width of the 
valley was set to 100 x-units. The top of the left hand slope was located at  x = 0, the 
bottom at x = 50 and the top of the right hand slope at x = 100. Motor output varied 
from 0 to a maximum of 1. η  was set to 1 in order that γ  varied linearly from 0, to a 
maximum resisting force of 1 when a car was at the top of either slope. The strength 
of the coupling spring was set to 5%, ς = 0.05.  
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Fig. 4. Solid lines show the car’s horizontal position (top plot) and motor output (bottom plot) 
when the light is moving left to right (forwards). Dashed lines show positions and motor output 
when the light is moving right to left (backwards). Arrows indicate the hysteresis loops.  

As the light moves from left to right, both cars move immediately away from the 
bottom of the valley. As the light continues to move, the left car slowly moves back 
down the slope whilst the right car continues to move to the right until its motor 
output reaches its maximum. As the light moves further, it goes past the centre of the 
right car’s activation range and so solar panel and motor output decreases. This moves 
the car to the left and so further away from the light source. The right car continues to 
move back down the slope until it is at rest at the bottom of the valley. As the light 
reverses direction the same situation occurs but with the right car steadily decreasing 
in motor output and the left car motor output steadily increasing to its maximum and 
then abruptly falling to zero. Such behaviour is similar to the growth curves and area 
of hysteresis observed in Daisyworld simulations in which there is initial rapid  
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growth, then steady decline of black daisies whilst the white daisies population slowly 
increases, peaks and then suddenly collapse. 

3.1   Phototaxis as Homeostasis 

The homeostatic properties of Daisyworld are assessed in terms of the system’s 
ability to regulate global temperatures to within the range in which daisy growth in 
possible. This is achieved by maximizing the range of luminosity in which daisies 
are able to grow, and in particular the range in which both daisy types are present. 
The cable car model instead performs phototaxis. Phototaxis is defined here as the 
change in the cable car’s position in response to changes in the light source’s 
position, with the result that the position of the light source is maintained between 
the two cars. This is made more apparent if the location of the light source and cars 
are plotted over time with the light source taking a sinusoidal motion back and forth 
along the horizontal plane. 
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Fig. 5. Time is given in dimensionless units on the horizontal axis on both plots. The top plots 
shows both cars initially at rest at the bottom of the valley where x = 50. They are not activated 
by the light source until time step 210. The light source moves back and forth along the 
horizontal plane. The motor outputs and positions of the cars reflect this motion. 

Hysteresis is observed when simulations are performed with the light source 
outside of the activation range of either cable car. Once the cable cars begin to move, 
they are able to track the light over the entire range of light source positions. If the 
light source begins within the activation range of either car, or if the right/left hand 
car is held at its maximum distance from the bottom of the valley, and the light is 
introduced from the right/left, then there is no period when the cars are inactive. This 
produces the perhaps counter-intuitive result that decreasing the activation range may 
not decrease the range of light positions over which phototaxis can be achieved. For 
example, the hat function could be transformed into a ‘spike’ function with the result 
that the light source must be directly overhead in order to produce solar panel output 
and so motor force. 
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Fig. 6. Two solar panel hat functions for the left hand cable car are plotted. Hat Function 1 is 
wider than Hat Function 2. The cable car starts at x = 50 (the bottom of the valley). The light 
source starts at x = 0 (the top of the left hand slope) and moves to the right. Hat Function 1 will 
be activated at point A, when the light source enters the activation range of the solar panel, 
whereas Hat Function 2 will not activate until point B. Once the car is activated, if the light 
source were to reverse direction and move to the left, the limits of phototaxis would be the 
same for both hat functions.  

For a single cable car, the limits of activation are not determined by the width of 
the hat functions rather their heights and the feedback that the cable cars exert. This 
feedback is a function of the strength of motor output and the sum of resisting forces 

pulling the car back towards the bottom of the valley. The limits of phototaxis 
max

X , 

can be found with: 

max max
.

l
X α

η
=                                                (1.4) 

where 
max

α is the maximum possible motor output. If the left hand car starts at the 

bottom of a slope of length 50 and has a maximum motor output of 1 with η  set to 1, 

the furthest left it can travel is 50 units. It is not necessary to specify the width of the 

solar panel activation range in order to determine 
max

X . 

3.2   Decreasing the Range of Phototaxis 

In simulations with two cars, as the light moves back and forth, only one cable car is 
responsible for the light-following behaviour. This car is referred to as the ‘active’ 
car. The other car is pulled up the opposite slope by virtue of the connecting spring. 
This car is referred to as the ‘passive’ car. As the activation range increases, the motor 
output of the passive car increases and so the car pulls more strongly away from the 
light. This also increases the sum of resisting forces on the active car and so reduces 
the value of Xmax. Fig. 7. shows the effects of increasing the width of the activation 
function to 40 x-units and then decreasing it to 4 x-units. 
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Fig. 7. In the left hand figure, the effects of increasing the activation range to 40 x-units are 
shown in the top plot, the effect of decreasing it to one tenth of this value are shown in the 
bottom plot. The range of phototaxis is significantly reduced when the activation range is 
increased to 40 x-units. When the activation range is reduced to 4 x-units, the distance between 
the cars and the light source decreases whilst the area of hysteresis increases. In the right hand 
figure, the effects of increasing the activation range to 40 x-units has resulted in the passive car 
solar panel being activated and so the left hand car pulling away from the light and so 
increasing the sum resisting forces acting on the active car. This decreases the limits of 
phototaxis. 

4   Analysis 

The strength of each feedback channel, how hard the motors pull, in part determines 
the range of external forcing over which the cable car model is able to perform 
phototaxis. What the channels are pulling against is just as important. Indeed it is the 
resistance that the cable cars experience as they travel up the valley slope that allows 
phototaxis to be performed and is also the cause of the observed hysteresis. To 
explain this will require a moment’s anthropomorphising. The roots of hysteresis are 
found in the different cable car behaviours in response to the light source that is 
dependent on the direction from which it enters the activation range. For example, if 
the light source approaches the left car from the right hand side, the car attempts to 
‘run away’ up the slope. It is light-phobic. This is referred to as behaviour A. If 
however the light source approaches from the left hand side, it is a light-phile. The car 
runs up the slope to ‘meet’ the light and then ‘follows’ it back down the slope. This is 
referred to as behaviour B. The response of the car is the same under both situations. 
As the cable car motor is only able to move the car up the slope, the moment the light 
is detected, the car attempts to ‘escape’ to the left. During behaviour B, this moves the 
light across the centre of the activation range, past the mid-point, coming to rest on 
the right hand side where the output of the motor is balanced by the resisting forces 
pulling the car back to the bottom of the valley. As the light continues to move to the 
right, the car follows as the motor output steadily decreases. Due to the coupling 
spring, the left hand car will continue to move to the right and travel up the opposite 
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slope as the right hand car performs its equivalent of behaviour A. Behaviour B is 
produced by the expenditure of the potential energy that the car stored when the light 
source first entered the activation range. It is the storing then release of this energy, 
the balance between γ and α as the cars move up and down the energy gradient that 
produces both behaviours. 

   As demonstrated in Fig. 7. increasing the essential range can have a dramatic 
impact on the limits of phototaxis. As the essential range of the cars increase, the sum 
of resisting forces on the active car increases as the passive car pulls more strongly 
away from the light source. The active car not only hauls the mass of the passive car 
up the valley slope, but has to drive against the passive car’s motor which attempts to 
pull the cars in the opposite direction. 

5   Conclusion 

Homeostasis is a core concept for understanding real or artificial life. Rein control is a 
little known notion of key relevance to homeostasis. Here we have developed this to 
bring out the new insight that, under some circumstances, increasing the range of 
tolerable values for essential variables can actually reduce robustness to external 
perturbation. These are very general observations, but have been discussed in the 
specific case of the cable car parable. 

The cable car model is an intentionally simple system, however the behaviour it 
exhibits is at times not straightforward. An analysis of the hysteresis observed within 
this system has focussed on the relationship between the essential range and 
regulation. It has been shown that decreasing the essential range increases the area of 
hysteresis whilst the limits of homeostasis remain unchanged. Results have been 
presented in which increases in the essential range, decreased the range of self-
regulation.  

In the cable car model, making changes that result in an increase in the area of 
hysteresis may be desirable if there is an energetic cost associated with moving cable 
cars. For example, the purpose of the cable cars could be to triangulate a randomly 
moving light source as part of a targeting system. If the system requires time to active 
and also to deactivate, then a series of activations followed by deactivations followed 
by activations would be inefficient. A much better strategy would be to wait until 
there is a good probability of the target remaining within range for enough time to 
fully activate the target system. This could be achieved by increasing the area of 
hysteresis via a decrease in the width of the activation function. The system would be 
more stable by reducing the range of values it is able to operate within. Once 
activated, the system would be able to track the target over the same range of values 
as a system that was configured with a wider activation range.  

Hysteresis may be present in a wide variety of processes and mechanisms, for 
example, the differential operation of a servo moving in opposite directions, or the 
differential activation threshold of a neuron. In either situation, hysteresis can be 
regarded as an ‘ecological affordance’ in that the hysteresis is an implicit element of 
the agent’s body or environment that may be harnessed to allow a desired or evolved 
set of outputs or behaviours. Analysis of the cable car model has provided insights 
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into the relationship between hysteresis and the limits of homeostasis. These insights 
may be applicable to not only cable car models and Daisyworld but many, if not all, 
natural or artificial homeostatic systems that operate on the basis of rein control. 
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Abstract. This paper explores the performance of a simple model agent
using a reactive controller in situations where, from an external perspec-
tive, a solution that relies on internal states would seem to be required.
In a visually-guided orientation task with sensory inversion and an ob-
ject discrimination task a study of the instantaneous response proper-
ties and time-extended dynamics explain the non-reactive performance.
The results question common intuitions about the capabilities of reac-
tive controllers and highlight the significance of the agent’s recent history
of interactions with its environment in generating behaviour. This work
reinforces the idea that embodied behaviour exhibits properties that can-
not be deduced directly from those of the controller by itself.

1 Introduction

Is it possible to deduce the cognitive limitations of an embodied agent from the
limitations of its internal dynamics? In particular, is an agent controlled by a
reactive system able to perform only reactive behaviours? Questions like these
compel us to look carefully at the meaning of now commonly used terms such as
embodiment and situatedness, often discussed in the abstract, and try to unravel
their implications for concrete systems.

A way of addressing the most specific of these questions is to build agents
controlled by reactive systems and evaluate their performance in situations that
require non-reactive responses. By a reactive controller we understand a system
whose outputs are at each moment only determined by its current inputs. In
order to make the problem non-trivial we need to define reactive behaviour in
terms of the properties of the task and not the controller. For the purpose of
this work we adopt a definition of reactive behaviour based on the classification
introduced by Clark and Thornton [4] as the performance of a type-1 task, i.e.,
a task that requires the agent to exploit regularities which are directly apparent
in the current input data. In robotics, obstacle avoidance is typically a type-1
task. In contrast, type-2 tasks require the exploitation of regularities which are
‘hidden’, or whose statistical visibility depends on some systematic recoding of
the data. Accordingly, we will treat performance of a type-2 task as a form of
non-reactive behaviour. Online learning is typically a type-2 task.

In this paper, evolutionary algorithms are used to design neurocontrollers for
the behaviour of model agents which are then analysed dynamically. The goal is
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to explore the role of embeddedness in space and time in enabling non-reactive
performance in systems that can only respond reactively. In particular, we inves-
tigate the relation between instantaneous response properties and time-extended
performance in orientation tasks, and the time-dependence of responsiveness and
‘decision making’ in shape discrimination. In both cases, embodied agents ex-
hibit properties that cannot be deduced directly from their reactive controllers.
The dynamical analysis of these agents allows us to draw some general inferences
about the danger of making a priori assumptions about the required properties
of internal control mechanisms for a given task.

2 Background

We may find classical answers to our opening questions in criticisms of be-
haviourism. For instance, in Dewey’s critique of the reflex-arc concept in psy-
chology [5] it becomes clear that action is ongoing and stimuli can only have
an effect on the behaving agent because the agent is capable of selecting them
actively by the nature of its perceptual systems but also by the nature of its
actions. The same point is compellingly made by Merleau-Ponty:

“The organism cannot properly be compared to a keyboard on which
the external stimuli would play and in which their proper form would
be delineated for the simple reason that the organism contributes to the
constitution of that form ... it is the organism itself – according to the
proper nature of its receptors, the threshold of its nerve centers and the
movement of the organs – which chooses the stimuli in the physical world
to which it will be sensitive.” (in [9] p.13)

We find similar views in Varela’s work (e.g. [13]), where the emphasis is on
cognition as embodied action wherein the world and the perceiver mutually spec-
ify each other. This is closely related to von Uexküll’s functional circles [8], i.e.
the formation of a closed unit between the ‘perceptual’ and ‘effector’ worlds that
enables an agent to generate its own Umwelt. In robotics, Pfeifer subscribes to a
related view [11], showing the importance of thinking in terms of sensorimotor
coordinations. In recent years, we have seen concrete examples of these ideas
at work in the area of autonomous robotics. For instance, Nolfi [10] provides
examples in object size and shape classification tasks using reactive controllers
and Scheier et al. [12] make similar points by studying object-constancy and
focus-of-attention problems using hand-coded physical robots as well as evolved
simulated agents. Implications of the embodied view in the context of biological
neural networks have been summarised in [3].

What we propose to do here is to focus on the opportunities that the ‘neural’
architecture, body and environment offer to the system’s controller. We will show
how and why an embodied system can perform non-reactive behaviour (type-2
tasks) even when only endowed with a purely reactive controller. The interesting
lessons will be in the details of how the agents work because they uncover the
hidden assumptions about the capabilities of embodied and situated systems,
even when their internal controllers are very simple.
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3 Methods

We propose to study the role of the agent’s situatedness using a set-up similar to
the one presented in [1,2] with slight variations and extensions on the architecture
and tasks. This model has been chosen for two reasons: its simplicity and its
potential for sufficiently interesting behaviours that could be called minimally
cognitive. As a modification to this set-up, the controller’s architecture is made
purely reactive. Two tasks are studied: an approach/avoid task which is made
type-2 by the fact that the sensor array may be inverted, and a discrimination
task to evaluate the reactivity of the agent at different stages. These are described
in the following sections.

The agent has a circular body with a diameter of 30. The agent’s ‘eye’ consists
of six rays at ±π/12, ±π/24 and ±π/36 from the centre. An intersection between
a ray and an object causes an input to be injected into the corresponding sensory
node, with the magnitude of the injected input inversely proportional to the
distance to the object along that ray with a maximum length of 220. When
the rays are at their maximum length, no input is injected, while the maximum
input is injected for rays of zero length.

The agent can move horizontally as objects fall from above (Figure 1A) with
horizontal velocity proportional to the sum of the opposing forces produced by
two motors. The behaviour of the agent is controlled by a network of continuous-
time recurrent neural nodes of the form:

τiẏi = −yi +
N∑

j=i

wjiσ(gj (yj + θj)) + Ii (1)

where y is the activation of each node, τ is its time constant, wji is the strength
of the connection from the jth to the ith node, θ is a bias term, g is a gain,
σ(x) = 1/(1 + e−x) is the standard logistic activation function, I represents a
constant external input (e.g. from a sensor) and N is the number of nodes in the
network. In simulation, node activations are calculated forward through time by
straightforward time-slicing using Euler integration with a time-step of 0.1.

The network architecture is bilaterally symmetric in the connection weights,
biases and time-constants (unless otherwise specified). The architecture consists
of six ray sensory nodes projecting to five inter-nodes, which in turn project
to two motor nodes controlling horizontal motion (Figure 1B). All the sensory
nodes share the same time-constant, bias parameter and gain parameter, while
the rest of the nodes have a gain of 1.

The controller is made reactive by changing the connection weights between
the inter-nodes to 0, fixing the time-constants for all nodes to 1, and modifying
the time-step of integration to 1. In this way the state of any node in the network
is fully determined by the pattern of inputs and cannot depend on previous
internal states resulting in a discrete-time feed-forward artificial neural network.

The parameters for the neural controllers are evolved using a microbial ge-
netic algorithm [7]. These are encoded as a vector of real numbers over the range
[0, 1] (47 parameters for recurrent controllers and 26 for reactive ones). Offspring
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Fig. 1. Basic setup for the experiments. [A] The agent (gray circle) can move horizon-
tally while objects (black circle) fall from above. The agent uses an array of 6 distal
sensors (black lines). [B] The network architecture consists of six sensory nodes fully
connected to five inter-nodes, which are in turn fully connected to two motor nodes.

of microbial tournaments are generated using recombination and vector muta-
tion which consists of adding to the genotype a random displacement vector
whose direction is uniformly distributed on the N -dimensional hypersphere and
whose magnitude is a Gaussian random variable with 0 mean and variance 0.01.
Population sizes of 100 and recombination rate of 0.9 are used. Genotypes are
then mapped to network parameters using linear maps from [0, 1] to [−14, 14] for
biases, [−10, 10] for connection weights and [1, 5] for the gain parameter while
time-constants are exponentially mapped to [e0, e4].

4 Orientation Experiments with Visual Inversion

In the first set of experiments, visually-guided agents are evolved to adjust their
horizontal position so as to catch or avoid falling objects with normal and in-
verted vision. On inverting the visual field in the left/right direction an object
that appears to the right of the agent will in fact be to its left. This task rep-
resents a type-2 problem, for it requires an agent to perform differently for the
same stimuli depending on the context.

A simple evolutionary training regime is used. During an evolutionary eval-
uation 21 circular objects are dropped from the top of the environment straight
down with an initial horizontal offset from the centre of the agent uniformly dis-
tributed in ±50 and a fixed vertical velocity of −3. Following [6], this is repeated
for objects of different diameter (ie. 26, 30 and 34). The whole process is then
repeated using inverted vision, for a total of 126 trials in a fitness evaluation. At
the start of each new trial node activations are initialised to zero.

The performance measure to be maximised is: f = 1 −∑N
i=1 di/N , where N

is the total number of trials and di is the horizontal distance between the centres
of the object and the agent when their vertical separation goes to 0 on the ith
trial (clipped to max = 50 and normalised).

Agents with a reactive controller that could orient to falling circles with
normal and inverted vision turned out to be relatively easy to evolve. Over 20
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evolutionary runs, the best evolved agent achieved a mean performance of 0.994
on the 126 evaluation trials after only 100 generations of evolution, with a mean
performance of 0.992 using normal vision and 0.990 with inverted sensors on
10.000 randomly generated trials distributed with initial horizontal positions in
[−50, 50], and diameter and vertical velocity of the falling object between [20, 40]
and [−4,−2], respectively.

Figure 2A shows the strategy used by the agent to catch falling circles with
normal and inverted vision. Notice the opposed shading of the velocity fields
in the two conditions. As the controller is reactive and symmetric, a stimulus
produces instantaneous motor effects that are opposite in the case of normal and
inverted vision, or put differently, a real and a virtual object in the same posi-
tion produce exactly the same instantaneous effect. Yet the situated behaviour
of the agent over time results in trajectories that catch both virtual and real
objects.

In the normal condition, trajectories are attracted to the centre where the
velocity field turns slightly divergent and then ‘trapped’ by the two bright re-
gions of centring velocities which eventually converge on the object’s horizontal
position. In the inverted condition, central trajectories become convergent by the
nature of the central field, and the rest of the trajectories initially move away
from the centre only to be trapped in a different and wider convergent region,
reaching the centre when the divergent fields no longer have the same effect. The
evolved strategy involves taking advantage of the agent’s multiple sensors and
most successfully evolved agents relied on a very similar strategy.

Recurrent and time-based networks were evolved as well and analyses of the
best evolved controller yielded the use of a similar strategy to that of the above
analysed reactive network. Figure 2B shows the behaviour of the best evolved
recurrent network over 20 evolutionary runs.

Agents with network architectures not constrained to be bilaterally symmet-
rical seemed to be relatively easier to evolve. The behaviour of the best evolved
agent is shown in Figure 2C. The agent’s strategy is to position itself sufficiently
to one side of all falling objects, at which point real objects are seen with its
right-sided sensors while virtual objects with its left set of sensors. The agent
can then centre in on objects with opposite reactions according to which side
they appear to be on. The result is a much simpler strategy for centring on both
real and virtual objects.

A reactive agent needs to constantly engage with sensory stimuli in order to
act which makes avoiding (as opposed to catching) falling objects with normal
and inverted vision a counterintuitive task. Figure 2D shows the behaviour and
dynamics of the best evolved reactive controller for such task. From the figure its
strategy can be easily understood: under normal vision, the agent avoids objects
that are far away and centres on objects that are relatively close. As a result,
real objects get avoided as they start falling and disappear from the field of view
early, while virtual objects are initially centred, reaching then the point were
sufficiently closed objects get avoided.
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Fig. 2. Trajectories and steady-state horizontal velocity fields for normal (left) and
inverted (right) vision for the best evolved agents for objects of diameter 30 and 51 dif-
ferent initial horizontal offsets for: [A] Circle centring task with a reactive symmetrical
network; [B] Circle centring task with a recurrent symmetrical network; [C] Circle cen-
tring task with a reactive non-symmetric network; and [D] Circle avoidance task using
a reactive symmetrical network. Trajectories are superimposed on differently shaded
regions representing the long-term horizontal velocity that the agent would eventually
adopt if an object were fixed at that location in its field of view at each point as a
function of x the horizontal offset in relation to the agent and y the vertical distance of
the object. Regions in which the agent is directed towards the object (centring regions)
are bright, whereas those in which it is directed away (avoidance regions) are dark. The
magnitude is represented by the intensity of the shade (mid-gray is no movement).
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Fig. 3. [A] Demonstration of labelling and discrimination in the best evolved feedfor-
ward network. Average (left) and difference (right) in catch performance as a function
of α. Each point represents the mean value for 101 trials at uniformly distributed hori-
zontal offsets in ±50. [B] Trajectories and steady-state horizontal velocity fields for the
best evolved agent for circles (left) and bars (right). [C] Performance as a consequence
from switching the object’s identity from a circle into a bar (left) and viceversa (right)
as a function of at different times on the final decision to catch or avoid in the best
evolved agent. Each point represents the catch (left) and avoidance (right) performance
as a function of initial horizontal offsets (x) and switching times (y). Bright means high
performance. All figures are for objects of diameter 30 and vertical velocity -3.

5 Categorical Perception Experiments

In a second set of experiments, we explore agents that can discriminate between
circular and horizontally oriented bars of different sizes using normal vision,
catching the former and avoiding the latter in a similar task to the one explored
in [2,6], in this case using a reactive controller. The evolutionary training regime
used was similar to that used in the first set of experiments, with the only
difference that half of the trials corresponded to circular falling objects and the
other half to bar objects (as opposed to sensory inversion).

The performance measure to be maximised is: f = pi/N , where N is the total
number of trials and pi = 1 − di for a circular object and pi = di for bars, di is
defined and normalised as above. Following [2], a class of parametrised hybrid
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object that continuously interpolates between the bar and the circle is defined
as R(α) = αRb + (1 − α)Rc, where R(α) is the radius of the hybrid object, and
Rb and Rc are the radii (in polar coordinates) of the bar and circle respectively.

Over 20 evolutionary runs, the best evolved agent achieved a mean perfor-
mance of 0.970 on the 126 evaluation trials after 100 generations of evolution,
with a mean performance of 0.915 on 10.000 randomly generated trials from a
broader set (initial horizontal positions between [−50, 50], diameter size of the
falling object between [20, 40] and vertical velocity between [−4,−2]).

Two major defining characteristics of categorical perception are labelling
and discrimination. In order to demonstrate these, the mean catch or avoid
performance was plotted as the shape of the object changed between a circle
and a bar (by modifying the parameter α). Figure 3A depicts the average catch
performance as a function of α, a sharp sigmoidal curve with a transition from
catching to avoidance behaviour at about α = 0.55 is observed. Accordingly,
the average difference in catch performance for α values that differ by 0.1 as a
function of α shows a bell shaped function.

How are we to explain the behaviour of the agent? What sort of regularities
does it exploit from the environment? The behaviour and steady-state dynamics
of this agent are shown in Figure 3B. The evolved strategy involves positioning
all falling objects at a particular angle of view where the difference between the
two objects is maximised. This can be appreciated from dominating dark regions
in the middle-top field of view of the steady-state velocity. At the point where
the object is positioned close to the border of the agent’s field of view, circular
objects fall onto a very thin bright region of centring behaviour. This is further
explained from a closer look at what the agent ‘sees’ (figure not shown), a circle
never stimulates less than 2 sensors, while the bar stimulates only 1 sensor at
one point, and this makes it move out of the sensor range.

An interesting question in the context of this paper is: at what point during
the trial does the agent commit itself to catching or avoiding an object? What
is expected from a reactive agent is a strong dependence, throughout the trial,
between the shape of the object and the ‘decision’ to catch or avoid. This is
explored by switching the shape of the object during the trial and observing
the behaviour. In the absence of an internal state to ‘retain’ a previously made
decision, one expects the decision to depend mainly on the shape after the switch.

Figure 3C shows the performance of the agent when catching a circle or
avoiding a bar as a function of the horizontal offset and the distance where the
switch from circle to bar, or vice versa, is introduced. The results are contrary
to our expectations. Although the agent seems to be completely uncommitted
during the initial movements, after passing a more or less well defined ‘decision
line’ it becomes largely committed to either catching or avoiding even if the shape
is changed afterwards. The ‘decision process’ is very much a discrete event that
occurs in the early stages of the trial.

The intuition goes wrong because it generalizes from the instantaneous effect
of a pattern of stimuli on a reactive controller to the time-extended and situated
behaviour of the agent. If, as explained above, discrimination is achieved by a
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particular correlation between object shape and angle of sensing chosen by the
agent, and if after that event, independently of the decision made, the agent
is already positioned in either a neutral or a centring velocity field, then any
subsequent change of shape will be ignored. This is because behaviour does
not depend on the objective shape of the stimulus but more precisely on the
sensorimotor correlation between object and agent.

6 Discussion and Conclusions

This paper has demonstrated the evolution of embodied agents with reactive
controllers for visually guided-orientation with sensory inversion and object dis-
crimination. Although the tasks are interesting in themselves, the point of this
paper is not to generate novel behaviour but to probe the intuitions concerning
the capabilities of reactive controllers.

This work provides concrete examples showing how an embedded system
is never purely reactive. From the example of shape discrimination, we show
that the evolved agent will exploit state arising from its interaction with the
environment and exhibit commitment to a decision. Agents modify their position
with respect to other objects in the environment and, thus, partially determine
the sensory patterns they will receive in the next time-step, thereby providing a
concrete example of an agent creating the form of the stimulus by its manner of
offering itself to actions from the outside, paraphrasing Merleau-Ponty.

For the visual inversion experiment the agent relies on following time-
extended dynamics. As the state of the controller depends only on the pattern
of inputs, the velocity fields for the normal and inverted conditions are point-by-
point, opposed to each other. Which does not mean that the final state of the
whole trajectory will be different in each case. This prompts an important conclu-
sion: the limitations of reactive controllers (or generally any given class of con-
trollers) during extended periods of time in a situated system cannot be trivially
deduced from the instantaneous, snapshot limitations of the same controllers.
Inversion of the sensory array produces an instantaneous reversal of velocities,
and yet it results in a conservation, not a reversal, of the end-state of behaviour.

We illustrate some of the implications of reducing the assumptions about
the necessary design of the agent’s internal control mechanisms. In the visual
inversion scenario, losing the symmetrical constraints allows the agent to redefine
the problem into an easier one: catching objects that fall only to one side of it.

We do not deny the importance of an agent’s internal dynamics in the gen-
eration of behaviour. It may, nevertheless, be the case that agents with internal
dynamics exploit first the strategies available from its situatedness alone. In the
visual inversion experiments agents with internal dynamics have the potential
to solve the task in a variety of ways – for example, learning online which way
around the sensors are wired up – and then acting accordingly. It is likely, how-
ever, that the evolved agents make use of the simpler embodied strategies first,
as is shown from the evolved recurrent time-based network.

In summary, a reactive controller in an embodied system doesn’t imply reac-
tive behaviour : there is a difference between the local, instantaneous state defi-
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nition of reactivity, and the behavioural definition, i.e., not being able to solve
type-2 problems such as approach or avoidance under normal and inverted vi-
sion. As a result, whether an embodied agent will behave reactively (i.e., whether
it will only be capable of performing behaviours of type-1) cannot be fully de-
termined by the presence of a reactive controller.

The strategy proposed by minimally cognitive tasks for a critical examina-
tion of internal representation is straightforward: evolve agents on tasks that are
‘representationally-interesting’, then examine whether the agent is using repre-
sentations [1]. In this case, no internal state is available for manipulation, thus,
trivially, nothing is ‘internally represented’, yet behaviours such as commitment
to discrete decisions on a categorisation task can still be demonstrated.

Future work will explore extensions to the capabilities of reactive controllers
in a variety of directions. In general, it will be interesting to continue to relax a
priori assumptions and consider how dynamical, bodily, and environmental con-
straints can transform ‘cognitively hard’ problems into easier ones. Some of these
directions include: the effects of physical inertia, non-symmetrical architectures
and noisy inter-node interactions.
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Abstract. Motor synergies, i.e. systematic relations between effectors,
have been first proposed as a principle in motor control by N. Bernstein
in 1935. Thereafter, his idea has inspired many models of motor control
in humans and animals. Recently, “linear synergy”, i.e. a linear relation
between the torques applied to different joints, was reported to occur in
human subjects during directional pointing movements [4]. In this pa-
per, results from experiments in evolutionary robotics are presented to
explore the concept of synergies in general and the role of linear synergy
in the organisation of movement in particular. A 3D simulated robotic
arm is evolved to reach to different target spots on a plane. Linear syn-
ergy is not found to be an outcome of the evolutionary search process,
but imposing linear synergy as a constraint on artificial evolution dra-
matically improves evolvability and performance of evolved controllers.

1 Motor Synergies

The centipede was happy quite,
Until the toad in fun

Said “Pray, which leg goes after which?”
Which worked his mind to such a pitch,

He lay distracted in a ditch,
Considering how to run.

This anonymous ditty expresses nicely what the Russian physiologist N.
Bernstein, a pioneer in biomechanics and anticipator of ideas of cybernetics,
has identified as the degrees of freedom (DoF) problem as early as 1935 (English
translation 1967 [3]): if we conceive of the central nervous system (CNS) as a
homuncular control organ that determines the state of all actuators at any point
in time, the control problem it has to solve is of inconceivably high dimension-
ality. Describing human or animal motion in terms of joint kinematics already
involves a large number of DoFs (e.g. 7 in moving an arm), but if motor control
is thought of in terms of individual muscles, or even motor neurons, the number
of DoFs to be controlled just for moving an arm quickly exceeds four digits [12].

Not only is the problem space intractably large, but it is also redundant
with respect to the outcome of an action, a condition that Hebb has termed

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 262–271, 2005.
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“Motor Equivalence” ([6], p. 153ff). Yet another difficulty in practising motor
control is context conditioned variability ([12], p. 246ff): the effect of a motor
command is sensitive to the anatomical, mechanical and physiological context
of the interaction of an agent with its environment, e.g. limb positions, passive
dynamics or the state of the peripheral nervous system.

Motor synergies, i.e. systematic relations between effectors, are Bernstein’s
solution to the DoF problem. Just as the driver of a car, due to the linkage
of the two front wheels, can determine both their positions by using just one
steering wheel, mutual constraints in an organism’s motor system could serve to
build functional subunits, thereby reducing the effective number of DoFs in a
motor task. Although this idea of motor synergies has greatly influenced research
in motor behaviour (e.g. [1,5,8,10]), it is not free from practical and conceptual
problems: is explaining the CNS as the driver of a bodily car much easier than
explaining the whole system? Where do synergies come from, what is a good
synergy, what mechanism controls their development and maintenance and the
interaction between synergies acting in parallel? Does the evidence that “the
context in which a motor task is executed strongly influences its organization”
([14], p. 74) not contradict the idea of low level synergies organising movement
primitives in a constrained and automated manner?

Motor synergies are evident in human and animal behaviour (for a summary
of findings see e.g. [13]). In situated and embodied approaches, which typically
reject homuncular explanations, it is not clear what functional role synergies
could bear, as without a homunculus, there is no need for “low level” mecha-
nisms to interprete abstract orders in terms of bodily coordinates. It is exactly
the puzzle of their purpose that make synergies an interesting phenomenon to
explore from a situated and embodied perspective, in particular within an evo-
lutionary robotics framework. The following are some of the questions that can
be addressed: Where do synergies come from? Under which circumstances do
they arise? Are synergies epiphenomenal to a structured agent environment in-
teraction or implemented in the control architecture of an evolved agents? In
the reverse direction, thinking in terms of synergies can also enrich our under-
standing and practice of evolving artificial agents: in the endeavour of staying
tractable, many evolutionary robotics experiments seem to implicitly presuppose
the existence of synergies: control architectures are frequently not redundant in
DoFs and the role of actuators is rarely subject to context conditioned vari-
ability, as in biological organisms. Any comparison of the processes realising a
certain behaviour in a robot and those realising the same behaviour in a human
or animal will always rely on synergy–like low level processes to compensate
for such idealisations. To study the impact of idealising assumptions can im-
prove our use of evolutionary robotics as a method for the study of intelligent
behaviour.

In this paper, the effects of motor synergies and redundancy in DoFs in an
exemplary motor control task are investigated by performing a systematic com-
parison of evolvability and evolved behaviour in different kinds of controllers.
The directional pointing task chosen is inspired by empirical experiments where
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linear synergies were observed in human subjects. If linear synergies are benefi-
cial to the organisation of the modelled task, their existence should lead to an
improvement in either performance or evolvability. The results are analysed with
respect to methodological issues in evolutionary robotics and put into relation
with the empirical findings by which they are inspired.

2 Experiments in Directional Pointing

The experiments presented in this paper are inspired by findings reported in
Gottlieb et Al. [4] on the linear relation between the torque applied to the
shoulder and the torque applied to the elbow during human directional pointing
in the sagittal plane. This principle of linear synergy could not be expected from
the nature of the task and does not appear to be the outcome of a learning
process, since infants in the pre–reaching period already apply it, even though
their attempts to grasp an object are unsuccessful [15]. The role linear synergy
plays in the realisation of pointing movements remains mysterious.

Fig. 1. The simulated robotic
arm. Inlay: Plan view of the task.

Following these empirical findings, a simu-
lated robotic arm is evolved to reach to six dif-
ferent targets in the horizontal plane. The arm
is simulated in the C++ open source physics
simulation library Open Dynamics Engine
(ODE, [11]). It consists of a forearm, an up-
per arm (each two units long) and a spherical
hand (Fig. 1). The six target points are spread
evenly with uniformly distributed noise ε [0, 1

6π]
on the circumference of a circle with a radius of
1.25 around the unitary starting position of the
hand at an elbow angle of 60◦ (Fig. 1, inlay).

Every DoF is controlled by applying a torque ti to a joint ji. In order to
test the effect that the number of DoFs has on the task, experiments are run
on a planar (2D) condition (one DoF in each, elbow (tE) and shoulder (tS1))
and a three dimensional (3D) condition (one DoF in the elbow (tE) and three
DoFs in the shoulder: rotation in the horizontal plane (tS1), lifting/lowering (tS2)
and rotation about the arm length (tS3), Fig. 1, left). Joint stops are applied
following the human example. In order to keep the task complexity comparable in
the 2D and the 3D condition, deviation of the hand from the horizontal plane
in the 3D condition is made impossible. Thereby, the model loses biological
plausibility, but not the suitability to explore the principrole of redundant DoFs
in a motor task in principle. Dry friction is applied at all joints, gravity is not
modelled.

The control networks evolved are continuous time recurrent neural networks
(CTRNNs, e.g.[2]) with an input layer projecting to a fully connected hidden
layer, which again projects in a feed forward fashion to the output neurons. The
dynamics of neurons ni in a CTRNN of N neurons are governed by
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τi
dai(t)

dt
= −ai(t) +

N∑
j=1

wijσ(aj(t) + bj) + Ii (1)

where σ(x) = 1
1+e−x is the logistic function, Ii is the external input and ai is

the activation of ni. The weights wij ε [−7, 7] from nj to ni, the bias bi ε [−3, 3]
and the time constant τi ε [0.01, 1.77] are set by a genetic algorithm (GA).

Table 1. Number of pa-
rameters evolved

UC SB FSa FSb
2D 109 75 53 46
3D 161 115 62 83

Three different conditions are investigated for both
the 2D and 3D set-ups (network architectures: see
Fig.2, number of evolved parameters: see Table 1).

In the unconstrained (UC) condition, torques ti are
given by ti = MGi·(ax−ay) where MGi ε [0.1, 30] is the
evolved motor gain and ax,y is the activity of the two
antagonistic motor neurons dedicated to the control of
the joint ji. The network has sensory neurons for the
angular position of each DoF, one sensory neuron for the pointing direction
θ ε [0, 2 · π] and six hidden neurons.

j1 j2θ

t1 t2
(a)

j1 j2θ

t1 t2
(b)

j1 j2

t1 t2=t1 . Κ(θ)(c)

θ

Fig. 2. Network architectures for the 2D
UC (a), SB (b) and FS (c) condition

In the “split brain” (SB) condition,
controllers for each joint are co–evolved.
They share the directional input neu-
ron, but are only fed the corresponding
joint angles ji and have just three hid-
den neurons each. Comparing results
from the SB and the UC condition
is interesting with respect to role of a
neural basis for synergies: The lack of
connections between the controllers for
each joint does not rule out the for-

mation of synergies. Regularities in activation could in principle be mediated
through the environment. Discovering such synergies would pose a clear chal-
lenge to homuncular explanations of synergies.

Finally, in the forced synergy (FS) condition, only the torque tE to the elbow
is generated by a CTRNN, the other joint torques tSj are scaled as a linear
function tSj = Kj · tE where Kj is constant within a pointing movement, but
varies systematically across trials with the desired pointing direction: Kj = f(θ).
Two different functional representations are used, in a condition called FSa,
K(θ) is a simple linear function

Ka
j (θ) = k1

j · θ + k2
j (2)

with ki
j ε [−4, 4] set genetically. In the condition FSb, Kj(θ) is represented by a

radial basis function (RBF) network with Gaussian RBFs

Kb
j (θ) =

4∑
i=1

wRi · e− δ2

2·Δ2 (3)
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where δ = ci − θ, d ε [−π, π] is the difference in direction between the evolved
RBF center ci ε [−π, π] and the target direction θ. The width of the Gaussian
RBF Δε [0.5, 1.5] and the weights wRi ε [−4, 4] are set genetically.

All sensory inputs in all conditions are multiplied by a genetically set sensor
gain SGi ε [0.1, 20] The behaviour of the network is simulated using Euler inte-
gration with a time–step of 0.01 time units, the same time step as used in the
simulation of the arm in ODE. Trials are run for T ε [2000, 3000] time steps.

The parameters of the control networks are evolved in a population of 30
individuals with a generational genetic algorithm with real–valued genes ε [0, 1],
truncation selection (1

3 ), vector mutation ([2]) of magnitude r = 0.6 and reflec-
tion at the gene boundaries. All values are mapped linearly to the target range,
apart from the sensor gains SGi, the motor gains MGi, the time constants τi,
the absolute values of the coefficients |ki| and the absolute values of the RBFN
weights |wRi|, which are mapped exponentially.

The fitness F (i) of an individual i on a target spot j is given by

Fj(i) = 1 − dj(T, i)2

dj(0, i)2
(4)

where dj(t, i) is the distance of the hand from the target spot j at time t for
individual i. Networks for all conditions are evolved with either incremental
evolution, where the next clockwise target spot is added to the evaluation once
the average performance of the population exceeds F̄ = 0.4 (starting with two
positions) or on all six target spots right from the start. The evaluation of a
network i on n target spots is given by

F (i) =
n∑

j=1

Fj(i) · 2−(j−1) · 1∑n
j=1 2−(j−1) (5)

where Fj(i) gives the fitness on the jth worst evaluation trial for individual i,
which gives more weight to worse evaluations and thereby rewards the generali-
sation capacity of the evolved networks.

3 Results

3.1 Number of Degrees of Freedom

Even though the investigated pointing task is already redundant in the 2D
condition because of the infinite possible trajectories leading the hand to the
target position, the liberation of movement by providing two additional DoFs in
the 3D condition results in an enormous increase in performance in all network
architectures: the number of target spots reached is much higher (Fig. 4).

Although the temporal organisation of movement can vary in 2D networks,
they do not have other possibilities for solving the task than to bring the two
planar joints in the appropriate end positions. The 3D networks, contrariwise,
make excessive use of the additional DoFs and exploit passive dynamics (in this
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Fig. 3. Squared difference in normalised performance as individual joints are free to
move but not driven (F ′

a) or blocked (F ′
b) in exemplary 2D (A) and 3D (B) networks

case joint motion due to environmental forces) to exhibit a multitude of strategies
for solving the pointing task. An invariant in the behaviour of the UC and the
SB networks was that their solutions involved turning the arm along its length
to one of the joint stops — apparently, the positions thereby reached are more
suitable for evolutionary search than the original starting position.

The performance of evolved controllers i was tested by selectively “anaes-
thetising” DoFs (F ′

a(i)), i.e. not applying the motor torques, but allowing pas-
sive joint motion, or blocking them (F ′

b(i)), i.e. not allowing joint motion at all.
Figure 3 shows the squared difference in performance (F ′

a(i) − F ′
b(i))

2 between
those conditions: where enabling passive dynamics to work on the anaesthetised
DoFs does hardly make a difference in the 2D condition (Fig. 3 (A)), it has a
noticeable impact on performance of all 3D networks. This better behavioural
stability of the 3D networks seems to be consequent to exploitation of the closed
sensorimotor loop by mediating forces through the environment.

These findings illustrate how suppressing passive dynamics and endowing an
agent with the minimally required sensorimotor system for a task can bias and
limit evolved behaviours and even hamper evolution, even though dimensionality
of the search space is reduced.

3.2 Forcing Linear Synergy

Probably the most significant finding from the presented experiments is the
dramatic advantage that the FSa and FSb networks have in performance and
evolvability over both the UC and SB networks 1. Figure 4 shows how, in
incremental evolution, the FSb networks advance to the next goal twice as
many times as the non–FS networks. With twice as many generations, the non–
FS networks come closer to, but never reach the level of performance of the FS
networks. The 3D FSb network is the only one that succeeds in solving the entire
problem space; average performance of best individuals after 1000 generations is
0.65. Non–incremental evolution led to qualitatively similar results, i.e. quicker
evolution of networks with much higher performance under the FS conditions.

Where it could be argued that the RBFN is simply a very suitable repre-
sentation for a scaling function in this task, this is certainly not the case for
1 Evolvability is simply conceived of as the level of performance to which a controller

evolves reliably in a given number of generations using the described GA.
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Fig. 4. Average number of starting positions reached in incremental evolution after
100 (dark) and 500 (light) generations across ten evolutionary runs

a simple linear function, particularly in the 2D case, where the sensorimotor
system of the robot is already so restricted that adding this additional harsh
constraint makes it impossible to generate a controller that masters the task,
not just because of the singularity at θ = 2π. To rule out the possibility that
the UC and SB controllers simply could not cope with the presentation of the
input direction as a scalar neural input, a more “CTRNN friendly” set–up was
tested, where controllers were provided with six different input neurons for the
different target spots and no noise applied to θ, but neither in the 3D or the
2D condition could they go beyond three targets within 1000 generations.

Evolving controllers for directional pointing under the constraint of linear
synergy could be shown to significantly improve both evolvability and perfor-
mance of the resulting networks. Even when trying to remove biases in the exper-
imental set–up that could give the FS networks a task–specific advantage, this
advantage persisted. The division of control into scaling function and generation
of motor signal is in some way suitable for evolutionary search. The nature of this
benefit, however, is unclear, as analysis of the ruggedness of the fitness landscape
around successfully evolved individuals did not provide an explanation2.

3.3 Evolved Synergies

As for the linear synergies Ki(θ) evolved, no general pattern could be observed.
Figure 5 (A) depicts an exemplary evolved RBFN in the 3D FSb condition:
the systematicities with which the scaling constant Ki(θ) varies in the different
DoFs do not stand in an obvious relation. The displacement and overlap of peaks
in these functions explain the diversity of behavioural strategies for different
domains of θ observed in the FSb networks: For different targets, different DoFs
are predominant in the realisation of the task.

If the principle of linear synergy was a characteristic of a good solution to
the pointing task, we would expect an increase of linearity in torque relation as
the performance of the UC and SB networks increases. Figure 5 (B) shows the
sum of squared error from linear synergy in the 2D and 3D UC and SB con-
trollers in the best individuals across five evolutionary searches: Where a slight
2 Successful individuals were mutated in random direction with increasing magnitude

of mutation r to compare their decay in performance, which can indicate the slope
and ruggedness of the local fitness environment. On average, there were no discrep-
ancies between the different conditions in the test, and large variance of decay profile
between controllers within the same condition at a comparable level of performance.
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Fig. 5. (A): An exemplary evolved RBFN for a 3D FSb network. (B): Sum of squared
error from linear synergy across generations in the 2D (top) and 3D (bottom) networks,
solid: UC, dashed: SB, average across five evolutions. (Note non–linear scales) (C): A
2D UC network (bottom) applying a similar strategy as a 2D FSb network (top).

tendency to get closer to linear synergy as performance increases is noticeable in
the 2D networks, in the 3D networks, linear synergy and performance appear to
be completely unrelated. It is remarkable that, on average, the SB networks act
much less in linear synergy (note logarithmic scale), even though variance in the
SB networks is much higher. Linear synergies without a neural basis were not
evolved. From the mere architecture of the SB networks, this tendency to not
simultaneously activate joints can be expected. However, a remarkable discrep-
ancy between behavioural breakdown when anaesthetising (F ′

a(i)) or blocking
(F ′

b(i)) degrees of freedom (see Sec. 3.1) was observed in the 3D condition:
this discrepancy suggests an involvement of the environment in the evolved so-
lution, the prerequisite for establishing synergy without a neural basis. Being
more disposed to linear synergy does not give the UC controllers an advantage,
suggesting that the magnitude of deviation from linear synergy is not essential.

Figure 5 (C) shows, how a 2D UC network applies a very similar strategy
for solving a task, but slightly deviates from linear synergy, which leads to a loop
in the tE/tS1 map. On a performance level, this does not mean a disadvantage.

A direct correlation between the level of performance and the level of linear
synergy is not evident, particularly in the 3D networks, where the deviation
from linear synergy in the random initial populations is maintained throughout
evolution. The principle of linear synergy is not a priori a good strategy for
solving the pointing task — the advantage linear synergy offers for the evolution
of directional pointing behaviour is through constraining the search space.

4 Discussion

A series of evolutionary robotics experiments has been conducted to shed light
on the role of linear synergy in a directional pointing task. Linear synergies
could not be found to be the outcome of an unconstrained evolutionary search
process. Furthermore, disconnected controllers for the different joints did not
have a significant evolutionary disadvantage compared to monolithic networks
controlling both joints, suggesting that the mere possibility of implementing
constraints between effectors in a network does not provide a selective advantage.
However, imposing the constraint of linear synergy boosts the search process,
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even with impoverished linear scaling functions but, more significantly, if an
RBFN represents the systematic variation of the scaling constant. The benefits
of passive dynamics and redundant DoFs became clear during the analysis.

For the investigated task, both a complication (i.e. adding more DoFs) and
a restriction (i.e. forcing linear synergy) of the search space have provided in-
dependent evolutionary advantages. Thus, improving evolvability is not a mat-
ter of scaling up or scaling down the search space, but of reshaping the fitness
landscape. As tasks and robotic platforms become more complex, evolutionary
robotics must produce appropriate reshaping techniques to scaffold the search
process and thereby solve the “bootstrap problem” ([9], p. 13). Such a reshaping
always means biasing evolutionary search. A lesson that may be learned from
the present results is that biologically-inspired biases can not only help to make
a stronger connection between models and empirical findings, but they can also
be beneficial from an engineering perspective.

A generalisation about the evolvability of the applied technique, however,
is not justified. Apart from technical difficulties, such as defining where one
movement starts and another one ends or formalising the context of the task as
a set of variables according to which a scaling constant Ki can vary, in many tasks
a linear relation between effectors will be disadvantageous: for instance, a two-
wheeled robot doing obstacle avoidance will obviously rely on an ongoing change
in the relation between the effectors. A hypothesis put forward in this paper
is that the principle of linear synergy will provide an evolutionary advantage
in tasks that are not primarily reactive or if the motor system of a robot is
redundant in DoFs. Otherwise, the imposed restrictions are in direct opposition
to the required behaviour.

What can we learn from the present findings for understanding the role of
linear synergy in human behaviour? Here conclusions must be drawn carefully.
Neither the SB networks nor the UC networks could be observed to increase
linear synergy as performance increases. Thus, linear synergy does not seem
to be a priori a good strategy to master a pointing task. The advantage that
imposed linear synergy means for evolutionary search nonetheless suggests that
it may act as a useful constraint during development. This result relates well with
the findings reported by Zaal et Al. [15] about infants employing linear synergy
regardless of movement success. The authors hypothesise that linear synergy
eases the acquisition of reaching and pointing movements at an early stage, a
hypothesis supported by the presented results. In order to further investigate
this hypothesis, it would be interesting to study the phylogeny of linear synergy,
or, as an extension to the experiments presented here, to evolve the constraints
for ontogenetic development. It would be desirable to abolish the restriction of
hand movement to the plane in further experiments and include gravity in the
model. These simplifications ease the task, but, at the same time lead to loss of
biological plausibility. Extending the model this way would require the networks
to additionally solve the non–trivial task of equilibrating forces involved.

Even though originating from a homuncular view of motor control, which is
generally rejected by dynamical and artificial life perspectives, the concept of
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motor synergies is fruitful for the investigation of motor behaviour. Within an
evolutionary robotics framework, systematicities between effectors, as they are
ubiquitous in humans and animals, can be investigated to find out about func-
tions they may bear. Furthermore, as robots and tasks become more complex,
description and explanation of the behaviour obtained become more complex
as well. Looking for systematicities between effectors can be a good starting
point in trying to understand intelligent behaviour, and designing experiments
informed by observations on biological organisms may help to generate it.
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Abstract. Consider a group of autonomous, mobile robots with the
ability to physically connect to one another (self-assemble). The group is
said to exhibit functional self-assembly if the robots can choose to self-
assemble in response to the demands of their task and environment [15].
We present the first robotic controller capable of functional self-assembly
implemented on a real robotic platform.

The task we consider requires a group of robots to navigate over an
area of unknown terrain towards a target light source. If possible, the
robots should navigate to the target independently. If, however, the ter-
rain proves too difficult for a single robot, the robots should self-assemble
into a larger group entity and collectively navigate to the target.

We believe this to be one of the most complex tasks carried out
to date by a team of physical autonomous robots. We present quan-
titative results confirming the efficacy of our controller. This puts our
robotic system at the cutting edge of autonomous mobile multi-robot
research.

1 Introduction

Collective robotics addresses the design, implementation and study of multi-
robotic systems. Swarm robotics is a subset of collective robotics which takes
inspiration from social insect behaviour and emphasises swarm intelligence [2]
principles such as decentralisation of control and use of local information. Many
swarm robotics applications require cooperation between robots [8]. Some appli-
cations further require physical connectivity between cooperating robots. It is
this last class of application that interests us. Although there is a large body of
work on the capabilities of physically connected systems, very little research has
been conducted on the mechanisms of when and how autonomous mobile agents
should self-assemble.

The phrase functional self-assembly [15] describes a key adaptive response
mechanism of distributed systems. We define self-assembly as the process
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(a) (b)

Fig. 1. (a) S-bots overcome a 2 cm hill independently. (b) S-bots self-assemble in order
to overcome a 5 cm hill collectively.

through which separate autonomous agents form a larger group entity by phys-
ically connecting to one another. If the agents can autonomously choose to self-
assemble in response to the demands of their task and environment, they are
said to display functional self-assembly.

A number of social insect species depend on functional self-assembly (for a
review see [1]). Members of the ant species Œcophylla longinoda, for example,
connect to one another to form bridges that other ants can then traverse [7].
Given its ubiquity in natural systems, functional self-assembly has been given
surprisingly little attention by the swarm robotics community. In the only dedi-
cated work, Trianni et al. [15] evolved neural network controllers for robots that
needed to self-assemble and disassemble in order to traverse artificially desig-
nated ’hot’ and ’cold’ zones in a simple simulation environment.

Over the last decade, much of the research involving systems of physically
connected robotic modules has been targeted at collective rough terrain naviga-
tion. In Hirose et al.’s system [6] modules are mechanically linked by means of a
passive arm and are therefore incapable of self-assembly. Yim et al.’s system [16]
can climb near vertical walls. Individual modules are incapable of autonomous
motion and have very few external sensors for perception of the environment.
Similar limitations are found in the majority of self-reconfigurable robotic sys-
tems, usually rendering self-assembly difficult or impossible [12,14].

In this paper we present the first physical robot controller capable of func-
tional self-assembly. Our controller was implemented on the SWARM-BOT robo-
tic platform [11,10,3]. This innovative system consists of a number of autonomous
robotic agents called s-bots. S-bots are able to physically connect to one another,
thus forming a larger group entity termed a swarm-bot. A swarm-bot can com-
plete tasks impossible for a single s-bot. It can, for example, cross chasms wider
than an s-bot or overcome hills too steep for a single s-bot.

The task we investigate requires a group of s-bots to navigate towards a
target light source over unknown terrain. The s-bots must ‘decide’ whether or
not to self-assemble based on the terrain they encounter. We use two different
environments in our experiments. The first environment contains a simple hill
which a single s-bot can overcome (see Fig. 1a). The s-bots can thus reach the



274 R. O’Grady et al.

(a) (b)

Fig. 2. (a) The s-bot. (b) The s-bot gripping mechanism.

target independently. The second environment contains a steep hill too difficult
for a single s-bot. The s-bots must self-assemble in order to overcome the hill and
reach the target (see Fig. 1b).

2 Experimental Setup

2.1 The S-Bot

This study was conducted on the SWARM-BOT robotic platform [11,10,3]. The
system consists of a number of mobile autonomous robots called s-bots (see
Fig. 2a). The s-bot is equipped with a traction system made up of tracks and
wheels. This chassis provides the s-bot with efficient on the spot rotation and
mobility on moderately rough terrain. The majority of the s-bot sensory and
processing systems are housed in a turret mounted above the chassis. A motorised
axis allows this turret to rotate with respect to the chassis.

Physical connections between two s-bots can be established by a gripper-
based connection mechanism (see Fig. 2b). Each s-bot is surrounded by a T-
shaped ring which can be grasped by other s-bots.

The s-bot sensory systems used in this study are as follows: 15 proximity
sensors distributed around the turret allow for the detection of obstacles. A 3-
axes accelerometer provides information on the s-bots ’ inclination which can be
used to detect if the s-bot is in danger of falling. The connection ring of the s-bot
is equipped with eight groups of coloured LEDs. An omni-directional camera is
mounted on the turret. The combination of the camera and the LED ring allows
an s-bot to communicate its presence and even its internal state to other nearby
s-bots. Inside the gripper is an optical light barrier to detect the presence of
objects to be grasped. Other sensors provide the s-bot with information about
its internal motors. This includes positional information (e.g., of the rotating
turret) and torque information (e.g., of forces acting on the tracks).

2.2 The Task

We conduct experiments in two different environments (see Fig. 3). Both measure
240 cm x 120 cm and consist of two areas of flat terrain (a starting area and a
target area) separated by an area of rough terrain. In Environment A, the rough
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Target AreaStarting Area

Light
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Environment BEnvironment A

Starting Area

Light
Source

Target Area

Difficult Hill − Single s−bot failsFlat Terrain Simple Hill − Single s−bot succeeds alone

Rough
Terrain

Rough
Terrain

Fig. 3. Scale diagram of the two experimental environments (view from above). S-bot
starting positions are marked by crosses.

terrain is a 2 cm high hill which can be overcome by a single s-bot (see Fig. 1a).
In Environment B the rough terrain hill is 5 cm high - too difficult for a single
s-bot (see Fig. 1b).

The initial position of each s-bot in the starting area is assigned randomly
by uniformly sampling without replacement from a set of 15 possible starting
points. The s-bot ’s initial orientation is chosen randomly from a set of 4 possible
directions. To complete the task the s-bots must reach the target area without
toppling over.

The s-bots have no a priori knowledge of the environment they are in—they
must react to the environment and determine whether or not to self-assemble.
In Environment A the s-bots should navigate to the target area independently.
In Environment B the s-bots must aggregate, self-assemble and collectively over-
come the hill in order to reach the target area.

3 Controller

We use a distributed behaviour-based controller (see Fig. 4). Each s-bot is fully
autonomous. The same controller is executed on every s-bot. An s-bot starts by
navigating independently towards the target light source. If the s-bot finds a hill
too difficult for it to pass alone, or if it sees another s-bot that is either aggre-
gating or assembled (sees blue or red), it illuminates its blue LEDs and starts
aggregating. An aggregating s-bot can probabilistically trigger self-assembly by

See Red
  or

See Blue

Retreat_to_Flat

On
Flat

Too
Steep

See Red Within Timeout

Prob(Become Seed)

Aggregate (blue)

(blue)

(red)

Assembled

Timeout Over

Solo_Phototaxis

and Close to Blue
and Don’t See Red

Close to Red
Self_Assembly

Assembly_Seed

Avoid_Obstacle

Group_Phototaxis (red)
(See blue => Wait)

Fig. 4. Behaviour transition model for the behaviour-based controller
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Aggregate behaviour Self Assembly behaviour

1: loop
2: if canSeeClose( red ) then
3: switchBehaviour( Self Assembly )
4: else if canSeeFar( red ) then
5: approachRed( )
6: else if canSeeClose( blue ) then
7: Prob(0.04)

→ switchBehaviour( Assembly Seed )
8: Prob(0.96) → doNothing( )
9: else if canSeeFar( Blue ) then

10: approachBlue( )
11: else
12: randomWalk( )
13: end if
14: end loop

1: repeat
2: (i1, i2) ← featureExtraction(camera)
3: (i3, i4) ← sensorReadings(proximity)
4: (o1, o2, o3) ← f(i1, i2, i3, i4)
5: if graspingRequirementsMet(o3) then
6: try to grasp
7: else
8: applyValuesToTracks( o1, o2 )
9: end if

10: until successfully connected

Fig. 5. Algorithms for Aggregate behaviour (left) and Self Assembly behaviour (right)

illuminating its red LEDs and becoming a static seed. Aggregating s-bots assem-
ble to the seed s-bot or to already assembled s-bots (any red object). Assembled
s-bots illuminate their red LEDs then perform group phototaxis once they can
no longer detect any unassembled s-bots (can no longer see blue).

• Solo Phototaxis. This is the starting behaviour. The s-bot uses its camera
to navigate towards the target light source. The s-bot uses its accelerometers
to reduce maximum track speed as a linear function of inclination. This is to
prevent the s-bot toppling before Retreat to Flat behaviour is triggered.

• Avoid Obstacle. This behaviour is triggered when the readings from the
s-bot ’s 15 proximity sensors exceed a threshold. The s-bot determines the di-
rection of the obstacle using its proximity sensors then moves in the opposite
direction until the proximity threshold is no longer exceeded.

• Retreat to Flat. This behaviour is initiated when the s-bot ’s accelerome-
ters indicate that the s-bot is in danger of toppling over. The s-bot reverses
downhill to flat terrain, reverses away from the rough terrain, then rotates
to face away from the slope.

• Aggregate. This behaviour is detailed in Fig. 5 (left). The s-bots must locate
and then approach each other as a precondition for self-assembly. Values
for the hard coded probabilities were manually optimised through trial and
error.

• Self Assembly. This behaviour is detailed in Fig. 5 (right). Function f maps
sensory input (i1, i2, i3, i4) to motor commands (o1, o2, o3). It is implemented
by a neural network which was designed by artificial evolution and tested
with physical robots in previous works [5,4].

• Assembly Seed. This behaviour is necessary to trigger the self-assembly
process. If a red object is detected within 3 s of behaviour initiation, con-
trol is passed to Aggregate behaviour. (This prevents multiple seeding—if
two nearby s-bots switch to Assembly Seed behaviour, both will revert to
Aggregate behaviour). After 3 s control is passed to Group Phototaxis be-
haviour.
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• Group Phototaxis. The s-bot remains stationary if it detects blue objects in
the vicinity (s-bots still assembling). Otherwise the s-bot performs phototaxis
to the target. Because it is part of a swarm-bot, the orientation of the turret
is fixed. The s-bot continually rotates the traction system with respect to
the turret to keep the tracks oriented towards the target [5].

4 Results

We conducted a series of experiments in two different environments (see Fig. 3)
with groups of 1, 2 and 3 s-bots.1

Trials with 3 s-bots in Environment A. We conducted 20 trials. In every trial
all 3 s-bots reached the target zone. In 19 out the 20 trials the s-bots correctly
navigated independently to the target. In a single trial the s-bots self-assembled
on the down slope of the hill and then performed collective phototaxis to the
target. The incorrect decision to self-assemble was due to a colour misperception
of a non-existent object by an s-bot.

Trials with a single s-bot in Environment B. We modified the controller
to only execute Solo Phototaxis behaviour. The s-bot was thus limited to nav-
igating towards the target taking no account of the terrain encountered.

We conducted 20 trials. The s-bot failed to overcome the hill in 20 out of 20
trials. In each trial the s-bot reached the hill and then toppled backwards due
to the steepness of the slope.

To confirm that the s-bot was failing due to the intrinsic properties of the
slope, we repeated this experiment at a number of different constant speeds.

Trials with 2 s-bots in Environment B. We conducted 20 trials. The s-
bots successfully detected the slope in every trial. Furthermore the s-bots always
succeeded in assembling into a 2 s-bot swarm-bot. In 13 trials (65%) the swarm-
bot succeeded in overcoming the hill. In the other 7 trials (35%) the assembled
swarm-bot failed to overcome the hill. These failures happened when the assem-
bled s-bots attempted to climb the hill in parallel.

Trials with 3 s-bots in Environment B. We conducted 20 trials. The s-bots
successfully detected the slope in every trial. In 16 trials (80%) all of the s-bots
successfully self-assembled into a 3 s-bot swarm-bot. In each of these 16 trials the
3 s-bot swarm-bot went on to successfully reach the target area. Fig. 6 shows a
sequence of images from a typical trial.

In the remaining 4 trials (20%) the s-bots still managed in each case to self-
assemble into a swarm-bot of 2 s-bots. In two of these 4 trials the swarm-bot went
on to successfully reach the target area. In the two other trials the swarm-bot
was obstructed by the third s-bot which failed to self-assemble.
1 Videos of all experiments can be found at http://iridia.ulb.ac.be/∼rogrady/
ecal2005/
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(a) (b) (c)

(d) (e) (f)

Fig. 6. The s-bots start in a random configuration (a). One s-bot detects a slope it
cannot overcome alone and activates blue LEDs (b). The other s-bots detect blue
colour (local communication). The group aggregates and self-assembles (c,d). The s-
bots collectively overcome the rough terrain and reach the target area (e,f).

Table 1. Percentage of s-bots in Environment B trials succeeding for Self-assembly
(A) and Completion of task (C)

1 s-bot trials 2 s-bot trials 3 s-bot trials
A C A C A C

% Successful (total) - 0.00 100.00 65.00 93.33 86.67

% Successful alone - 0.00 - 0.00 - 0.00
% Successful in 2 s-bot swarm-bot - - 100.00 65.00 13.33 6.67
% Successful in 3 s-bot swarm-bot - - - - 80.00 80.00
% Failed - 100.00 0.00 35.00 6.67 13.33

4.1 Analysis

Table 1 shows the percentage of s-bots that successfully self-assembled and the
percentage of s-bots that successfully completed the entire task in the Environ-
ment B experiments. The three columns distinguish between trials with 1 s-bot, 2
s-bots and 3 s-bots. The first row shows the total percentage of successful s-bots.
Subsequent rows show the percentage of s-bots that were successful alone, or as
part of a 2 s-bot swarm-bot or as as part of a 3 s-bot swarm-bot, or that failed.

The success rate for task completion increases with the number of robots. A
single robot always fails. In 2 s-bot trials, 65% of s-bots complete the task. The
3 s-bot trials show a further clear improvement—86.67% complete the task.
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Fig. 7. 3 s-bot trials in Environment B. Phases represented are: (i) s-bot: independent s-
bot navigation; (ii) assembly: aggregation and self-assembly; (iii) swarm-bot: collective
swarm-bot navigation.

The fourth row (% Successful in 3 s-bot swarm-bot) shows that in the 3-s-bot
trials 80% of s-bots successfully self-assemble into a 3 s-bot swarm-bot. The same
row shows us that 80% of s-bots complete the task in a 3 s-bot swarm-bot. Thus
in 3 s-bot trials, whenever all the 3 s-bots successfully self-assemble into a 3 s-
bot swarm-bot they always successfully overcome the rough terrain. By contrast,
in the 2 s-bot trials 100% of the s-bots self-assemble into a 2 s-bot swarm-bot.
Despite this, only 65% of the 2 s-bot swarm-bots successfully overcome the hill.

The hill in environment B is such that in our trials a 3 s-bot swarm-bot
always (100% of the trials) overcomes it. A 2 s-bot swarm-bot on the other hand
sometimes (35% of the trials) fails to overcome the hill. Whenever the 2 s-bot
swarm-bot approached the hill in parallel the swarm-bot toppled backwards.

Fig. 7 illustrates three phases of task completion. In the first phase (black
segment) all s-bots are independently navigating to the target (this phase ends
when the hill is first detected by an s-bot). The phase takes between 4 s and 17 s
depending on the random initial configuration of the s-bots. For the unsuccessful
trials (4,8,12,16) only this first phase is illustrated.

The second phase (white segment) consists of aggregation and self-assembly.
This phase takes between 39 s and 175 s. This phase always accounts for a large
percentage of total completion time due to its high level of complexity.

The final phase (grey segment) consists of collective phototaxis to the target.
This phase takes between 4 s and 30 s, except in trial 17, when the swarm-bot
got stuck for some time on the hill.

The symbol ’c’ in Fig. 7 marks the first time that all s-bots become aware
of the hill. In some trials (e.g. trials 5 and 6) the existence of the difficult hill is
communicated very quickly between s-bots (see also Fig. 6). One s-bot detects
the rough terrain and activates its blue ring LEDs. The other s-bots are already
close enough to detect this blue colour. In such trials the point ’c’ is reached
soon after the start of the aggregation and self-assembly phase. In other trials
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(e.g. trials 1 and 12) it takes longer to reach point ’c’ as the s-bots are sufficiently
far apart that two s-bots discover the hill independently.

The symbol ’s’ in Fig. 7 indicates when self-assembly was seeded (the last
time an s-bot switches to Assembly Seed behaviour).

5 Conclusion

Self-assembly is a critical adaptive response mechanism in a number of social in-
sect species. This work represents the first successful use of this response mecha-
nism by real robots. We have shown that a group of physical autonomous mobile
robots can choose to self-assemble in response to the demands of their task and
environment. Using our controller, a group of robots faced with a simple hill
overcome it independently. When the same robots are faced with a hill too dif-
ficult for a single robot they self-assemble and overcome the hill together. The
success rate increased with the number of robots used: 0%,65% and 86.67% for
groups of 1, 2 and 3 robots respectively.

Our approach involved splitting the task (as seen from the perspective of
an individual robot) into distinct phases. Each phase was addressed by a sepa-
rate behaviour module - these modules were combined to produce our behaviour
based controller. In a previous work conducted in a simplified simulation environ-
ment, Trianni et al. [15] focused on evolving a single neural network controller to
achieve functional self-assembly. We believe that application of this evolutionary
approach to the real robots might yield solutions that exploit hidden properties
of the robotic hardware or which make better use of the complex group dynamics
of the task [13].

We are currently investigating mechanisms to generate connection patterns
and group sizes [9] that are suited to particular tasks. In the spirit of functional
self-assembly we would like the robots themselves to choose these patterns and
group sizes as they interact with their environment.
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Abstract. A swarm-bot is a robotic entity built of several autonomous
mobile robots (called s-bots) physically connected together. This form
of collective robotics exploits robot interactions both at the behavioral
and physical levels. The goal of this paper is to analyze the physical
performance of a swarm-bot as function of its size (number n of s-bots
composing it). We present three tasks and the corresponding swarm-bot
performances. In all three tasks we show superlinear performances in a
range of n where the physical forces applied in the structure fit to the
robot design. This superlinear performance range helps in understanding
which swarm-bot size is optimal for a given task and gives interesting
hints for the design of new application-oriented swarm-bots.

1 Introduction

Swarm-bot is a new robotic concept [11] that takes inspiration from insect self-
assembling capabilities. For instance some ants use their legs and mandibles to
connect to each other in order to form structures such as bridges or rafts [1].
Similarly, in a swarm-bot the cooperation among single mobile robots (called
s-bots) is achieved by physical connections [10] (see figure 1). This approach gen-
erates new physical properties such as robustness, flexibility and, in some cases,
improved physical performances. The robustness of this type of distributed
system has been well studied in collective robotics [12,3,2] and is made possible
by the redundancy of the system. The flexibility of a swarm-bot is given by its
modularity and self-assembling ability. Self-reconfigurable robots show similar
properties in their modularity and are also well studied [6,5].

This paper focuses on the physical performance of this new type of self-
assembling robotic system. A simplistic way of showing collective performances
consist in measuring threshold performances on strictly collective1 tasks, where
a single robot cannot solve the problem alone and need the help of other robots
to achieve the task. In this type of task the performance can be expressed by the
number of robots (threshold m) necessary to solve the task. Even if this thresh-
old does not represent a real quantification of the performances, it is sufficient
1 Strictly collective tasks need the collaboration of more than one individual. Loosely

collective tasks can be solved by one individual having sufficient time [8].
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to demonstrate that the task is strictly collective and to show the ratio between
individual and collective performances. Typical examples of strictly collective
tasks are object pushing [9] or lifting [4]. In swarm robotics there are similar
examples for gap or step passing [11,10]. It is more difficult but also more inter-
esting to collect quantitative performances, both on strictly or loosely collective
tasks. This type of measurement can give a better indication of the improvement
the collective system brings as function, for instance, of the number of robots
used. An interesting characteristic of collective performances is the collective
speedup factor [8] of a group of n robots, given by equation 1.

CS(n) =
mP (n)
nP (m)

(1)

where P (n) is the performance of a group of n robots and m is the minimal num-
ber of robots needed to perform the task. We can distinguish between superlinear
performances when CS(n) > 1, linear performances when CS(n) = 1 and sub-
linear performances when CS(n) < 1. A simple combination of n robots having
no influence on each-other should generate a linear performance by performing
the task n times better or faster than one robot or module (see for instance
gap or step passing with polypod [13]). In most situations it is hard to avoid
interferences between the robots, for instance because of a common resource.
Those interferences often affect performance and generate sublinear properties
(see for instance a simple object clustering using Khepera [7]). In some situa-
tions, however, interferences are constructive and help in better solving the task,
generating superlinear performances (see the collaboration rate in a stick pulling
task [4] or the pushing time for two robots pushing a box [9]). Tasks where we
can observe superlinear performances are of course the best application area for
collective robotics.

In addition to the characterization of the linearity of the performance, it is
important to verify the scalability of this property. It is of course more interesting
when these properties scale well to a high number of robots.

Fig. 1. A swarm-bot robot composed by six s-bots entering a building from a narrow
passage (left) and passing a large gap (right)
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Fig. 2. Left: Chain of five s-bots forming a swarm-bot and pulling on a dynamometer.
Right: One s-bot pulling the same dynamometer.

This paper focus on swarm-bot performances based on three experiments:
Object pulling, gap passing and step passing. The next three sections show that
a swarm-bot can solve these task with superlinear performances.

2 Object Pulling

2.1 Setup

The goal is to pull an object using a swarm-bot in chain configuration, as il-
lustrated in figure 2 left. To measure the performances of the swarm-bot, the
pulling force is measured by a dynamometer connected to the first s-bot. The
other s-bots form a chain behind the first one, pulling in the same direction. The
robots are remotely controlled by an operator. The pulling force is measured as
function of the number of robots.

2.2 Results and Discussion

Table 1 shows the average pulling force (over three tests) of swarm-bot of dif-
ferent sizes (n) and on four different ground conditions. The collective speedup
CS(n) is given for each ground condition and averaged at the end.

Table 1. Pulling force

Number of s-bots n composing the swarm-bot 1 2 3 4 5
Average pulling force ground 1 P1(n) [N] 2.65 6.75 11.4 15.1 18.5

CS1(n) 1 1.27 1.43 1.42 1.4
Average pulling force ground 2 P2(n) [N] 2 8 11 12 17.5

CS2(n) 1 2 1.8 1.5 1.75
Average pulling force ground 3 P3(n) [N] 3 7.5 12 13.5 15

CS3(n) 1 1.25 1.33 1.12 1
Average pulling force ground 4 P4(n) [N] 4.7 10 11.6 19.2 23.5

CS4(n) 1 1.06 0.82 1.02 1
Average CS(n) 1 1.4 1.36 1.27 1.29
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Table 2. Gap passing performance

Number of robots
1 2 3 4 5

Polypod earthworm
P (n) = gap Vd [cm] 2.8 5.6 8.4 11.2 14

CS(n) = P (n)
nP (1) 1 1 1 1 1

Swarm-bot
P (n) = gap size [cm] 4 9 18 22 22

CS(n) = P (n)
nP (1) 1 1.125 1.5 1.375 1.1

Table 1 shows that in average a swarm-bot composed by two s-bots displays
superlinear performance in respect to a single s-bot. Only on ground number
four the performance is nearly linear. In average two robots together perform
1.4 times better than the sum of their individual performances. The collective
speedup shows superlinear performances up to five robots, but for n > 2 the
speedup is less important. The large performance step between one and two s-
bots is generated by a physical stabilization of the pulling structure. As shown
on the right of figure 2, an s-bot alone cannot generate an optimal pulling force
because of the position of the gripper in respect to the tracks and the center of
mass, resulting in the s-bot pulling only with the front part of the tracks.

When two s-bots (n = 2) build together a swarm-bot structure, they achieve
a much better stability. In this structure the center of mass is better placed with
respect to the structure and both s-bots can pull with tracks and wheels well
placed on the ground. This allows each robot to provide a maximal performance,
much better than the performance they would achieve alone. For a swarm-bot
composed by more than two s-bots there is no additional structural improvement,
which is shown by the decreasing value of CS(n) for n > 2. This decreasing
collective speedup is also a result of the loss of forces in the chain when n >
3, not allowing a proper addition of the individual performances. This loss of
performances is due to the connections, the orientation of the robots and the
inter-robot efforts. For a larger number of robots (n > 5) forces are sufficiently
strong to break the chain or even break the gripper of the first robot of the chain.
For this reason tests have been made only for n ≤ 5.

3 Passing a Gap

3.1 Setup

In this task the goal is to pass a gap. The swarm-bot configuration is a chain
as in the previous experiment (see figure 3) but we exploit here the rigidity of
the chain. In this experiment the robots are assembled by hand and controlled
by a simple program performing hole detection and robot lifting to compensate
structure bending. Depending on the gap size, this is a strictly collaborative
task with a threshold performance. We have quantified the performance in re-
spect to the number of s-bot by measuring the maximal gap size the swarm-bot
structure can pass. This parameter was introduced by Yim [13] for the polypod
performances, under the term of Vd.
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Fig. 3. Three s-bots passing a gap in swarm-bot configuration

a. b. c.

Fig. 4. Center of mass of a swarm-bot facing a gap, depending on the number of s-bot
connected. The maximal gap size the swarm-bot can pass depends on the position of
the center of mass in respect to the tracks.

3.2 Results and Discussion

Table 2 summarizes the performances given by Yim [13] for the polypod self-
reconfigurable robot, the maximal gap size a swarm-bot composed by n s-
bots can pass (P (n)) and the resulting collective speedups CS(n). For n ≥ 4
the gap size a swarm-bot can pass can be considered constant, because the
gripper cannot support more than two s-bots suspended horizontally. Further-
more, when two s-bots are suspended horizontally, the third robot support-
ing them has a very strong pressure on the tracks. In the actual version, this
pressure can block the tracks and immobilize the s-bot, stopping the whole
swarm-bot.

Despite the limitations mentioned above for n ≥ 4, the measurements show a
distinctive collective speedup for n between 3 and 4. The best speedup is obtained
for n = 3 which is explained by a structural reason, as illustrated in figure 4.
When two s-bots self-assemble into a swarm-bot, their structure becomes longer
than twice the length of an s-bot because of the length of the connecting device.
This extra length is not well exploited for a swarm-bot composed by two s-bots
because the center of mass is not placed over a supporting track. With three
s-bots the swarm-bot can fully exploit its length because the center of mass is
situated over the tracks of the second s-bot in the chain.
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Table 2 shows clearly that the collective speedup observed on swarm-bots
and on self-reconfigurable robots are very different. For swarm-bots the speedup
is superlinear in a short range, corresponding to the limited capabilities of each
s-bot2. In self-reconfigurable robots the speedup is linear but for a bigger range,
corresponding to the bigger structure this type of robots can build.

4 Passing a Step

4.1 Setup

In this task, the goal of the swarm-bot is to pass a step. For a step size bigger than
two centimeters this is a strictly collaborative task with a threshold performance,
as for the gap passing task. Also in this case we use a chain configuration. A
peculiarity of this task is that the swarm-bot must bend properly to pass the
step, as illustrated in figure 5. To achieve this task the s-bots have been remotely
controlled. We have quantified the performance with respect to the number of s-
bots by measuring the maximal step size the swarm-bot can pass. This parameter
was introduced by Yim [13] for the Polypod performance, under the term of Vb.

Fig. 5. Sequence of actions a swarm-bot composed by three s-bots must execute to
pass a step of 10 cm

4.2 Results and Discussion

Table 3 summarizes the performances given by Yim [13] and those measured on
swarm-bots. The number of s-bots has been limited to five because of mechanical
constraints: The mechanical effort applied to the connection ring around the
robot is very important when bending the swarm-bot structure (see [10] for
details). With the actual hardware and for n > 5 the ring can broke. Because of
this limitation, the step size (P (n)) would not increase significantly for n > 5.

2 Each s-bot can lift, with its gripper, only one other s-bot. In self-reconfigurable
robots a module can lift several other modules.
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Table 3. Step passing performance

Number of robots
1 2 3 4 5

Polypod earthworm
P (n) = gap Vb [cm] 2.8 5.6 8.4 11.2 14

CS(n) = P (n)
nP (1) 1 1 1 1 1

Swarm-bot P (n) = step size [cm] 1.5 4.5 10 14 16
CS(n) = P (n)

nP (1) 1 1.5 2.22 2.33 2.13

This task shows impressive results from the point of view of all-terrain navi-
gation. The s-bots can pass a step of their own size, which is a performance only
few self-reconfigurable robots such as M-Tran [6] can achieve.

The collective speedup shown in this task is the highest among all experi-
ments that we performed. The larger CS(n) value is obtained for n = 4, but
superlinear speedups are already obtained for n = 2 and continue for n = 5. The
reasons of this superlinear performance are to be found in the better structural
stability of the swarm-bot configuration. A single s-bot, despite its tracks, has
a very limited all-terrain navigation capability, due to its relatively high center
of mass. This is the reason of the very poor performance of one s-bot in step
passing. A swarm-bot configuration made of two s-bots has a much better sta-
bility and can deal with a larger variety of terrain conditions. In addition to
the stability of the structure, this task exploits the flexibility of the swarm-bot
configuration. By bending its structure, the swarm-bot can improve significantly
the all-terrain mobility. This is also the main explanation for the large CS(n)
value in the case of n = 3, 4 and 5. These configurations use more physical links
and thus more flexibility in the chain shape, enabling better obstacle passing.

Also in this case the collective speedup shows superlinear performances which
are very different from the linear performances shown in self-reconfigurable
robots [13]. Even if the superlinearity range (2 < n < 6) was bigger than in
the previous two experiments, it is smaller than the one observed for linear
performances in self-reconfigurable robots (generally n > 10).

5 Conclusion

We presented three experiments showing swarm-bot performances as function of
the number of s-bots composing it. We can observe two main properties:

1. Superlinear performance: All three experiments show superlinear per-
formance. This is a clear indication that the physical connection plays a
constructive role in the collaboration between robots. This constructive in-
teraction between s-bots results in performances that are by far bigger than
those obtained by the sum of the single robots contributions.

Most of the superlinear performances generally observed in collective
robotics are due to an optimal task distribution. This is not the case of the
swarm-bot. In our experiments the superlinearity is due to a mechanical
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improvement of the system and applies to physical tasks. This is a new
phenomenon in collective robotics that deserves further exploration.

2. Limited scalability: The scalability of the results is limited to a small
range (2 < n < 5) in swarm size. This is a clear limitation of our system, but
the upper limits are clearly linked to physical and mechanical characteristics
of the robot design. This means that the designer of the robot has an influ-
ence on these performances. Despite the possibilities of design improvement,
physical limitations will always put an upper boundary to the superlinearity
of this type of performances.

Although superlinear performances are a well known phenomenon in collec-
tive robotics, our experience brings a new element showing these properties in
physical tasks using self-assembling capabilities at the robot level. This is a key
aspect of our approach and can radically change the way of designing a robotic
system for tasks such as all-terrain navigation or object transportation.

Global performance has shown to strongly depend on small design details.
The detailed s-bot design choices for all-terrain navigation and inter-robot con-
nection clearly shape the individual and swarm performances. This is a key issue
in collective robotics engineering that has already been shown in other projects
[4] and is shown here at the level of physical connection. Small implementation
details have even more impact on the performance of the collective system if
these performances are amplified in a superlinear matter. Our results should be
an additional motivation to develop better design techniques to exploit collective
speedup from the beginning of the design phase by predicting the performance
of the collective system.

Figure 6 summarizes the collective speedup of the three experiments de-
scribed in this article. We can see that the smallest speedup is obtained by the
simplest task (object pulling) where the features of the physical link between the
s-bots are less exploited. In this case the link is used only for creating a pulling
connection, but does not exploit the rigidity or the mobility of the link. The sec-
ond task uses the rigidity of the link and gets a better speedup with a maximal

C
S(

n)

Number of robots n

Step passing

Gap passing

Object pulling

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5

Fig. 6. Summary of the collective speedup as function of the number of s-bots and for
each of the three tasks presented in this article
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value for an higher number of robots. The last task, step passing, exploits all
the properties of the physical link (rigidity and mobility) and achieves the best
collective performances for a higher number of robots. These results demonstrate
the relationship between exploitation of the physical link and collective speedup.

Another interesting point to observe is the difference between the perfor-
mance of a swarm-bot and those of self-reconfigurable robots. Self-reconfigurable
robots show nice linear performances mainly due to the simplicity and mechan-
ical strength of their modules, allowing linear addition of the performances [13].
Our design uses as basic building block a fully autonomous individual with more
complexity than a self-reconfigurable module, with much more weaknesses and
relatively limited capabilities. This choice brings sublinear performances for high
numbers of robots (n > 10) but superlinear ones for small swarm-bots (n < 10).

The experiments described above give an indication of the optimal size of a
swarm-bot when addressing physical tasks. For example the performance mea-
sured shows that chains of four robots exploit in an optimal way this capability.
Therefore the most efficient swarm-bots for all-terrain navigation should have a
radius of four s-bots. These indications will be also useful for the design of new
swarm-bots designed for specific applications.
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Abstract. Recently, in both the neuroscience and adaptive behaviour
communities, there has been growing interest in the interplay of mul-
tiple timescales within neural systems. In particular, the phenomenon
of neuromodulation has received a great deal of interest within neuro-
science and a growing amount of attention within adaptive behaviour
research. This interest has been driven by hypotheses and evidence that
have linked neuromodulatory chemicals to a wide range of important
adaptive processes such as regulation, reconfiguration, and plasticity.
Here, we first demonstrate that manipulating timescales can qualita-
tively alter the dynamics of a simple system of coupled model neurons.
We go on to explore this effect in larger systems within the framework
employed by Gardner, Ashby and May in their seminal studies of sta-
bility in complex networks. On the basis of linear stability analysis, we
conclude that, despite evidence that timescale is important for stabil-
ity, the presence of multiple timescales within a single system has, in
general, no appreciable effect on the May-Wigner stability/connectance
relationship. Finally we address some of the shortcomings of linear stabil-
ity analysis and conclude that more sophisticated analytical approaches
are required in order to explore the impact of multiple timescales on the
temporally extended dynamics of adaptive systems.

1 Introduction

Many of the model systems central to artificial life are explicit networks of simple
interacting elements. Cellular automata (CA), artificial neural networks (ANNs)
and random Boolean networks (RBNs), for instance, have become key tools in
understanding what it is for a system to exhibit complex adaptive behaviour.
Such models tend to be the subject of various different kinds of question. For
example, the generation of different classes of dynamic behaviour (fixed, cyclic,
complex, chaotic) has been of interest to CA and RBN researchers, e.g., [1,2]
whereas those working with ANNs have been interested in questions of evolv-
ability, problem solving and autonomous agent control, amongst others [3]. In-
terestingly, in answering these questions, the role of timescale within these sys-
tems has often been neglected. CA and RBNs typically comprise elements that
share the same timescale (and updated with the same frequency),[4]. Similarly,
while some continuous-time recurrent neural networks (ctrnns) comprise neu-
rons with explicit and varied timescales, this property has not received as much
attention as others. For example, Beer [3] presents an extensive examination of
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the dynamics of recurrent ctrnn neurons, but only briefly mentions the impact
of their time constants. This tendency to downplay timescale is somewhat sur-
prising, since the natural adaptive systems that inspired these models typically
involve processes and mechanisms that operate at multiple timescales. In par-
ticular, there is growing recognition that slow chemical processes within neural
systems can be key to their ability to exhibit stable, sensitive, reconfigurable
adaptive behaviour [5-7].

Here, we adopt an approach to understanding stability in complex networks
inspired by classic cybernetics research, and adapt it to explore questions of
timescale raised by this current work. First, a brief and selective account of the
role of timescales in neural systems is presented, before a simple model exhibiting
timescale-sensitive dynamics is detailed. Subsequently, a numerical approach to
characterising the influence of timescale on stability is undertaken. The results
are discussed and future directions are suggested.

1.1 Neuromodulation and Multiple Timescales

Neuromodulation is a term used diversely by neuroscientists to identify non-
traditional processes acting alongside conventional neurotransmission. Although
the term has been in use for over 20 years, the ubiquity of such processes has
only recently been acknowledged. The action of a neuromodulator within the
nervous system differs significantly from that idealised within the traditional
connectionist paradigm: fast, point-to-point, excitatory/inhibitory [6]. Within
neuroscience, there is a large and growing literature that associates slow, diffu-
sive, modulatory, chemical mechanisms with a wide range of important adaptive
capacities. Turrigiano [7], for instance, suggests that this type of mechanism is
important for efficient lifetime adaptation within vertebrate nervous systems.
Neuromodulators have also been implicated in triggering plasticity, regulating
activity, governing reconfiguration, etc. [6]. However, conjectures on the role of
neuromodulation in adaptation are not solely the province of the neuroscience
community. There have also been treatments of this issue within the artificial life
and adaptive behaviour communities [8,9]. For instance, the success of GasNets,
a novel class of artificial neural network inspired by neuromodulation research
[10], as an evolutionary robotics control architecture has generated a number
of interesting theories regarding neuromodulation and adaptive behaviour [11].
GasNets consist of a traditional connectionist network over which the diffusion
of neuromodulatory gases is modeled. The underlying network is embedded in a
2D space, where each neuron has the potential to emit gas, which diffuses over
the network from a point source, affecting the properties of the gas-sensitive
neurons that it comes into contact with. This gas mechanism is inspired by the
neuromodulator nitric oxide (no), which is small enough to pass freely through
lipid tissue. The emission of no is thought to be ubiquitous throughout the ner-
vous system, but in general it is not accounted for in artificial models of neuronal
systems.

Although GasNets have only been tested on a small range of tasks to date,
the ease with which high-quality solutions can be evolved suggests that the pres-
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ence of idealised neuromodulation may increase the evolvability of this class of
control system across a range of real-world problems [12]. As yet there is little
understanding of why this should be the case. While GasNets have been explored
via a series of metrics, the contribution that neuromodulation makes to network
evolvability remains unclear [13]. Aside from this postulated contribution to
GasNet evolvability, the inclusion of idealised neuromodulatory mechanisms in
a control system could result in greatly enhanced adaptive properties. However,
it is unclear whether these benefits are due to the specifics of the chosen abstrac-
tion or more fundamental principles underlying neuromodulation. There is some
evidence that it is the combination of fast (neurotransmission) and slow (neu-
romodulation) processes that may be responsible [14]. Indeed, the slow nature
of neuromodulation appears crucial to many of its postulated roles. Whether
regulating the gross activity in a neural circuit, or maintaining a neural variable
within critical bounds via homeostatic plasticity [7], or switching between dif-
ferent modes of circuit behaviour dynamics (e.g., the switch between swimming
and the escape reflex in Tritonia, [15]), neuromodulators are often best consid-
ered as slow processes that parameterise a fast sub-system. Understanding how
to model this interaction across temporal hierarchies remains an open question.

Of course, the presence of explicitly slow elements or processes is not nec-
essary in order to allow a system to exhibit multiple timescales. The flow of
activation through a large recurrent network of fast elements may allow differ-
ent timescales to arise. For instance, Harvey and Thompson [16] evolved circuitry
to discriminate between slow oscillatory inputs where the intrinsic timescale of
the components (a few nanoseconds) is five orders of magnitude shorter than
the dynamics exhibited by the evolved circuit. Furthermore, in small systems,
saddle node or homoclinic bifurcations can give rise to slow dynamics even if
the underlying nodes are intrinsically fast [17]. For example, in most models of
spiking neurons the explicit timescales are fast, usually on the order of 10ms
or less [6], yet in many cases the dynamics of interest extend well beyond these
characteristic timescales. However, given that neural substrates support adap-
tive behaviour at many different temporal scales and that neuromodulators act
on a range of timescales typically slower than that of neurotransmission, it seems
intuitive that there may be some value in this explicit combination of multiple
timescales.

2 Stability Criteria for Complex Networks

In a now classic study, Gardner and Ashby [18] investigated stability criteria for
large complex systems in terms of the effect of connectivity on the tendency of a
system to exhibit a stable point attractor. The relationship between a network’s
structure and its stability has been of long standing importance, particularly
in the field of ecology [19]. At the time, biologists typically assumed that the
stability of an ecosystem would increase with its biodiversity (due to mean field
averaging). The same issue has significance for systems ranging from traffic net-
works to the human brain. In each case, Gardner and Ashby argued, we should
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not necessarily expect to observe stability as systems grow in size. Their nu-
merical results characterised the way in which networks of interacting elements
become less stable as their interconnectivity increased. This tendency towards
stability was subsequently formalised by May [20], who derived a threshold for
stability in terms of the mean-square of the strength of the connections and the
degree of interconnectivity. In both these studies, the systems are assumed to
comprise elements that share a single intrinsic timescale.

Gardner and Ashby [18] and May [20] considered the stability of a linear
system y = (yi, i = 1...N), given by

ẏi = −yi +
N∑

j=1

ωijyj in vector form :
dy
dt

= Ay (1)

Here, A = Ω − I, where Ω = (ωij) is a matrix of weighted interaction strengths
and I is simply the identity matrix. Such a system is said to be stable when every
eigenvalue of A has a negative real part [21]. Gardner and Ashby [18] employed
a numerical method to discover the stability of an ensemble of random networks,
varying network size, N , and network connectivity, C (the probability that any
entry of the weight matrix Ω is non-zero or, equivalently, the probability that
any two elements interact). They were able to demonstrate that stability could
be compromised by high connectivity.

To derive a threshold for stability, May [20] used analytical results from the
field of random matrix theory [21,22]. He drew the entries of Ω from a statistical
distribution with zero mean and a mean-square value, α. He then derived a
critical threshold above which any network has a high probability of instability.
Explicitly, he stated that in the limit of large system size (N � 1), a system is
almost certainly unstable if NCα2 > 1.

This result, generally referred to as the May-Wigner stability theorem, corre-
sponds well with Gardner and Ashby’s original findings and still holds as a very
important threshold [23]. It has been extended recently to demonstrate that the
result stills holds for systems in which connections between elements exhibit
time delays [24]. However, as yet, the influence of timescale, as distinct from
time delay, has not been explored. Recent work within neuroscience and adap-
tive behaviour suggests that systems involving processes on multiple timescales
readily exhibit important classes of adaptive behaviour. Here we apply the ap-
proach introduced by Gardner and Ashby [18] and formalised by May [20] to
such systems.

3 Timescale in a Two-Node System

The analysis described above assumes linearity, yet it is possible to apply the re-
sults to non-linear systems if we restrict our attention to behaviour in the vicinity
of a specific equilibrium. In this case, we can consider the local behaviour around
this equilibrium and determine the stability of the system under a (vanishingly
small) perturbation. This process is known as linear stability analysis. It will tell
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us about the local asymptotic behaviour of a non-linear system around a par-
ticular equilibrium but tell us nothing about global stability. For example, while
a limit cycle cannot be said to be locally stable, it may be globally stable such
that under perturbation the system always settles to the same cyclic trajectory.

May’s result has been criticised because it relies on this linearization around
equilibrium, which is thought to make it inapplicable where perturbations are
large or systems exhibit limit sets of higher dimension than a fixed point. While
this issue remains open, recent calculations of global dynamics have obtained
the May-Wigner stability thresholds as thresholds for global system stability.
These results suggest that the May-Wigner theorem may be more universal
than originally expected[23]. So, while this technique has restricted application
to non-linear systems, it may still has the potential to deliver general insight
into the dynamics of complex systems.

We will consider a system of equations used to describe continuous-time
recurrent neural networks (ctrnns). The ctrnn is commonplace throughout
neuroscience (as a leaky integrator) and evolutionary robotics [3].

ẏi = −yi

τi
+

tanh
[∑

j ωijyj + θi

]
τi

(2)

Here yi represents activation at the ith neuron; ωij is a weight on the connection
between neurons i and j; θi is the bias value at the ith neuron; and τi is the
time constant of the ith neuron, which defines the rate of leakage or decay of
activation. The equation is forward integrated with a simple Euler step method
with time slices of dt = 0.005. Note that τ represents the explicit timescale of
each of the units and it is this parameter that we will concern ourselves with
in this work. In this formulation, the sigmoidal transfer function is a hyper-
bolic tangent rather than the more familiar exponential sigmoid (see e.g., REF
[3]. Note that, here, activation does not represent the membrane potential of a
neuron, but rather the firing rate, or mean number of spiking events per unit
time, averaged over some appropriate time window. In general we can think of
the ctrnn equation as a re-description of the firing rate of a given neuron (or
ensemble) averaged over some window, τ .

We will first consider a simple two-node system described by equation (2). To
determine the linear stability of this system, we must first calculate the coordi-
nates of its equilibrium point. This is located at the intersection of the system’s
nullclines, each defined by ẏi = 0. Second, we must calculate the Jacobian of the
system at equilibrium,J , given by equation (3), (further details can be found in
Refs. [17] and [3].)

J =

⎛⎜⎝dẏ1
dy1

dẏ1
dy2

dẏ2
dy1

dẏ2
dy2

⎞⎟⎠
ȳ1, ȳ2

(3)

Here, ȳ1 and ȳ2 are the equilibrium activation values, and the matrix therefore
represents the instantaneous interaction between each element around the equi-
librium point, and can be analytically calculated. Under these conditions, this
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Fig. 1. Variation in the behaviour of a simple two-node circuit with recurrent links
(parameterized as shown, left), due to manipulating the timescale of its component
elements. In each case, the system is released from an initial condition (y1 = y2 = 0.01)
in the vicinity of the equilibrium at ȳ1 = ȳ2 = 0. A. τ1 = 1, τ2 = 10: The system
exhibits stability. B. τ1 = τ2 = 1: the system diverges from equilibrium to a limit cycle.
Eigenvalues of the Jacobian for each system are shown alongside the plots.

matrix is equivalent to A in May’s formulation. We can now determine whether
the system is stable by requiring that the real parts of each eigenvalue of the
matrix are negative.

In Refs. [18] and [20] the timescales of all the elements within a system are
assumed to be equal. Here we consider the consequences of relaxing this as-
sumption. In general determining the contents of the Jacobian matrix requires
us to calculate complex terms that depend on the first order differential of the
CTRNN sigmoidal transfer functions. By stipulating that θ1 = θ2 = 0 we guar-
antee that there is a system equilibrium at ȳ1 = ȳ2 = 0, which simplifies the
Jacobian, thus:

J =

⎛⎝ω11 − 1
τ1

ω12
τ1

ω21
τ2

ω22 − 1
τ2

⎞⎠ (4)

We can rewrite equation (3) in vector form equivalent to equation (1) for a
system with multiple timescales as A = (Ω − I)τ−1, where τ is a vector of the
damping times, τi, for each of element. The question here is what effect this has
on the dynamics? To understand this we will consider an example of a coupled
two-node system parameterized as illustrated in figure 1.

Figure 1 depicts the behaviour of the coupled system for τ2 = 1 and τ2 = 10
(holding τ1 = 1 constant) from the same initial conditions (y1 = 0.01, y2 = 0.01).
For τ2 = 10 the system is locally stable, converging to equilibrium after a small
perturbation. In contrast, for τ2 = 1 the equilibrium at y1 = y2 = 0 is unstable.
Even though the system is initially perturbed only a small distance from this
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equilibrium, the trajectory diverges to a limit cycle. In fact, as we alter τ2 the
system undergoes a subcritical Hopf bifurcation [17]. Is this bifurcation reflected
in the linear stability analysis? From equation (4) we can determine that the
real parts of each eigenvalue change from positive to negative as we increase τ2
(see figure 1), indicating a transition from local instability to local stability.1

In this simple case, timescale (as well as connectivity and weight strengths)
affects system stability. It is interesting to note the direction of this influence—
increasing timescale separation increases system stability. This begs the question:
what effect does timescale have on larger systems, and does it interfere with the
relationship described by Gardner and Ashby, and formalised by May?

4 Larger Systems

In the previous section, we have outlined how linear stability analysis can shed
light on the dynamics around an equilibrium position in a non-linear system.
For the small system considered above, varying the timescale parameters, τ ,
brought about a Hopf bifurcation, altering the system’s dynamics such that it
ceased to exhibit a stable equilibrium. Could timescale have a similar effect on
the stability of larger systems? Gardner and Ashby [18] and May [20] considered
the effect of both connectivity, C, and mean-square weight value, α, on stability,
but assumed that the damping time of each of the system’s elements was unity.
In this section we will relax this assumption. To achieve this, we will establish
numerically the relationships between probability of stability and both C and α
for networks with all τi = 1, and compare this with the same relationships for
networks with τi uniformly distributed over three orders of magnitude.

The basic form of these relationships, depicted in figure 2, is intuitive. At
low α or C, networks have a high probability of stability, which decreases as
α or C increase. Figure 2’s vertical dotted lines represent the critical threshold
derived by May. Predictably, the correspondence between the (asymptotically
derived) threshold and the numerical results increases with network size, as
does the steepness of the numerically derived “phase transition”. However, less
predictably, there appears to be little difference between the stability of networks
comprising elements with shared, unitary timescale and networks comprising
elements with widely varying timescale. In contrast to the example given in
section 3 above, multiple timescales have little effect on the stability threshold,
or on the general character of the relationship.

Our paired design allows us to confirm that if a network below the May-
Wigner threshold is stable with unitary timescale elements, the same network will
generally be stable if those timescales vary widely. However, for networks above
the May-Wigner threshold, in all plots the probability of stability in timescale-
separated networks is slightly, but systematically, lower than the probability of
1 As this analysis only concerns the local behaviour around the equilibrium, it tells

us nothing about subsequent trajectories. Nevertheless, the bounded nature of this
system and the fact that it can only exhibit one point equilibrium guarantees that,
where the original equilibrium is unstable, a cyclic attractor will surround it.
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Fig. 2. Probability of stability versus. (a) the root mean square of network weights,
α, and (b) network connectivity, C, for networks of size 4, 7, 10, 20, 50 and 100 nodes
(1000 random networks per data point). For (a), C = 50%. For (b), α = 1. Solid curves
depict results for networks with unitary τ values, dashed curves for the same networks
with τ values uniformly distributed across three orders of magnitude. Vertical lines
denote the stability threshold as predicted by the May-Wigner theorem for networks
of 100, 50, 20 and 10 nodes (reading left to right).

stability in equivalent unitary networks. This may indicate that the presence of
multiple timescales encourages the transition to instability. This effect is small,
less than 1% for all network sizes. Although this difference seems negligible in
the context of the overall character of the relationship, it would be interesting
to investigate its root cause since it is in opposition to the effect of timescale
separation demonstrated in section 3.

So far, we have concerned ourselves only with the real parts of a network’s
eigenvalues, since these reveal the presence of local stability. While the intro-
duction of multiple timescales has little effect on the probability that these real
parts are all negative (indicating local stability), it does have an effect on the
imaginary parts of these eigenvalues, which are far more likely to be non-zero in
this case. In a simple coupled system, these imaginary parts indicate the manner
in which the system transitions to or from equilibrium. If the imaginary parts
are zero, the equilibrium is said to be a node, otherwise it is a spiral [17].

The increase in the number of non-zero imaginary eigenvalue parts brought
about by the introduction of multiple timescales implies that trajectories around
the equilibrium have little or no curvature. We can understand this in terms of
the strength of the effects of the different elements that comprise a network.
Because each element’s entry in the Jacobian matrix (3) is scaled by its inverse
timescale, i.e., by 1

τi
, slower elements will have a weaker instantaneous influence.

Weakening or strengthening an element’s influence will not tend to affect local
stability, since even a weak effect can displace a system from equilibrium. How-
ever, the short-term behaviour of the system will appear to be dominated by
fast elements, although slow elements may have a large effect in the long term.

This observation is reminiscent of Ashby’s (1960) temporary independence,
[25], used to describe how trajectories in the phase space of a complex system
may evolve over low-dimensional manifolds if certain variables remain practically
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constant over some period of time. The utility, in this context, of a distinction
between interdependence over the short- and long-term is also reminiscent of
Simon’s [26] attempt to define functional modularity.

5 Conclusion

We have demonstrated that, in at least one example, altering the explicit
timescale of a network component can effect a transition between stability and
instability, despite connectivity and weight parameters remaining fixed. Con-
versely, we have shown that Gardner and Ashby’s stability/connectance rela-
tionship and May’s critical threshold are largely unaffected by the presence of
multiple timescales.

In order to characterise the influence of timescale more satisfactorily, we must
move beyond this initial linear stability analysis, and develop tools that allow
us to explore the temporally extended non-equilibrium dynamics of systems ex-
hibiting multiple timescales. One potential avenue is the extension of statistical,
information-theoretic measures of interdependence, such as mutual information
[27], to the task of determining whether sub-systems that are temporally sepa-
rated might be functionally modular in the sense of Simon [26] or Watson [28].
Such modularity is hinted at by some of the results presented here, and would go
a long way toward accounting for the different ways in which neuromodulation
has been implicated in underpinning temporally extended adaptive behaviour.
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Abstract. Sensing in the dark is a useful but challenging task both for biological
agents and robots. Rats and mice use whiskers for the active exploration of their
environment. We have built a robot equipped with two active whisker arrays and
tested whether they can provide reliable texture information. While it is relatively
easy to classify data recorded at a specified distance and angle to the object, it is
more challenging to achieve texture discrimination on a mobile robot. We used
a standard neural network classifier to show that it is in principle possible to
discriminate textures using whisker sensors even under real-world conditions.

1 Introduction

When light is dim or fading, tactile information becomes more and more important. In
nature, many night-active animals such as rodents, cats or oppossums have developed
an exquisite tactile organ, the whiskers. With their large mystacial whiskers, rats for
example not only navigate to avoid obstacles, but they are also able to discriminate
different textures and shapes [4]. Behavioral studies in rats have shown that their ability
to discriminate surface structures with the whiskers is comparable to ours using our
fingertips [11] [5]. Unravelling the information coding in the rat whisker system has
recently attracted different researchers both from biology [18] [17] [3] [2] and from
the field of robotics [10] [20] [22] [19] [15]. Theoretical studies have analyzed the
properties of whisker vibrations [16] [9] [14] and their implications on neural coding
and learning of simulated receptive fields [13] [12].

So far, tactile stimuli have largely been acquired by keeping parameters such as dis-
tance and orientation of the whiskers constant with respect to the texture (as in [20] [9]).
Although it is reasonable to assume that animals can position their head appropriately,
they are also able to discriminate textures from far away when forced to do so. One of
the main differences between analyzing recorded data and using a behaving robot is that
different parameters such as distance and angle towards the texture are not necessarily
well defined. Thus, it is important to record data with different parameters and iden-
tify features significant for the discrimination of textures. Such features are necessary
for the construction of a behaving system capable of showing discriminatory behavior
comparable to a trained rat.

To our knowledge, so far only one study has conducted experiments on texture
discrimination with a mobile robot [20]. In their experiment, the robot showed a wall

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 302–311, 2005.
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following behavior stimulating the whisker sensors by moving them across the wall.
When a texture was encountered, the robot learned to avoid the wall based on the ac-
tivity pattern of its neural network. Following the wall not only generates input, it also
controls for the distance and angle at which a tactile pattern is sensed. The input to the
neural system is thus more reliable and reproducible than at random orientations.

In the series of experiments presented in this paper, we want to consider a more
general case, namely whether classification is possible even if a texture is explored
from different angles and distances. Furthermore, the robot generates sensory stimu-
lation not only by moving the whole body, but also by moving the whiskers actively.
We have approached this question twofold: first, we recorded different textures from
different angles and distances and trained a neural network to classify these textures.
In a second series of experiments, we let a robot explore an environment equipped
with different textures and trained a network with these self-acquired data. During
a separate testing phase, the classification of the sensory input was recorded and
evaluated.

2 Materials and Methods

The goal of this series of experiments was to assess the robustness and the discrimina-
tory power of the whisker sensors under real-world circumstances. Detailed data anal-
ysis has been performed elsewhere [9]. We used a microphone-based whisker sensor
with natural rat whiskers as described in [16]. A single whisker hair of approximately
5 cm is glued to a capacitor microphone. Mechanical stimulation is thus transduced
to a deformation of the microphone membrane. The resulting signal is amplified and
recorded by the computer. Six such whiskers are assembled in an array of two rows
with three whiskers. They can be moved actively by one servo motor to perform a peri-
odic synchronous sweep at a frequency of 1 Hz. The construction of the whisker array
has been described in detail in [8].

(a)

Position 5 Position 7

Position 1

Position 3

Position 2
Position 4 Position 6

(b) (c)

Fig. 1. a) Photograph of the data collection setup with rough carton. The 6 whiskers of the ar-
tificial whisker array can be moved synchronously by one servo motor. The whiskerarray was
placed at different distances and angles towards the texture. b) Schematic of the layout of the
seven positions at which data was recorded with respect to the texture (indicated as a striped bar)
c) Example of one sweep of raw data and the recorded motor signal. The borders between sweeps
as extracted by the algorithm are marked with arrows.
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2.1 Data Acquisition

We collected a dataset containing four different textures: 1) smooth metal, 2) sandpaper
400, 3) sandpaper 80 and 4) rough carton recorded at seven different positions (see
figure 1(b)). At position 1, the base of the whisker sensor is at a distance of 2 cm
from the texture. The positions in one column are each 1 cm apart. The whiskers were
actively moved across the surface of the texture and the position of the servo motor was
recorded simultaneously. Data acquisition was performed using a National Instruments
Data Acquisition Card (DaqCard 6036E) at 4 kHz per channel.

For the robot experiments we used an open environment. Half of the surface was
lined with a rough carton surface, the other half was left blank, displaying a smooth
metallic surface.

2.2 Feature Extraction and Discrimination Capabilities of Recorded Data

Previously, we have shown that it is possible to generate texture specific signatures from
power spectra of whisker signals (see [9]). Such a signature relied on several sweeps
and covered frequencies up to 1 kHz. For a system behaving in real time, we sought
to reduce the dimensionality of the input vector further. Three different preprocessing
methods for feature extraction were tested: Spectrotemporal analysis, fourier transform
convolved with a Blackman window of 70 data points (57 Hz) and raw data also con-
volved with a window of 57 Hz. In all three cases, the dimensionality was reduced to

whisker 1 whisker 2 whisker 3 whisker 4 whisker 5 whisker 6
0

1

whisker 1 whisker 2 whisker 3 whisker 4 whisker 5 whisker 6
0

1

whisker 1 whisker 2 whisker 3 whisker 4 whisker 5 whisker 6
0

1

Fig. 2. Cumulated feature vectors of twenty sweeps in one position of texture 1 and texture 4.
The dotted line indicates texture 1, dashed line texture 4. The preprocessing used was Top row:
Smoothed raw data, middle row: fft and bottom row: PCA components after a spectrotemporal
analysis.
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10 values per whisker yielding a feature vector with 60 values. The raw data and the
fourier transformed data were divided in 10 windows (the first 750 ms of each sweep
and the frequencies between 1 and 1000 Hz) of 75 ms and 100 Hz respectively. Then
the highest value of this window was passed as input to the network. Examples of 20
such input vectors of two different textures are shown in figure 2.

2.3 Training the Neural Network

To identify and evaluate different features, a standard backpropagation network was
used to classify previously recorded textures. Please note that the purpose of this exper-
iment was not to postulate a specific biologically inspired architecture, but to evaluate
the potential of the features used and the setup as a whole under real-world conditions.
Any other statistical classification algorithm could have been used as well. Training was
done using the Levenberg-Marquardt algorithm as implemented by the Matlab Neural
Network Toolbox [1]. For all neural networks described in this paper, we trained ten
runs with different random initializations and between 10 and 14 hidden layer neurons.

Since the whiskers were stimulated by actively sweeping over the surface, the pro-
prioceptive signal from the motor identified the repeating elements. Multiple sweeps of
the same texture were thus extracted from one continuous stream of input. One such
sweep together with the motor signal is shown in figure 1(c). Together with the re-
maining five whiskers, this constitutes one sample of input for feature extraction and
subsequent neural network training.

For each texture, one minute of data was recorded at seven different positions sys-
tematically varying the distance and angle of the whisker array with respect to the pre-
sented texture (figure 1(b)). A second set of data was recorded separately to be used for
testing the network.

2.4 Evaluation of Network Performance

To test the classification and generalization, each trained network was simulated with
the test data and a hit matrix (as in figure 4(a)) was computed by determining the output
neuron responding most strongly and comparing it to the desired output neuron. From
the hit matrix, the percentage of correctly classified samples was computed. After fea-
ture extraction using fourier transformation with subsequent dimensionality reduction
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Fig. 3. Mean percentage of correctly classified samples using a) smoothed raw data and the ten
highest values of each whiskers in blocks of 75 ms. b) FFT preprocessing c) spectrogram prepro-
cessing with subsequent PCA.
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Fig. 4. Left Sample hit matrix on all recorded positions and textures with a) FFT preprocessing
and b) smoothed raw data. The textures are from 1 to 4: smooth metal, sandpaper 400, sandpaper
80 and cardboard. Right Mean percentage of correctly classified test samples recorded with a
mobile robot. c) Left whisker array and d) right whisker array. The textures to be discriminated
were smooth metal vs. rough carton.

as well as the temporal analysis of the raw data, the neural network was able to classify
not only the training set but also the test set (figure 3(a) and 3(b)). The best classifica-
tion for raw data was 75 %, for spectral analysis (fft) it was 74 %. Usually, about one
of the random initializations resulted in a network unable to classify the testdata above
chance. This is the reason for the rather large errorbars in figure 3(b).

Figure 3(a), 3(b) and 3(c) show the mean number of correct responses for the three
different types of feature extraction for 10 different random seeds and different numbers
of hidden neurons. Spectrotemporal analysis followed by principal component analysis
was not able to learn to discriminate the four textures, mean correct responses range
between 25 % and 39 %.

Figures 4(a) and 4(b) show the hit matrices for the testdata with a sample neural net-
work. Bright color indicates many entries. The bright diagonal shows that the network
classified the textures correctly in most cases. More interesting is the interpretation of
misclassifications: most mistakes occured for the two sandpapers (textures 2 and 3).
Smooth metal and rough carton were rarely confused. The distinction between these
two textures was especially clear between feature extraction using spectral analysis,
therefore it was used in the robot experiments.

3 Classification of Data Recorded on a Mobile Robot

First tests with the robot were conducted using the same features and neural network
structure as determined to be appropriate with recorded data. However, when the robot
did not use any sensory feedback to adjust its position with respect to the encountered
surface, often it did not get stimulation in more than two whiskers. Data recorded under
such conditions did not result in successful classification (data not shown). Therefore,
the whisker data was used to roughly position the robot such that at least four whiskers
were stimulated.

For this behavior, the robot was equipped with a few motor primitives: It explored
the environment while whisking actively for obstacles and explorable textures. Upon
contact, the robot stopped and acquired a few whisks of data. Depending on this sensory
input, it either logged data or repositioned slightly with a fixed turning behavior in order
to achieve stimulation in at least four whiskers before acquiring data. The training signal
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necessary for the backpropagation algorithm was delivered manually. In unfortunate
spots such as ambiguous corners, the robot was repositioned manually.

After a total of 150 encounters which were shared about equally between the two
whisker arrays, the first 3/4 of the encounters of each side of the robot were used to
train the neural network, the last fourth of encounters was used to test the performance.
Please note that between every encounter, the robot moved for a minimum of 2.5 s
including turning on the spot. This ensured that each instance of acquiring data was
actually done at a new orienation and at a different spot. On average, the left whisker
array classified correctly more often than the right whisker array. The mean values
on the left side ranged between 65 to 76 % correctly classified samples with the best
network classifying 85 % of the test samples correctly (figure 4). The right whisker
array on average classified between 63 % and 67 % percent of the samples correctly.
The maximum of correctly classified samples was 76 % (figure 4). The differences
found between the two whisker arrays can depend on several factors which cannot be
decided on the basis of the current experiments. Possibly, the quality of the whisker
sensors varies. Another source of variation is that the robot acquires data on its own and
thus it may be that one side accidentally records data more apt for classification.

3.1 Behavioral Experiments with the Robot

The same neural network structure was used for the robot as was tested previously in
the simulation described above. For each of the two whisker arrays with six whiskers
a neural structure was created: this right and left hemisphere were fed with the signals
from the respective whisker arrays and trained individually. During a behavioral test-
ing phase, the previously trained robot explored the environment. Upon contact with
a texture, it was palpated for 9 seconds of which five sweeps were used for classifica-
tion. Depending on the resulting classification, the robot responded by turning by 30◦

or by 120◦ away from the texture. Given this behavior, we expect the robot to spend
more time in that half of the arena, where the turning angle is smaller. The resulting
trajectory should thus cover the respective part of the arena more closesly. To evaluate
the robot performance, each run was recorded with an overhead camera and the robot
was automatically tracked using the KLT library [21]. As a control condition, the robot
behaved as described above, but instead of using sensory input for classification, the
type of texture was supplied by the experimentor. Here, only slippage of the wheels or
physical hindrance e.g. due to the cables can possibly induce deviation from a perfect
behavior.

In the actual experiment, the robot classified whisker input with the neural networks
trained as described above. To ensure that a behavioral pattern was actually induced
by correct classifications and was not an artefact of the allocation of texture type and
turning angle, this allocation was also switched.

3.2 Results of the Behavioral Experiments

In the control condition shown in figure 5(a) it is apparent that the robot spends much
more time close to the smooth metal. It also reliably turns away from the carton. This is
due to the different preprogrammed turning angles. Reversing the angles also reverses
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(a) (b)

(c) (d)

Fig. 5. Trajectories of a single run. Each cross indicates the robot position during one frame of
a consecutive image sequence. The background shows the actual robot arena with the robot as
seen from an overhead camera. The bottom and the right wall are coated with rough carton, the
upper and left walls are made of smooth metal. Top row: The robot turns from rough carton
at a larger angle than from the texture classified as smooth metal. a) Classification supplied by
the experimentor and b) classification according to sensory input. Bottom row The robot turns
stronger from smooth metal (120◦ angle) than from rough carton. c) classification supplied by
the experimentor and d) classification according to sensory input.

the overall impression (figure 5(c)). During the actual experiment, the classification de-
pended solely on the sensory input acquired by actively whisking any surface encoun-
tered during exploration. Figure 5(b) shows such a run: the robot spends more time
close to the metal coated walls. This is due to the lower angle with which it turns from
the texture classified as metal. Larger turning angles can be seen well for encounters
with the rough carton coated walls.

The same holds true when the turning angles are reversed (figures 5(c) and 5(d)).
Here, the robot turns with a 30◦ angle from rough carton and with a 120◦ angle when
palpating smooth metal.

4 Discussion and Future Work

Tactile discrimination based on whiskers is still a young research area. The experiments
described above try to fathom the potential of artificial whiskers for haptic sensing both
statically and on a robot. For this purpose, a standard classifier was used, namely a
backpropagation network.
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Since whiskers are potentially very interesting tactile sensors for robots, the main
focus of the experiments was to assess how reliable whisker-based classification is with-
out strict control of position and orientation. The results of neural network simulation
of data recorded at different but defined positions are promising. Even with only few
inputs and a standard preprocessing such as fourier transformation, classification of
four different textures with about 70 % correctly recognized textures based on only one
sweep has been achieved.

To test whether this would hold true for the continuous space of possible distances
and orientations on a mobile robot, robotic experiments were conducted. In this series of
experiments it became apparent that it is more difficult to achieve classification behavior
under real world conditions. Firstly, sensory feedback based on whisker input had to be
introduced to avoid active exploration in situations when only one or two whiskers
touched the surface. Having limited the range of possible positions to those, where at
least four of six whiskers were activated, test data could be classified to some extend,
but not without mistakes.

Based on these results, a lot of experiments can be proposed. For example, we want
to test the whisker-based texture discrimination of the robot in a behavioral task com-
parable to experiments on rats. We have already built a maze with variable number of
arms. The robot should be able to chose specific arms based on textural information at
the walls of each arm. For this task it will probably be necessary to improve the relia-
bility and the discriminatory capability of the system. While we cannot exclude that the
preprocessing chosen for these experiments is not optimal, we believe that to achieve
more reliable classification sensory-motor coordination might be used on two levels.
Firstly, feedback from the whiskers could be used adaptively to orient the body of the
robot appropriately with respect to the texture. Rats for example are reported to prefer a
distance of 2 cm from their whiskers to an object or texture [7]. Secondly, the whisking
behavior itself could be influenced by sensory feedback. Varying the speed or amplitude
of whisking could possibly help to resolve ambiguities. Again, there is evidence from
behavioral rat studies that the whisking frequency is not always the same but might be
varied from one whisking cycle to the next [6]. Most probably, both proper orienta-
tion and adapted active exploration are crucial for fine texture discrimination and thus
complement the stereotyped active exploration that was investigated in this paper.

In addition to behavior exclusively based on whiskers, the robot is already equipped
with an omnidirectional camera. This opens up the possibility of investigating behavior
based on two different sensory modalities.

5 Conclusion

In this paper, we have shown that it is possible to classify tactile data of different tex-
tures acquired with artificial whiskers. In a first series of experiments, we have shown
that four textures consisting of a smooth metallic surface, two different sandpapers and
rough carton can be classified even when the position of the whiskers with respect to
the texture is varied considerably. This result is a prerequisite for using the sensor on
a robot without highly precise position control. In a second series of experiments, a
mobile robot was used to acquire data in an open environment with walls of different
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tactile quality. Here, the positions of the robot with respect to the wall were not specified
but only limited loosely. Our experiments have shown that classification is not entirely
reliable under real-world conditions. However, given sufficient data, a rough discrimi-
nation has been achieved. In the future we will use more biologically inspired sensory
processing and sensory-motor feedback to refine the tactile capabilities.
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Abstract. This paper investigates evolvability of artificial neural networks 
within an artificial life environment. Five different structural mutations are in-
vestigated, including adaptive evolution, structure duplication, and incremental 
changes. The total evolvability indicator, Etotal, and the evolvability function 
through time, are calculated in each instance, in addition to other functional at-
tributes of the system. The results indicate that incremental modifications to 
networks, and incorporating an adaptive element into the evolution process it-
self, significantly increases neural network evolvability within open-ended arti-
ficial life simulations. 

1   Introduction 

Understanding the causal relationship between the functional structure of adaptive 
neural networks and ecological history is a fundamental objective in neuroscience 
research. And an important method for addressing this challenge is to model artificial 
neural networks within open-ended, ecologically relevant Artificial Life environ-
ments. The problem, however, is that standard neural network training algorithms 
(such as back-propagation) cannot be used in this paradigm, as such they do not offer 
the complete set of input and output values needed for training. An alternative is to 
therefore use the same mechanism nature does – evolution through ‘natural selection’.  

There are, however, many issues to consider when evolving neural networks. Fun-
damental to any of these is the evolution of network topology (i.e., modifications to 
its underlying node and connection structure). Here we address the question of the 
process by which network elements are to be added (and removed) by focusing, not 
on evolved network solutions as such, but on the evolvability of the systems itself. 

Evolvability is the ability of a population to produce offspring fitter than any yet in 
existence [1], and not to produce less fit variants [13], and is therefore fundamental to 
the process of evolution itself. Evolvability is also known as evolutionary adaptability 
[8] and as such, a major element of evolvability is the capacity to adapt to changing 
environments by learning to exploit commonalities over time in those environments. 
By understanding evolvability and how to promote it, not only will it be possible to 
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solve increasingly complex problems, but one may also better understand evolution of 
network systems generally.  

The key properties required to generate systems exhibiting high evolvability are 
not well understood, particularly in the context of ecologically relevant artificial life 
simulations. Nonetheless, several factors are thought to be correlated with high 
evolvability.  

(1) The mapping of genetic variation onto phenotypic variation [4, 15], and the se-
lection of search operators used, determine the distribution of local optima in 
the search space, and affect search difficulty [1, 7]. More specifically, a many-
to-one genotype-to-phenotype mapping (a redundant mapping), is essential for 
evolvability. By enabling some mutations to be phenotypically irrelevant, it is 
possible to better explore the search space through neutral networks [5]. Evo-
lution of neural networks, in our view, particularly those that are used for con-
trol and classification, qualifies for the complex mapping condition; Fogel [6] 
defined an evolved neural network’s phenotype as its behaviour, and not its 
constituent weights. Using this definition, changing many aspects of a neural 
network would not necessarily change its phenotype (behaviour). 

(2) Gradual effects of the search operators seem to play an important part [2, 9].  
(3) Structural duplication and modularity are recognised as promoters of evolva-

bility [17], as they enable evolution to ‘reuse’ structures within networks [10]. 
(4) Finally, the ability of evolution of adapting elements of itself can also promote 

evolvability, since it enables evolution to differentially tune search operators 
throughout evolution [4, 7]. 

This paper analyses the effect on the evolvability of an artificial life simulation, as 
measured by the evolvability indicator, Etotal, using five different types of structural 
mutations. Each of the mutation types incorporates the various principles described 
above for increasing evolvability. Secondary effects on evolved traits were also 
measured, such as the number of successful ‘runs’, quality of evolved solutions, and 
the variability of the evolved forms. 

2   System 

Mosaic World is an A-Life system designed for exploring the computational princi-
ples by which vision can overcome stimulus ambiguity [12]. Mosaic World offers a 
virtual environment made up of a 2D grid of ‘coloured’ surfaces under multiple simu-
lated light sources. This environment emulates key characteristics of natural scenes. 
The space is inhabited by virtual agents, ‘critters’, that survive by consuming positive 
resources and avoiding negative resources. Every surface’s value is determined from 
its reflectance – its colour. Consumed resources slowly regenerate.  

The critter population is maintained by the critter reproduction. Critters can repro-
duce both sexually and asexually. In the event that all critters perish, a new population 
is created, where 80% are random critters and the rest are mutated clones of critters 
that showed general promising survival skills earlier in the run. Every critter starts out 
with a certain amount of energy, and dies if it runs out of energy. Critters slowly lose  
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energy over time, or due to moving, turning, resource consumption and reproducing. 
A critter dies if it steps over the edge of the world, or into a hole.  

Critter behaviour (such as mating, eating, and moving) is determined by the output 
of a modified 3D feed-forward neural network. Network topology is determined by 
the critter’s genome, though its behaviour is an emergent property of the interaction 
between the nodes within this topology. The input layer contains receptors (which are 
input units modified to enable evolution of vision) and a health monitor unit, which 
receives the percentage of the critter’s remaining health. The hidden layer contains 
standard hidden units. The output layer contains standard output units, which deter-
mine the critter’s behaviour. Every unit in the network has an [x,y] coordinate relative 
to the critter’s centre, which defines its location in its layer. Using the layer and the 
[x,y] coordinate, networks of different architectures can be crossed over during sexual 
reproduction, as each network possesses the same coordinate reference frame.  

The units of the network communicate through connections that can extend be-
tween units from higher layers to lower layers, and can also connect units to empty 
coordinates in the network (unconnected connections). Connections can be active or 
inactive. Only active connections participate in the feed-forward process.  

2.1   Mutation Operators 

In this work, we focus on an investigation of evolvability using several types of struc-
tural mutations. A full description of the non-structural mutations is in [12]. 

For a mutation type to be useable, it must have the ability to completely alter a 
neural network’s structure by adding and deleting elements. In order that we are able 
to test the effects of suggested principles thought to increase evolvability, every muta-
tion type used in our experiments incorporated some of these principles. The three 
principles tested are: incremental changes to network topology, where every change 
done to the network structure is very small, adaptive evolution, where evolution can 
modify some aspects of itself, and structural duplication, where existing substructures 
of the network are copied and can be reused. 

Deletion and addition of units (receptors, hidden) are performed using Delete Unit  
(0.5% per unit) and Add Unit mutations (2%). Deletion and addition of connection 
weights are performed using Delete Connection (0.1% per connection) and Add Con-
nection mutations (1%). When a unit is added, it is randomly placed in the appropriate 
layer with a bias towards the centre and forms connections with units in the adjacent 
layers. All new connections are initialised with random values. When a unit is re-
moved, all its outgoing connections are removed. If, as a result of a unit being deleted, 
a connection now has no end destination, it remains in the network. These connec-
tions are termed ‘unconnected connections’, and as such are not used in feed-forward 
processing, only becoming functional again if the old unit is replaced. 

Receptors in the input layer can change locations through Drift mutation (0.3% per 
receptor). Switch mutations (0.3% per element) can cause a connection or a receptor 
to become active or inactive. An inactive element is not used in the feed-forward 
process, and is deleted from the genome when a number of generations have not acti-
vated it again.  

The above probabilities were empirically determined to be suitable during the 
course of 15 experiments (roughly 750 runs). 
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Fig. 1. Illustrating addition of a hidden unit using the five types of mutations. [A] The original 
neural network with 1 receptor, 3 hidden units, and 2 output units. [B] Using mutation type (i), 
new unit (H5,6) is fully connected through 3 random connections. [C] Using mutation type (ii), 
new unit (H5,6) connects to (R1,1) and (O2,2). [D] Using mutation type (iii), new unit (H5,6) is 
a clone of (H1,1). [E] Using mutation type (iv) new unit (H12,8) only connects to (O2,2) as the 
distance parameter is very high. [F] Using mutation type (v) new unit (H12,8) connects to the 
closest receptor (R1,1) and closest output unit (O2,2). 

 

The following types of structural mutations were used in the experiments (see fig. 
1). The probabilities of these mutations occurring are identical for all types. The 
tested principle appears in parenthesis.  

Type 1 - fully connected (non-gradual changes): New units connect to all units in 
adjacent layers. Using this mechanism, every mutation makes a large change to the 
networks. 
Type 2 - single connection (gradual changes): New units connect to a single, ran-
domly chosen, unit in every adjacent layer. The Delete Unit mechanism is disabled – 
units are automatically removed when they have no outgoing or no incoming connec-
tions. Using this mechanism, every mutation makes a small change to the network. 
Type 3 – reuse of structures (structural duplication): Added units are cloned from 
a random unit in the same layer. The new unit possesses a copy of every incoming 
and outgoing connection of the original.  
Type 4 – distance dependent (adaptive evolution, gradual changes): Added units 
connect to all units in adjacent layers within a given distance. The distance parameter 
is an evolvable gene of a critter. By evolving a low distance parameter, the change to 
the network can be very small or very large. 
Type 5 – shortest connection (adaptive evolution, gradual changes): Added units 
connect to the closest unit in every adjacent layer. The Delete Unit mechanism is 
disabled – units are automatically removed when they have no outgoing or no incom-
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ing connections. Using this mechanism, every mutation makes a small change to the 
network. Additionally, evolution can now utilise the 3D coordinate system to create 
modules, which adds an adaptive element (albeit weaker than type 2). 

2.2   Measuring Evolvability in Mosaic World 

Mosaic World is more than just a population of individual critters – it is a dynamic 
ecosystem in which critters survive if their genomes enable them to interact with each 
other and their current environment effectively enough to gather resources [12].  

Previously suggested measurements of evolvability [1, 13] do not take into account 
conditions specific to the ecologically relevant conditions of Mosaic World, and as a 
result they could not be used. These methods require accurately measuring fitness, 
which is not feasible for three reasons: First, no one statistic encapsulates all the re-
quired behaviours a critter must know to be termed fit. Second, the fitness of all crit-
ters is linked, as critters compete against each other on resources; a fit critter, effec-
tively, decreases the fitness of other critters. Third, although reproduction does not 
directly contribute to a critter’s fitness, controlling reproduction is crucial to the spe-
cies’ collective fitness: The population, as a whole, must replenish itself at a rate that 
is sustainable by the available resources of the world. Thus, a critter must share some 
of this collective fitness.  

Therefore, the evolvability measurement we use here is based on the evolvability 
used in the Avida ALife environment [11]. This measurement was expanded by fac-
toring environment difficulty. We believe that evolvability can either be expressed by 
demonstrating that a population gradually improves over time, or alternatively, by 
showing a population adapting to an environment that gradually becomes more chal-
lenging. By quantifying these aspects, we define the total evolvability indicator in 
Mosaic World, Etotal, using equation (1) – its range of possible values is 0 to 1, and the 
evolvability function through time, using equation (2). Both measures incorporate four 
different elements: survivability, population success, environment difficulty and time 
variance.  

Survivability: The critter’s survival ability is best expressed by its age. A critter that 
can survive for long obviously managed to learn important skills required to survive 
in the world. Furthermore, by surviving longer, a critter may get more opportunities to 
reproduce and as a result spread fit genetic material to its offspring. 
Population success: A population’s ‘fitness’ is best expressed by its size at a given 
time. A population that managed to maintain itself through time, collectively learned 
how to balance resource consumption and reproduction through its constituent crit-
ters. Also, a larger population has more individuals that pass on traits to offspring, and 
is more likely to survive a ‘catastrophe’ purely because of its greater size.  
World difficulty: In many experiments the environment is altered over time to make 
it more challenging for a critter to survive. A population that manages to survive un-
der conditions in which the selection pressure continuously grows, shows an indica-
tion of adaptability, and thus, evolvability. This aspect of the equation is controllable 
by the researcher and must be directly tied in, from a numerical point of view, to the 
difficulty of the world in order to measure evolvability, i.e. if survival in the world at 
time t is twice as hard as the initial conditions, the difficulty factor at time t is 2. 
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Time: Only by looking at the relative changes of survivability, population success 
and world difficulty over time, we can precisely obtain the total evolvability measure. 

In conclusion, these four elements measure the capacity of Mosaic World’s popula-
tion to evolve. A population that maintains large numbers, where each agent survives 
for long, in an increasingly difficult environment, consistently through time – can be 
said to be a population with a great capacity to evolve. Therefore, this function meas-
ures the capacity of a population to generate fit offspring through time.  
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Where: Etotal is a population’s evolvability indicator, E(t) is the evolvability at time t, 
D(t) is the difficulty factor at time t, Dmax is the maximal difficulty of D(t), Pt is the size 
of the population at time t, At,p is the age of a member of population p at time t,  Amax 
is the critter maximum life span, Pmax is the maximal population the environment can 
support, tmax is the total length of time of the experiment, n is the number of data val-
ues. 

Example: With a population size P of 400 at time 10000, all critter ages A are 1500, 
the difficulty factor D at time 10000 is 100, using maximum difficulty Dmax of 350, 
maximum population size Pmax of 10000, and maximum age Amax of 15000, evolvabil-
ity at time 10000 is E(10000)=100/350*(400*1500/15000)/10000=0.00114. 

By extracting the height and the slope of a linear trendline of the evolvability func-
tion through time (using equations (3) and (4)), we gain two extra indicators: (i) Resil-
ience (slope): Defines the resilience of the population to change. Lower values indi-
cate populations more tolerant to change. (ii) Stamina (height): Defines the popula-
tion’s ability to thrive when conditions are easy. 

3   Experiments 

The main objective of the experiments was to measure the evolvability function 
through time, E(t), and the total evolvability, Etotal. A secondary objective was to ob-
tain additional statistics examining effects other than evolvability of the structural 
mutations used: Variability of evolved forms (average structure), quality of critter 
solutions and the percentage of successful runs (a run failed when no population of 
critters evolved without the need for a restart).  
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To this end, two sets of experiments were performed. Each of the experiments re-
quired multiple populations that were evolved using the five structural mutations. 
Therefore, at least eight successfully evolved populations were collected for each of 
the mutation types (using the same randomly generated world). Each run started with 
identical population characteristics (all critters possessing fully connected networks: 3 
receptors, 3 hidden units and 8 output units, 33 connections), and was stopped after 
550,000 time steps. During each run, the regeneration rate of consumed surfaces was 
slowly reduced to increase challenge and force critter populations to adapt. Initially, 
consumed surfaces regenerated every 13 time steps 3% of their maximal value. Every 
3,500 time steps regeneration slowed down by one unit, until the regeneration rate of 
99 was reached. To analyse the effects of the mutation operators only, crossover was 
disabled during all runs and experiments. 

Experiment 1 - Measuring Evolvability through Adaptation: This experiment 
attempted to test the maximum difficulty that a population can adapt to. Using the 
collected data and equations (1) and (2), E(t) was charted and Etotal was calculated. 
Since the regeneration rate has a direct effect on the difficulty of the world, the rate 
was used as the difficulty factor in equation (1). Therefore, five copies of the five 
longest-lived critters of every evolved population were placed in an identical test 
world. The starting regeneration rate was set to 99, and every 1,000 time steps the it 
slowed down by one unit, indefinitely. A run was finished when all critters died. 

Experiment 2 - Measuring the Quality of Evolved Solutions. This experiment 
attempted to measure the quality of evolved solutions, the critters. The criterion used 
was critter survivability, which was measured by averaging the critter survival ages 
across runs. To do this accurately, the effect of the critters on each other was negated 
by prohibiting reproduction, and by placing a very small number of critters in every 
world. Furthermore, the difficulty of the world was made static by fixing the regen-
eration rate (to 99). Therefore, five copies of the five longest lived critters of every 
run were placed in an identical test world. Critters were expected to survive as long as 
they could. All runs were stopped after 10,000 time steps, and were repeated 3 times. 
Critters that survived until the end of the run were assumed to have died then.  

4   Results 

In table 1, we see Etotal for each type (as a percentage of the maximum Etotal of type 4), 
and the resilience and stamina for each type (using equations (3) and (4) and divided 
by type 4’s resilience for comparison purposes). In fig. 2, we see the evolvability 
function (weighted average) through time with Etotal appearing in the legends for every 
type. Table 2 shows the minimum, maximum and average of the maximum regenera-
tion rate a population could adapt to and of critter average survival age, as well as the 
percentage of successful runs and the average critter structure per type.  

When comparing the Etotal of all types, it is clear that adaptive evolution and grad-
ual changes to networks increase Etotal, whereas non-gradual changes, and structural 
duplication  decrease  it.  Types  4 and 5, both utilising adaptive evolution and gradual 
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Table 1. The evolvability elements incorporated, the obtained Etotal (as a percentage of Etotal of 
type 4) and the extracted resilience and stamina values using a linear trendline of E(t) for every 
type (divided by type 4’s resilience for comparison purposes) 

 
 

Mutation type Element Incorporated Etotal (%) Resilience Stamina  
4 Adaptive evolution, Gradual changes 100.00% -1 5.68 
5 Adaptive evolution, Gradual changes 98.12% -1.13 6.39 
2 Gradual changes 78.50% -0.98 5.53 
1 Non-gradual changes 71.47% -0.94 5.29 
3 Structural duplication 41.58% -0.41 2.34 
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Fig. 2. The evolvability function (weighted average) for the five types of structural mutations 
and their relative evolvability indicator (of Etotal for mutation type 4) 

Table 2. Several statistics (average, min, max) describing the maximum regeneration rates the 
tested populations adapted to and the critter survivability, in addition to the average critter 
structure, and percentage of successful runs; broken down according to mutation types 

Mutation 
 type 

Maximum adapted 
regeneration rate: 
Ave. (Min.-Max) 

Survival age: 
Ave. (Min.-Max.) 

Ave. critter structure: 
Receptors,  

Hidden (Connections) 

Suc-
cess-
ful 

runs 
(%) 

Random 
Critter 

 57.36 (56.08-59.48) 3, 3 (33)  

1  191.14  (119–222) 3182.37 (1277.23-4600.12) 4.03, 3.13 (29.47) 64% 

2  197.12  (159–237) 3733.34 (2781.13-4801.6) 8.32, 10.74 (108.70) 73% 

3  163.87  (109–277) 2388.49 (893.44-5339.6) 4.86, 4.51 (41.45) 50% 

4 224.36  (171–272) 3905.31 (1625.16-5021.96) 4.98, 6.26 (55.48) 69% 

5 202.62  (167–305) 3651.06 (2613.92-5321.28) 10.39, 12.21 (144.25) 62% 
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 changes, had the highest Etotal with type 4 the higher of the two. The difference in their 
evolvability functions were, however, significantly different: Type 5 had – on average 
–  a higher stamina, but it was less resilient than type 4, and its populations quickly 
weakened as difficulty increases. Type 4 was more resilient, as evident in its average 
adaptation rate. Overall, the data suggests that the Type 4 structural mutation is slightly 
more evolvable [note that Type 4's average survival age was also the best of all runs; 
Type 5's was lower, but still very good]. It could be said, however, that Type 5, having 
a higher stamina, and lasting the longest in our adaptation experiment, is the most 
evolvable type. However, we believe the total area under the curve is the best indica-
tion of evolvability, since this measure takes into account both stamina and resilience. 

Type 2, causing only small increments to the network, had a higher Etotal than the 
Type 1's. It also had the best average survival age, and best rates of success. Despite 
its populations’ decent performance, once the environment becomes too challenging, 
however, it its evolvability decreases significantly, causing its populations to perish.  

Type 1, causing large changes to the network, had mediocre statistics and a low Eto-

tal. Generally, it seemed unable to utilise the structural mutations: on average, only one 
receptor, and no hidden units, were added at all. We believe this is another gauge of 
its low evolvability. 

Type 3, utilising structural duplication, had the lowest Etotal as well as the lowest 
scores on all other tests. It would be easy to dismiss this method of evolution as com-
pletely non evolvable, except for the fact that, despite having the low results of the 
vast majority of type 3's runs, some of its individual runs scored the highest average 
survival age and the near highest adaptation rates. The weakness of this approach is 
that cloning a fully connected hidden unit usually results in very large changes to the 
network (in some instances, 10+ connections being added at once), so it is possible 
this negative evolvability promoter far outweighs the positive evolvability gained by 
the structural duplication aspect. We can only deduce that this method has potential, 
but its weakness far outweighs its strength. 

Looking at the evolved forms, it is obvious that all types utilised the structural mu-
tations to increase their network’s complexity, with some more than others. Some 
types in particular (types 2, 5) resulted in networks significantly larger than the start-
ing networks. However, it does not seem as if the larger networks were inherently 
better or worse than the smaller ones. Interestingly, it seems as if these larger net-
works tended to provide the most consistent critters in terms of average survival age.  

A possible criticism would suggest that highly evolvable populations would con-
tinue evolving forever, with E(t) values always above zero and Etotal tending to infin-
ity. However, in our system this is impossible. At the slowest rates of regeneration 
tested in our experiments, there are not enough resources left to support individuals, 
regardless of their genomes. Inevitably, evolvability must drop to zero at some point, 
for there will be no critters left in the population to evolve. Such eventual resource 
limitation leading to extinction is inevitable in all real and modeled systems (time will 
always be limited, if nothing else), so an infinite Etotal may be impossible to achieve. 

5   Conclusions 

The aim of this study was to investigate the evolvability of neural networks within an 
artificial life simulation. Specifically, we tested the efficacy of five different types of 
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structural mutations, which incorporate different general principles thought to be 
important for network evolvability. Two experiments were performed, and the result-
ing Etotal and evolvability function over time were calculated and compared.The ex-
periments conducted indicate that certain principles increase evolvability when used 
to evolve neural network artificial agents. The two most significant promoters of 
evolvability are adaptive evolution and gradual changes to the networks. Structural 
duplication, despite exhibiting on average very low evolvability, showed some potential 
by evolving some of the best individual runs. Non-gradual changes to the networks 
seemed to be detrimental to evolvability (or at least, did not seem to increase it). 

To summarise: the method chosen to in evolving neural networks for artificial life 
simulations plays a significant factor in all elements of the evolved runs. Researchers 
attempting to evolve neural networks are encouraged to use these principles.  
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Harvey [8] introduced a form of Genetic Algorithm (GA)[10] which is extended to
permit genomes of varying length with the aim of enabling open-ended evolution - the
Species Adaptation Genetic Algorithm (SAGA). Related work on using variable length
genomes primarily relies upon recombination to adjust the size of offspring, such as
Pittsburgh-style Learning Classifier Systems [20] and Genetic Programming [16].
Using a version of the abstract NK fitness landscape model [13], Harvey showed, by
including a bias, that gradual growth through small increases in genome length via
mutation is sustainable whereas large increases in genome length per growth event is
not sustainable. This is explained as being due to the fact that a degree of correlation
between the smaller fitness landscape and the larger one must be maintained; a fit
solution in the former space must achieve a suitable level of fitness in the latter to
survive into succeeding generations. Kauffman and Levin [13] discussed this general
concept with respect to fixed-size fitness landscapes and varying mutation step sizes
therein. They showed how for long jump adaptations, i.e., mutation steps of a size which
go beyond the correlation length of a given fitness landscape, the time taken to find fitter
variants doubles per generation. Harvey’s [8] growth operator is a form of mutation
which adds g random genes to an original genome of length G. Hence he draws a direct
analogy between the size of g and the length of a jump in a traditional landscape; the
larger g, the less correlated the two landscapes will be regardless of the underlying
degree of correlation of each. SAGA has since been used effectively in numerous
evolutionary robotics experiments [e.g., 9].
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Abstract. The Species Adaptation Genetic Algorithm (SAGA) was introduced to 
facilitate the open-ended evolution of artificial systems. The approach enables 
genotypes to increase in length through appropriate mutation operators and has 
been successfully exploited in the production of artificial neural networks in 
particular. Most recently, this has been undertaken within coevolutionary or multi-
agent scenarios. This paper uses an abstract model of coevolution to examine the 
behaviour of SAGA on fitness landscapes which are coupled to those of other 
evolving entities to varying degrees. Results indicate that the basic dynamics of 
SAGA remain unchanged but that the rate of genome growth is affected by the 
degree of coevolutionary interdependence between the entities.  

1   Introduction 
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Prior to Harvey’s work, Lindgren [17] had presented the use of "duplication" and "split"
mutations within a version of the Iterated Prisoner’s Dilemma (IPD) game [1]. These
operators doubled by copying or halved the length of a player’s strategy respectively
and Lindgren [17] showed sustained growth consistently emerged. Here, as pointed out
by Lindgren, a doubling event has no effect on the strategy/phenotype of an individual
and so such mutations are effectively neutral. It is later, through standard gene
mutations, that more complex strategies can develop. This process of gene duplication
followed by divergence has been highlighted as a factor in the evolution of complexity
within natural systems [e.g., 18]. It can also be noted that the IPD is coevolutionary in
nature - the fitness of individuals is dependent upon the environment in which they exist.

Bull et al. [6][5] used the coevolutionary version of the NK model, the NKCS
model [14], to examine symbiogenesis [e.g., 15], the process which causes an increase
in complexity by the bringing together of genomes from separate species. The model
allows systematic adjustment of the degree of interdependence between coevolving
species; fitness landscapes are coupled and hence the adaptive moves of one species
changes the shape of the fitness landscapes of the others. Bull et al. show how, for
significant degrees of interdependence, it is more effective for species to become
genetically linked, here to double their genome lengths, than stay separated. That is, by
becoming genetically merged, a species no longer suffers the changes in their fitness
landscape caused by their partner. Symbiogenesis has been a fundamental evolutionary
process in nature [e.g., 18] and has been exploited within artificial systems [e.g., 22].

Hence the results of Lindgren [17] and Bull et al. [6][5] indicate that large
increases in genome length are beneficial under certain circumstances within a
coevolutionary scenario. Harvey’s [8] findings of short growth only being sustainable
were made on stationary fitness landscapes. More recently, SAGA has been
successfully used to develop the neural controllers for mobile robots which exist within
a multi-agent team [e.g., 19], i.e., for systems which are coevolutionary in nature. A
SAGA-like approach has also been used to develop networks within ensembles of
controllers for mobile robots, in a version of Holland’s [11] Learning Classifier System
architecture [12], again, a coevolutionary approach. In this paper, a version of the NKCS
model is used to re-examine the behaviour of SAGA within a coevolutionary context.
In particular, the effects of varying the degree of interdependence between species on
the rate of growth are examined, along with other aspects of the basic approach.

The paper is arranged as follows: the next section introduces the NKCS model.
Section 3 describes the implementation of SAGA used. Section 4 shows how the degree
of interdependence effects the rate of growth. Section 5 examines the effects of
increasing the size of the increments in length. Section 6 shows how the frequency of
growth events can be self-adapted. Finally, all results are discussed.

Kauffman and Johnsen [14] introduced the NKCS model to allow the systematic study
of various aspects of ecological evolution. In the model an individual is represented by
a haploid genome of N (binary) genes, each of which depends upon K other genes in its
genome. Thus increasing K, with respect to N, increases the epistatic linkage. This

2   The NKCS Model of Coevolution 

increases the ruggedness of the fitness landscapes by increasing the number of fitness
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peaks, which in turn increases the steepness of their sides and decreases their typical
heights. Each gene is also said to depend upon C traits in the S other species with which
it interacts. The adaptive moves by one organism may deform the fitness landscape(s)
of its partner(s). Altering C, with respect to N, changes how dramatically adaptive
moves by each species deforms the landscape(s) of its partner(s). It is shown that as C
increases, mean performance drops and the time taken to reach an equilibrium point
increases, along with an associated decrease in the equilibrium fitness level.

The model assumes all intergenome (C) and intragenome (K) interactions are so
complex that it is only appropriate to assign random values to their effects on fitness.
Therefore for each of the possible K+CxS interactions, a table of 2(K+1+CxS) fitnesses is
created, with all entries in the range 0.0 to 1.0, such that there is one fitness value for
each combination of traits (Figure 1). The fitness contribution of each gene is found
from its individual table. These fitnesses are then summed and normalised by N to give
the selective fitness of the total genome (the reader is referred to [14] for full details of
the model).

Kauffman and Johnsen used populations of one individual (said to represent a
converged species) and mutation to evolve them asynchronously (e.g., see also [7]). In
this paper a steady state genetic algorithm is applied to a population-based version of
the model. As well as the aforementioned work on symbiogenesis, GAs have previously
been used with the NKCS model to examine multicellularity [e.g., 2] and eusociality
[e.g., 4], as well as aspects of coevolutionary optimization [e.g., 5].

A standard steady state GA is used here. Selection for reproduction uses the traditional
fitness proportional scheme, picking one parent from the population of size P. Offspring

  1      0     0                    1     1     1
000       0.32
001       0.41
010       0.52
011       0.29
100       0.75
101       0.47
110       0.36
111       0.58

N=3 K=1 C=1 S=1

nkc(s)   fitness(i)

    (ii)

 A                                  B

K
C

3   A Coevolutionary SAGA 

 

are created by applying a standard gene mutation operator at rate pm = 1/N0, where N0
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Fig. 1. Showing an example NKCS function. (i) Shows each gene depends on one gene locally 
(K) and one gene (C) in one other genome (S). Therefore there are eight possible allele 
configurations, each of which is assigned a random fitness, as shown in (ii). Total fitness is the 
normalised sum of these values. 
 



is the initial length of all genomes in the population. At a rate pg offspring have g
random genes added to the right-hand end of their genome. Similarly, at a rate pc
offspring have g random genes cut from the right-hand end of their genome if the
resulting genome will remain greater than or equal to N0. Offspring replace an
individual from within the population selected inversely proportional to fitness.

The NKCS model used contains two species: the evolving species as described and
another said to represent all other aspects of the species’ environment (E). To avoid the
usual equilibria experienced within the model [14], E is represented by a single
individual of length N0 which randomly alters mE genes at rate pE per generation of the
steady state GA. The fitness of all evolving individuals is recalculated upon a change in
the environment. In this way, the behaviour of the SAGA in an environment of perpetual
novelty can be examined.

As in [8], genomes are assumed to be in a ring and the K genes are those which
surround the given gene (symmetrically), as opposed to being randomly chosen
throughout the genome. The C genes within the environment are chosen randomly for
each gene. Fitness tables are created for new genes as they are added under the SAGA
up to a maximum allowed size of 500. In this way the addition or removal of genes
results in disruption to the "end" genes of the genome only.

To create a selective pressure for growth, fitness values are normalized by the
average length of the genomes within the population (NP) rather than Ni as described
above. Harvey used (Ni / (Ni +NP)) but experimentation here has found the simpler
metric sufficient to create a selective bias whilst also tending to maintain fitnesses in the
range [0,1] as in the original models.

Unless otherwise stated, all runs reported are the average of 10 runs on 10 NKCS
landscapes (i.e., 100 runs) with P=100, N0 = 16, pm = 1/N0, pg = pc = 0.01, pE = 0.01,
mE = 1, g = 1.

In the following sections this model is used to examine the effects of varying the
degree of interdependence between the species under evolution via SAGA and the rest
of its environment for various parameter settings.

Figure 2 shows the behaviour of the SAGA population for various values of K and C.
As can be seen, for a given value of underlying epistasis, increasing the degree of
interdependence increases the rate of genome growth maintained within the population.
This is true for K=0, i.e., the case where all genes in a genome are independent and
hence the fitness landscape contains a single unimodal peak, as well as for increased
amounts of landscape ruggedness: 0<K<4 are known to represent correlated rugged
landscapes with their being completely uncorrelated thereafter [21].

Hence, as in the aforementioned work of Lindgren [17] and Bull et al. [6][5], the
coevolutionary scenario can be conducive to greater genome growth. Kauffman and
Johnsen [14] highlighted how the higher the degree of interdependence C, the lower the
typical mean fitness before an equilibrium is reached, explained as being due to the
degree of landscape movement caused by changes in the environment.

4   Low Growth: g = 1 

This is seen in Figure 2, using an evolving population rather than agenetic hill-climber,
in that the difference between mean fitnesses is typically greater for higher C compared
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Fig. 2. Fitness and growth for various K and C
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to the differences in best fitnesses. As noted above, for a genome of increased size to
propagate within a population it must obtain a fitness which is comparable to those of
shorter length. In the higher C case, the mean fitness of the population is lower and this
reduces the selection pressure on the added random genes to make a significant
contribution to fitness and hence allows for more growth. Similarly, results (not shown)
from increasing the frequency of change in the environment, e.g., pE = 0.1, find mean
fitnesses are further decreased, enabling a higher rate of growth.

Figure 3 shows the behaviour of the same SAGA as in Figure 2 but with two, four or six
genes added (or removed) per growth (or cutting) event. As can be seen, in all cases the
extent of growth is greater but the fitnesses achieved are, over the longer term, lower
than those in Figure 2. This was true for all K tried (not shown).This finding corresponds
to the general behaviour observed by Harvey [8] using a different form of SAGA, as
discussed above, in that large jumps in the space of possible genome lengths are
disruptive to the evolutionary process since the two spaces are unlikely to be correlated
to any significant degree; the effect appears to be an underlying feature of such open-
ended artificial evolutionary systems. Here the fitnesses rise rapidly and then fall to a
lower value than those previously obtained for lower g as the population becomes over-
run with maladapted but longer genomes. That is, the bias in the normalization process
used here encourages growth but at the expense of fitness in the longer term.

As in Harvey’s work [ibid.], the initial genomes were of length sixteen (N0=16).
Figure 4 shows the effects of various g for a larger initial genome N0=64. As can be
seen, g=4 is not disruptive to the evolutionary process and fitnesses are maintained as
growth continues. Results for larger amounts of growth, e.g., g=6, find that, again,
fitnesses begin to suffer over the longer term. Therefore the extent of genome growth
which can be sustained is proportional to the length of the genome; the larger the
original genome, the larger g can be before the two landscapes are sufficiently
uncorrelated. Results suggest that roughly g = N0/16 is appropriate here.

The effects of altering the frequency at which growth/cut events occur have also
been investigated. With g=1 but pg = pc = 0.1, as opposed to 0.01 above, the same
general behaviour is seen as in Figure 3 (not shown). That is, sustainable growth is not
only dependent upon the size of the jump but also the frequency at which it occurs;
many small increases are as disruptive as less frequent large increases.

Hurst and Bull [12] have introduced the use of self-adaptation within the SAGA. In
particular, they allow the frequency of growth/pruning events, with a fixed size of g=1,
to be self-adapted by each individual within the population. Here each solution
effectively carries its own pg and pc and these probabilities are tested on the production
of offspring. The probabilities have mutation applied to them beforehand, i.e., along
with the functional genes, where they are adjusted using a Gaussian distribution N(0,1).

5   Higher Growth: g > 1 

6   Self- daptive Growth 

Figure 5 shows the results of seeding a single parameter to control both the growth and
cutting probabilities uniform randomly in the range [0, 0.02], i.e., such that the mean is
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Fig. 3. Fitness and growth for K=2 and various C with larger g
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Fig. 4. Fitness and growth for K=2 and various C with larger N0 and various g
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as used above and pg = pc as before. It can be seen that there is no significant difference
in performance but that an increase in the rate of growth is experienced. The growth
appears to be driven by slight (sustainable) increases in the frequency parameters, this
being more rapid the higher C. This was found to be the case for all K tried (not shown).
Therefore the system appears able to exploit the findings of the previous section where
it was shown that the size or amount of sustainable growth is directly proportional to the
original genome length. That is, increased growth is experienced due to the dynamic
adjustment of the frequency as the average genome length increases. Results with
higher initial seeds, e.g., [0,1], find, as predicted by results above, that the typical
frequency of change is too great to enable sustainable growth (not shown).

The Species Adaptation Genetic Algorithm was introduced to enable open-ended

7   Conclusions 

evolution within artificial systems. Recently, this idea has been applied to
coevolutionary systems. In this paper it has been shown that the dynamics of the
coupled fitness landscapes of coevolutionary systems can enable more sustainable
growth within a SAGA the higher the degree of coupling. The amount of sustainable
growth is directly proportional to the length of the original genome. Further, the use of

Fig. 5. Behaviour for K=2 and various C with self-adaptive growth 
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a self-adaptive growth mechanism confirms this general behaviour for such systems
and enables more rapid growth. Here the rate of growth increases with increasing
genome length; growth begets more growth.
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Abstract. The idea that the biota can regulate the abiotic components
of their environment to levels suitable for life has attracted criticism from
neo-Darwinian theorists but is still a viable hypothesis. Here we present
a model, similar to Daisyworld [1] but more general, which allows for a
more extensive study of the compatibility of biotic regulation with evolu-
tionary theory. Results obtained highlight the importance of constraints
on the evolutionary process for the emergence of regulation, and set the
scene for more comprehensive future study.

1 Introduction

The Gaia hypothesis, initially proposed by Lovelock and Margulis in 1973 [2]
and developed further by subsequent debate in the literature, postulates the
regulation of the abiotic environment by the biota so that the biosphere is main-
tained in conditions suitable for life. Although the initial idea of biotic feedback
concerned the chemical composition of the atmosphere, the concept has been
extended to other features of the Earth system, such as the carbon and nitro-
gen cycles or the N:P ratio in the oceans [3]. A significant amount of empirical
evidence has been gathered on various facets of the Earth system, but the scale
of the system under study and the sample size (of one!) has meant that no
conclusive evidence has been found to either prove or disprove the hypothesis.
Debate of the Gaia theory has therefore been largely theoretical, concerning the
plausibility of such planet-wide regulatory mechanisms and the compatibility of
regulation with Darwinian evolution.

The neo-Darwinian critique has shifted focus over the years. Early criticisms
of the Gaia theory claiming teleology were rebuffed by the Daisyworld model [1],
a numerical thought experiment which demonstrated how the temperature of a
simulated planet might be regulated in the face of increasing solar radiation by
a process of ecological competition between black and white daisy species. Since
then the Daisyworld model has become the focus of debate; lacking a more
approachable target in the real Earth system, protagonists in the theoretical
debate have been forced to fight many of their battles over a model that was
originally intended as a simple proof of concept.

While it should always be remembered that a Daisyworld is not a real world,
a number of key conceptual clarifications have been made by its use. However,
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the simplicity of the original Daisyworld model means that it cannot answer
questions about the compatibility of biotic regulation and evolution. To ad-
dress these questions a number of extensions to the model have been presented
[4,5,6,7,8,9,10], but it seems likely that the Daisyworld model has now answered
as many questions as it is able to.

Biotic regulation of abiotic variables is a general and widely applicable con-
cept (see also the extensive literature concerning the related concepts of niche
construction [11] and the ‘extended phenotype’ [12]), that extends far beyond
daisies and temperature regulation, but it is not yet fully understood. Nowadays
not many scientists would dispute that life affects the physical environment
(itself a radical claim when Lovelock and Margulis first stirred up the Gaia de-
bate), and vice versa, but the nature of the feedback between the two is unclear
(witness the ongoing Gaian debate in the climate change literature [13]). It is
difficult to study such processes in the real world, because of the aforementioned
problems of scale and sample size, but simulation modelling can offer a useful
tool. While models cannot prove anything about the real world, they can focus
debate, generate hypotheses and allow the testing of assumptions as ‘opaque
thought experiments’ [14].

This paper presents the first step in a longer-term project to model and ex-
plore how biotic regulation of abiotic environmental variables may evolve. The
bulk of the paper will be concerned with developing a simplified version of Daisy-
world that captures all known results. We further simplify the ‘cut-down Daisy-
world’ model presented by Harvey [15] and extend it to a 2-dimensional cellular
automata model amenable to the inclusion of Darwinian evolution. Existing re-
sults from earlier Daisyworld models are reiterated before presentation of some
new results concerning the necessity of constraints on evolution if regulation is
to emerge.

2 The Model

2.1 Overview

The original Daisyworld model [1] incorporates two species of daisy, identical
except that one is black (with low albedo) and the other is white (with high
albedo). Daisy albedo alters the local temperature of each daisy patch, with
daisies assumed to live in single-species clumps large enough to maintain their
own local temperature. This in turn alters the growth rate of the daisies, which
varies as a function of temperature. Since the albedo of bare earth lies between
the albedos of black and white daisies, population dynamics allow global temper-
ature to move away from that expected of a dead planet. Competition between
black and white daisies led to global temperature regulation around the optimal
temperature for daisy growth; deviations away from this point were counteracted
by negative feedback engendered by the selective advantage gained by one of the
daisy species away from this point. Black daisies out-compete white daisies at
low temperatures because of their ability to increase local temperature, and vice
versa at high temperatures. Regulation was observed for a significant range of
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solar luminosity, outside which the planet was too cold or too hot to support
daisies of any colour.

The Daisyworld model used reasonably accurate approximations of the real-
world phenomena on which it was based and thus incorporated quite compli-
cated mathematical formulations of (for example) the interaction between solar
luminosity and the level of heat radiation emitted by the planet. Harvey [15] de-
veloped a simplified model, his ‘cut-down Daisyworld’, that used much simpler
approximations but conserved the essential regulatory behaviour of the system.
Following Harvey and simplifying even further, we present the very basic model
described below.

Our model is a cellular automata model in which patches are arranged in
a 2-dimensional toroidal lattice (another CA Daisyworld model was presented
by von Bloh et al [6], but in a different form and with different aims). Each
patch may be barren (bare earth) or may contain a single species of daisy. Bar-
ren patches can be colonised by daisies from neighbouring patches, while living
patches may die. Each patch has a local temperature that changes in relation
to solar luminosity (applied at an equal level to all patches) and to its albedo
(determined by the presence of daisies). The global temperature of the planet is
taken as the mean of all the local patch temperatures. This scheme is covered
in more detail below.

2.2 Daisies

A daisy species is represented by an albedo and a growth function. Albedo is
drawn from the range [0.25, 0.75] (representing a continuum from black to white),
while the growth function is a piecewise linear function of local temperature that
has the qualitative form shown below in figure 1. This hat-shaped function can
be represented by the location of its centre point Hmid. In all the experiments
reported here the hat function reached zero at Hmid ± 15.

Daisies do not grow as such, since they are assumed to either fully occupy
a patch or not to be present, but the growth rate of a daisy species determines
its likelihood of colonising a neighbouring bare patch. High growth rates lead to
increased colonisation.

Fig. 1. An example growth function. The growth rate of all daisy species varies from
0 to 1 as a piecewise linear function of temperature.
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2.3 Seeding

An empty patch may be seeded with a new daisy species with low probabil-
ity (0.03 in the simulations described below). When seeding occurs an entirely
new daisy type is randomly generated from the set of permissible values for
albedo and growth function parameters. Seeding allows new genetic stock to
gain a foothold in the world and takes the place of mutation in the evolutionary
process.

2.4 Colonisation

Empty patches may be colonised by daisy species living in neighbouring patches.
Each neighbour species has a chance to colonise that is proportionate to its
growth rate. This is implemented by assigning a probability P (Ci) to the event
that the empty patch is colonised by the ith neighbouring patch (alive or dead),
such that P (Ci) = Gi

N (where Gi is the growth rate of the ith neighbouring
patch and N is the total number of neighbours) and noting that the growth rate
of a dead patch is zero. Thus daisies with a higher growth rate have a higher
likelihood of colonisation. Also, a daisy species occupying multiple neighbouring
patches has a higher likelihood of colonisation due to having more ‘tickets in the
lottery’.

2.5 Death

If a daisy species living in a patch has a growth rate of zero, it is assumed not
to be able to survive and the patch becomes empty. Also, daisies living in a
patch will die (and the patch become empty) with a probability of 0.1 at each
timestep. This may be seen as a simple instantiation of death by natural causes
and serves to promote selection and competition.

2.6 Calculation of Patch Temperature

Local patch temperature depends on the current temperature of the Sun (tra-
ditionally taken in Daisyworld models as a monotonically increasing value), the
albedo of the patch (determined by daisy growth), and heat loss to space. The
rate of change of local patch temperature is therefore given by equation 1 below,
where TP is the patch temperature, TS is the temperature of the Sun, and α is
the patch albedo.

dTP

dt
= (1 − α)(TS − TP ) − TP (1)

Patch temperatures are integrated numerically using Euler’s forward method.
The global temperature of the planet is taken as the mean of all the patch
temperatures.
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2.7 Cellular Automata Update

The results presented below were gathered from a 10x10 toroidal CA where each
patch has 4 neighbours at top, bottom, left and right. The CA is synchronously
updated at each timestep by testing for colonisation, seeding and death in that
order. TS is typically increased from 100 to 500 in increments of 2, and the
CA is updated for 1000 timesteps for each increment in TS to allow the daisy
population to stabilise for the new level of external forcing.

3 Repetition of Existing Daisyworld Results

First of all we compared the results generated from our model with known results
generated from existing Daisyworld model. In all of the following experiments
the albedo of bare earth was set to 0.5 and the world was initialised with all
patches bare.

The primary Daisyworld phenomenon, that of temperature regulation by
competition between black and white daisies [1], was considered first of all. We set
the albedo of black daisies to 0.25 and the albedo of white daisies to 0.75. Results
are shown in figure 2, which displays global temperature regulation occurring by
competition between the daisy species as it does in the original work.

The next significant result to be repeated is that allowing albedo to mutate
does not affect regulation, and may in some cases actually increase its range
[4,5,6,7]. For this scenario we allowed albedo to take any value in the range
[0.25, 0.75], corresponding to the full range from black to white. Temperature
was regulated as before, although in this case it is by a steady shift in the albedo
of the dominant daisy species to maintain the global temperature close to the
optimal level, rather than competition between black and white daisies. The
overall effect is the same at a global level; temperature regulation in this case
and in the previous case is achieved by keeping the mean global albedo close to
the level which keeps temperature optimal. This in turn is a result of selection
for the daisy species with the highest growth rates.

Having shown that temperature regulation is not affected by mutation of
albedo, the next result is to show that unconstrained mutation of the growth
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Fig. 2. Daisy population, global albedo and global temperature for a world with both
black (albedo = 0.25) and white (albedo = 0.75) daisies
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Fig. 3. Daisy population, global albedo and global temperature for a world where daisy
albedo is allowed to mutate freely between the levels for black and white daisies, i.e.,
within the range [0.25, 0.75]
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Fig. 4. Daisy population, global albedo and global temperature for a world where daisy
albedo is allowed to mutate freely between the levels for black and white daisies, i.e.,
within the range [0.25, 0.75] and where the centre of the growth function is allowed to
mutate freely

function causes the regulation to break down [9]. Here we do this by allowing
Hmid to vary freely in the range [70, 130]. No regulation is observed, although the
daisy population flourishes. The mutation in growth function simply tracks the
solar forcing; the daisies adapt themselves to the environment rather than adapt
the environment to themselves. The tracking is not precise, as the mutating
albedo allows brief periods of quasi-regulation when the population becomes
fixated on a particular growth function and uses the albedo to maintain the
global temperature this value of Hmid requires. In this scenario albedo can be
seen as a free variable, since a suitable growth function can be found to give
optimal growth for any albedo level.

Lenton and Lovelock [10] showed that when there is some constraint on the
mutation of the growth function, regulation will again emerge. They set up a
Daisyworld model where the centre of the hat function was mutated towards
the current ambient temperature, but where the maximum growth rate (i.e.,
the maximum height of the growth function) fell away to zero with distance
from some optimal value, in a way supposed to be analogous with the decline in
maximum achievable photosynthesis rate varies with temperature in plants. We
implemented this by letting the maximum growth rate decline linearly to zero
with distance from an optimal temperature of 100. We observed similar results
to Lenton and Lovelock [10], in that regulation was observed to occur, but with
a more gradual tailing in and tailing out than with the non-evolvable growth
function.
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Fig. 5. Daisy population, global albedo and global temperature for a world where daisy
albedo is allowed to mutate freely between the levels for black and white daisies, i.e.,
within the range [0.25, 0.75] and where the centre of the growth function is allowed to
mutate freely. Maximum achievable growth rate declines linearly with distance from
T = 100, reaching zero at T = 100 ± 30.
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Fig. 6. Regulation of global temperature for a world where there are two permissible
growth functions and where daisy albedo is allowed to mutate freely between the levels
for black and white daisies, i.e., within the range [0.25, 0.75]. Plots are shown for well-
separated growth functions (centres at T=65 and T=135) 6(a) and for growth functions
with overlapping ranges (centres at T=85 and T=115) where solar forcing increases
6(b) and decreases 6(c) over time.

For completeness, we have also run the model with heat transfer between
neighbouring patches [6], and found that the qualitative nature of the results is
unchanged for all of the above scenarios. The exception is where the heat transfer
is so efficient that there is no perceptible difference in temperature between
patches; in this case there is no possiblity of a particular daisy species gaining a
selective advantage over its competitors by altering its local temperature. When
this occurs the regulation of global temperature is lost.

4 Constraints on Evolution and Their Implications for
Environmental Regulation

It seems that the key criteria for regulation of global temperature to emerge are
need and ability. Unless there is some reason for the daisies to alter their local
environment, i.e., some selective advantage to be gained from doing so, then
regulation will not occur. If evolution is added to the model, then the only cases
in which daisies have a reason to alter their environment are those in which the
evolutionary process is constrained in some way so that the daisy population
cannot evolve to prefer the environment as it is. Selective advantage is gained
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by improving the fit between daisy and environment; this can be achieved by
changing the daisy or by changing the environment, and evolution will generally
opt for the easiest method available.

Constraints on evolution are an inevitable feature of any real-world biological
system, due to the existence of physical and chemical laws that no system may
violate. Chemical laws constrain metabolism, the rate of which typically depends
on a number of parameters as some bell-shaped curve. This idea is captured
simply in Daisyworld as a growth function that depends on temperature by a
Gaussian function, and in the current model by a piecewise linear hat function.
While evolution cannot alter the chemical reactions involved in metabolism, it
may tinker with the conditions under which those reactions operate to maximise
their rate and efficiency, or it may select between different sets of reactions,
that is, between different types of metabolism. However, once a metabolism has
been chosen during the course of evolution it may often be easier to regulate
the environment to suit this metabolism than to switch to a new metabolism
entirely.

Different metabolic types may be more successful at different ranges of an
environmental variable. In our simplified Daisyworld model, consider a situation
where there are two growth functions with centres at different temperatures.
The different growth functions may be well-separated, leading to independent
regulatory epochs (figure 6), or have overlapping ranges, leading to competitive
exclusion (figures 6(b) and 6(c)). When ranges overlap there will usually be one
dominant metabolic type around which the environment is regulated, with a
flip from one to the other at some critical level of solar forcing. The level at
which this occurs depends on the history of the system. Whichever metabolic
type becomes abundant first will stop the late-comer from getting a foot-hold
in the ecology by holding temperature close to its own optimal level, and thus
delay the onset of an ecology (and regulation) based around the other type. This
is demonstrated by figures 6(b) and 6(c) which show competition between two
growth functions with overlapping ranges in the face of increasing and decreasing
solar forcing respectively (i.e., time flows to the right in 6(b) and to the left in
6(c), although forcing is plotted increasing left-to-right in both).

Another way in which evolution may be constrained and create an opportu-
nity for regulation to evolve is if evolution operates at different rates on different
phenotypic traits. Consider the case where the daisy growth function is free to
mutate so that it can operate at any temperature and where daisy albedo may
also mutate freely to any level between those for black and for white daisies. If
both types of mutation occur at the same rate, then the growth function sim-
ply tracks the increasing solar forcing and regulation is lost (figure 4). However,
if the mutation rate for the growth function is very slow compared to muta-
tion rate of albedo the differential creates an opportunity for regulation. It is
easier for a daisy species to evolve a new albedo than a new growth function.
This can be observed in figure 7, in which the world is started with a viable
daisy population that is then allowed to mutate. At each daisy reproduction
(each colonisation of an empty patch), the daisy species may mutate its growth
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Fig. 7. Daisy population, global albedo and global temperature for a world where
daisy albedo is allowed to mutate freely between the levels for black and white daisies
(i.e., within the range [0.25, 0.75) with a probability of 0.2 at each reproduction and
where daisy growth function can mutate freely with a probability of 0.002 at each
reproduction.

function with probability 0.002 and its albedo with probability 0.2 (so albedo
mutates two orders of magnitude faster than the growth function). As can be
seen from figure 7, this results in regulatory epochs where the daisy population
regulates the global temperature around the optimum for some growth function.
Eventually the albedo can mutate no further and mutants with a more suitable
growth function can out-compete the existing population to become established
as the new dominant metabolic type around which regulation occurs.

5 Conclusion

We have presented a model that is derived from Daisyworld, but is simplified
and extended to allow for a more comprehensive study of the compatability of
biotic environmental regulation with evolutionary theory. The model has been
described here using the language of Daisyworld (daisies using albedo to regulate
temperature in the face of solar forcing), but the mathematical formulation of
the model is actually very general, allowing its possible use to study the con-
cept of biotic regulation as a general phenomenon. Our model shows that what
is needed for regulation to emerge are constraints on the evolutionary process
and the possibility of organisms creating some local buffer against the global
environment, criteria that we feel are plausible in a wide variety of biological
systems. In future work we hope to move away from the daisy metaphor and
look at multi-dimensional regulation in a more general sense.
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Abstract. This paper proposes a computational model for solving opti-
misation problems that mimics the principle of evolutionary transitions
in individual complexity. More specifically it incorporates mechanisms
for the emergence of increasingly complex individuals from the inter-
action of more simple ones. The biological principles for transition are
outlined and mapped onto an evolutionary computation context. The
class of binary constraint satisfaction problems is used to illustrate the
transition mechanism.

1 Introduction

From biological literature one can learn that life is organised in a hierarchical
fashion and that transitions in complexity have occurred linking the different
levels of this hierarchy. Typical examples in this context are the transitions from
genes to simple cells, from single cells to multi-cellular organisms or from single
organisms to social systems [1,2]. It has been argued that these transitions in
the complexity of the evolving individuals share two common themes: (1) the
emergence of cooperation among individuals at a lower level in the hierarchy
into the functioning of a new higher level unit and (2) the regulation of conflict
among these lower level units.

In this article, the metaphor defined by transitions in biological complexity
is used to construct an artificial evolutionary system which can be used in the
context of optimisation and learning. The central problem we investigate is how
a system can be designed that captures the two themes of cooperation and
mediation proposed by Michod [2] into a suitable algorithm. Hence, this article
will discuss a mapping between the abstract scheme that captures the common
structure of evolutionary transitions and an artificial evolutionary model that
can serve as an alternative for the simple genetic algorithm (GA).

We focus here on system that provides transitions in the context of the solu-
tion complexity for the class of binary constraint satisfaction problems
(BINCSP). This example from optimisation was chosen for four reasons: (1)
we were interested in a problem where solutions can be modelled by the aggre-
gation of lower level (partial) solutions, (2) cooperative interactions between the
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partial solutions can be defined in a natural way, (3) when the interactions ben-
efit the partners, the new unit of selection that emerges at the higher-level can
still be interpreted using semantics defined by the problem under observation,
and (4) previous studies enable us to create problems with a controlled level of
difficulty [3]. Consequently from the first three reasons, the emergent unit still
has some meaningful functionality in the context of the problem.

The difference with the GA approach to evolution is that solutions are vari-
able length representations which increase in complexity, individuals use only
replication and mutation and are placed in an interactive framework which sup-
ports collaborative behaviour. Consequently, the proposed model is related to
messy Genetic Algorithms (mGA) [4] and the Compositional Evolution model
[5,6]. For details on the technical differences, we refer to [7]. Conceptually, the
difference is in the metaphor used to construct the model. Here, as mentioned
earlier, the transition perspective focuses on the one defined in [2].

In the next section, the class of optimisation problems for which the transi-
tion model will be defined is explained. Given this problem context, a mapping is
examined between the transition cycle and the proposed evolutionary optimisa-
tion system. Afterwards an illustrative experiment is performed to demonstrate
the increase of complexity and its effect on the fitness.

2 Optimisation Context for Transition Study

Constraint Satisfaction Problems (CSP) [8] form a NP-complete problem class
where, on the one hand, one has a set of variables X associated with possible
domain values D and, on the other hand, a set of constraints C defined on
this set of variables, which prohibits combinations of assignments to occur. The
problem consists in finding an assignment to the whole set of variables from the
associated domain values so that all constraints are satisfied. If this proves to be
impossible then the corresponding problem is said to be unsolvable.

A variant of this problem is BINCSP, where each constraint is defined on
at most two variables. This forms no restriction on the general form of CSP as
every CSP can be rewritten into a BINCSP and vice versa [9].

Let us take as an illustration the following BINCSP: consider a set of six
variables: X = {x1, x2, x3, x4, x5, x6} all taking values in D = {1, 2, 3}. We
consider the following set of constraints:

C = {(x1 
= x2), (x2 
= x3), (x3 
= x1),
(x4 
= x5), (x5 
= x6), (x6 
= x4),
(x1 = x4), (x2 = x5), (x3 = x6)}

(1)

This setup of constraints consists of nine binary constraints. Each binary con-
straint defines a relation between two variables of X . Also, for each pair of
variables, only one binary constraint may be defined.

The problem involves finding the correct assignment for the variables so that
all these constraints are satisfied. We denote the assignment of one variable
xi ∈ X with value d ∈ D by 〈d, i〉 where i is the index of the variable we consider.



344 A. Defaweux, T. Lenaerts, and J. van Hemert

Using this notation, we represent the simultaneous assignment of variables x1,
x2 and x4 with respective values v1, v2 and v4 as

(〈v1, 1〉, 〈v2, 2〉, 〈v4, 4〉) (2)

A solution for a BINCSP problem consists in an assignment of variables from
X to values of D. We use randomly generated problem instances of BINCSP. The
RandomCSP package [10] is used to generate the suite of test problem instances
[11]. To scale the difficulty of the problem instances, these CSP are generated
according to two parameters. For more details see [11,7]. An important property
that was observed is that for certain problem instances there is more structure
in the search space than others. Whenever structure is present the algorithm
described later can exploit it.

3 Evolutionary Transition in BINCSP Solutions

As mentioned in the introduction, all transitions in nature share two common
themes: cooperation and conflict mediation among the lower-level individuals.
These themes are captured in the transition cycle visualised in Figure 1. One
can observe four phases in this cycle and these phases need to be captured by
the proposed algorithm.

A system that uses the metaphor visualised in the figure, should be able to
apply it iteratively. In other words, repeated phases of cooperation and mediation
between ever increasing levels will produce more and more complex organisms
which try to survive in their selective environment. In the following sections
a mapping will be defined of an optimisation process onto the cycle. For the
rest of the discussion, it is assumed that an evolutionary system is present that
simulates the process of differential survival and reproduction of the partial and
complete solutions for a particular BINCSP problem.

Fig. 1. Transition Cycle [2]; Every transition starts at a certain level of complexity.
At this level cooperation needs to emerge since it exchanges fitness at the lower level
with fitness at the higher level. Yet conflict remains. Defection among the lower-level
units can lead to the destruction of the cooperative group. These conflicts need to
be mediated and this will lead to a new level of individuality with its own heritable
variations that evolve and diversify.
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3.1 Representation of Lower-Level Units

At the lowest (initial) level, the system consists of a population P containing
N individuals where each individual i is represented by a set of variables Si ⊆
X for all i ∈ {1, 2, ..., N}. Here it is assumed that, at the lowest level, the size
of this set S is 2. Hence, the initial population contains only partial solutions
which can solve one of the binary constraints in the set C (see Equation (1)).
An individual which contains a value for all variables in X is referred to as a
complete or fully qualifying solution. Hence, complexity in the current system
refers to the number of variables present in an individual i.e. individuals of
maximum complexity are complete solutions.

A partial solution s that only defines values for x1 and x2 is for example:

(〈1, 1〉, 〈3, 2〉). (3)

(3) is called the genotype of the solution. The selective system will operate on
the quality of the genotype in solving the constraints listed in the set C.

3.2 Cooperation Between Lower-Level Units

Interactions between the partial individuals is done between pairs of individuals
that are randomly selected from the population P . The experiments discussed
here will not consider larger groups. This assumption is removed in some ongoing
experiments, yet they will not be reported here.

Interaction between partial solutions is defined in the following manner.
Let solution s defined by (3) interact with a symbiotic partner sp defined by
(〈3, 1〉, 〈2, 3〉). This interacting partner is referred to as the symbiotic partner of
(3) and we denote the relation by:

(〈1, 1〉, 〈3, 2〉) ↔ (〈3, 1〉, 〈2, 3〉). (4)

We simulate interaction between 2 partial solutions by sharing the information
contained in their genotypes. The outcome of the information sharing between
a solution and its symbiotic partner is called the phenotype of the solution. For
example, the phenotype of (4) is simply obtained by combining all information
present in both genotypes:

〈
(

1
3

)
, 1〉, 〈3, 2〉, 〈2, 3〉 (5)

Important to notice here is that the genetic information of both individuals is
not changed. The heritable capacity of both s and sp remains at the level of the
simple units.

The situations one can have when combining s and sp correspond to the
different general forms of symbiosis: parasitism (P) , mutualism (M) , commen-
salism (C) and amensalism (A). In the case of parasitism, as shown in Table 1,
the association is disadvantageous for one of the partners and beneficial to the
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other one. The outcome of the interaction between s and sp is parasitic if s solves
one of the constraints of C correctly (A(s) =high) and sp does not (A(sp) =low).
The information sharing will in that case benefit sp since it increases its adap-
tiveness and it decreases the adaptiveness of s. The relation between s and sp is
mutualistic if both partners gain something from the relation (A(s, sp) =high).
In the table, both individuals have low adaptiveness but when the two variables
x2 and x3 are combined, i.e. (〈3, 2〉, 〈2, 3〉), their adaptiveness increases. Com-
mensalism occurs when the adaptiveness of one of the partners does not change
due to the information sharing. In the table, an example is shown where both
individuals have a value for variable x1 i.e. the values 1 and 3. Now if the as-
signment x1 = 1 resolves one of the constraints and it is assumed that the value
is selected by both partners then only sp benefits from the relation and things
do not change for s. A similar reasoning can be followed for amensalism. In that
case the association is disadvantageous for one of the partners. Yet then instead
of choosing the best value for x1, the worst one is selected.

3.3 Conflict Mediation

Although cooperative behaviour produces better results in the long term, short
term considerations will lead to defecting behaviour. An important choice made
by individuals in a transition model is whether they will share the information or
not. In order to have transitions in complexity, mechanisms should be put into
place which encourage the evolution of information sharing behaviour. In the
current model, it assumed that individuals want to collaborate. In other words
they are all cooperative. In further experiments this assumption is relaxed. This
simplification was made to examine whether cooperative partially defined units
can actually lead to fully qualifying solutions for BINCSP problems. In general,
principles from multilevel selection are incorporated to model the evolution of
cooperative interactions between pairs (or between members of more complex
groups) [12]. For now, we focus on another conflict issue.

Next to the choice of collaborating or not, other conflicts can occur. As
shown in (5) partners can have different values for the same variables. These

Table 1. Some examples of the different forms of symbiosis and their relation to the
BINCSP problem. A(s) and A(sp) evaluate the adaptiveness of both individuals in their
personal relation to the problem.A(s, sp) refers the effects of the information sharing
on the adaptiveness of both individuals.

s A(s) sp A(sp) symbiosis A(s, sp)
P (〈1, 1〉, 〈3, 2〉) high (〈3, 3〉, 〈2, 4〉) low (〈1, 1〉, 〈3, 2〉, 〈3, 3〉, 〈2, 4〉) (low,high)
M (〈1, 1〉, 〈3, 2〉) low (〈3, 1〉, 〈2, 3〉) low (〈1, 1〉, 〈3, 2〉, 〈3, 1〉, 〈2, 3〉) (high,high)

C (〈1, 1〉, 〈3, 2〉) high (〈3, 1〉, 〈2, 3〉) low 〈
(

1
3

)
, 1〉, 〈3, 2〉, 〈2, 3〉 (high,high)

A (〈1, 1〉, 〈3, 2〉) high (〈3, 1〉, 〈2, 3〉) low 〈
(

1
3

)
, 1〉, 〈3, 2〉, 〈2, 3〉 (low,low)
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problems with conflicting values are resolved by selecting randomly one of the
possible choices. Hence, the symbiotic behaviour can correspond to any of those
described in Table 1.

In our example, a conflict needs to be resolved for variable x1. We can choose
between the values 1 and 3. A possible conflict resolution in this case would be:

〈1, 1〉, 〈3, 2〉, 〈2, 3〉 (6)

(6) is called the induced phenotype of the partial solution (3). This phenotype is
used for evaluation and the result of the evaluation is assigned to the genotype s
i.e. (3). We denote the phenotype of a solution s interacting with sp by: φ(s, sp).

The phenotype assigned to the symbiotic partner sp is obtained in the same
way. Yet, the policy about conflicting values may yield another representation
than the one we obtained for the initial partial solution s. This asymmetry be-
tween the phenotype of a solution and the phenotype of its symbiotic partner
increases the exploration possibilities of the evolutionary process. Note that the
conflict mediation strategy adopted for this particular test case avoids the sys-
tem to build greater genotype than the maximum size expected for a genotype.
Hence, the problem related to ever growing genotypes which is a classical issue
in variable length representation does not occur here.

3.4 Intermezzo: Evaluation of Genotypes

Here two types of functions are considered. One function to determine the success
of the solution in terms of the complete constraint set (f(s)) and another function
to determine how good it scores relative to the constraints it covers (fcov(s)).

Assume that ck(p) is the outcome of evaluating phenotype p with constraints
k, we say that p covers ck if p contains assignments for all variables contained
in ck, furthermore, p satisfies ck if the assignment values in p do not violate the
constraints defined by ck.

ck(p) =
{

1 if p covers ck ∧ p satisfies ck

0 otherwise (7)

Given this, the classical evaluation of the solution described by (3) and denoted
by s working with a symbiotic partner sp is given by:

f(s) =
1
|C|

∑
k∈C

ck(φ(s, sp)) (8)

where C is the constraints set, |C| the size of the constraints set and φ(s, sp) the
induced phenotype of s when sharing information with its symbiotic partner.

It does however not give any indication of the quality of the partially defined
assignments relatively to the constraints it covers. To see whether an association
works fine or not, a restricted fitness measure is define that only considers the
constraints covered by the phenotype of the solution.
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Assume that cov(s, C) is the set of constraints covered by s, the covering
fitness measure is given by:

fcov(s) =
1

|cov(φ(s, sp), C)|
∑

k∈cov(φ(s,sp),C)

ck(φ(s, sp)) (9)

We use the first measure (8) to guide the evolutionary process (selection). The
second measure is used by the evolutionary observer to decide whether a tran-
sition should be performed. The idea of introducing a mechanistic observer to
decide when a transition occurs corresponds to the work in [13]. Important to
remember is that although the fitness is determined using the induced phenotype
the fitness value is assigned to the genotype. Hence the process of differential
survival and reproduction operates at the genotype level and not at the level of
the induced phenotype.

3.5 Higher-Level Individuality and Evolvability

As was assumed in the beginning of this section, solutions (genotypes) are se-
lected according to their fitness described by (8). When a solution is selected,
it will replicate into a new solution. There is a certain probability that this
replication process has errors and in this way mutants can emerge.

The symbiosis between s and sp also has some consequences for the repro-
ductive process. In certain circumstances beneficial symbiotic relations will be
replicated as a whole. When the symbiotic partner is replicated as well, the sym-
biotic link, that is, their interaction scheme will be inherited in the process. The
underlying idea is that (possibly) good working units can survive over more than
one generation. The idea of performing this replication in group is based on our
previous work in the context of multi-level selection [12]. For now it is assumed
that decision to replicate the group is decided randomly using a probability q
(here, q = 0.5). More elaborate methods based on the type of interaction can be
used. Note that there is still a probability (1 − q) of individual replication.

This replication of the both genotypes is a first step toward a new higher-level
entity of selection. Although simple lower-level entities can sometimes replicate
in group they still have the possibility of spreading their own genetic material
(probability (1 − q)). In the second step, both partners give up their individual
replication process in favour of a group replication process. At that point, the
transition has occurred since replication becomes now the responsibility of the
higher-level structure. To make this final step the function fcov(s), defined in
the previous section, is used (see Equation (9)). When the induced phenotype
happens to solve the sub-problem defined by the covering set of constraints, i.e.
when fcov has reached a certain threshold value (here we selected fcov(s) = 1),
a new more complex individual is created whose genotype corresponds to the
induced phenotype of the previous symbiotic relation.

Let us take the example solution previously discussed. The solution described
by (3) with the phenotype given in (6) has a classical fitness value of f(s) =
0.33. The measure of the fitness restricted to the covering constraints set was
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fcov(s) = 1. In this case, if the solution is selected, the system creates a higher
level unit combining the genetic information of both partners. This means that
the expression of the genotype of the new of unit is:

(〈1, 1〉, 〈3, 2〉, 〈2, 3〉) (10)

This defines the transition step: Solutions are incrementally grown according to
their success in solving the sub-problem they are defined for.

The information sharing strategy we adopted allows information to be ex-
changed when values are conflicting on certain allele (such as this was the case
in example (5) on variable 1). This mimics a cross-over operation as full grown
solution are interacting. When partial solutions interact, the exchange can only
happen on conflicting parts of the genotype, yet, preserving the non conflicting
parts of the genotypes. In this case, we can consider this as a preserving cross-
over operation that avoids recombining good part of the solutions. In this way,
the model uses the notion of compositional evolution as discussed in [5,6].

4 Identifying Transitions in Complexity

In this section, we will illustrate the transition process by analysing the outcome
of a simple simulation of this model for random generated BINCSP instances of
15 variables each taking values in a domain of size 15 which are made easy or
difficult by tuning parameters such as the density of the constraints network p1
or the average tightness within the constraints p̄2 [11]. We propose to discuss
the results for two different setups of these parameters which yield respectively
a relatively easy (p̄2 = 0.3 and p1 = 0.9) and relatively difficult (p̄2 = 0.5
and p1 = 0.5) BINCSP instance. For each setup, we solved 25 instances and
performed 10 runs for each instance. The 250 runs were then analysed by looking
at the fitness relatively to the genotype size and the evolution of the size and
fitness over time. Increased size of the genotype reflects successive transitions
from simple units starting from length 2 up to a complex units that solves
greater number of constraints.

In Figure 2, we plotted for each setup the fitness and genotype size dynamics
for an isolated run, the average on all the runs of the fitness with respect to the
size and the average on all the runs of the duration a genotype remains at a
certain level before performing a transition.

In the first row of Figure 2 (the genotype and induced phenotype size have
been rescaled to [0, 1.0] for illustration purposes), a close relationship between
the trend of the genotype size and the fitness trend can be observed. We can con-
clude from this that transitions are needed to allow the fitness to reach higher
levels. For difficult problem instances, once the genotype size and the result-
ing phenotype size are fixed, we can observe that the fitness value still slowly
improves over time. This slow improvement illustrates a phase of conflict medi-
ation where the partial solution and its symbiotic partner try to reduce the set
of variables which yield conflicts. For easy problem instances, Fitness is closely
related to the genotype size, yet, we can observe that a good working symbiotic
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Easy Problem Instance Difficult Problem Instance

Fig. 2. The left column gives the results for an easy test case instance while the right
column gives the same result for a difficult test case instance. On the first row, the
evolution of the fitness relatively to the scaled genotype and phenotype size for one
simulation run is plotted. On the second row, the average required time for the next
transition to occur and on the last row, the fitness that corresponds to each genotype
size

relation has been discovered by the process (which can be seen on the graph by
a relatively small genotype size for which the corresponding phenotype defines
a complete solution). This good working collaboration is sustained for a while
before the conflicts among the symbiotic partners are resolved and a transition
can occur.

In the second row, which refers to the time required for different genotype
sizes to evolve toward a new level of complexity, we see that the time increases
as the genotypes become more complex. In other words, the conflict mediation
becomes more difficult as the interacting units grow in complexity. The tran-

.
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sitions which occurred at fast speed in the beginning require more time as the
evolutionary process goes on and the conflicts to be resolved (the variables which
share different values in the solution and its symbiotic partner) increase. We ob-
serve that this phenomenon is independent from the hardness of the problem
instance as the increased number of generations required to master a new level
of complexity is observed in both cases. Note also that this increase in time to
move between complexity levels has also been observed in nature [1].

Finally, a look at the fitness relative to the genotype size (averaged over
all runs) confirms the first observation that the increasing complexity at the
genotype level results in an increase of the functionality of this genotype. In
other words, the system requires transitions to attain the level of complexity
specified by the problem instance.

5 Conclusions

In this paper, we addressed the issue of the emergence of complexity in evolu-
tionary optimisation algorithm. Inspiration was found in the theories concerning
evolutionary transitions observed in Biology. These theories propose a gener-
alised explanation for the mechanism by which interacting lower level units can
produce new higher level ones. The proposed Transition algorithm uses symbio-
sis as the basic ingredient for the system to work. To illustrate this model, we
applied it to BINCSP and showed within this context how the mechanism of
transition worked. The algorithm was also compared thoroughly to other evolu-
tionary approaches for solving BINCSP [7]. These experiments showed the great
promise for the discussed technique.
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Abstract. The Baldwin Effect indicates that individually learned behaviours 
acquired during an organism’s lifetime can influence the evolutionary path 
taken by a population, without any direct Lamarckian transfer of traits from 
phenotype to genotype.  Several computational studies modelling this effect 
have included complications that restrict its applicability.  Here we present a 
simplified model that is used to reveal the essential mechanisms and highlight 
several conceptual issues that have not been clearly defined in prior literature.  
In particular, we suggest that canalisation and genetic assimilation, often con-
flated in previous studies, are separate concepts and the former is actually not 
required for non-heritable phenotypic variation to guide genetic variation.  Ad-
ditionally, learning, often considered to be essential for the Baldwin Effect, can 
be replaced with a more general phenotypic plasticity model.  These simplifica-
tions potentially permit the Baldwin Effect to operate in much more general cir-
cumstances.   

1   Introduction 

Our knowledge of modern genetics suggests that an organism's lifetime adaptations 
cannot influence the course of evolution because learned characteristics do not change 
ones own genes.  In the late 19th century, Baldwin argued that although a direct effect 
of lifetime adaptation on genes is not possible, an indirect influence on the course of 
evolution is [1].  Subsequently his name has been associated with the impact that 
learning can have upon evolution.  The ‘Baldwin Effect’ is based on two levels of 
search occurring: from generation to generation we have a slow genetic variation; and 
within each generation the variation due to lifetime learning is faster.  The combina-
tion of the two search mechanisms allows the space to be explored more completely 
than it would be by genetic search alone; an in-depth search around the genetically 
specified position is performed by the lifetime plasticity, and the genetic starting 
points are selected for the lifetime phenotypes they enable.  This can change the selec-
tion of genotypes, providing selective gradients where none was previously available, 
and in particular, if the discovery of fit phenotypes during lifetime plasticity is corre-
lated well with the genetic closeness of those genotypes to fit configurations then 
selection will guide evolution toward fit genotypes that may not have been discovered 
otherwise [2]. 
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1.1   The Baldwin Effect 

Controversy has surrounded the Baldwin Effect since Baldwin first proposed it in 
1896.  The hypothesis appears very similar to Lamarck’s disproved beliefs that an 
acquired trait is directly inherited by offspring; as Turney put it, “Baldwinian and 
Lamarckian evolution are virtually indistinguishable in their effect” [3].  However, 
unlike Lamarckian evolution, the Baldwin Effect is compatible with genetics since it 
does not require the direct inheritance of acquired characteristics.  There is perhaps a 
little irony here in the debate over Baldwin’s ‘organic selection’ hypothesis since it 
was meant to replace Lamarck’s failed theory [4-5]. 

In 1987 Hinton and Nowlan published the first computational model [6] to demon-
strate the Baldwin Effect which provides excellent insight into how the effect works.  
They use a simple model where a population is given a ‘needle on a plateau’ problem 
with a single phenotype having increased fitness from an otherwise equally fit pla-
teau.  A string with 20 ‘genes’ of 0’s, 1’s, and ?’s (in initial frequencies 0.25, 0.25, 
0.5, respectively) is used to represent each individual’s genotype;  0’s and 1’s repre-
sent genetically specified traits, and ?’s represent phenotypically plastic traits.  A 
population of 1000 individuals are randomly initialised.  The population is evolved 
using one-point crossover between two parents selected proportional to their fitness.  
Within each lifetime, each organism completes 1000 lifetime learning trials, where 
loci with ?’s in the genotype are randomly assigned a new allele of 0 or 1.  The all 1’s 
phenotype is the fitter combination; the fitness of an organism is proportional to the 
number of lifetime trials left after the all 1’s phenotype is found.  Thus, a genotype 
with no 0’s may reach the peak in the fitness landscape, and the more 1’s it has the 
more likely its phenotypes are to hit that peak.  So when an individual finds this peak 
in a phenotypic trial, it obtains a greater fitness and begins to dominate the population 
quickly removing individuals containing 0’s.  Once there exists a number of individu-
als who can all reach the peak in their lifetime, the selection pressure shifts to differ-
entiate between these individuals.  An individual who is genetically closer to the peak 
will more reliably hit the peak during its lifetime.  In this way, exhibition of the good 
trait in the genotype is selected for.  In typical runs of the simulation after very few 
generations, the all 1’s phenotype is found by lifetime learning, and the average num-
ber of 1’s in the genotype increases rapidly.  In subsequent generations the average 
number of 1’s in the genotype increases slowly towards the fittest genotype. 

When a comparable population without lifetime learning is simulated, the all 1’s 
phenotype takes an unreasonable time to be found and there is thus no pressure to 
increase the number of 1’s in the genotype.  From this result we can see that the pres-
ence of lifetime learning can influence the selective pressure for genetic traits; a 
learned trait can be genetically assimilated without any direct genetic transfer from 
phenotype to genotype.  A second effect, canalisation, is also exhibited by such mod-
els of the Baldwin Effect.  Canalisation, or reduction in lifetime plasticity, is facili-
tated by means of reduction in numbers of ?’s – the allele representing that plasticity.  
The reduction of ?’s only begins to occur after all-1’s phenotypes have been discov-
ered and the 0’s have been removed from the population.  Selection favours those 
who find the all-1’s phenotype more quickly over those that find it more slowly, and 
in the Hinton and Nowlan model, the only way to achieve this is a reduction in ?’s 
and hence canalisation.  Indeed, it may be viewed that an individual’s genetically 
specified traits are preferred in this model because it requires less lifetime learning – 
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implying that canalisation is a necessary part of the Baldwin Effect.  This is not cor-
rect.  In general, a genotype may be selected for in the Baldwin Effect because it 
produces better phenotypes and, as we will show, this need not necessarily imply that 
it has less variation in phenotypes as it does in the Hinton and Nowlan model. 

Several research papers have been inspired by the work of Hinton and Nowlan 
(H&N), on a variety of topics.  H&N’s model is analysed in [7-9], which all focus on 
the canalisation effect in the experiment; that is pressures for the reduction in plastic-
ity following a learned behaviour becoming genetic.  A different kind of evolutionary 
simulation is used in [10] to demonstrate the Baldwin Effect; they use a simulated 
physical world in which the population size is variable, and has food costs associated 
with reproduction, movement and metabolism.  Fitter phenotypes benefit an organism 
in reduced costs for one of the actions.  Watson and Pollack adapt H&N’s model to 
demonstrate how symbiosis can produce organisms which would not have evolved 
without the support of a symbiont [11].  This work is extended to show that in a 
sparse ecosystem, when one of the symbionts can perform the task independently, the 
symbiont can offer no advantages and thus becomes a parasite [12].  Another study 
presents a cultural model with learned and inherited behaviours, using a physical 
world similar to [10], but with shared behaviours between phenotypes [13].  Results 
are similar to [11-12]; when behaviours are shared in abundance, assimilation advan-
tage (i.e. selection for independence) reduces.  Turney identifies confusion surround-
ing Baldwinian and Lamarckian evolution, and highlights that although the benefits of 
learning are demonstrated, often the costs of learning pass without acknowledgement.  
A series of experiments on drosophila demonstrate ‘genetic assimilation’ towards 
wings without cross-veins following a temperature shock [14].   

However, the Baldwin Effect does not appeal to all researchers: [15] and [16] both 
write that the effect is not of much interest or importance in evolution and that Bald-
win himself was not primarily interested in ‘organic selection’; instead, social hered-
ity or niche construction should be the subject of further study. 
    Some relevant summary points are made by Turney: 

 
1. Lifetime learning smoothes the fitness landscape since the phenotypic exploration 

is local to its inherited genotype. 
2. There are benefits to phenotypic rigidity: it is advantageous to evolve some rigid 

mechanism to replace learned mechanisms over time, since learning requires ex-
perimentation (for example, learning how to hunt could be dangerous). 

 
Though both these points may often be true in natural populations, and Hinton and 

Nowlan’s model includes both, they are quite separate issues.  Reviewing the litera-
ture on the Baldwin Effect and phenotypic plasticity in general, a question is raised 
regarding the difference between genetic assimilation [14] and canalisation [17].  
Only a subtle distinction exists and we find no previous model that attempts to show 
the Baldwin Effect without canalisation, i.e. reduction in plasticity, or discussion that 
identifies this distinction.  Thus, we propose to use the words as follows: canalisation 
is a reduction in phenotypic plasticity; genetic assimilation occurs when a behaviour 
that was once acquired in the phenotype becomes specified in the genotype.  The 
conceptual distinction is easily recognised by considering how the mean and variance 
of the distribution of phenotypes changes over evolutionary time: canalisation means 
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that the variance in phenotypes reduces, genetic assimilation means that the mean 
phenotype is moved but does not necessarily suggest that the width of that distribution 
might reduce.  Thus we suggest that genetic assimilation, the key aspect of the Bald-
win Effect, does not logically require canalisation, i.e. the phenotype to reduce its 
level of plasticity. 

Note that H&N’s model shows both a change in the mean and the variance of phe-
notypes, i.e. genetic assimilation and canalisation.  In the following section we pro-
vide a simplified adaptation of H&N’s model to show just genetic assimilation with-
out canalisation in order to separate these concepts and illustrate that the Baldwin 
Effect (being essentially genetic assimilation) does not require canalisation.  Since an 
organism with plasticity (in a particular activity) will still benefit from having that 
trait genetically well-adapted; it has more chance of an appropriate phenotype occur-
ring than if the genotype is poorly adapted.  We will see this demonstrated in the first 
experiment in section 3. 

2   Constant Plasticity Model 

The work of Hinton and Nowlan as described above provides a simple model which 
demonstrates the Baldwin Effect.  However, some features of the model are not re-
quired to show the Baldwin Effect, and here we present a simpler model.  This simpli-
fication aims to reduce the assumptions required and realise a model which could be 
applied to a more general set of cases, and also to assist understanding, specifically to 
separate the concepts of genetic assimilation and canalisation.  The main issues ad-
dressed by these simplifications concern a learning model that recognises successful 
phenotypes, the conflation of canalisation and genetic assimilation, and the mismatch 
of genetic and phenotypic variation spaces. 

H&N use a lifetime plasticity model that involves recognising when a good pheno-
type is discovered (which may be called learning).  If the mechanism of the Baldwin 
Effect derives simply from smoothing the fitness landscape, as Turney suggests, then 
a simpler more direct model of lifetime plasticity should suffice such as the average 
fitness of random phenotypic variants.  To remove the assumption of learning pheno-
types, we evaluate fitness as the mean fitness of the lifetime phenotypes, rather than 
the number of trials remaining after the phenotypic solution is first found.  This means 
that the organisms do not have to recognise their own success (as is implicit in H&N’s 
model).   

As established in section 1, H&N’s model contains both genetic assimilation and 
canalisation.  We propose that this canalisation is an unnecessary element to display 
the Baldwin Effect, and as such a significant change to the model is required.  In our 
constant plasticity model there is no designation of particular traits that are pheno-
typically plastic, i.e. we do not use ‘?’ alleles.  Instead lifetime plasticity varies any 
trait with equal probability, using non-heritable mutation-like variations applied to the 
genotypic trait specifications in each lifetime trial.  This models a constant plasticity 
level which separates the effects of lifetime plasticity from canalisation.   

It has been suggested that in order to enable genetic variation to follow lifetime 
variation it is desirable to have genetic variations and lifetime plasticity using the 
same or correlated variation operators [2].  Thus, we can simplify the model further 
by facilitating genotypic variation using the same method as the phenotypic variation 



 Genetic Assimilation and Canalisation in the Baldwin Effect 357 

in lifetime trials, i.e. by spontaneous point mutation, instead of using sexual recombi-
nation. 

These three key changes to H&N’s model produce one which is considerably sim-
plified: a population of binary strings is reproduced with fitness proportionate selec-
tion and mutational variation.  The fitness of each individual is the average fitness of 
the phenotypes it produces during its lifetime and the fitness of each phenotype is Fmax 
if it is all 1’s and 1 otherwise.  Each phenotype is a random mutation-like variation of 
the genetically specified traits (rather than a random filling-in of a variable number of 
?’)  This model is described in more detail below: 

1) Initialise population of P individuals,  

2) for each generation 

a) for all individuals, i: 

i)  for each lifetime trial, 1 to L: 

(1) generate phenotype by adding random variation 

(2) evaluate fitness 

ii) calculate mean fitness across all phenotypes for individual i 

b) select P parents with probability proportional to fitness 

c) generate offspring by mutating the parents genotype 

The number of mutations in each lifetime trial (and each genetic reproduction) is 
governed by an exponentially decaying distribution in which it is most likely for no 
mutations to occur, but some small probability of a large mutation count exists.  The 
probability of a given phenotypic trial (or evolutionary step) having k mutations is 
given by P(m=k) = exp[- k/N] · (1-exp[- /N]), where N is the number of traits, and  
is a rate parameter.  At each loci marked for mutation, a new random allele is pro-
duced with equal probability of 0 and 1.  This is used in order to allow the possibility 
of a large number of mutations, whilst maintaining the condition that the most likely 
phenotype will be identical to its genotype (this is not true of the usual Poisson distri-
bution of mutation counts which results from common mutational models). 

3   Simulation Experiments 

We simulate populations in a variety of configurations firstly to demonstrate that a 
population with a constant lifetime plasticity level can manifest the Baldwin Effect 
(and that populations without lifetime plasticity do not show the effect), and secondly 
to aid explanations which distinguish genetic assimilation from canalisation.    

The evolutionary algorithm used follows Hinton and Nowlan’s model, with the 
modifications as detailed in section 2.  The parameter values can be summarised as 
follows:  
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Population size, P:    210 
Lifetime trials, L:     210 
Number of traits, N:    20 
Fitness of best phenotype, Fmax:  1000 
Phenotypic mutation parameter, p:  5 
Genotypic mutation parameter, g:  9.1 
 
For the non-plastic experiment, all parameters are as above except that there are no 

phenotypic trials, i.e. the evaluated phenotype is identical to the genotype.  A parallel 
pair of experiments using Hinton and Nowlan’s model are also run; in the non-
learning H&N population the ?’s are not used and all variation is performed by sexual 
crossover in the genotype.  Figure 1 shows one typical run of the constant plasticity 
model, and one run of H&N’s model is depicted in figure 2.  Due to the stochastic 
nature of the effect, a single typical run is more informative than mean values over 
many runs.  

Figures 1(a) and 2(a) show data which reveal the mean composition of the popula-
tion.  By calculating the mean distance from the consensus phenotype across all phe-
notypic trials in each individual and taking the mean of these, we provide a measure 
of the mean number of phenotypic variations per individual, which is shown by the 
dotted line.  This is a more suitable measure of phenotypic variations than variance of 
the number of 1’s in the phenotypes of an individual, since the value is not dependent 
on the position in the phenotype space, whereas the variance of the number of 1’s is 
dependent on the mean number of 1’s of that particular phenotypic distribution.  The 
dot-dashed line shows the mean number of 1’s in the non-plastic population; 100 
generations are shown but the behaviour continues similarly for several hundred gen-
erations; all non-plastic runs take longer than all plastic runs, with a mean of greater 
than 1600 generations to find the fitter solution (although some fortunate runs do 
succeed without lifetime plasticity in much less than this).  Figures 1(b) and 2(b) 
show the progression of distributions of phenotypes across the population through the 
experiments with plasticity or learning.   

 

 
 

Fig. 1. Typical behaviour of the constant plasticity model 
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Fig. 2. Typical behaviour of Hinton and Nowlan’s model 

4   Discussion 

Here we have presented a model which shows that although already simple, H&N’s 
model has elements unnecessary to manifest the Baldwin Effect.  Specifically, the 
results for our model show that lifetime plasticity can accelerate evolutionary search 
without: 1) the need for subsequent reduction in lifetime plasticity, 2) a learning 
model that recognises success, or 3) sexual recombination. 

If we first consider the results in figure 1(a), it takes approximately 60 generations 
before the selective pressure favouring genotypes with more 1’s overcomes stochastic 
effects (genetic drift) and is able to affect genotype frequencies.  When this happens 
the population finds the fittest genotype very shortly afterwards.  The transition is 
really too rapid to see that genotypes with more than 50% 1’s but not all 1’s increase 
in frequency before the genotypes with all 1’s appear, but we can see that this pres-
sure is present because in the case without plasticity the mean number of 1’s in the 
genotype does not increase at all.  Part of the reason for the rapidity of this transition, 
as compared to the H&N model, is that since genetic crossover is not used, the popu-
lation does not have to wait for two fitter individuals to ‘find’ each other before the 
fitter genotype can proliferate.  The fittest genotype dominates the population which 
is indicated by the mean number of 1’s in the genotype being very close to 20.  The 
mean number of ones in the phenotype is lower since mutations still occur (in both the 
phenotype and the genotype) after genetic assimilation has taken place. 

Results for non-plastic populations in figures 1(a) and 2(a) (the dot-dashed lines), 
show that both the non-plastic cases have approximately constant values for mean 
number of 1’s in the genotype.  In 30 additional runs this continued for a mean of 
over 1600 generations for the CP model, and a mean of over 3000 generations for the 
H&N model. 
    The dotted line in figures 1(a) and 2(a) provides a measure of the variation occur-
ring in the phenotype from its genotype.  This mean value of variation is unsurpris-
ingly constant in the constant plasticity model, both before and after the fitter geno-
type has dominated the population.  However, this is not the case in H&N’s model; 
here the variation decreases through the course of the experiment.  Specifically, the 
decrease in this variation is proportional to the mean number of ?’s present in the 
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population’s genotypes; the ?’s represent plasticity (or learning ability) so the rela-
tionship should be expected.  More information is purveyed in figures 1(b) and 2(b) 
which depict the phenotypic distribution for these two experiments.  Figure 1(b) 
shows a change in the mean of this distribution from approximately 10 to approxi-
mately 17 around generations 60-65; this is the point of genetic assimilation.  (The 
mean values are also plotted on the dashed line in figure 1(a)).  However, the width 
(variance) of this distribution is constant both before and after genetic assimilation 
has occurred in our model.  The distribution progression shown in figure 2(b) has a 
different behaviour.  The mean number of this distribution is again initially at 10 bits; 
as the 0’s are purged and replaced with 1’s the mean moves upwards; the distribution 
width is constant as the number of ?’s is also approximately constant.  However, as 
the selection pressure begins to replace ?’s with 1’s, both the mean and variance of 
the phenotypic distribution are changed.  The mean is increased further as more 1’s 
exist; since they replace ?’s the learning ability is reduced which directly reduces the 
variance.  Thus, figure 2(b) shows first genetic assimilation – the shift in mean, fol-
lowed by canalisation – the narrowing of the ridge, or reduction in learning ability.  
Since the mean of both distributions moves towards 20 1’s, variation can only reduce 
the number of 1’s present, so the shape of the distribution becomes skewed; this is an 
unfortunate artefact of compressing 20-dimensional data to a single axis.  The vari-
ance is thus also plotted on the dotted line in figures 1(a) and 2(a), which shows these 
trends more clearly.  We have demonstrated the cases of genetic assimilation (a 
change in mean) and canalisation (a reduction in variance) together as per H&N’s 
model, as well as genetic assimilation independently in our simplified model.  It is 
easy to imagine a third situation in which canalisation occurs without genetic assimi-
lation; the variation of phenotypes would reduce about the mean, but the mean would 
be unaffected. 

As already mentioned, a single typical run for each model is shown; however one 
point to note is that the specific number of generations required for the fitter genotype 
to be found in the constant plasticity model varies from run to run more than the num-
ber of generations required before the ?’s begin to be purged in H&N’s model. This 
may be because incorrect alleles (0’s) in the H&N model occur with half the probabil-
ity that they do in the CP model.  This relates to another issue with the CP model.  
The mechanism governing phenotypic variation in the CP model allows variations to 
occur on any trait whereas phenotypic variation in the H&N model only allows varia-
tion to occur on specified plastic traits.  Since the plastic traits are exactly the traits 
that are not yet correct this gives the H&N model a distinct advantage with respect to 
the probability that mutations will occur in the ‘correct’ loci for an individual to gain 
fitness.  Arguably, this restricts the ability of genetic assimilation without canalisa-
tion, but it also causes us to question the validity of the assumptions used in the H&N 
model. 

5   Conclusion 

The Baldwin Effect is investigated and a key ambiguity in current literature between 
genetic assimilation and canalisation is identified.  A new model is presented which is 
simpler than Hinton and Nowlan’s landmark model, yet still manifests the Baldwin 
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Effect.  Specifically, this new model does not use canalisation, individuals do not 
have to recognise their own success (i.e. cognitive learning is not required, only some 
form of phenotypic plasticity), and it unifies the genetic and phenotypic variation 
mechanisms.  This shows that canalisation and learning, generally considered to be 
intrinsic features of the Baldwin Effect, are in fact not necessary to show that non-
heritable phenotypic variation can guide genetic variation.  Providing a simpler model 
assists us in revealing the essential mechanisms involved.  These simplifications also 
widen the scope in which the Baldwin Effect can be applied by reducing the assump-
tions necessary for the effect: it may still guide the course of evolution in situations 
where a mechanism for canalisation is unavailable, in organisms or systems which are 
adaptable but not intelligently so, and in asexually reproducing populations. 

Simulated experiments demonstrate the difference between the genetic assimilation 
and canalisation components which are often unnecessarily conflated, by considera-
tion of the mean and variance of the distribution of phenotypes produced in a popula-
tion.  The conditions can be summarised as follows: canalisation  occurs when there is 
a reduction in the variance of the phenotypes (but not necessarily a movement in the 
mean phenotype), whereas genetic assimilation produces a movement in the mean 
phenotype (but does not necessitate a reduction in the variance of phenotypes). 
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Abstract. Contrary to indications made by prior researchers, digital
logic circuits designed by artificial evolution to perform binary arith-
metic tasks can generalise on inputs which were not seen during evo-
lution. This phenomenon is demonstrated experimentally and specula-
tively explained in terms of the regular structure of binary arithmetic
tasks and the nonoptimality of random circuits. This explanation rests
on an assumption that evolution is relatively unbiased in its exploration
of circuit space. Further experimental data is provided to support the
proposed explanation.

1 Introduction

This paper deals specifically with the generalisation ability of artificially evolved
digital logic circuits, a subject which has so far received little attention. I report
an empirical phenomenon which gives rise to interesting theoretical conjectures,
some of rather wide relevance. The reader is assumed to be familiar with Boolean
algebra; for readers unfamiliar with the fields of artificial evolution or digital logic
circuits, brief descriptions are given.

Sections 2-4 of the paper provide general background, details of the tar-
get problems and training method. Experimental results on the generalisation
performance of evolved circuits on 7 different binary arithmetic problems are
presented in section 5. These results, with one notable exception, show unam-
biguously that the circuits generalise at a better-than-chance level. Section 6
proposes an explanation based on complexity-related ideas; some modest empir-
ical support for this explanation is described in section 7.

2 Background

2.1 Artificial Evolution

The use of techniques inspired by biological evolution for design and optimisation
tasks has become commonplace. These techniques, known collectively as artificial
evolution [10], are now so well-known that I will not describe them in detail.
The basic principle is that one can find a solution to a problem by starting with
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a randomly generated initial population of candidate solutions and applying
various genetic operators to them to produce new solutions. Candidate solutions
are evaluated according to a fitness function and, over time, worse solutions
are replaced by better ones. The process is repeated until either a satisfactory
solution is found or the experimenter terminates the search.

2.2 Digital Logic Evolution

A number of researchers e.g. [3,8,11] have applied artificial evolution to the de-
sign of Boolean logic circuits. These are circuits made out of binary logic gates
such as AND, OR or NOT gates. Such research is often regarded as belonging
to the field of evolvable hardware, but Boolean circuits can also be regarded as
pure mathematical entities (combinational circuits). The circuits described in
this paper are composed of 2-input gates connected acyclically.

2.3 Generalisation in Evolved Logic Circuits

Existing work on evolved digital logic circuits has tended to focus on circuit
optimisation [7], discovery of new design principles [9] or has used the domain
as a convenient test bed for new evolutionary methodologies e.g. [11,3,5]. Con-
sequently, exploration of the generalisation properties of evolved circuits has
been within the context of speeding up evolutionary search. Miller & Thom-
son [9] looked at generalisation performance when a small proportion (< 50%)
of rows were presented, and found that evolution did not generate functionally
perfect solutions. In concluding that evolved circuits did not generalise, how-
ever, they did not consider whether the circuits performed better than chance
guessing.

Imamura et al. [2] provide a theoretical analysis also focussing on 100% cor-
rect circuits. For an evolved circuit with O outputs, which is correct on T training
samples out of N possible inputs, they derive a probability of 2−O(N−T ) that the
circuit will generalise correctly on the entire possible input set. However, their
argument rests on the assumption that the output for untrained input data is
a uniformly distributed random variable, which I will show experimentally does
not hold for several binary arithmetic functions.

Clearly, no algorithm can generalise on all possible problems. For every truth
table which is similar to a circuit’s output, there is by definition another which
is dissimilar to an identical magnitude. Therefore, considered over all possible
truth tables consistent with the training vectors, any algorithm will produce
circuits whose guesses are on average precisely 50% correct (i.e. at chance level).

So the question is, given a set of training vectors (e.g. 75% of the rows of a
binary multiplication table), what sort of truth tables do evolved circuits tend to
generalise to? Are they evenly distributed across the available function space, or
do they tend to cluster in particular areas? I present empirical results showing
that for the problems considered, they disproportionately implement human-
recognisable binary arithmetic tables.
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Table 1. Truth tables used as target functions for digital logic circuit evolution, along
with the CGP geometry and maximum number of generations during evolution

Table Geometry Max
Gens

#In #Out Description

1-Bit Adder 1 x 30 20K 3 2 1-Bit plus 1-Bit Binary Adder with
Carry

2-Bit Multiplier 1 x 40 20K 4 4 2-Bit by 2-Bit Binary Multiplier

2-Bit Adder 1 x 40 20K 5 3 2-Bit plus 2-Bit Binary Adder with
Carry

2.5-Bit Multiplier 1 x 50 200K 5 5 3-Bit by 2-Bit Binary Multiplier

2.5-Bit Divider 1 x 50 500K 5 5 3-Bit by 2-Bit Binary Protected Di-
vider with Remainder (x/0 was de-
fined as 0 rem 0)

Even 6-Bit Parity 1 x 30 30K 6 1 Even 6-Bit Parity

3-Bit Multiplier 1 x 50 10M 6 6 3-Bit by 3-Bit Binary Multiplier

N.B. Most studies on the even n-parity problem explicitly disallow the use of XOR or
XNOR primitive gates to force evolution to build these gates out of other gates.

However, in the experiments reported here evolution was free to use any 2-input gate
(including XOR and XNOR) in evolving even 6-parity.

3 Target Problems

Circuits were evolved to perform basic binary arithmetic functions: the inputs to
a circuit are interpreted as two binary numbers, and the outputs are interpreted
as one or more binary numbers which are some arithmetic function of the input.
For example, a 2-bit multiplier is a circuit with 4 binary inputs (representing
two 2-bit binary numbers) and 4 binary outputs (representing one 4-bit binary
number). Binary adders incorporate a 1-bit carry input and provide a 1-bit carry
output as well. Circuits were also evolved to be even n-parity calculators. This
type of circuit has n binary inputs and 1 output; the output is true if the total
number of true inputs is even, and false otherwise.

A feed-forward binary logic circuit can be described by a truth table, which
exhaustively lists the desired circuit outputs for each possible combination of
inputs. Hence, a truth table has 2n rows where n is the number of circuit inputs.
The truth tables used were as shown in table 1.

4 Training Method

4.1 Training Vectors

For each truth table, a variety of training sets were generated by randomly
(uniformly) ablating a certain proportion of output bits, i.e. setting them to
“don’t care”. Two protocols were used: row ablation, in which entire rows of the
truth table output were ablated, and bit ablation, in which individual output
bits were ablated. The algorithm used produced an exact number of ablations
rather than merely ablating rows or bits with a particular probability.



366 S. McGregor

4.2 Circuit Evolution

Circuits were evolved under a 1 + 1 scheme with adaptive mutation rate (follow-
ing [1]) and no crossover. This type of algorithm, effectively a hill-climber with
neutral exploration, generates a single mutant of the current-best individual
each generation and replaces the current-best individual with the mutant if the
mutant is of equal or greater fitness (measured by training error). A Cartesian
Genetic Programming (CGP) encoding [8] was used - this is a variable-length
encoding for combinational circuits. A novel genetic operator, the plagiarism
operator [6], was used to reduce the number of fitness evaluations required to
solution. Specific details of the algorithm and encoding can be found in [6], al-
though the results reported here should be replicable under different evolutionary
schemes. During evolution, the circuits were evolved to minimise their error on
a particular training set; the circuits’ outputs for the “don’t care” entries in the
ablated truth table were ignored. All evolutionary runs were able to produce a
circuit which achieved 100% performance on the training set. It should be noted
that there was no explicit pressure for evolution to produce small circuit sizes.

4.3 Generalisation Testing

When a circuit was found which achieved zero training error, it was then tested
on the “don’t care” outputs for the training set. The target values for these
bits were taken from the actual values of these bits in the full (non-ablated)
truth table. Generalisation error was defined as the total number of incorrect
output bits divided by the number of ablated bits in the test set, i.e. the mean
output error per bit. In principle, evolution was free to produce circuits which
gave completely arbitrary results for these “don’t care” bits, in which case the
expected generalisation error would be 0.5.

5 Generalisation Performance

For each truth table, 100 training sets were generated for each of 10 different
ablation proportions1 and each of 2 different ablation protocols2 (row and bit
ablation). Since the training sets were randomly generated, some of them could
have been repeats. On every such training set, a zero training error circuit was
evolved as described above and its generalisation error evaluated.

The results are displayed in figure 1. Each graph shows the mean generali-
sation error over 100 trials for the various problems, as it varies with differing
proportions of ablation. The upper and lower limits for statistical significance
at the p=0.05 level are indicated (derived from the normal approximation to a

1 Except for the 1-bit adder, which has only 8 rows in its truth table and which was
tested on 8 different ablation proportions.

2 Except for the 3-bit multiplier, which was tested only on row ablation due to com-
putational expense, and the even 6-parity calculator, which only has 1 output bit
per row, making the two conditions identical.
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Fig. 1. Generalisation performance with increasing ablation for 7 binary arithmetic
problems
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binomial distribution). A line (‘Best Fixed Guess’) showing the least mean error
which would result from constant guessing either one or zero is also shown.

The results show that the 1-bit adder is different from the other problems.
This fact is discussed later in this document and proves to be highly instructive
as to the mechanism which underlies generalisation.

Secondly, it is clear that evolved circuits generalise at a better than chance
level on all the other problems. This holds even up to ablation levels of 80% or
greater, and is independent of the overall ratio of ones to zeros in the problem’s
truth table. For both addition and multiplication, generalisation performance of
functionally correct circuits improves with the size of the problem. For the “even
6-bit parity” problem, 99% of evolved circuits were functionally perfect parity
calculators when evolved on 50% of the truth table. According to Imamura et
al.’s argument [2] (see section 2.3), only 1

232 of evolved circuits should have been
functionally perfect.

6 Proposed Explanation

The proposed explanation rests on the notion of the gate complexity of a function,
which is the minimum number of 2-input logic gates (from the 16 possible 2-
input Boolean functions) required to implement that function in a circuit. This
measure is analogous to the notion of Kolmogorov complexity [4] for strings. I
define the effective size of a circuit to be the gate complexity of the function it
implements, i.e. the gate count of the smallest functionally equivalent circuit.

Three simplifying assumptions are sufficient to provide a plausible account
for the observed generalisation capacity of evolved digital logic circuits. These
assumptions are sketched out below and then discussed individually in detail.

1. Inverse relation of redundancy to frequency. The effective gate count of a
randomly chosen circuit with given input-output behaviour is more likely to
be small than large.

2. Regularity of arithmetic. Boolean arithmetic functions are more compressible
than their near variants.

3. Lack of evolutionary bias. The size-n evolved circuits are drawn approxi-
mately uniformly from the set of all possible size-n solutions.

6.1 Inverse Relation of Redundancy to Frequency

Most possible circuits are not optimally compact; that is to say, their effective
size is smaller than their actual size. Consider the set Sn of all possible circuits
of size n. It seems plausible that few of these circuits will be optimal, and that
there are more ways in which a circuit can be largely redundant than slightly
redundant. In other words, the number a of circuits in Sn with effective gate
count x should tend to decrease monotonically with increasing x until a reaches
zero. It also seems plausible that the same reasoning will apply to the set Sn,f of
possible circuits of size n which correctly implement the partial function f (i.e.
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the set of size-n circuits with 0% error on the training set represented by f).
That is, a circuit chosen (uniformly) randomly from this set will be more likely
to have an effective size of x than an effective size of y iff (x ≤ n ∧ x < y).

6.2 Regularity of Arithmetic

If the target functions were random, the generalisation results observed here
would not be possible, and Imamura et al.’s argument [2] of the impossibility
of generalisation for evolved circuits would hold. But intuitively, we would ex-
pect the truth tables of binary arithmetic functions to be highly regular, i.e.
compressible. For instance, the even 6-parity calculator has very low gate com-
plexity; a variant of this function in which one row’s output was flipped from
1 to 0 would require several more gates to implement. I present some empirical
evidence in section 7 on the actual compressibility of binary arithmetic functions
compared to their near variants.

6.3 Lack of Evolutionary Bias

The two previous assumptions are sufficient to explain how a random search of
circuits would be expected to produce better-than-chance generalisation perfor-
mance. In fact, even though it takes pseudo-random decisions, artificial evolution
is not perfectly unbiased, as the structure of the fitness space strongly affects
the path that evolution takes through it to a final solution. But since there is
currently no positive reason to suppose that a special evolutionary mechanism
underlies the generalisation capacity of artificial evolution, my default assump-
tion is that evolution is more or less doing the same job as random search.
Further experiments comparing the generalisation performance of circuits found
by random search and evolution could confirm or disconfirm this.

6.4 Putting the Argument Together

If these three assumptions are true, then the explanation works as follows: - the
near variants of a binary arithmetic function are by assumption 2 more complex
(in gate complexity terms) than the function itself. Other things being equal,
binary arithmetic functions are by assumption 1 more numerous amongst circuits
of a given size3. Consequently, by assumption 3, evolution will find them more
frequently than it finds their variants. The next section contains results which I
hope will make this explanation seem plausible.

7 Further Experiments

The actual gate complexity of a Boolean function is expensive to compute; in-
feasibly so for most circuits. In this section I use the minimum evolved size as a
proxy for the actual gate complexity; for the 1-bit adder, the problem is small
enough to make it likely that these figures reflect the true gate complexity.
3 Providing, of course, that size exceeds the gate complexity of the function.
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7.1 Difficult Rows and Favoured Errors

Experiments were run on the 1-bit adder, 2-bit adder, 2-bit multiplier and 2.5-bit
multiplier to determine what solutions evolution found when single rows of the
truth table were ablated (set to “don’t care”). Due to symmetry, some rows are
equivalent to other rows (e.g. the rows 1 + 0 + 0, 0 + 1 + 0 and 0 + 0 + 1 in the
1-bit adder); only one row was considered for each equivalence class. For every
such row of each of these 4 truth tables, 100 evolutionary runs were performed
with that row ablated and all other rows intact. The resulting circuits were tested
on the missing row and their output recorded. This produced a distribution of
completions for the missing row. For most rows, the most frequent completion
was the arithmetically correct completion, although this information was not
available to the algorithm during evolution.

A difficult row was defined as a row where the most frequent completion was
arithmetically incorrect (e.g. 0 + 0 + 1 = 3 for the 1-bit adder); a favoured error
was the most frequent completion for a difficult row. For each favoured error,
a new truth table was formed by replacing the ablated row with the incorrect
completion, and 300 evolutionary runs were performed on the new truth table
to estimate its minimum gate complexity.

Table 2. “Difficult Rows & Favoured Errors”: number of rows with arithmetically
incorrect most-frequent completions when ablated; mean smallest evolved circuit size
for these completions; smallest evolved circuit size for arithmetically correct function

Function Difficult
Rows

Total
Rows

Mean Min. Size
(Favoured Errors)

Min. Size (Cor-
rect Circuit)

One-Bit Adder 8 8 4 5
Two-Bit Adder 0 8 N / A 10
Two-Bit Multiplier 3 16 6.67 7
3-Bit × 2-Bit Multiplier 3 32 11.67 13

Results of these experiments are shown in table 2. The truth table for the
1-bit adder can be seen to be less regular (in terms of minimum gate complexity)
than many of its close variants produced by single bit-flips. All 8 rows of the
table have such “more regular” variants. This fits very well with the proposed
explanation for evolutionary generalisation: the 1-bit adder violates the regular-
ity of arithmetic hypothesis, and the 1-bit adder is the one function for which
evolution failed to generalise in this study. For most of the “favoured errors”
across all arithmetic functions, evolution was able to find a smaller circuit which
implemented the “error” than one which implemented the arithmetically correct
function. An example is shown in figure 2. Consequently, by Occam’s razor[4]
(the principle that one should favour the simplest explanation), these “errors”
are actually better generalisations from a learning theory point of view than the
original arithmetic functions.
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Fig. 2. A “more regular” variant of the 1-bit binary adder, where 1 + 0 + 0 = 3 but
all other rows are as per standard addition. The actual binary adder function requires
5 gates to implement

7.2 Random Search and Evolution

An experiment was run on the 1-bit adder to investigate all four possible variants
of the 1-bit adder for the row 1 + 0 + 0. 1000 evolutionary runs were performed
for each variant truth table. A further 1000 (pseudo-)random search runs were
performed with the row 1 + 0 + 0 ablated: these runs used the same genetic
encoding as the evolutionary runs, but the genome was completely randomised
at every generation. Again, no explicit pressure for small circuits was present.
Random search was terminated when a 100% correct circuit was found for the
partial truth table with row 1 + 0 + 0 ablated. The random search numbers are
thus an estimate of how relatively frequent these variants actually are in the set
of all possible encoded circuits. The results are shown in table 3.

Table 3. Comparison of 4 variants of the 1-bit adder for complexity, evolutionary
difficulty, evolutionary “guessability” and estimated relative frequency in genome space
(from random search experiment)

Variant Min
Evolved
Size
(Gates)

Mean
Evolved
Size
(Gates)

Mean
Evolution
Time
(Evals)

Frequency
Evolved
When Row
Ablated

Estimated
Frequency
in Genome
Space

1 + 0 + 0 = 0 6 12.1 7315 1% 0.7%
1 + 0 + 0 = 1 5 10.6 2892 18% 15.9%
1 + 0 + 0 = 2 6 11.3 6661 7% 2.3%
1 + 0 + 0 = 3 4 9.9 3135 74% 81.1%

We can see that 1+0+0 = 3 is most frequent in the genome space, followed by
1+0+0 = 1, 1+0+0 = 2 and finally 1+0+0 = 0. This ordering corresponds to
the ordering by minimum gate complexity (except that the final two are tied for
minimum gate complexity). We also see that evolution is reasonably effective at
finding circuits for rare functions when the entire truth table is used to determine
the fitness function. However, when the row is ablated, evolved solutions tend
to approximately represent the underlying distribution of functions in genome
space (supporting the lack of evolutionary bias assumption from section 6.3).
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8 Conclusion

This paper contains empirical results which establish that evolved digital logic
circuits can indeed do better than chance guessing when presented with previ-
ously unseen inputs from binary arithmetic problems. I have argued that this
makes sense from the point of view of regularity: it is simply easier to implement
a regular truth table (one with a smaller gate complexity) than an irregular one.
The one-bit adder function was an exception to this rule, and experiments indi-
cated that this truth table can reasonably be considered irregular compared to
its near variants. Previous researchers have missed this phenomenon due to their
focus on functionally perfect circuits and, in one case, an erroneous assumption
about the output distribution of combinational circuits.
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Abstract. Niche construction is the process whereby organisms,
through their metabolism, activities, and choices, modify their own and/
or each other’s niches. Our purpose is to clarify the interactions between
evolution and niche construction by focusing on non-linear interactions
between genetic and environmental factors shared by interacting species.
We constructed a new fitness landscape model termed the NKES model
by introducing the environmental factors and their interactions with the
genetic factors into Kauffman’s NKCS model. The evolutionary exper-
iments were conducted using hill-climbing and niche-constructing pro-
cesses on this landscape. Results have shown that the average fitness
among species strongly depends on the ruggedness of the fitness land-
scape (K) and the degree of the effect of niche construction on genetic
factors (E). Especially, we observed two different roles of niche construc-
tion: moderate perturbations on hill-climbing processes on the rugged
landscapes, and the strong constraint which yields the convergence to a
stable state.

1 Introduction

All living creatures partly modify their own and/or each other’s niches as sources
of selection through their metabolism, their activities, and their choices. This
process is calld “niche construction” [1], and there are many evidences that it
has strong effects on the evolution of organisms although it had been neglected
for a long time in evolutionary biology.

A typical example of a niche-constructing organism is earthworms that
change the structure and chemistry of soils through their burrowing activities.
These changes are accumulated over generations, and then bring about different
environmental conditions which expose successive population to different selec-
tion pressure. This effect is also called “ecological inheritance”, which makes
the generation inherit both genes and a legacy of modified selection pressures
from ancestral organisms. In addition, these changes can affect the other or-
ganisms’ evolution in the soil. The niche-constructing processes are observed in
various taxonomic groups such as bacteria (decomposition of vegetative and an-
imal matter), plants (production of oxygen), non-human animals (nest building)
and humans (cultural process) [2].

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 373–382, 2005.
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The theoretical investigations into the effects of niche construction on evo-
lution have been based mainly on the population genetics. For instance, La-
land et al. constructed two-locus models, in which one locus affects the niche-
constructing behavior which produces the resources in the environments and the
fitness of the other locus is affected by the amount of accumulated resources
[3]. They also introduced the ecological inheritance into their models in which
the current amount of resources not only depends on the niche construction of
the current individuals but also depends on the results of niche construction in
previous generations. The results showed that niche construction and ecological
inheritance yield unexpected results such as the maintenance of polymorphisms
and the evolutionary momentum. The niche construction is now getting much
attention in the field of artificial life. Taylor presented an individual-based model
of niche construction [4]. In his model, the fitness of each individual is determined
by other neighbors’ gene expressions in its local environment. The results showed
that the complex changes in the environmental states by the niche-constructing
traits caused an evolution of organism with more genes which implies a contin-
uous increase in the complexity of organisms. These studies describe the basic
dynamics of the effects of niche construction within one species.

It is also essential to clarify the effect of the niche construction in the con-
text of the coevolution of multiple species. There are a lot of evidences that
the niche-constructing process of one species affected the course of evolution of
the other species due to the modifications of the shared environment [2]. For
example, many species of birds have evolved to use spider-web silk in their nest
construction. Some species of snakes have evolved the behavior of waiting by
the trails made by mammalian prey to ambush them. The burrowing behavior
of earthworms that we have explained above also provides sites of microbial ac-
tivity and soil environments for plant species by mixing organic matter in the
soils. However, there have been few theoretical or constructive approaches which
focused on the universal nature of the coevolutionary dynamics among species
under the assumption of the indirect interactions via niche construction and eco-
logical inheritance, although the indirect genetic effects within one species have
been discussed [5].

Recently, Hui et al. introduced a niche-constructing trait into a lattice model
of the evolution of metapopulation [6]. They assumed that there were superior-
inferior relationship between several species and the inferior species only con-
ducted niche construction that produces the resources which affect their survival.
The result showed that the strength of the effect of interspecific niche construc-
tion strongly affects the coexistence of species, and the segregation of species’
distribution. However, the results were quite specific to a priori setting of rela-
tionships among species and the evolution of the niche-constructing trait itself
was not introduced. Thus the general dynamics of indirect interactions among
different species sharing the same environment is still unclear.

Our purpose is to clarify the complex relationships between evolution and
niche construction by focusing on non-linear interactions between genetic and
environmental factors shared by interacting species [8]. For this purpose, we
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Fig. 1. An example of the NKES model when N=5, K=1, E=2 and S=3

have constructed a new fitness landscape model termed the NKES model by
introducing the environmental factors and their interactions with the genetic
factors into Kauffman’s NKCS model [7]. Then, we conducted the evolutionary
experiments based on the hill-climbing and the niche-constructing processes of
species on this landscape, in which each species can increase its own fitness by
changing not only its genetic factors but also the environmental factors. With
experiments using various settings of the ruggedness of fitness landscape and the
strength of the effect of niche construction on the fitness of genetic factors, we
clarify how niche-constructing behaviors can facilitate the adaptive evolution of
interacting species via the shared environment.

2 Model

2.1 NKES Fitness Landscape

We constructed the NKES model by introducing environmental factors and their
interactions with the genetic factors into Kauffman’s NKCS model [7]. There
are S species who share the same environment of which properties are described
as N -length binary values ei (i=0, . . ., N -1). We define ei as environmental
factors which represent abstract conditions of the shared environment such as the
chemistry of soil, the temperature, the humidity, the existence of burrows, nests
and resources. Each species si (i=0, . . ., S-1) has N genetic factors represented
as binary values gi,j (j=0, . . ., N -1).

The fitness of each genetic factor gi,j has epistatic interactions not only with
other K genetic factors gi,(j+k) mod N (k=1, . . ., K) in its own species but also has
non-linear interactions with E environmental factors e(j+l) mod N (l=0, . . ., E-1).
The fitness contribution of each genetic factor caused by interactions among ge-
netic and environmental factors is defined in similar manner to the NKCS model.
For each gi,j , we prepare a lookup table which defines its fitness corresponding
to all possible (2K+E+1) combinations of interacting genetic and environmental
factors. The value of each fitness in the lookup table is randomly set within the
range of [0.0, 1.0]. The fitness of each species is regarded as the average fitness
over all of its genetic factors. Thus, the parameter K represents the ruggedness
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of the fitness landscape of each species and E represents the strength of the
effect of niche construction on the fitness of genetic factors in this model. Figure
1 shows an example image of this model when N=5, K=1, E=2 and S=3. Each
table represents a set of values of genetic or environmental factors, and thin
arrows that issue from these values represent the existence of non-linear effects
on values of other genetic or environmental factors.

2.2 Evolution and Niche Construction

In each generation, each species independently chooses the process which yields
the best increase in its own fitness from “evolution”, “niche construction” or
“doing nothing” by using the following procedures: First, we calculate the fitness
of the species when a randomly-selected genetic factor is flipped. At the same
time, we also calculate its fitness when a randomly-selected environmental factor
is flipped. The former value corresponds to the possible result caused by the
evolutionary process. The latter corresponds to the possible result by the niche-
constructing process, that is, the evolution of the niche-constructing trait which
modifies the corresponding environmental factor. Then, the species adopts the
process which brings about the best fitness by comparing these two fitness and its
current fitness. If the current fitness is the best, it does nothing in this generation.
After all species have chosen the processes, they actually conduct the adopted
processes at the same time. Note that if more than one species decide to flip the
same environmental factor, it is flipped only once in each generation.

The outlined arrows in Figure 1 represent examples of evolutionary pro-
cess and niche-constructing process. If one species flips the environmental fac-
tor by niche construction, it can change the fitness contributions of the other
species’ genetic factors, and then can bring about different evolutionary or niche-
constructing dynamics of the other species. There are indirect interactions among
species via niche constructions instead of the direct interactions among them like
the NKCS model.

3 Experimental Results

3.1 General Analyses

We have conducted experiments using various settings of K and E (N=80 and
S=3) for 100000 generations. The initial values of genetic and environmental
factors were randomly decided. Firstly, we focus on the effects of K and E on
the average fitness among all species. The average fitness does not only represent
how the species could evolve on the current environment but also shows how
the environment was modified and became better for all species through niche
constructions.

Figure 2 (a) shows the average fitness among all species during the last
1000 generations in various cases of K and E. The x and y axes correspond
to the conditions of K and E, and the z axis represents the average fitness on
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Fig. 2. The average fitness and the proportion of the convergence to stable state in
various cases of K and E

corresponding conditions. Each value is the average over 20 trials. The first thing
we notice is that the average fitness is large (exceeds 0.75) when either K or E
is relatively small. In particular, there are two different conditions which created
the peaks of the average fitness: the cases when K=4 and E=1 (0.78), and when
K=1 and E=4 (0.77). Figure 2 (b) also shows the proportion of trials in which
the population completely converged to a stable state, in other words, the fitness
of any species can not be improved by neither evolution nor niche construction.
There is a peak of the proportion of convergence (0.95) in the latter condition,
while it is 0.0 in the former condition. It implies that different dynamics of
evolution and niche construction brought about the high average fitness under
both conditions.

3.2 Evolutionary Dynamics When K=4 and E=1

Here, we investigate in detail the two conditions which brought about the high
fitness respectively. First, we focus on the case when K=4 and E=1. In this case,
it should be noticed that the average fitness was higher than the corresponding
condition without niche construction (K=4 and E=0). When E=0, each species
is able to climb the fitness landscape to increase its fitness only by changing its
genetic factors, and rapidly gets stuck in the local optimum. Actually, Figure 2
(b) shows that the population always converged to a stable state in all cases of
E=0.

However, when E=1, each species can change its fitness landscape by the
niche-constructing process. Figure 3 shows a typical transition of the average
fitness among species during the first 30000 generations. Note that the transi-
tion of the fitness of each species was approximately similar to that of the average
fitness but with modest fluctuation. We can see that the species smoothly in-
creased their fitness and fluctuated around 0.78, but they never converged to a
stable state.

In this model, the niche construction does not only simply increase the fitness
of the performer of the niche construction, but also can change the other species’
fitness by changing their fitness landscapes. The difference in the average fitness
between with and without niche construction is mainly caused by the latter effect
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of niche construction. Figure 4 shows the transition of the average evolvability
provided by hill climbing (HC-evolvability) and the average evolvability provided
by niche construction (NC-evolvability) among species in the same experiment as
the one shown in Figure 3. The HC-evolvability (or NC-evolvability) represents
the average proportion of genetic (or environmental) factors for each species
which can increase its own fitness by flipping them. These indices measure how
often each species can apply the evolutionary or niche-constructing process in
order to increase its fitness. Figure 4 shows that the NC-evolvability kept a
relatively large value, while the HC-evolvability approached to almost 0.0 after
the drastic decrease in both indices until a few hundreds generation. This means
that the species were almost getting to local optimums, but the continuous niche
constructions through generations prevented them from getting stuck in the local
optimums by slightly changing their landscapes and enabled them to obtain
higher fitness regardless of their high ruggedness. Thus, the niche construction
worked as a moderate perturbation on the other species’ hill-climbing processes
in this case.

3.3 Evolutionary Dynamics When K=1 and E=4

The other condition which yielded the high average fitness is the case of K=1
and E=4. The important difference compared with the previous condition is
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that the population converged to a stable state in almost all trials as shown in
Figure 2 (b). Figure 5 and 6 show the typical transitions of indices respectively.
We observe the average fitness completely converged to 0.78 around 22000th
generation after its temporal increase and subsequent decrease from the initial
population. Such a temporal decrease is interesting as all species are always
trying to increase their own fitness in our model. Also, the transitions of two
evolvability in Figure 6 were quite similar though the HC-evolvability was just
slightly smaller than the NC-evolvability.

These phenomena are supposed to occur due to the following reason: As
shown in Figure 2 (b), the high average fitness was caused by the convergence to
a stable state in this case. It means that the HC-evolvability and NC-evolvability
became 0.0 at the same time as shown in Figure 6. Figure 7 shows the transitions
of the NC-evolvability when K=1, and E=1, 2 and 6. We see that the NC-
evolvability tends to approach to the smaller value in case of E=2 in comparison
with the case of E=1. It is because that the strong effects of niche construction
on the fitness of genetic factors make the species difficult to improve its fitness
by niche construction likewise the species more easily gets stuck in the local
optimum on the standard NK fitness landscape as K increases. However, the
increase in also E brings about the large fluctuation around the relatively large
value in NC-evolvability if E is too large such as the case of E=6 in Figure 7.
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It is because that as E becomes large, the change in the environmental factor
by niche construction of one species more drastically changes the other species’
fitness landscapes and draws them back into the bottom of their landscapes.
Thus, NC-evolvability frequently approaches to 0.0 when these effects are well-
balanced (Figure 6).

Also, as E increases, the transition of HC-evolvability tends to be synchro-
nized with the NC-evolvability as shown in Figure 6, and the fluctuation in HC
and NC-evolvability becomes larger as K increases (not shown) because the in-
crease in K makes the species more frequently conduct the niche constructions.
Thus, the convergent state occurs the most frequently only when K is small and
E is large.

4 Comparison with the NKCS Model

Kauffman proposed the NKCS model as a mathematical model designed to in-
vestigate the evolutionary dynamics of evolving species in which each species’
genetic factor directly affects other species’ fitness [7]. In his model, each genetic
factor has epistatic interactions not only with other K genetic factors in its own
species but also has interactions with C genetic factors in other S species respec-
tively. It is well known as a good abstract model of directly coevolving species.
Here, we compare the evolutionary dynamics of the NKES model with that of
the NKCS model so as to clarify how the difference in the structures of (direct
or indirect) interactions among species changes the coevolutionary process.

The important fact is that the evolutionary dynamics in the NKES model
are quite complex compared with that in the NKCS model. Table 1 shows how
HC and NC-evolvability are affected by the increase in the parameters K, C
and E in the NKCS or NKES model. In the NKCS model, it is well known that
the population tends to rapidly converge to a stable state (ESS condition) when
K is relatively large and C is relatively small if the evolutionary processes are
conducted in similar manner to that in the NKES model [7]. The typical effects
of K and C in the NKCS model become quite simple as shown in Table 1.

In contrast, the effects of K and E in the NKES model are not simple because
we have to consider their complex effects on both HC and NC-evolvability. The
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Table 1. The effect of increase in K, C and E on HC/NC-evolvability in NKCS and
NKES model

increase in K increase in C or E

NKCS decrease in HC-evolvability
increase in the other species’ HC-
evolvability

NKES
(1) decrease in HC-evolvability
(2) increase in the other species’
NC-evolvability

(1) decrease in NC-evolvability
(2) increase in the other species’ NC-
evolvability

similar effect of K on the HC-evolvability in the NKCS model also exists in
the NKES model. But it brings about the increase in the other species’ NC-
evolvability because the species frequently conduct niche-constructing behaviors
if it is difficult for the species to improve its fitness by evolutionary process. As
a result, the population tends to become unstable as K increases. The increase
in E also has two different effects on the NC-evolvability as discussed in the
previous section, and it make the population stable on the condition that the
both effects are well balanced.

As a whole, it should be noticed that the population tends to become com-
pletely stable on the opposite condition (K is small and E is large) in the NKES
model compared with the condition on which the population rapidly converges
to a stable state in the NKCS model (K is large and C is small).

5 Conclusion

We have discussed the universal nature of interactions between evolution and
niche construction by using the NKES fitness landscape model. We found that
the average fitness among species strongly depends on the ruggedness of fitness
landscape (K) and the strength of the effect of niche construction on the genetic
factors (E). It should be emphasized that the two qualitatively different roles of
niche construction brought about the high average fitness in different conditions.
When K is large and E is small, the niche construction by one species works
as moderate perturbations on the other species’ hill-climbing processes on the
highly rugged landscapes, which prevents them from getting stuck in the local
optimums. On the other hand, when K is small and E is moderately large, the
strong effect of niche constructions on the fitness of genetic factors yields the
convergence to a completely stable state which maintain the high average fitness.

There are some examples of the stable and symbiotic relationships among
interacting species which mutually modify the shared environment. Some ants
have a mutualism with acacia trees [2]. The ants destroy seedlings and attacks
mammalian browsers and insect pests. In turn, the acacia provides thorns and
nectarines that house and feed the ants. It is also well known that flowering plants
have evolved to provide nectar for several insects. The insects attracted by the
flowers facilitate pollination process of these plants by providing the movement
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of pollen while gathering nectar in return. Mutual modification through niche
construction is essential for the fitness of both species, which establishes tightly-
coupled relationships between the niche-constructing species and environmental
factors. In this sense, these types of ecosystems might be explained as the latter
case of our experiments (K is small and E is large) rather than the former.
We believe that the evolution observed in this case reflects some aspects of the
establishment of these tightly-coupled relationships in real biological systems.

Future work includes investigations into the effects of the other parameters
on the roles of niche construction and the introduction of the evolution of the
network structure among species and environments.
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Abstract. This paper examines the effect of cultural learning on a pop-
ulation of neural networks. We compare the genotypic and phenotypic
diversity of populations employing only population learning and of pop-
ulations using both population and cultural learning in two types of
dynamic environment: one where a single change occurs and one where
changes are more frequent. We show that cultural learning is capable of
achieving higher fitness levels and maintains a higher level of genotypic
and phenotypic diversity.

1 Introduction

A number of learning models may be readily observed from nature and have been
the focus of much study in artificial intelligence research. Population learning (i.e.
learning which occurs at a population level through genetic material) is typically
simulated using genetic algorithms. Life-time learning (i.e. learning which takes
place during an organisms’s life time through reactions with its environment)
can be simulated in a variety of ways, typically employing neural networks or
reinforcement learning models.

A relatively new field of study in artificial intelligence is synthetic ethology.
The field is based on the premise that language and culture are too complex to
be readily analysed in nature and that insight can be gained by simulating its
emergence in populations of artificial organisms. While many studies have shown
that lexical, syntactical and grammatical structures may spontaneously emerge
from populations of artificial organisms, few discuss the impact such structures
have on the relative fitness of individuals and of the entire population.

A robust multi–agent system should be able to withstand and adapt to en-
vironmental changes. This type of behaviour parallels that of the natural world
where species capable of adaptation will have more chance of evolutionary suc-
cess than ones that are rigid and incapable of such plasticity. At its most basic
level, adaptation in nature takes the form of population learning. At a higher
level, organisms capable of adapting their behaviour to suit a particular envi-
ronment during their lifetimes will be more likely to survive in the long term.

The focus of this paper is to attempt to understand the effect of cultural
learning on a population of artificial organisms subjected to dynamic environ-
ments. This is accomplished by studying its effect on the population’s fitness
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as well as its genotypic and phenotypic diversity. The remainder of this paper
is arranged as follows. Section 2 introduces background research, including de-
scriptions of diversity measures and cultural learning techniques that have been
employed for this study. Section 3 describes the experimental setup. Section 4
presents the Experiment Results and Section 5 presents conclusions.

2 Background Research

2.1 Cultural Learning

Culture can be succinctly described as a process of information transfer within
a population that occurs without the use of genetic material. Culture can take
many forms such as language, signals or artifactual materials. Such information
exchange occurs during the lifetime of individuals in a population and can greatly
enhance the behaviour of such species. Because these exchanges occur during an
individual’s lifetime, cultural learning can be considered a subset of lifetime
learning.

An approach known as synthetic ethology [10,17] argues that the study of
language is too difficult to perform in real world situations and that more mean-
ingful results could be produced by modeling organisms and their environment in
an artificial manner. Artificial intelligence systems can create tightly controlled
environments where the behaviour of artificial organisms can be readily observed
and modified. Using genetic algorithms, the evolutionary approach inspired by
Darwinian evolution, and the computing capacity of neural networks, artificial
intelligence researchers have been able to achieve very interesting results.

In particular, experiments conducted by Hutchins and Hazlehurst [8] simulate
cultural evolution through the use of a hidden layer within an individual neural
network in the population. This in effect, simulates the presence of a Language
Acquisition Device (LAD), the physiological component of the brain necessary
for language development, the existence of which was first suggested by Chomsky
[3]. The hidden layer acts as a verbal input/output layer and performs the task of
feature extraction used to distinguish different physical inputs. It is responsible
for both the perception and production of signals for the agent.

A number of approaches were considered for the implementation of cultural
learning including fixed lexicons [19], indexed memory [16], cultural artifacts
[7] and signal–situation tables [10]. The approach chosen was the teacher/ pupil
scenario [4,2] where a number of highly fit agents are selected from the population
to act as teachers for the next generation of agents, labelled pupils. Pupils learn
from teachers by observing the teacher’s verbal output and attempting to mimic
it using their own verbal apparatus. As a result of these interactions, a lexicon
of symbols evolves to describe situations within the population’s environment.

2.2 Diversity

Diversity measures typically quantify the differences between individuals in a
population. It is commonly accepted that a population that is capable of main-
taining diversity will avoid premature convergence and local maxima.
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Diversity measures for populations of neural networks have been the focus
of considerable research, focusing mainly on genotypic diversity [18,14,1]. Many
methods exist for the calculation of genotypic diversity, many based on binary
representations. For the purposes of this research however, many schemes are
unsuitable due to the nature of the marker-based encoding scheme used to rep-
resent each neural network.

Our scheme examines each block of the encoding and compares it to blocks
of similar length in other encodings. Each encoding block contains a single node
and a number of links emanating from that node. It is therefore intuitive to
propose that blocks of similar length (having a similar number of emanating
links) are suitable for mutual comparison.

There is comparatively little research on phenotypic diversity in evolutionary
computation. Typically, phenotypic diversity is measured at the fitness level [5].
However, this measure tends to compress the available diversity information
resulting in a coarse grained measure not useful in all situations. The approach
adopted in this work is to examine the components of the fitness value of each
individual, i.e. an individual’s response to each bit-parity stimulus. By comparing
the difference between all responses (and not just the aggregate fitness function)
a finer grained measure of phenotypic diversity can be obtained.

2.3 Dynamic Environments

Many approaches have been taken to simulate changing environments for multi–
agent and artificial life systems[13,6,15,11] focusing on Latent Energy Environ-
ments and fitness functions which vary over time. Our approach, while straight-
forward, has the advantage of clarity: agents are repeatedly presented with a
number of bit–patterns representing either food or poison. An agent capable of
distinguishing the two by correctly ingesting food and avoiding poison will be
rewarded with a high fitness level and reproductive opportunity. At each environ-
mental change all bit–patterns representing food are made to represent poison
and vice–versa thus completely reversing the environment. This is partly based
on work performed by Nolfi et al[13] who compared the performance of a robotic
agent employing genetic evolution (population learning) and that of agents em-
ploying back–propagation (life–time learning) in a changing environment.

3 Simulator

The architecture of the artificial life simulator can be seen as a hierarchical
structure. At the top-level of the simulator is a command interpreter which allows
users to define an experiment’s variables including the number of networks, the
number of generations to run the experiment, mutation and crossover rates and
the actual problem set which the population will be attempting to solve.

The neural network layer takes the variables set using the command inter-
preter and initialises a given number of neural networks. The layer then performs
training and testing of the networks according to the parameters of the experi-
ment. These network memory structures are then passed to the encoding layer
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which transforms them into genetic code structures for use in the genetic algo-
rithm. The encoding mechanism used for this set of experiments is a modified
version of marker based encoding.

Marker based encoding represents neural network elements (nodes and links)
in a binary string. Each element is separated by a marker to allow the decoding
mechanism to distinguish between the different types of element and therefore
deduce interconnections[9,12].

In this implementation, a marker is given for every node in a network. Fol-
lowing the node marker, the node’s details are stored in sequential order on the
bit string. This includes the node’s label and its threshold value. Immediately
following the node’s details, is another marker which indicates the start of one
or more node–weight pairs. Each of these pairs indicates a back connection from
the node to other nodes in the network together with connection’s weight value.
Once the last connection has been encoded, the scheme places an end marker to
indicate the end of the node’s encoding

The genetic algorithm layer uses the genetic codes and the data retrieved
from the neural network layer’s testing of the networks to perform its genetic
operators on the population. A new population is produced in the form of genetic
codes. These are passed to the decoding layer which transforms each code into
a new neural network structure. These structures are then passed up to the
neural network layer for a new experiment iteration. Once the required number
of generations has been reached, the experiment finishes.

Two-point crossover is employed and weight mutation is employed which
takes the weight value and increases/decreases the value according to a random
percentage (200%). This approach was found, empirically, to be more successful
and was adopted for this set of experiments.

3.1 Simulating Cultural Evolution

In order to perform experiments related to cultural evolution, it was necessary to
adapt the existing simulator architecture to allow agents to communicate with
one another. This was implemented using an extended version of the approach
adopted by Hutchins and Hazlehurst. The last hidden layer of each agent’s neural
network functions as a verbal input/output layer.

At end of each generation, a percentage of the population’s fittest networks
are selected and are allowed to become teachers for the next generation. The
teaching process takes place as follows: a teacher is stochastically assigned n
pupils from the population where n = Npop

Nteachers
, where Npop is the population

size and Nteachers is the number of teachers. Each pupil follows the teacher in
its environment and observes the teacher’s verbal output as it interacts with its
environment. A teaching cycle occurs when the pupil attempts to emulate its
teacher’s verbal output using back-propagation. Once the number of required
teaching cycles is completed, the teacher networks die and new teachers are
selected from the new generation.

Unlike previous implementations, the number of verbal input/output nodes
is not fixed and is allowed to evolve with the population, making the system
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more adaptable to potential changes in environment. In addition, this method
does not make any assumptions as to the number of verbal nodes (and thus the
complexity of the emerging lexicon) that is required to effectively communicate.
It should be noted that neither the parent’s nor the pupil’s genotype is altered
at any time during these cultural exchanges.

4 Experimental Setup

The following set of experiments each employs two populations. One population
is allowed to evolve through population learning (by genetic algorithm), while
the other employs both population and cultural learning. The problem domain
for this set of experiments is the 5-bit parity problem. Each network is exposed to
bit patterns and must determine whether the pattern represents an odd or even
number. Fitness is assigned according to the mean square error of a network.

Two types of environment were employed for the experiments: an environ-
ment with a single dramatic change (at generation 200) and another with a series
of regular changes (every 20 generations) during the course of the experiment.
The change in environment is implemented by reversing the food and poison rep-
resentations such that the bit pattern representing food will represents poison
and vice-versa.

Each experiment consists of a population of 50 neural networks evolving for
400 generations with crossover and mutation rates set at 0.6 and 0.02 respec-
tively. The population employing cultural learning takes the fittest 10% of each
generation as teachers which interact with pupils for five teaching cycles. An
additional parameter, cultural mutation, adds noise to each interaction with
probability 0.02. The results presented are averaged from 10 independent runs.

5 Experiment Results

The experimental results are divided into two sections. The first examines the
relative performance of cultural learning and population learning through analy-
sis of the error values for each population. The second section is concerned with
genotypic and phenotypic diversity measures for each population.

5.1 Single Environment Change

The average error values for both populations for the single environment change
experiment are presented in figure 1. It is clear from the results that the pop-
ulation employing cultural learning is capable of reducing its error values more
successfully than the population using population learning alone. The environ-
ment change at generation 200 is clearly marked by a large surge in error values
occurring in both populations. However, the sharp increase in error is more ev-
ident in the population employing population learning alone, suggesting that
cultural learning is softening the environment change.
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Fig. 2. Genotypic Diversity Values

Figure 2 shows the genotypic diversity for both populations. While both pop-
ulations have a tendency to reduce diversity as the experiment progresses, the
population employing cultural learning is capable of maintaining a higher (and
statistically significant) level of diversity throughout the experiment. This trend
is reinforced by the results of the phenotypic diversity measure, presented in
figure 3. The phenotypic diversity of the population employing population learn-
ing alone is considerably lower than that of the population employing cultural
learning.

It is clear from these results that in the single change environment, cultural
learning is capable of maintaining a high genotypic and phenotypic diversity for
its population. This can be correlated to its corresponding superior performance
with regard to average error values.
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5.2 Multiple Environment Changes

The multiple environment change experiment presents a considerably more dif-
ficult challenge to both populations as the reversals in environment occur very
frequently. Figure 4 presents the average error of both populations over the
experiment run. Each environment change can be clearly seen as a surge in av-
erage error every 20 generations. Clearly both populations experience difficulty
in tracking the environmental changes in this experiment.

The population employing cultural learning is capable of matching and in
some cases improving on the error values acheived by the population employ-
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ing population learning alone. However, it cannot be said that there is a clear
distinction between the two populations.

Figure 5 presents the results of the genotypic diversity measure for both pop-
ulations. The results are similar to those obtained in the previous experiment set,
with both populations reducing diversity over the experiment run, but with the
population employing cultural learning maintaining a higher level throughout.

Similarly, the phenotypic diversity measure results outlined in figure 6 show
that the population employing cultural learning is achieving and maintaining
higher levels of phenotypic diversity than that of the population employing pop-
ulation learning alone.
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6 Conclusions

The results presented in this paper suggest that the addition of cultural learning
is beneficial to a population subjected to dramatic environmental changes, but is
not capable of providing any real advantage in environments where changes occur
more frequently. It should be stressed that we do not wish to generalise as to
the effects of cultural learning for all problems, rather that this study provides
a useful starting point into the analysis of the potential benefits of cultural
learning. Diversity measures in particular may allow more detailed analysis into
the effects of cultural learning for a variety of problem domains. Future work will
focus on more complex problems and environments where changes occur more
gradually, rather than simple reversal of problem solutions.
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Abstract. The concept of modularity appears to be crucial for many
questions in the field of Artificial Life research. However, there have not
been many quantitative measures for modularity that are both general
and viable. In this paper we introduce a measure for modularity based
on information theory. Due to the generality of the information theory
formalism, this measure can be applied to various problems and models;
some connections to other formalisms are presented.

1 Introduction

In the studies of complex systems and Artificial Life, a central question is how it
is possible that, over time, systems can emerge with ever increasing complexity.
This question is particularly prominent if one considers the Darwinian evolution
which, from a naive point of view, appears to be mainly directed random search
with a large test population. However, even the powerful parallelism that is
available to evolution in form of huge numbers of individuals cannot alone explain
how the vast search space of possible configurations of living organisms can be
efficiently searched and exploited towards increasing complexity.

It seems that nature employs to some degree the same method as human
programmers in large software systems (or vice versa). In the latter, with the
advent of the software crisis in the 1970s [1] , it became clear that large mono-
lithic software systems in which each part depends on many others (a form of
nonlocality) are unmanageable. Even if they should work reasonably reliably at
a certain point in time, they cannot easily be adapted to new tasks. This is being
solved by introducing modules which solve subproblems independently from the
rest of the system and organizing larger systems by building them up from these
smaller, manageable modules.

Adaptability is one of the central motifs of natural evolution. Therefore, the
question arises whether evolution manages complexity in a similar way as human
software engineers, via modularity. It turns out that there are several phenom-
ena in nature that can be construed as exhibiting elements of modularity. The
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existence of genes that encode certain traits of the phenotype, the crossover oper-
ator (which is construed by researchers of artificial evolution as to be preserving
building blocks which encode for separable (i.e. modular) properties of the phe-
notype. Of course, the situation in systems evolving in nature is much more
involved as there is no human designer, but even in artificial software systems
pure modularity does not exist in general.

As different as the different instances of systems are that exhibit or do not
exhibit modularity and as different the language is that is being used in con-
junction with those, they seem to share common properties. It would be very
useful to formalize these properties in a common language. It would enable us
to understand better what modularity is, when it can be made use of, or even
when we can expect it to emerge [2,3,4] thus helping us to obtain further clues
how natural evolution manages to climb the ladder of complexity.

It seems, however, that only relatively recently systematic approaches have
been made to decomposition of tackle the decompositional structures of complex
systems [5]. In the wake of the success of information-theoretic methods in the
study of dynamical systems [6], recent approaches to address the question of
modular decomposition of networks convert static networks into dynamic sys-
tems via a diffusion dynamics approach and analyse it applying spectral graph
and information theory [7,8]. Independence graphs derived from probabilistic
relations [9] and related information-theoretical notions [10] provide a growing
toolbox to address these questions.

The specific systems we will address here already have an a priori dynami-
cal structure and do not require it to be artificially imposed, as done in above
models. At the same time, they are of high relevance for Artificial Life stud-
ies. We begin with the illustrative and inspiring model from [11] and show how
information theory can be used in order to adapt its classifications as to be-
come both more intuitive and finer-grained. We will then relate this approach
to modularity arising due to the variation operator in Evolutionary Algorithms.
For a special case, we will establish a direct connection between the measure of
coupling introduced here and the modularity matrix elements in [2,4].

2 Towards a Quantitative Notion for Modularity

In a recent discussion of possible characterizations of modularity by Watson,
several illustrative scenarios are presented that highlight different important
aspects of the issue [11]. Since we felt it offers many relevant points and fruitful
ideas, in the present paper we wish to build upon some of these discussions, offer
alternative formal notions of modularity and study some of their conceptual and
quantitative properties.

2.1 Probability Notation

We will apply the following notation: for a random variable X we will denote its
domain by X and a concrete sample value of X will be denoted by x. Let now
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X, Y be jointly distributed random variables. Let P (X = x) be the probability
that X assumes the value x ∈ X for which, by abuse of notation, we write instead
p(x) wherever this is unambiguous. Similarly, let P (X = x, Y = y) ≡ p(x, y) be
the joint and P (Y = y|X = x) ≡ p(y|x) the conditional distribution.

2.2 Watson’s Regulatory Network Scenario

One of the scenarios introduced by Watson is a (stochastical) dynamical system
which can be seen as a very simple model for a regulatory network [11]. Con-
sider thus a stochastic dynamical system of four random variables S1, S2, S3, S3,
each of them binary valued, i.e. Si ∈ {0, 1} for i ∈ {1, 2, 3, 4}. Write S =
(S1, S2, S3, S4) for the random variable denoting the complete system which
therefore can assume 16 states. Write S(t) for the whole system or Si(t) for a
single variable at a time t. Consider the dynamics

P
(
Si(t + 1) = 1 | S(t) = s(t)

)
=

∑
j

wijsj(t) (1)

P
(
Si(t + 1) = 0 | S(t) = s(t)

)
= 1 − P

(
Si(t + 1) = 1 | S(t) = s(t)

)
(2)

where wij is the weight by which the variable Sj influences Si. To guarantee
well-defined probabilistic expressions, the weights in Eq. (1) are normalized such
that

∑
j wij = 1. The discussion by Watson now strives to study the system as

composed of two subsystems (“modules”). He achieves this by splitting up the
system into two groups of variables (subsystems, “modules”), M1 = (S1, S2) and
M2 = (S3, S4) and using different coupling inside and between the subsystems.
Watson considers a system with wij = 4/10 if i and j belong to the same sub-
system (including i = j) and wij = 1/10 if they belong to different subsystems.
In this example, increasing coupling reinforces the probability that different Si

will assume the same state. Note that, although designed as two separate cou-
pled subsystems, the question arises here whether M1 and M2 can be considered
separate subsystems from a dynamical point of view.

In principle, C = 4 states are possible for each of the subsystems M1 and
M2. Consider now only systems that converge into a fixed point attractor; there
might be several such attractors. Watson distinguishes three kinds of properties
for such a system: non-decomposability, separability and decomposability but no
separability. Watson concentrates on the subsystem M1 and asks about the “most
stable states”, i.e. the states of M1 found if the entire system has converged to one
of its attractors. Paraphrased from [11], non-decomposability would mean that
“for every configuration of M1 there is some configuration of M2 (the remainder
of the system) that would make that configuration of M1 the most stable”.

In this case, there is a one-to-one relationship between the two subsystems
after convergence. Watson characterizes this case by the number C′ of possible
states of M1 after the system has converged. In this case C′ = C = 4, i.e. every
possible state of M1 can be an attractor, depending on the rest. A possible set
of attractors fulfilling this property could be a1 = (00 00); a2 = (01 01); a3 =
(10 10); a4 = (11 11) where the first two bits correspond to M1 and the last two
bits to M2. In the other extreme, separability, “the module is fully independent



396 D. Polani, P. Dauscher, and T. Uthmann

in the property of interest” [11]. Watson characterizes this case of separablity
by the fact that M1 can only can have one single state (C′ = 1). Indeed, in this
case (which means that all attractors of the total system are identical w.r.t. the
bits of M1), the attractor state of M1 does not depend at all on M2. An example
attractor set for this case would consist of a1 = (01 00) and a2 = (01 11), with M1
attaining a single value 01. Finally, the intermediate case of decomposability but
non-separability is now characterized by Watson via 1 < C′ < C. An attractor
set showing this property would consist of a1 = (11 11) and a2 = (00 00) where
one has C′ = 2. As Watson points out, one can see “that there is something we
know about the property of interest, the most stable configurations (00 or 11),
that is independent of inter-module interactions.” [11]

2.3 Open Problems

Although Watson’s method of counting the configurations of interest, i.e. the
attractors, has some attractive features, two problems remain: 1. The measure
is not continous; therefore continuous changes in coupling cannot be measured
appropriately. 2. As we will show in the following, the number C′ does not always
correspond to an intuitive classification of separablity or (non-) decomposability.
Problem 2 can easily be seen by considering the following (not previously dis-
cussed) attractor structures:

Case 1: assume the two subsystems were not coupled at all and the correspond-
ing attractors are a1 = (00 00); a2 = (00 11); a3 = (11 00); a4 = (11 11) and
assumed with equal probability. As the attractors for the individual subsystems
are independent of each other, this should be ideally considered as separable; in
Watson’s framework, however, we have C′ = 2, hence 1 < C′ < C, and thus
the system is classified as decomposable but not separable. Case 2: Assume that
each module would converge into all of its 4 configurations. This would be e.g.
the case if each binary variable Si, i ∈ {1, 2, 3, 4} was only fed back to itself
in a positive way: Then all 16 combinations could be attractors for the total
system. For both modules we would observe C′ = 4 classifying the system as
non-decomposable. Intuitively, however, we would classify the system as separa-
ble, again as there is no coupling at all between the individual variables and thus
between the subsystems.

In the following, we will suggest how to amend these misclassifications as well
as how to provide a continuous quantification of Watson’s modularity classes of
separablity, non-decomposability and decomposability but not separablity by using
concepts from information theory.

3 Quantification of Dynamical Modularity

3.1 Information-Theory: Notation

We need some further notions. Define the entropy of a random variable X
by H(X) = −∑

x∈X p(x) log p(x) It denotes the expected uncertainty about
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a single outcome of X [12]. If the logarithm is chosen w.r.t. base 2, the en-
tropy is quantified by bits; in the following, whereever this value vanishes, we
will interchangeably write 0 or 0 bit. Another important quantity is the condi-
tional entropy between two random variables X, Y which is given by H(Y |X) =∑

x∈X p(x)H(Y |X = x) = −∑
x∈X p(x)

∑
y∈Y p(y|x) log p(y|x) and quantifies

how much expected uncertainty in Y remains if X is known. The difference of
two related entropies often has the character of entropy or uncertainty loss,
or information gain. Specifically, the difference between H(Y ) and H(Y |X)
is known as the mutual information I(X ; Y ) = H(Y ) − H(Y |X) and quanti-
fies how much the knowledge of X adds about the knowledge of Y . The mu-
tual information is symmetric in X and Y and the following relation holds:
I(X ; Y ) = H(X) + H(Y ) − H(X, Y ). We will use this relation later on.

3.2 An Intuitive Quantification

We will show that mutual information can serve as a modularity measure which is
both, intuitive and quantitative. Consider a system with fixed dynamics following
Eq. (1) and consider the random variables M1 and M2, denoting the first or
second subsystem, and taking on values {00, 01, 10, 11}. Now we measure the
coupling by considering the mutual information I(M1; M2) which replaces the
counting variable C′ in Watson’s original model. We can now generalize Watson’s
modularity classes in the following definition.

Definition 1 (Generalized Modularity Classes). Consider a stochastic dy-
namical system and assume its attractor is split into an subsystem attractor
M1 and an attractor for the rest M2. Let I(M1; M2) be the mutual informa-
tion between the two attractor random variables. Then call M1 separable, if
I(M1; M2) = 0; non-decomposable, if I(M1; M2) = H(M1); decomposable but
not separable, if 0 < I(M1; M2) < H(M1)

Table 1 summarizes the cases we have considered so far. One observes that,
while the classification by counting (C′) sometimes deviates from what one would
intuitively expect, modularity classification based on mutual information meets
intuition in all of the cases. It should be mentioned that I(M1; M2) does not mea-
sure modularity, but its opposite, coupling. A perfectly modular system would
be characterized by separability, i.e. I(M1; M2) = 0.

4 Experiments

It is instructive to see the operation of the measure from Def. 1 in the concrete
scenario. For this, consider the dynamical system Eq. (1). For didactical reasons,
we use coupling strengths different from [11]: we set wij = 1/N if i and j belong
to the same subsystem and wij = c/N if they belong to different subsystems
(with N = 2(1 + c) a normalization term); c ∈ [0, 1] is a dynamical coupling
strength between the subsystems — if c = 0, the subsystems are entirely uncou-
pled, if c = 1, there is no dynamical separation between the subsystems.
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Table 1. Summary of the different cases considered with the values for C′ and
I(M1; M2) and the corresponding classifications. In contrast to the classification based
on C′ (C′-Class), the mutual information I(M1; M2) (I-Class) classifies all of the cases
according intuition.

Scenario Intuitive
Classif.

C′ C′-Class. Entropies I(M1; M2) I-Class.

Selecting attrac-
tor state M2, one
can obtain any
attractor state
M1

non-
decomposable
(n.-d.)

4 n.-d. H(M1) = 2
H(M2) = 2
H(M1, M2) = 2

2 n.-d.

M1 can only con-
verge to one sin-
gle state

separable
(s.)

1 s. H(M1) = 0
H(M1, M2) = H(M2)

0 s.

M1 and M2 can
independently
converge to one
of two attractors
(Case 1)

separable
(s.)

2 d.b.n.s. H(M1) = 1
H(M2) = 1
H(M1, M2) = 2

0 s.

M1 and M2

converge to one
of two attrac-
tors, but not
independently

decomposable
but not sepa-
rable
(d.b.n.s)

2 d.b.n.s. H(M1) = 1
H(M2) = 1
0 < H(M1, M2) < 2

> 0
but
< 2

d.b.n.s.

Each bit behaves
independenlty
(Case 2)

separable
(s.)

4 n.-d. H(M1) = 2
H(M2) = 2
H(M1, M2) = 4

0 s.

We run 100,000 independent simulations of the system for different values of
the coupling c obtaining empirical distributions for the attractors of the system
(as heuristics derived from experiments, we considered a state to be an attractor
and ended the run if the system stays in this state for 10 time steps). Several
mutual information quantities obtained for these states are shown in Fig. 1.
The results show that for small c also the dynamical coupling I(M1; M2) is
small, as expected, and it grows continuously with growing c (thus fulfilling the
continuity requirement from Sec. 2.3). It reaches a value close to 1 bit for c = 1
(the fully coupled system) reflecting the fact that in this case the system ends
mostly in the equally distributed stochastic “attractors” S = (0, 0, 0, 0) and
S = (1, 1, 1, 1)1. In this case, we do not expect a natural split of the system in
two subsystems.

Up to now we have always assumed that we do know the specific decom-
position of the system into subsystems by knowing the form of wij and the
particular structure of the network. However, our measure provides us with a
1 Because of finite-size effects in the dynamics of (1) and (2), other states are also

found with some small probability, thus for c = 1 the values for I(M1; M2) and
I(S1, S3; S2, S4) drop slightly below 1bit.
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Fig. 1. The plots show the dynamic coupling I(M1; M2) between the two subsystems,
depending on the coupling constant c (the x-axis); in addition, the mutual information
between the crosswise mixed system (S1, S3) and (S2, S4) as well as the mutual infor-
mation between the variables (S1, S2) inside the system M1 is shown. For details see
text.

way to separate the subsystems without using this knowledge. Plotting the mu-
tual information between alternative subsystems of S, Fig. 1 shows, e.g. the
crosswise mutual information I(S1, S3; S2, S4) arising from an alternative split
of S into subsystems. For small c, the value is almost 2 bit, far from 0, indicating
that this split does not provide natural modules2. On the other hand, once c be-
comes close to 1, this crosswise information converges towards the value of the
coupling information, indicating that the split into S1, S2 and S3, S4 becomes
indistinguishable from S1, S3 and S2, S4; this is expected, as for c = 1 both splits
are dynamically equivalent.

Another interesting measure is the intrinsic information in M1 = (S1, S2),
i.e. I(S1, S2). For c = 0, this becomes 1 bit indicating that the variables are
fully coupled in the subsystem. Increasing c first slightly reduces the coupling
as the subsystem is being perturbed, but then the overall dynamics “stiffens”
and again creates a correlation between the variables. However, when I(M1; M2)
grows, it indicates that modularity is increasingly lost. Once this value becomes
larger than I(S1, S2), M1 can be basically seen as having lost its identity as
a module, because the coupling between the module and its environment is
stronger than the intrinsic coupling. Other combinations can also be compared.
This illustrates how the information-theoretic measures provide a whole family
of useful characterizations of modularity.

2 For the extreme case c = 0, S1 is fully aligned with S2 and S3 with S4, thus
I(S1, S3; S2, S4) = 2bit.
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5 Applicability to Evolutionary Operators

To round up the argument, we will show that our concepts apply directly to issues
of modularity of indidivuals in Evolutionary Algorithms. To this purpose, we
consider a measure mjk(ψ) from [2,4] which quantifies the modularity of mating
two individuals of given genotypes j ∈ S and k ∈ S, where S is the search space
and ψ is an equivalence relation (more details below). This formalism combines
the algebraic formalism from [13] with the dynamical system formalism from
[14] and has been used to study under which circumstances self-organization of
modularity occurs. In that formalism modularity is always considered w.r.t. a
specific equivalence relation3 ψ defined over the search space S. We will briefly
sketch the formalism and show how it fits neatly into the framework developed
in the earlier sections. Define then the modularity matrix element by

mjk(ψ) =
∑
i∈S

p(i|j, k) ri∼jk(ψ) . (3)

Here p(i|j, k) is the probability that crossover and mutation will generate an
offspring individual of type i by mating of individuals of types j and k4; ri∼jk

is a binary indicator variable describing whether i is equivalent to one of its
parents j or k, i.e. ri∼jk(ψ) = 1 if i ∼ψ j or i ∼ψ k and 0 else5. Thus, for
parents of types j and k, the quantity mjk(ψ) measures the expected degree to
which their offspring is equivalent to one of the parents (with respect to ψ). The
relation ψ can e.g. be used to model a number of relevant concepts, e.g. traits
(like certain phenotypical properties, size, strength, etc.) or schemata [15,16]. It
is important to note that the formalism makes no assumption whatsoever about
the underlying variation operator(s) or about the representation, e.g. bit-strings,
GP-trees etc.

Consider now a simple example of a bitstring-based Genetic Algorithm and
two of the bits of the individuals, b(1) and b(2); the genotype of an individual
has therefore the following form: (. . . b(1) . . . b(2) . . .). Let an individual of type
j = (. . . 1 . . . 1 . . .) and an individual of type k = (. . . 0 . . . 0 . . .) be given. Let
furthermore ψ be the equivalence relation which declares two types equivalent
iff they are equal in both b(1) and b(2). Then mjk(ψ) becomes the probability
that an offspring individual looks completely like j or completely like k with
respect to these two bits: mjk(ψ) = p(. . . 0 . . . 0 . . . |j, k) + p(. . . 1 . . . 1 . . . |j, k).

Here, we consider a one-point crossover with 0 ≤ pcrossover ≤ 0.5 (for larger
crossover probabilities one experiences mirroring effects which we will ignore for
the discussion). If we assume symmetry in the variation (i.e. neither (. . . 0 . . . 0
. . .) nor (. . . 1 . . . 1 . . .) is preferred by the variation), the definition of mjk(ψ)

3 An equivalence relation is a relation ∼ (“equivalent to”) having the properties of
reflexivity (∀x : x ∼ x), symmetry (∀x, y : x ∼ y ⇔ y ∼ x) and transitivity
(∀x, y, z : x ∼ y ∧ y ∼ z ⇒ x ∼ z).

4 In [14] and [2,4], p(i|j, k) is called the transmission function and written as T (i ←
j, k).

5 In [2,4], this is denoted as rijk(ψ).
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Fig. 2. Relation between I(M1; M2) and mjk(ψ) in the example presented

immediately leads to p(. . . 0 . . . 0 . . . |j, k) = p(. . . 1 . . . 1 . . . |j, k) = 1
2mjk(ψ) and,

with similar assumptions, p(. . . 1 . . . 0 . . . |j, k) = p(. . . 0 . . . 1 . . . |j, k) = 1
2 (1 −

mjk(ψ)) holds. Most common crossover operators, as N -point-crossover or uni-
form crossover fulfill this requirement.

We now create the connection to the approach to measure modularity in
the dynamical system. Let B1 and B2 be the random variables associated to
the probabilities of values for the two bits b(1) and b(2). From the symmetry
assumptions, it is clear that

P (b(i) = 0) = P (b(i) = 1) = 0.5 i = 1, 2 (4)

and therefore H(B1) = H(B2) = 1. As the above equations show the joint distri-
bution of both bits depends on mjk(ψ), and thus the mutual information. Using
above relations for p(. . . 0 . . . 0 . . . |j, k) and p(. . . 1 . . . 0 . . . |j, k), the mutual in-
formation can be computed. The functional dependency between I(B1; B2) and
mjk(ψ) is shown in Fig. 2. It corresponds to the intrinsic information I(S1; S2)
from Sec. 4 which quantifies how strongly the variables of a specific subsystem are
coupled and shows that increasing modularity corresponds to stronger coupling
of the intrinsic variables. An information-theoretic measure for inter-module cou-
pling in that scenario can also be formulated, but it is more technically involved
and will have to be discussed elsewhere for lack of space.

6 Conclusion and Future Work

We have presented two different directions of thrust towards a formalization of
modularity. For this purpose, we have discussed Watson’s example of a dynamical
system and used information theory to obtain a generalized version of Watson’s
modularity classes. In particular, we were able to classify properly several cases
that are unintuitive under Watson’s C′ counting approach. In addition, we were
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able to reconstruct the modular structure of the regulatory network by looking
at the mutual information between different parts of the system (Fig. 1).

In the other line of thrust, we were able to create a connection between the
measure mjk(ψ) of modularity by which self-organized modularity in evolving
systems has been studied in earlier work and the information-theoretic picture
of dynamical systems modularity developed here. This indicates that the present
approach can be extended to become a powerful tool to establish when and how
modularity arises and, perhaps, to design Alife systems that are able to evolve
their own modular decompositions in a targeted manner and thus are able to
move more swiftly towards higher rungs in the ladder of complexity.
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Abstract. This paper investigates genetic drift in multi-parent genetic
algorithms (MPGAs). An exact model based on Markov chains is pro-
posed to formulate the variation of gene frequency. This model iden-
tifies the correlation between the adopted number of parents and the
mean convergence time. Moreover, it reveals the pairwise equivalence
phenomenon in the number of parents and indicates the acceleration of
genetic drift in MPGAs. The good fit between theoretical and experi-
mental results further verifies the capability of this model.

1 Introduction

Multi-parent genetic algorithms (MPGAs) are genetic algorithms using multi-
parent crossovers. Traditionally, genetic algorithms (GAs) adopt two parents in
crossover to reproduce offspring. This idea is reasonable because, to the best of
our knowledge, the form of sexual reproduction on the Earth is absolutely of two
parents. Multi-parent crossovers break through this natural limitation by allow-
ing more than two parents in the process of crossover. In a sense, multi-parent
genetic algorithms can be viewed as multi-parent generalization of genetic algo-
rithms. In light of MPGAs, several multi-parent crossovers have been proposed
and shown their power in a variety of optimization problems [5,7,15]. However,
most of these crossovers are validated empirically; only a few theoretical analyses
of multi-parent crossovers are conducted.

Genetic drift is a phenomenon that a finite population, even if no selection
pressure is applied, will ultimately converge to a uniform population. The rate
of genetic drift serves as an important index of how fast population diversity
is lost. Schippers [14] studied the genetic drift of two multi-parent crossovers:
uniform scanning crossover (U-Scan) and occurrence based scanning crossover
(OB-Scan). His work revealed that U-Scan has no influence on genetic drift whilst
OB-Scan induces severe genetic drift, as the number of parents is increased.
Nevertheless, the strength of genetic drift in his work is determined by comparing
the probabilities of drift in and drift out. The rate of genetic drift in MPGAs is
still an open question.

This paper investigates in theory the rate of genetic drift in MPGA using
OB-Scan. Specifically, we propose an exact model for the mean convergence
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time — the principal measure of genetic drift rate [2]. First, we analyze the gene
frequency altered by multi-parent crossovers. Based on gene frequency, we model
the behavior of MPGAs through Markov chains. This Markov model affords the
correlation between parent numbers and mean convergence time. In addition, the
theoretical results reveal the pairwise equivalence of parent numbers in OB-Scan.
These theoretical results are further verified by a series of experiments.

The rest of this paper is organized as follows. Section 2 describes OB-Scan
and Section 3 analyzes its effect on gene frequency. Next, we model MPGAs with
Markov chains. Theoretical results and experimental validation are presented in
Section 5. Finally, conclusions are drawn in Section 6.

2 Occurrence Based Scanning Crossover (OB-Scan)

Occurrence based scanning crossover is one of the scanning crossovers proposed
by Eiben et al. [6]. Scanning crossovers are multi-parent generalization of uni-
form crossover — a widely used crossover in GAs. In uniform crossover, the
donor for each locus is randomly picked from two selected parents. Extended
to more than two parents, scanning crossovers choose the donor at random or
using heuristics. According to different strategies, Eiben et al. proposed three
variations of scanning crossovers: uniform scanning crossover (U-Scan), occur-
rence based scanning crossover (OB-Scan), and fitness based scanning crossover
(FB-Scan). In this paper, we only discuss OB-Scan.

Rather than at random, OB-Scan determines offspring genes depending on
the occurrence of parental genes at that locus. Specifically, it picks the majority
of parental gene values as the offspring gene for each locus. Note that in this
paper OB-Scan is defined to break ties by randomly1 choosing a binary. Examples
of 2-parent OB-Scan (corresponding to uniform crossover) and 4-parent OB-Scan
are given in Fig. 1. The formal definitions of the components of GAs and OB-
Scan are drawn below.

1 0 1 1 0 0 0 1Parent 1

1 0 0 1 1 1 0 1Parent 2

1 0 1 0 1 1 0 1Offspring

0 0 1 0 1 1 0 0Parent 3

1 1 0 1 0 1 1Parent 4 0

1 0 1 1 0 0 0 1Parent 1

1 1 0 1 1 1 0 1Parent 2

1 1 0 1 0 1 0 1Offspring

the majority

random selection

Fig. 1. Examples of 2-parent OB-Scan (left) and 4-parent OB-Scan (right)

1 In the original version of OB-Scan [6], OB-Scan breaks ties by directly inheriting
the genes of the first selected parent. However, random tie break conforms to gener-
alization of uniform crossover.
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Definition 1 (Chromosome and Population).

1. A chromosome c is encoded as a bit string, i.e. c
def= (c1, . . . , cl) ∈ {0, 1}l,

where ci denotes a gene and l is the chromosome length.
2. A population C is a set of chromosomes: C

def= {c1, . . . , cm}, where ci ∈
{0, 1}l and m is the population size.

Definition 2 (OB-Scan). Given n parents c1, . . . , cn ∈ C selected from pop-
ulation C, OB-Scan reproduces the offspring c′ = Xob(c1, . . . , cn) = (c′1, . . . , c′l)
by

c′i =

⎧⎪⎨⎪⎩
0 if

∑n
j=1 (cj)i < n

2

1 if
∑n

j=1 (cj)i > n
2

rand(0, 1) otherwise
for i = 1, . . . , l,

where (cj)i denotes the ith gene of the chromosome cj, and rand (0, 1) is a binary
random function.

3 Variation of Gene Frequency

Gene frequency is widely used as a quantitative measure of genetic variation in
population genetics [9]. It also suffices to clue us in on the course of evolution
in GAs. In this section we analyze the variation of gene frequency caused by
OB-Scan.

Definition 3 (Gene Frequency). The gene frequency pk(α, t) is defined as
the proportion of allele α at locus k in the population at time t. Let C =
{c1, . . . , cm} be a population at time t and let Ck(α) = {c ∈ C | ck = α} be
the subset of population where chromosomes possess allele α at locus k. The
gene frequency

pk(α, t) def=
|Ck(α)|

|C| ,

where |C|and |Ck(α)| represent the cardinality of set C and Ck(α).

As above defined, chromosomes are represented as binary strings. Thus there
exists exactly two gene frequencies pk(1, t) and pk(0, t) with pk(1, t) = 1−pk(0, t)
for every locus k and time t. For simplicity, we refer to the gene frequency pk(1, t)
as pk(t) and refer to pk(0, t) as (1 − pk(t)).

Definition 4 (Variation of Gene Frequency in GAs). Let ps
k(t), px

k(t), pm
k (t)

be the gene frequencies after performing selection, crossover, and mutation at
generation t. The variation of gene frequency in GAs can be expressed as

pk(t) selection−−−−−→ ps
k(t) crossover−−−−−−→ px

k(t) mutation−−−−−−→ pm
k (t) survivor−−−−−→ pk(t + 1), (1)

To investigate genetic drift, random selection and no mutation is assumed. In
this paper we focus on generational GAs. As a result, the gene frequency in
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the process of GA is only affected by the sampling of random selection and the
process of crossover. These influences will be analyzed in Lemma 1. Incidentally,
the symbol pk(t) is referred to as pk while the indication of time t is not in effect.

Before conducting the analysis of OB-Scan, we introduce the incomplete beta
function for simplifying the expression of equations .

Definition 5 (Incomplete Beta Function). The incomplete beta function
is defined as

Ix(a, b) def=
1

Beta(a, b)

∫ x

0
ta−1(1 − t)b−1dt,

where a, b > 0 and Beta(a, b) is the beta function.

The incomplete beta function holds the following properties:

1. (26.5.24 [1]) For binomial distribution B(n, p),

n∑
i=a

B(i; n, p) = Ip(a, n − a + 1). (2)

2. (26.5.16 [1])

Ix(a, b) =
1

a · Beta(a, b)
xa(1 − x)b + Ix(a + 1, b). (3)

Using the above definition and properties, we embark on the analysis of OB-
Scan’s influence on gene frequency.

Lemma 1. Suppose we have the gene frequency pk of the population. The gene
frequency, denoted by pob

k , of the offspring reproduced by n-parent OB-Scan Xob
with n ∈ N>1 is

pob
k = Ipk

(a, a),

where Ip denotes the incomplete beta function and a =
⌈

n
2

⌉
.

Proof. Let X be the number of parents possessing the allele 1 at locus k among
n selected parents. Since the process of random selection is independent, it is
a Bernoulli process. Performing this selection n times, the number X holds a
binomial distribution with probability mass function

Pr(X = x) = B(x; n, pk) =
(

n

x

)
(pk)x (1 − pk)n−x

.

Let D1 denote the event that OB-Scan assigns the allele 1 to the offspring locus
k. According to Definition 2, OB-Scan yields

Pr(D1 | X = x) =

⎧⎪⎨⎪⎩
1 if x > n/2,

0 if x < n/2,
1
2 if x = n/2.
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For OB-Scan with an odd number of parents (n = 2a − 1 with a ∈ N>1), from
(2) we have

pob
k = Pr(D1) =

n∑
x=0

Pr(D1 | X = x) · Pr(X = x)

=
2a−1∑
x=a

B(x; 2a − 1, pk) = Ipk
(a, a).

Similarly, for OB-Scan with an even number of parents (n = 2a with a ∈ N),

pob
k =

2a∑
x=a+1

B(x; 2a, pk) +
1
2
B(a; 2a, pk)

= Ipk
(a, a) − 1

aBeta(a, a)
(pk)a (1 − pk)a +

1
2

(
2a

a

)
(pk)a (1 − pk)a

= Ipk
(a, a) +

[
− Γ(2a)

aΓ(a)Γ(a)
+

1
2

(2a)!
a!a!

]
(pk)a (1 − pk)a

= Ipk
(a, a).

��
Corollary 1 (Pairwise Equivalence). Let p

ob(n)
k be the gene frequency pob

k

corresponding to n-parent OB-Scan. For n ∈ 2N and n ≥ 4,

p
ob(n)
k = p

ob(n−1)
k .

Proof. Trivial (since
⌈

n
2

⌉
=

⌈
n−1

2

⌉
in Lemma 1). ��

4 Modeling with Markov Chains

Markov chains have been used to model the exact behavior of GAs [2,8,10] and
to analyze the convergence of GAs [4,11,13]. In this paper, we use Markov chains
to model the evolution of gene frequency. From this Markov model, the mean
convergence time can be derived.

In light of gene frequency, a GA can be viewed as a stochastic process ma-
nipulating the number of allele 1 (or 0) in the population: Let random variables
Gk(t) ∈ {0, 1, . . . , m} be the number of allele 1 at locus k at generation t. The
process of GAs on gene frequency can be represented as {Gk(t) : t ∈ Z∗}. Since
for every i0, i1, · · · , it+1 ∈ {0, 1, . . . , m} the process {Gk(t)} satisfies

Pr{Gk(t + 1) = it+1 | Gk(t) = it, Gk(t − 1) = it−1, . . . , Gk(0) = i0}
= Pr{Gk(t + 1) = it+1 | Gk(t) = it},

the process {Gk(t)} is a Markov chain. The formal definition of the Markov chain
for gene frequency is given as follows.
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Definition 6 (Markov Chain for Gene Frequency). In the Markov chain
{Gk(t)} for gene frequency at locus k ∈ {1, . . . , l} in GAs,

1. the state is defined as the number of allele 1 at locus k in the population and
the state space is thus {0, 1, . . . , m}. A state i in {Gk(t)} implies the gene
frequency at locus k is

pk =
i

m
.

2. The transition matrix of {Gk(t)} is defined as P def= (ρij), where ρij is the
transition probability of state i to state j:

ρij
def= Pr{Gk(t + 1) = j | Gk(t) = i}.

The previous section has shown how OB-Scan changes the gene frequency. From
those formulae, we derive the transition probabilities of the Markov chain {Gk(t)}
for the evolution of gene frequency in MPGAs.

Theorem 1. For a GA using random selection, n-parent OB-Scan, and no mu-
tation, the transition probability ρij of the Markov chain {Gk(t)} corresponding
to this GA is

ρij = B(j; m, p′k)

with
p′k = I i

m

(⌈n

2

⌉
,
⌈n

2

⌉)
.

Proof. The state i of transition probability ρij suggests the gene frequency pk =
i
m . Given this frequency pk, from Lemma 1 we can obtain the gene frequency p′k
of the offspring reproduced by a GA using random selection, n-parent OB-Scan,
and no mutation:

p′k = pob
k = I i

m

(⌈n

2

⌉
,
⌈n

2

⌉)
.

In generational GAs, population is completely replaced with the subpopulation,
consisting of m offspring reproduced by m times of selection-crossover-mutation
process. Since this process is independent, the number of allele 1 holds a binomial
distribution B(m, p′k). Therefore, the transition probability

ρij = Pr{Gk(t + 1) = j | Gk(t) = i}
= B(j; m, p′k).

��
For the Markov chain {Gk(t)}, of particular interest to us is, if at all, the conver-
gence of {Gk(t)} — at that time the population turns out to be either all-zeros
or all-ones at each locus. For this, first we introduce a special kind of Markov
chains, called absorbing Markov chains [3], which have this convergence prop-
erty, i.e. absorption. Next, we will prove the Markov chain corresponding to
the aforementioned GA belongs to such kind of Markov chains; that is to say,
the corresponding GA will converge. From the properties of absorbing Markov
chains we can further derive the mean convergence time.
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Definition 7 (Absorbing States).

1. The closed set Sc is a set of states whose transition probabilities ρij = 0 for
all i ∈ Sc, j /∈ Sc.

2. A state i is said to be absorbing if and only if ∃Sc : Sc = {i} ⇐⇒ ρii = 1.
3. A Markov chain with absorbing states is called an absorbing Markov chain.

Proposition 1. For the GA given in Theorem 1, its corresponding Markov
chain {Gk(t)} is an absorbing Markov chain with exactly two absorbing states:
0 and m.

Proof. According to the definition of absorption and Theorem 1, we know

{Gk(t)} is absorbing ⇐⇒ ∃i : ρii = 1 ⇐⇒ ∃i : B(i; m, p′k) = 1. (4)

The solutions of B(i; m, p′k) = 1 subject to p′k = I i
m

(⌈
n
2

⌉
,
⌈

n
2

⌉)
and n ∈ N>1 are

(i) i = 0 with p′k = 0 and (ii) i = m with p′k = 1. This leads to, for the Markov
chain {Gk(t)}

ρ00 = ρmm = 1 =⇒ {Gk(t)} is absorbing .

Thus we complete the proof that the Markov chain {Gk(t)} is absorbing with
exactly two absorbing states 0 and m. ��
The above proposition indicates the chain {Gk(t)} will get absorbed into state 0
or m. It means that the process of the predefined GA will ‘drift’ into all-zeros or
all-ones for each locus, that is, reaching convergence. In addition to the existence
of convergence, we are interested in the mean time to reach it. To compute the
mean time for a chain to get absorbed, we introduce the fundamental matrix [3]
and its related property below.

Definition 8 (Fundamental Matrix). For a Markov chain with b absorbing
states, the transition matrix can be rewritten as

P =
(

Ib 0
R Q

)
, (5)

where Ib is a b × b identity matrix. The fundamental matrix for this absorbing
Markov chain is defined as

F def= (I − Q)−1.

Theorem 2 ([12]). Let F be the fundamental matrix of an absorbing Markov
chain. The fundamental matrix F stands for the mean time τij that the process
spends at transient state j starting from transient state i.

Theorem 3 (The Mean Convergence Time of MPGA). Suppose we have
the GA given in Theorem 1. Let F = (τij) be the fundamental matrix of the
Markov chain {Gk(t)} corresponding to this GA. For some locus k ∈ {1, . . . , l},
given the initial state distribution π(0) = (π0(0), . . . , πm(0)), the mean conver-
gence time

τ =
m−1∑
i=1

m−1∑
j=1

πi(0)τij .
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Proof. Let A be the set of absorbing states in {Gk(t)}. Proposition 1 gives A ≡
{0, m}. According to Theorem 2, the fundamental matrix of {Gk(t)} represents
the mean time τij for i, j ∈ A. Hence, the mean time τi that the process spends
among transient states starting from transient state i can be derived by

τi =
∑
j∈A

τij .

Given the initial state distribution π(0), we have the mean convergence time

τ =
m−1∑
i=1

τi Pr(i | t = 0) =
m−1∑
i=1

τiπi(0) =
m−1∑
i=1

m−1∑
j=1

πi(0)τij . ��

5 Theoretical Results and Experimental Validation

This section demonstrates theoretical results obtained from the above theorems.
Moreover, we conduct experiments on single locus (l = 1) to verify these theoret-
ical results. The setting of MPGA used in our experiments is generational GA,
bit-string representation, random selection, and no mutation. Each experiment
setting includes 1000 independent runs.

Figure 2 compares the mean convergence time obtained from Theorem 3 and
from experiments. First, this figure shows that the theoretical and the exper-
imental results fit very well. In addition, it shows that for n ∈ 2N a MPGA
using n-parent OB-Scan performs correspondingly to that using (n−1)-parent
OB-Scan, which confirms the pairwise equivalence claimed in Corollary 1. Sec-
ond, this figure indicates the fact that, compared with two parents, using more
than two parents in OB-Scan causes a drastic decrease in mean convergence
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Fig. 2. Comparison of the theoretical (lines) and the experimental (symbols) mean
convergence time τ for n-parent OB-Scan and population size m
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Fig. 3. The progress of genetic drift of 2-parent OB-Scan (left) and 3-parent OB-Scan
(right) for population size m = 32 with initialization bias β = 1

32

time. Nonetheless, further raising parents yields a relatively small difference.
The mean convergence time (m = 256) for n = 2, for example, needs 351.55
generations while it takes only 10.17 generations for n = 3 (or 4) and 6.94 gener-
ations for n = 5 (or 6). This speedup in convergence reflects that OB-Scan with
more than two parents accelerates genetic drift.

Next, we examine the progress of genetic drift in case of a initialization
bias. We denote by β the bias of initial gene frequency to the allele 1. Figure
3 compares the progress of genetic drift of uniform crossover (i.e. 2-parent OB-
Scan) and 3-parent OB-Scan for population size m = 32 under initialization bias
β = 1

32 . As aforementioned, the genetic drift of 3-parent OB-Scan is much faster
than that of uniform crossover. Interestingly, the distribution of convergence
probability of uniform crossover differs from that of 3-parent OB-Scan either.
Asoh and Mühlenbein [2] have shown the convergence probability of uniform
crossover equals the initialization probability, which is reflected in Fig. 3. Yet,
adopting more parents does not follow this rule. The 3-parent OB-Scan gives
a probability (≈ 0.6) higher than the initialization probability (17

32 ≈ 0.53).
This outcome suggests that using more parents in OB-Scan will intensify the
preference of the initialization.

6 Conclusions

This paper presents an exact model for exploration of genetic drift in MPGAs.
First we analyze the gene frequency altered by OB-Scan. Based on gene fre-
quency, we model the behavior of MPGAs through Markov chains. The mean
convergence time is further derived from this model.

The theoretical results demonstrate that raising parents in OB-Scan shortens
the mean convergence time; that is, it accelerates genetic drift. This outcome not
only reconfirms Schippers’ claims about the genetic drift of scanning crossovers,
but also gives the expected time of convergence. In addition, our analysis reveals
the pairwise equivalence in OB-Scan: n-parent OB-Scan performs analogously
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with (n−1)-parent OB-Scan for n ∈ 2N. Moreover, the progress of genetic drift
under initialization bias suggests raising parents in OB-Scan will intensify the
preference of initialization for allele 0 or 1. The good fit between theoretical and
experimental results validates our theoretical arguments and the capability of
the proposed model.

References

1. M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Dover Publications, 1972. ninth
Dover printing.

2. H. Asoh and H. Mühlenbein. On the mean convergence time of evolutionary algo-
rithms without selection and mutation. In Parallel Problem Solving from Nature –
PPSN III, volume 866 of LNCS, pages 88–97, Berlin, 1994. Springer.
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Abstract. An evolutionary reinforcement-learning algorithm, the operation of 
which was not associated with an optimality condition, was instantiated in an 
artificial organism. The algorithm caused the organism’s behavior to evolve in 
response to selection pressure applied by reinforcement from the environment.  
The resulting behavior was consistent with the well-established quantitative law 
of effect, which asserts that the time rate of a behavior is a hyperbolic function 
of the time rate of reinforcement obtained for the behavior. The high-order, 
steady-state, hyperbolic relationship between behavior and reinforcement ex-
hibited by the artificial organism did not depend on specific qualitative or quan-
titative features of the evolutionary algorithm, and it described the organism’s 
behavior significantly better than other, similar, function forms. This evolution-
ary algorithm is a good candidate for a dynamics of live behavior, and it might 
be a useful building block for more complex artificial organisms. 

1     Background: Matching Theory and Reinforcement Learning 

During the past three decades, the mathematical description of behavior-environment 
relationships has become an important part of the experimental analysis of behavior. 
Perhaps the most widely studied and successful mathematical work in behavior analy-
sis is the family of equations known as matching theory [1]. In dozens of experiments 
with many species, including humans, matching theory has been shown to accurately 
describe the relationship between properties of behavior and properties of a variety of 
psychologically significant environments. The most fundamental equation of match-
ing theory is its hyperbolic rate equation, which is often referred to as the quantitative 
law of effect. 
    As is well known, E. L. Thorndike (c. 1911) discovered the law of effect, or princi-
ple of reinforcement, in his famous puzzle-box experiments. B. F. Skinner (c. 1938) 
later gave the law of effect a stochastic cast by stating that positive reinforcement in-
creased the probability of a behavior’s future occurrence. In 1961, Skinner’s student, 
R. J. Herrnstein, published an influential paper [3] in which he reported that pigeons’ 
rates of choosing various alternatives (i.e., keys to peck) in a multi-alternative  
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environment was governed with a remarkable degree of accuracy and precision by a 
simple algebraic equation that related the rate of key pecking on the various alterna-
tives to the rate of reinforcement obtained for pecking on those alternatives. This 
equation came to be known as the matching law. From this equation, Herrnstein [4] 
derived the hyperbolic rate equation in 1970, and since then a great deal of experi-
mental and mathematical research on matching theory has expanded its scope to many 
species, behaviors and reinforcers, and to a variety of experimental and naturalistic 
environments [1]. 

The hyperbolic rate equation, or quantitative law of effect, states how the absolute 
rate of a behavior, R, in a given environment is governed by the absolute rate of rein-
forcement, r, obtained for that behavior, 

,
err

kr
R

+
=  (1) 

where k and re are parameters of the hyperbola. The parameter, k, is the y-asymptote 
of the hyperbola, and re determines its curvature, that is, how rapidly the function ap-
proaches its asymptote. As interpreted by matching theory, k is related to properties of 
behavior such as the amount of effort the behavior requires, and re is related to addi-
tional sources of reinforcement that may be available in the environment. In behavior 
analysis, Equation 1 is now recognized as a fundamental statement of the way rein-
forcement governs behavior. 

An important feature of Equation 1 is that it describes behavior in the steady state, 
when it is in equilibrium with conditions in the environment. Each point on the hy-
perbola represents, for a particular behavior and a particular reinforcer, the average 
equilibrium response rate that is supported by an average reinforcement rate. In most 
experimental situations, R >> r, in other words, relatively few instances of the behav-
ior are reinforced. The problem of how behavior gets to the steady state has been  
pursued vigorously, but as yet has not yielded a generally accepted mathematical dy-
namics. As might be supposed, one of the most popular approaches to this problem is 
based on optimality theory [9]. Another approach is based on linear filtering [7], and 
very recent work has made use of computational modeling based on an evolutionary 
algorithm [6]. The computational approach to behavioral dynamics, which dovetails 
with work on reinforcement learning in artificial life and related disciplines, is the 
subject of this article. 

Reinforcement learning algorithms in machine learning and artificial intelligence 
fall into two broad categories. Algorithms in one category deal with the expected util-
ity or value of different courses of action [5, 12]. Temporal-difference learning is an 
example of this type of algorithm. Utility-based algorithms have been applied to many 
problems, including some that are relevant to the behavior of live organisms, such as 
chaining [13], conditioned reinforcement [13], and multi-alternative responding that is 
consistent with Herrnstein’s original matching equation [2]. The second category of 
reinforcement learning algorithms is concerned with finding the best action or policy 
in a particular set of circumstances [8]. These algorithms usually entail evolutionary 
principles. Action-based evolutionary algorithms have also been widely applied, in-
cluding to problems that are relevant to the behavior of live organisms, such as forag-
ing in multi-alternative environments, which can also be described by the original 
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matching equation [10-11]. Virtually all of the existing utility-based and action-based 
reinforcement learning algorithms are designed to solve an optimality problem, that 
is, they work either by attempting to maximize the expected utility of a sequence of 
actions, or by attempting to maximize in some way the overall outcomes of an agent’s 
actions. 

The reinforcement learning algorithm that will be discussed in this article falls into 
the second category, although it is not a typical example of this category. It is an evo-
lutionary algorithm that is not, however, designed to solve an optimality problem.  
Instead, it is simply used as the dynamic mechanism of an artificial organism’s behav-
ior. The organism’s behavior evolves through a process of selection, reproduction and 
mutation over many generations, or time steps, where selection pressure is applied by 
the environment in the form of reinforcing stimuli. The behavior reaches steady states 
in response to constant time-averaged reinforcement rate inputs, and these steady 
states can be compared to the requirements of Equation 1. The questions of interest in 
this research are whether the behavior of an artificial organism that operates accord-
ing to evolutionary principles conforms to Equation 1, and if so, whether this confor-
mance depends on specific implementations of the evolutionary principles. 

2     The Artificial Organism and Evolutionary Algorithm 

In this section, the structure and operation of the artificial organism will be described, 
along with the components of the evolutionary algorithm that constitutes its dynam-
ics.  

2.1   The Artificial Organism 

The artificial organism consists of 100 10-bit strings that represent integers ranging 
from 0 through 1023. This collection of bit strings constitutes the organism’s reper-
toire of behaviors or actions. The behaviors can be sorted into classes, called operants, 
based on how they act upon the environment. A rat’s or human’s lever press in an ex-
perimental chamber, for example, is an operant defined by a switch closure. Individ-
ual members of this class include a lever press with the right limb, a lever press with 
the left limb, a high-force press that exceeds the force required for switch closure, and 
so on. Partitioning the 100 bit strings into operant classes sets the baseline structure 
and operation of the artificial organism. For our purposes we will define just two 
classes, one consisting of the 41 integers from 0 through 40, and one consisting of the 
remaining 983 integers. The first behavioral class will be designated the target oper-
ant, analogous to a lever press. The second behavioral class represents doing some-
thing else. 

The artificial organism is initialized with 100 10-bit strings selected at random 
from the 1024 possible strings. The organism’s behavior at each time step is deter-
mined by the relative frequencies with which the integer values of these strings fall 
into the different operant classes. The relative frequencies constitute the probabilities 
that the organism will emit a behavior from each class, and these probabilities are 
used to determine which operant the organism emits at each moment. 
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2.2   Fitness 

When an operant is reinforced, it is identified as fit with respect to conditions in the 
environment. Two definitions of fitness will be considered. For midpoint fitness, the 
integer midpoint of the reinforced class of behavior is taken as the fitness criterion, 
that is, it represents the fittest individual behavior. For specific individual fitness, the 
fitness criterion is the integer value of a specific individual behavior selected from the 
reinforced class, based on the relative frequencies of the individual members of that 
class. In both cases, the fitness of each of the 100 bit strings that constitute the organ-
ism’s behavioral repertoire is defined as the absolute value of the difference between 
that bit string’s integer value and the fitness criterion. Note that this method of defin-
ing fitness means that lower fitness values are associated with fitter individual behav-
iors. 

2.3   Parents 

Following a reinforcement, parents are chosen for mating on the basis of their fitness 
by selecting fitness values from a uniform fitness density function, 
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or an exponential fitness density function, 
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For all functions, p(x) is the probability density associated with a fitness value, x, and 
μ is the mean of the density function. These fitness density functions are completely 
determined by their means. They associate higher probability densities with lower fit-
ness values, and hence with fitter individual behaviors. A general method for con-
structing functions of this type is given in [6]. 

Following a reinforcement, a father behavior is chosen from the repertoire by 
drawing a fitness value at random from one of the fitness density functions, and then 
searching the organism’s repertoire for a behavior with that fitness. If none is found, 
then another fitness value is drawn at random from the fitness density function, and so 
on, until a father behavior is found. A distinct mother behavior is obtained in the same 
way.  

In the event that reinforcement does not occur at a given time step, parents are se-
lected at random from the organism’s repertoire. In either case, 100 sets of parents are 
chosen, each of which produces one child behavior. The resulting set of 100 child be-
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haviors then replaces the artificial organism’s behavioral repertoire, and a behavior 
from this repertoire is chosen for emission using the method described earlier. 

2.4   Reproduction 

Two types of reproduction will be considered. In bitwise reproduction, each bit in a 
child’s bit string is set equal to the corresponding bit either from the father’s bit string 
or from the mother’s bit string, each with a probability of 0.5. In crossover reproduc-
tion, the parents’ bit strings are sliced at a random location and then combined by 
crossing over. One of the resulting bit strings is chosen at random as the child. 

2.5   Mutation 

After a new generation of behaviors has been produced, a fixed percentage of the be-
haviors undergoes mutation, that is, the behaviors’ integer values are changed. The 
individual behaviors that undergo mutation are chosen at random from the organism’s 
repertoire. Three methods of mutation will be considered. In Gaussian mutation, the 
integer value of the chosen behavior is taken as the mean of a Gaussian distribution of 
integers with a specific standard deviation. A value chosen at random from this distri-
bution is then taken as the mutant. Should the mutant fall outside the range of accept-
able values (0-1023), it is wrapped to the other end of the range. In bit-flip mutation, 
one bit from the chosen behavior’s bit string, selected at random, is changed. In ran-
dom individual mutation, the integer value of the chosen behavior is replaced with a 
value selected at random from the range, 0-1023. 

3   Experimental Studies of the Artificial Organism’s Behavior  

Extensive parametric studies of the artificial organism’s behavior have been con-
ducted [6], and will be summarized here. The purpose of these studies was to deter-
mine whether the behavior of the artificial organism conformed to Equation 1, and if 
so, whether this conformance depended on specific implementations of the rules of 
the evolutionary algorithm. In all experiments, reinforcement was set up, or made 
available, at random times following the delivery of the previous reinforcement. Once 
reinforcement was made available, it was delivered as soon as the organism emitted 
the target operant. Environments that work in this way are said to arrange random in-
terval (RI) schedules of reinforcement. An RI schedule is characterized by the mean 
of its intervals. Evidently, an RI schedule with a small mean arranges frequent rein-
forcement for the target operant, whereas an RI schedule with a large mean arranges 
infrequent reinforcement.  

In the three series of experiments to be described in this section, the mean of the RI 
schedules ranged from 1 to 200 time ticks. A single experiment consisted of arranging 
a series of approximately 10 RI schedules, each with a different mean, one at a time. 
Each schedule remained in effect for 5,000 to 45,000 generations, or time steps, after 
which the next schedule was arranged, and so on. Each schedule yielded an average 
rate of emission of the target operant, R, and an average rate of reinforcement, r. 

At the beginning of the experiment, an initial interval from the RI schedule was 
started, and the organism emitted its first behavior according to the method described 
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earlier. If the emitted behavior came from the target class, and if its latency since the 
last reinforcement (or since the start of the session in this case) equaled or exceeded 
the scheduled random interval, then a reinforcer was delivered. A new generation of 
behaviors was then produced using a fitness density function, and a new interval from 
the RI schedule was started. The organism then emitted its second behavior, and so 
on. If at any time a target operant was emitted but not reinforced, or if the emitted be-
havior did not come from the target class, then a new generation of behavior was pro-
duced from random parents, after which the organism emitted its next behavior, and 
so on. 

3.1   Parametric Study of the Form and Mean of the Fitness Density Function 

Five experiments were conducted using a uniform fitness density function, five were 
conducted using a linear fitness density function, and five were conducted using an 
exponential fitness density function. The five experiments for each function form ar-
ranged mean fitnesses (μ in Equations 2-4) ranging from 10 to 200. In all experiments 
the midpoint fitness definition and bitwise reproduction method were used. Gaussian 
mutation with a standard deviation of 25 was used to produce mutants of 3% of each 
generation’s behaviors. 

The behavior of the artificial organism in these experiments reached a dynamic 
equilibrium with the RI schedule such that the momentary rate of the organism’s be-
havior varied around a stationary mean value. Reinforcements tended to pull the or-
ganism’s population of bit strings into the target class, while nonreinforcement tended 
to pull the population of bit strings out of the target class and return the organism to 
its baseline state. 

An example of the steady-state behavior of the artificial organism over the range of 
RI schedules used in these experiments is shown in Figure 1. The data in the left panel 
were generated using a linear fitness density function with μ = 40. Data are shown 
from only the last 500-generation block, and for only a few of the RI schedules used 
in the experiment. The smooth curve is the best fitting hyperbola (Equation 1), which 
accounts for 98% of the variance in the target behavior. The outcome shown in this 
panel is typical of experiments with live organisms. It also may be worth noting that 
the method of arranging RI schedules and of averaging response and reinforcement 
rates used in these experiments are identical to the methods used in experiments with 
live organisms. Data in the right panel of Figure 1 were generated using an exponen-
tial fitness density function with μ = 40. The data were averaged over approximately 
40 500-generation blocks and are shown for all the RI schedules used in the experi-
ment. The smooth curve is the best fitting hyperbola, which accounts for more than 
99% of the variance in the target behavior. 

The outcome shown in the right panel of Figure 1 is typical of the outcomes of all 
experiments in this series. When the data were averaged over 5,000 to 45,000 genera-
tions, which reduced the standard errors of these means to very small values, Equation 
1 accounted for essentially all the variance (> 99% in most cases) in the artificial or-
ganism’s target behavior, and this was the case regardless of the form or mean of the 
fitness density function used to generate the data. 
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Fig. 1. Target behavior emissions per 500-generation block plotted as a function of contingent 
reinforcements per 500-generation block. Smooth curves are best fitting hyperbolas (Equation 
1). The left panel, which shows data from only the last 500-generation block, is similar to the 
outcome of an experiment with a live organism. The right panel shows data for more RI sched-
ules (using a different fitness density function), and averaged over about 40 500-generation 
blocks. 

The hyperbolic form of the function relating the rate of the target behavior and the 
rate of reinforcement obtained for the target behavior was further tested by comparing 
it to fits of a two-parameter asymptotic exponential, a two-parameter asymptotic 
power function, and a two-parameter ramp function. The latter is a piecewise  
continuous function consisting of a line that increases from the origin, followed by a 
constant value that begins at some positive reinforcement rate. This is arguably the 
simplest function form that can describe data that ascend from the origin and then 
level off. The asymptotic exponential and asymptotic power functions have differen-
tial properties similar to those of a hyperbola. 

The four function forms (including the hyperbola) were compared on the basis of 
the percentage of variance they accounted for, and in terms of the randomness of the 
residuals left by their least squares fits. Based on these criteria, the hyperbola pro-
vided a better fit to the data from the fifteen experiments in this series than did the 
other function forms and it accounted for essentially all the variance in the data. The 
other forms accounted for significantly less variance, and left residuals that showed 
significantly more deviations from randomness. These results indicate that the  
artificial organism’s steady-state behavior was consistent with the quantitative law of 
effect, and that the hyperbolic form of the relationship between target behavior  
frequency and reinforcement frequency was both unique and robust, that is, it  
provided a better description of the data than other, similar, function forms, and did 
not depend on the form or mean of the fitness density function. 

3.2   Study of Variations in the Components of the Evolutionary Algorithm 

In a series of twelve experiments, different combinations of fitness definition, repro-
duction method, and mutation method, along with various fitness density function 
forms, were studied. Specific component variations tested included the specific  
individual fitness definition, crossover reproduction, bit-flip mutation, and random 
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individual mutation. Twelve combinations of these component variations, along with 
the variations used in the first series of experiments were tested. 

Least squares fits of a hyperbola to the data from these experiments accounted for 
essentially all the variance of the target behavior. The three alternative function forms 
were also fitted to the data and were found to account for significantly less variance 
than the hyperbola, and to leave residuals showing significantly more deviations from 
randomness. These results indicate that the hyperbolic relationship between target be-
havior frequency and reinforcement frequency did not depend on any specific defini-
tion of fitness, or on any specific implementation of reproduction or mutation, or on 
any specific combination of these component variations, although only a subset of the 
possible combinations of component variations was tested. 

3.3   Parametric Study of Mutation Rate 

Using the same component variations as in the first series of experiments, together 
with a linear fitness density function, all possible combinations of five fitness function 
means (10, 20, 40, 100, and 200) and six mutation rates (1%, 3%, 5%, 10%, and 20%) 
were studied in thirty experiments. 

Again, least squares fits of a hyperbola accounted for essentially all the variance in 
the target behavior for these thirty data sets, and the three alternative function forms 
accounted for significantly less variance and left residuals that were significantly less 
random than the hyperbola. These results indicate that the hyperbolic form of the be-
havior-reinforcement relationship does not depend on the mutation rate. 

Data from these experiments also permit a parametric examination of the effects of 
mean parental fitness and mutation rate on the parameters, k and re, of the hyperbola. 
Both were affected by the two variables, but k was much more strongly affected by 
mean parental fitness, whereas re was much more strongly affected by mutation rate. 
Recall that lower mean parental fitnesses cause fitter parents to be selected for mat-
ing. The results of these experiments showed that the fitter the parents selected for 
mating, the higher the asymptote of the hyperbola. Put another way, a given rein-
forcement rate, r, generated a higher response rate, R, the fitter the parents selected for 
mating. This effect is analogous to the effect of reinforcer magnitude on the behavior 
of live organisms. Hence larger reinforcer magnitudes can be represented by lower 
mean parental fitnesses in the evolutionary algorithm. 

The principal effect of higher mutation rates was to increase the value of re and 
hence decrease the curvature of the hyperbola. Put another way, to achieve a given re-
sponse rate, R, a greater reinforcement rate, r, was required the greater the mutation 
rate. Not surprisingly, then, mutation diluted the effect of reinforcement.  

4   Conclusion and Future Directions 

An evolutionary algorithm, the operation of which was not associated with an opti-
mality condition, was used as a behavioral mechanism for an artificial organism, and 
was shown to generate steady-state behavior consistent with the well-established 
quantitative law of effect (Equation 1). Three series of experiments demonstrated that 
this result was robust and unique. The result was robust inasmuch as it was independ-
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ent of the specific methods of implementing the rules of the evolutionary algorithm. 
Evidently, robust outcomes of evolutionary algorithms for reinforcement learning are 
not unusual [8]. The result was unique inasmuch as a hyperbola described the organ-
ism’s steady-state behavior better than other, similar, function forms.  

While steady-state behavior was the focus of this research, the evolutionary  
algorithm used in these experiments also gives an artificial organism the ability to 
adapt continuously to a dynamic environment by tracking changes in reinforcement 
contingencies. In the absence of reinforcement, the organism’s repertoire reverts to its 
baseline state over a number of generations. The extent to which the dynamics of the 
evolutionary algorithm, such as its time course, correspond to the dynamics of the  
behavior of live organisms remains a topic for future research. 

The state space of the artificial organism used in these experiments was very sim-
ple, which reflects its origin as an analog of the basic unit of behavioral experimenta-
tion, namely, a single organism in a restricted environment that interacts with only 
one class of behavior. Indeed, the artificial organism operated in just one state, from 
which it could emit one of only two classes of behavior. This restricted repertoire is 
much simpler than the policies that are often studied in research on utility-based and 
action-based reinforcement learning [5, 8]. But just as the basic laboratory preparation 
is a building block for more complicated experimental environments, the evolutionary 
algorithm described here might prove useful as a building block for dealing with more 
complicated state spaces.  

In the experimental analysis of behavior, a state space is characterized by what is 
called a discriminative stimulus, and behavior associated with that (often complex) 
stimulus is said to be under its control or, more generally, under stimulus control. 
Mapping behavior to discriminative stimuli in behavior analysis is analogous to map-
ping actions to states in artificial intelligence research, although the former mapping 
is always probabilistic. A sequence of mappings between discriminative stimuli and 
behavior constitutes what would be referred to in artificial intelligence research as a 
policy. The work described in this article dealt with a single mapping of one state to a 
set (with only two members) of probabilistic actions. There are many approaches to 
building a more complicated policy. One is to switch from 10-character bit strings to 
100-character integer strings, each of which represents the artificial organism’s be-
havioral repertoire in the presence of a different discriminative stimulus. The reper-
toire represented by each integer string would evolve (presumably in conformance 
with Equation 1) in the presence of its discriminative stimulus, and the collection of 
integer strings at any moment would constitute the organism’s policy at that moment. 
This approach would engage the problem of credit assignment inasmuch as rein-
forcement could be delivered after a sequence of actions. Methods of dealing with this 
problem include using chaining mechanisms and conditioned reinforcement, an ap-
proach taken by Touretzky and Saksida [13], or using a delay-of-reinforcement gradi-
ent that is informed by findings from live organisms. 

This research lies at the interface of the experimental analysis of behavior and arti-
ficial life. The evolutionary algorithm described in this article is a good candidate for 
a dynamics of live behavior, and it might be a useful building block for more  
complex artificial organisms that have the ability to adapt continuously to complex  
environments. 
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Abstract. In this paper we investigate the evolutionary pressures influ-
encing genome size in artificial organisms. These were designed with three
organisation levels (genome, proteome, phenotype) and are submitted to
local mutations as well as rearrangements of the genomic structure. Ex-
periments with various per-locus mutation rates show that the genome
size always stabilises, although the fitness computation does not penalise
genome length. The equilibrium value is closely dependent on the muta-
tional pressure, resulting in a constant genome-wide mutation rate and a
constant average impact of rearrangements. Genome size therefore self-
adapts to the variation intensity, reflecting a balance between at least
two pressures: evolving more and more complex functions with more
and more genes, and preserving genome robustness by keeping it small.

1 Introduction

As Maynard-Smith pointed out in 1982, the evolution of large-scale genomic
features is “one of the most difficult, perhaps the most difficult, question in
evolutionary biology” [1]. Since then, molecular biology provided us with huge
data about individual genes. Still, little is known about the forces that shape the
global structure of the inheritable information in living systems. Experimental
evolution of natural systems like cultivable and fast-replicating bacteria takes
years [2]. Artificial organisms, by allowing for rapid experiments and parameter
control, can help understanding the basic processes at work in evolving systems.

Although genetic algorithms proved useful to study population-level prob-
lematics, they cannot capture the genome dynamics. Their genotype-phenotype
map, where the contribution of each gene relies on its locus, requires both gene
number and gene order to be predefined. This forbids changes in genome length
and leads to a frozen gene organisation. Pioneering work aiming at removing
these constraints [3,4] kept a fixed phenotypic structure, with a given number
of functions, each of them having to be performed by one gene. They therefore
needed an external daemon to choose the expressed genes.

Natural genomes owe their degrees of freedom to a flexible phenotypic struc-
ture and to the existence of an intermediate level between the genotype and the
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phenotype: the set of proteins, whose interactions ensure the survival and repro-
duction functions. Therefore, to study the evolution of the genomic structure,
we introduced such a level into artificial organisms competing for reproduction.
Each of them owns a genome encoding basic functional elements, whose interac-
tions produce the phenotype. Both the genomic and the functional structures are
evolvable, by the means of punctual mutations and large-scale rearrangements
of the genetic material.

Section 2 presents this platform, called aevol, notably detailing how it enables
us to test self-adaptation hypothesis. In section 3, we focus on the experiments
we carried out to test the influence of the mutational pressure on genome size,
and we discuss these results in section 4. We conclude in section 5.

2 Designing Organisms with Flexible Genomic and
Functional Structures

The aevol system aims at giving as much freedom as possible to let the differ-
ent levels self-organise. To reach this objective, some features of natural genetic
systems were reproduced: (i) the genome is made up of a variable number of
genes separated by non-coding sequences, (ii) mutations can modify the ge-
nomic structure, (iii) the expression level and the function of a gene are not
predefined, and they do not depend on its position but on the local sequence,
and (iv) the phenotype results from the interactions of basic functional elements
encoded by genes. The remainder of this section describes how these features
are implemented.

2.1 From Genotype to Phenotype

As shown by Figure 1, the genome is a circular, double-strand binary string,
where 0 and 1 are the complementary bases. Not all the positions are functional:
coding sequences (genes) are detected by transcription-translation process in-
spired by bacterial genetics. Genes are then translated into basic functional
elements (proteins). These elementary functions are combined together to get
the global abilities of the organism (phenotype).

Transcription. Sequences called promoters and terminators define both the
boundaries and the expression level of the transcribed regions. A preliminary
study showed that long and frequent terminators associated with rare promot-
ers (i) allow for the emergence of coding sequences, and (ii) limit the overlaps
of transcribed regions, thereby giving more freedom for gene rearrangements.
Thus, a long consensus sequence was defined to detect promoters (sequences
whose Hamming distance with the consensus is d ≤ dmax), whereas terminators
are located using their secondary structure (abcd***d̄c̄b̄ā). The expression l level
of a transcribed region depends on the similarity between its promoter and the
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Fig. 1. Overview of the phenotype computation

consensus 1: l = 1 − d
dmax+1 . The following experiments were carried out with a

consensus of 28 base pairs (bp) and dmax = 4.

Translation. During the translation phase, transcribed regions are searched
for coding sequences: once a start signal is found, the subsequent positions are
read three by three (codon by codon) until a stop signal is reached. The start
signal is made up of a Shine-Dalgarno-like sequence followed by the start codon
(011011***000), and the stop signal is simply the stop codon (001). Indeed,
a longer start signal limits the overlaps between coding sequences, and hence
the rigidity of the gene organisation. Once the coding sequences are located,
an artificial genetic code is used to translate them into proteins, able to either
activate or inhibit processes.

These functional capabilities are expressed within a fuzzy logic framework:
the set of processes that can be achieved in our artificial world is an interval of
R ([0, 1] here), and each protein is represented by the fuzzy subset of processes
it is involved in. This fuzzy formalism enables us to assign a non-null possibility
degree to each process the protein inhibits or contributes to. The action of a
protein can therefore be described by its bell-shaped possibility distribution,
approximated by piecewise linear distributions (Figure 1).

Three parameters are necessary to describe such a distribution: its mean m,
its width w, and its maximal height H . The main process m and the interac-
tion potential w are supposed to depend on the coding sequence only. But the
maximal possibility degree H is limited both by the intrinsic efficiency h of the
protein and by the expression level l of the region. The genetic code enables us
to assign the contribution of each codon to the value of m, w or h, via a Gray

1 This simplistic notion of protein quantity was not introduced to model the com-
plex regulation processes at work in living organisms, but rather to allow new gene
copies to reduce temporarily their phenotypic contribution, thereby allowing their
sequences to diverge.
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encoding (Figure 1). The sign of h determines the activator or inhibitor nature
of the protein, and its absolute value is used to compute H = l|h|.

Functional Interactions. A given process may be achieved by several proteins
and inhibited by several others. Therefore, the fuzzy set of processes the organism
is able to perform contains the processes that are activated and not inhibited
by its proteins. If Ai is the set of the i-th activator protein and Ij the set of the
j-th inhibitor protein, the set of the organism is P = (∪iAi) ∩ (∪jIj), and its
phenotype is the possibility distribution of P . Lukasiewicz fuzzy operators are
used to perform this combination.

2.2 Selection

The environment is also represented by a fuzzy subset of processes, whose pos-
sibility distribution is arbitrarily defined. An organism is well adapted if it
performs the processes that are feasible in the environment. The higher the
gap g =

∫ 1
0 |E(x) − P (x)|dx between the environmental distribution E and

the phenotype P of an organism, the lower its offspring size. The environ-
mental distribution E we used for the following experiments is shown by Fig-
ure 2(b).

The population management is similar to the classical methods used in ge-
netic algorithms. The population size is fixed, and at each time step, all parents
are replaced by the offspring. The fitnesses are assigned by linear ranking of g.
The actual selection is done by stochastic sampling with replacement.

2.3 Variation Operators

The genome of each selected organism is replicated with eventual random er-
rors, affecting a few positions (local mutations) or huge genomic segments (rear-
rangements), regardless of their function. Genetic exchange between organisms
(crossover) is also implemented, but was not used in the following experiments.

Three types of local mutations can be performed at a given position: “switch-
ing” its value, inserting or deleting one to six bp. For each mutation type, the
number of events per replication follows the binomial law B(L, μ), where L is
the genome length and μ the per-locus mutation rate.

Large-scale rearrangements involve the choice of a genomic segment to be
deleted, duplicated, translocated (moved) or inverted. The numbers of events
per replication also follow binomial laws. The boundaries of the segment and
the eventual insertion point are chosen with a uniform law, edge effects being
avoided by the circularity of the genome.

2.4 Properties of the System

The proteome level we introduced removes the rigidity of the functional struc-
ture: a given process may be achieved by a variable number of functional ele-
ments. This in turn removes the rigidity of the genomic organisation; the genome
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(a) Evolution of the average gap ḡ
between the phenotypes and the en-
vironmental distribution, for vari-
ous per-locus mutation rates (μ).

(b) Best organism after 30000 generations, ob-
tained with μ = 10−4 (left) or μ = 5.10−6 (right)
for each mutation type. The arrows represent
the genes, the black curve the phenotype, and
the grey area the environmental distribution E.

Fig. 2. While organisms adapt to their environment, a specific genomic organisation
emerges, depending on the mutation rates

can undergo rearrangements and indels without preventing phenotype computa-
tion. Genome length, gene number and gene order are therefore free to change.

This property enables us to test evolutionary hypothesis involving genome
self-organisation through and according to the selection and the variation mech-
anisms. Indeed, organisms are selected on the basis on their phenotype only, in-
dependently of their genomic features: different genome lengths or different gene
orders can give the same phenotype, and hence the same fitness. Nevertheless,
while the organisms adapt to their environment (Figure 2(a)), some reproducible
genomic and functional structures emerge in the long term, for each parameter
set. Figure 2(b) shows two different genomic structures, obtained with the same
selection method but with different mutation rates.

3 Experimenting the Influence of the Mutational
Pressure on Genome Size

We used this system to investigate specifically the evolutive pressures acting on
genome size. In the experiments we carried out, the seven possible mutations had
the same per-locus rate μ, ranging from 5.10−6 to 5.10−4 mutations per bp. For
each mutation rate, we let five asexual populations of 1000 artificial organisms
evolve independently during 30000 generations, within the steady environment
shown in Figure 2(b). The populations were seeded with random genomes of
5000 bp.
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Fig. 3. Genome size stabilises at a value that depends on the mutation rate μ

3.1 Stability of Genome Size, Convergence on Local Optima

The initial genomes generally do not contain any gene, but after a few genera-
tions, local mutations allow a first gene to be expressed. If the set of processes it
achieves are feasible in the environment, this first gene is maintained and quickly
duplicated. The actions of all copies are summed up, and the organism’s abilities
eventually exceed the environment’s, which is deleterious in our model. Some of
the copies are subsequently lost, while other copies diverge: local changes in their
coding sequences modify the average process m they are involved in, allowing
the corresponding proteins to move along the functional axis and achieve new
processes.

To close the gap with the environmental distribution, the organisms could
then adapt the efficiency or the expression level of the genes they already own.
Yet a finer tuning could be achieved by acquiring more and more balancing
inhibitor/activator genes. However, Figure 3 shows that after a short phase of
massive gene acquisition, the genome size reaches an equilibrium, and so the
fitness does, trapping the populations on local optima (Figure 2(a)).

When the phenotype is close to the environmental distribution, duplicating a
gene becomes more deleterious, which undoubtedly slows down the gene acquisi-
tion. Indeed, after the first phase of massive gene acquisition by duplications, the
fixation rates of both duplications and large deletions drop to 0.01-0.02 events
per generation, whereas other mutation types all stabilise at a higher value, up
to 0.15 events per generation, depending on the mutational pressure μ. However,
it is still theoretically possible to create a gene “from scratch” or to duplicate a
coding sequence without its promoter and letting it diverge before expressing it.
Therefore, the genome should continue to grow, although more and more slowly.

Moreover, the deleterious effect of the duplications cannot explain simply
that the higher the mutation rates, the smaller the equilibrium genome size,
and the lower the average fitness: high mutation rates prevent the organisms
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from developing complex, highly adapted functions. Therefore, surprisingly, be-
ing trapped on local optima is not the consequence of too low a mutation rate.
On the contrary, it seems to come from the global pressure of the mutation
events on the genome structure, as we shall argue in the following sections.

3.2 Convergence Towards a Constant Genome-Wide Error Rate

If the genome size L varies, then the expected number of mutations per replica-
tion M = 7μL changes too. Now, while a low M prevents the exploration of new
solutions, a high M endangers the robustness of the current one. The existence
of a genomic mutation rate, named error threshold, “beyond which structures
created by an evolutionary process are destroyed more frequently than selection
can reproduce them” [5] was demonstrated both in quasi-species models [6] and
in genetic algorithms [5]. However, for both models, the genome size is gener-
ally fixed, and the mutation rate must be carefully chosen to balance efficiently
exploitation and exploration.

Figure 4(a) shows that in our experiments, where genome size is free to vary,
the equilibrium size is such that M takes the same value (around 0.8 mutations
per replication), regardless of the mutational pressure μ. The equilibrium size can
therefore be predicted from μ with an hyperbolic relation (Figure 3): L � 0.8

7μ .
Thus, the genome size stability reflects a compromise between - at least - two

contradictory pressures: on the one hand, improving the phenotype with more
and more genes, and on the other hand, resisting mutational pressure by keeping
genome size small.

3.3 Convergence Towards a Constant Impact of Rearrangements

The probability that during a replication, a given position α is affected by a local
mutation is the same (μ) whatever the genome size. On the contrary, the average
impact of a rearrangement does increase with genome length L. Indeed, for a
given rearrangement type, say inversion, this impact can be estimated by the
probability π for α to be affected by at least one of the inversions performed dur-
ing a replication. This probability can be approximated by π = 1−(

1 − μL+1
2L

)L

under the hypothesis that the successive rearrangements are independent.
Figure 4(b) shows that in our experiments the genome size spontaneously

converges towards the same value of π (around 0.05): the genome size is such
that the rearrangement phase of the replication keeps the same average impact
when μ changes. Besides, figure 4(b) shows that the lower μ is, the weaker the
slope of π is, which could explain the high run-to-run variability in genome size
observed for the low mutation rates (Figure 3).

3.4 Changing Mutation Rates During the Evolution

To confirm these results, and to disentangle the effects of small mutations and
rearrangements, we carried out additional experiments: we let a population of
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(a) The genome-wide error rate M
quickly stabilises at the same value,
whatever the per-locus error rate.

(b) Theoretical relation between π and
L. Black points locate the experimental
genome sizes.

Fig. 4. A need for robustness could explain the limitation of genome size

artificial organisms evolve during 30000 generations with μ = 10−5. Then we
changed the rate of the small mutations and/or the rate of the rearrangements,
and let the evolution go on.

When all mutation rates are increased, the acquired genomic structure is
quickly displaced by a new, shorter one, more robust but less fit. This shows
that the shrinkage effect can be surprisingly strong, compared to the pressure
for individual adaptation. When, on the contrary, all mutation rates are lowered,
this constraint relaxes, enabling the genome to grow. In both cases, final genome
sizes can be predicted with the relations M = 0.8 or π = 0.05.

Increasing only the rearrangement rates suffices to make the genome shrink.
On the contrary, if we keep high rates for local mutations and reduce rear-
rangement rates, genome size does not increase. Low rates for both small and
large-scale mutations are thus required to make it grow. Analysing the effects
of the local mutations, in relation with the coding proportion of the genome,
should help us understanding this asymmetric behaviour.

4 Discussion

To explain both the diversity and the stability of genome sizes observed in natural
organisms, a mutational equilibrium model was recently discussed [7]. This model
relies on two different bias: on the one hand, a mutational bias towards small
deletions in the indel mechanisms, and on the other hand, a higher fixation rate
of large insertions compared to large deletions. Although such bias can exist
in natural species [8], our experiments show that they are not mandatory to
stabilise genome size.
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Other hypotheses accounting for the steady genome sizes of natural organ-
isms involve natural selection acting directly at the genomic level, either as a
stabilising force maintaining the DNA content at a physiological optimum [9], or
as a directional pressure counterbalancing the proliferation of “selfish” or “junk”
DNA [10,11] by favouring a short replication time. However, it was shown that
there is no correlation between genome size and doubling time among prokaryotes
[8]. Besides, in our organisms, genome size does not increase infinitely, although
it has no effect on the reproduction rate.

Natural selection can also limit genomic growth a posteriori because of muta-
tional load effects. As mentioned above, the larger a genome is, the more errors
occur during its replication. Now quasi-species theory predicts that natural se-
lection favours the set of genotypes, linked by mutation, whose average fitness
is highest [12]. It was shown that an evolving population concentrates on the
most robust genotypes of the neutral network of high fitness [13]. Experiments
with the Avida platform [14] confirmed that digital organisms occupying low
but flat fitness peaks can even displace fitter but less robust ones, provided that
mutation rates are high enough [15].

In both studies, the genome length was fixed, but what happens if several
genotypes with different lengths but the same fitness are in competition? Smaller
genomes will undergo less mutations per replication, thus the size of the steps
on their peaks will be smaller: everything happens as if they stood on a flatter
peak than the larger genomes. Quasi-species theory would therefore predict that
under high mutation rates, these smaller genomes will win the competition. This
is indeed what our experiments tend to show.

Thus, under high mutation rates, the long-term selection for robustness is
clear, quite unlike the genomic growth under low mutation rates. In our system,
there is undoubtedly a pressure to evolve more complex functions involving more
genes. But longer genomes also undergo more mutations per replication, which
can compensate for a low mutation rate and allow for the exploration of new parts
of the fitness landscape. A long-term selection for evolvability could therefore also
occur.

5 Conclusion and Future Work

Experiments with our artificial system confirmed the intuitive idea that genomic
growth, leading to more and more complex phenotypes, can be efficiently limited
by a need for robustness. Rearrangements, and especially duplications and dele-
tions, seem to play a key role in this equilibrium: they are the agents of genome
length variation, and at the same time, genome length seems to be limited by
their average impact.

The selective pressures that actually make the genome grow towards this
maximum value have to be investigated further, notably to test the existence
of a selection for evolvability, and to understand the role of local mutations in
genomic growth. A detailed study of the effects of each mutation type on the fit-
ness, in relation with the gene number and the coding proportion of the genome,
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should help us understanding this process. This study should also investigate
the influence of the selection intensity on the robustness constraint.

Besides, our system also enables us to study the evolution of gene organisa-
tion: since the functional structure and the genomic structure co-evolve, we can
analyse the putative retro-actions of the functional level on the gene organisa-
tion, notably those leading to genetic modularity.
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Abstract. We consider models of emergence, adding downward causa-
tion to conventional models where causation permeates from low-level
elements to high-level behaviour. We describe an architecture and proto-
type simulation medium for tagging and modelling emergent features in
CA-like systems. This is part of ongoing work on engineering emergence.
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1 Introduction

This paper represents part of ongoing research to establish engineering principles
for complex emergent systems. Various systems require several levels of descrip-
tion; for example, the behavioural descriptions of individual components and of
some aggregate. In an emergent system, there is a discontinuity in the descrip-
tions of these various layers. For example, the low-level components might be
described as changing state, whereas the system description might be in terms
of the movement of patterns. The upper, system, level describes the required
emergent properties.

We consider complex emergent systems, comprising many simple compo-
nents. Often-cited examples of complex emergent systems include network navi-
gation by ants (real or simulated), construction by termites, swarming and flock-
ing, for example by birds or their simulated equivalent, boids, and cellular au-
tomata (CAs).

Engineering is a quality-enhancing activity, and is essential for the safe ex-
ploitation of emergence in nature-inspired computational systems; the engineered
emergent system would be robust, with assurance of functionality and safety. In
exploring emergent systems engineering, we are looking at compositionality and
refinement. We start with simple emergent systems, specifically CAs, and derive
more general guidance from our observations.

Elsewhere [9], we describe a system architecture to underpin engineering of
complex emergent systems. We identify three key elements : the high-level de-
scription of the required system; the specification of the components that form

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 433–442, 2005.
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the lowest level of the system; and the specification of the representation that
integrates the first two elements. Conventional development approaches, relying
on a linear reduction in non-determinism (data and process refinement; model-
driven development, etc) are applicable within each element, but the low-level
system components cannot be systematically derived from the system specifica-
tion. The components are fundamentally different from the overall system, and
cannot be described using the same language concepts.

In this paper, we explore extraction of a layered component model. The
introduced layer maps from the component language towards the concepts of
the emergent system. The layering approach explored here is derived from pure
CA models; we deduce some characteristics of causal linkage among the system
elements. We consider a system requiring emergence of specific gliders, and a
case study simulating blood platelets.

2 Cellular Automata and Upward Causation

In a simple CA, such as Conway’s Game of Life (GoL) [6], cell update rules
and initial cell states completely determine the evolution of the CA. Emergence
is detected when each cell state has a visual representation, and the repeated
synchronous update of the cells reveals recognisable structures in space and
time. When seeking to engineer emergence on such a CA, the three architectural
elements are as follows.

1. Required emergent structures, such as gliders, described using relative mo-
tion concepts.

2. The CA, comprising many identical cell instances.
3. The representation, discretised space, to define cell neighbourhoods, and on

which relative motion can be detected.

Fig. 1. A 2-D GoL Glider Gun

The CA has an upward
causal relationship to the re-
quired emergence. For exam-
ple, the upper part of figure
1 shows a GoL glider gun. In
this part of the representation,
we observe seemingly-random
continuously-changing patterns.
From the gun, a stream of glid-
ers emerges, moving at a con-
stant velocity, at 45 degrees
from the vertical, down the

screen. The glider gun is a simple result of applying the GoL rules to cells
arranged in a 2-D regular grid, with a suitable arrangement of initial cell states.
The high-level description of the observed behaviour of gliders does not have any
role in the evolution of the CA; the described higher level behaviours are caused
by the lower-level actions.
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To be able to engineer emergent systems from high-level requirements, we
need a more flexible and realistic causal model. First, we introduce our research
case study; we then use some of its models to explore causality further.

3 The Case Study: Artificial Blood Platelets

Our working case study, a platform for specification, simulation and other emer-
gent engineering aspects, is a system of artificial platelets. The desired emergent
property is the sealing of breaks (wounds) in a tube or vessel.

decaying platelet

passive platelet

deployed platelet

phagocyte

TIME

Fig. 2. Schematic of the artificial platelets

The model is loosely based on
the medical process of haemosta-
sis. Real platelets are passive quasi-
cells carried in the bloodstream. A
platelet becomes active when a bal-
ance of chemical suppressants and
activators shifts in favour of acti-
vation, usually due to damage to
cells or vessel linings. With suf-
ficient stimulus, platelets become
sticky and form clusters. This is
the first phase in limiting blood-
loss and healing a wound.

Our artificial platelet model,
figure 2, assumes that the platelets
can complete the entire wound-
closing process. Our goal system
might resemble Freitas’ vision [5]
of some 108 mechanical platelets
of two microns diameter circulat-
ing in the blood, each carrying a
fibre mesh. At a wound site, the
mesh deploys, revealing sticky sec-
tions that bind other platelets and
seal the wound; when the wound is
healed, the mesh disperses.

In this paper, we consider the development of a model of platelet movement
and clustering, the basis for a computer simulation. The high-level description is
of platelets moved by blood flow through a vessel, with no independent means of
locomotion. When platelets merge with other platelets, they form a slow-moving
cluster. This description of platelet behaviour is at the same level of abstraction
as the high-level glider description.

3.1 Upward Causation Model of Artificial Blood Platelets

Our first platelet model represents a blood vessel as a one-dimensional grid.
Figure 3 shows eight time steps of a purpose-built CA running on this repre-
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sentation, to simulate the flow of platelets, the formation of clusters, and the
movement of clusters. Here, we see two clusters merging, and then free platelets
joining the large cluster from behind.

vacuumclusteremptyplatelet

1

2

3

5

7

8

4

6

Fig. 3. 1D platelet CA

The CA rules are given in the Ap-
pendix. To achieve the required be-
haviour with pure CA rules, the first
platelet in a cluster can move (non-
deterministically), creating a vacuum;
the cluster moves by successively pass-
ing the vacuum backwards. All free
platelets move in each time step.

This is a pure CA, with a stochastic
rule that determines whether a cluster
moves in any step. There is only lo-
cal communication, and only upward
causation from the CA to the required
emergent clusters.

4 Downward Causation and Rule Distribution

The simple CA platelet model is not ideal. The rate of movement of a cluster
is very much slower than that of a free platelet, at most one cell per update,
because cells cannot communicate throughout a cluster. Furthermore, a model
where platelet locations control platelet movement by upward causality is not
an adequate model of reality; we know that platelet aggregation influences the
flow of blood and the flow of blood influences the aggregation of platelets. Such
causal links are well-known in biological and other emergent systems [1].
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Fig. 4. Two-layer platelets

A revised model retains the one-
dimensional CA structure at the lowest
level, to simulate discrete physical loca-
tions that may contain a platelet. A more
abstract level sits above the CA to model
clustering characteristics. In this model,
only the higher level “knows” that a par-
ticular platelet is part of a cluster. Figure
4 shows four time steps. The free platelets
still move in every time step; each cluster
either moves or stays put, depending on
the decision made in the higher layer.

Conventional CA rules still determine
whether a cell could change state, but the
actual change requires permission to be

communicated from the platelet layer, a downward causation from the higher
level to the CA. The permission is used to co-ordinate the movement of platelets
in a cluster, depending on the (non-deterministic) movement of the front platelet.
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The higher layer can also be used to add further cluster behaviour, such as cluster
breakdown and dispersion.

5 Discussion of Rule Migration

In the platelet models, the glider model [9], and other CA-based systems, the CA
model has no inherent awareness of the structures that may emerge. In general,
modelling is simplified if there are extra modelling layers that capture concepts
expressed in the system-level language. Thus, the gliders are specified in terms
of velocity not CA cell states; they can be identified by monitoring at a higher
level, over many time steps. Similarly, platelet behaviour (here) is specified in
terms of clustering characteristics; clusters are initially identified from the CA,
but their persistent characteristics are modelled in the higher layer.

In the platelet model, the clustering rules have been taken out of the CA
and migrated to the higher layer; the downward causation (permission) main-
tains integrity between the layers. We observe that, if the low-level rules are very
compact, as in the GoL without the added requirement of structure identifica-
tion, there may be no rule migration that makes the model simpler. The simplest
additional layer provides “tagging”, with no downward causation, for example
as an aid to the detection of emergence. Thus, in the glider model, a higher level
might be used to detect and highlight gliders; this is analogous to experiments
in nature that use markers for tracking to collect data. At a level more akin
to that of the platelet model, we might then wish to exercise control over, for
example, what happens when two gliders collide; this would be accomplished via
downward causation from the higher level to the relevant cells of the CA.

In engineering terms, the migrated rules are used to produce more natural,
comprehensible models. Whether to choose the pure CA or a multi-level model
is a modelling decision. The downward causation layers introduce control, and
can be used to bring the power of the models closer to the full environmental
interactions of real systems. In general, as the number of control aspects modelled
in the abstracted layers increases, the behavioural similarities of the single-layer
and multi-layer models become less apparent.

5.1 Emergence and Relativity

In physics, there is no absolute space; all motion is relative. It is also the case that
all emergence is relative. Consider a single GoL glider; viewed from a sufficient
distance, a glider moving across the screen is indistinguishable from a screen
window being scrolled past a stationary glider. To perceive motion, there needs
to be a frame of reference within the window. This could be a visible grid, a
stationary (or slower-moving) CA structure, or other gliders. The glider is then
seen to be moving relative to the other contents of the window.

In migrating CA rules upwards, we often move from an absolute to a relative
perspective, taking the design nearer to the context in which the emergence is
detectable. We would like to be able to abstract away from artificial represen-
tations, to use natural descriptions of these high-level rules. For example, when
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modelling the layers on top of a CA, we should ignore the absolute grid represen-
tation, describing the emergence (gliders and other CA structures) abstractly,
and without reference to lower level rules. We can then connect the high- and low-
level elements by suitable causation links, to engineer the required emergence.
The next section shows how a layered design can be implemented, preserving
the relativity of the higher layer and the absolute lower-layer concepts.

6 An Implementation of the Layered Platelet Design

To explore simulations that demonstrate rule migration, we use a mobile exten-
sion of a traditional concurrent language. occam-π 1 is a small language that
implements the communication strengths of Hoare’s CSP[7] and the mobile as-
pects of Milner’s π-calculus[8]. It takes the well-grounded semantics of these
specification calculi, and provide a programming environment to support an en-
gineering approach to the underlying mathematics[2,10].

The implementation of the platelet model uses occam-π static processes to
represent the underlying CA, and mobile processes to model the activation and
clustering of platelets. Downward causation is programmed as the mobile pro-
cesses stimulating change in a CA cell. Upward causation is the reading of cell
state by the mobile channels.

We can associate various visualisations to the simulation. An absolute-space
model can be observed if static processes communicate their location and state
to a display. A relative-location visualisation is achieved if mobile processes com-
municate their size and relative location to a display.

6.1 The occam-π Design

The occam-π model has a one-dimensional cell array, as before. Each cell is a
static server process.

mobile

headtaillag

free

lead

Fig. 5. A two-platelet cluster

One approach to simulating the two-layer
platelet model it to associate a mobile
process to each cell containing a platelet.
The mobile process (figure 5) holds the
size of the cluster and client -ends of four
(multi-way) channels: head and tail con-
nect to the first and last cells in a cluster;
lead and lag connect to cells immediately
ahead of and behind the cluster, acting as
feelers to the cells round the cluster. The

mobile process also holds the server -end of the free channel, used to merge
adjacent clusters. The channel protocols allow two-way communication for the
setting and retrieving of data and channel ends. Each cluster deposits the client -
end of its free channel in the cell connected through tail. When the cluster
moves, the free channel is thus dragged along the cells in turn.
1 See http://frmb.org/kroc.html for the latest implementation.
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When a platelet or cluster head enters the cell immediately behind another,
the front mobile process (m1) detects its presence via an enquiry on the lag
channel. The back process (m2) also detects that it is adjacent to another cluster
via an enquiry on its lead channel, which points to the same cell as m1’s tail.

m1m2

Fig. 6. Two coalescing clusters

Figure 6 shows the results of the m2
process using its lead channel to ac-
quire the client-end of m1’s free chan-
nel, resulting in direct communication
between the two clusters. Once the link
between the mobile processes is estab-
lished, m2 communicates its size, the
client-ends of its tail and lag, and the
server-end of its free channel to m1; m2
then terminates. m1 adds the received

size to its own size, and overwrites its tail, lag, and free channel ends with
those that it receives. m1 has now assumed control of the combined cluster, shown
in figure 7.

m1

Fig. 7. The completed merger

Coordination of cluster merging and
movement is safely and efficiently man-
aged by barrier synchronisation. A two-
phase cluster cycle is divided by barri-
ers. Phase one detects when one clus-
ter has other adjacent clusters (on one
or both sides) and handles all the re-
sultant cluster merges. In phase two,
mobile processes determine the move-
ment of their clusters. Barrier synchro-
nisation in occam-π is extremely cheap
(see [3]). All memory for terminated pro-

cesses and discarded mobile channels is automatically freed (without garbage
collection); there can be no memory leaks and the model runs indefinitely.

6.2 Extending the Platelet and Glider Simulations

The occam-π simulation allows us to explore the use of higher layers in a CA-
based model, and to explore platelet simulation with additional control factors
from environmental models. The mobile process tagging will also be used on
a GoL simulation to facilitate automatic detection of incipient gliders. An ele-
ment of downward causation could be added to the GoL, perhaps “clearing” the
neighbours ahead of a new glider to prevent its being absorbed by background
“noise”.

The mobile processes used to tag gliders and link platelets implement relative
location (i.e. connections to neighbouring cells); this information is held locally.
Rules at the higher level refer only to relative properties, not absolute properties
of the current grid location. The lowest level still uses an absolute grid, but this
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is accessed only to display the result of each update cycle; individual cells are
unaware of their absolute grid location.

7 Related Work

We are not alone in recognising that representations are often layered, such that
point events at one level correspond in some approximate but definable way to
actions with extent at lower levels. The point events are often invisible at higher
levels. We are aware of at least three other research initiatives, in areas as diverse
as model-driven architectures and real-time systems, which are discovering that
layering is a key concept; no work has yet been published on these discoveries.

There are some similarities between our extra levels to control and interpret
the CA behaviour and other CA-based research programmes; the difference is
that others do not explicitly use their interpretation layers for downward causa-
tion. For example, in Fredkin’s digital philosophy, readings of various parameters
at various of six defined phases of a two-time-layer, 3-D CA are interpreted as
physical properties. The CA simulates the laws of physics [4]. Wuensche’s work,
interpreting the time-series of CA updates and detecting attractors [11,12], also
provides implicit interpretation layers. This work is potentially important for
engineering emergence, since design is likely to be considerably facilitated if the
attractors of an emergent feature can be established.

8 Conclusion

Our work exploits notions of layering and causality in emergent systems to im-
prove our ability to engineer required properties and to enhance the expressive
power of our simulations.

Having introduced layers for migrated rules, in the platelet model we can ex-
ploit the higher layer for more natural control laws, and the implemented platelet
simulation could easily be extended to a two- or three-dimensional representa-
tion that is a better model of a blood vessel. We can introduce and experiment
with models of environmental interaction, and, having abstracted platelet con-
trol from the CA grid, we could introduce local diffusion CAs on the absolute
grid, modelling the chemical environment that acts on and is affected by the
platelets. Further local CA rules could model flow features such as the effect of
proximity to the vessel boundary on speed. These new features would be moni-
tored by the higher-layer structures, which would also communicate “chemical”
signals to the CAs.

In engineering terms, we are using layering and causality to devise architec-
tural patterns for the design of emergent systems. We also seek to introduce
good engineering practices, such as validation, testing and safety argumentation
to the development process associated with this layered architecture.
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A Appendix: CA Model of Platelets

This is one possible CA rule set to simulate platelet clustering. The cell design has
boolean state, next and vacuum variables. The nd variable is set to determine
whether a cell containing a platelet loses its platelet in the next time step. It
takes values 0, 1 and 2, where 0 represents “no change”, 1 represents “change”
and 2 is assigned if the resolution of non-determinism is a decision to change.

The value of nd is deterministic for all cells except the first cell of a cluster
and the cell immediately behind (most) vacuums. The value is set using the first
set of CA rules. The next variable of each cell is then calculated in the second
phase. Calculations within a phase can be concurrent, as can the actual update
where each state is reset to the cell’s next.
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A.1 The First Phase

The first pass visits only cells having cell[i].state = TRUE.

Rule A. A platelet cannot move because it is blocked by platelets ahead.
Rule B. A platelet cannot move because it is located ahead of a vacuum.
Rule C. A platelet between two vacuums cannot move.
Rule D. A platelet before a vacuum can decide whether or not to move.
Rule E. The platelet at the front of a cluster can decide whether or not to move.
Rule F. A singleton platelet must move.

The tabular summary gives the rule name, then the applicable values of the
current cell and its neighbours, and the resulting nd. An occupied cell is labelled,
T; an empty cell, -; and a vacuum, V.

RULE nd
A T T T 0

- T T 0
V T T 0

RULE nd
B V T - 0
C V T V 0

RULE nd
D T T V nd

- T V nd
E T T - nd

RULE nd
F - T - 1

A.2 The Second Phase

In the second pass, any cell that contains a platelet and has an nd value of 0 is
unchanged. The next state for cells with nd > 0 is calculated to take account of
vacuums. Cells that do not contain platelets have their state calculated.

Rule S.1. A cell with nd = 2, and a platelet behind, becomes a vacuum.
Rule S.2. A cell with nd = 2, which is at the back of a cluster, becomes empty.
Rule S.3. A cell holding a singleton platelet becomes empty.
Rule S.4. An empty cell, with an empty cell before it, does not change.
Rule S.5. An empty or vacuum cell, with a preceeding platelet having nd = 0,
does not change. The CA design disallows a vacuum with an empty cell after it.
Rule S.6. A cell whose nd value is 0 does not change.
Rule S.7. An empty or vacuum cell with a platelet behind it having nd > 0,
becomes occupied.

In the summary tables, each rule number is followed by the applicable states
of the current cell and its neighbours; the last column is the next value of the
current cell. Where the fact that the nd value was set non-deterministically is
important, the resolved value is shown (eg T,2 ).

RULE next
S.1. T T,2 - V

T T,2 V V
S.2. - T,2 V -
S.3. - T - -

RULE next
S.4. - - - -

- - T -
S.5. T,0 - T -

T,0 - - -
T,0 V T V

RULE next
S.6. T T,0 T T

- T,0 T T
V T T T
V T - T

S.7. T,2 - T T
T,2 - - T
T,2 V T T



The Density Classification Problem for
Multi-states Cellular Automata

Anna Rosa Gabriele
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Abstract. In this paper, the results of three experiments, in which a
genetic algorithm evolves one-dimensional cellular automata (CA), in or-
der to perform the classical main task, are reported. The used systems
are not elementary CA but they have a higher number of states. Our
aim is to verify if the main-task results are similar to those obtained
with elementary CA. Our results confirm that there is a substantial
homogeneity.

1 Introduction

CA have been used as models of biological systems as bugs’ colonies, immune
systems, brain’s organization and economic systems, because they manifest emer-
gent computation and complex behavior typical of these systems.

But how does this computation happen? What kind of behavior gives complex
patterns of organization? One of the earlier problem in this topic has been the
density classification task, introduced by Packard. Using CA with two states for
analyzing their ability in performing computation, Packard [12] investigated the
ability of a Cellular Automaton, starting from the density of the states in an
arbitrary initial configuration, to compute the final configuration. So the CA
rule is interpreted as a program, the initial configuration as an input, the final
configuration obtained after a fixed number of steps as an output. This density
classification problem consists in determining some rules that evolve the CA
towards an homogeneous final configuration (composed uniquely of 1s or 0s)
following the higher concentration of 1s or 0s in the initial configuration.

In the following years the group of researchers of the Santa Fe Institute
[3], [4], [9], [10], [11] besides implementing a genetic algorithm to evolve rules
able to solve the problem of the density classification, identified the emergency
of computational strategies and analyzed the central role of symmetry in an
evolutionary system. Particularly they shown as the break-up of symmetry can
prevent the evolution to select rules with higher computational ability.

It has been shown that a rule for two-states one-dimensional CA, which
correctly classifies all possible initial configurations [5], as in Packard, does not
exist.

In 1996 Capcarrère, Sipper and Tommasini [1] demonstrated that a solution
to the density classification problems does exist, defining a different output in
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comparison to that of Packard (The output is not a fixed-point configuration
but if the initial configuration’s density is > 0.5 (respectively, > 0.5), the final
configuration consists of one or more blocks of at least two consecutive 1s (0s),
interspersed by an alternation of 0s and 1s; for an initial density of exactly 0.5,
the final configuration consists of an alternation of 0s and 1s.)

In 2001, Capcarrère and Sipper [2] demonstrated that a rule, which resolves
the density classification problem, for a one-dimensional elementary CA, has to
satisfy two conditions:

– the density of the initial configuration must be preserved over time.
– the rules table must exhibit density of 0.5”.

In this work, in the first paragraph, a brief overview on Cellular Automata is
given. Then, a genetic algorithm, implemented for analyzing the density classi-
fication task for multi-states CA, is described. Subsequently, some analysis and
results obtained using the statistic parameter λ [6], [7] are shown, and at the
end conclusions are drawn.

2 Cellular Automata and Genetic Algorithms: An
Overview

The CA were introduced by von Neumann and Ulam as simple models for the
study of some biological processes. A CA is a discreet dynamical system in which
space, time and states assume discrete values. The space is represented by a n-
dimensional regular grid (n ∈ IN), each element of the grid is called cell. Each
cell can be considered as the basic element of CA and it contains a datum at

i

that represents the state of the ith cell at the time step t.
A cellular automaton is defined as a tuple:

CA = (d, S, N, δ) (1)

where d is a positive integer that indicates the CA dimension; S is a set of finite
states (|S| = k); N is a vector N = (x1, x2, . . . , xn) constituted by n elements
that compose the neighborhood of each single cell; δ is a transition rule. This
function characterizes the rule with which the CA evolves. The total number of
rules depends on the number of states (k) and on the number of elements (n)
which compose the neighborhood.

2.1 One-Dimensional Cellular Automata

In this article one-dimensional CA with three-states and with two-radius are
considered. Formally, if at

i denotes the ith cell value at the time step t of an
one-dimensional CA, then

at+1
i = δ(at

i−r, . . . , a
t
i, . . . , a

t
i+r) (2)

The function δ will be completely defined when for every possible neighborhood
(C = k(2r+1)) a value βi is assigned. The succession (β1, β2, . . . , βC) so obtained
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individualizes the rule table of the CA evolution or in general the rule of the
CA. The same rule of a CA can be also represented expressly using a function
based on a sum of the cells of the neighborhood. The state at

i is given from:

at
i = δ

⎛⎝ r∑
j=−r

αja
t−1
i+j

⎞⎠ = δ(α−r at−1
i−r + . . . + α0 at−1

i + . . . + αr at−1
i+r) (3)

where αj are constants integer.
Particularly, all rules, defined from (2), can be defined through (3) considering

αj = kr−j (see [14]).
A CA configuration (ct) is the set of the states in which all the cells are found

at a particular time step t. Denoted with c0 the initial configuration, the CA
evolution can be represented bringing the sequence of configurations {ct}t>0 one
following to the other. This sequence is called space-temporal diagram associated
to the CA.

The experiments described in this article concern one-dimensional CA with
k = 3 and r = 2, the neighborhood is composed from the same cell and from the
two cells on the right and on the left.

3 Details of Cellular Automata and Genetic Algorithms
in Our Experiments

In this article, the computational assignment for CA has been to identify, after
a fixed number of steps M , if in the initial configuration more states in the
condition 0 or more states in the condition 1 or 2 were present. Thus the output
is an homogeneous configuration with only one state, the same one present in
greater concentration in the initial configuration.

The CA, evolved through genetic algorithms, have k = 3 and r = 2 so the
length of rule is equal to 3(2∗2+1) = 35 = 243.

The initial conditions have a number of cells equal to N = 151 = 50× 3 + 1.
N has been chosen not multiple of three, so to avoid situations of parity.

Three experiments have been realized, composed by 30 runs with 100 gener-
ations each, that differ among them for the fitness function or for the procedure
by which rules of every population have been produced.

Following a standard method, a genetic algorithm [8], with an initial popula-
tion of 231 rules randomly produced, has been implemented for each experiment.
These rules have been tested on 231 randomly produced initial conditions at ev-
ery evolution.

The rules and the initial conditions have been produced choosing 77 of each of
them in which the maximum number of elements is 0, 77 in which the maximum
number of elements is 1 and 77 in which the maximum number of elements is 2.
For each group of 77 rules or initial conditions, the probability of the presence of
cells or local rules in the maximum condition is uniformly distributed according
to Mitchell and colleagues [9].
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Each rule has been tested on 231 initial conditions for a temporal evolution
of M steps, M is calculated using the following:

M = 453 + �r r ∈ [0, 3] (4)

where r is chosen randomly in [0, 3] and �· denotes the integer part of a number.
For every generation the algorithm performs the followings steps:

– a new set of initial conditions is generated
– fitness is evaluated for each rule
– mean fitness is evaluated
– 20 % of the best rules (élite) is copied and the remainder 80% is modified in

the following ways:
• the élite is randomly crossed (i.e. crossovers between randomly chosen

pairs of elite rules)
• each site is changed with a 3% of probability.

– the preceding rules are replaced with the new ones.

At the end of the experiments the performance of the best rule has been verified
on 231 new initial conditions randomly produced following the criteria previously
described.

Some statistical analysis on the best rule have been done according to Lang-
ton [6], [7]. The statistical parameter λi has been defined considering the quies-
cent state respectively equal to 0, 1 and 2, and it has been calculated using the
following expression:

λi =
number of elements different from i in the rule table

total number of elements in the rule table
(5)

with i = 0, 1, 2.

3.1 Experimental Set 1

According to Mitchell and colleagues [9], in the first experiment, the following
fitness function has been used:

fi =
231∑
j=1

fi j

231

where fi is the fitness value related to the ith rule and fi j is calculated for each
initial condition j in the following way:

fi j =
{

1 if the final pattern is correct
0 in the other cases.

During the first experiment the best individual resulted in the 4th run, 98th
generation, with a percentage of success of 89%. The evolution fitness is repre-
sented in figure 1a. In figure 1b three histograms in which the distribution of the
number of rules is represented as a function of the parameters λ0, λ1 and λ2 are
shown. In the figure 1c the best evolved rule is shown.
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Fig. 1. In (a): Fitness evolution of the best experiment. In (b): three histograms are
shown in which the distribution of the number of rules is represented as a function of
the parameters λ0, λ1 and λ2. In (c): the best rule has the following values: λ0 = 0.7,
λ1 = 0.7 and λ2 = 0.6.

3.2 Experimental Set 2

In the second experiment a genetic algorithm has been implemented with an
initial population of 231 rules, randomly produced, in which the local rules, that
correspond to the neighborhoods 22222, 11111, 00000, are fixed respectively to
the values 2, 1 and 0 (see Lemma 1.2 [2]).

The same function of the first experiment has been used as fitness function.
The best individual of the second experiment resulted at the 12th run (in

Figure 2a the fitness evolution), at the 76th generation, with a percentage of
success of 87%. In figure 2b three histograms in which the distribution of the
number of rules is represented as a function of the parameters λ0, λ1 and λ2 are
shown. In figure 2c the best rule is shown.

Fig. 2. In (a): Fitness evolution of the best experiment. In (b): three histograms are
shown in which the distribution of the number of rules is represented as a function of
the parameters λ0, λ1 and λ2. In (c): the best rule has the following values: λ0 = 0.7,
λ1 = 0.7 and λ2 = 0.6.
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Fig. 3. In (a): Fitness evolution of the best experiment; In (b): three histograms are
exposed in which the distribution of the number of rules is represented as a function of
the parameters λ0, λ1 and λ2. In (c): the best rule has the following values: λ0 = 0.8,
λ1 = 0.5 and λ2 = 0.7.

3.3 Experimental Set 3

The fitness function of the third experiment is:

fi =
231∑
j=1

fi j

231

where fi is the fitness value related to the ith rule and fi j is calculated for each
initial condition j in the following way:

fi j =
number of cells in the correct states

total number of cells

During this experiment the best rule resulted at the 4th run, 79th generation,
with a percentage of success of 87%.

The fitness evolution is shown in figure 3a. In figure 3b three histograms in
which the distribution of the number of rules is represented as a function of the
parameters λ0, λ1 and λ2 are shown. In figure 3c the best rule is shown.

4 Performance of Best Rules

Observing the performance of the best rules evolved with the three experiments,
the percentage of success is still very elevated in all experiments. The best rules
of the first and the second experiments classify very well the initial conditions
in which maximum density is of 0s and 1s, while they classify with more dif-
ficulties initial conditions with maximum density of 2s (Figure 4(a) and (b)).
The best rule of the third experiment classifies very well the initial conditions
in which maximum density is 2s and 0s, while classifies with more difficulties
initial conditions with maximum density of 1s (Figure 4(c)).
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Fig. 4. In these histograms the number of rules, that classify (yes) or not (no) initial
conditions, are shown. IC 0, IC 1 and IC 2 respectively point out initial conditions
with maximum densities of 0s, 1s and 2s. The percentage of success of the best rule of
the first experiment is around 88%, of the best rule of the second experiment is around
85% and of the best rule of the third experiment is around 84%.

Fig. 5. Diagrams obtained evolving CA with the best rule of the first experiment

In figures 5, 6 and 7 space-temporal diagrams of CA with k=3 r=2 are
shown. These diagrams are obtained for different initial configurations over 453
time steps. The quantities d(0), d(1), d(2) indicate the density of 0s, 1s and 2s in
initial conditions. In (a), (b) and (c) the CA classified the initial configurations
according to their density, while, in (d), (e) and (f) the rule don’t classified any
configuration.
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Fig. 6. Diagrams obtained evolving CA with the best rule of the second experiment

Fig. 7. Diagrams obtained evolving CA with the best rule of the third experiment

5 Conclusions

A genetic algorithm, that selects rules that classify initial conditions with a
higher probability, has been developed. In all experiment the obtained percentage
of success is between 87% and 89%. These results are also confirmed in the
test phase, in which the obtained percentage of success is between 84% and
88%. Observing the distribution of the values λ0, λ1, and λ2 in the two first
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experiments, the values of the local rules are uniformly distributed, while in the
third experiment a great presence of local rules in a particular state is observed.

Observing the space-temporal diagrams obtained by the three experiments,
it can be noticed that, in the first two experiments, the best evolved rules clas-
sify very well initial conditions with maximum density of 0s and 1s. The strategy
that they use is to expand the blocks of 1s and 0s present in the initial condi-
tions. About the initial conditions in which maximum density is of 2s, it can be
observed that the CA classify them in few time steps. The time steps, obtained
in the first experiment, are of maximum 19 against the 259 steps necessary to
classify initial conditions with maximum density of 0s and against the 302 steps
necessary to classify initial conditions with maximum density of 1s. About the
second experiment the time steps necessary to classify the initial conditions in
which maximum density is of 2s are 25 against the 368 for the maximum den-
sity of 0s and against the 155 for the maximum density of 1s. About the third
experiment, the results are different from the previous ones: the evolved rule,
in fact, classifies very well initial conditions with maximum density of 0s and
of 2s, while, for the initial conditions in which maximum density is of 1s, the
same rule classifies them in few time steps (maximum time 28 steps). Observing
the space-temporal diagrams obtained in the third experiment it can be noticed
that the best evolved rule uses the following strategy: it expands the blocks of
0s and 2s of the initial conditions, with different speed (see figure 7a and 7c).

The results previously exposed have been obtained from the first analysis.
Some strategies, that have been individualized in the evolution of CA with k = 3
and r = 2, are very similar to those obtained in the evolutions of CA with k = 2.

Further analysis, to individualize and to formalize the mechanisms of com-
putation in the evolution of CA with k=3 r=2, is currently in progress.
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Abstract. It is speculated that there is a relationship between 1/f noise
and computational universality in two-dimensional cellular automata.
We use genetic algorithms to find two-dimensional cellular automata
which have 1/f spectrum. Spectrum is calculated from the evolution of
the state of cell from a random initial configuration. The fitness function
is constructed in consideration of the spectral similarity to 1/f spec-
trum. The result shows that the rule with the third highest fitness in
the experiment has 1/f spectrum and it behaves like the Game of Life,
although two rules with the highest and the second highest fitness do
not have 1/f spectrum.

1 Introduction

The Game of Life (LIFE) [1] is one of the two-dimensional cellular automata
(CAs). Although the rule for the evolution in LIFE is very simple, it generates
complicated patterns such as a glider which propagates infinitely until it is an-
nihilated when it collides with another object on the array. It is supposed that
a universal computer can be constructed on the array by considering a glider as
a pulse in a digital circuit.

Moreover, LIFE is characterized by 1/f noise [2]. The spectra calculated from
the evolution of cells from a random initial configuration exhibit 1/f spectrum
in LIFE. 1/f noise is a random process whose spectrum Sf as a function of the
frequency f behaves like 1/fβ with β ≈ 1 at low frequencies. 1/f noise has been
observed in many different systems, but its origin is not well understood [3].

These results suggest that there is a relationship between computational
universality and 1/f noise in cellular automata. Since CAs which exhibit 1/f
spectrum have not been found except for LIFE, we need to find those kind of
CAs to verify the relationship.

Genetic algorithms (GAs) have been used to discover CAs with desirable
properties [4,5]. In their work they searched for one-dimensional CAs which can
classify the density of the initial configurations and then could find CAs with
high performance on the task. In this paper we apply GAs to searching for
two-dimensional CAs which have 1/f spectrum.

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 453–460, 2005.
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2 1/f Noise in LIFE

A two-dimensional CA is a lattice system which evolves in discrete time steps.
Every site takes on state 0 or state 1 at any one time step and is updated
synchronously according to a rule. Let sx,y(t) denote the state of the cell at
position (x, y) at time step t. The state of the site (x, y) evolves by the rule
function d,

sx,y(t + 1) = d(sx,y(t), nx,y(t)), (1)

where nx,y(t) denotes the sum of the states of the eight nearest neighboring sites
around the site (x, y) at time step t. The rule of LIFE is defined by

d(0, 3) = d(1, 2) = d(1, 3) = 1,

otherwise d = 0. (2)

Spectral analysis is one of the useful methods to investigate the behavior of
dynamical systems [6]. While it was used for the analysis of the spatial structure
produced by one-dimensional CAs [7], we apply it to the analysis of the temporal
behavior of two-dimensional CAs.

The Fourier transformation of a evolution of states sx,y(t) of the site (x, y)
for t = 0, 1, ..., T − 1 is given by

ŝx,y(f) =
1
T

T−1∑
t=0

sx,y(t)exp(−i
2πtf

T
)

(f = 0, 1, · · · , T − 1). (3)

The spectrum is defined as

Sf =
∑
x,y

|ŝx,y(f)|2, (4)

where the summation is taken over all cells in the array. The power Sf at fre-
quency f intuitively means the “strength” of the periodic vibration with period
T/f in the evolution in T time steps.

The least square fitting

ln(Sf ) = α + β ln(f), (5)

of the observed spectrum Sf from f = 1 to f = fb gives the coefficient α and β.
The residual sum of squares σ2 is given by

σ2 =
1

Nr

Nr∑
f=1

(ln(Sf ) − α − β ln(f))2, (6)

where Nr is the number of data used for the calculation of σ2.
Throughout this paper the array consists of 100×100 sites and periodic

boundary conditions are used. The array is started from a random initial con-
figuration in which each site takes state 0 or state 1 randomly with independent
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Fig. 1. Spectrum of LIFE for T = 8000 from a 100×100 random initial configuration.
The dotted line represents the least square fitting of the spectrum by ln(Sf ) = α +
βln(f) from f = 1 to f = 10 with β = −1.4021.

equal probabilities. The density of cell of state 1 of the initial configuration is
actually 0.4978.

The spectrum of LIFE calculated by (4) for T = 8000 is shown in Fig.1. The
dotted line in Fig.1 represents the least square fitting of the spectrum according
to (5) for fb = 10 with α = 2.8412 ± 0.1283 and β = −1.4021 ± 0.0772. This
spectrum behaves like 1/fβ with β ≈ 1 at low frequencies and it is considered
to be 1/f noise.

3 Experiment

3.1 Fitness

In this paper we use GAs to evolve two-dimensional two-state nine-neighbor
outer totalistic CAs whose spectra exhibit 1/f noise. We encode a rule in (1) as
follows:

d(0, i) = x2i, d(1, i) = x2i+1 (i = 0, 1, · · · , 8). (7)

Since we consider the state 0 as the quiescent state, we restrict the rules to those
with d(0, 0) = 0. Therefore a rule is represented by a 17 bit string x17x16· · ·x1.
The rule of LIFE (2) is expressed by ”00000000001110000” in this representation.

The fitness of a rule is calculated from the shape of its spectrum. The fitness
is given by: (i) calculating the spectrum Sf of the rule by (4); (ii) calculating
the coefficient β and the residual sum of squares σ2 by (5), (6); (iii) calculating
the fitness F by

F =
|β|

σ2 + δ
, (8)

where δ is the correction term to avoid division by zero and is set to 1 × 10−6

throughout this research.
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The numerator is intended that the smaller the coefficient β at low frequencies
is, the larger the numerator is. The rule with positive coefficient β is rarely
generated, and moreover, the positive coefficient β is almost always small. The
denominator is supposed to guarantee that the spectrum fits the power law
(5) in a broad range of frequencies. Therefore we set fb = 10, Nr = 3000 in
this experiment. By using this fitness function, we hope that the closer to 1/f
spectrum the spectrum is, the higher fitness the rule has. The residual sum of
squares σ2 of LIFE calculated according to (6) from the spectrum shown in Fig.
1 is 0.00726 and the fitness F is 193.14.

3.2 Details of the Experiment

CA rules are parameterized by a parameter λ which is the fraction of nonzero
output states in the rule table [8]. Generally speaking as λ = 0 varies from
0 to 1 − (1/K) (K is the number of cell states), CAs change from the most
homogeneous rule to the most heterogeneous rule. So we randomly generate
the rules whose λ is uniformly distributed between 1/18 and 9/18 in an initial
population.

The evolution from a random initial configuration in the square array 100×
100 in periodic boundary conditions leads to periodic configurations in about
2000 time steps on average through transient behavior in LIFE [9]. 1/f spectrum
in CAs is caused by the transient behavior from random initial configurations.
Therefore, the longer the duration of observation T in (3) becomes, the more
the spectrum deviates from 1/f spectrum especially at low frequencies. When T
becomes over 7200 in the square array 100×100 in periodic boundary conditions
in LIFE, the spectra become level at low frequency [10]. The spectrum in Fig. 1
is a typical example where power density becomes somewhat close to a level at
the frequency f = 2 or below because it is calculated for T = 8000.

In this research we set T at 8000 to find the CAs comparable or more in
transient length to LIFE. But the calculation of spectrum for T = 8000 needs
a lot of time. So we carry out a preliminary selection from randomly generated
rules to remove the rules whose spectrum is far from 1/f spectrum. In the
preliminary selection the spectra Sf for T = 1024 of randomly generated rules
are calculated. We pick the rules with β ≤ −0.3 in (5) for fb = 400.

Our experiment proceeds as follows.

1. A population of rules with λ varying between 1/18 and 9/18 is randomly
generated.

2. The rules with β ≤ −0.3 by the least square fitting of the spectrum for
T = 1024 and fb = 400 are selected and are gathered in a population of P
rules.

3. F is calculated with T = 8000 for each rule in the population.
4. A number E of the highest fitness rules is copied without modification to

the next generation.
5. The remaining P − E rules for the next generation are formed by uniform

crossovers with a probability of Pc between pairs in the population chosen
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by roulette wheel selection. Every bit of the offspring from each crossover
are mutated with a probability of Pm.

One generation consists of steps 3 - 5 and it is repeated several times for
one run. Our experiment is composed of 30 runs with same parameters except
for random number seed. The number of the generations repeated in each run
is not identical because our experiment is in progress. We set P = 140, E = 10,
Pc = 0.6, and Pm = 0.03.

Since the fitness of rule is depend on initial configurations, it is reasonable
to vary initial configuration in each generation. However, in our experiment the
values of b and σ2 of every generated rule are recorded in a file to use in calcu-
lating the fitness of the same rule in later generations. By using this approach
instead of computing all fitness in every generation, considerable computation
time is saved. Therefore we use only one initial configuration through the evo-
lution in GA.

3.3 Results

We have performed the experiments for a total of 1800 generations in 30 runs.
Figure 2 (a) shows the spectrum of the rule ”01000011101110000” with the
highest fitness F = 996.09 (β = −0.5866, σ2 = 0.00059) in the experiment.
The dotted line in the spectrum represents the least square fitting of the spec-
trum according to (5) from f = 1 to f = 10. Figure 2 (b) shows the pat-
tern at time step t = 1000 generated from the same initial configuration as in
Fig. 2 (a). White squares represent cells with state 0 and black squares rep-
resent cells with state 1. We call this rule F1. The observation of the evolu-
tions from random initial configurations shows that the state of cells changes
abruptly and the fixed patterns like a maze are gradually formed. The average
of b, σ2, and F of F1 for ten distinct initial configurations is -0.7857, 0.0010, and
951.04.

Figure 3 (a) shows the spectrum of the rule ”10110110000110100” with the
second highest fitness F = 661.18 (β = −0.2819, σ2 = 0.00043). Figure 3 (b)
shows the pattern at time step t = 1000 generated from the same initial configu-
ration. We call this rule F2. The state of cells changes abruptly and the clusters
of cells with state 1 are gradually formed in the evolution. The average of b, σ2,
and F of F2 for the ten distinct initial configurations is −0.2138, 0.0005, and
433.53.

Although F1 and F2 have high fitness, the exponent β in these spectra is not
close to −1. Therefore these are not considered to be 1/f noise. The highness of
fitness is primarily due to the lowness of the residual sum of squares σ2 in these
spectra. There seems to be no propagating structures in F1, although there are
7 gliders in F2 [11].

Figure 4 (a) shows the spectrum of the rule ”01010000001110000” with the
third highest fitness F = 573.85 (β = −1.0508, σ2 = 0.0018). Figure 4 (b) shows
the pattern at time step t = 1000 generated from the same initial configuration.
We call this rule F3. The evolution of F3 from random initial configurations
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Fig. 2. (a) Spectrum for T = 8000 from a 100×100 random initial configuration of
the rule ”01000011101110000” with the highest fitness F = 996.09. The dotted line
represents the least square fitting of the spectrum by ln(Sf ) = α + βln(f) from f = 1
to f = 10 with β = −0.5866. (b) Pattern at time step t = 1000 generated by the
rule from the same initial configuration. White squares represent cells with state 0 and
black squares represent cells with state 1.
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Fig. 3. (a) Spectrum for T = 8000 from a 100×100 random initial configuration of the
rule ”10110110000110100” with the second highest fitness F = 661.18. The dotted line
represents the least square fitting of the spectrum by ln(Sf ) = α + βln(f) from f = 1
to f = 10 with β = −0.2819. (b) Pattern at time step t = 1000 generated by the rule
from the same initial configuration.

is fairly similar to that of LIFE, and moreover, there is the same glider in F3
as in LIFE. The rule of F3 is different from that of LIFE in two output states
x16 = x14 = 1 which correspond to d(0, 8) = d(0, 7) = 1. This means cells in
state 0 in F3 tend to turn to state 1 as compared with LIFE and the cluster
of cells in state 1 lasts a long time, changing its shape. Therefore the transient
behavior from a random initial configuration in F3 lasts longer than in LIFE.
The average of b, σ2, and F of F3 for the ten distinct initial configurations is
−1.0417, 0.0024, and 440.10.
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Fig. 4. (a) Spectrum for T = 8000 from a 100×100 random initial configuration of the
rule ”01010000001110000” with the third highest fitness F = 573.85. The dotted line in
the spectrum represents the least square fitting of the spectrum by ln(Sf ) = α+βln(f)
from f = 1 to f = 10 with β = −1.0508. (b) Pattern at time step t = 1000 generated
by the rule from the same initial configuration.

4 Conclusion

In this paper we reported the experiment in progress using GAs to find two-
dimensional two-state nine-neighbor outer totalistic CAs with 1/f spectrum. F3
with the third highest fitness in the experiment has 1/f spectrum. While the rule
of F3 is different in two output states d(0, 8) and d(0, 7) from that of LIFE, its
behavior is extremely similar to that of LIFE, and moreover, there is the same
glider as in LIFE. If F3 is capable of universal computation like LIFE, it can
be an evidence supporting the relationship between computational universality
and 1/f noise in two-dimensional CAs, although the detailed investigation will
be needed to prove the ability for universal computation in F3, and moreover,
we have to perform GA operations for longer generations. The rules with the
highest and the second highest fitness in the experiment do not have 1/f spec-
trum. This defect suggests that there is still room for improvement in the fitness
function (8).

The hypothesis of ”the edge of chaos” has evoked considerable controversy [8].
This hypothesis says the ability to perform universal computation in a system
arises near a transition from regular behavior to chaotic behavior. It is still
uncertain whether the rules with 1/f spectrum are located near the transition
to chaos.

In this research we concentrated on two-dimensional CAs. The elementary
(one-dimensional two-state three-neighbor) CA rule 110 is capable of universal
computation [12]. None of the elementary CAs show 1/f spectrum, although the
spectra of the rule 110 and rule 54 have a remarkable feature that they have both
power density in a broad range of frequencies like chaotic rules and several peaks
in some frequencies like periodic rules [13]. Another criterion might be needed
for computational universality in one-dimensional CAs instead of 1/f noise.
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The proposed method can be applied to the search through larger CAs rule
space than the CAs rule space dealt with in this article. The search through the
two-dimensional three-state nine-neighbor outer totalistic CAs rule space will be
performed in future work.

Acknowledgements. This study was carried out under the ISM Cooperative
Research Program (2005-ISM·CRP-0007).

References

1. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical
Plays, Vol.2, Academic Press, New York (1982)

2. Ninagawa, S., Yoneda, M., Hirose, S.: 1/f Fluctuation in the ”Game of Life”.
Physica D 118 (1988) 49–52

3. Keshner, M.S.: 1/f Noise. Proc. IEEE 70 (1982) 211–218
4. Mitchell, M., Hraber, P.T., Crutchfield, J.P.: Revisiting the Edge of Chaos: Evolv-

ing Cellular Automata to Perform Computations. Complex Systems 7 (1993) 89–
130

5. Mitchell, M., Crutchfield, J.P., Hraber, P.T.: Evolving Cellular Automata to Per-
form Computations: Mechanisms and Impediments. Physica D 75 (1994) 361–391

6. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C 2nd ed., chapter 13, Cambridge University Press, Cambridge (1992)

7. Li, W.: Power Spectra of Regular Languages and Cellular Automata. Complex
Systems 1 (1987) 107–130

8. Langton, C.: Computation at the Edge of Chaos: Phase Transitions and Emergent
Computation. Physica D 42 (1990) 12–37

9. Ninagawa, S.: Cascade Process in the Transient Behavior of the ”Game of
Life”. Proceedings of the Seventh International Symposium on Artificial Life and
Robotics 16 (2002) 124–127

10. Ninagawa, S.: 1/f Fluctuation and Transient Behavior in the Game of Life. IPSJ
Journal 43 (2002) 2017–2020 (in Japanese)

11. http://www.ics.uci.edu/~eppstein/ca/
12. Cook, M.: Universality in Elementary Cellular Automata. Complex Systems 15

(2004) 1–40
13. Ninagawa, S., Hirose, S., Hase, H., Yoneda, M.: Classification of One-dimensional

Cellular Automata by Spectral Analysis. Trans. of the IEICE D-1 J80 (1997) 856–
865 (in Japanese)



M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 461 – 470, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Evolving Sequential Combinations of  
Elementary Cellular Automata Rules 

Claudio L.M. Martins and Pedro P.B. de Oliveira 

Universidade Presbiteriana Mackenzie 
Rua da Consolação 896, Consolação 
01302-907 São Paulo, SP – Brazil 

claudio.luis.martins@terra.com.br 
pedrob@mackenzie.br 

Abstract. Performing computations with cellular automata, individually or ar-
ranged in space or time, opens up new conceptual issues in emergent, artificial 
life type forms of computation, and opens up the possibility of novel techno-
logical advances. Here, a methodology for combining sequences of elementary 
cellular automata is presented, in order to perform a given computation. The 
problem at study is the well-known density classification task that consists of 
determining the most frequent bit in a binary string. The methodology relies on 
an evolutionary algorithm, together with analyses driven by background knowl-
edge on dynamical behaviour of the rules and their parametric estimates, as well 
as those associated with the formal behaviour characterisation of the rules in-
volved. The resulting methodology builds upon a previous approach available 
in the literature, and shows its efficacy by leading to 2 rule combinations al-
ready known, and to additional 26, apparently unknown so far. 

1   Introduction: Background and Motivation 

1.1   Cellular Automata 

Cellular automata (CAs) are fully discrete, complex systems that possess both a dy-
namic and a computational nature. They consist of a grid-like regular lattice of cells, 
and a state transition rule [2]. The cells in the lattice have an identical pattern of local 
connections to other cells, and are subjected to some boundary condition, usually 
periodic. Each cell can take on one of a discrete set of possible states, and the 
neighbourhood of a cell is defined as the cell, together with the others that are con-
nected to it. 

The state transition rule yields the next state for each cell, as a function of its 
neighbourhood, and, at each time step, all cells synchronously have their states up-
dated. In computational terms, a cellular automaton is, therefore, an array of finite 
automata, where the state of each automaton depends on the state of its neighbours. 

For one-dimensional CAs, the size m of the neighbourhood is usually written as 
m=2r+1, where r is called the radius of the automaton. In the case of binary-state 
CAs, the transition rule is given by a state transition table, which lists each possible 
neighbourhood together with its output bit, that is, the updated value for the state of 
the central cell in the neighbourhood. Figure 1 gives an example, with rule 110 of the 
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elementary space – the set of one-dimensional cellular automata rules with 2 states 
per cell and radius 1 – in which black cells represent state 1, and white cells represent 
0. The rule denomination as 110 comes from the decimal number corresponding to 
the binary number that is formed from its rule table, from neighbourhood 111…1 on 
the left-hand side, as shown in the figure; in fact, such a naming scheme is widely 
used in the literature, for any radius, so that here we preserve it. 

 
 
 
 

Fig. 1. Example of a cellular automaton rule 

The elementary space is the most well-studied space in the literature, being com-
posed of only 256 rules. Although small, it is very important, because it is extremely 
rich in its phenomenology and conceptual connections and implications; for instance 
it has recently been shown that rule 110 has universal computability [2], a quite sur-
prising and remarkable result, considering such a rule is an extremely simple compu-
tational system. 

The dynamics of a cellular automaton is associated with its transition rule. Figure 2 
illustrates the possible regimes (the initial condition being at the top, and time running 
downward).  

Fig. 2. Examples of the type of dynamical regimes in cellular automata: null, fixed point, peri-
odic, complex and chaotic [13]  

Taken from left to right, the pictures refer to the temporal evolution of elementary 
rules 160, 132, 123, 110 and 90, from random initial conditions, representing, respec-
tively, the regimes: null (the limit configuration becomes homogeneous, all 1s or 0s in 
the binary case), fixed point, periodic, complex (the limit configuration becomes a 
mix of ordered and disordered regions) and chaotic. 

Because it has been proven that the decision problem associated with predicting the 
dynamical behaviour of an arbitrary CA, with arbitrary initial condition, is an unde-
cidable problem, computationally cheap ways of forecasting the dynamical behaviour 
of CAs have been conceived. Along this line, static parameters whose values can be 
directly derived from the transition rule of a CA have been defined, such as sensitiv-
ity, absolute activity, neighbourhood dominance and activity propagation [11]. 

Finally, still in respect to the dynamical behaviour of CAs, it is important to notice 
that the rules of a certain family – for instance, the 256 rules of the elementary space 

160 132 123 110 90

   0          1            1  0    1      1        1          0 
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– can be partitioned into classes of equivalent dynamical behaviour. This is achieved 
by changing all 0s to 1s in the rule table of a rule (the black-white transformation), by 
reversing all neighbourhoods while preserving the original output bit they originally 
lead to (the left-right transformation), and by doing the latter two in sequence. As a 
consequence, equivalence classes are formed with 4, 2 or a single rule. Figure 3 illus-
trates the dynamical equivalence class for elementary rule 110, formed by rules 137, 
124 and 193, which are obtained, respectively, from each of the previous transforma-
tions. 

 Rule 110                 Rule 137                  Rule 124                   Rule 193 
 

 

Fig. 3. Dynamical equivalence among CA rules is defined by the following symmetries in their 
rule tables: black-white, left-right, and the combination of both  

1.2   Density Classification with Cellular Automata 

A strong motivation for studying cellular automata is their ability to perform compu-
tations, through their characteristic totally decentralised, local and parallel mode [16]. 
However, the understanding of how these computations are carried out is still ex-
tremely vague, so that, regardless of more than four decades of cellular automata 
research, their use for computing functions at large are still at an embryonic stage. 
The main reason for this failure is the lack of a robust method for designing cellular 
automata of a predefined behaviour.  

The Density Classification Task (DCT, for short) is one of the most widely studied 
computational problems in the context of cellular automata. In its standard formula-
tion it states that a binary, one-dimensional CA has to converge to a final configura-
tion of all cells in state 1, when the initial configuration has more 1s than 0s, and to a 
configuration of all 0s, whenever the initial configuration has more 0s than 1s. The 
problem usually does not specify what should happen to the CA if the initial configu-
ration has as many ones as zeros, although one could require (as sometimes happens 
in the literature) that, in this case, a specific final configuration also has to be 
achieved (for instance, a binary sequence of a single 0 alternating with a single 1). 
While solving the DCT is a trivial task for any centralised computational system, it is 
a daunting task for any fully distributed system, with local processing, as a cellular 
automaton, in that it requires global coordination to be solved, thus being a clear ex-
ample of emergent computation.  

Although the DCT was proposed in 1978, only in 1995 the perfect solution for the 
problem was proven not to exist [14] (even though, by changing the formulation of 
the problem it can be solved [8]). In spite of that, a number of empirical and theoreti-
cal advances around the DCT have been achieved, and many techniques – mostly, 
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evolutionary computation based – have been developed that have continuously led to 
better and better rules, even though the best possible imperfect rule remains unknown. 
Strikingly, the DCT has been proven to be solvable by rule combinations, even the 
trivial combination of running elementary rule 184 for N (the lattice size) time steps,  
followed by elementary rule 232 [7] (a result then generalised in [5] and [4]).  

Another very interesting case along the same line is concerned with the Parity 
Problem, by which the CA evolution has to go to a final configuration of all 0s, if the 
number of 0s in the initial condition is even, or to 1s, otherwise. Although it is still 
unknown whether there exists a single-rule solution to the problem (in fact, there are 
empirical evidences that there is not [10]), a solution to the parity problem has been 
found when 5 elementary rules are combined in sequence, in a certain way [3]. 

The combination of CA rules in sequence defines an immense phenomenological 
space that is completely unknown, with potential for extremely interesting theoretical 
consequences; for instance, one could ask what is the space of computable functions 
that is implicit in the elementary space, out of combinations of its null and fixed point 
rules 2 by 2, 3 by 3, and so on. This is virtually a new domain of enquiry for which no 
theoretical account is currently available, but that can be addressed from an empirical 
perspective. This is precisely what is carried out in this paper. Here, a genetic algo-
rithm [6] is presented that leads to successful sequential combinations of up to 4 ele-
mentary rules that can solve the DCT. Then, by analysing the rules involved, various 
other successful combinations are derived. 

In the next section the evolutionary algorithm is presented. Section 4 then dis-
cusses the experiments and analyses carried out, and then conclusions are drawn. 

2   The Evolutionary Algorithm 

Our algorithm is based on [1], where the same problem was tackled, with limited but 
encouraging results.  

Basically, the role of the evolutionary algorithm is to search for a combination of n 
elementary CA rules and the corresponding number of time steps that each one is 
meant to run through. Therefore, each candidate solution (chromosome) can be repre-
sented by a sequence of genes, each one containing a rule and the number of time 
steps it is meant to iterate over its initial configuration (see Figure 4). Naturally, the 
initial configuration for R1 is the actual binary sequence that defines the DCT, and 
those for the subsequent Ri rules are taken from the last configuration generated after 
running Ri-1 for ti-1 time steps. 

 

Fig. 4. Representation of a candidate solution: rule Ri is run for ti iterations  

As an illustration, Figure 5 displays the representation of a chromosome with 2 
genes: rule 110 applied 30 times, and rule 137 applied 119 times. While in the actual 
algorithm the rules are coded in binary and the time steps in decimal, for the sake of 
simplicity decimal notation is used herein for both. 
 

R1 t1 R2 t2 ...... Rn tn 
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01110110 30 10010001 119  =  110-30 137-119 

Fig. 5. Example of a chromosome with 2 genes and the decimal notation for rule and iteration 

The fitness of every individual is simply the fraction of all NICs initial configura-
tions in which the individual produced the correct final configuration (of all 0s or all 
1s), when attempting to solve the DCT on them. The set of initial configurations (ICs) 
is generated with uniform distribution in respect to the amount of 1s in them. The 
lattice length is assumed to be an odd number so as to ensure that any initial configu-
ration is valid for the task. 

The following evolutionary algorithm is used and runs for Ngen generations: 

• The population is composed of Npop individuals, each one with Nr  genes. 
• A single set of NICs initial configurations of length N is generated and used 

throughout the evolutionary process for evaluating the candidate solutions. 
• The top Nelite individuals at every generation are transferred directly to the next, 

without modification. 
• Through (deterministic) tournament selection of size 2, involving the entire popu-

lation, the remaining (Npop-Nelite) individuals of the next generation are formed 
through the action of crossover followed by mutation.  

• Every pair of selected individuals is subjected to a single-point crossover. 
• Each offspring produced after crossover undergoes mutation, as follows: 

– With probability 0.25, one of the rules in its genes mutates, by the flipping 
one of the bits in its binary number representation. 

– With probability 0.25, one of the iterations appearing in its genes mutates, 
through the addition or subtraction of a random number, uniformly distrib-
uted in the interval [- N/(2×Nr)  , + N/(2×Nr)  ]. 

– With probability 0.25, both the latter mutations happen, possibly involving 
two different genes. 

– Finally, with probability 0.25 the individual does not mutate. 
 

The main differences between our work and the one described in [1] are: our algo-
rithm relies on a completely distinct mutation scheme and, apparently, their use of the 
set of initial configurations is different from ours; our work is supplemented by analy-
ses of the evolved rules, based upon properties of the elementary CAs; they only  
reported results with 2 genes, while we used up to 4; they found only 1 successful 
solution for DCT (although they reported 2), while we found 4, which, through the 
analyses hinted at above, eventually led to a total of 28 different rule combinations 
(24 3-rule solutions and 4 2-rule solutions). 

3   Experiments and Analyses of the Results 

Our first intent was to check whether our algorithm could also lead to the results re-
ported in [1] for the DCT, which was successfully carried out. The main experiments 
were conducted under the following conditions: k=2, r=1, N=149, NICs =1000, 
Npop=100, Nelite =20, Nr =2, and t1 + t2 = 149. Figure 6 compares all results. 
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KW1: 184-124 232-25 MO1: 184-75 23-74 
KW2: 226-73 232-76 MO2: 184-73 23-76 

   MO3: 184-73 232-76 
   MO4: 226-74 232-75 
   MO5: 226-73 23-76 

Fig. 6. Comparison of the results for DCT with 2 rules: on the left those by [1] (KWi), and on 
the right our results (MOi)  

Basically, the differences between the two sets of results are in the numbers of it-
erations of each rule. However, it can be proven that KW1 is not a valid DCT solution, 
since its number of iterations is less than the necessary. We get back to this point 
later. 

The same evolutionary mechanism was also used in a search for DCT solutions 
with individuals formed by 4 genes. The experiments were carried out under the same 
conditions as before, except that now Nr = 4 and t1 + t2 + t3 + t4 = 149. 

Most trials finalised with good solutions but none with perfect score; however,  
after 698 generations, the combination    226-73   236-1    51-0 128-75  was 
generated as a perfect solution (certified under 50000 initial conditions). Interestingly, 
notice that it is in fact equivalent to a 3-rule solution, since the third rule runs for 0 
iterations. 

Analysing Solutions With 2 Genes. First of all, let us point out that it has been 
shown that the set of possible configurations that can appear in the evolution of one-
dimensional cellular automata, at any given finite number of time steps, from all 
possible initial conditions, can be described by finite automata, that is, the resulting 
limit set at every time step, is always a regular language [12]. Therefore, we can rely 
on the notation of regular expressions for representing the action of elementary rules. 

Analysing the results in Figure 6, notice that one of the second rules (namely, rule 
23) is novel in respect to any known results until then; and it can be seen that it is one 
of the few rules in the elementary space that does not have a dynamical equivalent. 

Notice also that our third and fourth results are similar to those in [1], as they have 
rule 232 as the second rule in the combination, and rules 184 or 226 as the first rule. 
The combination 184-232 is exactly the one reported in [7], but the other association, 
226-232, can be explained by the fact that rule 184 is dynamically equivalent to 226. 

Rule 184 is the so-called traffic rule. It moves any 1 to the right in the lattice, if its 
right-hand neighbouring site is 0. Its equivalent rule, 226, does the same, but moving 
1s leftwards, provided the site at the left is 0. Both arrange the lattice with alternating 
0s and 1s, so that only the prevailing bit (the one that appears the most) can be found 
in consecutive sites. Considering any initial condition as a regular expression like 
(0+1)N where N is the lattice length, after N/2  -1 iterations both rules transform any 
initial condition to a regular expression of the form ((01)*1+)+ if there is a predomi-
nance of 1s, to ((10)*0+)+ if there is a predominance of 0s, or to (01)N/2 if there are as 
many 1s as 0s. Regardless the case, the same original density of the initial condition is 
preserved, since rule 184 is conservative. 

After the lattice has been sorted out, rule 232 completes the solution, by converting 
the entire lattice to 0s or 1s, according to the prevailing density. After N/2  iterations, 



 Evolving Sequential Combinations of Elementary Cellular Automata Rules 467 

it transforms any initial condition of the form ((01)*1+)+ to 1N, and those of the form 
((10)*0+)+ to 0N. Each rule iteration increases the density of the prevailing bit. Rule 
232 does not modify lattice configurations represented by the expression (10)++(01)+. 

Similarly, once the lattice is organised, rule 23 is also able to complete the solu-
tion, by turning the entire lattice from its original configuration to another, fully 0 or 
1, according to the prevailing density; however, it requires an even number of itera-
tions, because each rule iteration increases the difference between the density of both 
bits, but alternating the prevailing bit. The required number of iterations is N/2  if 
N/2  is even, or  N/2  if N/2  is odd. 

Figure 7 shows the space-time diagrams obtained after 149 iterations, from combin-
ing the rules mentioned above that solve the DCT. The initial condition 75 1s (blacks) 
followed by 74 0s (whites), displayed at the top, with time running downwards. 

 
   Rules 184-232          Rules 226-232          Rules 184-23            Rules 226-23 

 

 

 

 

 

 

 

 

Fig. 7. Space-time diagrams with 149 iterations, of the 2-rule solutions to the DCT 

Analysing Solutions With 3 Genes. Analysing the solution found with 3 rules notice 
that they have the same first rule as before. The difference is the exchange of the 
second rule by two new ones. By using the notion of dynamical equivalence it is 
possible to infer other solutions that also solve the problem, as shown below. Rule 
200 is equivalent to rule 236 and rule 254 is equivalent to rule 128. 

 
Found 226-73 236-1 128-75 

Inferred 184-73 236-1 128-75 
Inferred 226-73 200-1 254-75 
Inferred 184-73 200-1 254-75 

Fig. 8. Examples of 3-rule solutions to the DCT 

After the lattice has been sorted out by rules 184 or 226, somewhere in it there 
must be a sequence of consecutive 1s or 0s. When rule 236 is applied just once, it can 
only preserve a 0 if there is another 0 beside it; the rest of the lattice turns to 1; so, if 
there are no consecutive 0s, the entire lattice turns to 1. In terms of regular expression 
representation, rule 236 transforms configurations of the form 1*(01)*0K(10)*1*, 
K≥2, to 1*0K1*. When rule 128 is applied it preserves a 1 only if both sides of the cell 
are also 1s; if there are consecutive 0s the entire lattice turns to 0. Rule 128 transforms 
configurations of the form 10K1, K≥2, to 0K+2, after N/2  iterations. 
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Similarly, when rule 200 is applied just once, it keeps the state 1 only if there is 
another 1 beside it; the rest of the lattice turns to 0. If there are no consecutive 1s the 
entire lattice turns to state 0. Rule 200 transforms configurations of the form 
0*(01)*1K(01)*0*, K≥2, to 0*1K0*. When rule 254 is applied it keeps the state 0 only 
if both sides of the cell are also 0s. If there are any consecutive 1s the entire lattice 
turns to 1 after N/2  iterations. Finally, rule 254 transforms configurations of the form 
01K0 (K≥2) to 1K+2.   

The 3-rule solution does not solve the general formulation of DCT, in which the fi-
nal configuration should have the form (01)* or (10)*, when the initial condition is 
balanced, that is, each bit is equally present in it. 

With the same features of Figure 8, Figure 9 displays the space-time diagrams of 
the combinations involving the 3-rule solutions mentioned above. 

          Rules 226-236-128     Rules 184-236-128     Rules 226-200-254      Rules 184-200-254 

       

Fig. 9. Space-time diagrams with 149 iterations, of the 3-rule solutions to the DCT 

Now, by observing the classification of the dynamical behaviour for the elementary 
rules and some of the values of the static parameters associated to their dynamical 
behaviour forecast (both mentioned earlier, at Section 1), additional 3-rule solutions 
can be inferred – as shown in Figure 10 – obtained by changing the third rule in the 
combination by others with the same dynamical regime. 

Inferred 226-73 236-1 160-75 
Inferred 184-73 236-1 160-75 
Inferred 226-73 200-1 250-75 
Inferred 184-73 200-1 250-75 

Fig. 10. Other examples of 3-rule combinations that solve the DCT 

More precisely, these solutions came out of the observation that rules 160 and 250 
belong to the same dynamical class (namely, null behaviour) as rules 128 and 254, 
and that all of them share the same values for the absolute activity (A) for the activity 
propagation (P) parameters, respectively, the values of 0.25 and 0. But while the latter 
observation turned out to be positive towards inferring the new combinations, it was 
empirical in nature, thus calling for an effective explanation. 

The search mechanism was also tested with other parameters. For instance, by not 
limiting the amount of iterations according to the lattice length, other solutions 
emerge, and others can be inferred, as shown finally, in Figure 11. 

73 

75 

1 
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226-73 236-1 136-147  226-73 236-1 192-147 
184-73 236-1 136-147  184-73 236-1 192-147 
226-73 236-1 168-147  226-73 236-1 224-147 
184-73 236-1 168-147  184-73 236-1 224-147 
226-73 200-1 234-147  226-73 200-1 248-147 
184-73 200-1 234-147  184-73 200-1 248-147 
226-73 200-1 238-147  226-73 200-1 252-147 
184-73 200-1 238-147  184-73 200-1 252-147 

Fig. 11. Other 3-rule DCT solutions 

4   Concluding Remarks 

Performing computations with cellular automata, individually or arranged in space or 
time, opens up new conceptual issues in emergent, artificial life type forms of compu-
tation, and opens up the possibility of novel technological advances. 

The exhaustive sequential combination of CA rules and their number of iterations 
can be an enormous combinatorial task. In order to transpose this obstacle evolution-
ary search has been shown herein as a definite possibility to be pursued. The GA 
managed to find solutions for the DCT, in particular in unexpected ways, as typically 
happens in natural and artificial adaptive systems. 

However, the thrust of our findings is not due to the evolutionary search alone, as it 
was supplemented by analyses driven by background knowledge on dynamical behav-
iour of elementary rules and their parametric estimates, as well as those associated 
with the behaviour characterisation of the rules through the transformation in the 
regular expressions of the binary configurations involved.  

The actual algorithm we used, despite its inspiration in [1], clearly surpassed it. 
The mutation process we defined, in addition to the analyses mentioned above were 
the key for the much better results we obtained. The fact that we represented the rules 
as a binary and the amount of iterations as a decimal number came from the scheme 
used in [1] and could well be an issue for further enquiry and possible improvement. 

In respect to the efficacy of the solutions found by the GA, or inferred through 
analysis, they have been initially tested in ensembles of 50000 randomly generated 
initial conditions, before the rationale underlying the rule operations (formalised by 
the regular expression transformations) became apparent. 

Other applications of the methodology described herein are currently under way, in 
particular in the parity problem, where our main objective is to simplify the only cur-
rently available solution to the problem, due to [3]. 
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Abstract. We compare the long term behaviour of Conway’s Game
of Life cellular automaton, from initial random configurations, on a
bounded rectangular grid and a bounded Penrose tiling grid. We investi-
gate the lifetime to stability, the final ‘ash’ density, and the number and
period of final oscillators. Penrose grids have similar qualitative behav-
iour but different quantitative behaviour, with shorter lifetimes, lower
ash densities, and higher ocurrence of long-period oscillators.

Keywords: Conway’s Game of Life; Penrose tiles; ash; oscillators.

1 Introduction

John Horton Conway’s Game of Life [1][3] is a simple two-dimensional, two
state cellular automaton (CA), remarkable for its complex behaviour [1][8]. That
behaviour is known to be very sensitive to a change in the CA rules. Here we
investigate its sensitivity to changes in the grid, by the use of an aperiodic
Penrose tiling grid [4][7].

2 Varieties of Life

In Conway’s Game of Life CA, the neighbourhood of each cell comprises the 8
nearest cells of the Moore neighbourhood. Each cell has two states, ‘dead’ and
‘alive’. If a cell is alive at time t, then it stays alive iff it has 2 or 3 live neighbours
(otherwise it dies of ‘loneliness’ or ‘overcrowding’). If a cell is dead at time t,
then it becomes alive (is ‘born’) iff it has exactly 3 live neighbours.

Life has grown its own extensive and idiosyncratic terminology over the years.
Much of this is collected in the extensive on-line Life Lexicon [9]. In particular, an
initial random starting state is called a soup, and, mixing metaphors somewhat,
the final resulting configuration is called the ash.

We can run CAs such as Life on aperiodic grids, such as Penrose tilings, with
a suitable definition of the ‘neighbourhood’.

There are two classic sets of Penrose tiles [4][7], kites and darts (so called
because of their shapes) and fat and thin rhombuses. We use the kite and dart
form. A plain kite and dart can be combined into a rhombus, and so tile the

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 471–480, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



472 M. Hill, S. Stepney, and F. Wan

(a) (b)

Fig. 1. Deflating a kite and a dart (a) minimal deflation; (b) deflation avoiding ‘holes’
in the result

(a) (b)

Fig. 2. Variable Penrose neighbourhood: (a) example of kites with eight and nine
neighbours; (b) numbers of neighbours in a small deflated grid: light coloured tiles
have 8 neighbours; dark tiles have 9 neighbours; grey tiles are edge tiles with fewer
than 8 neighbours.

plane periodically. To force the tiling to be aperiodic, matching rules, marks on
the tiles that must be matched together, are used.

A valid Penrose tiling has no gaps or overlapping tiles. The deflation algo-
rithm [6] guarantees a valid tiling. At each round of deflation, each kite and dart
tile is replaced with smaller kites and darts (figure 1). This leads to overlapping
tiles, but the overlap is exact, and so the extra tiles can be safely removed. Since
we use this deflation algorithm, we are restricted to the sizes (number of cells)
of Penrose grids produced by the successive deflation generations.

In a rectangular grid, four cells meet at every vertex, and every cell has eight
neighbours. In a Penrose grid, three, four or five cells can meet at a vertex, and
Penrose grid cells can have either eight or nine neighbours (figure 2). We have
found no algorithmic way of reducing the neighbourhood of all tiles to eight
whilst maintaining the undirected nature of the neighbourhood graph. So we
leave the neighbourhood as it is, and apply the Life rules to it unchanged.

We need to cope with the edge of the deflated Penrose grid. There are two
conventional ways in CAs of removing the effect of the edge of the grid.

1. Periodic Boundary Conditions: the grid has the topology of a torus, finite
but unbounded (has no edges). This is the approach usually taken for investi-
gating statistical properties of soups, with the results more or less tentatively
extrapolated to infinite grids. However, this approach is impossible for aperiodic
grids such as a Penrose grid.
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Table 1. The four grid sizes investigated: four Penrose deflations and the corresponding
nearest regular square grid size.

S, small M, medium L, large X, extra-large
Penrose 688 1907 5170 13900
rectangular 676 = 262 1936 = 442 5184 = 722 13924 = 1182

2. Lazy Infinite Grid: implemented by lazily expanding a finite grid as activ-
ity nears its edges [5]. This is the approach usually taken for investigating the
properties of particular structures, such as glider guns. It is not practical for
implementation on Penrose grids produced by deflation, since the generation n
grid does not clearly appear as a subpart of the larger generation n + 1 grid.

Since neither of these standard approaches is suitable for investigating Pen-
rose soups, we choose to investigate the effects of having a bounded grid, ex-
plicitly noting the effect of the edges. We have to decide how to handle the
boundary. We can choose the border cells to stay ‘dead’, no matter what their
neighbours’ states, or choose them to have a reduced neighbourhood of five (or
three at the corners). These choices are equivalent for CA rules like those of Life,
where the state transition depends only on the total number of live neighbours
(so permanently dead neighbours are equivalent to no neighbours).

3 Experimental Set-Up

For both the regular and Penrose grids, to compare like with like, we investi-
gate the behaviour of a finite grid, initially empty except for a smaller patch of
soup. Given that we are restricted to certain Penrose grid sizes by the deflation
algorithm, we restrict the rectangular grid to the nearest similar sizes (table 1).

So our investigations are parameterised by the initial soup patch size S, initial
soup density D, and fixed grid size G. The questions we pose are:

– what are the lifetimes of the initial random configurations?
– what are the final ash densities?
– what are the periods of the oscillators at the end of the lifetime?

A pattern is called a period n (pn) oscillator if it repeats after n generations.
We define the lifetime of a configuration as the number of generations from the
initial random starting configuration until it stabilises to ash, where a stable
state comprises only oscillators, including ‘Still Life’ p1 oscillators. So we wait
until any gliders have been absorbed by the boundary.

For example, on an infinite grid, the well-known ‘r-pentomino’ initial config-
uration reaches a stable state after 1103 generations, when it comprises several
Still Lifes and p2 blinkers, and six escaped gliders. On a finite but large enough
grid it stabilises to ash once the six gliders reach the boundary.

4 Lifetime Results

We use 1000 runs with each parameter set, but different random starting
configurations.
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Fig. 3. Frequency against lifetime to stability on a regular grid, for initial density
D = 20%. Columns are increasing grid sizes G, showing lengthening lifetime tails; rows
are increasing soup patch sizes S, peaks move to longer lifetimes.

4.1 Classic Life

Previous Results. Achim Flammenkamp has an extensive list of ash objects
grown from soup [2]. He starts with initial densities D = 0.371 − 0.375, on
toroidal (periodic boundary condition) grids of sizes 212 × 212 (4096× 4096) and
214 × 214 (16384× 16384). These experiments give an asymptotic ash density of
0.0287115 bits per cell. There are no reports of the time taken to stabilise.

The grids we test here are much smaller (the largest grid we test is X =
118 × 188), but we test a much broader range of grid sizes and initial densities.

Distribution. The distributions of lifetimes are highly skewed (figure 3). There
is a peak in the distributions at low lifetimes, with a long tail of high lifetimes.
This tail is longer on larger grids, that is, larger grids can support longer lifetime
structures, implying that there is a correlation between a structure’s lifetime and
its size. The peak lifetime is higher with larger initial patches: small patches tend
to die more rapidly than larger patches.

Effect of Initial Density. We expect a short lifetime at low density, because
there are too few live cells to cause more to be born. We might also expect short
lifetimes at high density, as everything dies of overcrowding.

We can see these effects qualitatively from the following approximate argu-
ment. (It is only an approximation to the real behaviour, because we treat the
distribution as smooth, yet clumpiness has an important effect; however, the
intuition it provides is sound.) Let the average density at time t be ρt. Then the
average density at time t + 1 will be (approximately):

ρt+1 = ρtP (staying alive) + (1 − ρt)P (being born) (1)
= ρt (P (2 nbrs) + P (3 nbrs)) + (1 − ρt)P (3 nbrs) (2)
= ρt

(
nC2 ρ2

t (1 − ρt)n−2) + nC3 ρ3
t (1 − ρt)n−3 (3)
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Fig. 4. Density against timestep for smoothed evolution of initial densities
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Fig. 5. Density against time on an M grid, of 10 initial random densities D

where P (m nbrs) is the probability that m neighbours are alive. For a neigh-
bourhood of n = 8, we get

ρt+1 = 28ρ3
t (1 − ρt)5(3 − ρt) (4)

For an initial ρ that is not too large or too small, the density rapidly converges
to ρ∞ ≈ 37% (figure 4a). However, for low initial densities (ρ0 ∼< 20%), there
is not enough activity to sustain Life, and the density rapidly falls to zero. For
high initial densities (60% ∼< ρ0), there is massive death in the first generation,
and the resulting density ρ1 is less than the critical value, and so again rapidly
converges to zero.

Similarly, for a neighbourhood of n = 9 (relevant to some cells in the Penrose
grid), we get

ρt+1 = 12ρ3
t (1 − ρt)6(10 − 3ρt) (5)

For an initial ρ not too large or too small, the density rapidly converges to
ρ∞ ≈ 35%.

We compare these calculations with actual runs, on an M grid (44×44 cells),
with initial densities of 20%, 40%, and 60% initially covering the entire grid, for
10 runs each. The evolutions of the densities are shown in figure 5. We see that
the evolution is qualitatively similar, but the actual densities are lower than the
calculation, at closer to 10% whilst still evolving, and 2–5% once stabilised to
ash. (This latter figure is consistent with Flammenkamp’s asymptotic value of
≈ 2.9%.) The lower densities demonstrate the importance of clumpiness. There
is no correlation between lifetime to stability, and ash density (figure 8a).

Figure 6 shows graphs of mean lifetime against density, for various grid sizes
and initial patch sizes. At low densities, they have low lifetimes, and as the
density rises, so does the lifetime. Once the density gets too high, lifetimes start
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Fig. 6. Mean lifetimes to stability against initial density, on a regular grid, for different
soup patch sizes S = 20 × 20, 40 × 40, full grid

to drop again. But then, for very high densities, the mean lifetime starts to rise
once more (except when the initial patch completely fills the grid). Why?

These experiments are run on patches of initial random soup that are smaller
than the total grid size. For very high densities, this initial patch is essentially
a solid square. Note that the average density at the edge of a patch is half the
interior density. So for solid patches, their edges are at a density suitable for
sustaining Life. The centre rapidly dies, but the edges survive and propagate for
a long time. So the entire graph can be thought of as having two components:
one due to the central region, peaking near Dmax ≈ 50%, and one due to the
edges, peaking at ≈ 2Dmax.

Detailed Effect of Patch and Grid Size. The earlier figure 3 shows that
both average and maximum lifetimes increase with initial soup patch size S, and
grid size G.

The bigger the grid, the longer the lifetime: the boundary does seem to be
‘killing’ the life. Clearly, if some central region shoots out gliders, then bigger
grids will give longer lifetimes, because the lifetime is taken once all the gliders
have hit the boundary, which will take longer for larger grids. But ours are all
relatively small grids, and that is not the dominant effect: the soup is ‘boiling’
over the whole grid.

We can see that 5 neighbours (the case on the boundary) is not enough to
maintain Life, using equation 3 for n = 5 neighbours. We get

ρt+1 = 10ρ3
t (1 − ρt)2(2 − ρt) (6)

In this case, whatever the initial value of ρ, it quickly converges to zero (fig-
ure 4b): all Life dies.

4.2 Penrose Grid Lifetimes

Now that we understand the effect of grid size, patch size, and initial density on
the regular grid, we can investigate the effect of using an aperiodic Penrose grid.

Distribution. The lifetime distributions show the same qualitative behaviour as
for a regular grid: the skewed distribution, and the increasing lifetimes with grid
and patch size. However, the mean lifetimes to reach stability are approximately
an order of magnitude smaller (figure 7).
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Fig. 8. lifetime to stability against ash density, for initial densities D = 20%, 40%,
60%, on M size grids: (a) rectangular grid (b) Penrose grid.

The densities drop much faster than they do on the rectangular grid, last
for a much shorter time at the low density before stabilising, and produce lower
density ash, 1–3% (figure 8b).

5 Oscillator Distribution

It appears that the aperiodic grid stops structures propagating any distance
and affecting distant objects. So everything becomes ‘Still P-Life’, or an oscilla-
tor, much sooner. We investigate this further, by looking at the distribution of
oscillator periods in the ash.

5.1 Life Oscillators

The Flammenkamp web site [2] has an extensive list of oscillators grown from
soup. The vast majority are p2. Why do we find so very few p3 and higher
oscillators in the ash?

There are many kinds of p2 oscillators. The blinker has only three active
cells; there are also three 6 cell p2 oscillators (beacon, clock, and toad). These
readily form by chance in the ash. Similarly, the commonly-occurring glider has
only five active cells.

The smallest p3 oscillator, the caterer (discovered by Dean Hickerson in
1989), however, has 12 cells active in its smallest configuration. This is much
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less likely to occur by chance than smaller period oscillators, and so is unlikely
to be found in the ash. Our tests never discovered a caterer oscillator.

The p3 oscillator that does occur in our tests is the pulsar, which has 24 cells
active in its smallest configuration. Surely this is even less likely? However, the
pulsar has a 10 state predecessor, which is more likely to occur than the caterer.

The smallest p4 oscillators (mazing and mold) have 12 cells active in their
smallest configuration, and the smallest p6 oscillator (unix) has 16 cells, so these
are also unlikely to occur by chance, unless they have small state progenitors,
too. They never occurred in our tests.

5.2 Penrose Oscillators

Although the Penrose grid is aperiodic, any Penrose oscillator is of general inter-
est, because a Penrose tiling has the recurrence property: any given finite patch
of Penrose tiling recurs in infinitely many other patches, in any Penrose tiling.
(This does not conflict with what we said earlier about being unable to find
the deflated generation n grid within the generation n + 1 grid: these grids are
finite, whereas the recurrence property applies to full, infinite, tilings.) Hence a
given oscillator confined to a particular patch of a given tiling can also occur in
infinitely many other patches, in any Penrose tiling.

This property also means that we are justified in confining our experiments
to just those Penrose grids obtained by deflating a single dart: any finite patch
that occurs in any Penrose tiling will occur in our grids (provided that they are
big enough, of course).

Fig. 9. Examples of Penrose still lifes. All the small examples were found in the ash;
the large ring was hand constructed.

Fig. 10. Two of the p2 Penrose oscillators, named plinkers by analogy to the Life three
cell blinker
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Fig. 11. A 6 cell p4 Penrose oscillator, the bat

Fig. 12. An 8 cell p8 Penrose oscillator (read across the rows, then down the columns)

Fig. 13. An 8 cell p15 Penrose oscillator, the dancer (read across the rows, then down
the columns)

We have discovered a rich zoo of small-period P-Life oscillators in the ash.
There are many p1 still lifes (a few examples are shown in figure 9), including
one with three cells, some forming closed loops, and some disconnected.

Because of the two different cell shapes, and the different neighbourhood
sizes, many oscillators come in several variants. For example, the ash contained
six different three-cell p2 oscillators, analogous to the single blinker (figure 10).
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Some of these visually distinct variants look more similar when considering just
the neighbourhood topology, rather than the different tile shapes.

There is a 6 cell p4 oscillator that we dub the bat (figure 11); the ash exhib-
ited four variant bats. The ash also threw up a symmetrical 8 cell p8 oscillator
(figure 12).

Perhaps most amazingly, we discovered an 8 cell p15 oscillator (figure 13).
When animated it appears that the live cells are ‘dancing’ around the central
star formation. This movement is reminiscent of the behaviour of a glider on
the regular grid: the p15 dancer is moving, but is confined to perpetually move
in a circle because of the nature of the Penrose grid. We found no long range
propagating structures, because of the aperiodic nature of the grid. However,
the possibility of arbitrarily large rings (figure 9) hints at the possibility of
arbitrarily large period dancers around such rings: such will almost certainly
need to be hand constructed.

These relatively long period Penrose oscillators are more common than their
regular Life equivalents, because they are so small. This still raises the question:
why are smaller oscillators possible? The occasionally larger neighbourhood is a
possible contributor. It certainly allows constructs such as arbitrarily large rings.
Future work will investigate oscillator distributions, and the precise effect of the
extra neighbour.

6 Conclusions

Life on a Penrose grid has similar qualitative behaviour to regular Life, but
different quantitative behaviour. The lifetime to stability is an order of magni-
tude shorter, the ash density is about half, and there are more spatially small
long-period oscillators.
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Abstract. We propose a novel artificial-life-oriented media art
“RomperSand”, which applies a three-dimensional version of the Game of
Life (GoL) CA for the construction of an interactive virtual playground.
In RomperSand, two distinct sets of state-transition rules are combined
together: one for simulating physically plausible motion of virtual sand
particles and the other for realizing the GoL-like dynamic behavior of
living structures. Players can operate several virtual tools to create, de-
stroy, and interact with these structures. The system was implemented as
a Windows application and was tested by several users, gaining positive
appreciations from them.

1 Introduction

The creation of interactive art has been one of the most effective applications
of Artificial Life studies [1,2]. Recently, such interactive art based on cellular
automata (CA) dynamics have been proposed [3,4,5]. CA are easy to implement
and parallelize, and are capable of generating very complex dynamics; hence they
are potentially very useful as a means to generate unexpected complex patterns
for media art. Because the influence of a user’s interaction on the generated
patterns is way too complex to understand or predict, however, it often results
in defeating the user’s motivation to keep interacting with the CA. This can be
a crucial problem when CA are applied to interactive media art.

To address this problem, we assume that introducing an easily understand-
able, explicit “motif” would help users develop a concrete image of the work in
mind and keep their desire to interact with it. Based on this idea, we have devel-
oped a novel artificial-life-oriented media art, RomperSand, adopting a sandbox
as its motif. In RomperSand, two distinct sets of state-transition rules are com-
bined together: one for simulating physically plausible motion of virtual sand
particles and the other for realizing the Game-of-Life (GoL) [6,7] -like dynamic
behavior of living structures. Players can operate several virtual tools to create,
destroy, and interact with these structures.

In what follows, the concept and details of RomperSand are described, with
some exemplar screenshots and comments from test players also reported.
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2 System

2.1 Concept

The motif underlying RomperSand is a sandbox. This choice was taken based
on the fact that almost all of us share a happy experience in early childhoods to
play in a sandbox and enjoy our first interaction with natural/physical materials
there. We expected that using a sandbox as the motif of our work would project
onto it an easily understandable, familiar image of such joyful experiences with
the physical world, thereby helping a user to maintain his/her motivation to
keep interacting with complex media art.

RomperSand consists of a three-dimensional virtual arena, in which players
can play with virtual sands as they want, using familiar tools such as a rake, a
shovel and a water can as an interface.

In this artificial world, water plays a very important role to connect between
living and non-living. Virtual sands are normally dry (i.e., non-living) and obey
a default state-transition rule for the simulation of physically plausible motion
of sands, such as free falls and avalanches. However, players can pour water
onto sands using the water can tool. Once the sands become wet, they turn
alive, i.e., they begin to behave following a completely different GoL-like state-
transition rule. This change often creates unexpected, fancy dynamic structures
flourishing out of the spot where water was dropped. In the meantime, the
moisture absorbed in sands gradually evaporate. When they become completely
dry again, they come back to under the governance by the inorganic virtual
physics laws, being gravitated to the ground.

According to the concept described above, all living structures in this world
are destined to die eventually because of the inevitable evaporation of moisture.
This, however, is expected to motivate players toward continuing interacting
with the world, hoping to see life revive and reflourish out of their hands and
water cans.

2.2 CA Rules

Technically, RomperSand is a three-dimensional CA lattice space (size: 100 ×
100×20). Each cube takes one of the five states: Empty, Sand, Water, Wet Sand,
and Block (not mentioned in this paper). In addition, Water and Wet Sand have
an integer value as their internal states (ranging from 0 to 10000 for Water and
from 0 to 100 for Wet Sand), which specifies the amount of water or moisture
that the cube contains.

As mentioned in the previous section, RomperSand has two distinct state-
transition rule sets. Switching between the two rules are triggered by the addition
of water and takes place locally (i.e., there is no global switching). Details of each
rule set are described below.

Default Rule. The default rule set works as pseudo-physics laws in this artificial
world, where mass (or the total number of sands) is strictly conserved. To achieve
such physical plausibility including conservation, this rule is implemented using
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three-dimensional “Margolus neighborhoods” [8,9], i.e., any 2×2×2-sized three-
dimensional pattern in the space is mapped to another pattern of the same size
by this rule. The designed physics laws are summarized as follows: Sand and
Water fall in the air. Sand can stack onto other Sand cubes, but steep slopes
are subject to avalanches. Water spreads when it reaches on the ground. More
details of the default rule are as follows:

– Vertical falling of sand.
When a top cube is Sand and a bottom cube is Empty, the states of top and
bottom cubes are exchanged. By this rule, the sand particle falls vertically.

– Avalanche.
When both the top and bottom cubes are Sand but there is an Empty cube
next to the bottom cube, the top Sand is moved diagonally into that empty
cube. This rule realizes avalanches of sands slipping down on slopes, poten-
tially capable of simulating sandpile experiments [10] if many Sand cubes
are dropped at the same location.

– Vertical falling of water.
This rule is the same as that of Sand. When a top cube is Water and a
bottom cube is Empty, the states of top and bottom cubes are exchanged.
By this rule, the water drop falls vertically.

– Absorption of moisture.
When the Sand cube comes in contact with a Water cube, the Sand cube
changes its state to Wet Sand.

– Diffusion of moisture.
A Sand cube is changed to a Wet Sand cube if there is a Wet Sand cube in
its neighborhoods. This realizes the diffusion of moisture from sand to sand.

Moreover, each cube has a flag that indicates whether it receives an upward
force or not. This force is originated from the bottom plane of the 3D lattice
space and propagates through sand and water. If this flag is on, the cube does
not obey the rule for vertical falling.

– Spread of water.
A Water cube whose flag is on changes the state of its neighbor Empty cube
to Water. This rule is to make water that dropped down to the ground spread
over the surface of the ground.

Figure 1 gives a schematic illustration of the default rule described above.
Multiple state-transitions may apply in a single neighborhood at the same time
if they are not obstructing each other. Figure 2 shows the flowchart of how
the default rule determines the behavior of each Sand/Water particles. There
are more technical details in the specific implementation of this rule, especially
in terms of how the integer values specifying the amount of water/moisture in
Water/Wet Sand cubes change in diffusion processes. These details are planned
to be published elsewhere [11].
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Fig. 1. Schematic illustration of the default rule

GoL-like Rule. When Water and Sand come to contact, the Sand cube becomes
Wet Sand (i.e., living). Then, on this cube and its surroundings, the other GoL-
like rule starts to apply, and lasts until they become completely dry again.

The size of its neighborhood template is 27 (3× 3× 3) with this rule. A new
Wet Sand cube will appear if the total number of living cubes in the surrounding
neighborhoods is either 4 or 5. A living cube will die if the number is not exactly
5. When cube changes from living to non-living, its state will be cleared to
Empty. In our implementation, however, we heuristically set the probability of
this type of state-transitions to be 1/2, in order to make the generated behavior
more interesting.

2.3 Implementation

RomperSand was implemented as an application software that runs on a Win-
dows (2000 or XP) based PC. It was written in C++ using Direct X. It can be
downloaded from the authors’ website1.

Figure 3 shows a sample screenshot of RomperSand. A rake, a water can, and
a shovel are displayed as icons at the upper left corner of the window. Players
can select which tool to use by clicking on these icons. The rake can be used to
collect sands. The water can is used to sprinkle water. The shovel can be used
to dig up and scatter sands. Figure 4 shows exemplar scenes of the use of these
virtual tools.

3 Characteristic Dynamics

RomperSand has been demonstrated internally in our facility, where more than
10 test players enjoyed playing with this artwork (Fig. 5). The players reported
1 http://cx.hc.uec.ac.jp:8100/˜ogihara/
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Empty or Water other

What is the state of the focal cube?
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beneath the focal cube? 

Vertical fall 

Does the focal cube have a neighbor
in the state Water or Wet Sand ?

Absorption of 
moisture 

Vertical fall Merge water in the focal cube 
into the cube underneath. 

Does the focal cube have a neighbor 
in the state Sand or Wet Sand ?

Absorption of 
moisture 

Propagation of upward force 

Sand or Wet Sand Water

other Empty Water 

Y
Y N

N

What is the state of the cube 
beneath the focal cube? 

Evaporation of moisture 

Fig. 2. Flowchart of the default rule

that there are at least three salient dynamic structures made of living sands that
are easily identifiable in this world.

– Fountain of sands.
A pattern in which sands come out one after another from the ground. This
looks like a fountain of sands (Fig. 6).

– Elevating sands.
A pattern of rising Wet Sand cubes. This pattern eventually ends up by
scattering dried Sand cubes falling back to the ground, whose appearance is
really dramatic (Fig. 7). This is considered similar to gliders in the original
GoL.

– Crawling sands.
A pattern that crawls toward one direction on the surface of the ground (Fig.
8). This is another kind of glider-like structure in this world. This is often
mistakenly understood by the players as if there were some sort of living
thing like a mole in action.
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Fig. 3. A screenshot of RomperSand

Comments for RomperSand given by the test players are summarized below:

– “It is interesting that sand collapses when water is poured.”
– “I think it is quite new that sands do irregular movements and splash some-

times.”
– “The movement of sand is so drastic when I add water, so it is difficult to

predict what I am going to make. But, because the collapsing scene was
interesting, it is not frustrating.”

– “This is very interesting to see as it moves by itself.”

The duration of free play with RomperSand by the test players ranged from
a couple of minutes to more than half an hour, about five minutes on average.
All the test players appreciated the concept of this artwork and agreed with our
intention to use a sandbox as its motif to promote users’ motivation to interact
with media art, suggesting that our original goal was achieved in this work to
some extent.

4 Conclusion

We have presented an interactive artwork, named RomperSand, which includes
as part of its dynamics a 3D version of the Game of Life. It aims to introduce
a concrete motif of “sandbox” to CA-based media art that would otherwise be
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Fig. 4. Virtual tools in use (top: rake, middle: water can, bottom: shovel)
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Fig. 5. A player playing with RomperSand

Fig. 6. Fountain of sands
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Fig. 7. Elevating sands

Fig. 8. Crawling sands

too complex to maintain the users’ motivation for interaction. The combination
of two distinct rules (the default pseudo-physics rule and the 3D GoL-like rule)
was done by placing water onto the intersection between these two non-living
and living regimes. Our attempt seems successful in view of positive reactions
and appreciations received from the test players who played it.

RomperSand is still under major revision and development. Further improve-
ment would be definitely needed, firstly for expansion of space (or increase of
resolution of space) and secondly for increasing the speed of the CA simulation
and response to the use of virtual tools. These would be crucial in improving the
interactivity of RomperSand. A systematic analysis of the model’s basic dynam-
ics from technical/theoretical viewpoints would be another important direction
of future work.
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Abstract. The investigations carried out about the relationships between the 
generic dynamic behavior of cellular automata (CA) and their computational 
abilities have established a very active research area. Evolutionary methods 
have been used to look for CA with predefined computational abilities; one in 
particular that has been widely studied is the ability to solve the density 
classification task (DCT). The majority of these studies are focused on the one-
dimensional CA. It has recently been shown that the use of a heuristic guided 
by parameters that estimate the dynamic behavior of 1D CA can improve the 
evolutionary search for DCT. The present work shows the application of three 
parameters previously published in the one-dimensional context generalized to 
the two-dimensional space: sensitivity, neighborhood dominance and activity 
propagation were used to evolve CA able to perform the two-dimensional 
version of the density classification task. The results obtained show that the 
parameters can effectively help a genetic algorithm in searching for 2D CA. A 
new rule was found which performed better than others previously published 
for the 2D DCT. 

1   Introduction 

One of the challenges to the artificial life field is to provide a theory explaining how 
dynamical systems can generate phenomena best understood as rule-based behavior 
[2].  In tune with that, this work is related to the idea of understanding the impact of 
the inherently local information processing of CA, and their ability to perform a 
coordinated computation at the global level, as mediated by an evolutionary process. 
Various investigations have been carried out on the computational power of CA, with 
concentrated efforts in the study of one-dimensional CA capable of performing 
computational tasks [1, 8, 12, 13, 15, 17, 18, 20, 23]. The most widely studied 
computational task is the density classification (DCT) [13], where the goal is to find a 
binary cellular automaton that can classify the density of 1s in the initial configuration 
of its lattice. One of the approaches in this kind of research is the use of Genetic 
Algorithms (GA) [7] as a search procedure to find CA with the predefined 
computational behavior. Various evolutionary techniques have been described in 
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literature to find radius 3, two-state, one-dimensional CA with such abilities [1, 8, 12, 
15, 17, 18, 20, 23]. 
    Cellular Automata (CA) exhibit a variety of dynamic behaviors, although they are 
formed by simple basic components. It has already been proved that the decision 
problem associated with forecasting CA dynamics is undecidable [5]. A successful 
approach for analyzing the dynamics of a cellular automaton is the static analysis of its 
transition rule. Various studies on CA dynamics have been carried out, based upon 
parameterizations of their rule space, and using these parameters as indicators of the 
dynamical features in studies [3, 10, 16, 25]. The majority of these studies are focused 
only on the one-dimensional CA. It has recently been shown that the use of a heuristic 
guided by parameters that estimate the dynamic behavior of one-dimensional CA can 
improve the evolutionary search for the DCT and other computational tasks [15, 17, 18]. 
    In the present work three generalizations of forecast parameters previously 
published and defined in the one-dimensional space were used. The parameters are 
called sensitivity, neighborhood dominance and activity propagation. They were 
generalized for two-dimensional binary CA using Moore neighborhood with an 
arbitrary radius r [19]. We present results of the application of these parameters in the 
evolution of 2D CA rules in the density classification task (DCT). A rule was found, 
which is better than those previously published and is presented here by the authors. 

2   Cellular Automata Dynamics 

Basically, a cellular automaton consists of the cellular space and the transition rule. 
Cellular space is a regular lattice of N cells, each one with an identical pattern of local 
connections to other cells, and subjected to some boundary conditions. These cells are 
arranged in a d-dimensional space and the most studied are the one-dimensional and 
the two-dimensional arrangements. The transition rule establishes how the states will 
change through time, based on the current states of each cell and their immediate 
neighbors. k denotes the number of possible states in a cell. For one-dimensional CA, 
the neighborhood size m is usually written as m = 2r + 1, where r is called the radius. 
In the case of binary states (i.e., two-state) CA, the transition rule is given by a rule 
table, which lists each possible neighborhood with its output bit, that is, the update 
value of the centre cell of the neighborhood. For two-dimensional CA, the two most-
used connectivity schemes are known as von Neumann and Moore neighborhoods. A 
von Neumann neighborhood is formed by 5 cells; the central one and its four adjacent 
cells: in the east, in the west, in the north and in the south. A Moore neighborhood is 
formed by nine cells using the same five cells of the von Neumann neighborhood plus 
the diagonal cells, which are adjacent to the central one. The Moore neighborhood can 
be extended to larger sizes and the parameter r (radius) can also be used. The two-
dimensional, r = 1 CA uses the simplest Moore neighborhood formed by 9 cells. In 
the present work the emphasis is on the k = 2, r = 1 2D CA. 
    Wolfram proposed a qualitative classification of CA behavior in four dynamic 
classes, which is widely known [24]. Li and Packard (1990) later proposed a 
refinement to the Wolfram classification [11], which divides the rule space into six 
classes: null (or homogeneous fixed-point), (heterogeneous) fixed-point, two-cycle, 
periodic, complex and chaotic. The dynamics of a cellular automaton is associated 
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with its transition rule. Several parameters have been proposed directly calculated 
from CA transition rule in order to help forecast their dynamic behavior. The high 
cardinalities of CA rule spaces make their parameterization a difficult task and a 
single parameter is not sufficient to capture all singularities; hence, a set of 
parameters is required [3, 16]. The majority of the published parameterizations are 
focused on one-dimensional, two-state CA. Some of the published forecast 
parameters are: the precursor parameter proposed by Langton (1990) known as λ 
parameter [10]; sensitivity (μ) [3], Z parameter [25], absolute activity [16], 
neighborhood dominance [16] and activity propagation [16]. It has been proved that it 
is not possible to expect the precise forecasting of a generic cellular automaton, from 
any arbitrary initial configuration once the decision problem associated with the latter 
generic proposition is undecidable [5]. Hence, all we can expect is really a parameter 
that can help forecast the dynamic behavior of a cellular automaton.  
    A set of five forecast parameters was selected and applied to the evolution of 1D 
DCT rules in [15] and it was able to aid in the evolutionary search. Subsequently, it 
was possible to analyze that the more relevant parameters in this task were sensitivity 
(μ), neighborhood dominance (nd) and activity propagation (ap). So, these parameters 
were chosen for the generalization in the two-dimensional context. Their formal 
definitions are presented in [19]. The central idea in all forecast parameters is to carry 
out a simple calculus analyzing all the transitions of the neighborhoods in a rule. The 
subjacent concepts to the parameters definitions in the one-dimensional space were 
maintained in the proposed generalization. A 2D cellular automaton rule with the 
Moore neighborhood (9 cells) is formed by 512 (29) different neighborhoods in the 

form 

987

654

321

sss

sss

sss
. These neighborhoods can be linearly represented by s1 s2 s3- 

s4 s5 s6- s7 s8 s9 and the output bits of the rule can be lexographically ordered from the 
neighborhood 000-000-000 to the 111-111-111.  
    Sensitivity (μ) is defined as the number of changes in the outputs of the transition 
rule, caused by changing the state of a cell of the neighborhood, one cell at a time, 
over all possible neighborhoods of the rule being considered. For example, for the 
neighborhood 000-000-000, nine flipped neighborhoods must be analyzed from 000-
000-001 to 100-000-000. Let us suppose that the output bit related to neighborhood 
000-000-000 is 1. In this case, all the flipped neighborhoods with the output equal to 0 
will be considered sensitive. The parameter counts the number of sensitive flipped 
neighborhoods, over all possible neighborhoods of the rule being considered. The 
maximum count for this parameter in the case of 2D CA with Moore neighborhood is 
4608. This value is used to normalize the parameter between 0 and 1. 
    Neighborhood dominance (nd) quantifies how much change is entailed by the CA 
rule transitions, in the state of the centre cell, in respect to the state that predominates 
in the neighborhood as a whole. For example, in the transition 010-111-110  1, 
neighborhood dominance occurs because the state that predominates in the 
neighborhood is “1” and the transition maps the centre cell state onto “1”; this is in 
contrast to transition 010-111-110  0, where dominance does not occur. The 
parameter value comes from a weighed sum of the number of transitions of the CA 
rule in which neighborhood dominance occurs, with the additional feature that, the 
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more homogeneous the neighborhood involved, the higher its weight. For example, 
the maximum weight 126 is given to the transition related to the totally homogeneous 
neighborhood 000-000-000, while the most heterogeneous neighborhoods, as 010-
110-001 and 100-010-111, are given the minimum weight 1. The maximum count for 
this parameter is 6120 and it is also used in its normalization. 
    Activity Propagation (ap) is defined from two concepts related to the definitions of 
nd and μ: the possibility of a transition “following” (or not) the state that dominates 
the neighborhood, and the possibility of a transition being sensitive to a minimal 
change (a single state flip) in the neighborhood. First, each neighborhood in which the 
dominance does not occur is considered active. Subsequently, for each active 
neighborhood the calculation checks how many of the nine flipped neighborhoods 
related to the current one still remain active. For example, in the transition 000-000-
000  1 dominance does not occur and it is considered active. Next, the flipped 
neighborhood 000-000-001 is considered. If the related transition is 000-000-001  
1, this is also an active neighborhood and this occurrence counts as 1 in the parameter 
calculus. The other eight related neighborhoods are analyzed and each activity found 
counts as 1 in the parameter. This same analysis is made for each active neighborhood 
in the rule transition and its nine related flipped neighborhoods. The maximum value 
for this parameter is 4608 and it is used in its normalization. 

3    Cellular Automata Computability and the Density Classification  
     Task 

The relationships between the dynamic behavior of a cellular automaton and its 
computational abilities have been studied as part of the more encompassing theme of 
the relationships between dynamical systems and computational theories [24]. The 
computational power of CA has been investigated with emphasis in the study of one-
dimensional CA able to perform computational tasks [1, 8, 12, 13, 15, 20, 23]. The 
most widely studied CA task is known as the density classification task (DCT) [13]. 
In this task, the goal is to find a binary cellular automaton that can classify the density 
of 1s in the initial configuration of the lattice, such that: if it has more 1s than 0s, the 
automaton should converge to a null configuration composed of 1s; otherwise, it 
should converge to a null configuration of 0s. It was proven to be impossible to solve 
the DCT perfectly, by any one-dimensional cellular automaton with finite radius and 
periodic boundary conditions [9]. It is worth pointing out, though, that perfect 
solutions can be given to alternative formulations of the task, such as by allowing the 
cellular automaton to have non-periodic boundary conditions [22], by allowing the 
application of two distinct elementary CA rules in sequence [6], or by changing the 
classification criterion [4]. All in all, the best possible imperfect rule for the DCT - 
under the original formulation - remains unknown. The trend to look for better and 
better DCT rules has led to better and better algorithms, more and more fine-tuned to 
the problem [1, 8, 12, 13, 15, 20, 23].  
    Once a computational task is defined, it is far from trivial finding CA rules that 
perform it, due to the high cardinalities of the rule spaces. A practical alternative is 
the usage of evolutionary computation methods, as the genetic algorithms (GA) [7]. 
Packard (1988) was the first to publish results using a GA as a tool to find CA rules 
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t=1 t=4 t=7 t=14 t=21 t=41

t=64 t=126 t=229 t=382 t=498 t=545 e t=546

t=1 t=4 t=7 t=14 t=21 t=41

t=64 t=126 t=229 t=382 t=498 t=545 e t=546  

Fig. 1. Example of a CA performing 2D TCD (Moore neighborhood) 

with a specific computational behavior [20]. He considered CA rules as individuals in 
a population and defined their fitness according to their ability to perform the 
specified task. Since Packard’s work, several investigations have been carried out on 
using evolutionary methods to solve one-dimensional DCT [1, 8, 12, 13, 15, 23].  
    A forecast parameter set can be used as an auxiliary metric to guide the processes 
underlying the GA search. This approach has already been applied for the 1D DCT 
[15]. Once information was available on parameter value regions where good rules 
should be more likely to occur, it was used in genetic searches in which both the 
efficacy of the best rule found as the average efficacy have improved [15]. 

    Morales et al. (2000) have extended the DCT for the two-dimensional space 
[14]. In this version, the goal is to find a 2D cellular automaton that can classify the 
density of 1s in the initial configuration of the 2D lattice. Figure 1 shows an example 
of a 2D CA rule performing the DCT task for an initial lattice with more 0’s than 1’s. 
Morales and his colleagues have used an approach similar to that used in 1D DCT and 
a GA has been used to find the 2D rules [14]. The best rule found has an efficacy of 
69% in performing 2D DCT. Later, Reynaga and Amthauer (2003) extended Land 
and Belew’s proofs for 1D DCT and they proved that it is also impossible to solve the 
2D DCT perfectly, by any two-dimensional cellular automaton with finite radius [21]. 
Apparently without prior knowledge of Morales’ work, they presented a 2D CA rule 
that was manually constructed inspired in GKL’s one-dimensional rule [13]. They 
claimed that their rule has a reasonable performance in 2D DCT [21]. However, this 
rule has a poor performance in the most difficult cases of classification; initial lattices 
with approximate 50% of the bits in state 1 characterize these cases. So, several rules 
found by Morales and colleagues outperform that constructed by Reynaga and 
Amthauer. 

4    Evolving Cellular Automata for 2D Density Classification Task 

We first replicated Morales and colleagues’ simulation, performing a series of 100 
GA runs. We used the same configuration described in [14]: binary radius 1 Moore 
neighborhood CA were used, with 2D lattice formed by 21×21 cells. GA evolved a 
population of 100 rules during 100 generations. Each individual evaluation was 
obtained by testing the efficacy of the rule in 100 initial configurations (IC). Elitism 
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[7] was used at a rate of 20%, parent selection for the one-point crossover was made 
directly from the elite and mutation was applied after crossover at a rate of 2% per bit. 
The efficacy of the GA run was measured by testing the efficacy of the best rule 
found in the classification of 104 totally random ICs (the most difficult cases of 
classification). The efficacy average found in 100 GA runs was 56.58% and the 
efficacy of the best rule found was 67.57%. 
    The analysis of the best rule obtained in each run gave us the initial evidence that 
the generalization of the parameters was successfully realized. We simulated the 100 
rules obtained after different initial configurations and observed the dynamic behavior 
performed by each one. Basically, we found null, fixed-point and two-cycle rules. 
However, two groups of rules were strongly characterized: the first one is formed by 
22 two-cycle rules with efficacy between 43% and 55% and the second one is formed 
by 40 null rules with efficacy between 60% and 70%. We calculated the values of the 
generalized parameters for each rule in these groups. Table 1 shows the results 
obtained. By comparing the values between the two groups, one can see that for 
sensitivity, the null rules are concentrated in a narrow range that is inside the range 
found for two-cycle group. The two groups are concentrated in specific ranges for 
neighborhood dominance and activity propagation parameters. So, the dynamical 
behavior seems to be well characterized by parameters values. A comparative analysis 
was performed and it was possible to observe that the values obtained for the 
generalized parameters are coherent with the original one-dimensional versions. This 
analysis is presented in reference [19]. As it is already known what kind of behavior 
is desired, the null one, the bands related to this dynamics can be used as useful 
information to guide the genetic search. 

Table 1. Parameter ranges found for 2D and for elementary rules 

 μ nd ap 
2D-radius 1 null rules 0.42 to 0.48 0.79 to 0.84 0.11 a 0.16 

2D-radius 1 two cycle rules 0.25 to 0.48 0.22 to 0.53 0.25 to 0.38 
 

    Subsequently, simulations were performed where the selected parameter set was 
used as an auxiliary heuristic in evolutionary searching for CA. This approach is 
similar to the one used in one-dimensional experiments described in [15] and [17]: the 
parameter-based heuristic was coded as a function (referred to as Hp), which returns a 
value between 0 and 100 for each transition rule, depending on the rule’s parameters. 
In the present experiments, the parameter ranges found for the 2D radius 1 null rules 
presented in Table 1 were used as the desirable ranges. Function Hp was defined so as 
to return 100 if all the parameters of a cellular automaton rule matched those of the 
desirable ranges; otherwise, the returned value would decrease as the parameter 
values moved increasingly away from those ranges. The GA was modified to 
incorporate the parameter-based heuristic in two aspects. First, the fitness function of 
a rule was made by the weighted average of the original fitness function (efficacy in 
100 different ICs) and the function Hp. Second, biased crossover and mutation were 
used: in order to choose the crossover point and the bits to be mutated, various 
attempts were made and those that generated rules with high Hp were selected. 
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    Seven parameter-based simulations were carried out, each one formed by 100 GA 
runs, using all possible combinations of the three parameters: individually, two-by-
two and the three parameters simultaneously. In all the simulations it was possible to 
observe that the incorporation of the parameter-based heuristics returns better results 
from the evolutionary search, as in terms of efficacy average as in best efficacy found. 
The three best simulations were selected: the first uses sensitivity and activity 
propagation (efficacy average of 60.95%), the second uses neighborhood dominance 
and activity propagation (efficacy average of 65.03%) and the third uses the three 
parameters (efficacy average of 65.09%).  
    A second round of simulations were performed using a more elaborated genetic 
algorithm. In several situations where evolutionary techniques have been used the 
number of possible instances of the problem is high, disabling the exhaustive test of a 
solution. Therefore, sampling the instances is necessary to evaluate the solution 
population. An important issue for improving the statistical estimates in such cases is 
how to sample test cases and then weigh their contribution to fitness estimates. 
Several strategies have been proposed to aid this problem in order to preserve 
population diversity, such as shared sampling, competitive fitness functions, and 
resource sharing fitness functions [8, 23]. The basic idea underlying resource sharing 
is to give higher fitness to solutions that are able to solve test cases that are unsolvable 
by a large fraction of the solution population. From a different perspective, it can also 
be said that solutions receive smaller reward for pursuing strategies that put them into 
niches already heavily occupied. Resource sharing is intended to preserve diversity, 
so as to prevent mediocre solutions from taking over the population [23]. In the 
original work of Juillé and Pollack (1998) [8], where the best-known one-dimensional 
DCT rule was obtained, they used a combination of coevolutionary algorithm and 
resource sharing. Later, Werfel and collaborators (2000) investigated the relative 
contribution of each of the two techniques and concluded that the good results 
obtained by Juillé and Pollack were largely due to resource sharing [23]. 
    A new parameter-based evolutionary environment was elaborated where the 
resource sharing was used in the individual evaluations, as described in references [8] 
and [23]. Four simulations were performed in this new environment and their results 
are presented in Table 2. In these simulations, the population size and the number of 
initial configurations used in each evaluation were increased to 160. We also raised 
the number of generations to 500. All the other GA and CA parameters were 
maintained from the initial simulations. Each simulation was formed by 20 GA runs. 
The first one was carried out without the parameter heuristic and we called it 
RSGA(0). The other three were performed using the three best parameter 
combinations cited previously; we called them RSGA(μ+ap), RSGA(nd+ap) and 
RSGA(μ+nd+ap). Looking at the efficacy bands of the found rules, the parameter-
based simulations have clearly shifted the bands to higher performance ones, when 
compared to the experiment RSGA(0), performed with no heuristic. Table 2 also 
shows the average efficacy out of 20 runs as well the efficacy of the best rules found 
and making it evident that the rules found by using the parameter information have 
higher efficacies than those found with no information. The best rule was found in 
RSGA(nd+ap) which presents an efficacy of 70.84%. Later, this rule was submitted to 
more extensive tests and we can affirm that its performance is better than the best one 
found in Morales and colleagues’ experiments [14]. 



498 G.M.B. de Oliveira
 
and S.R.C. Siqueira 

 

Table 2. Efficacy bands, average and best rules  found in 2D DCT simulations 

Efficacy Bands # of rules found 
in RSGA(0) 

# of rules found 
in RSGA(μ+ap) 

# of rules found 
in RSGA(nd+ap) 

# of rules found in 
RSGA(μ+nd+ap) 

[40%, 60%] 9 1 0 0 
[60%, 65%] 5 3 8 8 
[65%, 70%] 6 15 11 12 
[70%, 75%] 0 1 1 0 

Average 58.07% 65.59 %       65.54 % 65.83% 
Best Rule 68.20% 70.01% 70.84% 68.87% 

5   Conclusions 

Three forecast parameters previously published in the one-dimensional context were 
generalized for the two-dimensional space and they were used to aid 2D DCT search. 
The results presented confirm that the use of the parameters information as a heuristic 
improved the underlying search performed by a genetic algorithm with a resource 
sharing strategy. A good rule for 2D density classification task was found. The 
hexadecimal code of the new rule is: 020D0311-0C191449-230F4B1D-85D35577-
114900D5- 91AF5CB7-56151B1D-91FFF1FF-4320100B-2319357F-2F5C6777-
8E5F5BBB-126E13F6-5639718F-076B7CF7-CED75777. As far as we know, it is 
the best rule found for this two-dimensional task and was found that the efficacy of 
this rule still remains very much above of the efficacy of good rules found for 1D 
DCT. The efficacy of the best rule found for one-dimensional DCT is 86% [8]. Based 
on this information, we speculate that there still exists a lot of room for improving the 
results in the two-dimensional version of DCT. 
    Finally, further investigations should be carried out to use the parameter-based 
heuristic in other computational tasks that can be generalized to 2D CA space, like the 
Synchronisation Task [18]. 
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Abstract. We study the evolution of simple cells equipped with a
genome, a rudimentary gene regulation network at transcription level
and two classes of functional genes: motion effectors which allow the cell
to move in response to nutrient gradients and nutrient importers required
to actually feed from the environment. The model is inspired by the pro-
tist Naegleria gruberi which can switch between a feeding and dividing
amoeboid state and a mobile flagellate state depending on environmen-
tal conditions. Simulation results demonstrate how selection in a variable
environment affects the gene number and efficiency making the cells to
rapidly switch from one expression regime to the other depending on the
external conditions.

Keywords: Artificial Cells, gene regulation, evolution, Naegleria gruberi .

1 Introduction

A non-trivial task in Artificial Life research is to devise genotype-phenotype
maps, i.e., relations between genomic sequence information and the shape, struc-
ture and behavior of the organism encoded by the genome. The difficulties stem
from the complexity of even the simplest cells, which precludes a representa-
tion of an entire cell at the molecular level. At present there are no established
“intermediate-level” theories that would provide consistent but simplified rep-
resentations of cellular processes (energy metabolism, biomass production, cell
division, sensory responses, intracellular transport, gene expression, etc.). One
therefore has to resort either to simulations based on a large number of ad hoc
assumptions, or to the construction of minimal models based on biophysical and
biochemical principles.

The process of RNA folding, for example, can be viewed as a minimal model
of a genotype-phenotype map. Here, the sequence of the RNA molecule acts as
the genotype (the sequence information is actually heritable in in vitro selection
(SELEX) experiments [16]), while the (secondary) structure of the molecule is
interpreted as the phenotype (SELEX experiments indeed often demonstrate a

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 500–509, 2005.
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strong structure dependence of the selected nucleic acids). Detailed investiga-
tions of the RNA model lead to the development of important concepts, such
as neutral networks percolating sequence space, the phenomenon of shape space
covering, and the importance of accessibility for phenotypic evolution [20,7].
The structure of the genotype-phenotype map determines the structure of the
fitness landscape [21] which in turn determines the dynamics of an evolving
population. The high degree of neutrality of the RNA folding map, for example,
explains punctuated equilibria in the absence of external events [8,13], leads to
a selection for robustness against mutations [22] and influences evolvability [4].

Concepts such as epistasis and phenotypic plasticity easily translates into this
RNA folding metaphor [6], however, important characteristics of the genotype-
phenotype maps of biological organisms, do not have a counterpart in this frame-
work: While genotype and phenotpye are embodied in the same physical entity in
the RNA model, there is a rather strict separation between genomic information
and functional molecules in all biological organisms. This allows an organism to
exist in different internal states (that depend on its individual history) which
may cope with environmental conditions in different ways. Regulatory networks
are at the core of the mechanism by which cells individually adapt to changing
conditions, see e.g. [9,3]. The majority of the artificial gene regulation models
used today [1,5,11,19] are based on the well established “operon model” of gene
expression [14], which divides the genes into two classes: (i) the transcription
factors capable of binding to the DNA and thereby modulating the expression
of downstream located genes; and, (ii) structural proteins which perform some
functions different from the regulation of the gene expression. In the simplest
case, regulatory networks arise when transcription factors also enhance or inhibit
the expression of other transcription factors. (Note that such models still ignore
crucial regulation mechanisms of real cells such as signal transduction networks
and post-transcriptional gene silencing.)

Our approach is motivated by the cell differentiation of the amoeba Naegleria
gruberi, which is capable of changing cell shape, from a crawling amoeba to an
asymmetric elongated cell, and of growing flagella when nutrients are scarce.
It has been shown [10] that all proteins necessary for the differentiation are
synthesized de novo, i.e., due to transcriptional regulation. The initiation of
morphological changes require the synthesis of sufficient amounts of proteins,
i.e., a significant investment. The transformation is temporal and the organism
returns back to the amoeba state when nutrients are again available.

The CelloS model described in this contribution combines a simple compu-
tational cell model which includes a notion of space, the extended Potts model
(see [18] and references therein), with an artificial genome and a minimal model
of gene expression [19]. Given the high complexity of the genotype-phenotype
map, we chose to keep the various modules of the model as simple as possible in
order to understand how the composite system generates its intricate behavior.
Regardless of the computational constraints, too detailed models are difficult to
analyze and main features may be lost while working with large amounts of data.
This combination of the parts allows to study the coupling of the environmental
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dynamics to the internal dynamics of gene regulation within the framework of
an evolving cell population.

In the next section the model is described, followed in section 3 by some
results obtained so far in this project. Section 4 presents future goals of CelloS
and some topics to be addressed with more complex implementations of the
model.

2 The Model

The basic tool for our simulations is the Potts model with some extensions (for
a complete description of the model refer to [17]) on a 2D lattice. A cell C is
a maximal connected subset of the lattice such that all lattice points in C have
the same type or “color” u. Cells interact with each other with strength Juv at
neighboring lattice points depending on their types u and v. A special type 0
denotes empty lattice sites. Each cell is characterized by its energy

EC =
∑
i∈∂C

∑
j∈N(i)\C

JuC ,uj + λ(vol(C) − V )2 (1)

where vol(C) is the volume of the cell, i.e. its number of lattices points, ∂C
its boundary, V is a user-defined target volume, N(i) the set of neighbors of
i and λ a compressibility parameter. The double sum runs over all boundary
(surface) points of the cell C which are in contact with other cells or with the
environment. A certain number of nutrient sources are randomly distributed
in the environment. Nutrient concentration ci at lattice point i is maximal in
sources and decreases proportionally to distance.

Cell motion is implemented by a simple Metropolis Monte Carlo step in which
a cell attemps to modify its boundary at lattice point i ∈ ∂C by changing the
type of an adjacent site i′ to its own type, or by changing one of its boundary
sites to 0. The cells feel the gradient in the nutrient by evaluating ci′ − ci. The
transition probability is min{1, exp(−(ΔEC + μ0(ci′ − ci) + H∂)/T )} where H∂

is the energy cost of deforming the cell’s boundary, μ0 describes the reactivity
of the cell to changes in the nutrient concentration, and T a temperature-like
parameter representing the default motility of the cells. Our cells have a finite
life expectancy and require energy to stay alive. This is modeled by a “battery”
which is used up when enzymes are synthesized. When the “battery” is empty,
the cell dies and the corresponding lattice sites are reset to 0.

Each cell on the lattice contains an RNA sequence of length 1000 which
represents its genome and carries the information needed to decode the cell’s
behavior. This genome can encode two types of effector molecules (corresponding
of course to proteins in N. gruberi, but modeled as RNAs here for computational
convenience) and a simple regulation mechanism. The “genetics” of the CelloS
model is summarized in Fig. 1.

A short signal sequence (corresponding e.g. to the TATA box in real cells)
marks the beginning of a “coding region” on the genomic sequence. We use the
signal GC and define a gene to be the following 40 nucleotides. This subsequence

.
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Fig. 1. Genetics of the Cellos model. (a) Genomic organization. Two classes of func-
tionally different RNAs are distiguished by archetypic shapes: motion effectors (b) and
metabolic effectors that act as nutrient importers (c). Panel (d) summarizes the logic
of regulation in Cellos: expression is down-regulated when an RNA from the other
function-class binds to the regulatory region of the gene.

is folded into its secondary structure using the RNAfold program of the Vienna
RNA Package [12]. This structure is then compared with two target shapes for the
“motion effectors” and the “nutrient importers”, which are kept fixed throughout
the simulation. The closer target shape determines the function of the gene, while
the number of base pairing differences measures the gene’s efficiency.

In the current implementation we keep the gene regulation network fixed.
In order to implement the switching between the motion effectors and nutrient
importers we use the simple negative feedback system shown in Fig. 1 (bottom).
The differential equations for this scheme are:

dGA

dt
= γA · k 1

1 + G3
B

− d · GA

dGB

dt
= γB · k 1

1 + G3
A

− d · GB

(2)

where GA and GB are the concentrations of the two types of gene products, γA

and γB are their efficiencies, and k and d fixed constants. A 4th order Runge-
Kutta method is used to numerically integrate these differential equations.
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Information from the environment is given to the cell via impulses in the
effectors concentrations. Whenever a cell is touching a food source, the concen-
tration of nutrient importers is increased and the equations integrated. The same
is done with motion effectors when no food is available. The battery level B is
decreased depending on the effectors that are produced and it is recharged if the
cell is in a food source:

B′ = B − ψ0(GA + GB) + φ0GB (3)

The parameteres ψ0 and φ0 describe the ratio of nutrients obtained from the
environment against the cost of producing the importers and motion effectors.
The mobility of the cell depends on the concentration of expressed motion effec-
tors which is reflected in a modified transition probability for changing the cells
boundary by replacing the constant μ0 with μ0 · GB.

The products of metabolic genes play two different roles: recharging the bat-
tery and increasing the cell’s target volume. Once a cell has doubled its normal
size, it divides by fission copying its genome to the new cell. This process is
usually inaccurate, producing a point mutation in the new RNA string.

Food sources are depleted when cells feed from them. Once a source is empty,
it is relocated in a randomly chosen spot of the lattice. This way, cells are forced
to switch between the metabolic and movement states, reinforcing the selection
of only those capable of doing so.

Individual cells with very similar genomes belong to the same species. The
definition of species in our model is similar to that proposed by Kenneth and
Risto in [15]. Each gene in the population has a unique historical number. Every
time a mutation creates a new one or changes the type of an old one, this global
variable is increased and assigned to the new gene. In order to compare two
genomes, we use a linear combination of the number of excess (X) and disjoint
(D) genes, and the average efficiency difference between common genes (W ).
Every time a new cell is born, its genome is compared to all species’ genomes.
If the result of

δ =
c1X

N
+

c2D

N
+ c3 · W (4)

is below a threshold value, the cell is said to belong to the corresponding species.
Otherwise its genome is set to represent a new species.

3 Simulation Results

Throughout all of our simulations we use a lattice of 200×200 sites with periodic
boundary conditions. Jx,0 = 11 for the contact with an empty site, Jx,y = 37.5
for the contact between different cell types, and Jx,x = 35 for the contact with
a cell of the same species. These values reflect uniformity between the cells in
their interaction with the environment. The lower value of Jx,x compared with
Jx,y makes the accumulation of same-species cells a little more probable than
between different species. Furthermore T = 3, H∂ = 0.8, μ0 = 5000 are in a
range were cells move fast enough to travel between sources in contrast with

C.S -O. Attolini, P.F. Stadler, and C. Flamm.
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Fig. 2. Snapshots from a simulation run with three food sources at generations 135,
495, 12225 and 19800

their available energy and life span. ψ0 = 0.4 and φ0 = 2 make the refilling of
the battery to be enough compared with the sources life time. Other parameters
are V = 30 and λ = 5.

Figure 2 shows the evolution of the system for one simulation run. In these
images three food sources were available for the cells to eat. Positions of the
sources are not shown but can be implied from the accumulation of cells in certain
places. Population size changes depending on the conditions and parameters. A
larger number of food sources is reflected in the increase of the population size.

3.1 Genome and Population Structure

We measure the impact of the external conditions in the genome by looking at
the number of metabolic and movement genes, their efficiencies and the effectors
expression inside and outside a food source.

The regulatory network we are using, imposes a well defined range in which
gene efficiency must lay in order to obtain the necessary switch between states. In
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Fig. 3. Top: Number and efficiency of genes in a simulation with 3 food spots, mean
life 600 and volume increment per generation 0.6. Bottom left: Population and energy
of the sources. Bottom right: In the region under the bar the population is feeding
from food source 2 only. At the right end of the bar, food source 3 is conquered. The
arrow indicates the point where population feeds from all three sources and therefore
increases dramatically.

our simulations it is clear how these numbers are controlled by natural selection
when the genome is mutating randomly. In Fig. 3 it can be seen how after a
period of adjustment, the population falls in a regime where gene number and
efficiency are inside a small interval for both kind of genes.

The population grows depending on the availability of nutrients. Every time
a food source is depleted, cells must migrate to the next one. These periods are
usually reflected in a diminution of the population and increase in the average
number of movement genes in it. The bottom figures in Fig. 3 show the energy
of the sources and the change in the number of cells. Source energy staying at
its maximum means there are no cells feeding from it, resulting in the decrease
of the population size. Population can only increase or mantain its size when
feeding from more than one food source (Fig. 3 bottom right).

This combination of gene types allows a switching in their products expres-
sion depending only in the presence or absence of food in the environment. Figure
4 shows this behavior for a single cell with the right number of genes.

As a special case we study the system with only one food spot of infinite
life in the lattice. Cells in the spot are thrown out of it by the newborns. Even
when there is no need of traveling long distances, the fact that cells have to be

C.S -O. Attolini, P.F. Stadler, and C. Flamm.
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Fig. 5. Phylogenetic tree for a run with three food spots. Nodes in the tree represent
the dissapearance of a species, while saddles stand for the split of two of them. Time
unit is 1000 simulation steps.

constantly coming back into the source makes the presence of movement genes
indispensable. At the same time, since food is easily available, there is no need to
increase the efficiency of metabolic genes. Battery may be refilled slowly without
killing the cell since the time it spends outside the food source is usually very
short.

3.2 Phylogenetics

With our simple definition the number of species depends directly on the volume
increase per generation. Phylogenetic trees can be recorded based on the speci-
ation events, see Fig. 5 for a characteristic example. The Darwinian evolution is
dominated by one or a few species at any given point in time. The coexistence
of distinct lineages over longer times is comparably rare. These periods of coex-
istence are interrupted by points in time which act like bottlenecks where only
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one species survives. In some runs one of the initial species survives until the
end, failing to find any important improvement in phenotype via mutations.

4 Concluding Remarks

In this first (and very simple) implementation of the model, we observe the re-
sponse of the genome to variable environmental conditions. After an initial phase
of selection the number of genes stays approximately constant. The cells can then
use their gene regulation network to cope with environmental changes. Popula-
tion dynamics also reflect the presence or absence of nutrients, together with an
increase of the number and/or efficiency of movement genes. We found that, at
least in our simple environment, it is not important to have a large number of
genes, but to have the right amount of them depending on the environmental
inputs and the regulatory network modifying their products’ expression.

Since the mechanism of regulating gene expression in the current implemen-
tation of the CelloS model can itself not be a target of evolution, we plan to add
transcription factors as a third class of gene products to the artificial genome.
This will allow the cells to find innovative regulatory strategies based on post
transcriptional interaction. A fruitfull route will then be to study the mixing of
regulatory strategies under sexuall reproduction of the cells.

Extending the set of mutation operators from point mutation to gene du-
plication and horizontal gene transfer, turns Cellos into a tool for generating
test data for phylogenetic reconstruction methods. Comparing the simulated
evolutionary scenario with the reconstructed one will allow to evaluate the per-
formance of such methods.

The environmental dynamics can also be improved by switching to an artifical
chemistry like the Toy Chemistry Model [2]. This forces for an additional decod-
ing layer in the internal structure of the cells, which links our representation of
the nutrient importers to organic molecules in the environment. Improvements
of the CelloS model along these lines are under way.
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Abstract. This paper develops a mathematical model of immune network 
controlled by cytokines. A software implementation of the model has been 
applied to intrusion detection in computer network. The obtained results suggest 
that the performance of the model is unachievable for another approaches of 
computational intelligence. 

1   Introduction 

Cytokines (messenger proteins) are a group of biologically active mediator molecules 
that provide the intercellular interactions within the immune system. They are the 
central regulators of leukocyte growth and differentiation, being produced by a wide 
variety of cell types, targeting various cell subsets and exhibiting numerous biological 
activities.  

Up to now more than 100 different human cytokines are identified. An increasing 
volume of experimental data suggests that cytokines play one of the central roles in the 
immune regulation as well as in the neuro-immune-endocrine modulation [1], [21]. 
Such concept of cytokines as a network modulating and switching several cascades of 
immune reactions [20] adjoins with the concept considering such molecules as a field or 
a milieu, which local properties mediate immune response [18].  

There exists a relationship between cytokine levels in human body fluids and 
disease pathogenesis, including the inflammation and even depression [3]. Many 
types of cancers have taken advantage of the regulatory role of cytokines to down-
regulate appropriate immune responses targeted at destroying cancer cells. They do 
this by secreting immunosuppressive cytokines that induce generalized and specific 
inhibition of immune responses [19]. So, the use of immunostimulatory cytokines as 
tumor vaccines has become a promising strategy in cancer immunotherapy [12].  

Recent developments show that cytokines induce apoptosis (programmed cell 
death) in cancer cells [15], [27], [28]. The induction of apoptosis is associated with a 
dose-dependent inhibition of cancer cell division, and this activity has been 
demonstrated for a wide range of cancer types including bladder, breast, leukemia, 
melanoma, ovarian and prostate.  
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Apoptosis is a natural mechanism by which cells "commit suicide" when they have 
outlived their purpose, become defective, or have aged. Apoptosis prevents cells from 
accumulating and forming tumors. Understanding of the control of apoptosis in 
normal and malignant cells will help to improve the diagnosis and treatment of 
malignancies. The goal of many treatments, including chemotherapies is to induce 
malignant cells to undergo apoptosis. Current data also suggests that a cytokine may 
function as a dual-acting cytokine in which its normal physiological functions may be 
related to specific aspects of the immune system and over-expression culminates in 
cancer-specific apoptosis [8]. 

On the other hand, immunological approach [4], [16], [17] looks rather 
constructive as a basis for a new kind of computing [5], [6], [24], including its 
applications to fault detection in air- and spacecrafts as well as simulating of the 
natural immune system [7], [10], [11], [14], [22]. In such background, this paper 
develops a rigorous mathematical model of immune network with the cytokine 
controlled apoptosis and immunization. A software implementation of the model has 
been applied to the task of intrusion detection in a local area network (LAN) and 
tested on data of the UCI KDD archive [2]. The obtained results suggest that training 
time and accuracy of the model are beyond the possibilities of artificial neural 
networks and genetic algorithms [25], [26].   

2   Mathematical Model 

2.1   Cytokine Formal Immune Network 

Definition 1. Cell is a pair V = (c, P), where "cytokine" c is natural number Nc ∈ , 

whereas ),...,( 1 qppP =  is a point of  q-dimensional Euclidian space: qRP ∈ , and  P  

lies within unit cube: 1|}||,...,max{| 1 ≤qpp . 

Let distance ("affinity") ),( jiij VVdd =  between cells iV  and jV be as follows: 

{ } )()(,...,)()( max 11 jqiqjiij ppppd −−= .                       (1) 

Fix some finite non-empty set of cells ("innate immunity") ),...,( 10 mVVW =  with 

non-zero distance between cells: 0≠ijd , ji,∀ : ji ≠ . 

Definition 2. Cytokine formal immune network (cFIN) is a set of cells: 0WW ⊆ .  

Definition 3. Cell iV  recognizes cell kV  if the following conditions are satisfied: 

ki cc = , hdik < , ijik dd < , WV j ∈∀ , ij ≠ , jk ≠ , where 0≥h  is given 

"threshold of affinity". 
Let us define the behavior ("maturation") of cFIN by the following two rules. 

Rule 1 (Apoptosis). If cell WVi ∈ recognizes cell WVk ∈ then remove iV from cFIN.  

Rule 2 (Auto-Immunization). If cell WVk ∈ is nearest to cell WWVi \0∈ among all 

cells of cFIN: ijik dd < , WV j ∈∀ , whereas ki cc ≠ , then add iV to cFIN.  
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Let AW  be cFIN as a consequent of application of apoptosis to all cells of 0W . Let  

IW  be cFIN as a consequence of auto-immunization of all cells of  AW  by all cells of 

0W . Note that the resulting sets AW  and IW  depend on the ordering of cells in 0W . 

Further it will be assumed that the ordering is given. 

2.2   Mathematical Properties of cFIN 

It is obvious that neither the result of apoptosis AW  nor the result of auto-

immunization IW  can overcome 0W  for any innate immunity: 0WWA ⊆ , 0WWI ⊆ , 

0W∀ . Consider more important and less evident properties of cFIN. 

Proposition 1. For any innate immunity 0W  there exists threshold of affinity 0h  such 

that apoptosis does not change 0W  for any h less than 0h : 0WWA = , 0hh <∀ . 

Let 0h  be minimal distance (1) for any pair of cells of cFIN with the same 

cytokines: 

}{min
,

0 ij
ji

dh = : ji cc = , ji ≠ . 

Then, according to Definition 3, none of the cells of cFIN can recognize other 
cells, because 0hdij >  for any pair of cells iV  and jV . According to Rule 1, none of 

the cells can be removed from cFIN for any h less than 0h , because hdij > , 

0hh <∀ , 0, WVV ji ∈∀ . Thus, 0WWA = , 0hh <∀ . 

Proposition 2. For any innate immunity 0W  there exists threshold of affinity 1h  such 

that consequence of apoptosis and auto-immunization )( 11 hWW I=  provides the 

minimal number of cells || 1W  for given 0W  and any h: |)(||| 1 hWW I≤ , h∀ , 

0WWI ⊆∀ . 

Let 1h  be maximal distance (1) for any pair of cells of cFIN with the same 

cytokines: 

}{max
,

1 ij
ji

dh = : ji cc = , ji ≠ . 

Then, according to Definition 3, any cell iV  can recognize the nearest cell jV  if 

the last one has the same cytokine: ji cc = . Let −W  be the set of all such cells iV . 

Then, according to Rule 1, |||||)(| 01 −−= WWhWA , and such number of cells after 

apoptosis is minimal among any h: |)(||)(| 1 hWhW AA ≤ , h∀ . Let +W  be set of cells, 

which is added to )( 1hWA  as a consequence of auto-immunization: 

+∪= WhWW A )( 11 . It is also evident that +W  is a subset of −W : −+ ⊆ WW , and 

|| +W  represents a number of "mistakes" of apoptosis when cFIN "kills" some cells,  
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which lead to further recognition errors. Such cells are then "restored" by auto-
immunization (Rule 2). Let  +−= WWW \*  be cells which yield apoptosis without 

further recognition errors. Then |||||| *WWW −= −+ . On the other hand: 

|||)(||| 11 ++= WhWW A . Substitutions of |)(| 1hWA  and  || +W  lead to the following 

result: |||||| *01 WWW −= . Thus, |)(||| 1 hWW I≤ , which proves Proposition 2. 

2.3   Application of cFIN to Pattern Recognition 

Let "epitope" ("antigenic determinant") be any point ),...,( 1 qppP = of q-dimensional 

Euclidian space: qRP ∈ . Note that any cell of cFIN also contains an epitope, 
according to Definition 1. 

Definition 4. Cell iV  recognizes epitope P by assigning him class ic  if the distance 

),( PVd i  between the cell and the epitope is minimal among all cells of cFIN: 

)},(min{),( PVdPVd ji = , WV j ∈∀ . 

Let pattern be any n-dimensional column-vector ]',...,[ 1 nzzZ = , where nzz ,...,1  

are real values and (') is symbol of matrix transposing. Let pattern recognition be 

mapping of the pattern to an epitope: qRPZ ∈→ , and recognition of the epitope by 
the class of the nearest cell of cFIN. Let mAA ,...,1  be n-dimensional training patterns 

with known classes mcc ,...,1 . Let ]',...,[ 1 mAAA =  be training matrix of dimension 

nm × . Consider singular value decomposition (SVD: see, e.g., [13]) of this matrix: 

''
333

'
222

'
111 ... rrr XYsXYsXYsXYsA ++++= ,                       

where r is the rank of matrix A, ks are singular values and kk XY ,  are left and right 

singular vectors with the following properties: 1' =kkYY , 1' =kk XX , 0' =ikYY , 

0' =ik XX , ki ≠ , rk ,...,1= , kk ss ≥−1 , 1>k . 

Consider the following mapping of any n-dimensional pattern  Z  to epitope  P : 

k
k

k XZ
s

p '
1= , qk ,...,1= , rq ≤ .                                 (2) 

Note that formulas (2) can be treated as "binding energies" between "formal 
proteins" Z ("antigens") and Xk ("antibodies"), according to [24]. Note also, that any 
epitope obtained by application of formulas (2) to any training pattern lies within unit 
cube (see Definition 1), according to the above properties of singular vectors.  

3   Software Implementation of cFIN 

3.1   Pattern Recognition Algorithm 

Based on the above mathematical model of cFIN, consider a description (in a 
pseudocode) of a pattern recognition algorithm: 



514 A.O. Tarakanov, L.B. Goncharova, and O.A. Tarakanov 

 

Training 
{ 

1st stage training // map data to cFIN ("antigen processing") 
{ 

  Get training patterns; 
  Form training matrix; 
  Compute SVD of the training matrix; 
  Store q singular values // "binding energies" 

Store q right singular vectors; // "antibody-probes" 
  Store left singular vectors; // cells of cFIN 

} 
2nd stage training // compress data by cFIN's "maturation" 
{ // compute consecutively for all cells of cFIN:  

  Apoptosis; 
  Auto-Immunization; 

} 
} 
Recognition 
{ 
 Get pattern; // "antigen" 
 Map the pattern to cFIN; // by formulas (2) 
 Find nearest cell of cFIN; 
 Assign class of the nearest cell to the pattern; 
} 

 
This algorithm has been implemented in a version of the immunochip emulator 

[22] using Visual C++ with build in assembler code of the cytokine affinity function 
(1) for three-dimensional (3D) Euclidian space ( 3=q ) and OpenGL tools for 3D 
visualization. Screenshot of the emulator is shown in Fig. 1.  

3.2   Test Results  

The known UCI KDD archive [2] has been used for testing the emulator. Lincoln 
Labs set up an environment to acquire nine weeks of raw TCP (transmission control 
protocol) dump data simulating a typical US Air Force LAN. They operated the LAN 
as if it were a true Air Force environment, but peppered it with multiple attacks.  

The raw training data was about four gigabytes of compressed binary TCP dump 
data from seven weeks of network traffic. This was processed into about five million 
connection records.  Similarly, the two weeks of test data yielded around two million 
connection records.  

A connection is a sequence of TCP packets starting and ending at some well 
defined times, between which data flows to and from a source IP (internet protocol) 
address to a target IP address under some well defined protocol. Each connection is 
labeled as either normal, or as an attack, with exactly one specific attack type. Each 
connection record consists of about 100 bytes.  

Two data files from UCI KDD archive has been used to test the emulator: 

- File 1: kddcup_data_10_percent_gz.htm (7.7 MB); 
- File 2: kddcup_newtestdata_10_percent_unlabeled_gz.htm (44 MB). 

File 1 is the training data file. It contains 51608 network connection records. Any 
record (file string) has the following format, where parameters 2, 3, 4, 42 are 
symbolic, while other 38 parameters are numerical (real values): 
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Fig. 1. Intrusion detection by cFIN: "Antigen" (String 38053 of File 1.1) is mapped to cFIN 
(bold skew cross) and recognized by the "cytokine" of the nearest cell of cFIN (Class: back !!!). 
Note also "tumors" (Start cells of cFIN in right-hand screen) eliminated after apoptosis and 
auto-immunization (End cells of cFIN in left-hand screen). 

1) duration, 2) protocol_type, 3) service, 4) flag, 5) src_bytes,  
6) dst_bytes, 7) land, 8) wrong_fragment, 9) urgent, 10) hot,  
11) num_failed_logins, 12) logged_in, 13) num_compromised,  
14) root_shell, 15) su_attempted, 16) num_root, 17) num_file_creations, 
18) num_shells, 19) num_access_files, 20) num_outbound_cmds,  
21) is_host_login, 22) is_guest_login, 23) count, 24) srv_count,  
25) serror_rate, 26) srv_serror_rate, 27) rerror_rate,  
28) srv_rerror_rate, 29) same_srv_rate, 30) diff_srv_rate,  
31) srv_diff_host_rate, 32) dst_host_count, 33) dst_host_srv_count,  
34) dst_host_same_srv_rate, 35) dst_host_diff_srv_rate,  
36) dst_host_same_src_port_rate, 37) dst_host_srv_diff_host_rate,  
38) dst_host_serror_rate, 39) dst_host_srv_serror_rate,  
40) dst_host_rerror_rate, 41) dst_host_srv_rerror_rate, 42) attack_type. 

 
For example, two records (# 1 and # 745) of File 1 are as follows: 
 

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00, 
0.00,0.00,1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00, 
normal. 
184,tcp,telnet,SF,1511,2957,0,0,0,3,0,1,2,1,0,0,1,0,0,0,0,0,1,1,0.00, 
0.00,0.00,0.00,1.00,0.00,0.00,1,3,1.00,0.00,1.00,0.67,0.00,0.00,0.00, 
0.00, buffer_overflow. 

 
File 1.1 has also been prepared with the same 51608 records of the same format 

just without the last parameter 42) attack_type.  
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File 2 contains 311079 records of the same format as in File 1.1. 
File 1.1 and File 2 are the test data files.  

Note that KDD archive does not indicate the correct types of attack for none of the 
records of  File 2. The only available information on possible attacks is gathered in 
Tab. 1 (column 'Code' is the emulator's code of attack). Nevertheless, File 2 has been 
used to test whether the emulator is able to detect unknown intrusions, which had not 
been presented in the training data of File 1.  

The results of training the emulator by File 1 are shown in Fig.1, where right-hand 
screen represents the initial population of cFIN after SVD (Start cells: 51608|| 0 =W ), 

while left-hand screen shows cFIN after apoptosis and immunization ( 5.01 =h , 

783|| 1 =W ). Total training time (for AMD 1.5 GHz) is 62 seconds including 8 s for 

the 1st stage (SVD) and 54 s for the 2nd stage (apoptosis and auto-immunization). 
During the recognition of the records of File 1.1 and File 2, the emulator writes test 

results into the output file in the format: Record # - attack_type. For example, four 
records (## 744-747) with test results for File 1.1 are as follows (see also Tab. 2): 

 
744 - normal. 
745 - buffer_overflow. !!! 
746 - buffer_overflow. !!! 
747 - normal. 
 

The emulator also shows on-line projection of any pattern to 3D cFIN (see bold 
skew cross in both screens) and write the recognition result on the bottom panel (see 
"Class: back !!!"). 

Test results in Tab. 2 correspond completely to the correct attack types (parameter 
42) of File 1.  

Table 1. Attack types 

Code Attack type File 1 File 2 Code Attack type File 1 File 2 
0 normal + +     
1  apache2  + 16 pod  + + 
2 back +  17 portsweep + + 
3 buffer_overflow + + 18 rootkit +  
4 ftp_write   19 saint  + 
5 guess_passwd  + 20 satan +  
6 imap   21 sendmail  + 
7 ipsweep + + 22 smurf +  
8 land +  23 snmpgetattac

k 
 + 

9 loadmodule   24 spy   
10 multihop  + 25 teardrop +  
11 named  + 26 udpstorm  + 
12 neptune +  27 warezclient   
13 nmap   28 warezmaster   
14 perl   29 xlock  + 
15 phf + + 30 xsnoop  + 
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Table 2. Test results for File 1.1 

Records ## attack_type Records ## attack_type 
745-746  Buffer_overflow 38036-38051 ipsweep 
3095-7373  Smurf 38052-38151 back 
9520-9523 Buffer_overflow 38302-38311 ipsweep 
9590-9591 rootkit 42498-42519 ipsweep 
9928-10007 neptune 42548-42567 ipsweep 
10072 Satan 42593-42594 ipsweep 
10320 phf 42706-42708 ipsweep 
13340-13519 portsweep 42730-42761 ipsweep 
13569 land 42762-42770 buffer_overflow 
13845-13864 pod 42771-42772 land 
16326-16327 pod 42773-43385 neptune 
17446-37902 neptune 44451-44470 neptune 
37929-37939 ipsweep 44800-48452 smurf 
37959-37963 ipsweep 48453-48552 teadrop 
38005-38012 ipsweep All other normal 

 

Another test has been performed over File 2 to check whether the emulator is able 
to detect unknown intrusions, which had not been presented in the training data of 
File 1. The intrusion is treated as unknown if the projection of corresponding pattern 
to cFIN lies outside of the unit cube (according to Definition 1). The emulator has 
recognized 13 unknown intrusions as the following records ## of File 2: 

 
417, 12674, 97891, 139795, 170498, 176201, 177958, 232570, 236975, 
296561, 296657, 96796, 297658. 

 
    According to Tab. 1, any unknown intrusion can correspond to one of the 

following types of attack that had not been presented in the training data: 
 

apache2, guess_passwd, multihop, named, saint, sendmail, snmpgetattack, 
udpstorm, xlock, xsnoop. 

 
The recognition time per record is 15.7 ms for both tests of File 1.1 and File 2. This 

time includes not only computations but mainly reading the record from test file, 
visualization of the recognition result (cFIN's projection of the pattern) in both 
screens of the emulator and writing the result into output file. 

4   Conclusion 

According to test results, cFIN reduces the storing patterns by 65.9 times using 
apoptosis and auto-immunization without any loss of accuracy of recognition. 
Although this increases the training time (from 8 seconds to 1 minute for AMD 1.5 
GHz), nevertheless, more important is the decrease of the recognition time at least by 
60 times per pattern by decreasing number of  the stored cells of cFIN to be compared 
with recognizing pattern.  
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It is worth noting that so good performance of cFIN (error-free recognition with 
rather low training time) on the data of real-life dimension looks unobtainable for 
main competitors in the field of computational intelligence like artificial neural 
networks (ANN) and genetic algorithms (GA). According to the comparison in [25] 
and [26], cFIN trains by at least 40 times faster and recognizes by at least 2 times 
correctly than ANN and GA on the tasks of environmental monitoring and laser 
physics. These tasks have rather low dimension: 17×23×6 for ecological atlas and 
19×5 for laser diode. Such drawbacks of ANN and GA become especially 
inadmissible for the task of intrusion detection with rather high dimension 51608×41 
and more. 

It is also worth noting that cFIN differs essentially from the negative selection 
algorithm (NSA). Actually, NSA aims to provide a set of detectors for self-nonself 
discrimination [7], [9], whereas cFIN guarantees a minimal set of "cells" for the 
correct recognition of any number of classes based on "cytokines". Apparently, this 
makes cFIN advantageous not only for the intrusion detection on-line [23] but also for 
medical oriented applications to simulate cancer specific apoptosis [10]. Moreover, 
cytokines modulate proliferation and apoptosis of thymic cells as well as intrathymic 
T cell differentiation that includes not only negative but also positive selection [21]. 
Therefore, cFIN also seems to be better suited for such kind of simulations. 
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Abstract. High intertidal rocky shores are extremely stressful habitats. Marine 
snails in these habitats experience highly desiccating conditions, and they locate 
refuges such as crevices and form dense aggregations of individuals to reduce 
the effects of desiccation. This study investigates the mechanisms of refuge 
location in Melarhaphe neritoides using a simple set of rules to mimic the 
behaviour of each individual snail as a computer simulation. Chance 
interactions with other individuals, other individuals’ trails and the crevices 
which form part of the virtual environment result in a mainly self-organised 
pattern of aggregations and crevice occupation which match real patterns 
obtained in laboratory experiments. Simulations where the following of trails is 
removed result in a poorer match to the experimental data, indicating the 
importance of trail-following in establishing these distribution patterns. The 
study shows that artificial life based models are a potentially useful tool in the 
investigation of rocky shore systems. 

1   Introduction 

Self-organisation of aggregations of individual animals is a common phenomenon in 
many biological systems from bacteria though to insects and vertebrates such as 
flocks of birds and shoals of fish (reviewed by [1]). Self-organisation of aggregation 
may even explain some patterns of aggregation in human society, such as traffic 
congestion [2], [3]. Aggregations of individuals may have important biological 
functions including reproduction or reducing risks of predation [4], [5]. Aggregation 
may also benefit individuals in a more subtle manner, enhancing communications or 
social interactions between individuals [6].  

Aggregations arise in several ways. Firstly they can arise from individuals 
moving towards, or remaining in, an area where environmental benefits occur [7]. 
Secondly, they can arise through self-organisation, in areas with no environmental 
benefit [7], although the presence of the aggregation may modify the environment and 
form a positive feedback loop. In many cases the cause of aggregation can be 
attributed to a combination of both environmental benefit and self-organisation. For 
example, moist, shaded conditions house greater numbers of woodlice than dry sunny 
areas [8], but this aggregation of individuals is at least in part caused by differences in 
behaviour of individual woodlice between the two conditions. 
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On the high intertidal region of rocky shores, environmental conditions are 
extremely harsh [9]. Immersion may only occur on the highest spring tides and wave 
splash can be highly unpredictable resulting in highly desiccating conditions [10]. 
This region of the shore is inhabited mainly by gastropod snails of the family 
Littorinidae, and the most commonly occurring species on UK shores is Melarhaphe 
neritoides (L.). M. neritoides feeds on an epilithic biofilm of bacteria, algae and 
lichens [11], [12] and is normally found at low water inhabiting refuges, either inside 
crevices or pits in the rock surface or in dense aggregations consisting of up to 100 
individuals [10]. Often aggregations occur inside crevices, or if the crevice is small, 
the aggregation may be centred on the crevice, with individuals spilling outside of the 
crevice [10].  

Littorinid snails found in crevices and aggregations have body tissues with higher 
water content than those found individually on flat rock surfaces [13], [14], [15]. The 
temperatures of crevices and the evaporation rates from the crevices have also been 
shown to be lower than on flat rock [15]. Despite the clear advantages of occupying 
these areas, the mechanisms of locating crevices or forming aggregations are 
currently only speculative [16], [17], [18]. Experimental approaches to investigate the 
role of trail-following in producing aggregations have proved inconclusive [18] and 
invasive techniques such as the removal of mucus producing glands would greatly 
affect the behaviour and locomotive ability of snails and are therefore unsuitable for 
these behavioural investigations. 

In this study we propose a technique to investigate how snails can locate refuges, 
such as crevices and aggregations, based on computer simulations of their individual 
behaviour and chance interactions with other individuals, other individuals’ trails or 
with areas of environmental benefit (i.e. crevices). We show that an artificial life 
computer simulation technique can be used to examine refuge location mechanisms in 
intertidal snails. We investigate the importance of trail-following in the formation of 
aggregations, and we evaluate the role of self-organisation in the formation of 
aggregations relative to the role of a certain area’s environmental benefit. 

2   Materials and Methods 

In this study the results of computer simulations are compared to results of laboratory 
experiments. In the experiment, a number of snails of the species Melarhaphe 
neritoides were placed on marble plates and immersed in seawater for 30 minutes. 
They were then removed and the plates allowed to dry and the snails to stop moving. 
The number of snails in aggregations of three or more individuals (three individuals 
have been used in previous studies as a measure of aggregation e.g. [10], [18]), where 
each individual was in direct physical contact with another, was determined, as were 
the number in crevices, which were formed by partially drilling holes of diameter 4 
mm into the marble plate. Full details of the experimental methods can be found in 
[10], but in the current study a constant temperature of 22 °C was used and the 
number of snails placed on each marble plate was altered between replicate trials. The 
plates were cleaned between each replicate to remove previously laid mucus trails.  
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2.1   Simulating Individual Snail Behaviour 

An individual snail of the species Melarhaphe neritoides was placed on a marble plate 
in a tank of freshly collected, aerated, seawater for 30 minutes and then removed from 
the water and allowed to continue moving whist the plate dried (all movement 
stopped in < 45 minutes). The movement of the individual was recorded using time-
lapse photography and the data from 10 replicate snails statistically analysed to create 
a computer simulation of snail movement [15]. The snails showed three distinct 
movement phases, beginning and ending with tortuous movement, with a less tortuous 
pattern in the middle of the movement phase (Fig. 1a).  

  
 
a)      

  
 
 
 
 
 
 
 

b) 
 
 
 
 
 
 
 

Fig. 1. Trails of the snail Melarhaphe neritoides moving on marble plates during 30 minutes of 
submersion and 45 minutes exposed to air. (a) an example of an observed trail. (b) an example 
of a simulated trail. Both trails show three stages of movement with an initial and final tortuous 
phase and a longer, less tortuous, middle phase. 

The movement pattern was simulated on a grid of squares of side length 1.7 mm. 
This value was used because the mean distance between the centre of one square and 
a neighbouring square (including diagonal neighbours) was 2.0 mm which was the 
approximate length of each snail used to obtain the results. This allowed a movement 
of one body length in a real snail to equate to moving from one square to a 
neighbouring square in the simulation. Since little difference in the speed of 
movement of snails was observed (unless trail-following, see below) this distance can 
be defined as one timestep (t) in the simulation. The initial direction of movement was 
determined randomly by generating a number from a uniform distribution between 0 
and 360 degrees. The first, tortuous movement phase occurred for a number of 
timesteps determined by a random number generated from a normal distribution of 
mean 15.1 and S.D. 2.4. For each of the timesteps in this movement phase an angle 
was generated from a normal distribution of mean 0 and S.D. 46.1. This angle was 
added to the angle at timestep t-1 to form a cumulative angle between 0 and 360. The 
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second, less tortuous movement phase was simulated with mean duration 114 (± 18.1 
S.D.) timesteps, where the angle turned at each timestep was obtained from a normal 
distribution with mean value 0 and S.D. 12.3. The third, tortuous movement phase 
was simulated with mean duration 20.2 (± 2.4 S.D.) timesteps, where the angle turned 
at each timestep was obtained from a normal distribution with mean value 0 and S.D. 
39.4. The cumulative angle determined to which neighbouring square the snail 
moved, with  > -27.5 ° to 27.5 ° being vertically upwards, > 27.5 ° to 72.5 ° being 
diagonally up and right etc. A typical simulated movement pattern is shown in Fig. 1b 
to contrast with the real pattern from a snail in Fig. 1a. Statistical comparisons of 10 
further real snail trails, compared with 10 simulated trails using fractal analysis of the 
trails (see [19] for details) showed no significant differences between simulated and 
real movement patterns. 

2.2   Simulating Interactions and Decisions with Other Individuals, Trails and 
        the Environment 

Interactions occurred only through chance encounters. For example, if a snail 
encountered another snail by being in direct physical contact, either occupying the 
same square or a neighbouring (including diagonal) square, then an interaction 
occurred. If the snails were not in direct physical contact, for example in a nearest 
neighbour but one square, then, with the exception of trail-following (see below), 
there would be no interaction, unless the independent movement of the two snails 
resulted in them being in the neighbouring squares during a future timestep. 
Interactions with crevices occurred in the same manner, if a snail was in the same or 
nearest neighbour square as a crevice then an interaction would occur. For trails, the 
snail had to be in the same square as a previously laid trail to interact with it.  
    Once an interaction occurred, a decision was made regarding the interaction. If the 
decision was successful then the two (or more) individual snails which interacted 
would stop moving and remain in contact with each other, the snail would stop in a 
crevice or the snail would follow a trail. Further interactions between two or more 
snails that had stopped moving and an additional snail still moving could occur to 
form an aggregation (of three or more individuals) or to enlarge the size of an existing 
aggregation.  
    Successful decisions regarding trail-following resulted in the trail-following snail 
ignoring its normal movement patterns and following the trail of the trail laying snail 
in the direction it was laid (i.e. towards the trail laying snail). The movement speed of 
trail-following snails is faster than normal movement [15] and is simulated by the 
trail-following snail moving the distance moved by the trail laying snail in two 
timesteps in a single timestep. Trail following snails were still able to make decisions 
regarding crevice occupation or aggregation formation if interactions occurred. If the 
trail-following snail caught up with the trail-laying snail then the trail-following 
movement pattern stopped and an interaction between the two snails occurred. 
    Unsuccessful decisions of any kind resulted in snails continuing their individual 
movement pattern as if no interaction had occurred; however, the snails were 
prevented from making decisions about the same type of interaction for 10 timesteps. 
This prevention of the decision making process was necessary to prevent successive 
decisions occurring between the same individuals or individuals and environment in 
close succession. For example, each crevice could be located in 9 different squares, 
ten timesteps allowed the snail sufficient time to leave the vicinity of the crevice and 
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stopped decisions occurring at each timestep as to whether to enter the crevice or not, 
as a decision as to whether to enter the crevice had already been made once it was 
first encountered. 
    Observations of snails made during laboratory experiments into their refuge 
seeking behaviour (e.g. [10], [15]) showed that they could form aggregations and stop 
moving, enter crevices, or follow pre-laid trails (from observations made by time-
lapse photography) at any time during the movement period of the snails. The 
probability, however, of a successful decision as defined above increased with the 
time spent moving, and in many cases was correlated with the dryness of the plates 
once removed from the water. 
    The decision processes were modelled by generating a uniform random number 
between 0 and 1 and comparing it to a probability function statistically generated 
from time-lapse photography and observational data on the number of successful and 
unsuccessful decisions made in discrete 5 minute periods [15]. The probability 
function produced an independent variable (probability) which varied between 0 and 
1 with increases in the dependent variable (timesteps) of the model (see Table 1 for 
details of the probability functions for each parameter). If the random number was 
lower than the probability value then the decision was successful.  

Table 1. The probability of successful decisions occurring varied with changes in timestep (t) 
of the model. The cubic equations below gave the best statistical match to the observed data 
collected where if a random number between 0 and 1 was lower than the value given by the 
equation a successful decision occurred. Where probability values fall below zero the probably 
is determined as zero and successful decisions were not possible at that timestep. 

Behaviour Probability of successful decision (p = ) 
Crevice (5.21 x 10-2)  –  (1.26 x 10-2)t  +  (2.44 x 10-4)t2 

–  (8.04 x 10-7)t3 
Aggregation (4.91 x 10-2) – (9.99 x 10-3)t + (1.81 x 10-4)t2 

– (5.01 x 10-7)t3 
Trail (9.79 x 10-5)t2 - (1.03 x 10-2) – (3.34 x 10-3)t 
following – (3.00 x 10-7)t3 

2.3   Overview of the Computer Simulation 

All individual snails were simulated on a grid of 176 × 88 cells, mimicking the plate 
size used in the laboratory experiments. Crevices were generated in random positions 
on the plates, centred on a square in the grid. The simulated crevice did not extend 
beyond the boundaries of a single cell, but it could be detected by snails in 
neighbouring cells (see above). Movement of the simulated snail from the edge of the 
plate resulted in it continuing its movement on the corresponding opposite edge 
position (this was similar to the laboratory experiment where snails could crawl on 
both sides of a 150 × 150 mm plate suspended by two thin wires [10]).  
    All snails began moving at the same time (t = 0), and continued until their 
movement period was complete or until a successful decision involving an interaction 
with a crevice or other individual occurred. Details of the flow of the simulation are 
shown in Fig. 2. 
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Initiation: Positions of crevices and number of timesteps determined for each snail

Each snail moves to a neighbouring square (or moves two 
squares along a trail if trail-following)

Interactions with crevices, other individuals and trails are
checked for

Successful decisions
with crevices and
other individuals

Successful decisions 
with trails

Unsuccessful 
decisions

Snail remains moving.
No further decisions 
made for 10 timesteps

Snail moves in direction
of trail and moves two 
squares per timestepSnail(s) stops moving

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Summary of the computer simulation. At each timestep snails move from one square on 
the grid to another. After movement of all snails, interactions are checked for and if any occur 
then decisions are made. The cycle continues until all snails stopped moving, either through 
making successful decisions about inhabiting crevices, through successful interactions with 
other individuals, or because their allocated number of timesteps in which to move has been 
reached.     

3   Results 

We systematically manipulated both snail and crevice density and measured either the 
percentage of snails in crevices or the percentage of snails in aggregations of three or 
more individuals. These measurements were taken for the laboratory experiments, a 
simulation where all trail-following was removed from the model and a simulation 
where trail-following was present. We performed separate trials to determine crevice 
occupation and aggregation formation to ensure the data was independent [20]. We 
performed 12 replicates for each combination of snail and crevice density for the 
laboratory experiments and both the computer simulations. In each case the mean 
value and 95 % confidence intervals were calculated (Fig. 3).   

Crevice occupation was higher in computer simulations where trail-following was 
removed than in either the experimental data or the simulation including trail-
following. With the exception of the 40 snails and 20 crevices treatment there was a 
high degree of conformity between the trail-following model and the experimental 
data (Fig. 3a). Increasing the crevice number from 20 to 30, with 20 snails, resulted in 
an increase in the percentage of snails occupying crevices (Fig 3a).  

The percentage of aggregation formation did not increase significantly with snail 
density in either the experimental data or the trail-following simulation data, but 
differences occurred in the simulation with no trail-following (one way ANOVA 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The mean percentage (± 95 % C.I. n = 12) of snails in (a) crevices and (b) aggregations 
with differing numbers of crevices and snails on the plates. Data is given for the laboratory 
experiments, the non trial following model and the trail-following model.  

investigating differences between 10, 20 and 40 snails with 20 crevices for 
experimental data F2,33 = 0.05 p > 0.9; for trail-following model F2,33 = 0.42 p > 0.6; 
for non trail-following model F2,33 = 22.95p < 0.001; see also Fig. 3b). 

Importantly, the inclusion of trail-following in the simulation allowed aggregation 
to occur at or above experimentally observed values, even at low snail densities.  The 
mean percentage of snails forming aggregations, however, was generally higher in the 
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trail-following simulation than in the experimental results. The manipulation of 
crevice density, with fixed snail density of 20, had no significant effect on the 
percentage of snails aggregating in any of the simulations or the experimental results 
(one way ANOVA investigating differences between 0, 10 and 30 crevices with 20 
snails for experimental data F2,33 = 0.64 p > 0.5; for non trail-following simulation 
F2,33 = 0.83 p > 0.4; for trail-following model F2,33 = 0.86 p > 0.4; see also Fig. 3b).  

4   Discussion 

This study has shown that artificial life based simulations can be an important tool in 
the study of rocky shore ecology, particularly in the prediction of distribution patterns 
of intertidal snails from their individual behaviours. Individual-based computer 
simulations, where interaction occurs between the individuals, can closely mimic the 
collective behaviour of the assemblage of snails on marble plates. The use of these 
techniques is rare in rocky shore ecology; although important exceptions have 
occurred (e.g. [21] demonstrates clustering behaviour in molluscs, but using a more 
traditional mathematical technique; [22] demonstrates the use of cellular automata in 
simulating the patch dynamics of algae on the shore). Although traditional ecological 
modelling techniques using mathematical and statistical equations can prove a good 
predictive tool for large scale distribution patterns of organisms (e.g. [23] uses such a 
technique to examine the distribution patterns of red squirrels over a large geographic 
area), individual-based models can be used to investigate mechanisms used by 
individuals to form these patterns [24].  

This study uses only three kinds of interactions between individuals and the 
environment and yet describes the distribution patterns of a snail assemblage well. We 
have not tested the response of the model to parameters other than those obtained by 
rigorous experimental and observational procedures. However, we show that only the 
three interactions simulated are required to predict the distribution patterns of snails. 
We also provide evidence that trail-following is an important mechanism in the 
formation of aggregations, particularly when the density of snails is low and the 
chance encounters of individuals are reduced. In fact the simulations with trail-
following perform similarly to the experimental data in showing no affect of snail 
density on the percentage of littorinids in aggregations, yet in all cases the mean 
values of the simulations are slightly higher than the experimental results. This may 
mean the importance of trail-following may have been overestimated in the 
simulations. Creating the artificial life based simulations allows manipulative 
experiments to be performed on the simulated animals. For example, in this study we 
are able to prevent trail-following by the snails, which is impossible to effectively 
perform on real animals. We show that the results of the trail-following simulation are 
more closely related to experimental data on the percentage of snails in aggregations 
than are the non trail-following simulation results. Although it is possible that the 
mechanisms in the trail-following simulation are not identical to those used in real 
snails, this is perhaps the best evidence in establishing the importance of trail-
following in aggregation formation in littorinid snails that has been documented, 
previous experimental and observational studies have proved inconclusive [18].  

It is clearly demonstrated that there is greater conformity between the trail-
following model and the experimental results than between the non trail-following 
model and the experimental results for both crevice occupation and aggregation 
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formation. Interestingly, the incorporation of trail-following appears to reduce the 
affect of locating a less environmentally stressful microhabitat such as a crevice. 
Although it is unclear if the artificial crevices did provide a reduction in stress to 
emersed individuals, they were selected for by the snails in the experimental results. 
On a plate with 20 crevices 14.1 mm2 or 0.03 % of the plate area was occupied by 
crevices, so approximately the same percentage of snails should be found in crevices 
if no selection took place, where as in reality between 5 and 15 % of snails were 
found in crevices. The percentage of snails aggregating was unaffected by the crevice 
density. These data suggest that it is the self-organisation of aggregations that is 
important in establishing distribution patterns of snails on marble plates and not the 
presence of areas of lower environmental stress. This prediction of the simulations 
may not apply on real shores, where large aggregations of snails occur in cracks and 
crevices in the rock surface [10], [13], [15], [16], [17].  

This study has several limitations in assessing the mechanisms used to locate 
refuges by Melarhaphe neritoides or other littorinid snails on real rocky shores. Of 
particular importance is the grazing patterns shown by M. neritoides on some shores 
in the UK, where it mainly limits itself to feeding inside a grazing halo only a few 
centimetres in diameter, which it normally shares with many other individuals [12]. 
The large variation in crevice density and crevice shape found between shores may 
also play an important role in shaping distribution patterns. Further work would be 
necessary to establish if the same behaviours simulated in this study can account for 
these distribution patterns found on real shores, or if the parameters of the simulation 
need to be adaptive depending, for example, on the crevice density of the shore. It is 
possible that the persistence of mucus trails on the shore would allow some sites, such 
as crevices, which are preferentially selected for compared to bare rock [15], [17], to 
become sites for aggregation, not only through the site offering a reduction in 
environmental stress to the animal, but also through self-organisation since a large 
number of persistent trails will lead to the crevice over a period of time [25]. The 
individual-based simulation technique proposed here could easily be modified, given 
suitable observational data, to test these theories and to provide insight into complex 
distribution patterns in a real environment.  
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Abstract. An ant colony shows collective behavior through signal patterns 
formed by individual ants communicating among themselves. In this paper I 
devise a method for designing ant colony model and apply the method to design 
two types of ant colonies, focusing on ant sensitivity to signals. In the first type, 
I design three foraging models (trail, attraction and desensitization), by modify-
ing a simple foraging model repeatedly, changing ant sensitivity to recruit 
pheromone to improve foraging by regulating allocation of ants. Out of them, 
the desensitization model shows the best foraging efficiency as a result of bal-
anced allocation and stable behavior. In the second type, I design a task-
allocation model between foraging and mound-piling tasks using independent 
signals for each task. It shows weak interaction between these tasks.  

1   Introduction 

In previous studies [1], I proposed ant colony models that show macro-scale collec-
tive behavior as a result of the micro-scale behavior of individual ants through the 
formation of meso-scale signal patterns. In these models, many homogeneous ants, 
who respond to local cues in their environment, indirectly communicate among them-
selves with pheromone signals. I studied the interaction between the formation 
mechanism of signal patterns and the regulation mechanism of task allocation.  

Mode transition rule
Behavior of an 

entire ant colony

Behavior of 
an individual ant

Distribution of ants in each mode
and distribution of signals

Sum

Compose

Decompose
Subgroup structure

Spatial structure

Matching parameters

Behavior modesMicro

Scale

Macro
 

Fig. 1. Method for designing ant colony models   

As illustrated in Fig. 1, I have devised a method comprised of following three steps 
to simplify the design of the collective behavior of an ant colony:  
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1. Introduction of subgroup structure: Micro-scale behavior of an individual ant is 
decomposed into several behavior modes by using a mode-transition rule common 
to all ants in the colony. Ants in the same mode behave in the same manner.  

2. Introduction of spatial structure: The distribution of ants in each mode is estimated 
from their behavior, integrating ants in the mode. The distribution of pheromone 
signals is calculated by the distribution of ants laying pheromone.  

3. Matching parameters: Macro-scale behavior of an entire ant colony is constructed 
of the spatial distributions of both ants in each mode and the signal regions, using 
the same mode-transition rule.  

    Here, I apply the method to design the following two types of colony models, fo-
cusing on ant sensitivity to signals and introducing structures in mode transition rule:   

1. In section 2, I design three foraging models (trail, attraction and desensitization), 
repeatedly modifying the simplest one by changing ant sensitivity to signals (by 
adding a new mode to the rule), to improve foraging efficiency.  

2. In section 3, I design a task-allocation model between foraging and mound-piling 
using independent signals for each task (by combining two modules for each task 
in the rule), and investigate interaction between the two tasks.  

2   Three Foraging Models: Trail, Attraction and Desensitization 

In section 2, I apply the above method to foraging model of ant colony. When forag-
ing, ants spread widely to search for food sources (food-search subtask), bring food to 
the nest while leaving recruit pheromone signals (food-carry subtask), or concentrate 
on the signals that lead the ants to the food source (recruitment subtask). In section 
2.1, the recruit pheromone signals are explained. In section 2.2, I design the trail, 
attraction and desensitization models, repeatedly modifying the simplest model (trail) 
by changing ant sensitivity to the recruit pheromone, to improve foraging efficiency 
by regulating allocation to the above subtasks. In section 2.3, allocation of ants among 
these subtasks, stability of foraging behavior and foraging efficiency are compared 
among the simulation results of these foraging models.  

2.1   Behavior of Signal Regions of Recruit Pheromone  

An ant carrying a piece of food from the source to the nest leaves a trail of recruit 
pheromone on the ground. In these foraging models, the pheromone gradually evapo-
rates and dissipates widely, as formulated in Eqs. 1 and 2 respectively, in which  
T(x, y) denotes the density of the pheromone trail on the ground (x-y plane: z=0) and 
P(x, y, z) denotes the density of the evaporated pheromone in the air.  

(d/dt + γvap)T(x, y) = 0 (1) 

{d/dt - γdif(d
2/dx2 + d2/dy2 + d2/dz2)}P(x, y, z) = 0      (z >0) 

                                                         = γvapT(x, y)   (z=0) 
(2) 

As illustrated in Fig. 2, ants use two kinds of recruit pheromone signals: trail and 
attracting area defined as regions where T(x, y) is stronger than Tthr and where P(x, y, 
0) is stronger than Pthr, respectively. Here, Tthr and Pthr denote thresholds.  
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Parameters used in simulations are listed as follows. 

• Time constant γvap = 0.21, Tthr = 0.01 and amount of pheromone left by an ant in a 
step = 10.0 are determined to maintain a trail left by an ant for a while.  

• The extent of attracting areas depends on diffusion factor γdif =0.42 and Pthr = 0.01. 

Trail T(x, y) > T
thr

Attracting area
P(x, y, 0) > P

thr

Perceptive
 area Food 

site
Nest

Ant

 

Fig. 2. Signal regions of recruit pheromone drawn by an ant carrying food 

2.2   Designs of Three Foraging Models 

Trail, attraction, and desensitization models are described in the following sections. 
They are simulated under the food-supply condition that “after ants have consumed 
all the food units of one food site, a new food cluster of a predetermined size appears 
randomly within a 45 grid distance from the nest to maintain a constant number of 
existing food sites”. Parameters used in the simulations are listed as follows.  

• Macro-scale parameters: Simulated space extends to 100 x 100 x 3 grids. In 
pheromone diffusion, the ground is a reflecting boundary, and the others are ab-
sorbing ones. The nest is located at the center of the ground. Colony is comprised 
of 600 ants moving on the ground.  

• Micro-scale parameters: One step is a period that an ant changes its action in re-
sponse to a stimulus. Radius of the perceptive field = traveling distance of an ant in 
a step = 1.5 grid. An ant “walking randomly” walks in a straight path and changes 
its direction randomly at rate of 0.1 per step.  

Figs. 3, 4 and 5 indicate the mode transition rules of an ant, the dynamics among 
groups of each mode ants, and snapshots of simulation of the three models.  

2.2.1   Trail Model: The Simplest Model 
In this model, ants are only sensitive to trails. The colony is comprised of ants in 
search, carry, and trace modes (Fig. 3.1), which are allocated to food-search, food-
carry, and recruitment subtasks, respectively. Their actions are defined as follows: 

• A search-mode ant walks randomly. After finding a trail or food, it changes to trace 
or carry mode.  

• A carry-mode ant leaves a pheromone trail while conveying one food unit from its 
source to the nest. When arriving at the nest, it drops the food unit into the nest, 
changes to trace mode and then randomly selects one of the trails surrounding the nest.  

• A trace-mode ant follows the trail in the opposite direction from the nest. If it 
reaches or loses the food source, it changes to carry or search mode.  

As Fig. 3.2 outlines, ants in the food-search subtask disperse, while the other ants 
concentrate on the trails. In this model, weak feedback loop among subtasks emerges, 
because the trails cannot recruit a sufficient number of ants. Ants devote most of their 
time to food-search subtask. As Fig. 3.3 displays, this model shows stable recruitment 
to all existing food sites with small short-term fluctuations and dominance of the 
food-search subtask in allocation.  
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Fig. 3. Explanation of trail model: Snapshots in Figs. 3, 4, and 5 are simulated with 300 units of 
food clusters constantly supplied at five food sites. Left side of the frame in snapshot displays 
distributions of each mode ant (gray dots), pheromone signals (dark gray regions), the nest 
(black cross at the center), and food sites (large gray dots). Logs for ant rate in each mode (from 
top to bottom: wander, search, attracted, trace, and carry) and for the number of food pickers 
for the last 200 steps are displayed on the right side of the frame. 

2.2.2   Attraction Model: Intensifying Recruitment 
In this model, ants are sensitive to both the trails and attracting areas. To recruit more 
ants from a wider area, an attracting area is introduced, and attracted mode is ap-
pended to the mode transition rule (Fig. 4.1). Its action is defined as follows: 

• If a search-mode ant finds an attracting area, it changes to attracted mode.  
• An attracted-mode ant moves to a point where evaporated pheromone is strongest 

within its perceptive area. If it reaches a trail, it changes to trace mode. If it loses 
the attracting area, it changes to search mode.  

This model shows irregular and unstable long-term fluctuation caused by repeating 
deadlock (that is the state in which excessive concentration of recruited ants enclosed 
within signal regions suppresses search for new food, though the recruited ants wait 
for recruitment to new food until the signals disappear), as follows: 

1. Search-decreasing stage (Fig. 4.3a): Recruitment to all food sites is observed. The 
rate of search-mode ants rapidly decreases because ants are caught within signal 
regions. The number of ants picking up a food unit (that is, food pickers) shows 
modest fluctuations.  

2. Enclosure stage (Fig. 4.3b): Almost all ants are enclosed within a few signal re-
gions, and this impedes the search for new food sources. Recruited ants move in a 
group following signals, quickly consuming marked food sites one after another. 
Then, the numbers of food pickers shows irregular, violent fluctuations.  

3. Signal-vanishing stage (Fig. 4.3c): After deadlock occurs, signals soon vanish, and 
enclosed ants return to search mode and spread over the ground. The number of 
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Fig. 3.1. Mode transition rule of an ant 
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food pickers is almost 0. Search-mode ants soon find new food sites and switch to 
carry mode, repeating the above cycle.  

As Fig. 4.2 outlines, mode transition of ants to search from trace or attracted mode 
is inactivated when enclosed within attracting areas, and feedback loop containing 
search mode is blocked. The mode transition from attracted to search mode is only 
active when the signal regions disappear after deadlock has broken. 

Fig. 4. Explanation of attraction model: Details are explained in the legend of Fig. 3 

2.2.3   Desensitization Model:  Avoiding Deadlock 
In this model, ants ignore pheromone signals for a certain period. To avoid deadlock, 
desensitization is introduced, and wander mode is appended to the mode-transition 
rule (Fig. 5.1). The action of a wander-mode ant is defined as follows:   

• If a trace-mode ant reaches a trail end without a food source, it changes to wander 
mode.   

• During a desensitization period, a wander-mode ant walks randomly, ignoring 
signals.  After the period wears off, it returns to search mode.    

Fig. 4.1. Mode transition rule of an ant 

Fig. 4.2. Dynamics of model Fig. 4.3. a) Snapshot at step 100 

Fig. 4.3. b) Snapshot at step 450 Fig. 4.3. c) Snapshot at step 530 
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The desensitization period is determined as 20 steps to disperse wander-mode ants 
outside signal regions.  

As Fig. 5.2 outlines, another feedback loop containing wander mode is created to 
circulate the ants among subtasks. The interaction between the localized concentra-
tions of recruited ants on pheromone signals and long-range lateral inhibition emu-
lated by widespread desensitized ants functions according to the similar mechanism to 
the reaction-diffusion system. As Fig. 5.3 displays, this model shows stable recruit-
ment to all food sites with moderate fluctuations, and proper allocation between food-
search and recruitment subtasks.   

 

 
Fig. 5 Explanation of desensitization model: Details are explained in the legend of Fig. 3 

2.3   Comparison of the Three Foraging Models’ Behavior 

2.3.1   Allocation among Food-Search, Recruitment, and Food-Carry Subtasks 
In Fig. 6, the trail model concentrates ants in the food-search subtask, and the attrac-
tion model concentrates ants in the recruitment subtask on time average. In contrast, 
the desensitization model shows proper allocation between food-search and recruit-
ment subtasks and increase in allocation to food-carry subtask.  The allocation to 
food-carry subtask which reflects foraging efficiency increases with proper allocation 
between food-search and recruitment subtasks, as argued in foraging theory [2]. 

2.3.2   Stability of Foraging Behavior 
Fig. 7 shows time distributions from the appearance of a food site to its removal in 
each model. Compared with the others, distribution in the attraction model is promi 
nently scattered, showing strong correlation to distance from the nest because the 
enclosure of ants impedes the search for food sources far from the nest.  

Fig. 5.1. Mode transition rule of an ant 

Wander  
Attraction
 model

Desensitization model

CarryAttracted
Trace

End of desensitization period

An empty end of the trail

Search

Fig. 5.2. Dynamics of model Fig. 5.3. Snapshot at step 800 

Additional
feedback

loop

Wander

Search

Carry

Attracted

Trace

Concentration         Dispersion

Recruitment ~ Food-search
(Wander and 
 search modes)

(Attracted and 
  trace modes)



536 M. Nakamura and K. Kurumatani 

 

 

Fig. 6. Rate of ants in each mode in three foraging models, averaged for 5,000 steps, simulated 
with 300 units of food clusters constantly supplied at five food sites  

 

 

Fig. 7. Distributions of existence time of food sites in three foraging models, simulated under 
the same food supply condition as Fig. 6: Regression lines of the distributions and their residual 
sum of squares are indicated.    

2.3.3 Foraging Efficiency with Varying Food Supplies 
Fig. 8 shows the foraging efficiency of each model, with varying sizes of supplied 
food clusters and the number of food sites. The following features are indicated:  
• As the size of food clusters and the number of food sites increase, foraging effi-

ciency increases in all three models.  

 

 

Fig. 8. Number of food units carried in each model at 5,000 steps averaged across 10 simula-
tions with varying number of food sites and sizes of supplied food clusters  
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Fig. 9. Explanation of task-allocation model: Mode transition rule, dynamics, and snapshot of 
simulation of this model are shown as same as in Figs. 3, 4 and 5. Snapshot is simulated both 
with 300 units of food clusters constantly supplied at five sites and with 1,000 waste units piled 
at the nest at step 0. The left side of the frame in the snapshot displays mound distributions 
(large black dots), attracting areas of the mounds (light-gray regions, displayed over pheromone 
signals), and the others (the same tokens as that in Figs. 3). In the middle of the right side, the 
logs for the rate of ants in each mode for the last 200 steps (from top to bottom; search- and 
desensitized-mode ants carrying nothing, attracted to recruit pheromone, trace-mode, carrying 
food, attracted to waste smell, and ants carrying waste) are displayed.  

 

• The desensitization model demonstrates the best foraging efficiency among them, 
despite changes in the size of supplied food clusters1 and the number of food sites.   

• When the number of food sites is relatively small, the trail model’s foraging effi-
ciency is relatively low because trails cannot attract enough ants from wide areas.   

• When relatively small size food clusters are supplied, the attraction model’s forag-
ing efficiency is relatively low because deadlock frequency increases.  

3   Task Allocation Model Between Foraging and Mound-Piling  

3.1   Design of Task Allocation Model  

In section 3, I apply the designing method to a task-allocation model that carries out 
foraging and mound-piling tasks using independent signals for each task. Ants in this 
                                                           
1 When simulated with far smaller food clusters, the existence time of food site is far shorter 

than that of pheromone signal left by an ant, and this causes unnecessary recruitment. When 
simulated with food clusters less than 20 units and less than 4 units, the best foraging effi-
ciency is observed in the trail model and in a model without pheromone signals. 
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model exclusively perceive either of the signals.  As illustrated in Fig. 9-1, mode 
transition rule of this model is comprised of two modules for each task connected 
mutually through the desensitized mode (which is similar to that in the other task-
allocation models [3]), not to concentrate ants in either of the two tasks.  

3.1.1   Appended Signals to Task Allocation Model: Waste Smell  
When mound-piling, ants repeatedly pick up such waste as garbage or a corpse, and 
carry it to waste mounds.  The waste smell evaporates from the mounds and dissipates 
into the air, as formulated in Eq. 3, in which S(x, y, z) denotes the strength of the 
waste smell.  The attracting area of a waste mound is defined as the region where S(x, 
y, z) is stronger than threshold Sthr.  

{d/dt - γ’dif(d
2/dx2 + d2/dy2 + d2/dz2)}S(x, y, z) = 0      (z >0) 

                 = γ’vap x Number of waste units piled on (x, y)   (z=0) 
(3) 

Time constant γ’vap = 0.3, diffusion factor γ’dif =0.3, and Sthr = 0.1 are determined 
to make the above signal both continue for several steps and expand for several grids.  

3.1.2   Appended Mode Transition Rule: Modes in a Mound-Piling Module  
The foraging module in Fig. 9-1 is the desensitization model in section 2. To intro-
duce the mound-piling module, the corresponding actions are appended, as follows. 
Suffix (+/-) indicates whether an ant of the mode has a waste unit or not.  

• When a search-mode ant or “a desensitized-mode ant in the foraging module2” 
finds an attracting area of a waste mound, it changes to attracted(-) mode.  

• An attracted-mode ant moves to a point where waste smell is strongest within its 
perceptive area. When reaching the mound, an attracted(+)-mode ant piles the unit 
on the mound 3 and switches to desensitized(-) mode, and an attracted(-)-mode ant 
picks up a unit from the mound and switches to desensitized(+) mode.  

• A desensitized-mode ant walks randomly, ignoring waste smell. If a desensitized(-

mode ant finds an attracting area of recruit pheromone, i t switches  to “attracted 
mode in the foraging module”. After the desensitization period, a desensitized(+)-
mode ant changes to carry mode, and a desensitized(-)-mode ant changes to search 
mode.  

• A carry-mode ant walks randomly. If it finds attracting areas of waste mounds 
within a fixed waste carriage period, it switches to attracted(+) mode; unless it finds 
the attracting areas within the period, it leaves the unit there and changes to desen-
sitized(-) mode.  

    The period of desensitization to the waste smell is also determined as 20 steps. The 
waste-carriage period is determined as 70 steps, on which the density of organized 
mounds depends. Parameters and conditions for foraging are the same as in section 2.  

                                                           
2 This is a wander-mode ant in the desensitization model, as explained in Section 2. 
3 As an exception, ants are forbidden to drop wastes on the mound at the nest.   

)-
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3.2   Simulation Results: Weak Interaction Between the Two Tasks 

In simulations under the condition explained in legends of Fig. 9, the task allocation 
model indicates weak interaction between the two tasks through the distributions of 
desensitized-mode ants in the two modules (as outlined in Fig. 9-2), as follows:   

• Pattern formation: Approximately 10~15 large mounds repeatedly appear and 
disappear slowly changing their distribution in response to removal of food sites. 
This is because ants desensitized to recruit pheromone are distributed around ex-
pired food sites, and remove wastes on the neighboring mounds away.  

• Task allocation: The foraging efficiency of the task allocation model is fairly high 
despite a large allocation to the mound-piling task. Before and after removal of the 
waste mound at the nest4, the foraging efficiency of the task allocation model is 
smaller than that of the desensitization model in section 2 by 20% and by 16% (av-
eraged over 5 simulations), although the proportion of ants allocated to the mound-
piling task is 31% and 28%, respectively. Its mechanism is explained as follows. 
Widely dispersed waste-carrying ants become only sensitive to the recruit phero-
mone after carrying wastes. This compensates for food-search subtask in foraging.  

4   Discussion 

In section 2, desensitization is used to avoid deadlock, in the same way as decision 
error of ants in the colony model of Deneubourg [4]. In section 3, desensitization is 
used as a balancer among tasks, in the same way as task-allocation model of Gordon 
[3]. By using the designing method, more complex structures can be introduced in 
mode transition rule, changing ant sensitivity to signals.   

5   Conclusion 

I have devised a simple method for designing collective behavior, and have applied 
the method to the following two types of ant colony models.  

1. The three foraging models comprised of ants with different sensitivities were de-
signed. Among these models, the desensitization model shows the best foraging ef-
ficiency as a result of both proper allocation among subtasks and stable behavior.  

2. The task allocation model between foraging and mound-piling, using independent 
signals for each task was designed. Weak interaction between tasks is observed.  
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Abstract. In this paper, we describe an approach to artificial life, which uses 
Qualitative Reasoning for the simulation of life within a 3D virtual 
environment. This system uses qualitative formalisms to describe both the 
physiology of a virtual creature and its environment. This approach has two 
main advantages: the possibility of representing integrated physiological 
functions at various levels of abstraction and the use of a common formalism 
for the simulation of internal (physiological) and external (environmental) 
processes. We illustrate this framework by revisiting early work in Artificial 
Life and providing these virtual life forms with a corresponding physiology, to 
obtain a complete living organism in virtual worlds. 

1   Introduction 

Previous work on Artificial Life has mostly considered molecular physiology, rather 
than higher-level physiological functions, with a few exceptions [9]. However, one of 
the challenges for the simulation of artificial life consists in being able to represent 
complex physiological functions to simulate organisms that are more complex. Our 
approach has been to use symbolic reasoning instead of differential equations and 
numerical methods to create a knowledge-based simulation of physiological 
functions. By this method, we are defining artificial physiology from first principles 
from a set of physiological processes, which opens new ways for the experimentation 
of artificial alternative life forms. 
   Using a symbolic description, a qualitative modeller could then devise a complex 
system that represents physiological phenomena from a library of common physical 
processes. The advantage of modelling such a system using Qualitative Reasoning is 
that using a suitably compositional approach for a model, allows the modeller to 
produce simple model fragments that combine to give the required complexity for the 
organism behaviour and produce results in real-time. The challenge in this method for 
model creation is choosing the best level of description and how to combine the 
model fragments that are produced from the analysis to create the world and 
phenomena for the artificial creature. 
   The system has been used to develop a virtual creature with internal processes and 
organs that react to changes in its environment. This work has evolved from research 
in A-Life that aimed at creating imaginary life forms [1, 2]. In addition to the 
creature, the environment has been simulated and integrated with the creature, which 
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allows effects such as hot and cold currents, concentrations, and vortices to affect this 
creature through the qualitative simulations.  
    The creature we have created is an imaginary organism, which has a body 
comprised of organs that work together to carry on the various processes of life. Its 
main sustenance is extracted from the environment in which it exists and allows it to 
achieve homeostasis. 
    In the remainder of this paper, we will present the results from our ongoing 
research into the use of qualitative processes to simulate both creatures and 
“ecosystems” for artificial life within a 3D environment. We start by describing the 
software architecture for the virtual environment in which the virtual creature lives.  
    Following this are case studies into the visualisation of the processes within the 
virtual creature and its environment. In particular, we show how, due to the basic 
physical or physiological processes, we are able to instantiate multiple model 
fragments in the creatures’ environment and have them interact with it. For example, 
we present an implementation of the artificial life form within a virtual “Ecosystem” 
as a test environment. This environment has been implemented as a fully immersive 
virtual reality system that the user can explore. In this virtual world, we have 
implemented various behaviours: for physical environment behaviour and for 
complex organ behaviour which are simulated in real-time. We conclude by 
discussion of the work completed so far and present our plans for future research into 
expanding the environmental effects into a self-contained ecosystem. 

2 System Architecture  

Our system is composed of two modules: a visualisation engine, which animates the 
virtual creature in its environment in real-time, and a qualitative simulation engine 
controlling the simulation of both the internal physiological processes of the creature, 
and of physical processes in its liquid environment (such as currents, heat flows, 
diffusion of nutrients, etc.). The integration of qualitative simulation with a 3D 
graphics system relies on the native event system of the visualisation engine. This 
event system has been extended to define high-level events that activate the QP 
simulations from the interaction with virtual world objects. We will refer to these 
events as Qualitative Physics events (abbreviated as QP Events). For example, when 
the creature enters or exits a volume, the event enter_QPVolume and 
exit_QPVolume are sent to the simulation. For instance the enter_QPVolume 
event can trigger processes of heat exchange between the creature and the liquid flows 
occurring in the volume it has just entered. 
    Our system is designed to operate both on standard desktop and within immersive 
Virtual Reality systems. The immersive system we use is a CAVE™-like system 
called an SAS-Cube™ the configuration of which consists of a four-sided PC-based 
hardware architecture that is powered by an ORAD™ PC cluster. It supports 
stereoscopic visualisation at 60 fps and real-time interaction. The QR Engine utilises 
the technique for qualitative simulation of physiological systems [4], derived from 
Qualitative Process Theory (QPT) [7] which we refer to as Qualitative Physiology. 
Qualitative Physiology represents the physiological processes governed by 
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physiological laws using the process-based formalism of QPT, and supports the real-
time simulation of physiological sub-systems. 
    As the QP Events involve objects which are part of the simulation, they trigger the 
updating of relevant qualitative variables in the QP engine, hence prompting a new 
cycle of simulation. 
    In a similar fashion, to present the effects of the simulation to the visualisation 
engine we have devised QP Effects. These effects utilise the discretisation of the 
qualitative variables namely the “landmarks” and “limit points”. When a qualitative 
variable passes either a landmark or limit point, a QP Effect is generated and sent to 
the graphical environment, to trigger changes in visual appearance corresponding to 
the landmarks reached. In addition, when the processes become active or inactive or 
when an object changes its QPStates, QP Effects are also generated. This can be used 
to produce a variety of visualisations, such as particle systems for fluid motion or 
colour changes for concentration. The software architecture for the communication of 
these QP Events and QP Effects utilises the UDP protocol for transmission between 
the qualitative simulation engine and the visualisation engine, [4,5,6]. Figure 1 shows 
an overview of the system architecture. 

 

Fig. 1. System Architecture 

    The creation of the artificial creature includes the description of its anatomy and its 
physiology. The anatomical structure of the artificial creature is briefly outlined in 
Figure 2: Creature Physiology Overview. The visual contents have been produced 
using 3D modelling and animation packages such as 3D Studio Max™ and XSI™. 
These models as well as animations have been imported into the UT 2003 engine. 
These graphical representations can describe, using key-framed animation, the 
behaviours, and actions for the virtual creature. In our scenario, these animations 
represent movements of internal organs, changes in shape of the creature, as well as 
locomotion and since the simulation is controlled using QP Events we retain the 
interactive nature of the simulation.  
    We have described several physiological processes for the artificial virtual 
creature, dealing with elementary physiological functions such as nutrition,  
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Fig. 2. Creature Overview 

locomotion, and certain homeostatic processes such as thermal regulation. An 
essential aspect is that these are defined altogether as an integrated system, which 
can further be refined through experimentation, as the process description is highly 
modular and processes only connect through characteristic physiological variables 
(e.g., concentration in nutrients, temperature in certain organs, etc.). Defining the 
creature using this level of description is largely a functionalist approach [3], 
although a top-down, non-emergent one.  

3 Implementation 

As we previously introduced the Qualitative Simulation Engine utilises an artificial 
intelligence technique called qualitative process theory (QPT). Originally, this theory 
was developed for modelling complex mechanical and physical systems by 
abstracting physical descriptions of the phenomena [8].  
    The complete qualitative description requires us to use a method called 
envisionment by which we encapsulate the properties of the system and the relations 
between them. The qualitative description of the dynamics of the variables is 
described by a qualitative equation called influence equations. An example of this 
would be the influence equation for an osmotic system.   

I+ (Amount–of Solute (Destination), A(OsmoticRate)) 
I- (Amount–of Solute (Source), A(OsmoticRate)) 

    Here I+ represents the positive influence, and I- the negative influence, of the first 
value upon the second. We would in this case say the amount of solute in the 
destination is directly affected by the amount OsmoticRate. These equations 
constitute a declarative formalisation of the causal relations between qualitative 
variables. During the activation of the QP they determine the evolution of qualitative 
variables. The propagation of the effects of these equations creates an overall pattern 
of parameter changes. For instance, homeostasis within the creature is maintained by 
parameters, which regulate the rate at which the influences (Processes) act. An 
example of this is the increase in the metabolic rate to combat heat loss into the 
environment when the temperature of the creature is too low.    
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3.1   Physiology Implementation 

The definition of the creature's physiology is based on a mapping between its organs 
and their physiological functions. In other words, the first step consists in designing 
the creature's anatomy with high-level physiological functions for each organ (e.g. 
heat conduit, or propulsion sac). In a second step, the detailed mechanisms behind 
these functions are described through the physical processes that constitute them. 
These functions are described though the processes and through qualitative states 
that are contained within Individual Views. Individual Views are a series of 
qualitative equations that are mutually exclusive and are used to calculate the 
qualitative state, the indirect influences and generate the effects that control the 
organ representation.  
    Using this method, we have composed the creature from a number of qualitatively 
modelled organs each of which has a number of Processes and Individual Views. The 
organ processes operate primarily upon the vital fluid that they contain and the 
physiology operates to create homeostasis within the properties of this fluid. A brief 
overview of the organs functions is shown in Figure 2: Creature Overview. 
    Of particular impact upon the creature’s homeostasis are the Nutrient organ and 
the Ingestive organ. These organs have, respectively an osmosis and metabolic 
process, which replenish and deplete the vital fluid of nutrients. Therefore, the 
contention between the operations of these processes is regulated by the creature to 
try to meet homeostasis. This is achieved by affecting the rate of vital fluid transfer 
between the organs, which is influenced by the Pump-Rate of the creature. The 
processes for the chemical (nutrient) homeostasis are combined with a thermal 
regulation system which completes the physiological systems for the creature. This 
thermal regulation allows the creature to combat the effects of heat-loss to the 
environment. The main detriment to the creatures’ temperature is the aforementioned 
heat loss. This is combated in part by the Metabolic process. The Metabolic process 
occurs within the nutrient sac and its effects (directs influences) are to remove 
Nutrient from the vital fluid in the organ and convert it into stored energy and heat. 
To achieve thermal equilibrium the creature may consume its store of energy to 
produce heat should its average temperature fall.   
    The description of an organs 'individual views' is used to encompass all the 
behaviour states for the organ. Each organ contains a number of individual views 
representing states for behaviours such as saturated, compressed or failure states such 
as depleted energy. 

Our approach supports the data-driven propagation of behaviours throughout the 
various compartments of the creature's organ system. In Figure 3: Example 
Qualitative Description of a Propulsion Sac QPState and associated process, we see 
the qualitative definition of an organ state and an example of a process, which occurs 
within it. 
    This description of the object itself allows it to use its form to define its function. 
The processes within the propulsion sac are used to control the Sac when the creature 
is in its locomotion QPState. For instance, the propulsion sac filling / contracting 
processes open and close the valves, which control the filling and ejection of the 
propulsion sac.  
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Fig. 3. Example Qualitative Description of a Propulsion Sac QPState and associated process 

3.2   "Ecosystem" Implementation 

In this Section, we explore the implementation of the ecosystem using qualitative 
formalisations for both the world physics and the creatures’ physiology. Conceptually 
we have formed three levels of description for the ecosystem, which we label 
environment, volume, and element. These correspond to a hierarchical decomposition 
of the virtual space, each level being associated with different kinds of qualitative 
processes or variables. The highest level of the qualitative model for the environment 
is used to represent, in part, those behaviours that relate to the external world. For 
instance, one such interaction would be the heat dissipation from the environment 
volumes to an “external world” allowing a thermal equilibrium to be formed.  

The environment is composed of “path objects” which form the interconnections 
for the volumes, defining a topology for the environment allowing exchanges between 
volumes, such as the flow of heat or particles. These “path objects” have as part of 
their composition, references to individual volumes. A “Path object” by its parameters 
control which of the processes act upon the referenced volume and the degree to 
which they act. For instance, the properties of the path objects are used by the 
convection process. In this case path-distance (a spatial parameter set by spatial 
separation for the environment) and conductivity are both used to determine the 
transfer rate parameter for the process.  
    The volume is composed of elements, which are particle-based representations of a 
fluid element within the special volume. Hence, volume parameters refer to its 
“microscopic” constituency in terms of elements: concentration, temperature, 
viscosity, etc. The volume’s concentration is the key parameter used for the selection 
of its qualitative states. This parameter will be influenced, for instance, by convection 
currents within the environment. See Figure 4 for a description of the Convection 
process which occurs within a volume and the Description of the active state. The 
temperature of the volume and the viscosity of the volume increase as the 
concentration increases. The aggregation of volume properties (landmark values 
reached by the above volume’s parameters) support the definition of global states for 
the volume. For instance, when the temperature is high and the concentration is high, 
the volume passes a limit point formed by the combination of these parameters and is 
said to enter a “perturbed” state, upon which the localised disturbance acts.  
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Fig. 4. Qualitative Volume State Description and Process 

4   Results 

The integration of qualitative physiology into the simulation for the environment has 
given us a unique avenue of investigation that allows us to develop experiments in a 
virtual ecosystem. This implementation allows the simulation processes to be altered 
to determine the survivability of the creature as a function of its physiology. A 
number of processes are active between the creature and its environment when the 
creature is in the normal steady state producing the required homeostatic responses. 
We have implemented a first prototype of the system in which we have a basic set of 
physiological and environmental processes. In this section, we illustrate the system 
behaviour by describing some specific results from the simulation.  

4.1   The Locomotion Scenario  

The integrated approach to the simulation has allowed us to develop simulation 
effects for the environment as well as for the creature, which has allowed the 
triggering of different individual view states for the creature dependant upon the 
conditions that are prevalent in the environment. The major individual view states for 
the creature are used to control a locomotion system. When the locomotion is active 
the creature utilizes its own system for propulsion, in which the organ states change, 
and the creature expends its internal stored energy from its metabolic processes to 
power thrusts from the propulsion sac, which give it a hoping motion through the 
environment.  
    The normal operation for the creatures’ physiology involves the transfer of vital 
fluid around the creatures’ organs whose transfer rate is dependant upon the 
parameter “pump-rate”, which is a property of the circulatory pump organ. The 
nutrients are carried within the vital fluid and are replenished by the osmosis process, 
within the ingestive organ, and depleted by the metabolic process, within the nutrient 
sac. The rate of depletion in the metabolic process is given by the organs’ parameter  
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“conversion rate”. The metabolic process depletes the nutrients in the vital fluid and 
coverts them into heat and stored energy. 
    The locomotion QPState changes the relations between these parameters increasing 
the overall rate of the creatures’ physiology. For instance, the “pump-rate” parameter 
within the circulatory pump organ becomes dependant upon the creatures’ parameter 
“stored-energy” in away such that the parameter increases toward its maximum the 
further the amount of stored energy deviates from its maximum. The decrease in 
“stored energy” is due to consumption of the energy by the heating conduits process, 
which is activated by the new QPState and converts “stored energy” into heat.  
    The locomotion state changes the metabolic process, which is active in the nutrient 
sac, by increasing the conversion rate. Thus, the main effect of the new state is to 
activate the propulsion sac and the heat conduits processes and to alter the entities 
normal physiological system allowing the processes to occur faster. The heat conduits 
and the propulsion sac organs comprise the locomotive system for the creature and 
their processes heat fluid for expulsion/propulsion and manage the system of valves 
for the organ respectively. 
    During the Locomotion state, the flow of sea media due to the pumping operation 
of the intake/outlet organ (Figure 2: Creature Physiology Overview organ 4), that 
replenishes the nutrients within the shell of the creature from the environment, is  
used also as a channel for propulsive thrusts. The media within the creatures shell we 
label internal media. This internal media can be drawn into the Propulsion  
Sac organ (figure 2. organ 7) via a valve on the organ. This filling of the organ is 
controlled by the propulsion sac expansion process, which sends the effect 
QP_Effect_Fill_Propulsion_Sac to begin the manipulation of the propulsion 
organ. The Sac closes the valve when full and activates the Heat Conduits (Figure 2. 
organ 8) which in turn heat the sea media producing a pressure increase. 
    When the pressure inside the Propulsion Sac passes a value it triggers the pressure 
valve, an expansion valve whose state depends upon the pressure, on the sac. The 
change in valve state activates the propulsion sac contraction process and the sea 
media is expelled from the Sac into the shell. The organ enters a contracting state 
which stops the action of the Heat Conduits and as the valve has been released  
starts the empting of the organ via the Propulsion Sac Contraction Process.  
This process directly affects the size of the Sac which indirectly affects the volume  
of the sac. The decrease in the size also affects the amount of media in the  
organ. The effects of this stage are shown in Figure 5: Propulsion Sac Organ  
Pressure. The propulsion sac contraction process generates the QP Effect 
QP_Effect_Empty_Propulsion_Sac, to the graphical environment, which 
changes the representation for the propulsion organ to deflating. The shell responds to 
the sudden increase by expelling fluid into the environment via an expulsion using the 
intake outlet organ creating a propulsive thrust. This expulsion process generates the 
start_thrust which visualises the thrust within the environment by a particle 
effect whose rate depends upon the rate of fluid flow. Figure 5: Propulsion Organ 
Pressure depicts these changes in the creature with a plot of the pressure within the 
organ.    
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Fig. 5. Propulsion Organ Pressure 

4.2   Environment Localised Perturbation Scenario 

The environment is composed of an imaginary media whose properties are devised to 
react to give thermo-mechanical effects. The vortex is a product of this effect and is 
created by a combination of effects upon a volume.  
    A volume can either have nutrients, be depleted of nutrients or have an 
environmental effect active. These concepts correspond to the QPStates inactive, 
active and perturbed for a volume. A nutrient depleted volume (inactive) has no QP 
Effects as it has no graphical effects present and minimal process activity between its 
elements. 
    A nutrient rich volume (active) contains a high concentration of nutrients and thus 
we have chosen to represent an attractive volume within the environment with a 
distinctive effect.  This is achieved by generating the QP Effect Start_Nutrition 
when the volume enters this QPState. This effect relates the parameter 
“concentration” within the volume to the lifetime of the particle within the 3D 
environment. This creates the effect of a denser cloud of particles for higher values of 
concentration. Also within this QPState as the value evolves through the effects of 
convection processes an Update_Nutrition QP Effect is generated for appreciable 
changes (~10% Saturation value). Figure 6: Environmental Processes (a). The active 
state allows the convection process to occur which is visualized by the sprite emitters 
that represent moving media Figure 6: Environmental Processes (b). Starting the 
process sends the QP Effect Start_Convection_Process to the 3D 
environment. This effect starts the convection sprite emitter at its maximum rate, as 
the process starts at its maximum and works to achieve equilibrium between the two 
volumes and the “path object” associated with the convection process provides the 
direction for the flow.  

The media of the environment has been designed to respond to the presence of high 
concentrations of nutrient and heat; this response takes the form of a localized 
perturbation within the volume. When these conditions are met the properties at 
different points within the volume are evaluated and a pressure gradient between the 
bottom and top of the volume and the opposing sides of the volume is created.  When  
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Fig. 6. Environmental Processes 

a volume enters into a perturbed state it generates the Start_Vortex QP Effect that 
stops the current animation within the volume and allows the vortex process to begin 
which acts to restore the balance between the elements within the volume. This 
process calculates the rotation direction and rate using the properties of the volumes 
elements and the 3D environment uses this data to generate a vortex object Figure 6: 
Environmental Processes (c). 

This leads to scenarios in which the creature can find patches of high nutrient 
concentration but by its presence cause instability in the volume, creating a vortex 
that drives the creature, either by its effect or by locomotion (if the creature has stored 
energy) from the volume. 

5   Conclusion 

This unique approach to integration of a creature’s physiology and environment 
immerses the user within the 3D environment, modelled in real-time and provides a 
platform to approach new experimentations within artificial life. The system itself 
provides a successful attempt at real-time simulation of artificial life, which includes 
an imaginary physiology that interacts with the environment. The framework allows 
for the construction of homeostatic systems within the artificial creature that responds 
to influences from the environment. The environment itself provides the elements for 
basic creature behaviour such as a chemotactic response. Future work in this area will 
include the expansion of the creatures’ perception of the environment, interaction 
between creatures and we are currently working upon linking the symbolic 
description of qualitative processes to evolutionary programming principles. For the 
environment future work will include expansion of the states of the volume to allow 
for different “cloud formations” for the nutrients dependent upon the parameters of 
the volumes elements instead of the single particle emitter which we are using.  
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Abstract. The transition from unicellular to multicellular organisms is
one of the mysteries of evolutionary biology. Individual cells must give
up their rights to reproduction and reproduce instead as part of a whole.
I review and model the macrocyst stage in slime mould (Dictyostelium)
evolution to investigate why an organism might have something to gain
from joining a collective reproduction strategy. The macrocyst is a repro-
ductive cartel where individual cells aggregate and form a large zygotic
cell which then eats the other aggregating cells. The offspring all have
the same genetic code. The model is a steady state genetic algorithm
at an individual cellular level. An individual’s genetic code determines
a threshold above which it will reproduce and a threshold below which
it will join a macrocyst. I find that cycles in food availability can play
an important role in an organism’s likelihood of joining the macrocyst.
The results also demonstrate how the macrocyst may be an important
precursor to other cooperative behaviours.

1 Introduction

The quest to synthesise hierarchical levels of organisation in artificial life is a
significant open problem [3,23]. To provide a deeper understanding into how we
may be able to use evolutionary algorithms to generate and optimise hierarchi-
cal behaviour, we can study the major transitions in evolution [16]. This work
focuses on the transition to multicellularity which appears to be one of the most
difficult ‘bridges’ evolution has had to cross. It is unclear whether the transition
only occurred once, or several times [4]. Phylogenetic evidence [2] suggests that
multicellular organisms, especially metazoa, share a common ancestor. Further-
more, fossil evidence [16] indicates that multicellular life did not exist for 2,500
million years until the Cambrian period (approximately 540 million years ago)
where all the multicellular phyla are represented.

Multicellular organisms essentially consist of clusters of individual cells with
all cells expressing the same genotype. They therefore require gene-regulatory
mechanisms for differentiating cells (with differentiations being passed from par-
ent cell to offspring), cell adhesion and spatial patterning of cells [16]. One par-
ticularly crucial cell differentiation stands out: The organism must separate its
reproductive (germ-line) cells from its body (soma) cells [7].
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The requirement for isolation of the germ line from the soma was first argued
to be necessary by August Weismann [7]. To identify why, we can distinguish
the two types of reproduction that are present in metazoan multicellular life
and look at the conflicts that arise between them. Firstly, intra-organism repro-
duction happens when cells replicate within the super-organism, for the good
of the super-organism. Conflicts can occur with cells reproducing on their own
behalf [17]: mutant cells can disrupt and compete with the super-organism. By
generating a whole organism from one initial germ-line cell, it is clear that the
vast majority of selfish mutations that disrupt super-organism-level processes
will only survive one generation [7]. Therefore, secondly, to solve this problem
super-organism reproduction involves the replication of the complete organism
through the selection of a germ line cell to reproduce on behalf of the super-
organism. However, there is still a conflict over which cell is to be the germ
line since selfish mutations that disrupt the super-organism reproductive pro-
cess will be passed onto the next generation. A stable, policed, germ-line/soma
differentiation mechanism must have evolved at some point.

It is unclear where in the evolution of a multicellular lineage, stable, well po-
liced, germ-line/soma differentiation and germ line isolation should occur. How-
ever, given the above problems faced with intra-organism conflicts[17], it seems
likely that the germ-line/soma differentiation evolved early [7]. Thus, we con-
sider evolutionary mechanisms that will explain a transition between unicellular
organisms, which compete within their populations and compete with predators
and prey, and early multicellular organisms which are clustered together and
exhibit germ-line/soma differentiation. In other words, there is a transition from
unicellular organisms which are optimised to maximise their own direct fitness
to cells that must, on the other hand, maximise their inclusive fitness at the ex-
pense of their direct fitness (i.e., their ability to contribute their fitness to other
cells that are highly related must be more important than their own replication
chances). (See [10] for precise definitions of direct and inclusive fitness.)

Whether the evolutionary transition described above, of organisms clustering
and differentiating a germ line, happened in one stage is unclear. Wolpert has
presented a model where individual cells may split to produce a somatic body
cell that sticks to its parent and is unable to reproduce [27]. What the benefits,
through inclusive fitness, are to individual cells and their lineages from doing
this is unclear. There is a debate on this subject with some arguing that size
is an important reason for multicellularity [4] with undifferentiated population
clustering, as modelled in [19] without a germ-line/soma differentiation, being an
important first step. Others point out that local competition over food will negate
the value of cooperation through relatedness [21,26,15]. For this reason Di Paolo
warns against relatedness being used as an explanation for cooperative behaviour
[9]. There therefore appears to be something of a paradox if we attempt to try to
understand the transition to multicellularity with such models of clustering cells.
Individuals that cluster compete with each other and may negate the benefits of
cooperation through relatedness, yet both clustering and cooperation are needed
for the transition to early multicellularity.
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A different perspective considers multicellularity through aggregation [16].
Here cells either vegetate and reproduce individually, or aggregate to reproduce
collectively. This presents a sort of half way house between the individual and
early multicellular behaviour identified above. Dictyostelium (more commonly
known as slime mould) is a model organism for multicellularity through aggre-
gation [16,20]. Individual cells can either vegetate and reproduce asexually on
their own, or under different environmental conditions they also demonstrate
collective reproduction behaviour, characterised by individual cells making sac-
rifices for the benefit of other cells’ reproductive chances. This organism therefore
demonstrates both the germ-line/soma differentiation [6] and clustering that is
important for the transition. Biological evidence is now presented concerning
Dictyostelium discoideum, one of the more studied species of the genus.

When there is a shortage of food and D. discoideum cells begin to starve,
they aggregate and one of the two collective reproductive stages commences [22].
The more well known reproductive stage of D. discoideum sees the cells form a
slug which collectively migrates. Once the cells find an advantageous location
they form a fruiting body: cells at the front of the slug (20%) form a stalk and
the rest form spore cells at the top of the stalk which are dispersed by the
wind. Interestingly, the stalk cells die after the stalk is built. This differentiation
between spore and stalk cells is arguably a germ-line/soma distinction [6]. Since
cells that produce stalks do not pass on their genetic code, it is hard to see
how this trait is selected for and maintained. Indeed there are examples of slime
moulds strains that do not produce stalks [6]. Computer simulations addressing
this question [1] have indicated that high dispersal of spores can lead to more
stability in the stalk producing behaviour.

The second, less well known, collective reproduction stage in D. discoideum
involves the formation of the macrocyst [22]. Again, when the cells are starving
they aggregate. However instead of forming a slug, two cells merge to form a large
Zygote cell which eats other aggregating cells. The resulting giant cell forms a
hard cellulose outer wall and this macrocyst germinates after a few weeks. See
Fig. 1 for a diagram.

The macrocyst stage is thought to be a precursor to the slug/stalk repro-
ductive stage. Kessin [13] argues that evolution generally occurs in incremental
stages. He notes that the previous stage to macrocyst development would be the
microcyst stage (not observed in D. discoideum), where individuals form outer
walls on their own. After the evolution of chemotaxis, aggregation could occur
and the macrocyst evolved. With added cell adhesion and cell type differentia-
tion into stalks and spores, fruiting body and slug behaviour would then become
plausible.

The genetic makeup of the offspring of the macrocyst is an important ques-
tion. The macrocyst is generally accepted to be the sexual phase of D. dis-
coideum’s development [22]. However experiments do demonstrate that Macro-
cysts can form from only one mating type [5]. The progeny of one macrocyst is
observed to be of one genotype [25]. Only one nucleus remains in the zygote (or
giant cell) after other ingested nuclei disappear [18].
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Fig. 1. The sexual and mitotic life cycles of Dictyostelium (based on [22])

From Fig. 1 it is clear that differentiation in D. discoideum cells occurs when
it starts to aggregate. Recent evidence implies that the cell may have genetic
control over this event. Research [8,11] suggests genes that can control or delay
when or whether a cell will continue to grow or start aggregation. These findings
indicate that the cell is capable of turning on or off aggregation to the macrocyst
stage which can ultimately lead to cells being eaten by the zygote. This empha-
sises a need for an explanation as to why an individual might make the ‘choice’
to aggregate and almost certainly die.

I have produced a model of the D. discoideum macrocyst stage for several
reasons: (i) to confirm that individuals that normally reproduce on their own
are indeed prepared to gamble their own reproductive chances against the ‘pot’
of reproductive material contained in the macrocyst; (ii) to confirm my intu-
ition that fluctuations in food availability are important to the viability of the
macrocyst; (iii) to question the role individual mitotic split rates might play in
the stability of the macrocyst; and (iv) to speculate on the role the macrocyst
might play in the evolution of other altruistic behaviour (such as stalk/spore
differentiation) and collective behaviour.

2 Methods

To investigate the questions in Section 1 I have built a computer simulation
model of the macrocyst stage of D. discoideum. Assumptions in the model are
based on the biological evidence presented. Notably I have assumed that all the
offspring of a macrocyst are of the same genotype. Since sexual fusion does not
seem to be necessary, I chose (on parsimonious as well as biological grounds)
to model the macrocyst with no sexual recombination. Individual vegetative
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behaviour was modelled with individuals having a genetically encoded energy
threshold above which they mitotically reproduce.

D. discoideum cells are modelled as individuals in a non-spatial environment.
At each time step, a number of individuals (N) are selected at random, each
receives a 0.5 units of energy (representing food) with probability p. One cycle
in the model contains two seasons. The amount and probability of food (N and
p) changes value according to whether the season is ‘high’ (N = 100, p = 0.6)
or ‘low’ (N = 20, p = 0.3). Each season lasts 200 turns. All individuals pay a
daily energy cost (Ec = 1.0) irrespective of season. If an individual’s energy falls
below zero (x < 0), it will die.

Each individual cell is modelled with two genes1 The genes model energy
thresholds which determine the behaviour of the cell. Cells will join the macro-
cyst when their energy level is below the first gene, the macrocyst join threshold
(−2.0 < Gjoin < 2.0). When a cell’s energy level is above the second gene, the
split threshold (5.0 < Gsplit < 20.0), the cell will pay an energy cost to split
mitotically (see Fig. 1) and produce a new cell (sharing energy equally between
itself and its offspring).

There is only one macrocyst in the model it is assumed to be immobile and
therefore does not receive food from the environment. When cells join it, they
contribute their own energy (x) plus a residual energy amount (equal to the cost
of splitting) to the macrocyst’s ‘pot’ (X). Before closing the macrocyst pays a
cost Em per individual joined every turn to reflect metabolisation and building
of cellulose. If the macrocyst energy falls below zero (X < 0) then it (and all
its joining cells) will die. When the macrocyst reaches a predetermined energy
threshold (30.0), it closes and no other cells may join.

The macrocyst will germinate on the first turn of the high season. When it
germinates, the energy is divided up into new cells with each cell receiving 2.5
energy units. All new cells will have the same genotype: a complete genotype
(no recombination) is picked at random from all the cells that originally joined
the macrocyst.

Simulations were run over 100,000 turns. Each simulation started with 100
individuals, each individual having a random genotype and a random energy
between 0.0 and 5.0.

3 Results

To understand how the harshness of the low season can effect the viability of the
macrocyst, simulations were run varying the probability of food in the low season.
Interesting population dynamics, with macrocyst offspring out-competing the
non-joining population, were observed and these are presented in this section.

The average percentage of individuals which germinated from the macrocyst
is plotted against the probability of food in the low season in Fig. 2. When
1 Genes are represented as floating-point numbers in the simulation, point mutations

occur at each time step over a gaussian distribution with standard deviation of 1%
of the gene space.
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Fig. 2. Graph showing the percentage of individuals which germinated from a macro-
cyst at the start of the high season against the probability of food in the low season.
Each data point (ten data points, each generated with different random seeds, per
food-probability value) represents an average over a complete simulation run.

the probability of receiving energy is higher, few individuals (≈ 20%) join the
macrocyst. When there is a lower probability of food, more individuals join the
macrocyst. However the rogue data points at the bottom left of the graph are
of interest.

To investigate this disparity with some populations producing macrocysts
and others not, the probability of food and seed value were selected from one of
the rogue data points. The simulation was run over a longer (150,000) number of
turns. A histogram was generated for the macrocyst join threshold at the start
of each high season and the results are shown as a 3D mesh in Fig. 3A.

In the figure, the presence of macrocysts can be seen as spikes on the right
hand side. An early tendency towards macrocyst joining is evident (far right
of graph) but these genotypes die out after ≈ 25 cycles. A population which
does not produce germinating macrocysts immediately flourishes. After ≈ 150
more cycles there are enough individuals to successfully produce a germinating
macrocyst which survives to the end of the low season. Interestingly once this
has happened the macrocyst very quickly wipes out the non joiners from the
population. The offspring from the macrocyst must have some sort of competitive
advantage over the non-joining population.

A closer look at Fig. 3A indicates that when there are not enough individuals
joining the macrocysts to make them germinate, there is only a small tendency
toward individuals that will not join the macrocyst when their energy is very
low. Between cycle 25 and cycle 175, the histogram shows a larger proportion of
individuals having a join threshold below zero, however some still remain with a
threshold above zero. There is clearly little selection pressure against individuals
sacrificing small amounts of energy when near to death.

A second 3D histogram was generated for the split thresholds of the pop-
ulation at the start of the high season and can be seen in Fig. 3B. There is a
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Fig. 3. 3D histograms of macrocyst join thresholds (A) and individual split thresholds
(B) of the population at the start of each high season

clear disparity of the split thresholds between the macrocyst joining population
and the non joiners. Again, in the first few cycles of the simulation (where the
macrocyst joiners were predominant in Fig. 3A), the population has a low split
threshold – individuals will split as quickly as possible. After ≈ 25 cycles the
macrocysts die out. There is now a clear tendency for dominance in the popu-
lation for individuals that split more slowly. Once the macrocysts return (after
≈ 160 cycles), the split thresholds of the population immediately return to lower
values (< 7).

Simulations run with all individuals having the same, fixed, split threshold
resulted in either the individuals all dieing, through starvation in the low season,
or a small percentage joining the macrocyst when food is more plentiful (data
not shown). The competitive advantage of the macrocyst joining population was
no longer effective and macrocysts were only formed through enough individuals
sacrificing their energy in a similar way to the non-joining population in Fig.
3A.

Other simulations have been run with variable split thresholds and the low
season completely removed to see if parameters exist where a macrocyst can
form and dominate the rest of the population. Simulations were run with vary-
ing parameters of N and p, both seasons having the same values. While some
macrocyst production was observed it was only at the beginning of simulations
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where the random starting population allowed for enough individuals that joined
the macrocyst and made it viable for a few cycles (data not shown).

4 Discussion

In Section 1 I have argued of the need for a model that demonstrates the transi-
tion between individual cells that ordinarily reproduce on their own to cells that
become part of a super-organism, with only one genotype of the participating
cells being passed on to future generations. For the macrocyst model to success-
fully meet the requirements of this transition, it requires that all individual cells
must be able to reproduce on their own. It also requires that individual cells
must be clustered and that only one of the individual cells reproduces on behalf
of the cluster. The model presented meets these requirements. Simulated cells
that have the freedom to evolve a strategy in which they will not join macrocyst
organisations (where their genes are highly likely to be destroyed) do not evolve
this strategy under fluctuating environmental conditions.

The model does however stop short of demonstrating the type of germ-
line/soma differentiation and clustering apparent in the metazoa where there
is differentiation of the germ line early in development [17] and permanent clus-
tering (as in other models, e.g., [27,19]). The macrocyst’s germ-line cell is the
zygote which is not differentiated from any other cells in the super-organism.
Also, the macrocyst cells are only clustered at one point of the life cycle. How-
ever, the fact that the macrocyst’s offspring are of only one genotype and
that they out-compete individuals that do not join the macrocyst is of some
significance.

The fact that the macrocyst produces offspring of a single genotype is im-
portant in three ways. Firstly it has the effect of producing several homogenous
offspring which are all ‘preprogrammed’ to join the macrocyst at the start of the
next low season. These offspring have a competitive advantage over individuals
that do not join the macrocyst. The macrocyst therefore contributes to its future
success. Since microbes can evolve many ‘policing’ mechanisms [24], it is not in-
conceivable that after several generations, the macrocyst way well have become
established in the organism without the need for a harsh low season each cycle.

Secondly, the high relatedness of the offspring can be seen to promote other
social behaviours. Relatedness is crucial for any traits that require many co-
ordinated individuals or altruism to be successful. The aclonal nature of the
macrocyst offspring means that it is highly likely that the next aggregation
event will also be aclonal or at least highly related. If these individuals have
the same mutation which means (perhaps under certain environmental condi-
tions) they no longer fuse to form a zygote then other interesting collective
behaviour may occur instead. These behaviours could include, but are not lim-
ited to, the slug behaviour of D. discoideum which requires many coordinated
individuals [14], and the stalk behaviour of D. discoideum which requires altru-
ism from many cells [1]. The macrocyst has been argued to be a precursor of
these behaviours [13]. The combination of the macrocyst model with one of the
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stalk/spore behaviour (based on [1]) will hopefully confirm how important the
population homogenisation effects of the macrocyst were for the evolution and
maintenance of stalk/spore behaviour in D. discoideum.

The homogeneous macrocyst offspring are important in a third way: By pick-
ing the genotype of its offpsring from one individual at random, the macro-
cyst stage eradicates the potential for cheating: If an individual were to evolve
a ‘cheating’ trait so that its genes were most likely to be picked, the next
population would all have that same trait - with no individual having any
advantage.

To consider how split thresholds are important I analyse a complete cycle.
In one cycle of the model presented here there are four phases for non macro-
cyst joining amoebae: (i) Early high season exponential growth; (ii) Population
equilibrium at high season; (iii) Early low season exponential decimation of the
population; (iv) Population equilibrium at low season. While it is easy to see that
fast (low threshold) splitting amoebae would flourish during phase (i), these same
amoebae will be closer to dying during phase (iii). The results suggest that a slow
(high threshold) splitting strategy is more profitable, not only in phase (iii) but
in phase (iv) as well. In phase (iv) individuals receive food with a low probability,
those with a fast (low) split threshold are less adapted to survive fluctuations
in food availability. The macrocyst allows individuals to avoid phases (iii) and
(iv) and hence fast splitting individuals that germinate from it at the start of
the high season are very well adapted to phase (i). This ability to perform well
during circumstances of diminishing populations has already been observed as
an important feature of early multicellular organisms [12].

While I have attempted to be faithful to biological evidence, the model pre-
sented here has made some assumptions and has some limitations. Further anal-
ysis and research is required into the biological plausibility of the split thresholds
in the model. The question as to what might happen if individuals have a sea-
sonally varying split threshold is also important. The model is undimensional
and therefore lacks spatial effects (though the way the organisms are fed is set
up to mimic a spatial environment): a spatial model would allow us to analyse
what might happen if individuals could effect their chances of being the chosen
genotype. The mutation rate in the model is unnaturally fast, however slower
mutation rates provided similar results over longer periods. Finally there is only
one macrocyst in the current model, future simulations will model more than
one macrocyst.

The model and results presented in this paper demonstrate that, given the
assumptions outlined, the D. discoideum macrocyst stage is plausible under the
large fluctuations in food in the model. The results and analysis lead me to
hypothesise that the model of the macrocyst presented in this paper, where
individuals gamble their genes to become the germ line of a super-organism,
may well have been a crucial stage in the transition to multicellularity. It must
be noted that it is only a stage in the evolution of D. discoideum and may
be relevant only to this organism. However, the facts that the slug behaviour
of D. discoideum is reminiscent of other metazoa and that their phylogeny
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implies a common ancestor imply that slime mould may give some impor-
tant clues into the evolution of the metazoa and perhaps other multicellular
organisms.

Acknowledgements. Thanks to Jason Noble and Richard Watson.
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Abstract. Inspired by the emergent behaviors of ant colonies, we present a 
novel ant algorithm to tackle unsupervised data clustering problem. This algo-
rithm integrates swarm intelligence and cellular automata, making the cluster-
ing procedure simple and fast. It also avoid ants’ longtime idle moving, and 
show good separation of data classes in clustering visualization. We have ap-
plied the algorithm on the standard ant clustering benchmark and we get better 
results compared with the LF algorithm. Moreover, the experimental results on 
real world applications report that the algorithm is significantly more efficient 
than the previous approaches. 

1   Introduction 

Clustering is a very important problem in data mining. It classifies a mass of data, 
without any prior knowledge, to clusters which are clear in space partition outside and 
highly similar inside. Although many classic algorithms like k-mean have been pro-
posed, still, they have their limitations. That is, in general, they need a great amount 
of prior-knowledge, e.g. the number of clusters or the initial data partition; however, 
the result is only local optimality can be achieved even with the partition principles. 

Clustering is also shown as emergent behaviors of some social insect colonies in 
nature. In fact, such amazing complex behaviors have always been the focus of scien-
tists, especially the ant colony. The ant colony can cluster through interaction and 
cooperation, and we call the clustering algorithm inspired by the ant behavior ‘Ant 
Clustering Algorithm’. 

Cellular Automata (CA), which was first presented by J.von Neumann [1], can be 
used in the research on information theory and algorithms. In CA, the concept of 
artificial ants was firstly proposed to represent cells. And recently, inspired by the 
swarm intelligence shown through the social insects’ self-organizing behavior,  
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researchers created a new type of artificial ants to imitate the ants’ behaviors in na-
ture, and named it artificial ant colony system, another form of artificial life. Social 
insects have highly swarm intelligence [2], [3], such as reproducing, foraging, nest 
building, brood sorting and territory defending. Inspired by that, people have designed 
a series of algorithms that have been successfully applied to the areas of function 
optimization [3], combinational optimization [2], [4], network routing [5], robotics [6] 
and other scientific fields. Some researchers have achieved promising results in data 
mining by using the artificial ant colony. Deneubourg et al [7], [8] first proposed a 
Basic Model (BM) to explain the ants’ behavior of piling corpses. Based on BM algo-
rithm, Lumer and Faieta [9] presented a formula to measure the similarity between 
two data objects and designed the LF Algorithm for data clustering. BM and LF have 
become well-known models that have been extensively used in different applications. 
Kuntz et al [10] improved the LF algorithm and successfully applied it to graph parti-
tioning and other related problems. Ramos et al [11] and Handl et al [12] recently 
applied the LF algorithm to text clustering and reported promising results. 

However both BM and LF models separate ants from the to-be-clustered data ob-
jects and use much more parameters and information, resulting in the increase of the 
amount of the memory space and the data arrays to be processed. Moreover, since the 
clustered data objects cannot move automatically and directly, the data movements 
have to be implemented through the ants’ movements. Considered that the ants would 
make idle movement when carrying no data object. it will inevitably lead to a large 
amount of extra information storage and computation burden. When the ant carrys an 
isolated data object, it may never find a proper location to drop it, and make an long-
time idle moving. That will consume a large amount of computation time. If we are to 
form a high-quality clustering, the time cost is much higher. 

According to Abraham Harold Maslow’s hierarchy of needs theory [15], the secu-
rity desire becomes more important for human beings when their primary physical 
needs are satisfied. By the same token, we notice that for such weak creatures as ants, 
they will naturally gather in groups with those who have similar features and repel 
those different. Even among a single group, there are separate nests, of which intimate 
ants build nests next to each other while strangers build nests far apart. We borrowed 
the principle of Cellular Automata in artificial life and proposed an Ants Sleeping 
Model (ASM) to explain the ants’ behavior of searching for secure habitat. Based on 
ASM, we present an artificial ant algorithm of clustering (A4C) in which each artifi-
cial ant is an intelligent agent representing an individual data object. We define a 
fitness function to measure the ants’ similarity with their neighbors. Since each indi-
vidual ant uses only a little local information to decide whether to activate or sleep, 
the whole group dynamically self-organizes into distinctive, independent subgroups 
which are highly similar inside.  

The rest of the paper is organized as follows. Although the primer idea of ASM is 
firstly introduced in our paper [13] and [14], for the integrity of this article, section 2 
presents ants sleeping model and its formal definition. Section 3 describes the imple-
ment of ant clustering algorithm based on ASM. Experimental results are shown in 
section 4 and section 5 concludes the paper. 
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2   Ants Sleeping Model 

In the nature, ants tend to group with those that have similar features. Even within an 
ant group, they run to inhabit with familiar fellows as neighborhood. To satisfy  their 
need for security, the ants are constantly choosing more comfortable and securer envi-
ronment to sleep. Inspired by their behavior, we extend the classical CA model by 
combining it with the swarm intelligence, and present Ants Sleeping Model (ASM) 
for clustering problem in data mining.  

ASM can be denoted by a 5-tuple ASM = (G, Q, N, , D). Here G represents a two-
dimensional grid in which each position is a cell. Let G = [0..w(n)-1]×[0..h(n)-1] 
represent the cellular space, a 2-dimensional array of all position (x, y), where 
x [0..w(n)-1], y [0..h(n)-1], n Z+, h(n) Z+, w(n) Z+, w(n) and h(n) are func-
tions related to n, the number of agent. We set  

)1(2)(),1(2)( +=+= nnhnnw                                (2.1) 

Each position on the grid is represented by a two-dimensional coordinate (x, y), and 
G(x, y) Q represents the information at the position (x, y).  

Q represents the set of cells’ limited states. Let an agent represent one data object, 
and agenti represent the ith agent. N(agenti) is agenti’s neighborhood, and N(xi, yi) = 
N(agenti). We set 

{ }yixii syysxxnhynwxagentN ≤−≤−= ,))(mod),(mod()(        (2.2) 
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where sx Z+, sy Z+. sx and sy are the vision limits of agenti in the horizontal and 
vertical direction. N(agenti) is used to denote the bound of N(agenti). In ASM, each 
agent represents one data object. This pattern is closer to the clustering behavior in 
nature, because the agents (ants) behave just like birds of a feather flock together, 
rather than categorizing data objects in BM and LF.  

We define  as a set of the clustering rules which update the classes information of 
the agents. ,iagent G∀ ∈ | ( )|( ) : iN agent

iagent Q Qδ . The next state of agenti is determined 

by  through the interaction of agenti with its  neighbouring cells.  is also related to 
agent’s activating probability pa. The following rules must be included in : 

 If agenti is sleeping, its class label is the same as most of its neighbors’. 
 If agenti is active, its class label is the same as its label. 

D = (dij)n×n represents the dissimilarity matrix among agents. Let datai = (z1, z2, …, 
zk) Rk, k Z+, we define     

pjijijiij datadatadatadatadagentagentdd −=== ),(),(               (2.4) 

nnjinnij agentagentddD ×× == )),(()(                                (2.5) 
    Because each agent represents one data object, d(agenti, agentj) is determined by 
the distance between the data objects represented by agenti and agentj. Normally, we 
take Euclidean distance where p = 2. 

We use f(agenti) to represent the current fitness of agenti, in another word, how 
well does agenti fit into its current living environment. 
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Here i represents the average distance between agenti and other agents, and is used to 
determine the threshold value of its dissimilarity to other agents to leave them. Obvi-
ously, f(agenti) [0,1]. Sometimes, we can use a constant  to substitute i, namely 
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We use function pa(agenti) to denote the probability for agenti to be activated by 
the surrounding environment. We define 

λλ

λ

β
β

)(
)(

i
ia agentf

agentp
+

=                                     (2.10) 

Here R+ is the fitness threshold of agenti’ activation. Parameter R+ is the acti-
vating pressure of the agents, normally we take  = 2. 

3   Implement of Ant Clustering Algorithm 

In the initial stage of the algorithm, the agents are randomly scattered on the grid, no 
more than one agent per position. All of them are in active state, randomly moving 
around on the grid following the moving strategy. Here, the simplest moving strategy 
is to freely choose one unoccupied position in the neighborhood as the next destina-
tion. When an agent moves to a new position, it will recalculate its current fitness f 
and activating probability pa so as to decide whether it should continue moving or 
sleep. If the current pa is small, the agent has a lower probability of continuing mov-
ing and tends to take a rest at its current position. Otherwise the agent tends to keep in 
active state and continue moving. Here, the agent’s fitness is related to its heterogene-
ity with its neighboring agents. When they are different from him, he  feels insecure, 
and leaves his current position and searches for a more homogeneous  position. When 
he finds it, the agent would stop moving then take a rest. During this  course, the 
agents influence each other’s fitness, but only limited to their neighboring agents. 
With increasing number of iterations, the agents with more homogeneity  gather 
closer and those with more heterogeneity separate afar. Eventually, similar agents are 
gathered within a small area and have identical class label while different types of 
agents are located in separated areas and have different class labels. The framework of 
the algorithm is as follows. 
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Table 1. High-level description of A4C (adaptive artificial ant clustering algorithm) 

 
Algorithm  A4C 
Input   : the data object data[1 : n] 
Output : the information of data clustering 

01.    data preprocessing 
02.    initialize grid and key parameters  
03.    while  (not termination)  do 
04.        for  i  1  to  n  do 
05.            . ( )iagent calculateActiveProbability  

06.            ))1,0([randomr ←  

07.            if  )( ia agentpr ≤  then 

08.                . ( )iagent move  

09.            else 
10.               . ( )iagent sleep     // do nothing 

11.           end if 
12.           . ( )iagent update  

13.       end for 
14.       update key parameters adaptively 
15.    end while 
16.    for  i  1  to  n  do 
17.        output ( , . )ii agent getClusterID  

18.    end for 
19.    show grid G  as an image 

Some details of the algorithm are explained as follows. 

Procedure  initializeGrid 
01.    perm  randomPermutation([0..w(n)·h(n)-1])  
02.   for  i  1  to  w(n)·h(n)  do 
03.        ))(mod)(,)(/)((),( hwipermnhipermyx ←  

04.        if  i  n  do    // put down agenti at (x, y) 
05.              iyxG ←),(     

06.        else                // the location of (x, y) is empty 
07.              0),( ←yxG    

08.        end if  
09.   end for 

 

 



 Ant Clustering Embeded in Cellular Automata 567 

Procedure  calculateActiveProbability 
01.  ( , ) . ( )i i ix y agent getLocation←  
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Procedure  move 
01.    { }( ) ( mod ( ), mod ( )) ,i i i i x i yN agent x w n y h n x x s y y s∂ ← − = − =  

02.    { }( ) ( , ) ( , ) ( ), ( , ) 0i iL agent x y x y N agent G x y← ∈ =  

03.    if not ))(( iagentLisEmpty  then 

04.         ←),( yx )().( getElementagentL i
 

05.         ),(),( yxGyxG ii ↔  

06.         ),(. yxnsetLocatioagent i
 

07.    else 
08.         )().(),( getElementagentNyx i∂←  

09.         ),( yxGj ←  

10.         ),(),( yxGyxG ii ↔  

11.         . ( , )iagent setLocation x y  

12.         . ( , )j i iagent setLocation x y  

13.    end if 
14.    . ( )iagent setSleepState false  

 
Procedure  sleep 
01.    if  not )(.isSleepagent i

  then 

02.        . ( )iagent setSleepState true  

03.        )().( sterIDgetMostCluagentNIDnewCluster i←  

04.        )(. rIDmostClusteIDsetClusteragenti
 

05.    end if  
 

Procedure  update 
01.    ( ) ( ) ( )i i t t tt t t k f fαα α −Δ= − Δ − −  

02.    )(. oryupdateHistagent i
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    The value of  is adjusted adaptively during the process of clustering. We use 
tf  to 

denote the average fitness of the agents in the t-th iteration. To a certain extent, 
tf  

indicates the quality of the clustering. The value of  can be modified adaptively 
using formula (3.2), Here αk  is a constant. 
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1  (3.1) 

)()()( ttt ffkttt Δ−−−Δ−= ααα  (3.2) 

The active probability of each agent is computed using (2.10). In (2.10), we sug-
gest  [0.05,0.2] and normally  = 0.1. The parameter  is a pressure coefficient of 
pa(agent). Normally, there are two methods to determine the parameter  as follows: 

  is a constant. We suggest  = 2.  Adjust the value of  adaptively. Generally, 
the ants can form a rough clustering rudiment fast in the initial stage of clustering, 
while at the latter stage they require rather long time to improve the clustering be-
cause the precision needs to be raised. Therefore the activating pressure coefficient  
tends to change decreasingly on the whole. We adjust the value of  adaptively with 
the following function. 

t

t

f

k
t

t

maxlg2)( λλ +=                                          (3.3) 

The activated agenti first select an empty position from its neighbors L(agenti) as 
its next position and then moves there. To determine agenti’s next position, several 
methods can be used.  The random method. agenti selects a location from L(agenti) 
randomly.  The greedy method. Let a parameter [0,1] determine agenti’s prob-
ability to select the most suitable location from L(agenti) as its destination. We  
denote it as -greedy selecting method. This method can make full use of the local  
information. 

4   Experimental Results 

In this section, we not only compared our test results on the ant-based clustering data 
benchmark, which was introduced by Lumer and Faieta in [9], with that of LF algo-
rithm, but also show our test results on several real data sets. 

4.1   Ant-Based Clustering Data Benchmark 

First we test a data set composed of four data types, each of which consists of 200 
two-dimensional data (x, y) as shown in Figure 1.(a). Here x and y obey normal distri-
bution N(μ, 2). The normal distributions of the four types of data (x, y) are 
(N(0.2,0.12), N(0.2,0.12)), (N(0.2,0.12), N(0.8,0.12)), (N(0.8,0.12), N(0.2,0.12)),  and 
(N(0.8,0.12), N(0.8,0.12)) respectively. Agents that belong to different cluster are 
represented by different symbols: o, +, *, ×. 

We test the above benchmark using our algorithm A4C. In the test the parameters 
are set as: =0.1, sx=1, sy=1, =0.90, k =0.50 and k =1. The initialized value of  is 
0.5486. In each iteration, the value of  is updated adaptively by formula 
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(a)                                (b)                                    (c)                                 (d) 

Fig. 1. The process of clustering of A4C. (a) Data distribution in the attribute space; (b) Initial 
distribution of agents in the grid; (c) Agents’ distribution after 10000 iterations in the grid; (d) 
Agents’ distribution after 20000 iterations in the grid. 

)()50()( 50−−−−= tt ffktt ααα  and the agents select their destination using greedy method. 

Compared with the best results of the LF [9], our algorithm costs much less computa-
tion time (20000 iterations) than theirs (1000000 iterations). 

4.2   Real Data Sets Benchmarks 

We test LF and A4C with the real benchmarks of Iris and Glass. In the test, we con-
sider two types of A4C: one sets the parameters adaptively and we still denote it as 
A4C, the other uses constant parameters and we call it SA4C (special A4C). The clus-
tering results of A4C after 5000 iterations are mostly better than those of LF after 
1000000 iterations. We set the parameter tmax the maximum iterations of LF algorithm 
as 1000000, and those for A4C and SA4C as 5000. And we set the parameters 
 

Table 2.  Parameters and test results of LF, SA4C and A4C on Iris 

 LF SA4C A4C 
Maximum iterations tmax 1000000 5000 5000 

Numbers of trials 100 100 100 
Minimum errors 3 2 2 
Maximum errors 13 8 5 
Average errors 6.68 4.39 2.13 

Percentage of the errors 4.45% 2.94% 1.31% 
Average running time(s) 56.81 1.36 1.43 

Table 3.  Parameters and test results of LF, SA4C and A4C on Glass 

 LF SA4C A4C 
Maximum iterations tmax 1000000 5000 5000 

Numbers of trials 100 100 100 
Minimum errors 7 4 2 
Maximum errors 12 12 10 
Average errors 10.25 7.59 3.94 

Percentage of the errors 4.79% 3.55% 1.84% 
Average running time(s) 106.21 2.37 2.44 
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k1=0.10, k2=0.15 in LF and =0.9, =2, k =0.5, k =1, =0.1 in SA4C and A4C. In all 
three algorithms, we set the size of the neighborhood as 3×3. Results of 100 trials of 
each algorithm on the two data sets are shown in Table 2 to 3. It can be easily seen 
from the tables that SA4C and A4C requires much less iterations than LF, while the 
quality of the clustering of SA4C is still better than LF, however is worse than A4C. 

From the test results above, it is obvious that the time cost of LF is quite high, 
mainly because ants spend a great deal of time in searching for data and have diffi-
culty to drop its data in the data-rich environment. Additionally, LF cannot deal with 
isolated points efficiently. Because it is very difficult for ants carrying an isolated data 
object to find a proper position to drop it down, they would possibly make longtime 
idle moving, which consumes large amount of computational time. With regard to the 
clustering quality, the parameters in LF algorithm, especially the parameter , is diffi-
cult to set and can affect the quality of clustering results. Moreover, the parameters in 
LF lack adaptive adjustment which delays the process of clustering. Our A4C algo-
rithm based on ASM not only has advantages of simple, direct, dynamic and visible, 
but also offer self-adaptive adjustment to important parameters and can process iso-
lated dada directly and effectively. Compared to LF algorithm, A4C algorithm is more 
effective and can converge faster.  

5   Conclusions 

An artificial Ants Sleeping Model (ASM) is presented to resolve the clustering prob-
lem in data mining by simulating the emergent behaviors of ant colonies. In the ASM 
model, each data is represented by an agent. The agents’ environment is a two-
dimensional grid where each agent interacts with its neighbors and exerts influence on 
each other. Those with similar features form into groups, and those with different 
features repel. In addition, we proposed effective formulae to compute the fitness and 
activating probability of agents based on ASM model. We also present an Adaptive 
Artificial Ants Clustering Algorithm (A4C). In A4C, the agents can form into high-
quality clusters by making simple movements according to little local neighborhood 
information, while the parameters are selected and adjusted adaptively. It has fewer 
restrictions on parameters, requires less computational cost, and shows better cluster-
ing quality. Experimental results on standard ant clustering benchmarks demonstrate 
that ASM and A4C are more direct, easier to implement, and more efficient than BM 
and LF. The results of the test on the real world datasets undoubtedly confirm us that 
our algorithm is more efficient than the previous approaches. 
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Abstract. We propose a biologically and physically plausible model for
ants and pheromones, and show this model to be sufficiently powerful
to simulate the computation of arbitrary logic circuits. We thus estab-
lish that coherent deterministic and centralized computation can emerge
from the collective behavior of simple distributed markovian processes
as those followed by ants.

1 Introduction

Entomological studies suggest that ants interact with each other and their envi-
ronment in very specific, usually reactive ways, without individually performing
complicated computations, and always in a probabilistic and distributed manner.
Such kind of behavior seems to be necessary, and perhaps optimal, for guaran-
teeing survival of ants in the uncertain natural environment. In this work we ask
what else (besides “mere” survival) is such a behavior good for, what the com-
putational power of ant-like protocols is, and how can the nature of problems
that are (or are not) solvable by such protocols be characterized.

Viewed as abstract processes, ants distributively execute simple memoryless
probabilistic algorithms. Each process is markovian, and evolves as a function
of the current state of the world only. Communication between processes is
very limited and comes indirectly through the interaction of these processes
with their environment. In this work we establish that such ant-like processes,
coupled with appropriately defined initial conditions, are sufficient to simulate
the computation of logical circuits one finds in modern digital computers. This is
a rather surprising result, given that the very nature of these processes is in direct
contrast to the design principles followed by digital computer hardware, namely
binary logic, deterministic computation, centralized and complex decisions.

We conclude that ants and ant-like processes can collectively compute much
more than the sum of the individual parts; they can perform arbitrary deter-
ministic computations, and can store and retrieve state. Thus, the markovian
behavior of the individual processes is surpassed by the collective workings of
a number of processes. In the collective setting the processes are no longer the
computational units, but are simply carriers of information. The carriers ex-
hibit limited intelligence, and the actual computation emerges as a result of the
interaction of these carriers through their environment.

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 572–583, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1.1 Related Work

Our endeavor is not the first approach to understanding what the computational
capability of ants is. Previous work has shown that ants are capable of solving
non-trivial problems such as finding shortest paths between two points [3], and
sorting multiple items into piles [4]. Our goal, however, differs significantly in
that we attempt to investigate whether ants are capable of solving a problem,
namely circuit computation, that ants do not (to the best of our knowledge)
undertake in their natural environment. This is unlike the problems of finding a
shortest path to a food source or to the nest, and of sorting the brood, the food,
and the dead ants into different piles, which seem to be essential tasks for the
survival of ants.

Related fields in Computer Science that have enjoyed a lot of attention over
the past decade are that of Ant-Based Clustering [7] and Ant Colony Optimiza-
tion [5]. Algorithms inspired by the behavior of ants are employed to heuristically
cluster data according to some similarity measure, or to heuristically solve com-
binatorial optimization problems that are currently thought to be intractable.
Despite being inspired by ant behavior, algorithms in these fields often employ
state-based ant-agents whose behavior depends on the actual problem being
solved. In addition, ant-agents only perform part of the actual computation,
with a centralized entity actually monitoring and affecting their behavior over
time. In contrast, we are concerned with developing a biologically plausible ant-
based model of computation, where ants are memoryless and oblivious to the
problem under consideration. The solution to the problem emerges only from
the collective behavior of ants, and the computation is truly distributed without
any centralized control.

Constructing circuits using biological or physical substrates has also been
explored in the past. Cells have been manipulated to compute simple logical
circuits [6], and fluids have been shown capable of computing the basic logic
gate operations [8]. The problem we investigate here complements the existing
approaches, in that it provides yet another biologically-inspired domain for cre-
ating circuits. We believe that ants are, in fact, a more appropriate metaphor
for current flowing through electronic circuits, rather than different kinds of
proteins used in cell-computing and different colors of fluids used in fluid com-
puting, since unlike the latter approaches, our approach treats all “electrons”
equivalently. This makes our approach modular and circumvents the limita-
tions of other non-modular attempts that can (at the time of this writing)
only scale up to the design and implementation of single gates or very small
circuits.

On the other hand, one could argue that it is unlikely that a solution to
the ant-based computing problem will prove of any practical importance in real
life, unlike the other two approaches that seem to have real world applications.
Although we agree that ant-based computers will probably not appear in house-
holds any time soon (except perhaps as a novelty item), we feel that the study
we perform on how simple probabilistic distributed processes, as the ones em-
ployed by ants, can be used to compute logical circuits that exhibit a complex
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coherent global behavior, is of independent interest in other research areas deal-
ing with the study of emergent coherent behavior from unreliable components
(e.g., amorphous computing [1]).

2 Modeling Ants and Pheromones

The two key building blocks of an ant-based computer are ants and pheromones.
In this section we propose a model on their behavior and state any assumptions
we make for the rest of the paper.

Ants are viewed at an abstract level as processes that operate on their envi-
ronment on a discrete time basis. At each time step, an ant senses the pheromone
concentrations at its current location and the locations reachable (based on the
ant’s position, direction, and physical constraints) therefrom. Based on this lim-
ited sensory input, a very simple algorithm computes the ant’s action, which
includes choosing whether pheromone should be secreted at the current location,
choosing which direction to follow, and moving one distance unit towards the
chosen direction. The computation taking place is in its nature reactive. An ant
does not keep track of its past sensory input, and can only thus base its decision
on the current state of its environment. The decision is taken probabilistically, in
the sense that an ant reaching a given state twice, will not necessarily make the
same choices; nonetheless, the probability distribution over the possible choices
in a given state is fixed across the entire history of an ant (see e.g., [3]). In
addition, the distribution is identical across all ants, but is however, completely
independent between ants, giving the ants as a whole a distributed behavior.

We employ a single type of recruiting pheromone in this work. Ants are at-
tracted to the pheromone, and in particular are more likely to move towards a
position that has a higher, rather than a lower, concentration of the pheromone.
Ants are also able to determine whether a sensed pheromone concentration is
sufficiently above or sufficiently below some threshold that is fixed across ants
(see [2] for a somewhat different approach). An ant that senses a sufficiently
high pheromone concentration at its current location, and a sufficiently low
pheromone concentration at some reachable location, will secrete pheromone
at its current location (thus indirectly increasing the pheromone concentration
at the adjacent locations and helping in recruiting other ants). The Algorithm
ChooseAction(·,·) describes formally the behavior of each individual ant at each
time step.

The constant T in the algorithm represents the threshold on which ants base
their decision on secreting pheromone, while ε stands for the gap that accounts
for the ants’ imperfect sensing. Finally, n stands for the degree of non-linearity
in the probabilistic behavior of ants; the higher the n is, the more drastically
the ants change their behavior when faced with a small difference between two
pheromone concentrations.1

1 In case all pheromone concentrations are zero, the new location is chosen uniformly
at random amongst the reachable locations.
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ChooseAction(Current Location LC, Current Direction DC)
1: Identify the set R(LC , DC) of all locations reachable in

one step.
2: Sense pheromoneconcentrationP(L) for eachL∈{LC}∪R(LC , DC).
3: If P(LC) ≥ T + ε and there exists L ∈ R(LC , DC) s.t. P(L) ≤

T − ε, then secrete a fixed amount of pheromone at LC.
4: ChooseLN ∈R(LC ,DC) with probabilityP(LN)n/

∑
L∈R(LC,DC)P(L)n.

5: Move to location LN with direction DN defined by vector
LCLN.

Algorithm 1. The markovian decision-making process of each individual ant

In addition to being secreted by ants, a certain amount of pheromone is
pumped into the system at specific locations, after the lapse of every time unit.
Each pump releases pheromone at a constant rate, although the rate might differ
across pumps. A constant fraction of the pheromone from each location dissipates
into the environment at every time step. What is more, pheromone diffuses across
adjacent locations, by flowing from higher concentrations towards lower concen-
trations, moving closer to a uniform distribution across the system. The change of
pheromone concentrations over time is formally described by the equation below.

Pt(L) = (1 − d) · [(1 − f) · Pt−1(L) + f · Wt−1(L)
]
+ st−1(L) + p(L)

Time-dependent functions are superscripted with the time step. The function
Pt(·) maps a location to the amount of pheromone present at the location, while
the function Wt(·) maps a location to the average pheromone concentration of
that location and all its adjacent locations. The function st(·) maps a location
to the amount of pheromone secreted by ants at the location according to the
protocol we have described above. The function p(·) maps a location to the (time-
independent) amount of pheromone pumped into that location during any given
time step. The constant d determines the percentage of the concentration of a
pheromone that dissipates into the environment, while the constant f determines
how uniformly the pheromone will diffuse during any given time step. Initially,
all locations have a zero pheromone concentration.

2.1 Biological and Physical Plausibility

We argue that our proposed model for ants and pheromones is a plausible one.
Our model assumptions on (i) the attraction of ants towards higher concentra-
tions of recruiting pheromone, (ii) the ability of ants to sense pheromones and
change their behavior accordingly, and (iii) the secretion of additional pheromone
to attract more ants, are based on empirical evidence on the behavior of real
ants. Regarding the behavior of pheromones, our model relies on two phys-
ical principles: (i) that gas dissipates to the environment at a rate that is
proportional to its concentration, and (ii) that gas concentrations tend to be-
come locally (and eventually globally) uniform with the lapse of time at a
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rate that is proportional to the local gradient of the current concentrations.
In fact, we argue that our model assumptions are in some sense necessary, or
minimal, in order to achieve the desired goal of building an ant-based com-
puter.

The bias that ants exhibit towards higher pheromone concentrations is es-
sential in that it provides a minimal requirement for an otherwise probabilistic
process to behave in some predictable manner. We extract some sort of deter-
ministic behavior from ants by recognizing that the statement that “ants will
more likely follow higher pheromone concentrations” is a statement that is al-
ways (i.e., deterministically and not probabilistically) true, albeit it, in itself,
refers to a probabilistic process.

The secretion of recruiting pheromone by ants in the presence of increased
(i.e., sufficiently above the threshold) pheromone concentrations is also essen-
tial, since it corresponds to a way for ants to access a shared memory and thus
communicate. Notice that despite the minimalistic nature of the communica-
tion, some sort of messaging is nonetheless important in order to go from the
distributed and independent behavior of individual ants, to the coherent and
globalized computation needed for an ant-based computer.

Overall, our proposed model and assumptions can be viewed under a more
general prism and abstracted away from ants and pheromones. One need only
consider probabilistic processes and simple messages exchanged between them.
The environment in which these processes reside is such that it constrains the
processes from taking arbitrary actions, and it rewards (but not forces) pro-
cesses for following certain rules (in some sense one could say that ants move
towards higher pheromone concentrations because they find it rewarding). Thus,
our model and results later on are applicable to a much more general setting
and illustrate that robust global behavior can be obtained from probabilistic
distributed processes.

3 Building an Inverter

The single most important component in a logical circuit is the inverter. An
inverter takes a single truth value as its input and maps it to its logical negation
as its output. In this section we propose a construction of an inverter based on
ants and pheromones and the model thereof proposed in the previous section.

3.1 Engineering Analysis

An inverter is a set of positions, represented as hexagonal cells in Figure 1. Dark
cells represent walls that cannot be crossed by ants, and through which the
pheromone does not diffuse. Grey cells represent the paths that ants can follow
and through which the pheromone diffuses; the assumption is that these paths
are narrow enough so as ants cannot change their direction, unless they encounter
a choice point (see e.g., [3]). Cells marked with a plus sign represent sources of
ants, where new ants appear at every time step, while cells marked with a minus
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Fig. 1. An ant-based inverter and an electronic RTL inverter

sign represent sinks of ants, where ants that reach those cells disappear. Cells
marked with a dark hexagon represent pheromone pumps; the rate at which
pheromone is pumped into the system is implementation-depended and might
differ across pumps. Finally, white cells represent the surrounding area of the
inverter.

Ants enter the inverter at point Input and move towards point Pump-A and
then towards point Sink, where they leave the system. New ants enter the sys-
tem and the inverter at point Source, where they are faced with a choice point.
Ants either choose to move towards point Sink, where they leave the system, or
choose to move towards point Pump-B and then towards point Output, where
they exit the inverter.

We note here that although the output of the inverter is driven by the input,
the ants reaching the output do not come from the input, but rather from the
source. The implications of this design and implementation choice are twofold.
First, any specific ant only traverses a small distance, since when it enters the
next inverter it will leave the system through the inverter’s sink. Second, even
if an ant starts moving backwards in a path, it will eventually leave the system
through some preceding inverter’s sink. Both implications support the claim
that our implementation can scale up to large circuits, since ants (both well-
functioning and ill-functioning ones) only traverse a distance that does not in-
crease with the complexity of the circuit.

It worths pointing out the extreme resemblance of the various parts of an
ant-based inverter to the parts of an electronic RTL inverter. In both inverters
the input ends up reaching the sink/ground. When ants/current are/is present
at the input, the input attracts/drives the source ants/current towards the
sink/ground, by increasing/decreasing the pheromone/resistance compared to
the other choice of moving towards the output.2

3.2 Theoretical Analysis

Any implementation of an inverter should respect a necessary set of design prin-
ciples that make the inverter functional. In particular, the output, in addition
to depending inversely on the input, should exhibit sufficient indifference to its
2 The similarities between ant-based circuits and electronic circuits extend to a much

deeper level than what is presented here. However, due to space limitations we defer
such a discussion to an extended version of this paper.
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input so as to be able to be driven by the merged output of at least two other
inverters, and should exhibit sufficient output gain so as to be able to drive at
least two other inverters.

In our model, we define what constitutes a logical 1 and what constitutes
a logical 0 for our inverter by taking the average flow of ants through a given
location over a fixed period of time. This average flow takes a value in the interval
[0, 1]. The inverting behavior corresponds to the following: “When the input flow
is sufficiently close to 0, the output flow is sufficiently close to 1, and when the
input flow is sufficiently close to 1, the output flow is sufficiently close to 0”.
We, therefore, define a logical 0 to correspond to a flow in the interval [0, x], and
define a logical 1 to correspond to a flow in the interval [y, 1]. Of course, these
two intervals should not overlap, and in fact they should be sufficiently apart;
we thus require that x ! y.

In order to account for sufficient input indifference and output gain, it suffices
for the output of an inverter to produce amplified signals with respect to the
ones defined above. We define an amplified logical 0 to correspond to a flow in
the interval [0, x/2], and define an amplified logical 1 to correspond to a flow in
the interval [2y, 1]. It is, then, easy to see that merging or splitting two amplified
signals results in a signal that can still be properly recognized by an inverter as
a logical 0 or a logical 1.

The intervals [0, x] and [y, 1] described above are known as the noise regions,
or the noise immunity levels of an inverter. They correspond to the intervals
within which the signal is allowed to fluctuate due to external noise, without
affecting the inverter’s logical state. In our case, this “noise” corresponds to the
variance of ant behavior with respect to their expected behavior, but it also
encompasses the effects of splitting and merging ant flows in a circuit.

3.3 Experimental Analysis

For our experiments we have analyzed the behavior of a single inverter in re-
sponse to different input values. At each time step, we have recorded the state of
the inverter, comprised of the presence of ants and pheromone concentrations at
each location. We evolved the state according to the model described in Section
2, by empirically setting the model parameters to appropriate values, as shown
in Table 1.

We note that in our simulation we have relaxed the assumption that ants
appear in the inverter’s source at each time step, to the assumption that this
happens with high probability. The results show that this relaxation does not im-
pact the proper working of the inverter, and indicate that relaxing other assump-
tions (e.g., that all ants move at every time step) is possible, without unwanted
consequences.

The graphs in Figure 2 show that as the input ant flow increases, the
pheromone concentration at point Sink increases and exceeds the pheromone
concentration at point Pump-B, making thus the ants move towards the in-
verter’s sink and reduce the ant flow to the inverter’s output. The effect of
the change in pheromones is shown in Figure 3 depicting the ant flow at the
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Table 1. Parameters and associated values used in our experimental setting

Description of model parameters Empirical values
Probability of new ant appearing at source 95% per time unit
Exponent n in ant probability function 30
Threshold T for pheromone concentration 6 units
Threshold accuracy error ε 0.1 units
Pheromone amount secreted by ants 12 units per secretion
Pheromone dissipation rate d 10% per time unit
Pheromone diffusion rate f 10% per time unit
Pheromone pumped in at point Pump-A 1 unit per time unit
Pheromone pumped in at point Pump-B 0.2 units per time unit

Fig. 2. The pheromone concentrations at the choice point of an inverter

Fig. 3. The ant flows at the input and output locations of an inverter

inverter’s output changing inversely to the input ant flow. The last of the three
graphs shows the amplification performed by the inverter.

The width of this last graph corresponds to the variance in the behavior
of the inverter with respect to its expected behavior. Even by taking the least
amplified output value at every input value (i.e., the highest output value when
considering a logical 1 input, and the lowest output value when considering
a logical 0 input), one can see that setting x = 0.05 and y = 0.22 leads to
noise regions that more than satisfy the conditions set forth in Section 3.2. In
particular, when the input lies in the interval [0, x] the output lies in the interval
[3y, 1] and when the input lies in the interval [y, 1] the output lies in the interval
[0, x/5]; again, these regions take into account the worst observed behavior in
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our experiments. The fact that these intervals exhibit an output gain factor of 3
and an input indifference factor of 5, gives our implementation additional noise
robustness with respect to the theoretical requirement for these factors to be at
least 2.

4 Gates, Circuits, Computers

In addition to an inverter, one needs to define a set of other primitive compo-
nents, which can then be combined into logical gates, circuits, and ant-based
computers.

4.1 Primitive Components

Figure 4 shows the complete list of primitive components, which we describe
briefly below. A wire is simply a path surrounded by walls that guide ants in a

Fig. 4. List of circuit components

given direction. The positive battery side corresponds to an ant source, while the
negative battery side to an ant sink. A switch is simply a controlled ant source
where some sort of valve is used to start or stop the flow of ants. The output of a
circuit is simply a designated part of some wire that one can observe; the rest of
the circuit need not be directly observable. A wire-cross is a bridge that allows
one path to pass on top of another.3 A wire-split is a choice point for ants (the
only other choice point is the one in the inverter), where a path splits into two,
while a wire-merge is when two paths merge into one. By appropriately choosing
the width of the paths at the merging point, one can physically restrict incoming
ants to only choose the outgoing path. Finally, a pump is a device that releases
pheromone into the system at a constant rate.

4.2 Basic Logic Gates

One can combine primitive components to build the basic logic gates, as illus-
trated in Figure 5. From a theoretical point of view, we know that the set of

3 It is known that every circuit is planar, meaning that one can always draw an
equivalent circuit (i.e., a circuit that computes the same function) that does not
contain any wire-crossings. However, this new circuit is sufficiently more complex
and less natural than the original circuit, that justifies the use of wire-crossings for
simplicity reasons.
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operators {¬,∨} is sufficient to express any binary operator. In our case the in-
verter plays the role of the negation operator, while the wire-merge (also known
as wire-or in circuit design) plays the role of the disjunction operator. In order
to normalize the merged flow of ants that come out of a wire-merge, we always
follow the wire-or by an inverter, or an amplifier. By appropriately negating the
inputs and output of a wire-or we get the basic logic gates. Since our inverter is
amplifying its output, it follows that all the gates are by construction amplifying
their output.

Fig. 5. List of the basic logic gates

4.3 Circuits and Computers

Using the gates and the components we can now build circuits. Figure 6 shows
how one can build some basic circuits that can be found in a computer’s RAM
(Random Access Memory) and ALU (Arithmetic and Logic Unit).

Fig. 6. A one-bit memory, a half-adder, and part of a multi-bit adder

Of course one can keep building more and more elaborate circuits up to
an ant-based computer. We do not, however, pursue the design of more complex
circuits in this work, since it does not offer any additional insight into our primary
goal which is concerned with establishing the feasibility of such a task; we feel
that the circuits we have presented suffice to establish such a claim.

4.4 Battery Implementation

We finally address the issue of how ants appear in inverters’ sources and disap-
pear in inverters’ sinks. Figure 7 illustrates the implementation of an ant-based
battery and its parallels to an electronic battery.

The battery implementation relies on extending the circuit level with two
additional levels above and below the circuit. The three levels connect with each
other through funnels; ants falling into a funnel end up one level below the one
they started at. Initially, only the source level contains ants. Ants fall through
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Fig. 7. An electronic battery and an ant-based battery

the top funnels into the circuit level, at the inverters’ source locations. Ants then
move around in the circuit level until they reach the inverters’ sink locations, at
which point they fall through the bottom funnels into the sink level, where they
stay from that point onwards. The battery empties up when the source level no
longer contains enough ants to support a steady flow of ants into the circuit. By
manually moving the ants from the sink level to the source level one effectively
recharges the battery.

5 Conclusions and Future Work

We have shown that markovian processes, as those followed by ants, can collec-
tively produce a global coherent behavior. We have illustrated this by proposing
a simple and intuitive model on the behavior of ants and pheromones and show-
ing that our model is sufficiently rich to allow ants to compute arbitrary logic
circuits, as the ones found in digital computers. We have argued and shown
through experiments that our model possesses two properties that are individ-
ually easy to obtain, but seem to be hard to accommodate simultaneously: the
model is biologically and physically plausible, and at the same time it is expres-
sive enough to make the construction of circuits possible.

As future work one can pursue both further theoretical analysis, additional
experimentation, and actual implementation of an ant-based computer. The
most likely candidate for theoretical analysis is to solve the set of equations
that describe the change in the state of an inverter, and prove what we have em-
pirically observed, namely that these equations have a steady state for any given
input to the inverter. In addition, one might try to compute the convergence
time until a steady state is reached (i.e., the response time of the inverter). This
can also be empirically measured and cross-checked with the theoretical bounds.
Finally, one can prove bounds on the probability that the inverter will work
correctly. Since each ant acts independently, there is a non-zero probability that
a large number of ants will not behave as expected, and that the inverter will
produce a bogus output. However, exactly because of the independence between
ants, the probability of this happening is extremely small. Although our existing
empirical results already support this claim, it would be useful to also have an
analogous theoretical result.
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On the experimental side, one could explore other sets of parameters that
make the inverter work, perhaps guided by theoretical results on what the re-
lation between these parameters should be. Preliminary experimental results
towards this direction have indicated that our model is robust to changes of
parameters, as long as the parameters are changed in meaningful ways (e.g.,
when increasing the dissipation rate, one would probably need to increase the
amount of pheromone entering the system as well). A second experimental direc-
tion would be to simulate an entire circuit (perhaps a ring-oscillator, a multi-bit
adder, or a memory unit) and show that the circuit works as expected. A simu-
lation that displays the circuit and the ants moving would provide an extremely
interesting (and fun) visualization of the circuit computation. The final frontier
in verifying our model and circuit design would be, of course, to build circuits
with actual ants. Such a study lies perhaps outside the Computer Science scope
of this work and is, therefore, left to entomologists!
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Abstract. This paper considers an anisotropic swarm model that con-
sists of a group of mobile autonomous agents with an attraction-repulsion
function that can guarantee collision avoidance between agents and a
Gaussian-type attractant/repellent nutrient profile. The swarm behavior
is a result of a balance between inter-individual interplays as well as the
interplays of the swarm individuals (agents) with their environment. It is
proved that the members of a reciprocal swarm will aggregate and even-
tually form a cohesive cluster of finite size. It is shown that the swarm
system is completely stable, that is, every solution converges to the equi-
librium point set of the system. Moreover, it is also shown that all the
swarm individuals will converge to more favorable areas of the Gaussian
profile under certain conditions. The results of this paper provide further
insight into the effect of the interaction pattern on self-organized mo-
tion for a Gaussian-type attractant/repellent nutrient profile in a swarm
system.

1 Introduction

Social behavior in swarms of entities is ubiquitous in nature. For example, bees,
ants and birds often work together in groups for viability [1]. It is known that
such cooperative behavior has certain advantages such as increasing the chance
of finding food and avoiding predators and other risks. Understanding the coop-
erative and operational principles of such systems may provide useful ideas for
developing formation control of multi-robots, cooperative control for uninhab-
ited autonomous air/sea vehicles, and intelligent vehicle highway systems [2]–[3].
This has motivated an increasing interest in modeling and exploiting collective
dynamics of swarms in ecology, biology, physics and more recently, in engineering
applications (see, e.g. [4]–[10] and the references therein).

The general understanding in biology is that the swarming behavior is a result
of an interplay between a long range attraction and a short repulsion between
the individuals [1]. Recently, Gazi et al. [7] proposed an isotropic swarm model
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with a simple attraction-repulsion function governing the inter-individual inter-
actions and showed that the model can exhibit the basic features of aggregation,
cohesion and complete stability. But they only considered an all-identical cou-
pling pattern in the swarm model. However, in many cases interaction strength
between individuals in a swarm system may vary from one pair to another,
depending on relative locations of the individuals or other factors, such as dif-
ferent communication efficiency and bandwidth. More recently, Chu et al. [8]
studied anisotropic swarm models and found that the swarm dynamics relies
crucially on the coupling patterns of the swarms. Moreover, in the course of
foraging the swarm individuals may also be affected by a nutrient profile (or
an attractant/repellent), that is, attraction to the more favorable areas or re-
pulsion from the unfavorable areas of the attractant/repellent profile. Gazi and
Passino [9] considered this case and proposed a simple model that can capture
basic features of aggregation, cohesion and stability of social foraging swarms.
However, the attraction-repulsion functions considered in these studies could not
avoid collisions since they are not unbounded for infinitesimally small arguments.
Therefore, it is still of interest to investigate more general anisotropic swarms.

In this paper we present a new anisotropic swarm model with a Gaussian-type
attractant/repellent profile and an attraction-repulsion function that can avoid
collisions and analyze the swarm dynamics under the interplays of the swarm
individuals and the affect of environment. Specifically, we analyze stability of
the swarm and show that the individuals will form a cohesive swarm of finite
size and will converge to more favorable areas of the profile. The studies here
further extend our recent work [10] to more general case.

This paper is organized as follows. Section 2 presents the swarm model.
Section 3 analyzes the swarm behavior of aggregation, cohesion and complete
stability under quasi-reciprocal conditions on coupling patterns of the swarm.
Section 4 gives numerical simulations to demonstrate complex self-organized
oscillation in general nonreciprocal swarms. The paper is conclude in section 5.

2 The Swarm Model

We consider a swarm of M individuals (or members) in an n-dimensional Euclid-
ian space whose motion is governed by the following differential equations

ẋi = −∇xiσ(xi) +
M∑

j=1,j �=i

wijg(xi − xj), i = 1, 2 · · · , M (1)

where xi ∈ R
n represents the position of individual i, W = [wij ] ∈ R

n×n is
the coupling weight matrix with wij ≥ 0 and wii = 0 for all i, j, σ : R

n →
R represents the attractant/repellent profile or the “σ-profile” which can be a
profile of nutrients or some attractant/repellent substances. To be specific, in
this paper we considered a Gaussian-type attractant/repellent profile described
by

σ(y) = −Aσ

2
exp

(
−‖y − cσ‖2

lσ

)
+ bσ (2)
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Fig. 1. Plot of function g(·). The attraction and repulsion balance at y = δ, and
attraction dominates for y > δ whereas repulsion dominates for y < δ.

where Aσ ∈ R, bσ ∈ R, lσ ∈ R
+, and cσ ∈ R

n, and g(·) is the attraction-
repulsion function that describes a long-range attractive and short-range repul-
sive interaction between the individuals and takes the form

g(y) = −y

(
a − b

‖y‖4

)
, (3)

where a, b are positive constants and ‖y‖2 = y�y. The first term −ay represents
the attraction, whereas the term (by)/‖y‖4 represents the repulsion. For the case
of y ∈ R

1 and a = 1, b = 100, this function is shown in Fig. 1.
It can be easily seen that the function g(·) is attractive in a long distance and

repulsive in a short distance. To be specific, g(·) changes its sign at the set of

points Θ =
{
||y|| = 4

√
b
a = δ

}
, where g(·) = 0 and the attraction and repulsion

hence balance, and the function is attractive (i.e. a dominates) for ‖xi −xj‖ > δ
and repulsive (i.e. b/||y||4 dominates) for ‖xi−xj‖ < δ. For ||y|| = 0 the function
g(y) has an infinite large value of repulsion. This prevents collisions in model
(1) and thus xi(t) 
= xj(t) for i 
= j and for all t ≥ 0. This is consistent with the
fact that in reality any two individuals could not occupy the same position at
the same time [10].

Remark 1. As noted in [9] that in (1) the term −∇xiσ(xi) represents the motion
of swarm individuals toward areas with higher nutrient concentration and away
from areas with higher toxic concentration. Note also that the model in (1)
does not assume wij = 1 and therefore describes a general anisotropic system.
Furthermore, it is assumed throughout the paper that the coupling matrix is
irreducible, which implies that there are no isolated clusters in the swarm. It is
clear from (3) that any two different swarm members could not occupy the same
position at the same time. This is different from what considered in [7] and can
guarantee collision avoidance in the swarms.
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The aim of this paper is to present analytical and numerical results about the
average motion, aggregation, stability and self-organized rotation of the swarm
model (1) for Gaussian-type attractant/repellent profiles.

3 Quasi-reciprocal Swarms

We consider a class of nonreciprocal swarms whose coupling weights satisfying
the so-called “detailed balance condition” specified as below.

Assumption 1 . The swarm described in Eq. (1) satisfies the detailed balance
condition in weights, that is, there are certain scalars ξi > 0 (i = 1, · · · , M) such
that ξiwij = ξjwji for all i, j.

Since a swarm system often consists of a large number of individuals that
may evolve in different manners, it is usually of interest to investigate collec-
tive behavior of the system rather than to ascertain detailed behavior of each
individual—which may be very difficult or even impossible in general due to
complex interactions among the large number of individuals. As a first step to
this goal, it is simple and convenient to study the average motion of the swarm
members. For a quasi-reciprocal swarm, the average motion of the swarm mem-
bers can well be described by the “weighted center” of the swarm defined as
below.

Definition 1. The weighted center of the swarm members is x̃ =
∑M

i=1 ξix
i/∑M

i=1ξi.

Since the function g(·) is symmetric, i.e., g(−x) = −g(x) for all x ∈ R
n,

and ξiwijg(xi − xj) = −ξjwjig(xj − xi). Then the average motion of the swarm
members is described by

dx̃

dt
=

(
M∑
i=1

ξi

)−1 M∑
i=1

ξiẋ
i = −

(
M∑
i=1

ξi

)−1 M∑
i=1

ξi∇xiσ(xi). (4)

One can easily see that the profile has a unique global extremum (either a
minimum or a maximum depending on the sign of Aσ) at y = cσ. Its gradient
at y ∈ R

n is

∇yσ(y) =
Aσ

lσ
(y − cσ) exp

(
−‖y − cσ‖2

lσ

)
. (5)

Substituting (5) into (4), then dx̃
dt =−Aσ

lσ

(∑M
i=1ξi

)−1∑M
i=1ξi(xi−cσ) exp

(
− ‖xi−cσ‖2

lσ

)
.

Now we define ei = xi − x̃ and eσ = x̃ − cσ. Next we will analyze the
motion of the weighted center x̃ and study the behavior of the swarm under the
Gaussian-type profiles.

Theorem 1. Consider the swarm modeled in Eqs. (1) and (3). Suppose that the
σ-profile of the environment is described by Eq. (2) and Assumption 1 holds, we
have as t → ∞ that
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i) if Aσ > 0, then ‖eσ(t)‖ ≤ max
i=1,...,M

‖ei(t)‖ � emax(t);

ii) if Aσ < 0 and ‖eσ(0)‖ > emax(0), (here we assume that xi(0) 
= xj(0) for
all pairs of individuals (i, j), j 
= i, 1 ≤ i, j ≤ M and therefore emax(0) > 0),
then ‖eσ‖ → ∞.

Proof. Let Vσ = 1
2e�σ eσ. Using the fact that xi−cσ = ei+eσ, thus, its time deriv-

ative along the motion of the swarm is given by V̇σ = −Aσ

lσ

(∑M
i=1 ξi

)−1 ∑M
i=1 ξi

exp
(
− ‖xi−cσ‖2

lσ

)
(xi−cσ)�eσ =−Aσ

lσ

(∑M
i=1 ξi

)−1 ∑M
i=1 ξi exp

(
− ‖xi−cσ‖2

lσ

)
‖eσ‖2

−Aσ

lσ

(∑M
i=1 ξi

)−1 ∑M
i=1 ξi exp

(
− ‖xi−cσ‖2

lσ

)
ei�eσ. We will discuss the above equa-

tion as follows:
Case a) If Aσ > 0, then V̇σ≤−Aσ

lσ

(∑M
i=1 ξi

)−1 ∑M
i=1 ξi exp

(
− ‖xi−cσ‖2

lσ

)
‖eσ‖2

+Aσ

lσ

(∑M
i=1ξi

)−1∑M
i=1ξiexp

(
−‖xi−cσ‖2

lσ

)
‖ei‖‖eσ‖≤−Aσ

lσ

(∑M
i=1ξi

)−1∑M
i=1ξiexp

(
− ‖xi−cσ‖2

lσ

)
⎡⎣‖eσ‖−

M
i=1 ξi exp −‖xi−cσ‖2

lσ
‖ei‖

M
i=1 ξi exp −‖xi−cσ‖2

lσ

⎤⎦‖eσ‖≤−Aσ

lσ

(∑M
i=1ξi

)−1∑M
i=1ξiexp

(
−‖xi−cσ‖2

lσ

)
[‖eσ‖−

emax]‖eσ‖, where emax = max
i=1,...,M

‖ei‖. We can see that as long as ‖eσ(t)‖ >

emax(t), the weighted center of the swarm will move to the minimum point cσ.
Thus, as t → ∞, cσ will be within the swarm.

Case b) If Aσ < 0, similar to the proof of the case a), we have V̇σ ≥
|Aσ|
lσ

(∑M
i=1 ξi

)−1 ∑M
i=1 ξi exp

(
− ‖xi−cσ‖2

lσ

)
‖eσ‖[‖eσ‖− emax] which implies V̇ >

0, i.e., ‖eσ‖ will increase if ‖eσ‖ > emax. Thus V̇ > 0 holds by hypothesis
‖eσ(0)‖ > emax(0). For any given large D > 0 and ‖eσ(t)‖ ≤ D we can have

exp
(
− ‖xi−cσ‖2

lσ

)
‖eσ‖[‖eσ‖ − emax] ≥ exp

(
−D2+e2

max
lσ

)
D[D − emax] > 0

which implies that V̇σ ≥ |Aσ|
lσ

exp
(
−D2+e2

max
lσ

)
D[D − emax] > 0. Thus, by the

Chetaev Theorem [11] we can conclude that ‖eσ‖ will exit the D-neighborhood
of cσ. This shows the desired result.

Next we will study the ultimate behavior of the individuals. Specifically, we
define the set of equilibrium points of the swarm system as Ωe = {x : ẋ = 0},
where x =

{
x1�, · · · , xM�}� ∈ R

Mn. We will also prove the complete stability
property of the swarm. We show that if Aσ > 0 in (2), then x(t) → Ωe as t → ∞.

Definition 2. The swarm modeled in Eqs. (1) and (3) is completely stable if
every solution converges to an equilibrium point of the system.

Theorem 2. Consider the swarm modeled in Eqs. (1) and (3). Suppose that the
σ-profile of the environment is a Gaussian-type profile described by Eq. (2) with
Aσ > 0 and Assumption 1 holds, then the swarm is completely stable.

Proof. With Assumption 1, we choose the Lyapunov function V (x)=
∑M

i=1ξiσ(xi)+
1
2

∑M−1
i=1

∑M
j=i+1 ξiwij

[
a‖xi − xj‖2 + b

‖xi−xj‖2

]
. Computing the gradient of V (x)



Collective Behavior Analysis of a Class of Social Foraging Swarms 589

with respect to xi yields ∇xiV (x) = ξi∇xiσ(xi) − ∑M
j=1,j �=i ξiwijg(xi − xj) =

−ξiẋ
i. Then we can take the time derivative of the Lyapunov function V (x) along

the motion of the system and obtain V̇ (x) = [∇xV (x)]�ẋ =
∑M

i=1 [∇xiV (x)]�

ẋi = −∑M
i=1 ξi‖ẋi‖2 ≤ 0 for all t. By LaSalle’s Invariance Principle [11] we can

conclude that as t → ∞ the state x(t) converges to the largest positively invari-
ant subset of the set defined by Ω = {x : V̇ (x) = 0} = {x : ẋ = 0} = Ωe. This
completes the proof.

Notice that the complete stability implies global convergence of the swarm
system to its equilibrium point set. But the exact location and the size of this
set cannot be known in general, especially for large number M of the swarm
members, because the equations for equilibrium points are nonlinear. However, it
is naturally expected that the swarm members will aggregate and form a cluster
around the global minimum cσ of the profile due to the long-range attraction
effect. We will present such a result in the following. To do this, we need the
following technical result.

Lemma 1. Suppose that the swarm has only finite and isolated equilibrium
points, then there exists a constant ρ > 0, such that ‖xi − xj‖ ≥ ρ holds for
all i, j with i 
= j.

Proof. Let the equilibrium points of the system in Eqs. (1) and (3) be x1
e, ..., x

M
e .

Take ρ0 = min
1≤i,j≤k

{ρij |ρij = ‖xi
e − xj

e‖, ∀i 
= j}. Then ρ0 > 0 is a constant, and

for all i, j with i 
= j, ‖xi
e − xj

e‖ ≥ ρ0. By Theorem 2, x(t) converges to Ωe.
So, there exists a time t > 0 such that, for all j , ‖xj − xj

e‖ ≤ ρ0/4 as t > t.
Therefore, we have ‖xi − xj‖ ≥ ‖xi

e − xj
e‖ − ‖xi − xi

e‖ − ‖xj − xj
e‖ ≥ ρ0/2 � ρ.

This shows the result.

Assumption 2 There exists a constant σ̄ > 0 such that ‖√ξi∇xiσ(xi)‖ ≤ σ̄ for
all i.

Theorem 3. Consider the swarm modeled in Eqs. (1) and (3). Suppose that the
σ-profile of the environment is a Gaussian-type profile described by Eq. (2) and
Assumptions 1 and 2 hold, then as t → ∞, all the members of the swarm will
enter into a bounded region

Bμ =

{
x :

M∑
i=1

ξi‖xi − x̃‖2 ≤ μ2

}
, (6)

where x=
{
x1�, · · · , xM�}�∈ R

Mn, μ=ξmax(b|||LW |||+2θσ̄ρ3)
aMγ2ρ3 with ξmax= max

1≤i≤M
{ξi}>

0, L=diag[
√

ξ1, · · · ,
√

ξM ], |||LW |||=∑M
i,j=1

√
ξiwij , θ�

(∑M
j=1 ξj

)−1
(

M∑
j=1,j �=i

ξj

)
and γ2 the second smallest real eigenvalue of the symmetric matrix H = [hij ]
defined by

hij =
{−ξiwij ,∑M

l=1,l �=i ξiwil,
i 
= j,
i = j.

(7)
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Moreover, for an arbitrary ε̃, all the swarm members out of the set Bμ (x̃)
will enter into its ε̃-neighborhood (i.e., Bμ+ε̃ (x̃)) in a finite time bounded by

T̃ = ξmax
aMγ2

ln
(

μ0−μ
ε̃

)
, where μ0 =

(∑M
i=1 ξi‖xi(0) − x̃‖2

) 1
2

> 0.

Proof. Define ei = xi − x̃. From the definition of the weighted center x̃, we have

ėi=−∇xiσ(xi) +
M∑

j=1,j �=i

wijg(xi − xj) +

⎛⎝ M∑
j=1

ξj

⎞⎠−1
M∑

j=1

ξj∇xj σ(xj)

=−a

M∑
j=1,j �=i

wij(xi−xj)+b

M∑
j=1,j �=i

wij
xi − xj

‖xi − xj‖4 −

⎡⎢⎣∇xiσ(xi)−
⎛⎝ M∑

j=1

ξj

⎞⎠−1
M∑

j=1

ξj∇xj σ(xj)

⎤⎥⎦
=−a

M∑
j=1,j �=i

wij(ei−ej)+b
M∑

j=1,j �=i

wij
ei − ej

‖ei − ej‖4 −

⎡⎢⎣∇xiσ(xi)−
⎛⎝M∑

j=1

ξj

⎞⎠−1
M∑

j=1

ξj∇xj σ(xj)

⎤⎥⎦ .(8)

In order to estimate ei, we choose the Lyapunov function V (e) =
∑M

i=1 ξiVi(ei),
where Vi(ei) = 1

2ei�ei and e = [e1�, · · · , eM�]�. Evaluating its time derivative
along solution of the system (8) by Assumption 2 and making use of the fact
that ‖xi − xj‖ ≥ ρ for all i 
= j and that ‖ei‖ ≤ √

2V (e) ∀i, we can ob-

tain V̇ (e) =
∑M

i=1 ξie
i�

[
−a

∑M
j=1,j �=i wij(ei − ej) + b

∑M
j=1,j �=i wij

ei−ej

‖ei−ej‖4

]
−∑M

i=1ξi

[
∇xiσ(xi)−

(∑M
j=1ξj

)−1∑M
j=1ξj∇xj σ(xj)

]�
ei ≤−a

∑M
i=1

∑M
j=1,j �=iwijξie

i�(ei −

ej)+b
∑M

i=1
∑M

j=1,j �=i ξiwij
‖ei−ej‖‖ei‖
‖ei−ej‖4 +2σ̄

(∑M
j=1 ξj

)−1(∑M
j=1,j �=i ξj

)∑M
i=1‖

√
ξie

i‖≤
−a

∑M
i=1

(∑M
j=1,j �=iξiwij

)
ei�ei+a

∑M
i=1

(∑M
j=1,j �=iξiwij

)
ei�ej+

√
2b|||LW |||ρ−3V

1
2(e)+

2
√

2σ̄
(∑M

j=1 ξj

)−1(∑M
j=1,j �=i ξj

)
V

1
2 (e)=−ae�(H⊗I)e+

√
2b|||LW |||ρ−3V

1
2 (e)+

2
√

2θσ̄V
1
2 (e), where θ �

(∑M
j=1 ξj

)−1 (∑M
j=1,j �=i ξj

)
, H ⊗ I is the Kronecker

product of H as defined in (7) and I the identity matrix of order n. To get
further estimate of V̇ (e), we only need to estimate the term e�(H ⊗ I)e.

We can easily conclude that γ = 0 is an eigenvalue of H and u = (l, · · · , l)�
with l 
= 0 is the associated eigenvector. Moreover, because H is symmetric
with all hij ≤ 0 for all i 
= j and W is irreducible (so is H), it follows from
matrix theory [8] that γ = 0 is a simple eigenvalue and all the rest eigenvalues
of −H are real and negative . Therefore, we can order the eigenvalues of H as
0 = γ1 < γ2 ≤ · · · ≤ γn. Also it is known that the identity matrix I has an n
multiple eigenvalues ν = 1 and n independent eigenvectors

d1 =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ , d2 =

⎡⎢⎢⎢⎣
0
1
...
0

⎤⎥⎥⎥⎦ , · · · , dn =

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦ .
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By matrix theory [8], the eigenvalues of H ⊗ I are γiν = γi (n multiple
for each i) and the corresponding eigenvectors are ui ⊗ dj . It is clear that,
because H ⊗ I is symmetric, the n2 eigenvectors ui ⊗ dj are linearly inde-
pendent. So, if e�(H ⊗ I)e = 0 then e must lie in the eigenspace of H ⊗ I
spanned by eigenvectors u ⊗ di corresponding to the zero engenvalue, that is,
e1 = e2 = · · · = eM . This occurs only when e1 = e2 = · · · = eM = 0. But this
is impossible for the swarm model under consideration, because it implies that
the M individuals occupy the same position at the same time. Hence, for any
solution x of system (1), e must be in the subspace spanned by eigenvectors of
H ⊗ I corresponding to the nonzero eigenvalues. Then, e�(H ⊗ I)e ≥ γ2‖e‖2 =
2γ2V (e). From above, we have V̇ (e) ≤ − 2aMγ2

ξmax
V (e) +

√
2b|||LW |||ρ−3V

1
2 (e) +

2
√

2θσ̄V
1
2 (e) = − 2aMγ2

ξmax
V (e) +

√
2
{
b|||LW |||ρ−3 + 2θσ̄

}
V

1
2 (e) < 0 whenever

V (e) >
(

ξmax(b|||LW |||+2θσ̄ρ3)√
2aMγ2ρ3

)2
. This shows that ei converges to the region

Bν (x̄) as t → ∞, where μ = ξmax(b|||LW ||| + 2θσ̄ρ3)/aMγ2ρ
3. Since i is ar-

bitrary, the result holds for all the members. From above, we also have V̇ ≤
− 2aMγ2

ξmax
V (e)+

√
2
(
b|||LW |||ρ−3 + 2θσ̄

)
V

1
2 (e) for

∑M
i=1 ξi‖ei‖2 ≥ μ2. Then dV

1
2 ≤

−aMγ2
ξmax

(
V

1
2 − ξmax(b|||LW |||+2θσ̄ρ3)√

2aλ2ρ3

)
dt=−aMγ2

ξmax

(
V

1
2 − μ√

2

)
dt, so ln

(√
2V (t)−μ√
2V (0)−μ

)
≤

−aMγ2
ξmax

t for
∑M

i=1 ξi‖ei‖2 ≥ μ2. Suppose a member i enters into the ε̃-neighborhood
of the region Bν (x̃) at time T̃ , then V (T̃ ) = 1

2 (ε̃ + μ)2, and from above,

ln
(

ε̃
μ0−μ

)
≤ −aMγ2

ξmax
T̃ , i.e. T̃ ≤ ξmax

aMγ2
ln

(
μ0−μ

ε̃

)
. Therefore, any solution of sys-

tem (8) will eventually enter into and remain in Bμ+ε̃ (x̄).

Theorem 4. Consider the swarm modeled in Eqs. (1) and (3). Suppose that the
σ-profile of the environment is a Gaussian-type profile described by Eq. (2) and
that Assumptions 1 and 2 hold, then as t → ∞, the following hold:

i) if Aσ > 0, then all individuals will enter B2μ (cσ);
ii) if Aσ < 0 and ‖eσ(0)‖ ≥ emax(0), then for any fixed D > 0 all individuals

will exits BD(cσ).

For Aσ > 0, from Theorem 3 we know that the swarm will have a maximum
size of μ, that is, ‖eσ‖ ≤ μ for all i, and we can also see that the swarm center
will converge to the emax and therefore to the μ-neighborhood of cσ, that is,
‖eσ‖ ≤ emax ≤ μ from Theorem 1 we can obtain the 2μ when Aσ > 0 combining
the two bounds.

Remark 2. The above discussions explicitly show the effect of the coupling ma-
trix W on aggregation and cohesion of the swarm. Figs. 2,3 give numerical il-
lustrations of the results with parameters M = 10, a = 1, b = 20, and the
extremum of the Gaussian-type profile chosen at cσ = [−2, 12]� and magnitude
Aσ = ±0.01. Figs. 2,3 show the paths of the swarm individuals and the swarm
weighted center with the Gaussian-type profile when Aσ > 0 and Aσ < 0, respec-
tively. From these figures we can easily see that the simulations are consistent
with the theoretical results, i.e., the swarm weighted center x̃ converges to the
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Fig. 2. The paths of the weighted cen-
ter and the individuals when Aσ > 0
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Fig. 3. The paths of the weighted cen-
ter and the individuals when Aσ < 0

minimum of the Gaussian-type profile cσ when Aσ > 0 and diverges from the
maximum when Aσ < 0.

Remark 3. Note that when ξi = ξj for all i, j, we have wij = wji, which repre-
sents a reciprocal swarm. It is a specific case of the model we considered above.

4 Oscillatory Motion in General Nonreciprocal Swarms

Now we give some simulations of oscillatory motion in nonreciprocal swarms.
It is usually difficult to analytically investigate collective behavior of a gen-
eral nonreciprocal swarm. To obtain some ideas about the motion of general
nonreciprocal swarms, we have performed some numerical simulations for the
swarm model in (1) and (3). Particularly, we observed that in certain cases, the
swarm may exhibit more complex oscillatory behavior rather than convergence.

Figs. 4,5 show the results of our simulations with parameters M = 10,
a = 1, b = 20, and the extremum of the Gaussian-type profile chosen at cσ =
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Fig. 4. The paths of the weighted cen-
ter and the individuals when Aσ > 0
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Fig. 5. The paths of the weighted cen-
ter and the individuals when Aσ < 0
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[7, 12]�. The coupling matrix W is generated randomly and scaled such that
wii = 0, 0 < wij < 1 for all i 
= j. For its large size, we do not include the
explicit value of W here. It is available upon request. Figs. 4,5 show the paths of
the swarm individuals and the swarm weighted center with the Gaussian-type
profile when Aσ > 0 and Aσ < 0, respectively. From Figs. 4,5, we can observe
that at the beginning phase of the simulation, the swarm members gradually
aggregate and form a cohesive cluster. Then they move in the same direction
as a group while keeping mutual spacing, and eventually evolve into a rotatory
motion as time processes.

5 Conclusions

We have studied an anisotropic swarm model and shown that it can capture the
basic feature of aggregation, cohesion and complete stability of the swarm under
detailed balance condition and Gaussian-type attractant/repellent profiles. We
also gave estimates on the size of the cohesion cluster. For general nonreciprocal
swarms, our numerical results shows that more complex self-organized oscilla-
tion may occur in the systems. Our model can guarantee collision avoidance in
the swarm. The results provide further insight into the effect of the interaction
pattern on collective motion in a swarm.
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Abstract. This paper describes an evolutionary approach to the de-
sign of controllers for a team of collective agents. The agents are able to
perform ant-like annular sorting, similar to the sorting behaviour seen in
the ant species Temnothorax albipennis. While most previous research on
ant-like sorting has used hard-wired rules, this study uses neural network
controllers designed by artificial evolution. The agents have very simple
and purely local sensory capabilities, and can only communicate through
stigmergy. Experiments are performed in simulation. The evolved behav-
iours are presented, analyzed, and compared to previous research on ant-
like annular sorting. The results show that artificial evolution is able to
create efficient, simple, and scalable controllers able to perform annular
sorting of three object types.

1 Introduction

Social insects are known for their ability to perform complex tasks without need
for direct communication. This is achieved through self-organisation, in which
order at the global level of a system emerges from the interactions between the
system’s lower level components. One form of self-organisation is stigmergy, a
concept originally used to explain building behaviour in termites. In stigmergy,
agents communicate indirectly through the work performed on the environment,
involving both positive and negative feedback [1]. Recently, there has been sig-
nificant scientific interest in trying to transfer these principles to engineering
domains such as robotics and algorithms. The motivation for this interest is the
simplicity, robustness, and scalability of the principles employed by social insects
[2]. At the same time, biologists are increasingly interested in robotics and arti-
ficial life simulations as a means for testing out hypotheses on animal behaviour
and self-organisation [3].

The behaviour-based robotics paradigm [4] requires the designer to break
down the complex system behaviour into a set of simple basic behaviours. This
means that the designer must make assumptions about the kind of behaviour
needed to perform the given task. Collective systems are made up of many
interdependent parts, making it very difficult to do this decomposition [5]. On
the other hand, in evolutionary robotics [6] the structure of the control system
emerges from the interactions between the robot and the environment through
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a process of natural selection. This makes evolutionary robotic methods well
suited for designing controllers for collective systems.

The work described in this paper is inspired by brood sorting in the ant
species Temnothorax albipennis. Artificial evolution is used to design neural
network controllers for a homogenous team of simple, simulated agents which
are able to sort three object types in annular bands, similar to the way T.
albipennis ants sort their brood. T. albipennis ants sort their brood in concentric
rings, based on the developmental stage of the brood. This sorting behaviour
has been termed annular sorting, and it is a much studied, though still not fully
explained example of self-organisation through stigmergy [7]. Deneubourg et. al.
[8] provided the first example of ant-like robots that were able to sort objects
of different types in simulation. Beckers et. al. [9] implemented clustering of one
object type with minimalist robots controlled by a simple rule set. Melhuish et.
al. later extended this work to include sorting of multiple object types [10,11].
Recently, Wilson et. al. [12] achieved ant-like annular sorting with real robots.

A property shared by all the work described above is that each relies on hard-
wired rules, although Wilson et. al. used a combined leaky integrator tuned by
genetic algorithms to set some parameters of their rule set. In parallel with the
work described in this article, Hartmann [13] evolved neural network controllers
for a swarm of agents. The main difference between this work and Hartmann’s
work is that while Hartmann’s agents have very detailed sensory information
and reside in a grid world, the agents described in this article have very limited
sensory capabilities and are simulated in continuous space and time. In this
respect, this work has more in common with robotic experiments, although it
does not claim to be a realistic simulation of real robots.

2 Experimental Framework

2.1 Environment and Task

The simulated environment consists of a flat plane with walls placed in a oc-
tagonal shape, making an arena similar to that used by Melhuish et. al. [10].
Each wall is 42 units long, giving a ratio between agent size and arena size of
1800, similar to the ratio between ant size and nest size in T. albipennis colonies
[10]. At the start of a trial, 42 brood objects, 14 of each of 3 types, are placed
uniformly across the plane, as illustrated in fig. 3(a). Six agents are placed in
random starting positions, facing in random directions. One neural network con-
troller is cloned to all agents, making the team homogenous. The simulation is
terminated after 400 simulated seconds. The agents are supposed to sort the
different types of brood objects in annular bands.

Experiments were performed in simulation, using the breve simulation en-
vironment [14]. breve simulates continous space and time, handles collision
detection and provides rich 3D visualisation. As breve simulates continuous
time, there are no discrete time steps in the simulation. However, the controllers
of the agents are activated each 0.05 seconds (an iteration). This value can be
interpreted as the reaction time of the agents to changes in their environment.
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Between activations, multiple collisions and movement of world objects can oc-
cur, but the agents can only sense and act at each activation. Brood hits are
accumulated between iterations.

2.2 Ant Agents and Brood Objects

The agents are circular, with a radius of 1.5 units. Sensory capabilities are mini-
mal, similar to that of other work on ant-like sorting. This has both a biological
and an engineering motivation; the limited sensory capabilities of real ants, and
the wish to solve the task with the simplest agents possible. In order to simu-
late the uncertainty of real robot sensors, noise is added to sensor inputs and
actuator outputs with a probability of 0.01.

Actuators. The agents move with constant velocity, and are able to turn in any
given direction. At the front of the agent there is a gripper, which can be turned
on and off. When the agents hit an object within a 45◦ angle of the movement
direction the gripper is activated, the object is gripped. Gripped objects are
moved in front of the robot as long as the gripper is on.

Sensors. When an agent collides with an object, it can sense the type of object
hit; wall, other agent, type of brood. The type of brood object held in the gripper
is also sensed.

The brood objects are the sorting materials used in the simulation. Like
the ant agents, they are circular, with a radius of 1.5 units. Each brood object
belongs to a type, which ant agents can recognize.

2.3 Controller

Each agent is controlled by an artificial neural network. At each simulator iter-
ation, the network is activated with inputs accumulated since the last iteration.
Movement direction and gripper status are then updated using the new network
output.

The artificial neural network used (fig. 1) is a simple recurrent network [15]
with 5 fully recurrent connected hidden nodes. There are 9 input nodes, 2 output

t1 t2 t3 t1 t2 t3

hit brood object brood object in gripper random biashit

agent wall

turn grip

Fig. 1. Neural Network Architecture. Fully connected simple recurrent network.
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nodes, and 1 bias node. In addition to sensor inputs from the agent described
above, a random variable with a normal distribution N(0, 1) is input to the
network. This makes it possible to evolve nondeterministic behaviours. The net-
work uses the logistic activation function for all hidden nodes and the turn angle
output node. The gripper status output node uses a step activation function.

2.4 Fitness

The fitness function is based on the annular sorting performance measure pro-
posed by Wilson et. al. [12] They argue that the compactness and separation
metrics are the two most useful components of the performance measure in their
study of sorting mechanisms. Based on this, these two metrics were selected as
fitness function for this experiment.

Compactness is the average radial distance from the centre of the structure (the
average vector of all brood objects), normalized to (0,100), such that 100 repre-
sents a perfectly packed structure, and 0 represents poor compactness. optD(t)
represents the optimum mean distance from the centre for the total number
of objects, t, when they are optimally packed inside a circle [16]. l is the side
length of the arena. x̄ represents the mean distance to the centre of the structure.
Equation 1 shows the calculation of the compactness metric.

C = 100 ∗
(

1 − ((x̄ − optD(t))
(1.5l − optD(t)))

)
(1)

Separation is the percentage of brood objects that infringe on the ‘home zone’
of another object type. To calculate the separation metric, objects are sorted
according to type, then the radial distance from the centre of the structure is
calculated. The distance between the upper and lower quartiles of each type is
the ‘home zone’ of the object type. The metric is then calculated using four
different counts. For the central type objects, the number of objects C1

glq, which
have a radial distance to the centre greater than the lower quartile of any other
type is counted. For the outer-most type objects, the number of objects Om

luq ,
which have a radial distance to the centre less than the upper quartile of any
other type is counted. For each of the intermediate object types, two counts
are performed. Ic

glq is the number of objects which have a radial distance to
the centre greater than the lower quartile of any object type further from the
centre. Ic

luq is the number of objects which have a radial distance to the centre
less than the upper quartile of any object type closer to the centre. nc is the
number of objects per type, m is the number of object types. Equation 2 shows
the calculation of the metric from the counts described above.

S = 100 ∗
⎛⎝1 − C1

glq + Om
luq +

∑c=m−1
c=2

(Ic
glq+Ic

luq)
2∑c=m

c=1 nc

⎞⎠ (2)

The fitness of a controller is the weighted sum of the two components, mea-
sured at the end of each run. The constant w determines the relative weights
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of the two components. Although the environment is identical in each run, the
random nature of the sorting process means that fitness varies between runs.
Due to the computational costs of the simulations, each controller is tested for
only two simulation runs. The average fitness of these two runs is recorded as
fitness for the controller.

F = wC + (1 − w)S (3)

2.5 Evolutionary Algorithm

The controllers are evolved from an initial random population of 100 individuals.
The best 10 genotypes of each generation are selected as parents for the next
generation. One unchanged copy and 9 mutated copies of each parent genotype
is copied to the new generation. Recombination is not used. The genotype is
represented as a vector of real values, each encoding one connection weight (in-
put, bias, recurrent, and output connections). Mutation is performed by adding
a random variable with a normal distribution N(0, s) to each connection weight.
In the experiments described here, s = 0.2. The initial population is initialized
with random connection weights with a normal distribution N(0, 1).

3 Results

The evolutionary experiment described above was replicated 10 times, each time
for 100 generations. Each replication started from a different randomized pop-
ulation. 100 generations took about 4 days to complete on one processor of a
Apple Power Mac G5 2 GHz workstation. The fitness development is shown in
fig. 2(a). Good fitness is achieved after about 30 generations. Later improve-
ments were small in terms of fitness, but in some cases gave large improvements
in the observed (qualitative) level of annularity.

The weighting between the two fitness metrics was crucial to the level of
annularity achieved. With equal weight on both metrics (w=0.5), the controllers
achieving the best fitness were those that did not move the outer type at all. This
is caused by the high risk of affecting separation when compactness is improved.
By increasing the weight of the compactness component slightly (w=0.6), better
performance was achieved. With higher weight on the compactness component,
it became more advantageous to move and cluster the outer type as well.

The best evolved controller was verified for 100 simulator runs. Average fit-
ness was 88.8, with a standard deviation of 3.0. The separation component had
a standard deviation of 6.8, compared to 1.3 for the compactness component.
A plot of the two fitness metrics and total weighted fitness over time (fig. 2(b))
shows that good compactness and separation is achieved after about 150 sec-
onds, with very small subsequent changes. Though there are differences in per-
formance, this general pattern is seen in the best evolved controllers of all repli-
cations. In order to investigate the generality of the evolved controllers, the best
individual was tested 100 times with different random brood layouts. The aver-
age compactness and separation scores were about one standard deviation below
the results for the uniform layout.
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Fig. 2.

3.1 Analysis of the Evolved Behaviours

Figure 3 shows the development of the sorted structure during a simulation run
with the best evolved controller. In the first 100 seconds of the run, objects of the
innermost type are clustered in one large, central cluster, while the intermediate
type objects are clustered in several smaller clusters further from the centre.
Objects of the outermost type are mostly left alone. In the next 100 seconds, the
objects of the intermediate type are placed around the central cluster. Finally,
objects of the outermost type are scattered in a broad belt around the central
cluster, in which separation is constantly improved. Fig. 4(a) shows how well
the different types are separated at the end of the run. The different types are
relatively well separated, with the ‘home zones’ (interquartile ranges) perfectly
separated.

Observations of the best evolved controllers show that they exploit a few
simple mechanisms to accomplish the sorting described above. Similar behaviour
emerged in 9 out of 10 replications, with the overall best results in the first
replication, which this analysis is based on. The agents move in circles, the size
of which depends on whether or not there is an object in the gripper. This enables
individual positioning of the different object types. With no object in the gripper,
the agents move in large circles limited by the outer walls, sometimes making
a turn into the centre of the arena. This can be described as a global search
behaviour, in which the agents move around the arena searching for unsorted
objects. With an object in the gripper, the movement changes to smaller circles,
with the smallest circles observed for the inner object type. This local search
behaviour, combined with a higher probability of dropping objects next to other
objects of the same type, makes it possible to sort and cluster objects.
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Additionally, the different object types are treated differently in terms of
movement distance and time of pickup. Analysis of brood carrying (table 1)
show that objects of the inner type are moved first, and carried for the longest
average distance. The intermediate type objects are carried shorter and later, but
also more than twice as frequently as the inner type. The outermost objects are
moved for very short distances, but with an even higher frequency. In fact, the
outermost object type is always released from the gripper at the next iteration.
The difference in time of movement for the different types is mostly caused by
the fact that there is a lower probability of hitting objects in the centre than in
the periphery when moving in large circles (global search). This makes objects
clustered in the centre less likely to be picked up and moved. When testing the
evolved controllers without the inner object type, the intermediate object type
was clustered in a central cluster. This occured later than central object type
clustering would have happened, indicating that compact annular sorting of the
intermediate type is dependent on the early formation of a central cluster of the
central object type.

An interesting property of the evolved controllers is that the structure very
often is built in the centre of the arena, even though this does not give any
additional fitness. A reason for this may be that a central structure is less likely
to be hit and damaged, given the movement patterns described above. Another
possible explanation may be that agents use the walls in combination with the
described movement patterns as a form of simple navigation.

Fig. 3. Example of simulation progress, t = 0, 50, 100, 200, 300, 400. Legend; inner:
black circle; intermediate: cross; outer: white circle. Fitness at t = 400: 90.8.



Evolving Annular Sorting in Ant-Like Agents 601

Table 1. Brood carrying statistics for 6 agents, grouped by object type. Average
distance is average of moved distance. Average time is average of simulation time when
the object was released. N is number of moved objects. Averaged over 100 runs.

Object type Avg distance Med distance Avg time Med time N

1 9.1 6.7 137.2 97.0 351
2 2.0 0.39 166.7 145.3 736
3 0.3 0.26 203.9 202.6 1820

all types 1.7 0.30 187.3 180.3 2857
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3.2 Scalability

A key issue in collective systems is scalability. To investigate the scalability of the
evolved controllers, the best evolved neural network controller was tested with
group sizes of 6, 12 and 18 agents for 100 simulation runs each. Each run lasted
for 400 seconds. Fitness was recorded every second. The performance gain with
12 agents was nearly linear compared to the 6 agent case (fig. 4(b)). 18 agents
gave poorer performance than 12 agents. The reason for this is probably that the
ratio between agents and brood is too high with 18 agents and 42 brood objects.
The density of agents in the arena is also very high with 18 agents, making
interference a larger problem. With a larger arena and more brood objects, it
would very likely be possible to scale to larger teams.

4 Discussion

This study describes an experiment on designing controllers for ant-like agents
performing collective annular sorting. The mechanisms behind annular sorting
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in ants are still not fully explained, and there have been few successful attempts
to reproduce it in simulation. Most previous work on ant-like sorting has used
hard-wired rules. This study takes another approach, by using neural network
controllers designed by artificial evolution. Annular sorting of three object types
was accomplished in a complex and noisy environment by agents with very lim-
ited sensory capabilities. The results show that artificial evolution is able to
create efficient, simple, and scalable controllers for this challenging collective
task.

Although this study concerns agents, not physical robots, it shares many
properties with swarm robotics. Dorigo and Sahin [17] have identified four cri-
teria for distinguishing swarm robotics from other multi-robot studies:

1. The study should be relevant for the coordination of large numbers of robots
2. The system being studied should consist of relatively few homogenous groups

of robots, and the number of robots in each group should be large
3. The robots used in the study should be simple and incapable with respect

to the task considered, so that cooperation is needed to complete the task
4. The robots used in the study should have only local and limited sensing and

communication abilities

This study fully meets criteria 2 and 4. For criteria 1, good scalability has
been shown for team sizes up to 12 agents. With larger teams, it is likely that the
agent/brood ratio and size of arena is limiting the performance. Further experi-
ments on the relationship between arena size, number of objects, and number of
agents are needed to better answer these questions. Criteria 3 is not fully met. A
single agent could complete the task alone, but performance does improve with
cooperation.

In future work, it would be useful to verify the method used here in other,
more complex settings. Full physical simulation could yield simpler behaviours,
as well as making it more likely that the controllers could be used in real ro-
bots. More object types would make it possible to fully replicate the pattern
created by ants. By changing the size of the arena, it could be revealed if the
evolved behaviours depend on the environment in order to successfully sort the
objects.
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Abstract. This paper considers a group of mobile autonomous agents
moving in the space with point mass dynamics. We investigate the dy-
namic properties of the group for the case that the topology of the neigh-
boring relations between agents varies with time. We introduce a set of
switching control laws and show that the desired stable flocking mo-
tion can be achieved by using them. The control laws are a combination
of attractive/repulsive and alignment forces, and the control law act-
ing on each agent relies on the state information of its neighbors and
the external reference signal. By using the control laws, all agent veloc-
ities asymptotically approach the desired velocity, collisions are avoided
between the agents, and the final tight formation minimizes all agent
potentials. Finally, numerical simulations are worked out to further il-
lustrate our theoretical results.

1 Introduction

Stimulated by the simulation results in [1], Tanner et al. [2] considered a group
of mobile agents moving in the plane with double integrator dynamics. They
introduced a set of control laws that enable the group to generate stable flocking
motion, and provided theoretical justification. From [3], it is easy to see that
these control laws cannot regulate the final speed and heading of the group.
On the other hand, in reality, the motion of the group sometimes is inevitably
influenced by some external factors. In some cases, the regulation of agents
has certain purposes such as achieving desired common speed and heading, or
arriving at a desired destination. Therefore, the cooperation/coordination of
multiple mobile agents with some virtual leaders is an interesting and important
topic. There have been some papers dealing with this issue in the literature. For
example, Leonard and Fiorelli [4] viewed reference points as virtual leaders to
manipulate the geometry of autonomous vehicle group and direct the motion of
the group.
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In this paper, we investigate the collective behavior of multi-agent systems in
high-dimensional space with point mass dynamics and with dynamic topology.
We view the external control signal (or “mission”) as virtual leader to direct,
herd and/or manipulate the agent group behavior. During the course of mo-
tion, each agent is influenced by the external signal and the motion of other
agents in the group. In order to generate the desired stable flocking motion,
we introduce a set of switching control laws such that each agent regulates its
position and velocity based on the desired velocity and the state information
of its “neighbors”. By using the control laws, all agent velocities asymptotically
approach the desired value, collisions are avoided between the agents, and the
final tight formation minimizes all agent potentials. One salient feature of this
paper is that the self-organized global behavior is achieved via local feedback,
i.e., the desired emergent dynamics is produced through local interactions and
information exchange between the dynamic agents.

This paper is organized as follows: In Section 2, we formulate the problem to
be investigated. By using some specific control laws, we analyze the system sta-
bility and the motion of the center of mass (CoM) in Section 3. Some numerical
simulations are presented in Section 4. Finally, we briefly summarize our results
in Section 5.

2 Problem Formulation

We consider a group of N agents moving in an n-dimensional Euclidean space,
each has point mass dynamics described by

ẋi = vi

miv̇
i = ui, i = 1, · · · , N (1)

where xi ∈ R
n is the position vector of agent i, vi ∈ R

n is its velocity vector,
mi > 0 is its mass, and ui ∈ R

n is the (force) control input acting on agent i.
xij = xi − xj denotes the relative position vector between agents i and j.

Our objective is to make the entire group move at a desired velocity and
maintain constant distances between the agents. In what follows, we will investi-
gate the motion of the agent group in two different cases, that is, we consider the
group motion in ideal case (i.e., velocity damping is ignored) and nonideal case
(i.e., velocity damping is taken into account), respectively. For the two different
cases, we propose two different control laws to achieve our control objective.

We first consider the ideal case. In this case, we try to regulate each agent
velocity to the desired velocity, reduce the velocity differences between neigh-
boring agents, and at the same time, regulate their distances such that their
potentials become minimum. Hence, we choose the control law ui for agent i to
be

ui = αi + βi + γi (2)

where αi is used to regulate the potentials among agents, βi is used to regulate
the velocity of agent i to the weighted average of its neighbors, and γi is used
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to regulate the momentum of agent i to the desired final momentum (all to be
designed later). αi is derived from the social potential fields which is described
by artificial social potential function V i, a function of the relative distances
between agent i and its flockmates. Collision-free and cohesion in the group can
be guaranteed by this term. βi reflects the alignment or velocity matching with
neighbors among agents. γi is designed to regulate the momentum among agents
based on the external signal (the desired velocity). In some cases, by using such a
of momentum regulation, we can obtain the explicit convergence rate of the CoM
of the system. Note that, in fact, the design of αi and βi indicates that, during
the course of motion, agent i is influenced only by its “neighbors”, whereas γi

reflects the influence of the external signal on the agent motion.
Certainly, in some cases, the velocity damping can not be ignored. For ex-

ample, objects moving in viscous environment and mobile objects with high
speeds such as supersonic aerial vehicles, are subjected to the influence of ve-
locity damping. Then, in this case, the model in (1) should be in the following
form

ẋi = vi

miv̇
i = ui − kiv

i (3)

where ki > 0 is the “velocity damping gain”, −kiv
i is the velocity damping

term, and ui is the control input for agent i. Here we assume that the damping
force is in proportion to the magnitude of velocity and the damping gains ki,
i = 1, · · · , N are not equal to each other. In order to achieve our objective, we
need to compensate for the velocity damping. Hence, we modify the control law
ui to be

ui = αi + βi + γi + kiv
i. (4)

3 Main Results

In this section, we investigate the stability properties of multiple mobile agents
with point mass dynamics described in (1). We will present explicit control
input in (2) for the terms αi, βi and γi. We will employ algebraic graph theory,
differential inclusion, and nonsmooth analysis as basic tools for our discussion.
Some concepts and results can be found in [8]–[12].

Throughout this paper, we assume that each agent is equipped with an on-
board neighboring sensor which is used to sense the position and velocity infor-
mation of its “neighbors” and an onboard signal detector which is used to detect
the external signal, and assume that all sensors can sense instantaneously.

Following [2], we make the following definitions and assumptions.

Definition 1. [2] (Neighboring graph) The neighboring graph, G = (V , E), is an
undirected graph consisting of a set of vertices, V = {n1, · · · , nN}, indexed by
the agents in the group, and a set of edges, E = {(ni, nj) ∈ V × V | nj ∼ ni},
containing unordered pairs of vertices that represent neighboring relations.

The neighboring graph G is used to describe the sensor information flow in
the group. In G, an edge (ni, nj) means that agent i can sense agent j, and it
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will regulate its state based on the position and velocity information of agent j.
In this paper, we consider a group of mobile agents with dynamic topology. Let
I = {1, 2, · · · , N}. Denote the set Ni � {j | ‖xij‖ ≤ R} ⊆ I\{i} which contains
all neighbors of agent i, where R is a positive constant and can be viewed as
the agent sensing radius. This means that agent i can only obtain the state
information of the agents who are contained in Ni. Note that we assume the
same sensing radius for all agents in the group. During the course of motion, the
relative distances between agents vary with time, so the neighbors of each agent
are not fixed, which generates the switching neighboring graph. Throughout this
paper, we assume that the neighboring graph G remains connected, which ensures
that the group will not be divided into several isolated subgroups. In order to
depict the potential between two agents, we present the following definition.

Definition 2. [2] (Potential function) Potential V ij is a nonnegative function
of the distance ‖xij‖ between agents i and j, such that V ij(‖xij‖) → ∞ as
‖xij‖ → 0, V ij attains its unique minimum when agents i and j are located at
a desired distance, and V ij is increasing near ‖xij‖ = R.

Functions V ij , i, j = 1, · · · , N are the artificial social potential functions
that govern the interindividual interactions. Function V ij can be nonsmooth
at ‖xij‖ = R, and in order to capture the fact that the motion of each agent
only depends on the state information of its neighbors, we assume that potential
V ij(‖xij‖) is a constant V ij

R = V ij(R) for ‖xij‖ > R. One example of such
potential functions is the following

V ij(‖xij‖) =
{

a ln ‖xij‖2 + b
‖xij‖2

a lnR2 + b
R2

for 0 < ‖xij‖ ≤ R
for x > R

(5)

where a, b and R are some positive constants such that R >
√

b/a. Note that
the assumption R >

√
b/a is reasonable as this implies that the desired distance

between the agents is smaller than the agent’s sensing range R. It is easy to see
that V ij attains its unique minimum a(1 + ln(b/a)) when ‖xij‖ =

√
b/a.

By the definition of V ij , the total potential of agent i can be expressed as

V i �
∑

j /∈Ni,j �=i

V ij
R +

∑
j∈Ni

V ij
(∥∥xij

∥∥) .

During the course of motion, each agent regulates its position and velocity
based on the external signal and the state information of its neighbors. However,
it is known that, in reality, because of the influence of some external factors, the
reference signal is not always detected by all agents in the group. In this paper,
we will consider the case that the signal is sent continuously and at any time,
there exists at least one agent in the group who can detect it. In what follows,
we only present the detailed analysis for the ideal case, since for the nonideal
case, we only need to add the terms kiv

i (i = 1, · · · , N) to cancel the velocity
damping. We take the control law ui to be

ui = −
∑
j∈Ni

wij

(
vi − vj

)−
∑
j∈Ni

∇xiV ij − hi
smi

(
vi − v0) (6)
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where v0 ∈ R
n is the desired common velocity and is a constant vector, hi

s equals
1 if agent i can detect the reference signal and is 0 otherwise, wij ≥ 0 and wii = 0,
i, j = 1, · · · , N represent the interaction coefficients. In this paper, we assume
that, if agents i and j are the neighboring agents, the interaction coefficient wij =
cij is fixed, where cij > 0 (∀ i 
= j) is a constant, and otherwise wij = 0. This
means that there is only two choices for the interaction coefficient between agents
i and j that are cij and 0. Here we always assume that cij = cji, which means that
the interaction between agents is reciprocal. We denote Wσ = [wij ]σ ∈ R

N×N

as the interaction coefficient matrix (coupling matrix), where σ is a switching
signal and is a piecewise constant function σ(t) : [0,∞) → P , P is a finite index
set where the number of the indices is equal to the number of the connected
neighboring graphs in the group. The switching signal σ relies on the distances
between agents. Hence, Wσ is always symmetric, and by the assumption of the
connectivity of the neighboring graph, Wσ is always irreducible.

3.1 Stability Analysis

Lemma 1. [2] Function V ij is regular everywhere in its domain. Moreover, the
generalized gradient of V ij at R and the (partial) generalized gradient of V ij

with respect to xi at R are empty sets.

Theorem 1. By taking the control law in (6), all agent velocities in group (1)
asymptotically approach the desired common velocity, collisions are avoided be-
tween the agents, and the group final configuration minimizes all agent potentials.

This theorem becomes apparently true after Theorem 2 is proved, so we
proceed to present Theorem 2.

We define the error vectors: ei
p = xi − v0t, and ei

v = vi − v0, where t is time
variable and v0 is the desired common velocity. Then ei

v represents the velocity
difference vector between the actual velocity and the desired velocity of agent i.
It is easy to see that ėi

p = ei
v and ėi

v = v̇i. Thus the error dynamics is given by

ėi
p = ei

v

ėi
v = 1

mi
ui, i = 1, · · · , N.

(7)

By the definition of V ij , it follows that V ij(‖xij‖) = V ij(‖eij
p ‖) � Ṽ ij , where

eij
p � ei

p−ej
p, and hence Ṽ i = V i and ∇ei

p
Ṽ ij = ∇xiV ij . Thus, the control input

for agent i in the error system has the following form

ui = −
∑
j∈Ni

wij

(
ei

v − ej
v

)−
∑
j∈Ni

∇ei
p
Ṽ ij − hi

smie
i
v. (8)

Theorem 2. By taking the control law in (8), all agent velocities in the system
described in (7) asymptotically approach zero, collisions are avoided between the
agents, and the group final configuration minimizes all agent potentials.
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Proof. Consider the positive semi-definite function: J = 1
2

∑N
i=1(Ṽ

i + mie
iT
v ei

v).
It is easy to see that J is the sum of the total artificial potential energy and the
total kinetic energy of all agents in the error system. Function J is continuous
but may be nonsmooth whenever ‖eij

p ‖ = R for some (i, j) ∈ I × I. Define the
level set of J in the space of agent velocities and relative distances in the error
system: Ω = {(ei

v, e
ij
p ) | J ≤ c, c > 0}. Though the neighboring relations vary

with time, under the assumption of the connectivity of the neighboring graph
Gσ, the set Ω is compact. This is because the set (ei

v, e
ij
p ) such that J ≤ c is

closed by continuity. Moreover, boundedness can be proved by connectivity. In
fact, because the neighboring graph is always connected, there must be a path
connecting any two agents i and j in the group and its length does not exceed
N − 1, and on the other hand, the distance between two interconnected agents
is not more than R, hence, we have ‖eij

p ‖ ≤ (N − 1)R. By similar analysis, we
have eiT

v ei
v ≤ 2c/mi, thus ‖ei

v‖ ≤ √
2c/mi. Note that the restriction of J in Ω

ensures collision avoidance and the differentiability of ‖eij
p ‖, ∀ i, j ∈ I.

By the definition of Ṽ ij , Ṽ ij is continuous and locally Lipschitz. From Lemma
1, Ṽ ij is regular everywhere in its domain and then Ṽ i is regular everywhere,
hence, J is regular as a sum of regular functions [12]. Then, we have

∂J ⊂
⎡⎣ N∑

j=2

(
∂e1

p
Ṽ 1j

)T

, · · · ,
N−1∑
j=1

(
∂eN

p
Ṽ Nj

)T

, m1e
1T
v , · · · , mNeNT

v

⎤⎦T

.

Hence, the generalized time derivative of J is

˙̃
J ⊂

N∑
i=1

⎛⎝⋂
ξi

ξT
i ei

v

⎞⎠−eT
v K

[
(Lσ ⊗ In) ev +

(
· · · ,

(
∇ei

p
Ṽ i

)T

, · · ·
)T

+ (Hs ⊗ In) ev

]

where ξi ∈ ∑N
j=1,j �=i ∂ei

p
Ṽ ij , ev =

(
e1T

v , · · · , eNT
v

)T
is the stack vector of all

agent velocity vectors in the error system, Lσ = [lij ]σ with lij = −wij for
all i 
= j and lij =

∑N
k=1,k �=i wik for all i = j, ⊗ stands for the Kronecker

product, In is the identity matrix of order n, ∇ei
p
Ṽ i =

∑
j∈Ni

∇ei
p
Ṽ ij , and

Hs = diag
(
h1

sm1, · · · , hN
s mN

)
. Due to the switching topology of the neighboring

relations, Lσ and ∇ei
p
Ṽ i are switching over time. By Lemma 1, we get ˙̃

J ⊂
−co

{
eT

v (Lσ ⊗ In) ev

}− co
{
eT

v (Hs ⊗ In) ev

}
.

By matrix theory [8] and by the definition of matrix Lσ, it is easy to see
that Lσ is positive semi-definite. On the other hand, by the connectivity of Gσ,
it follows that Lσ is irreducible and the eigenvector associated with the single
zero eigenvalue is 1N = [1, · · · , 1]T ∈ R

N . From the proof of Theorem 1 in [3],
we obtain that, for any graph Gσ, the eigenvalues of Lσ ⊗ In are nonnegative,
λ = 0 is an eigenvalue of multiplicity n, and −co{eT

v (Lσ ⊗ In)ev} is an interval
of the form [l1, 0] with l1 < 0, and only when e1

v = · · · = eN
v , 0 is contained in

−co{eT
v (Lσ ⊗ In)ev}. Furthermore, it is easy to see that matrix Hs is positive

semi-definite, hence −co{eT
v (Hs ⊗In)ev} is an interval of form [l2, 0] with l2 < 0,
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and 0 is contained in −co{eT
v (Hs ⊗ In)ev} only when ei

v = 0 for each agent i

with hi
s = 1. Therefore, for any z ∈ ˙̃

J , z ≤ 0, and only when e1
v = · · · = eN

v = 0,
0 is contained in −co{eT

v (Lσ ⊗ In)ev} − co{eT
v (Hs ⊗ In)ev}. This occurs only

when v1 = · · · = vN = v0. It follows that ėi
v = 0, and ėij

p = 0, ∀ (i, j) ∈
I × I. We use nonsmooth version LaSalle’s invariance principle [10] to establish
convergence of the system trajectories to the largest invariant subset of the set
defined by S = {ev ∈ Ω | 0 ∈ ˙̃

J}. In the set, the agent velocity dynamics is ėi
v =

− 1
mi

∑
j∈Ni

∇ei
p
Ṽ ij = − 1

mi
∇ei

p
Ṽ i. Thus, in steady state, all agent velocities in

the error system no longer change and equal zero, and moreover, the potential
Ṽ i of each agent i is minimized. Collision-free can be ensured between the agents
since otherwise it will result in Ṽ i → ∞. ��

From the proof of Theorem 2, it follows that, in steady state, all agent actual
velocities no longer change and are equal to the desired velocity.

Remark 1. Note that, when all nonzero interaction coefficients equal 1, i.e., cij =
1, ∀ i 
= j, i, j ∈ I, the desired stable flocking can still be obtained, and here
Lσ is the Laplacian matrix of Gσ . But due to the differences between agents, we
assume that the coupling coefficients between them are not equal to each other.

3.2 The Motion of the CoM

In what follows, we will prove that, when the external signal can always be
detected by all agents, the velocity of the CoM can be estimated explicitly.

In this case, the control law in (6) has the following form

ui = −
∑
j∈Ni

wij

(
vi − vj

)−
∑
j∈Ni

∇xiV ij − mi

(
vi − v0) . (9)

The position vector of the CoM of system (1) is defined as x∗ = (
∑N

i=1 mix
i)/

(
∑N

i=1 mi). Thus, the velocity vector of the CoM is v∗=(
∑N

i=1 miv
i)/(

∑N
i=1 mi).

By using control law (9) and by the symmetry of matrix Wσ and the symmetry
of function V ij with respect to xij , we get v̇∗ = −v∗ + v0. Suppose the initial
time t0 = 0, and v∗(0) = v∗0 . We get v∗ = v0 + (v∗0 − v0)e−t. Thus, it follows
that, if v∗0 = v0, then the velocity of the CoM is invariant and equals v0 for all
the time; if v∗0 
= v0, then the velocity of the CoM exponentially converges to
the desired velocity v0 with a speed of 1. Therefore, from the analysis above, we
have the following theorem.

Theorem 3. By taking the control law in (9), if the initial velocity of the CoM
is equal to the desired velocity, then it is invariant for all the time; otherwise it
will exponentially converge to the desired velocity.

Remark 2. By the calculation above, we can see that, when the external signal
can always be detected by all agents in the group, the velocity variation of the
CoM does not rely on the neighboring relations or the magnitudes of the inter-
action coefficients. Even if the neighboring graph is not connected, the velocity
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of the CoM still equals the desired velocity or exponentially converges to it, and
the final velocities of all connected agent subgroups equal the desired velocity
as well. However, in this case, the distance between two disconnected subgroups
might be very far. Furthermore, it is obvious that the convergence rate of the
system is slower than that of the CoM, hence, by using the control law in (9), if
the initial velocity of the CoM is not equal to the desired velocity, then the fastest
convergence rate of the system does not exceed the exponential convergence rate
with convergence exponent 1.

3.3 Discussions on Various Control Laws

In the sections above, we introduced a set of switching control laws that enable
the group to generate the desired stable flocking motion. However, it should be
clear that control law (6) is not the unique control law to produce the desired
motion for the agent group. In what follows, we will propose some other useful
control laws to achieve our control objective.

Suppose that αi and βi rely on agent i’s mass. The control law acting on
agent i has the following form

ui = −
∑
j∈Ni

miwij

(
vi − vj

)−
∑
j∈Ni

mi∇xiV ij − hi
smi

(
vi − v0) . (10)

In this case, for the error system (7), we choose the Lyapunov function J =
1
2

∑N
i=1(Ṽ

i + eiT
v ei

v). Following the analysis method in Theorem 2, we can show
that the desired stable flocking motion will be achieved.

Definition 3. Define the center of the system of agents as x = (
∑N

i=1 xi)/N .
The average velocity of all agents is defined as v = (

∑N
i=1 vi)/N .

It is obvious that the velocity of the system center is just the average velocity
of all agents. When the external reference signal can always be detected by all
agents in the group, i.e., hi

s ≡ 1 for all i ∈ I, by using the control law in (10),
we have v̇ = −v + v0. Suppose the initial time t0 = 0 and v(0) = v0. We get
v = v0 + (v0 − v0)e−t. It is obvious that, if v0 = v0, then the velocity of the
system center is equal to the desired velocity v0 for all the time, and if v0 
= v0,
then the velocity of the system center exponentially converges to the desired
velocity with a speed of 1.

4 Simulations

In this section, we will present some numerical simulations for system (1) in
order to illustrate the theoretic results obtained in the previous sections.

These simulations are performed with ten agents moving in the plane whose
initial positions, velocities and the neighboring relations are set randomly, but
they satisfy: 1) all initial positions are chosen within a ball of radius R∗ = 10[m]
centered at the origin, 2) all initial velocities are set with arbitrary directions
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Fig. 1. The group state

and magnitudes in the range of (0, 4)[m/s], and 3) the neighboring graph re-
mains connected. All agents have different masses to each other and they are
set randomly in the range of (0, 1)[kg]. The external reference signal is sent
continuously, and at any time, there exists only one agent who can detect it.

Fig. 1 shows the results in one of our simulations, where the control laws
are taken in the form of (6) with the explicit potential function (5), where
a = b = 0.05 and R = 4[m]. The interaction coefficient cij is generated ran-
domly such that 0 < cij = cji < 1, ∀ i 
= j, i, j = 1, · · · , 10. Correspondingly, the
coupling matrix Wσ is generated such that the nonzero wij equals cij . We run
the simulation for 240 seconds. Here we choose the desired common velocity to
be [0.1,−0.1]T , and the initial velocity of the CoM is [0.1962, 0.0699]T . Fig. 1 (a)
presents the group initial state, Fig. 1 (b) depicts the motion trajectories of all
agents and six configurations of the group at different times, and Fig. 1 (c) shows
the final configuration and velocity of the agent group (i.e., the desired common
velocity v0 = [0.1,−0.1]T ), where the solid lines represent the neighboring re-
lations, the dotted lines represent the agent trajectories, the dotted lines with
arrows represent the agent velocities, and the dashed line with arrow represents
the motion direction of the group. Fig. 1 (d) is the velocity plot, where the solid
arrow indicates the tendency of velocity variation, and it distinctly demonstrates
that all agent velocities asymptotically approach the desired velocity.

Hence, numerical simulations also indicate that, by using the control law in
(6), the desired stable flocking motion can be achieved.
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5 Conclusions

We have investigated the collective behavior of multiple dynamic agents mov-
ing in an n-dimensional Euclidean space with point mass dynamics and with
dynamic topology, and presented some switching control laws which ensure the
group to generate the desired stable flocking motion. The control laws are a
combination of attractive/repulsive and alignment forces, and they ensure that
all agent velocities asymptotically approach the desired velocity, collisions are
avoided between the agents, and the final tight formation minimizes all agent
potentials. Moreover, when the external reference signal can always be detected
by all agents, the velocity of the CoM either is equal to the desired velocity or
exponentially converges to it. Furthermore, when the velocity damping is taken
into account, we can properly modify the control laws to generate the desired sta-
ble flocking motion. Finally, we provided some numerical simulations to further
illustrate our theoretical results.
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Abstract. This paper investigates the interaction between cultural evolution and 
biological evolution in the emergence of phonemic coding in speech. It is ob-
served that our nearest relatives, the primates, use holistic utterances, whereas 
humans use phonemic utterances. It can therefore be argued that our last com-
mon ancestor used holistic utterances and that these must have evolved into 
phonemic utterances. This involves co-evolution between a repertoire of speech 
sounds and adaptations to using phonemic speech. The culturally transmitted 
system of speech sounds influences the fitness of the agents and could con-
ceivably block the transition from holistic to phonemic speech. This paper in-
vestigates this transition using a computer model in which agents that can either 
use holistic or phonemic utterances co-evolve with a lexicon of words. The 
lexicon is adapted by the speakers to conform to their preferences. It is shown 
that although the dynamics of the transition are changed, the population still 
ends up of agents that use phonemic speech.  

1   Introduction 

All spoken human languages are phonemically coded, that is, they have a large reper-
toire of words that are built up of a far smaller number of basic building blocks1. Thus 
the words “tea” and “eat” have different meanings, even though they are made up of 
the same basic sounds. The repertoires of calls of higher primates, on the other hand, 
are not phonemic. Although their calls are sometimes made up of smaller units such 
as in the long calls of gibbons, [3] it is not likely that the order of the units influences 
the meaning of the calls, or that new calls can be created by rearranging the units. 
Such systems are called holistic in this paper. 

As our closest evolutionary relatives (Bonobos, Chimpanzees, Gorillas, Orangu-
tans) all use holistic call systems, it can be safely assumed that our last common an-
cestor also used a holistic call system. At some point in evolution the call system must 
have made the transition from a holistic to phonemic. This paper addresses an aspect 
                                                           
1  It is likely that humans use a combination of holistic and phonemic storage. Infants probably 

store the first words they learn very accurately, and analyze them into building blocks only 
later e.g. [1]. In adult language, too, there are some utterances that have communicative func-
tion and are learned, but that fall outside the phonology of the language (called “protosyllabic 
fossils” in [2]).  Examples are utterances such as “pssst”, “pffff”, and “tsk tsk”. Such utter-
ances are probably stored holistically. 
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of the question of how this transition can have taken place, and investigates it with the 
use of a computer model. 

Phonemic call systems have a number of advantages over holistic call systems. As 
they make use of a limited number of discrete building blocks, utterances become 
more robust. Small errors in pronunciation of a building block will not immediately 
change it into another building block. This is an example of categorical perception, a 
phenomenon that is important in the perception of speech [4]. Also, phonemic sys-
tems can be made productive: new utterances can be formed by recombining the 
building blocks in novel ways. Finally, phonemic coding makes it possible to store 
large repertoires of utterances more compactly. Whereas holistic utterances need to be 
stored in complete detail, phonemic utterances can be stored in terms of strings of 
building blocks, while only the building blocks themselves need to be stored in detail. 
It is this aspect that this paper will focus on. 

Although phonemic coding is advantageous for systems with a large number of ut-
terances, holistic systems appear to be preferred for smaller numbers of utterances. 
This is understandable, as storage complexity and robustness are comparable for 
small systems, while new utterances can also be created easily in both types.  The 
cognitive complexity of a phonemic system, however, is much higher. It is therefore 
understandable that a call system would evolve from holistic to phonemic as it grows 
in size. 

This paper does not model the emergence of phonemic coding as such, as is done 
in for example [5], or the evolution of learning behavior [6], but focuses on the dy-
namics of the interaction between cultural and biological evolution. The influence of 
culture is important in the evolution of language e. g. [7, 8], but it could be seen as a 
complicating factor in the transition from a holistic to a phonemic sound system: lan-
guages adapt to the abilities of the language users [9] and it can therefore be assumed 
that a population of holistic learners will shape the language towards holism. As it is 
assumed that holism is a better strategy for small systems, the system that exists in the 
population will at first be optimized for holistic learners. When the system becomes 
bigger, it could become stuck in a state where phonemic coding would in principle be 
more optimal, but where the existing holistic system (as preferred and perpetuated by 
the holistic learners in the population) causes the fitness of phonemic learners to re-
main low. This paper investigates the interaction between cultural evolution of a rep-
ertoire of sounds and the “biological” evolution of the acquisition strategies in a popu-
lation of language learners. 

2   Phonemic and Holistic Acquisition 

In a computer model that investigates the evolution of phonemic acquisition, there 
must be agents that can both learn a system of speech sounds as a set of holistic motor 
programs, or as a set of utterances that consist of smaller building blocks and that are 
thus phonemically coded. In order to implement this, accurate definitions of holistic 
and phonemic storage are required. In this paper, a holistic system uses only one level 
of storage. All utterances in the lexicon are stored as exact motor programs. A pho-
nemic system, on the other hand, uses two levels of storage. These are the level of the 
lexicon and the level of the gestures that make up the building blocks out of which the 
lexicon is built up. In real language, these could be phonemes, syllables, gestures or 
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any other realistic primitive. The gestures that make up the building blocks are stored 
exactly, just as in the holistic system. The lexicon, however stores words as sequences 
of building blocks, without specifying the details of the building blocks. Learning and 
storing a pointer to a building block requires less space and effort than learning and 
storing the actual gestures of the building block. A holistic gesture must be stored 
with maximum accuracy, as a small change might result in a complete change in 
meaning. As fewer basic gestures are used in a phonemic system, the margin for error 
is greater, and storage and learning becomes easier. The two systems are illustrated in 
figure 1.  

Holistic Storage Combinatorial Storage

Lexicon Lexicon Phoneme List

Meaning 1 Meaning 1
Motor 

Program 1
Motor 

Program 1

Meaning 3 Meaning 3
Motor 

Program 3
Motor 

Program 3

Meaning 2 Meaning 2
Motor 

Program 2
Motor 

Program 2

Meaning N Meaning N
Motor 

Program N
Motor 

Program k

Phoneme 
String 1

Phoneme 
String 2

Phoneme 
String 3

Phoneme 
List N

 

Fig. 1. Diagrams of holistic storage and phonemic storage 

If the number of motor programs that are actually used in the lexicon is much 
smaller than the number of possible motor programs, it can be assumed that the stor-
age of complete motor programs requires more space than storing symbols that repre-
sent them. In that case, the lexicon can be stored more compactly using phonemic 
storage than using holistic storage.  

The fitness of agents that use holistic and phonemic coding is determined by a 
number of factors. One possible factor is the amount of storage required to store a 
given lexicon. Another factor is the robustness and the communicative success in 
noisy conditions that can be achieved e. g. [10]. A third factor is the amount of cogni-
tive effort that is needed for learning, processing and producing the lexicon. In this 
paper only the storage requirement is taken into account. 

The space s necessary for storing a lexicon L is as follows: 

 

, for a holistic system

,for a phonemic system
i

i

i
w L

i
w L

l

s
n l

α

α β γ
∀ ∈

∀ ∈

⋅
=

⋅ + ⋅ +
, (1) 

where α is the number of bits needed to store all information about the motor program 
of a certain gesture, li is the number of gestures in word wi, n is the number of differ-
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ent articulatory gestures (building blocks or “phonemes”) used by a phonemically 
coding agent, β is the number of bits needed to specify a phoneme in a word and γ the 
overhead needed for a phonemically coded system. From these equations it is clear 
that holistic coding is more efficient for a lexicon that has only words consisting of a 
single gesture. Phonemic coding is more efficient if there are many words re-using the 
same gestures in the lexicon. The exact parameter values define the transition point. It 
has not been attempted to estimate realistic values for the parameters. Our knowledge 
of how speech is stored in the brain is insufficient for this. Nevertheless, there are a 
few relations between the parameters that can be determined from first principles. It 
must be true that α β ,  as specifying a gesture exactly is more complex than refer-

ring to it. It must also be true that 2log nβ ≡ . The more phonemes there are, the more 

bits are needed to distinguish them, and information theory [11] teaches that this 
number is proportional to the logarithm of the number of phonemes. Furthermore, it is 
impossible to use all potential articulatory gestures as distinctive speech sounds (pho-
nemes). In order to preserve acoustic distinctiveness with a margin of error there must 
be unused acoustic and articulatory space between different gestures. This means that 
there are fewer possible phonemes than possible gestures. This can be formulated in 
the equation: max 2n α , where nmax is the maximal number of phonemes, and 2α is 

the maximum number of possible gestures, as this is the number of different strings of 
α bits (if there were more gestures, more bits would be needed to distinguish them).  

The above considerations imply that a lexicon with a sufficiently large number of 
words always needs to contain words that consist of multiple gestures. Therefore, for 
sufficiently large lexicons, phonemic coding will be more efficient. If the lexicon is 
small, on the other hand, it can consist of single-gesture words without impeding dis-
tinctiveness. Therefore holistic coding can be more efficient.  

At some intermediate size, a transition from optimality of holistic systems to opti-
mality of phonemic systems must occur. At what size the transition will actually take 
place is not just determined by the parameters (which can be considered genetically 
determined factors) but also by what system is already in use in a population, i.e. cul-
tural factors. Holistic learners will prefer a system with many different gestures and 
short words, while phonemic learners prefer a system with long words and few differ-
ent gestures. Through self-organization, the sound system in the population will tend 
to adapt to the preferences of the majority of the population. This will have effects on 
the dynamics in a system where both the learned system of speech sounds and the 
learners themselves change. 

3   The Model 

A computer model has been implemented to investigate the dynamics of a system that 
combines genetic evolution of learners with cultural evolution of a repertoire of 
speech sounds. There are two kinds of agents in the model: holistic learners and pho-
nemic learners. This is a simplification, because humans probably use both strategies, 
but this makes it much easier to understand the dynamics of the model. As there are 
only two types of agents, the population could have been modeled as a set of one-bit 
genomes. Instead, it has been decided to model only the fraction of agents that learn 
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holistically, ph and the fraction that learns phonemically, pp. Although this way of 
modeling a population is perhaps unusual in artificial life, where one generally prefers 
to model complete agents, it is an old tradition in theoretical biology [12]. Because 
there are only two agent types, it follows that 1h pp p+ = . As all agents within each 

group are identical, fitness can be associated with the group instead of with the indi-
viduals. The fitness of the two groups is indicated with fh and fp, respectively and they 
are used to calculate the fractions of each type of agent in the next generation. There 
is also the probability μ of one type of agent mutating into the other type of agent (set 
to 0.1 in the simulations presented here). The equations for calculating the proportion 
of agents in the next generation are as follows: 

 
( )
( )

, 1 , , , ,

, 1 , , , ,

h t h t h t p t p t

p t p t p t h t h t

p f p f p

p f p f p

ν μ

ν μ
+

+

← ⋅ + ⋅ ⋅

← ⋅ + ⋅ ⋅
, (2) 

where ν is a factor that causes ph,t+1 and pp,t+1 to sum to one.  
All agents in the population, both holistic and phonemic learners, share the same 

lexicon. The fitness of each group is determined by the number of bits needed to store 
this lexicon. The lexicon consists of a list of words that each in turn consist of one or 
more basic gestures. These basic gestures can be represented by symbols, and phone-
mic learners use them as their building blocks (phonemes). Equation 1 is used for cal-
culating the number of bits needed to store a repertoire. An example of a repertoire 
and the number of bits needed to store it is given in figure 2. The values of the pa-
rameters used to calculate these numbers are as follows: number of bits for a gesture 
(α): 10, penalty for using a phonemic system (γ): 30 bits, number of bits used per 
phoneme (β): log2 n. These same parameters were used in all the simulations as well. 
Note that it is possible to optimize the lexicon used in the example for both holistic 
and phonemic learners. For holistic learners, a system using the same gestures and 
having the same number of words, but needing only 110 bits of storage can be con-
structed (by changing ao into o and aea into ea, for example). Phonemic coding could 
also be substantially more efficient, for example by using two one-phoneme, four 
two-phoneme and two three-phoneme words. In that case only two different pho-
nemes would be needed, resulting in a size of 66 bits. The resulting lexicons are 
shown on the right side of figure 2. It is clear that for lexicons of the same size, holis-
tic and phonemic learners prefer very different words. 

Given the number of bits sp and sh for phonemic and holistic learners, respectively 
the fitnesses are calculated as follows: 
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+

= −
+

. (3) 

Note that fitness is relative: the fitness of one group of agents depends on the fit-
ness of the other group. Thus the two groups co-evolve. 

Each generation, the lexicon can be modified. A new word can be added with a 
certain probability and the words in the lexicon are modified in correspondence  
with the preferences of the agents in the population. The new word that is added is the  
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Lexicon:
a
e
i
u
ae
ao
iu

aea

Phonemes
(if used)

a
e
i
o
u

Bits per phoneme = log2(5) ~ 2.3 

Holistic bits:
130

Phonemic bits:
50+31+30 = 111

Ideal
Holistic

a
e
i
o
u
ae
iu
ea

Ideal
Phonemic

a
e
aa
ae
ea
ee
aaa
aae

 

Fig. 2. Example of a lexicon and the number of bits needed for holistic and phonemic storage. 
For parameter values, see the text. 

shortest word that is not already present. Addition is a holistic process, in the sense 
that new articulatory gestures can be created. It was decided to implement addition as 
a holistic process, because phonemic addition would not as readily add new phonemes 
to a growing repertoire, and because in the stage before transition, the majority of the 
population is expected to consist of holistic learners. A possible variant of the model 
would be to make the type of addition used depend on the proportion of holistic and 
phonemic agents in the population. As words can sometimes be removed from the 
lexicon the added word can be shorter than the longest word in the lexicon. Words are 
added with a probability of 10% per generation.  

The lexicon can also be modified to better suit either type of agent. To suit holistic 
agents (who dislike long words) the longest word is removed from the lexicon and re-
placed with an unused shorter word, if possible. New articulatory gestures can be in-
troduced as a side effect. To suit phonemic agents, first the phoneme that is least often 
used is found, and then the word in which it occurs most frequently. It is then at-
tempted to replace this word with the shortest word that is build up of the phonemes 
already present in the lexicon. This can cause phonemes to disappear from the lexicon 
and average word length to increase. The first process puts pressure on the lexicon for 
shorter words and more phonemes, while the second process puts pressure on the 
lexicon for longer words and fewer phonemes. 

If culture is turned on in the simulation presented here, two words can be modified 
per generation. No modification takes place if there is no culture. For each modifica-
tion either a holistic or a phonemic agent is selected with probabilities that are propor-
tional to their abundance in the population. Thus, if there are many holistic agents, the 
lexicon is pushed towards holism. If there are many phonemic agents, it is pushed to-
wards phonemic coding. 

4   Results 

In the experiments, the population is initialized with 50% holistic and 50% phonemic 
agents. The lexicon is initialized with a single word (consisting of a single gesture). 
The maximum number of different gestures (nmax) is 16. The rest of the parameters are  



620 B. de Boer 

 

Fig. 3. Comparison of average behavior (over 10 runs) of a population without culture (left 
graph) and a population with culture (right graph). As the fractions of phonemic and holistic 
fractions are symmetrical, error bars showing standard deviation are only shown for the holistic 
fraction. 

as described above. The result of running the model without and with cultural influ-
ences is shown in figure 3. As can be seen from this figure, the proportion of holistic 
agents rapidly rises in the beginning. Holistic agents have higher fitness for small 
lexicons than phonemic agents (as would be expected). The population then remains 
almost exclusively holistic for a while (a minority of phonemic agents remains pre-
sent because of mutation). After a critical number of words is reached, the population 
makes a transition from a holistic majority to a phonemic majority.  

At first sight, there seems to be little difference in average behavior between sys-
tems with culture and without culture. However, as can be observed in the graph, the 
error bars in the graph for populations with culture are much larger. Apparently there 
is a difference between the two cases, but it is masked by the averaging procedure. 

The difference is caused by the fact that the transition is much faster for popula-
tions with culture than for populations without. This is illustrated in figure 4 which 
shows typical runs for systems without and with culture. For faster transitions, the 
standard deviation will be calculated over runs in which some of the populations are 
still in the holistic state and others in the phonemic state, hence increasing the stan-
dard deviation. But this only reflects the fact that the standard deviation is calculated 
over a distribution with two peaks, not that the peaks themselves are broader. 

A comparison of the number of generations needed for the fraction of holistic 
agents to change from above 60% to below 40% confirms this. This is 52.3 genera-
tions (σ = 14.6) for the population without culture and 12.1 generations (σ = 5.6) for 
the population with culture. There appears to be no significant difference for the time 
at which the drop takes place; this happens after 191 (σ = 42.6) and 194 (σ = 49.7) 
generations, respectively. There is a remarkably large variation in the number of gen-
erations to the transition, but this is due to the fact that the increase of the number of 
words is a random process. The large variation disappears when one looks at the 
number of words at which the transition takes place. The number of words at which 
the drop starts (the 60% holistic learners threshold is crossed) is 22.4 (σ = 0.52) for 
populations without culture and 21.4 (σ = 1.07) for systems with culture. Although 
this is a significant difference, it is probably caused by the fact that populations with 
culture go through the transition faster than populations without culture and it proba-
bly does not reflect a real difference in the size of the lexicon at which transition 
starts.  Systems  probably  start  to  transition  when  the number of words exceeds the  
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Fig. 4. Typical runs from a system without culture (left graph) and a system with culture (right 
graph). Note the faster transition in the graph with culture. 

number of possible articulatory gestures. This is borne out by inspection of the data 
sets and confirmed for systems with 32 instead of 16 possible different gestures. The 
number of combinatorial agents starts to rise once complex utterances become neces-
sary. Even systems that have been optimized for holistic learners then become more 
efficient for phonemic learners. 

These results are robust for changes of parameters. As has been said above, chang-
ing the number of possible gestures does not affect the qualitative behavior. Changing 
the number of modifications that are made to the repertoire does not appear to affect 
the results. Changing the mutation rate to a lower value (0.03) causes agents of the 
unfavored type to become rarer. As it takes slightly longer for the number of agents to 
rise when the transition starts, this causes transitions to occur slightly later (at 24–25 
words) An example is given in figure 5.  

 

Fig. 5. Typical runs from a system with low mutation rate (m=0.03). Note the similarity with 
the transition in the previous figure. 

5   Discussion and Conclusion 

In the experiments presented here, holistic and phonemic learners had to compete. Their 
fitness depended on the amount of storage that was needed for storing a lexicon that 
evolved (culturally) together with the agents. Both types of agents changed the lexicon 
such that it would be easier for them to learn, causing the lexicon to tend towards opti-
mality for the agents that had the majority in the population. It could be imagined that 
these cultural dynamics could cause the system to remain stuck in a local optimum, such 
that it would not make the transition from the (initially optimal) holistic lexicon to the 
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(ultimately optimal) phonemic lexicon. This was not observed in the experiments for 
different parameter settings. It can therefore be tentatively concluded that cultural inertia 
does not greatly influence the transition from holistic to phonemic speech. 

The dynamics of a population with culture was observed to be different than that 
from a population without culture, however. It was observed that a population can 
change much more abruptly from holistic to phonemic language use if there is co-
evolution of the culturally transmitted system of speech sounds with the genetically 
evolving language learners. This can be explained by the fact that once the proportion 
of phonemic learners starts to increase, the lexicon will also be changed to become 
more optimal for the phonemic agents. This increases the fitness of the phonemic 
agents, thus accelerating the transition. So although culture might at first be an obsta-
cle to the transition, in the end it accelerates it. 

These observations illustrate that the evolution of speech (and language) cannot be 
seen as either purely genetic or purely cultural evolution. Both mechanisms must be 
taken into account. They also confirm that phonemically coded systems win over ho-
listically coded systems, at least as far as storage is concerned. They win, even though 
at first there is a cultural evolution towards systems that are more learnable for holis-
tic learners. 

The model that was used is admittedly simplistic, and only a limited number of ex-
periments was performed. The model was made so simple in order to create a very 
basic model that nevertheless has interaction between the evolution of the acquisition 
of complex speech and the (cultural) evolution of the speech sounds themselves. 
There are many ways in which this work can be extended: a mathematical analysis of 
the dynamics would seem to be possible. Also, the influence of the different parame-
ters can be investigated, it could be investigated at which point the transition from ho-
listic to phonemic coding takes place exactly, different variants on the optimization 
procedures and the addition of new words could be tried out and many other small 
variants. 

More interesting, however, is to strive for more realism in the simulation. As the 
model is about the evolution of acquisition, it is important to try to model a popula-
tion of agents that really acquire the system of speech sounds. The acquisition mecha-
nism should have parameters that make it exploit phonemic structure to a higher or 
lower degree, and these parameters should be able to evolve. The time it takes to ac-
quire a repertoire of speech sounds and the accuracy with which this happens could be 
taken into account in the fitness function. A next step could then be to get rid of the 
global lexicon, and have them be emergent in the population, just as the sound sys-
tems are emergent in the population in [13, 14]. Also, more realistic constraints on 
production and perception could be added. Such a model would already be quite real-
istic, but also have much more complicated and hard-to-understand dynamics. The 
model as presented in this paper gives a basis for understanding such dynamics.  

Another important research topic would be finding independent evidence with 
which to compare the results of such a computer simulation. This can be evidence from 
language acquisition, evidence from the fossil record, or evidence from animal call 
systems. Perhaps the study of call systems from closely related primate species (the 
different species of gibbon, [15] for example) can provide insight into the circum-
stances under which a holistic call system can change into a phonemic call system.  
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The understanding of the dynamics of the evolution of speech is a crucial piece of 
the puzzle that cannot be found either by studying animals or by studying the fossil 
record. The interaction between the evolution of a cultural repertoire of speech sounds 
and the physical adaptations for processing, producing and perceiving them cause the 
evolution of speech to have very complex dynamics. Computer models can provide 
insights in these dynamics. The computer model presented here is an attempt to pro-
vide insight in the interaction between cultural and genetic evolution, and it is hoped 
that it can be used as an inspiration for further research. 
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Abstract. The complexity, variation, and change of languages make
evident the importance of representation and learning in the acquisi-
tion and evolution of language. For example, analytic studies of simple
language in unstructured populations have shown complex dynamics, de-
pending on the fidelity of language transmission. In this study we extend
these analysis of evolutionary dynamics to include grammars inspired
by the principles and parameters paradigm. In particular, the space of
languages is structured so that some pairs of languages are more similar
than others, and mutations tend to change languages to nearby vari-
ants. We found that coherence emerges with lower learning fidelity than
predicted by earlier work with an unstructured language space.

1 Introduction

The evolutionary dynamics of language provides insight into the factors allowing
subpopulations to converge on common or similar languages. The problem has a
more general significance for robotics and artificial life as a clear and empirically
supported platform for the study of how coherent behavior can emerge in a
population of distributed adaptive agents.

Of particular interest from the perspective of evolutionary dynamics are in-
sights into the means and value of conserving linguistic diversity. The practical
importance of linguistic diversity has attracted some attention [23,21], though
perhaps not as much as biological diversity. Recent studies that have applied
a biological perspective to the evolution of linguistic convergence and diversity
have shown promising results [7,8,22,17,11,20,15]. Most such studies that apply
a biological perspective to language evolution have been based on very simple
languages arbitrarily related to each one another. We believe these studies may
be enriched by a more realistic description of language.

Language models based on the Chomskian paradigm [1,2] view language as
an aspect of individual psychology. There has been some debate about the extent
to which the underlying representation of languages are inherited or learned and
how language impacts fitness. Pinker and Bloom, for example, suggest that a
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language instinct constrained by universal grammar sets the stage for language
acquisition which then contributes to individual fitness [19,18]. Hauser, Chomsky
and Fitch argue more recently that while certain perceptual and articulatory
abilities may have been selected for, it remains unclear how the most fundamental
aspects of human language emerged [9,6]. All parties agree that linguistically
relevant properties are to some extent learned through cultural transmission
and change through time. How this might occur has been the subject of many
analytic and simulation studies [15,16,20,11,22].

As an organism is determined in part by its genome, language is determined
in part by a lexicon of generators which in turn determine its phonology, se-
mantics, morphology and syntax; these properties may evolve [10,13]. Both the
genome and at least part of language is inherited with variation, and therefore
potentially a target for natural selection. These similarities have lead some re-
searchers to adopt a quasi-species model [5,4] for describing the dynamics of
language evolution [17,12]. In their model, grammars are mutationally equidis-
tant from each other with arbitrarily assigned similarity. It seems, however, that
the kind of changes language actually undergoes is much smaller than what this
model seems to predict – the language of a child is, more or less, the same as that
of its linguistic community. This suggests an approach where the similarity be-
tween languages is correlated with their distance from each other in mutational
space.

In this paper, we study how certain properties of the space of possible lan-
guages and learning mechanisms impact language change. We introduce a reg-
ularity in the language space by viewing the locus of language transmission as
a series of learned parameters and calculating the similarity between languages
as the proportion of parameters that agree. We explore the effect of this simple
regularity on the dynamics of language evolution primarily through simulations.
These simulations go beyond previous analytic studies of simple models, and we
find that structure has a significant impact on stability results.

2 Methods

Consider a fully-connected finite population of N individuals, each of whom
possesses a language which is encoded as a sequence of l linguistic ‘components’
or ‘parameters’. Each parameter can take only a limited number d of values. For

Table 1. Parameters used in the simulations

Symbol Parameters value(s)
N population size 500
f0 base fitness 10−3

l Number of language parameters 1, 2, 3, or 6
d Number of values per each parameter 64, 8, 4, or 2
n Number of possible grammars 64(= dl)

Number of time steps 100,000
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example, a language L with 10 parameters each taking 3 values (A,B,C) can be
represented by a linear sequence like AABABCBABA. (This string is not an example
of a statement from the language, but rather a represents the language itself.)
Such a representation is in the spirit of Chomsky’s “principles and parameters”
approach to language[15]. To allay a potential source of confusion: parameters,
as we use them here, correspond to whatever the relevant differences are between
language at the level of description relevant to transmission. This will correspond
to parameters in the Chomskian sense just in case these latter parameters are
appropriately relevant to linguistic transmission. We are throughout assuming
that whatever is being transmitted can be usefully viewed (at least to a first
approximation) as a finite sequence of finite-valued parameters.

Representing a language as a sequence, we define the language similarity
between individual i and j, denoted aij , as the proportion of parameters on
which the two individuals agree. For example, the language similarity between
an individual i whose language is represented as AAA and an individual j whose
language is represented as ABA is 2/3 and aij = aji.

The fitness of an individual has two parts: the base fitness, denoted f0, and
a linguistic merit proportional to the probability that the individual is able to
successfully communicate with another, selected at random from his neighbors.
The linguistic merit of an individual is proportional to the sum of language
similarity between the individual and others it is in linguistic contact with (which
is the entire population for this model). The overall fitness of an individual, fi,
is described as the following, as in [16]:

fi = f0 +
1
2

N∑
j=1

(aij + aji) = f0 +
N∑

j=1

aij (1)

noting that aij = aji according to our definition of similarity.
At each time step, an individual is chosen to reproduce randomly and in-

dependently with a probability according to relative fitness. Reproduction can
be thought of either as the individual producing an offspring which inherits the
parent’s language and replaces another in the population, or another individual
changing its language to match the “teacher’s” language. We will use the former
terminology.

The offspring learns the parent’s language with a certain learning fidelity,
q. This learning fidelity is properly a function of the specifics of the learning
method the child uses and the complexity of the language, often modeled with
a probability distribution over the possible transition from each language Li to
each other (possibly different) Lj . But in the present setting we use the first order
approximation that the only incorrect/imperfect learning is a single parameter
change per reproductive event. We refer to this constraint as gradual learning.
The rationale behind this approach is that learning errors do not typically result
in the learner acquiring a radically different language. This single parameter
change constraint on incorrect/incomplete learning is analogous to only allowing
single point mutations to the linear sequence representation of the language. As
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such, it defines the “sequence space”[4] through which the population moves
during the evolutionary process.

We study language change in an ideal population using a simulation, using
the following algorithm. Initially each individual in the population P starts with
a randomly chosen language from set of all possible languages.

for each individual i ∈ P
compute fitness fi of i

end for
do until number of updates is met

select an individual i ∈ P with a probability proportional to fitness
select a second random individual j from the population
replace individual j with an offspring k of individual i

if the offspring is mutant( mutation rate = μ)
change a random parameter of Lk

else
Lk = Li

end if
update fitness of the individual j

end do

We measure the dominant language frequency directly at each time step
by counting the number of individuals speaking each language. The dominant
language at any given time is simply the language that is most frequent at that
time, and will typically change over time unless the population has strongly
converged.

The linguistic coherence of the population, denoted φ, is defined as follows:

φ =
1
N

N∑
i=1

N∑
j=1

aij (2)

Counting the actual number of languages that exist in the population may
disguise the degree of variation when some of the languages disproportionately
dominate. Consequently, we used an analogue to the effective number of alleles
in a population, which we will refer to as the effective number of languages in
the population, ne [3]:

ne =

(
N∑

i=1

p2
i

)−1

(3)

where pi is the frequency of each language.
Table 1 shows the parameter settings for the experimental setup. We used a

population size N of 500, a base fitness f0 of 0.001, and we let the number of
different possible languages n be 64. Each language in a set can be represented
as a linear sequence of length l with elements drawn from a set of d possible
values. For set A, the similarity between languages that are not the same is set
to a constant value a equal to 0.5. For all other sets, aij is the Hamming distance
divided by sequence length as described above. The reproduction cycle repeated
for 100,000 times to make each run long enough to reach an equilibrium. Twenty
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Table 2. System settings, average language similarity (ā), q1 and q2. When l = 1, we
use a = 0.5. A: one component with 64 options, B: two components with 8 options,
C: three components with 4 options, D: 6 components with 2 options. Each setup has
exactly the same number of possible languages.

Setting l d n(= dl) ā q1 q2

A 1 64 64 0.500 0.830 0.985
B 2 8 64 0.111 0.516 0.902
C 3 4 64 0.238 0.662 0.955
D 6 2 64 0.492 0.826 0.985

replica runs, varying only the random number generator seed, were done at each
q between 0.5 and 1 at 0.02 intervals.

3 Analytic Model

Given a uniform similarity a between n different languages, and the learning
fidelity of q, three equilibrium solutions, X0 and X±, for language frequency
were derived by Komarova et. al.[12] for a family of single-component languages:

X0 = 1/n (4)

X± = ((a − 1)(1 + (n − 2)q) ∓
√

D)(2(a − 1)(n − 1))−1 (5)

where

D = 4[1 + a(n − 2) + f0(n − 1)](1 − q)(n − 1)(a − 1) + (1 − a)2[1 + (n − 2)q]2

Below a certain learning fidelity of q1, only the symmetric solution X0 exists
and no single language dominates. Solving for q when D = 0 determines the
critical leaning fidelity threshold q1, which corresponds to the error threshold in
molecular evolution.

q1 =
1

(1 − a)(n − 2)2
[
4 + 2(n − 1)

3
2
√

(1 + f0) [1 + a(n − 2) + f0(n − 1)]

−2f0(n − 1)2 − 3n − a(2n2 − 7n + 6)
] (6)

When q1 < q < q2 for a specific q2, both the symmetric X± and asymmetric
X0 solutions exist and are stable. For q > q2 however, only the asymmetric
solution where one language dominates the population is stable. This q2 value
is the point where X0 = X−, giving:

q2 =
(
n2(f0 + a) + (n + 1)(1 − a)

) (
n2(f0 + a) + 2n(1 − a)

)−1
(7)

Komarova et. al. provide much more detail and proofs[12].
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By introducing a regularity in language, we effectively change the transition
matrix of aij . To compare our findings with the analytical result, we use the
average language similarity ā for calculating q1 and q2, where ā is calculated
using the equation below:

ā =
1

n − 1

(
l−1∑
k=1

l − k

l
(d − 1)k

(
n

k

))
(8)

We consider 4 settings A-D, varying in the “amount of structure.” The four
cases are listed in Table 2 together with the calculated ā for each case.

4 Results

We plot the experimental and analytic results for comparison in Figure 1. The
empirical results for the uniform similarity of a = 0.5 between two different
languages closely follows the expectation from the analytic results arrived at by
Komarova et. al.[12] as shown in Figure 1 A, which we have previously described
in detail[14].

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

D
om

in
an

t F
re

q  A: FC 641

q
1
=0.83 q

2
=0.985

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

D
om

in
an

t F
re

q  B: FC 82

q
1
=0.516 q

2
=0.902

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

D
om

in
an

t F
re

q  C: FC 43 

q
1
=0.662 q

2
=0.955

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

D
om

in
an

t F
re

q

Learning Fidelity

 D: FC 26

q
1
=0.826 q

2
=0.985

Fig. 1. The dominant(×) language frequency after 100,000 time steps overlaid with
symmetric (horizontal line) and asymmetric (curved line) solutions for a(or ā), n = 64,
f0 = 0.001. Each point is an independent replica. dl shown at the top left corner of
each graph.



630 Y. Lee et al.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

N
um

 L
an

gu
ag

es  A: FC 641 q
1
=0.83 q

2
=0.985

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

N
um

 L
an

gu
ag

es

Learning Fidelity

 D: FC 26 q
1
=0.826 q

2
=0.985

Fig. 2. The number of languages(×) and the average effective number of languages(—)

The results of the multi-component languages (Figure 1 B, C and D) do not
show the clear transition from symmetric to asymmetric solution. The trend
is considerably smoother, with nothing but an increased variance in results at
the point of the phase transition for parameter sets C and D. Parameter set B
shows a region where both symmetric and asymmetric solutions appear stable
for q values between 0.6 and 0.7, but it is notable that the empirical asymmetric
dominant abundance is significantly below the analytical expectation for this set
as well as C and D.

Since the setup A and D have similar ā values (āA � āD), they provide a
better example of what difference the multi-parameter language brings to the
language evolution scenario. Figure 2 compares the number of languages and
the effective number of languages (ne), calculated using the equation (3). In
the single-parameter language case A, all the possible languages exist in the
population in the region where q < q1A. On the other hand, the 6-parameter
case D has only half of the all possible languages at q = q1D.

Figure 1 A shows that if the learning fidelity is greater than 0.9, one language
dominates in the population. That trend is illustrated clearly by the average
effective number of languages in Figure 2 A. There are still over half of all possible
languages remaining in the population at q = 0.9. This number overestimates
the true variation in the population when some languages disproportionately
dominate while most are at very low frequency. Incomplete/incorrect learning
provides a constant influx of variants, but these variants do not propagate to
any appreciable frequency due to their inferior fitness. The effective number of
languages ne for the set A at q = 0.9 is close to 1 (ne = 1.68), which indicates
that the population has converged to one language, and the rest of languages
exist a very low frequency .

In contrast, Figure 2 D shows a gradual decline in number of languages as
learning fidelity increases. For this set, the number of languages in the population
starts decreasing noticeably for q values above 0.55, and the effective number of
languages ne decreases over the entire range. However, at q values above 0.9, set
D shows a higher ne value (3.75 at q = 0.9) than set A, indicating that there
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are more relatively high abundance languages in set D despite the fact that the
total number of languages is lower.

In set A, all possible languages are a single step away in sequence space; in
other words, all possible languages are reachable by a single incorrect/incomplete
learning event. In set D, however, only a small subset of possible languages are
producible as single step variants from the dominant language. These single-step
variants of the dominant account for the majority of non-dominant languages in
the population. Additionally, these variants have a high fitness relative ā, and a
higher equilibrium frequency in mutation-selection balance.

5 Discussion

For the set of single-component languages, our empirical results closely match
the analytic results produced by Komarova et al. In an unstructured language
space, high fidelity learner-driven change, such as the sort exhibited by human
languages, can only occur just above the critical error threshold q1, near the
bifurcation point.

These simulations show that substantial levels of linguistic coherence can be
achieved with lower learning fidelity if structure is introduced. All four settings
explored here have language spaces of exactly the same size, and yet the struc-
tured language sets allow fairly stable asymmetric solutions even with quite low
learning fidelity and show a much more gradual approach to coherence.

We conclude that a simple regularity combined with gradual learning can
dramatically reduce the number of languages that exist in the population, even
in regions where analytic results indicate that only symmetric solutions will be
stable. Gradual learning used in this experiment seems a more realistic approx-
imation to reality than the “memoryless” learning used in previous work. The
qualitatively different dynamics with respect to the critical learning fidelity sug-
gests that convergence to a set of closely related languages is significantly easier
than previously thought.

These results are in keeping with the expectations of a quasi-species interpre-
tation. Gradual learning maps the grammars into a sequence space where some
grammars have fewer mutational (incomplete/incorrect learning) steps from oth-
ers. Calculating the similarity between grammars which determines fitness as one
minus Hamming distance divided by sequence length ensures that grammars
that are close in the sequence space have similar fitness values. This produces a
smooth fitness landscape.

The upshot of this smooth fitness landscape is that selection operates on the
quasi-species formed by the dominant grammar and its close variants. At learn-
ing fidelity values below q1, the population converges not to a single dominant
grammar with all other grammars equally represented, but instead to a family
of similar grammars. The fidelity of this family is higher than the nominal learn-
ing fidelity because a sizable proportion of incomplete/incorrect learning events
among members of the quasi-species result in other members of the quasi-species.
At still lower q values, that family of grammars (the quasi-species) spreads far-
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ther out in sequence space, until at some point it includes all possible grammars
and is identical to the symmetric analytical solution provided by Nowak and
Komarova’s model [17,12].

For learning fidelity values higher than q1, we note that a structured grammar
space weakens the selection against the minor variants of the dominant grammar
in comparison to unstructured or single component grammar models. This effect
causes the population to display a dominant abundance below the analytical
model’s expectations because the close variants of the dominant have a higher
equilibrium abundance in mutation-selection balance.

We conjecture natural languages can be viewed as belonging to a highly
structured set at some level of description relevant to a theory of learning and
cultural transmission, even if this structure is not reducible to a simple sequence
representation. As such, the qualitatively different dynamics explored here are
important to understanding how human language evolves through time. Addi-
tionally, in technological applications where agents learn from each other and
it is desirable for the overall system to converge, these results may provide a
guide to designing properties of the language or state representation depending
on the degree of convergence desired. If it is sufficient that agents of the system
just mostly agree, i.e. converge to close variants of a dominant grammar, then
a structured state space may provide a way to achieve faster convergence at
higher mutation values. However, if absolute convergence is required, the state
space must be designed such that minor variants are strongly selected against,
producing a sharp fitness peak. This constraint also implies that a critical mu-
tation/learning fidelity threshold exists.
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Abstract. This paper presents a computational framework for study-
ing the influence of learning on the evolution of avian communication.
We conducted computer simulations for exploring the effects of different
learning strategies on the evolution of bird song. Experimental results
show the genetic assimilation of song repertoires as a consequence of
interactions between learning and evolution.

1 Introduction

The evolution of avian communication is an excellent domain for studying fun-
damental questions of artificial life research. Previous work by Sasahara and
Ikegami [14][15], have shown that we are able to explore important issues such
as emergence, self-organization and cultural evolution within this framework.
Similarly, artificial life models provide a convenient alternative to complex play-
back and genetic experiments for validating theories of bird song evolution by
means of computer simulations.

Bird song studies have been established as instrumental in resolving the de-
bate over instinct versus learning in the ontogeny of behavior [3]. There is a
wide variety of patterns in the development of song. For example, among the
suboscines normal song develops in individuals that are isolated and or even
deafened at an early age. In contrast, among oscines, individuals typically need
an external model and intact hearing for normal song development to occur[10].
In addition, birds have been excellent subjects for studying how signals are
transmitted and perceived in noisy environments and how the structure of vo-
calizations can be optimized to achieve these goals [9]. We believe these studies
are crucial for understanding the origin and evolution of communication systems
with the complexity of human languages.

The aim of this work is to study the effects of learning on the evolution of
avian communication using computer simulations. To this end, we formulate a
computational framework based on the seminal model proposed by Hinton and
Nowlan [8] and further developed by Ackley and Littman [1], among others.
In addition, we explore the effects of a noisy communication channel on the
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evolution of bird song within the proposed framework. Experimental results show
that communicative behaviors become innate as a consequence of interactions
between learning and evolution.

2 The Model

2.1 Environment

In our model, the environment consists of a population of communicative agents
A. This population representes a simulated bird species. The environment may
include other simulated bird species Bi that sing different songs with respect to A.

2.2 Agent Architecture

In our model, a simulated bird consists of an agent arquitecture that represents
his song repertoire. The formal definition of the agent architecture presented be-
low is based on considerations of the model proposed by Vallejo and Taylor [16].

Agent. Let S = {s1, . . . , sn} be a finite set of n songs and R = {r1, . . . , rm} be
a finite set of m external referents. An agent A is a pair (δ, φ), where

1. δ : R → S∪{s#} is the transmission function, where s# is the undetermined
song, and

2. φ : S → R ∪ {r#} is the reception function, where r# is the undetermined
referent.

Communication. An agent A1 = (δ1, φ1) comunicates to an agent A2 =
(δ2, φ2) as follows. Initially, A1 perceives the referent ri and produces a song
sj according to the mapping described by the transmission function δ1, such
that δ1(ri) = sj . Once A1 produces the song sj , the agent A2 interprets the
song sj as the referent rk according to the mapping described by the reception
function φ2, such that φ2(sj) = rk. A communication event from A1 to A2 is
successful if the following conditions are satisfied:

1. δ1(ri) = sj,
2. φ2(sj) = rk, and
3. ri = rk

Innate Transmission. Let A = (δ, φ) be an agent. A transmission from A for
a given referent ri is said to be innate if δ(ri) 
= s# and is said to be subject to
learning if δ(ri) = s#.

Innate Reception. Let A = (δ, φ) be an agent. A reception of A for a given
song sj is said to be innate if φ(sj) 
= r# and is said to be subject to learning if
φ(sj) = r#.
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Learning. In our model, both transmission and reception behaviors of an agent
are partially learned. Before a communication event from A1 to A2 takes place,
A1 replaces the undetermined songs in δ1 with songs in S using a predefined
learning strategy. Similarly, A1 replaces the undetermined referents in φ1 with
referents in R using the learning strategy. A2 proceeds similarly.

A fundamental aspect of our model is that learning is performed for com-
munication purposes and does not modify permanently the actual description of
an agent. In other words, learned characteristics are not transmited to offspring
during reproduction.

2.3 Learning Strategies

We consider two different learning strategies: imitator and improviser, as they
are two main forms of bird song learning [7][11]. These strategies are described
below.

Imitator. An imitator learner replaces the undetermined songs in his trasmis-
sion function by the corresponding songs in the transmission function of a
teacher. Similarly, he replaces the undetermined referents in his reception func-
tion by the corresponding referents in the reception function of a teacher.

Formally, a learner A1 = (δ1, φ1) imitates a teacher A2 = (δ2, φ2) as follows.

1. δ1(ri) is set to δ2(ri) if δ1(ri) = s#, δ2(ri) 
= s#, for i = 1, . . . , n, and
2. φ1(sj) is set to φ2(sj) if φ1(sj) = r#, φ2(sj) 
= r#, for j = 1, . . . , m.

Improviser. An improviser learner replaces the undetermined songs in his
transmission function by random songs in S. Similarly, he replaces the unde-
termined referents in his reception function by random referents in R.

Formally, a learner A1 = (δ1, φ1) improvises as follows.

1. δ1(ri) is set to random(S) if δ1(ri) = s#, for i = 1, . . . , n, and
2. φ1(sj) is set to random(R) if φ1(sj) = r#, for j = 1, . . . , m.

2.4 Evolution of Communication

In our model, a population of simulated birds are intended to evolve successful
communication at the population level. We use genetic algorithms for this pur-
pose. The design decisions presented below are based on considerations of the
performance of genetic algorithms in practical applications [13].

GenomeRepresentation. An agent A = (δ, φ) is represented linearly as follows

A = (δ(r1), . . . , δ(rn), φ(s1), . . . , φ(sm))

Genetic Operators. Agents produce a new offspring by means of genetic op-
erators. Fitness proportional selection, one-point recombination and point mu-
tation operate on the linear representation of agents described above.
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Fitness Function. Fitness is defined as the communicative accuracy of agents.
The communicative accuracy is the ability of an agent to successfully communi-
cate with a collection of other agents.

Let P be a finite population of agents, A be an agent in P , and Q ⊆ P
be a non empty collection of agents. The communicative accuracy of A with
respect to Q given the set of referents R = {r1, . . . , rn} and the set of songs
S = {s1, . . . , sm}, C(A, Q, R), is defined as

C(A, Q, R) =

∑
ri∈R

∑
Ak∈Q c(A, Ak, ri) + c(Ak, A, ri)

|Q|
where c(A, Ak, ri) = 1 if the communication event from A to Ak is successful
given the referent ri, and 0 otherwise; |Q| is the cardinality of Q. c(Ak, A, ri) is
defined similarly.

There is evidence of both temporal song avoidance and song divergence in
neighbouring bird species [5][6]. We consider this fact in our model as follows.

If there exist other simulated bird species Bi in the environment, then a
distance component is added to the fitness value defined above. The distance
between an agent A and other simulated bird species B is defined as follows

D(A, B) =

∑
Bi∈B H(A,Bi)

|B|
where H(A,Bi) is the Hamming distance between A and Bi.

Therefore, the fitness of an agent A is defined as

f(A) = C(A, Q, R) + D(A,B)

3 Experiments and Results

A series of experiments were conducted to investigate whether a population of
simulated birds is likely to arrive to successful communication at the population
level. In addition, we validated the evolutionary performance of competing learn-
ing strategies. Most importantly, we were interested in exploring the effects of
learning on the genetic description of an evolving population of simulated birds.
Finally, we explore the influence of different levels of noise in the communica-
tion channel on the genetic assimilation of traits. The simulation procedure is
described in table 1.

Extensive simulations were conducted using different combinations of param-
eter values as shown in table 2. The following were the major results:

1. In one-strategy simulations, imitators arrived to highly accurate communi-
cation at the population level. On the other hand, improvisers reached local
maxima in communication accuracy consistently. Figure 1 shows the results
of representative simulations of the two learning strategies.

2. In one-strategy simulations, imitation produced the genetic assimilation of
both songs and referents. On the other hand, improvisation reduced the un-
determined songs and referents but they were not totally assimilated. Fig-
ure 2 and figure 3 show the frequency of undetermined songs and undeter-
mined referents in the population of the two learning strategies, respectively.
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Table 1. Simulation procedure

1. Create an initial random population P of agents
2. Do until a predefined number generations is met

(a) For each individual Ai = (δi, φi) ∈ P do
i. Perform the learning process of Ai according to the learning strategy with

respect to a random agent Ah ∈ P
ii. Select a random subpopulation of agents Q ⊆ P
iii. Perform the learning process for all Aj ∈ Q according to the learning

strategy of Aj with respect to a random agent Ak ∈ P
iv. Measure the communicative accuracy of Ai with respect to Q, C(Ai, Q, R),

given the set of referents R
v. Measure the distance of Ai with respect to B, D(Ai, B), for all extant

species Bi

vi. Compute the fitness f(Ai) = C(Ai, Q, R) + D(Ai, B)
End for

(b) Select two individuals Amother ∈ P and Afather ∈ P for reproduction using
fitness proportional selection

(c) Produce an offspring Anew from Amother and Afather using one-point recom-
bination and point mutation

(d) Select a random individual Aold ∈ P
(e) Replace Aold by Anew

End do

Table 2. Parameters for simulations

Parameter Value
undetermined traits 50%
generations 3000
population P 256
subpopulation Q 16
songs S 4-8
referents R 4-8
crossover probability Pc 0.6
mutation probability Pm 0.001
species B 0-32

3. In two-strategy simulations, a population of imitators dominated a popula-
tion of improvisers. In most cases, imitators took over the entire population.
Very rarely, a few improvisers prevailed in the population. Figure 4 shows the
frequency of strategies in the population of a typical two-strategy simulation.

4. In one-strategy simulations when there were other species present in the
environment, a densely populated environment produced a faster genetic as-
similation of both songs and referentes. Figures 5 and 6 show the frequency of
undetermined songs and undetermined referents in the population of a char-
acteristic two-strategy simulation with different number of species present
in the environment, respectively.
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4 Discussion

Overall, experimental results indicate that a population of agents is capable of
arriving to highly successful communication. Both transmission and reception
behaviors became innate as a consequence of the interaction between learning
and evolution.

Why communicative behaviors became innate? First, imitation of conspecifics
in a static environment provides the opportunity for the genetic assimilation of
transmission and reception behaviors. Second, the competition for the commu-
nication channel contributes to accelerate the assimilation of traits. There are
examples of similar innate underpinnings in bird song [12].

So far, we have not considered the cost of producing a song. The fundamental
issue of honesty would arise as a result of this consideration. Previous artificial
life studies have provide insights on this topic [2].

We believe that the proposed framework could also be used for testing the-
ories on allopatric speciation, song sharing, stability of song types [4]. These
studies would contribute to elucidate the origins and evolution of bird song.
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Abstract. Typically, multi-agent models for studying the evolution of
perceptually grounded lexicons assume that agents perceive the same
set of objects, and that there is either joint attention, corrective feed-
back or cross-situational learning. In this paper we address these two as-
sumptions, by introducing a new multi-agent model for the evolution of
perceptually grounded lexicons, where agents do not perceive the same
set of objects, and where agents receive a cue to focus their attention
to objects, thus simulating a Theory of Mind. In addition, we vary the
amount of corrective feedback provided to guide learning word-meanings.
Results of simulations show that the proposed model is quite robust to
the strength of these cues and the amount of feedback received.

1 Introduction

In the past decade, a number of studies have investigated the emerge of perceptu-
ally grounded lexicons in multi-robot systems [14,13]. The aim of such studies is
to investigate under what conditions a population of (possibly simulated) robots
can evolve a shared vocabulary (or lexicon) that allow them to communicate
about objects that are in their environment. Typically, these studies assume
that the lexicons evolve culturally through inter-agent communication, individ-
ual adaptation and self-organisation [12]. These perceptually grounded studies
extend other ungrounded models in which the meanings of the lexicons are
predefined as in, e.g., [6,8], by allowing the agents to develop their meanings
from scratch based on their sensing of the environment. Typically, the lexicons
and meanings are constructed through language games [12] in which two agents
communicate about an object they detect in a certain context. This way, the
grounded models add more realism to the ungrounded models, as they do not
assume that agents have an innate set of meanings.

The grounded models, however, still build upon many assumptions. One such
assumption is that agents perceive the same set of objects. Especially in sim-
ulations – both grounded [10,17] and ungrounded [8,5,18] – this is taken for
granted. In studies using real robots, this is assumed, though not necessarily
achieved [16]. When two agents communicate, one cannot simply assume that
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c© Springer-Verlag Berlin Heidelberg 2005



Perceptually Grounded Lexicon Formation 645

the context of one agent is similar to the other agent’s context. Agents located
in different places see different things – even if they are located close to each
other and looking in a similar direction.

The problem agents face when learning the meaning of words is that when
hearing a novel word, logically, this word can have an infinite number of meanings
or references – even if the target is pointed at [9]. So, in order to learn the meaning
of a word, an agent has to reduce the number of possible meanings. Humans are
exceptionally good at this, and it is generally assumed that humans have some
innate or acquired means to infer what a speaker’s intention is, see, e.g., [2] for an
overview. Among these means are joint attention [15], Theory of Mind (ToM) [2],
and receiving corrective feedback on the meaning of words [3]. In joint attention,
the participants of a communication act focus their attention to an object or
event while actively checking that they share their attention. In a way, this
requires that the participants understand each other as having similar intentions
[15]. Loosely speaking, this is a part of the Theory of Mind. However, ToM is
more: it allows someone to form theories regarding the intentions of speakers by
simulating that he or she is the speaker (him)herself. For instance, a child may
know that its caregiver is hungry and can therefore infer the caregiver is more
interested in food than in a doll. The problem with joint attention and ToM is
that it is not always precise. Suppose a rabbit passes by and someone shouts
‘gavagai’, even if you establish joint attention, you cannot be sure ‘gavagai’
refers to the rabbit; it may also refer to undetached rabbit parts or that it is
going to rain [9]. To further reduce the number of possible meanings for a word,
caregivers sometimes provide corrective feedback on the meaning of childrens’
utterances. Although the availability of corrective feedback is highly disputed [2],
recent analysis has shown that it is actually abundant, especially with respect
to the meaning of words [3]. However, corrective feedback is not always present.
In those cases, we assume that children can learn the meaning of words across
situations by focusing on the covariance between word meaning pairs. There is
some recent evidence that children indeed use such a learning strategy [1].

The current study addresses the two issues discussed and introduces a model
in which a perceptually grounded lexicon is developed by a population of sim-
ulated robots based on the Talking Heads experiment [13]. In this model, the
contexts that agents perceive while playing a language game differ from each
other. In addition, as suggested in [16,18], the three models are integrated to-
gether with a naive implementation of ToM. The ToM is implemented by intro-
ducing attention cues that focus the (possibly joint) attention on objects in a
context. In this study, these cues are assigned randomly, but in future work we
intend to implement this by having the agents estimate these cues autonomously
based on some knowledge about intentions [19]. Using these cues and a verbal
hint provided by the speaker, the hearer will guess the reference of the uttered
word, and in some cases the agents evaluate corrective feedback. In addition,
co-occurrence frequencies are maintained to allow for cross-situational statisti-
cal learning [20]. The experiments reported in this paper investigate the effect
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of using these attention cues and to what extent the model is still robust when
we vary the amount of corrective feedback available to the learners.

The next section introduces the new model. In Section 3 we experimentally
assess the validity of the proposed model, and finally Section 4 concludes.

2 The Model

The model we propose here is implemented in the Talking Heads simulation
toolkit THSim1 [17] and extends the iterated learning model (ILM) [7] in combi-
nation with the language game model [13]. The ILM implements a generational
turnover in which a population of adults transmits its acquired lexicon to the
next generation of learners culturally by engaging in a series of language games.
A language game is played by two agents, which are randomly selected from the
population at the start of each game: a speaker taken from the adult popula-
tion and a hearer taken from the learner population. In each generation, a fixed
number of language games are played and after each generation, the adults are
removed, the learners become adults and new agents enter the population.

Each time a language game is played, both agents a individually observe a
context Ca that contains a number of objects oi. The objects are geometrical
coloured shapes, such as red triangles and blue squares. The contexts of the
agents share a number of objects, while the rest are distinct. If the contexts
contain n objects, the agents share 1 ≤ k ≤ n objects, where k is assigned
randomly in each game. If k = n, then the contexts are equal.

In order to provide each agent a with some naive form of Theory of Mind, we
simulate the use of attention cues strA(oi) assigned to each object oi ∈ Ca. In
future models [19], we intend to base these attention cues on a more sophisticated
ToM, which the speaker uses to select the topic of the language game and which
the hearer uses to estimate the speaker’s intention (see Section 2.2). For the
moment we assume that these attention cues are assigned with random values,
where shared objects have a high attention cue, while objects that are not shared
possess a low attention cue. In short:

strA(oi) = Xi =

{
βs ≤ Xi ≤ 1 if oi is shared,
0 ≤ Xi ≤ βu if oi is not shared.

(1)

where βs and βu are user supplied parameters, with default values of βs = 0.5
and βu = 0.1. These values were experimentally determined to yield good results;
in general it was found that the results were good when βs > βu. Shared objects
are assigned the same attention cue value.

2.1 Categorising Objects

Categorisation of objects is based on the discrimination game model [11] and
implemented using a form of 1-nearest neighbourhood classification [4]. The aim

1 THSim is available from http://www.ling.ed.ac.uk/˜paulv/thsim.html
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of the discrimination game is to categorise an object (called the topic ot) in an
agent’s context such that it is distinctive from the other objects in the context.
Note that this does not require that the category is a perfect exemplar of the
object. By playing a number of discrimination games, each agent a constructs
its own ontology Oa, which consists of a set of categories: Oa = {c0, . . . , cp}. The
categories ci are represented as prototypes ci which are points in a n-dimensional
conceptual space. Each agent starts its life with an empty ontology.

Each object is perceived by six perceptual features fq: colour (expressed by
Red, Green and Blue components of the RGB space), shape (S) and location
(expressed by X and Y coordinates). Each agent a extracts for each object oi ∈
Ca a feature vector fi = (f1. . . . , fn), where n is equal to the number of perceptual
features.

Each object oi ∈ Ca is categorised by searching a category cj ∈ Oa, such that
the Euclidean distance ||fi − cj || is smallest. It is then verified that the category
found for the topic ot is distinctive from the categories of the other objects
ok ∈ Ca\{ot}. If no such category exists, the discrimination game fails, and the
ontology of the agent is expanded with a new category for which the feature
vector ft of the topic is used as an exemplar. Otherwise the discrimination game
succeeds and the found category is forwarded as the topic’s meaning m to the
production or the interpretation phase.

2.2 The Language Game

The language game we propose, outlined in Table 1, combines the guessing game,
e.g., [13] with a cross-situational statistical learner [10,16,20]. In both models,
the hearer h guesses the topic based on the utterance produced by the speaker,
where the topic ot ∈ Ch. In the guessing game, the agents evaluate whether
or not the hearer guessed the right topic (i.e. the object referred to by the
speaker). In cross-situational statistical learning (CSSL) such feedback is not
evaluated, instead the agent keeps track of co-occurring word-meaning pairs. In
order to provide a naive ToM, the model is adapted to include the attentional
cues strA(oi).

In a nutshell, the agents start by perceiving the context of the game and
categorise the objects they see using the discrimination game (DG) as explained

Table 1. The outline of a language game, see the text for details

speaker hearer
-perceive context
-categorisation/DG
-produce utterance
-update memory1
-send message

-receive message
-perceive context
-categorisation/DG
-interpret utterance
-update memory1

-corrective feedback -corrective feedback
-update memory2 -update memory2
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m1 . . . mN

w1 P11 . . . P1N

...
...

...
...

wM PM1 . . . PMN

m1 . . . mN

w1 σ11 . . . σ1N

...
...

...
...

wM σM1 . . . σMN

memory1 memory2

Fig. 1. Two associative memories constructed and maintained as part of an agent’s
lexicon. The left memory (memory1) associates meaning mj with word wi using condi-
tional a posteriori probabilities Pij . The right memory (memory2) associates meanings
mj with words wi using an association score σij .

above. Then the speaker s selects an object from its context as the topic ot ∈
Cs of the language game. In order to so, a roulette wheel mechanism is used,
where the sectors of the roulette wheel are proportional to the attention cues
strA(oi) assigned to the objects. Thus, typically, objects that are shared with
the context of the hearer have more probability of being selected, since generally
their attention cues are higher. As the hearer uses these attentional cues as
a bias in guessing the speaker’s topic, it is virtually simulating the speaker’s
selection process. This, we believe, is a naive form of ToM, which in future work
we intend to work out more realistically, based on agents’ more sophisticated
selection criteria.

Each agent maintains an internal lexicon, represented by two associative
memories, as illustrated in Figure 1. One of the associative memories (referred
to as memory1 in Figure 1) keeps an a posteriori probability Pij , which is based
on the occurrence frequencies of associations. The other matrix (memory2) main-
tains an association score σij , which indicates the effectiveness of an association
based on past experiences. The reason for this twofold maintenance is that stud-
ies have revealed that when strong attentional cues (such as the corrective feed-
back used in the guessing game) guide learning, lexicon acquisition is much faster
with the association score σij than with the a posteriori probabilities [18]. The
reverse is true when such strong attentional cues are absent as in CSSL. This
is mainly because the update mechanism reinforces the score σij more strongly
than the update of usage based probabilities Pij . This works well when the cues
are precise, but the fluctuations of σij would be too strong to allow statistical
learning in CSSL.

The probabilities are conditional probabilities, i.e.,

Pij = P (mj |wi) =
uij∑
j uij

(2)

where uij is the co-occurrence frequency of meaning mj and word wi. This usage
frequency is incremented each time word wi co-occurs with meaning mj that is
either the topic’s meaning (in case of the speaker) or the meaning of an object
in the context (in case of the hearer). The update is referred to in Table 1
as ‘update memory1’. If this principle is the only mechanism, the learning is
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achieved according to the CSSL principle, i.e., across different situations based
on the covariance in word-meaning pairs [20].

When corrective feedback is evaluated, the association score σij is updated
according to the following formula:

σij = ησij + (1 − η)X (3)

where η is a learning parameter (typically η = 0.9), X = 1 if the association
is used successfully in the language game, and X = 0 if the association is used
wrongly, or – in case of a successful language game – if the association is com-
peting with the used association (i.e., same word, different meaning; or same
meaning, different word). The latter implements lateral inhibition. If Eq. (3) is
the only update, the game reduces to the guessing game. The update of associ-
ation scores is referred to in Table 1 as ‘update memory2’ and is only carried
out if corrective feedback is evaluated. The rate with which corrective feedback
is evaluated is subject of the second experiment.

Given these two matrices, the speaker, when trying to produce an utterance,
calculates an association strength strL(αit) for each association αit of a word
wi with the topic’s meaning mt. This is done using Eq. (4):

strL(αit) = σit + (1 − σit)Pit (4)

This formula neatly couples the two variables. When σit is high, the influence of
Pit is low, and when σit is low, Pit will have more influence. This implements a
bias toward basing a choice on known effectiveness vs. estimated probabilities. In
Eq. (4), σit and Pit might be weighted, in order to rely more on the association
scores or on the a posteriori probabilities. The speaker will select the association
that has the highest strength strL(αit) and utters its word. If no association can
be found, e.g., because the lexicon is still empty, the speaker invents a new word
and adds the association to its lexicon with an initial association score αit = 0.01
and uit = 0.

When the hearer h receives an utterance, it looks in its memories for asso-
ciations with the current signal and whose meanings match the meanings for
each object oj ∈ Ch in its context. Using the association strengths strL(αij)
and attentional cues strA(oj), the hearer then interprets the utterance using
the following equation based on [5]:

ρij = ωL · strL(αij) + ωA · strA(oj) (5)

where ωL and ωA are weights between 0 and 1. Throughout both experiments
ωL = 1 is kept constant, the value of ωA is subject of variation in the first ex-
periment. If the heard word is not in its lexicon, then the hearer will add it to
the lexicon in association with all meanings of the objects in the context and
uij = 1. If the agents evaluate the feedback, the word is additionally associ-
ated with the meaning mt of the now-known topic ot with an initial association
score σit = 0.01. Feedback is provided to the agents with a given probability
Pfbk, which is subject to variation in the second experiment. When feedback is
provided, the agents update memory2using Eq. (3). The hearer will not update
memory2 in the case where the topic is not in its context, since in this case it
cannot perceive the category of the topic.
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Fig. 2. Results obtained with different values of ωA. The left figure shows interpretation
accuracy, the right one production coherence.

3 Experiments

In order to assess the validity of the proposed model we performed several ex-
periments. In the following we present results using two measures: production
coherence and interpretation accuracy. Production coherence is defined as the
fraction of agents that produced the same utterance to name objects. Interpre-
tation accuracy is the fraction of agents that could successfully interpret the
produced utterances, averaged over the number of games played. These mea-
sures were calculated during a testing phase, consisting of 200 games in which
the language did not evolved. The test phase took place at the end of each gen-
eration. The results presented are averages over ten runs using different random
seeds. In the experiments we used a population of 10 agents in 15 generations of
10,000 language games each. During all experiments the context size n = 4 was
kept constant, while 1 ≤ k ≤ n was chosen randomly each language game.

A first set of experiments was aimed at evaluating the effect of considering
strA(oi) in Eq. (5) by varying the weight ωA between 0 and 1 with intermediate
steps of 0.1. In this experiment, corrective feedback was always evaluated, i.e.,
Pfbk = 1.0. The results for interpretation accuracy are shown in Fig. 2 (left).
In this figure the x-axis represents the number of generations processed. It is
interesting to notice that the model also yields good results when the attention
cues are not considered, i.e. when ωA = 0 accuracy increases to one of the
highest levels. (Note that this setting reduces the model to the guessing game.)
In general, when ωA increases, the results get poorer – especially after about
5 generations So, it seems that agents get confused when higher values of ωA

are used, i.e., the attentional cues suggest a different interpretation than the
lexicon. However when ωA = 1, accuracy is good again, which suggests that the
attentional cues can have a positive impact on the learning process, provided
they are sufficiently strong. Coherence (Fig. 2 right) reveals a similar evolution,
though the values show less variation. At the end of the simulations, coherence
is between 0.70 and 0.75. We have further investigated this aspect with equal
contexts, i.e., where in all cases k = n. For reasons of space, we cannot report
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Fig. 3. Results obtained with different values of Pfbk. The graphs show interpretation
accuracy (left) and production coherence (right).

the results here, however we can say that the results reflect the results presented
here. Another set of experiments was performed in order to assess the behaviour
of the model when ωL was varied. The model obtained similar results for all
values of this parameter, except when ωL = 0 the results were considerably
worse.

Another aspect we wanted to investigate was the robustness of the proposed
model with respect to the amount of feedback received by the agents. We there-
fore performed experiments with different values of Pfbk, while keeping ωA = 1.0
fixed. Before presenting the results, it is good to recall that when Pfbk= 0 only
memory1 is updated at every language game. In effect this is a CSSL, where
the agents do not receive any feedback but have to infer this information by the
observation of their contexts. In contrast to earlier CSSL models [10,16,20], the
learners additionally receive attentional cues from strA(oi), which makes the
model more similar to the one presented by Gong et al. [5]; and the contexts of
speaker and hearer are dissimilar, thus the hearer may not have observed the
topic.

The results are reported in Figure 3. It can be noticed that even when there
was no feedback (Pfbk= 0), language developed, though it took more generations
to reach an acceptable level of interpretation accuracy than for higher values of
Pfbk (Fig. 3 left). Interpretation accuracy, although acceptable, was still among
the lowest. Production coherence, on the other hand, rose towards a value that
is among the highest (Fig. 3 right). This is interesting, since the CSSL generally
leads to low levels of coherence [20]. Apparently, the attentional cues provide
enough information to allow robust word learning, which is in line with the re-
sults of experiment 1 when ωA = 1. With higher values of Pfbk agents receive
more feedback and can, therefore, develop a lexicon more easily. Recall that when
they receive feedback, they update memory2 as well. Clearly this has a positive
effect on speed of learning and on interpretation accuracy. It only has a positive
effect on production coherence when Pfbk≥ 0.5 – i.e. when agents received feed-
back with a high probability. So, although with a low amount of Pfbk accuracy
was doing reasonably, coherence remained well behind. This suggests that low
amounts of feedback antagonises the attentional cues, since the feedback may
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provide different information than the attentional cues, but it has a relatively
strong effect on the lexicon development through Eq. 3. When Pfbk becomes
sufficiently high, the feedback is sufficiently strong to drive a coherent lexicon
development. Nevertheless, we can conclude that the model is quite robust to
various levels of feedback.

4 Conclusions and Future Work

In this paper a new multi-agent model for the evolution of perceptually grounded
lexicons is presented. This model combines the guessing game model [13] with
the cross-situational statistical learning model [20] and the introduction of envi-
ronmental attentional cues similar to the models proposed in [5].

Simulations based on the Talking Heads show that the model is quite robust
for different levels of attentional cues set on the objects. However, the simula-
tions show that – in general – the more the attentional cues are used in the
interpretation by the hearer, the more the hearer tends to get confused. This
is primarily due to the unreliability of the attentional cues, which confuses the
hearer. Interestingly, the results improve when the weight for the attentional
cues becomes one. In this case, the attentional cues are strong enough to form a
beneficial account for the language development.

Another important result is that the model is robust to the enforced dissimi-
larity of the contexts of agents playing a language game. This is interesting, since
it shows that the agents do not require explicit meaning transfer (which is the
case whenever feedback is present) while the hearers may not have seen the ob-
jects speakers are referring to. Clearly, the results improve when more feedback
is present. However, when no feedback is present at all, the results exceed some
of the results achieved with infrequent use of corrective feedback, thus showing
the robustness of cross-situational statistical learning in combination with using
stochastic attentional cues.

Future work should investigate more precisely why the model behaves differ-
ently for the different parameter settings. For instance, why do the simulations
with higher values of ωA < 1 or lower values of Pfbk > 0 perform worse than
the cases where ωA = 1 or Pfbk = 0? It is also interesting to study the effect of
varying Pfbk with different values of ωA. In addition, we intend to incorporate
the current model in the recently started New Ties project2, which aims at de-
veloping a benchmark platform for studying the evolution and development of
cultural societies in very large multi-agent systems. In this project, we will ex-
tend the model such that instead of assigning attentional cues randomly, agents
will autonomously estimate (or calculate) these cues as part of a Theory of
Mind [19].

2 http://www.new-ties.org
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Abstract. One of the greatest challenges in the modern biological and social 
sciences has been to understand the evolution of altruistic and cooperative be-
haviors. General outlines of the answer to this puzzle are currently emerging as 
a result of developments in the evolutionary theories of multilevel selection, 
cultural group selection, and strong reciprocity. In spite of the progress in the-
ory there is shortage of studies devoted to the connection of theoretical results 
to the real social systems. This paper presents the model of cooperation which 
is based on assumptions of heritable markers, constrained resource, and local 
interactions. Verification of model’s predictions with the real data on aggres-
sion in archaic egalitarian societies has demonstrated that initial modeling as-
sumptions are acceptable as major factors of social evolution for these societies. 

1   Introduction 

Many different forms of social organization are found in both historical and contem-
porary societies, such as kin-groups, bands, tribes, chiefdoms, and states. The ques-
tion of how these modes of collective action emerge and persist is an important theo-
retical topic in anthropology, sociology, political science, and history. One influential 
theory explaining how societies form is the social contract theory, as formulated, for 
example, by Thomas Hobbes in his work Leviathan (1651). Hobbes' main idea is that 
people submit to the authority of the sovereign, who enforces the social rules, thereby 
maintaining peace and social stability. The main problem with this theory is that of 
contract enforcement. Different versions of social contract theory provide their  
own mechanisms of enforcement, but none of them solve the so called free-rider  
problem [1]. 

An alternative view on the emergence of societies is provided by the theories of 
social evolution. Pioneered in the works of evolutionary biologists [2,3], these theo-
ries have been applied to the study of human cooperation and is undergoing intensive 
development today. Of particular relevance are the theories of multilevel selection [4] 
and cultural group selection [5]. A series of mathematical models explore how human 
cooperation can arise [6]. These models are based on the hypotheses of kin and group 
selection, biased cultural transmission, and perhaps nonrandom (directed) variation. 
Other models studied the interplay between different kinds of reciprocity and  

                                                           
* This work was supported by the Russian Fund for Basic Research, project 04-01-00510. 
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punishment and its consequences for the evolution of cooperation [8]. The authors 
coined the term "strong reciprocity", which refers to the phenomenon that some peo-
ple have predisposition for altruistic cooperation and altruistic punishment (norm en-
forcement). Bowles, Gintis and others showed that a small fraction of agents charac-
terized by strong reciprocity could drive the whole population to a cooperative 
equilibrium. Important results on the evolution of cooperation in the spatially distrib-
uted and structured populations were also obtained by Axelrod et al. [8,9]. Finally, it 
was shown that cooperation could originate in the population of agents with arbitrary 
tags in the absence of reciprocity [10]. 

The main tool used today in the field of the evolution of cooperation is game the-
ory. It can be purely analytical game-theoretic models, or agent-based simula-
tions [11]. This theoretical approach yields clear-cut results, but the simple structure 
of payoffs and a small fixed set of strategies, imposed by investigators, in some cases 
may be an unrealistic assumption. It is possible to design a much harder test for the 
theories of social evolution. One such approach, adopted in this paper, is provided by 
the agent-based evolutionary models in which strategies of agents are not predeter-
mined by researcher but emerge from elementary actions of agents. 

The study of cooperation and artificial life are mostly theoretical endeavors: few 
are grounded with real data. Among them are outstanding examples such as a study of 
cultural group selection in New Guinea [12] and the simulation of Kayenta Anasazi 
historical dynamics in Long House Valley [13]. The first study resulted in estimation 
of cultural change rate. It was argued that significant change of cultural traits under 
group selection takes from 500 to 1000 years and therefore the more rapid social 
transformations should be driven by other factors. The results of the second study 
demonstrated that with the aid of a multi-agent computational model the main fea-
tures of the history of prehistoric inhabitants of Long House Valley, located in the 
Black Mesa area of northeastern Arizona (USA) can be closely reproduced. Among 
these features were population ebb and flow, changing spatial settlement patterns, and 
eventual rapid decline. The agents in the model were monoagriculturalists, who de-
cide both where to situate their fields and where to locate their settlements. 

Filling the gap between the theory and computer modeling on the one hand and ob-
jective world on the other is one of the actual tasks of artificial life research. This paper 
presents an attempt to test predictions generated by rather simple artificial life model of 
cooperation with the real data. The next section provides description of the model and 
is followed by a presentation of model’s predictions and discussion of their correspon-
dence to the real social systems. The final section is an outline of some conclusions. 

2   The Model 

The main modeling assumptions were as follows: 

• Evolution. The strategies in the population evolve through reproduction of agents 
by the means of mutation and selection. 

• Markers. Individual markers provide a potential tool for agents to differentiate in-
group versus out-group members. 

• Local interactions. All agents interact locally, as in real social networks. 
• Limited resources. Agents have limited resources, which serves as a factor of se-

lection in the artificial environment. 
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The world in the model is a two dimensional closed grid, which forms a torus. 
There are agents and patches of resource in the world. Only one patch of resource can 
exist in any cell at a given moment of time, but the number of agents in any cell is 
unlimited. Patches of resource appear randomly at a constant rate and are uniformly 
distributed in the space. 

An agent can observe its local environment and perform certain actions. The agent 
is oriented in space and has a field of vision. The field of vision consists of four cells: 
the cell the agent currently occupies, and the adjacent cells directly to the left, front, 
and right relative to the orientation of the agent. The agent lives in a discrete time. 
The agent executes one of seven actions during each time step: rest, consume a re-
source, turn to the left/right, move forward to the next cell, divide, or fight. 

When an agent rests, she changes nothing in the environment. If there is a resource 
patch in the cell with an agent and she executes the "consume" action, the patch disap-
pears. If the agent divides, an offspring is created and placed in the cell. Each time step 
before the action is calculated for the given agent one of the other agents in the cell is 
chosen randomly for potential interaction. The agent can “fight” this chosen one. 

Each agent stores a finite amount of resource on which to live. When the agent per-
forms any action, its internal resource decreases. If the agent executes the action "to 
consume" and there is resource in the cell, the internal resource of the agent increases. 
When the agent produces offspring, the parent spends some amount of resources in 
this process and gives half of the rest to the newborn. After executing the "fight" ac-
tion, the agent takes some amount of resource from the victim. If the internal resource 
goes to zero, the agent dies. 

Each agent has external phenotype that is coded by a vector of integer values 
(markers). These markers are inherited with mutations by offspring. Thus the Euclid-
ian distance between markers of two agents gives measure of their kinship. 

Behavior of the agent is governed by a simple control system. In this system each 
output associated with a certain action is connected with each input, which is associ-
ated with a certain sensory input from environment or internal state of the agent. The 
control system is a linear system, which is functioning similarly to a feed-forward 
neural network with no hidden layer. To calculate the output vector O of values, the 
input vector I should be multiplied by a matrix of weights W. Values of W are inte-
gers in the range [-Wmax,Wmax]. 

=
i

iijj IwO
 

(1) 

At each time step, the agent performs the action associated with the maximum out-
put value. 

The input vector I is filled with information about presence of resource and other 
agents in the field of vision, level of internal resource and Euclidean distance between 
marker vectors of current agent and its partner for potential interaction. 

The weights of the control system are coded in the genome of the agent. 
The genome of the agent S consists of three chromosomes S = (B, W, M). The first 

chromosome is the bit string which codes the presence or absence of individual sen-
sory inputs and actions; the second one is the vector of integers which codes the 
weights of the control system transformation and the third chromosome, also vector of 
integers, codes the kinship marker of the agent. 
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If the agent executes the action "divide", its offspring appears. The genome of the 
offspring is constructed with the aid of the following evolutionary algorithm: 

1. for every gene corresponding to the weight of the control system, add a small ran-
dom integer value uniformly distributed on the interval [-pw, pw], where pw is muta-
tion intensity; 

2. with a small probability pb, change each bit for the presence of sensory input or ac-
tion; 

3. for every gene corresponding to the kinship marker, add a small random integer 
value uniformly distributed on the interval [-pm; pm], where pm is the mutation in-
tensity of the marker. 
More details on the implementation of the model could be found in [14]. 

3   Results and Discussion 

The model described in the previous section lacks mechanisms for complex social in-
teractions thus the simulation results are not applicable to just any complex society. 
But it is reasonable to conjecture that modeling assumptions (see the beginning of the 
previous section) hold for the archaic egalitarian societies such as communities of 
hunter-gatherers and primitive agriculturalists. This section is devoted to testing this 
hypothesis. 

One of the largest domains in the area of ethnographic, anthropological, and cross-
cultural studies of primitive societies is committed to the research on interrelations of 
resources availability, aggression, and population pressure [15-22]. So it can provide 
us with a variety of theories to compare and with data on the real societies to verify 
predictions of the simulations. 

Below the agent from the model will be treated as a community of hunter-gatherers 
(a band) or primitive agriculturalists. In egalitarian societies, a community consisting 
of few nuclear or one extended family behaves like autonomous entity [23]. Members 
of community move, settle, and fight together. It is assumed that internal resource of 
an agent (from the model) corresponds to the human resource of community (its size). 
These assumptions allow us to grasp the following features of primitive societies in 
the model. 

1. Capturing enemies. For primitive societies it was a common practice that captured 
during an attack men were used as slaves, women as wives and children were 
adopted [19,20]. In the model when one agent fights another agent the former cap-
tures some amount of internal resource of the latter. 

2. Evolution is based on already obtained adaptation. If one accepts that prehistoric 
humans evolved pre-adaptations for hunting and gathering in small bands (“tribal 
social instincts” hypothesis [24]) it should be expected that development of more 
complex social organization will be based on and constrained by this pre-
adaptations. This “tribal social instincts” hypothesis is manifested in the model as a 
limitation of the capacity of agent’s internal resource. In other words it is assumed 
that a community exists as stable social entity if its size is under some threshold 
(maximal size of a band). 
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The evolution of cooperation in the model is based on the presence of phenotypic 
markers. The model marker of an agent is inherited in the same manner as a strategy 
of its behavior. Therefore agents with similar markers will have similar behavior and 
it is reasonable to think of ability of agents to differentiate each other markers in the 
model as ability of actors in the real social systems to perceive common descent or 
cultural markers. 
Two measures were introduced to estimate an aggression level in the model. 

1. Frequency of execution of the “fight” action in a population. 
2. Frequency of aggressive agents in a population. Here an aggressive agent is an 

agent which can potentially fight other agent at the cell where it is situated. Every 
agent in a population was tested with a fixed set of most frequent alternatives of in-
teractions (similar vs. different marker, low vs. high internal resource) and if in any 
situation an agent has performed a “fight” action it was treated as “aggressive”. 

As it was mentioned in the beginning of this section a large body of research on 
aggression in primitive societies is devoted to the study of dependence of aggression 
level and population density on variation in resource supply. Resources available to 
community in primitive societies are generally dependent on ecological conditions 
and on level of resources extraction technology. In the model bundles of resource 
which an agent can consume appears in every cell of environment with some con-
stant probability. In a series of simulations amount of a resource in a bundle C was 
varied in one order of magnitude. The range of variance in amount of resource in a 
bundle was set in a way that for smallest values it was insufficient for agent survival 
without them moving out of cell. At highest values of resource supply allowed sur-
vival of few agents in one cell. As a result the simulations with low resource supply 
correspond to hunter-gatherers in poor ecological conditions and the simulations 
with high resource supply to primitive agriculturalists and hunter-gatherers with rich 
resource base. 

The dependence of population density on an amount of a resource in a bundle C 
breaks on three parts (see fig. 1a). When resource supply is insufficient to support 
survival of one agent in the cell C < C1 population density reaches maximum for the 
given value of the C. If resource base is sufficient for survival of one agent in the cell 
but not two C1  C < C2 then the number of agents per cell does not depend on C and 
equals 1. In this case every cell is usually occupied by only one agent which prefers 
don’t move. If there is other agent in the cell then the dominant strategy to escape the 
cell in the case of small distance between marker-vectors and fight in opposite. For 
the C  C2 there is no dominant strategy in a population. The model demonstrates 
complex interplay of mixture of cooperative and non-cooperative predator and prey 
strategies which results in oscillation of population density. 

Applying the two measures of aggression—proposed above—to the simulation re-
sults gives dependencies which are presented on the figures 1b and 1c. Predictions of 
the model can be summarized as follows. 
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1. In the condition of poor resource base (C < C1), a portion of aggressive agents and 
a frequency of acts of aggression should grow with increase of resource supply. 

2. At intermediate resource supply (C1  C < C2), almost every agent should be able 
to fight (fig. 1c) but frequency of actually performed aggressive actions is very low 
(fig. 1b). 

3. In the case of rich resources (C > C2), both amounts of aggressive agents and acts 
of aggressions should increase as supply rises. 

Modern anthropology suggests that for primitive societies a general tendency is an 
increase of aggression with an enhancement of environmental conditions 
[16,17,21,22]. Simulation results fit this tendency for the ranges of poor (C < C1) and 
rich (C > C2) resource base (see fig. 1b and fig. 1c). But for the intermediate values of 
resource supply (C1  C < C2) it looks like that simulations contradict anthropological 
theory. On the other hand data about four Kalahari Bushmen groups which were pro-
vided in the influential work of Cashdan [17] shows exception from the general the-
ory. Among these four groups, !Ko, G/wi, Nharo, and !Kung, the first lived in the 
poorest ecological conditions and the last in the best but the !Ko demonstrated the 
most territorial and aggressive behavior and the !Kung were looked the most peaceful. 

 

Fig. 1. Dependence of population density (a), frequency of “fight” action (b), frequency of ag-
gressive agents (c), and correlation between population density and frequency of “fight” action 
(d) on resource supply. Dots correspond to the values for different simulation runs; solid lines 
connect averages. 
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If one tries to align the data from Cashdan [17] with the simulations results it is 
reasonable to consider resource supply of the !Ko as falling in the range C < C1 and 
resource supply of the !Kung in the range C1  C < C2. In this case the model predicts 
a higher aggression rates for the !Ko and a lower for the !Kung (fig. 1b). So the 
model’s prediction matches the data in this case. Another prediction of the model re-
quires the !Kung to be ready to perform violent act at any moment (fig. 1c). The 
!Kung are hunting with bow and poisoned arrows, so there are no technical problems 
for the !Kung bushman to kill another man. Moreover the !Kung have norms prescrib-
ing circumstances in which one !Kung is allowed to kill another one. For example, the 
bushman who finds a hive obtains rights on the honey from that hive. The owner of a 
hive is allowed to kill anybody who attempts to take honey from the hive without 
permission. Such features of the !Kung bushmen as low level of observable aggres-
sion and high potential for producing violent acts fit surprisingly the second predic-
tion form the list above. The contradiction between the actual and potential aggression 
is not unique for the !Kung; a similar pattern can be found among Australian’s abo-
riginals. Aboriginals from the Western Desert have ecological conditions similar to 
the !Kung. These aboriginals demonstrate low level of violence as the !Kung do but 
have institutes of socialization for aggression such as ritual fights and formation of 
secret groups of avengers, etc [21,22]. 

The Malthusian suggestion that population pressure should lead to war is com-
monly accepted in current anthropology for the case of preindustrial stateless societies 
[22]. Recent developments in the modeling of warfare in primitive agricultural socie-
ties are based on the approaches of population dynamics [26] and also consider popu-
lation density as the major determinant positively affecting the level of warfare. The 
straight Malthusian approach predicts positive correlation between population density 
and frequency of warfare. The models of Turchin and Korotaev [26] give a weak 
negative correlation. Correlations between population densities and frequency of 
“fight” actions in the population for the simulations with the artificial life model are 
given on the figure 1d. 

A cross-cultural test has been completed to compare all three predictions. As the 
source of data on real societies a Standard Cross-Cultural Sample database [27] was 
used. The correlations between density of population and few internal warfare vari-
ables were calculated for the societies with low level of political integration and ex-
tensive agriculture as subsistence technology. The results of cross-cultural test are 
presented in the table 1. 

The results presented in the table 1 are in agreement with results of similar analy-
ses provided in [22]. The analysis reveals rather strong negative correlation between 
variables “Density of Population” and “Frequency of Intercommunity Armed Con-
flict” r = -0,489 , p = 0,046. Societies with extensive agriculture correspond to the 
simulated populations with rich resource supply (C > C2). Simulation results for the 
highest value of resource (fig. 1d, C = 2000) give the closest match to the data. The 
pure Malthusian approach and the models of Turchin and Korotaev are not supported 
by data. 

In addition to the population pressure one more factor believed to affect warfare is 
predictability of resources. Embers [28-30] showed that resource problems, particu-
larly those created by unpredictable weather or pest disasters strongly predict warfare 
frequency (for direct archaeological evidence on unpredictable resource fluctuations 
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as a major factor of warfare frequency see, e.g., [31,32]). Multivariate analyses for 
nonstate societies gave standardized coefficient of r = 0,631 (p < 0.001, one tail) for 
natural disasters as predictor of warfare ([29] p. 254). Furthermore, the correlation be-
tween the presence of unpredictable natural disasters destroying food supplies and 
warfare frequency has turned out to be stronger than the one attested for more than a 
dozen various warfare frequency factors tested by the Embers. 

Table 1. The results of cross-cultural test1 (data for the test are taken from a Standard Cross-
Cultural Sample database [27]) 

 “Density of Population” 
v156 

Name of variable and its number in Standard Cross-
Cultural Sample [27] 

r p* 

“Frequency of Intercommunity Armed Conflict” v693 -0,489 0,046 
“Frequency of Violent Conflict Between Groups within 
Local Communities” v1750 

-0,230 0,375 

“Frequency of Violent Conflict Involving at Least One Lo-
cal Community” v1758 

-0,208 0,408 
*A correlation is significant if p < 0,05. 

Table 2. Two measures of aggression for the high and low predictability of resources in the 
model 

 case 1 case 2 case 3 average 
high predictability of resources     
Frequency of execution of the 
“fight” action in a population. 

0,000686 0,000807 0,000791 0,000761 

Frequency of aggressive agents in a 
population. 

0,119 0,176 0,172 0,156 

low predictability of resources     
Frequency of execution of the 
“fight” action in a population. 

0,00234 0,00267 0,00274 0,00258 

Frequency of aggressive agents in a 
population. 

0,617 0,672 0,625 0,638 

 

To test if the model could grasp this phenomenon, two series of simulations were 
performed [33]. They differ in amount of resources in a patch and frequency of patch 
appearance. For the first series, the frequency of resource appearance was ten times 
greater than for the second, but amount of resources in a patch was ten times smaller 
than for the second. So, for both cases total amount of resources which could be col-
lected by agent during given period of time was equal, but the probability (and, hence, 

                                                           
1 Only the cases for which the following conditions hold were selected for the test. 1. A vari-
able “Political Integration” (v157) should have one of the values “None”, “Autonomous local 
communities”, or “1 level above community”. 2. A variable “Intensity of Cultivation” (v232) 
should have the value “Extensive or shifting agriculture, long fallow, and new fields cleared 
annually”. 
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predictability) of obtaining a single portion of resource for the first series was ten 
times greater than for the second. 

As shown in table 2 measures of aggression proposed above drop in almost three 
times for simulations with high predictability of resources with respect to low predict-
ability. So the model is deemed to have passed in the third test as well. 

4   Conclusion 

The artificial life model of evolution of cooperation—based on assumptions of herita-
ble markers, constrained resource, and local interactions—demonstrates surprising fit 
to some features of real social systems. The model captures a general trend of increas-
ing of the aggression level with a rising resource supply in primitive societies but 
grasps also some exceptions such as a case of !Ko and !Kung in Kalahari desert which 
demonstrates reverse interdependence between resource base and aggression. At some 
level of resources in environment, the model predicts mismatch between levels of ac-
tually manifested aggression and the propensity to perform violent acts. This predic-
tion finds support in the behavior of !Kung bushmen and aboriginals of Western De-
sert of Australia. The correlation between population density and frequency of fight 
action for the case of rich resources in the model is similar to the analogous correla-
tion extracted from ethnographic database. Finally, impact of resource predictability 
on internal warfare observed for real societies is correctly replicated in the model’s 
behavior. All this allows us to consider that initial modeling assumptions are accept-
able as major factors of social evolution in archaic egalitarian societies. 
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Abstract. We study a population of individuals playing the prisoner’s
dilemma game. Individual strategies are invariable but the network of
relationships between players is allowed to change over time following
simple rules based on the players’ degree of satisfaction. In the long run,
cooperators tend to cluster together in order to maintain a high average
payoff and to protect themselves from exploiting defectors. We investi-
gated both synchronous and asynchronous network dynamics, observing
that asynchronous update leads to more stable states, and is more tol-
erant to various kinds of perturbations in the system.

1 Introduction

The Prisoner’s Dilemma (PD) game is a methaphor for analyzing conflicting
situations that arise in the economy and in society in general (see Axelrod’s
book [1]). It has fascinated researchers because it is an interaction where the
individual rational pursuit of self-interest produces a collective result that is
self-defeating. The following payoff matrix represents the prisoner’s dilemma
game as a two-person game in normal its form [4]:

C D
C (R,R) (S,T)
D (T,S) (P,P)

In this matrix, C stands for cooperation and D for defection. R stands for the
reward the two players receive if they both cooperate, P is the punishment for
bilateral defection, and T is the temptation, i.e. the payoff that a player receives
if she defects, while the other cooperates. In this latter case, the cooperator
gets the sucker’s payoff S. The payoff values are submitted to the following
constraints: T > R > P > S and R > (T + S)/2.

This game has a unique Nash equilibrium, (P,P), and thus, in a one-shot play
of the game, the rational outcome is for both players to play D in spite of the
fact that both players would be better off cooperating, with a payoff (R,R).

If the PD game is iterated a known finite number of times, the result doesn’t
change, and steady defection of the two players is the rational outcome of each
encounter in the sequence. However, when the game is iterated an indefinite
number of times, strategies that allow cooperation to emerge and persist are
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possible, as described by Axelrod [1,3]. This result could lend some justification
to the commonly observed fact that cooperation does appear in society, in spite
of individual greed. We will only deal with the one-shot case in the rest of the
paper.

Considering now not just two players but rather a population of N players,
evolutionary game theory [8] prescribes that defection is the evolutionarily stable
strategy of the population, given memoryless players. However, in 1992, Nowak
and May [7,6] showed that cooperation in the population is sustainable under
certain conditions even in the one-shot game, provided that the population of
players has a lattice spatial structure. Nevertheless, many real conflicting situ-
ations in society are not well described by a fixed geographical position of the
players. In economy, for instance, markets and relations between firms are not
limited by geographical distance in this era of fast global communication. The
same can be said of many social and political interactions where relationships
may change over time. Thus, it becomes of interest to study how the interaction
network influences the global outcome, and how this same relational structure
may evolve under the pressure of the player’s strategic interactions. The PD is
an excellent way of studying such an evolution in a simplified and understand-
able environment.

Recently, Zimmermann et al. [9] have published a study in which both the
strategies of players – C or D – and the network of players’ relationships may
change and adapt during time. They use the same synchronous strategy evolu-
tion as Nowak and May [7]. Players are satisfied if their payoff is the highest
among the neighbors, otherwise they are unsatisfied. Only unsatisfied D-players
can then break a link to another D-player with a certain probability and rewire
it randomly. Zimmermann et al. find that, for some value of the parameters, the
network of players self-organizes to stable cooperative states.

Here we follow a similar idea but we assume a population of players each of
which has an unchanging strategy C or D. Thus, we concentrate on the purely
topological aspects i.e., the evolution of the network of relationships among the
players. Although the assumption of unchanging strategy may seem unrealis-
tic, this is not necessarily so. Indeed, there are many situations in which the
player has little or no choice of alternative strategies, either because of insuffi-
cient knowledge or because of external social pressure. With respect to [9], our
network update rules are different, as explained in the following section. We
study both synchronous and asynchronous update policies and compare the re-
sults on deterministic as well as perturbed systems. A preliminary account of
the noiseless model appears in [5].

2 The Model

We consider a population of N individuals all playing the prisoner’s dilemma.
The population can be subdivided into the subset of the cooperators, EC , and
the one comprising the defectors, ED. Initially, there are no links between the N
players in the population. At a given time t, an individual i interacts exclusively
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with a subset of the entire population known as its neighbors and denoted by
Vi(t) with the condition i /∈ Vi(t), ∀t. An individual i does not necessarily have
neighbors in which case Vi = ∅. An interaction of an individual i with one of its
neighbors j is represented by an undirected link so that i ∈ Vj(t) ⇒ j ∈ Vi(t), ∀t.
The values in the payoff matrix S = 0, P = 0.1, R = 1, T = 1.39 have been
chosen to be in accordance with the T > R > P > S and R > (T + S)/2
relationships. Furthermore, T = 1.39 was chosen due to the interesting results
obtained in previous works as to the persistance of C and D together for values
of T in between 1.2 and 1.6 [6].

2.1 Average Payoff and Notion of Satisfaction

Let si be the strategy of an individual i, with si = 0 for a defector (D) and si = 1
for a cooperator (C). Furthermore, let us denote with Πi(t) the average payoff
of the individual i at a given time step t. This gives us the following equation:

Πi(t) =

⎧⎪⎪⎨⎪⎪⎩
−1 if Vi = ∅,

si(γi(t)R+δi(t)S)+(1−si)(γi(t)T+δi(t)P )
|Vi(t)| otherwise.

(1)

where γi(t) (resp. δi(t)) is the number of cooperators (resp. defectors) ∈ Vi at
the given time step t. Πi(t) has a negative value when player i is isolated to
distinguish this case, where the player has to randomly choose another player in
the population to be its neighbor, from the case where the player has a 0 payoff
and must thus rewire one of its links. Once Πi(t) is defined, we can introduce
the satisfaction threshold Θi of an individual i as:

Θi = si(S + σ(R − S)) + (1 − si)(P + σ(T − P )) (2)

where 0 ≤ σ ≤ 1 is called the satisfaction degree.
An individual i is said to be satisfied iff Πi ≥ Θi. The satisfaction degree charac-
terizes the minimum percentage of cooperators an individual should have among
its neighbors in order to be satisfied. The two limit cases are σ = 0, which means
that an individual i will always be satisfied except if it has no neighbors (Vi = ∅),
and σ = 1 implying that i will be satisfied iff its neighborhood is composed solely
of cooperators (i.e. Πi = Θi = siR + (1 − si)T ). Our notion of a satisfied in-
dividual differs from that of [9] where a player is satisfied only if it has the
highest payoff among its neighbors. In a real-world situation, one doesn’t neces-
sarily desire to be “the best”, and, moreover, a player might find it impossible
to know the neighbors’ payoffs. Furthermore, we find it important to work with
an average payoff instead of the accumulated one considered in [9].

2.2 The Rewiring Rules and the Time Evolution

Let i be a player and tn the nth time step. Its interaction with other players
evolves in time according to the following basic rules:
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– if Vi(tn) = ∅: i is unsatisfied and must choose an individual j uniformly at
random in the population to be i’s new neighbor, i.e. j ∈ Vi(tn+1).

– else if Πi(tn) < Θi: i is unsatified and must hence pick randomly one of its
D-neighbors and replace it with a randomly chosen individual j satisfying
j /∈ Vi(tn). If such a j does not exist, nothing is done and i must try to
bear with its unsatisfaction. Notice that an unsatisfied individual i with
Vi 
= ∅ necessarily has a D-neighbor since only C-neighbors contribute to i’s
satisfaction.

– otherwise: i is satisfied with its situation and will thus continue to play
against exactly the same individuals at time step tn+1 unless, independent
of i, one of its neighbors decides to cut off its link with i or an outsider
inserts itself into i’s neighborhood.

Finally, let us stress the fact that unlike the model in [9], cooperators, as well as
defectors, have the possibility to attempt a change in their neighborhood.

Synchronous Time Evolution. In the synchronous update, every individual
i starts by playing the PD game with its neighbors and uses the outcome to cal-
culate its average payoff Πi(tn). Next, all the unsatisfied players simultaneously
modify their neighborhood according to the previously mentioned rules (2.2).
Possible collisions are resolved by using a temporary network data structure.

Asynchronous Time Evolution. The hypothesis of a global clock, which is
a necessary requirement for synchronous dynamics, could be unrealistic in a
social setting, since information travels at finite speed. Thus, having the whole
population update its state all at once is only an idealization. Hubermann and
Glance [2] elaborate on this point. A different point of view is discussed in [6]
where the authors state that there is not much difference at the macroscopic,
population level. Here we have decided to study both update models, in order
to gain further insight on the corresponding dynamical processes.

For the asynchronous case, while other policies could be used, we chose the
customary independent random ordering of updates in time which is a close
approximation of a Poisson process. The time t needed to update the whole
population is subdivided into a sequence (u1, u2, . . . , uN) of update steps. During
an update step uk, an individual i is randomly picked, Πi(uk) is calculated,
and the appropriate rules (2.2) are used to immediately adapt its neighborhood
if unsatisfied. Note that in the rules 2.2, Vi(tn+1) becomes Vi(uk+1), k =
1, 2, . . . , N. This process is iterated N times with replacement (where N is the
population size). Note that this is only one of many possible sequential update
policies, but it is a reasonable one in our case.

3 Simulation Results and Analysis

0.0 ≤ σ ≤ 0.9. In order to analyze the influence of the satisfaction degree on
the network of players and compare the results between the synchronous and
asynchronous updates, we varied σ from 0.0 to 0.9 by steps of 0.1. For each of
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Fig. 1. The mean normalized average payoff ΠC (a) and ΠD (b) after the final time
step, averaged over 20 runs. Synchronous versus asynchronous updating.

these values, two series of 20 runs of 400 time steps each were executed on a
population of 1600 players (50%C – 50%D), one series per update policy.

Among the several quantities that were observed at the end of each run, we
studied in particular the mean normalized average payoff ΠC(t) and ΠD(t) of
cooperators and defectors respectively, defined as:

ΠC(t) =

∑
i∈EC

(Πi(t) − S)
(R − S) |EC | , ΠD(t) =

∑
i∈ED

(Πi(t) − P )
(T − P ) |ED| (3)

As the satisfaction degree increases, the mean average payoff of the cooper-
ators seems to clearly tend to the C maximum payoff R (Fig. 1(a)). Moreover,
both synchronous and asynchronous lead to the same behavior. Unlike ΠC , ΠD

differs a little from synchronous to asynchronous. Fig. 1(b) shows that when
using an asynchronous update, the defectors globally attain a payoff close to
the their maximum possible (ΠD > 0.9) for already very small values of σ
(σ = 0.1) whereas in the synchronous case, ΠD greater than 0.9 are reached
only for σ > 0.5. Nevertheless, if we ignore transients, i.e. the initial phases of
the evolution, the long-term trend is identical for the two types of updates. The
correlation between the increase of σ and that of ΠC and ΠD is explained eas-
ily by the fact that the higher the satisfaction degree, the more demanding the
players become of their neighbors. For example, σ = 0.8 implies that in order
for an agent to be satisfied, its neighborhood must be composed of at least 80%
of cooperators.

σ = 1.0. Do the previous tendencies hold true for the limit case of σ = 1 where
all the players, whether they are cooperators or defectors, are unsatisified as long
as a defector is found among its neighbors? To answer this question, since the
simulations are time-consuming, the runs were increased to 1000 time steps each
and the size of the population was reduced to 40 individuals (20 C and 20 D).

The time series of the mean normalized average payoffs ΠC and ΠD are
shown in Fig. 2.



670 L. Luthi, M. Giacobini, and M. Tomassini

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

time step

m
ea

n 
no

rm
al

iz
ed

 a
ve

ra
ge

 p
ay

of
f

C
D

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

time step

m
ea

n 
no

rm
al

iz
ed

 a
ve

ra
ge

 p
ay

of
f

C
D

(a) (b)

Fig. 2. Evolution of ΠC and ΠD averaged over 20 runs; (a) using synchronous update,
(b) using asynchronous update

An interesting point to notice is that when using an asynchronous update,
all the D-players are able to reach and maintain their maximum payoff. The
small fluctations that occur after system stability (generally reached around time
step 150) are due to defectors getting totally disconnected from their neighbors
(which were of course all unsatisfied cooperators). However, the lone defectors
reattain their maximum payoff by finding a new C-neighbor usually in a matter
of one to two time steps. In the synchronous case, the defectors on average
seem to tend to their maximum payoff in the first 100 time steps, after which
ΠD gently decreases. This is also true concerning the payoff of the cooperators
which diminishes at the the same speed as ΠD does.

Fig. 2 unfortunately does not give a detailed picture of the rewiring at hand
and the underlying organization, since once again it only shows an average of
the 20 runs. In order to have a better understanding, we must have a look at a
few typical runs and study not only ΠC and ΠD, but also the evolution of the
different degrees of the network.

The first thing to be observed is the cooperators forming a complete graph
whether the update is synchronous or asynchronous (see Fig. 3 where, after a
transient period, the average degree of cooperators becomes 19, which is the
maximum possible degree given that there are 20 cooperators in the popula-
tion). This is a direct consequence of the pressure σ = 1 exerts on the C-players
forcing them to continue changing neighbors for as long as they are connected
to defectors. Since defectors, on the other hand, continously seek to have inter-
actions with them, the C-players inevitably end up forming a huge cluster where
they are all linked to one another.

Secondly, as mentioned above, when using an asynchronous update, all the
defectors reach their maximum payoff and maintain it (Fig. 2(b)). Now, look-
ing at Fig. 4(b) showing the mean normalized average payoffs, we see that the
local drops of ΠD are due to defectors finding themselves cut off from the clus-
ter of cooperators and having thus a momentarily negative average payoff (Eq.
1). These defectors will then randomly create a new link, rewiring it until it
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Fig. 3. Average degrees of a typical run; update: (a) synchronous, (b) asynchronous;
population size: 40, σ = 1. C-D and D-C links are the same since there are as many
cooperators as defectors.
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Fig. 4. Time evolution of the mean averaged payoffs ΠC and ΠD during a typical run;
update: (a) synchronous, (b) asynchronous; population size: 40, σ = 1

eventually reconnects them to a cooperator. Only then will the system reach
once again a stable state. Further details on this behavior can be found in [5].

When using a synchronous update, things are not as simple. Fig. 3(a) and
Fig. 4(a) show that although the system reaches a stable state, the latter is quite
fragile and is not safe from collapsing to attain another type of stable state.

The downfall of both ΠC and ΠD begins with a D-agent being isolated. Once
this occurs, there is a fifty-fifty chance that the latter will generate a link coupling
it with another previously satisfied D-player. At the next time step, both these
unsatisfied defectors will attempt to rewire the same link, thus creating two new
links for only one “disappearing”. If these two defectors are associated in turn
to other defectors, there’s the risk that this process will snowball, producing
more and more links connecting D-agents to other individuals. This explains
why, when using a synchronous update, a majority of the runs present sooner or
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later a rise of the different average degrees accompanied by a drop of both ΠC

and ΠD. The system usually reattains stability once the C − D average degree
reaches N

2 − 1 where N is the size of the population (see Fig. 3(a)).
On the same figure, the fact that the D-D average degree does not increase

past a certain level — about six in the figure — is due to the fact that the higher
the D-D average degree, the higher the probability of two unsatisfied D agents
breaking a link with other D players, and trying both to connect to one another.
This results in two D-D links disappearing for only one new D-D link created.

To ascertain that the results obtained with 40 individuals are also valid for
bigger size populations, a few very long runs (12000 time steps) were executed
on the initial size of 1600 players. These runs — not shown here to save space —
qualitatively confirm the dynamics observed in the small size population.

4 System Stability Under Noise

In order to study the resilience of the system in the case of σ = 1, two kinds of
perturbations were applied. The first one takes place only once the stability is
attained i.e., at time step 1001. At that point, a certain percentage of cooperators
becomes defectors for a lapse of 10 time steps, after which they regain their
initial strategy. The second one concerns an error an agent makes when deciding
to rewire one of its links. Instead of breaking a link with one of its D-neighbors,
a player might go awry with a certain probability and break up with a randomly
chosen C-neighbor. In both cases, we only show the fluctuations over time of
ΠD averaged over 20 runs. This characteristic, as well as the sundry average
degrees, are where we find the most significant differences between the two types
of updates.

Strategy Noise. The perturbations on the players’ strategy are of two types:
one where the changes are applied to cooperators alone and one where only the
defectors are allowed to turn into cooperators. The latter case is not of great
interest. Indeed, at system stability, when using an asynchronous update, Ds are
merely satellites around the complete cluster of Cs with links solely with the
latter. Therefore, a defector who turns into a cooperator will immediately be
satisfied and there will be practically no perturbation on the system between
the moment an error is introduced and the moment the system recovers its nor-
mal state. In the case of synchronous updating, according to the discussion in
section 3, we either find ourselves in a situation similar to the asynchronous one
previously discussed, or the system has already given way to the sudden increase
of D-D links (see Fig. 3). In the latter case, a previously D-agent connected to
practically all the cooperators, will form, as a cooperator, a complete cluster
with his fellow cooperators in a matter of a few time steps. Once the initial
strategies of the players are reestablished, the system will immediately recover
its original state with simply a higher average degree.

For the case of a C turning into a D, Fig. 5 indicates that, when using an asyn-
chronous update, the system regains its previous level of defector payoff, even
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Fig. 5. Time evolution of the mean averaged payoff ΠD with different probabilites
of cooperators becoming defectors (SNC) between time step 1001 and 1010; (a) syn-
chronous, (b) asynchronous; population size: 40, σ = 1. Note the x and y axes scales.
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Fig. 6. Time evolution of the mean averaged payoff ΠD under different probabilities
of rewiring errors; (a) synchronous, (b) asynchronous; population size: 40, σ = 1

prior to the removal of the perturbation. However, in the synchronous counter-
part, the model never fully recovers from the perturbations. This is caused by
the fact that the strategy error guarantees a rise of the number of D-D links
in the same way shown on Fig. 3(a). Thus, in the synchronous case, all the
runs will comprise a plummeting of ΠD in the noise interval if not earlier (see
Fig. 4).

Rewiring Noise. Noise on the rewiring process consists for every player in
making a mistake when rewiring and breaking off with a certain probability a
link with a C-neighbor instead of a D-neighbor. This noise is introduced from
the very beginning of the simulation.

The model has a good resistance to this type of noise as shown on Fig. 6.
For both update mechanisms, high levels of noise (an error approximately 30
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percent of the time) are necessary to notice important fluctations of ΠD. Notice
however, that the asynchronous model is once again more resistant to noise than
the synchronous one. Indeed, the stochastic idiosyncrasy of the asynchronous
updating process makes it more robust with respect to random errors.

5 Conclusions and Future Work

We have shown that, in spite of the fact that the players are not allowed to
change their strategy, the network of relationships between players self-organizes
towards a situation were the cooperators tend to cluster together and are sur-
rounded by defectors, the phenomenon being more pronounced for high degrees
of satisfaction. We also observe a greater overall stability of an asynchronous up-
dating in comparison to the synchronous counterpart. Asynchronous updating
equally shows higher resistance to two typical kinds of perturbations confirm-
ing its robustness. Future works will consists of letting the players change their
strategy as well as modify their neighborhood.
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9. M. G. Zimmermann, V. M. Egúıluz, and M. San Miguel. Coevolution of dynamical
states and interactions in dynamic networks. Physical Review E, 69:065102(R), 2004.



Multi-agent-based Simulation for Formation of
Institutions on Socially Constructed Facts

Takashi Hashimoto1 and Susumu Egashira2

1 School of Knowledge Science,
Japan Advanced Institute of Science and Technology (JAIST),

Nomi, Ishikawa, 923-1292, Japan
hash@jaist.ac.jp

http://www.jaist.ac.jp/~hash/index-e.html
2 Otaru University of Commerce,

3-5-21, Midori, Otaru, 047-8501, Japan
susumue@ba2.so-net.ne.jp

http://www.res.otaru-uc.ac.jp/~egashira/

Abstract. In human societies, facts are constructed through social con-
sensus. Here, the formation of social institutions in such a society is stud-
ied using a multi-agent-based simulation. Institutions are formed through
communications among members, and the effects of errors in communi-
cation on the formation of institutions are investigated. Our results show
that the institution is established when information suppliers frequently
make errors in their information interpretation. We propose here that
there is a phase transition in the error rate of the information suppliers
in the formation of institutions.

1 Introduction

In the present study, we examine the formation of social institutions in a society
using a multi-agent simulation. In particular, we investigate how errors in com-
munication among members of the society affect the formation of institutions,
when the “facts” emerge from interactions between the members.

One of the remarkable features of humans is that we live in societies and con-
struct cultures. Here, we define culture as dominant modes of action and thought
that are inherited through non-genetic mechanisms and are retained in a group
of organisms. Among animals that form societies and cultures, human cultures
are distinguished by their arbitrariness[1]. In animal societies, most cultures are
related to survival and reproduction, such as methods of food utilisation and
avoidance of enemies, while in human societies, a particular method or form
is selected from among possible arbitrary options and regarded as formal, e.g.,
funeral rites and costumes used in rituals. This means that formality and cor-
rectness of codes of conduct and ethics in a society, such as morals and justice,
are decided both unconsciously and unintentionally by members of that society.

Further, facts are sometimes determined by social consensus. For example,
firms estimate their performance according to an accounting system. The mea-
sure of the estimation, such as the depreciation rate, is determined politically
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by agreement among public organisations. In a sense, the evaluation of a firm
is largely dependent on the social consensus, and if a criterion is changed, the
value of the firm is also changed without any accompanying physical change[2].
That is, facts about the firm’s performance are constructed based on the social
consensus. This character of facts is called “social construction of facts”. It is
discussed that our reality also depends on the social construction[3,4].

Systems that regulate our behaviour, such as the accounting system and laws,
and that form the basis of our thoughts, such as customs and ethics, are called
social institutions. Veblen[5] defined institutions as “settled habits of thought
common to the generality of men”. Social institutions are often made up through
communication. People living in a complex society, in which little firsthand or
direct information about various events is obtained, make their decisions ac-
cording to information obtained from others. However, it is logically impossible
to confirm the correctness of the information gained, because the confirmation
of certain information requires additional information, which also requires ad-
ditional information for confirmation, and so on. We called this character the
“fundamental imperfection of information” and concluded that institutions work
effectively to economise the cost for each person to confirm the correctness of
information by believing the institutional systems established in the society[6].

Multi-agent-based simulations have been used to study the formation of in-
stitutions and norms[7,8,9,10]. These studies barely consider “fundamentally im-
perfect information” and the development of the agents’ cognitive frameworks
(world views or ways of thought) through interactions with others. Our previous
work[11] showed that an institution as an ordered cognitive framework is formed
as a result of social learning, such as the imitation of others’ superficial actions
and the continuous revisions of internal cognitive frameworks. However, in these
studies, the social construction of facts and errors in the communication process
are not considered. Thus, the present study was performed to investigate how
institutions are formed when facts or partial facts are determined socially and
how errors in information interpretation affect the formation of institutions.

Here, we suppose that people obtain information about some objective situ-
ations to be dealt with through communication, interpret it and act according
to the interpretations. A typical example is the stock market where many in-
vestors make decisions about investments in stocks of various firms according
to information supplied by securities companies and rating agencies. How their
decisions are evaluated, i.e., their profit or loss, depends largely on the actions
of all investors. Keynes[12] likened this situation to a “beauty contest” in which
not only does the prize go to the person who receives the most votes but in
which those who vote for the winner also benefit. Thus, it is thought that the
validity of investors’ decisions is partially socially constructed. To understand
firms’ performances, the investors must not only adequately select the informa-
tion suppliers but also correctively interpret the information supplied. Note that
the objective phenomena to be modelled in this paper are not limited to eco-
nomic activities. As mentioned above, there are many activities in which codes
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of conduct and ways of thinking are formed through communication and that
affect our activities.

This paper is organised as follows: In Sec. 2, a multi-agent model is intro-
duced. In Sec. 3, simulation results using the model are described. We discuss
the results from the viewpoint of the formation of institutions in Sec. 4. The
conclusions are presented in Sec. 5.

2 Model

We incorporated incorporate the social construction of facts and errors in infor-
mation interpretation into our previous model[11]. The present model consists of
two types of agents, information suppliers and information receivers, and objec-
tive situations with which the information receivers should deal. The information
flows from the objective situations to the receivers through the suppliers, as il-
lustrated schematically in Fig.1. An event sequence from setting an objective
situation to evaluating the receivers’ decision is called one turn.

Each agent has its own cognitive framework for interpreting information. The
framework is expressed by a bit string fS = (fS

1 , fS
2 , · · · , fS

L ) for a supplier and
fR = (fR

1 , fR
2 , · · · , fR

L ) for a receiver. Only the information receivers are aligned
on a 2-dimensional W × W cell-plane with a periodic boundary.

The information suppliers observe the objective situations. One objective
situation consists of L figures, each figure has two states: 0 or 1. The objective
situation is expressed by a vector O = (O1, O2, · · · , OL). Each figure corresponds
to each element of the frameworks, fS ’s and fR’s. The objective situation is
randomly generated at the beginning of each turn.

The information suppliers interpret the objective situations. The way of in-
terpretation is implemented by the exclusive or (XOR) bit operation, defined
as

1 1 0 1 0 0 1 1 0 0

0 1 0 1 0 0 1 0 1 1

supplier’s
 cognitive framework

receiver’s
 cognitive framework

information 
 from a supplier

decision of a receiver

0 1 1 0 0 1 0 0 0 1

1 0 0 0 0 1 1 0 1 0

Interpretation = XOR

Interpretation = XOR

evaluation
 = matching

Error = bit flip

Error = bit flip

1 0 0 1 0 1 1 1 0 1
objective situation

(Set randomly)

1 1 0 0 0 0 1 1 0 0
fact

all receivers’ decision

social constuction
 = majority vote

Fig. 1. The Information flow from an object to a supplier and to a receiver
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XOR(x, y) =
{

0 (x = y)
1 (x 
= y) . (1)

Errors in the interpretation are implemented by the bit flip operation, defined
as

Flip(x) =
{

0 (x = 1)
1 (x = 0) . (2)

The error function, Flip, is operated randomly on each bit according to the
suppliers’ error rate εS per bit. Thus, a supplier’s interpretation, IS = (IS

1 , IS
2 ,

· · · , IS
L), of information about an objective situation is expressed as:

IS
i = Flip(XOR(Oi, f

S
i ) ) , (i = 1 ∼ L) . (3)

Each information receiver, located on a 2D plane of size W × W , adopts a
supplier as the source of information about the objective situations. A receiver
obtains information, IS , from the adopted supplier and makes its own inter-
pretation, IR, using its cognitive framework, fR, in the same manner as the
information supplier:

IR
i = Flip(XOR(IS

i , fR
i ) ) , (i = 1 ∼ L) . (4)

The error rate of the receivers is denoted by εR. The receivers make decisions
based on their interpretation. In this paper, for simplicity, the decision is iden-
tified with the interpretation.

The receivers’ decisions are evaluated in terms of facts, denoted by F =
(F1, F2, · · · , FL), which are socially constructed through the majority vote,

Fi = Majority(IR
i ) =

{
1

(∑
all receivers IR

i > W 2/2
)

0 (otherwise) . (5)

That is, the fact for ith bit is 1 if more than half of the receivers interpret it as 1,
and vice versa. Each receiver scores the number of bits in its own interpretation,
IR, that match the fact, F . Thus, the score of a receiver, denoted by P , is:

P =
L∑

i=1

(1 − XOR(IR
i , Fi)) (6)

After evaluation, each receiver compares its score with those of the eight
neighbouring receivers. If a receiver has the lowest score alone, then a randomly
selected element in its cognitive framework is altered; otherwise nothing hap-
pens. The lowest scored agent also changes its information supplier, adopting
the supplier adopted by the best receiver among its neighbours. If more than
one receiver has the best score in its neighbours, one is selected at random. That
is, the locally worst receiver imitates the selection of supplier – i.e., the exter-
nally observable behaviour – of the locally best receiver and internally searches
a better framework in a trial-and-error manner, which is the least smart and
memory-less learning method.
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3 Simulation Results

We report the results of simulation using the model described above. The con-
ditions for the simulation were as follows. The size of the information receivers’
plane was W = 21, and the numbers of receivers and of information suppliers
were both 441. The length of the bit strings for the objective situations, the
frameworks and the fact was L = 10. The initial cognitive frameworks were set
randomly. While the receivers revised their frameworks according to the score,
P , the suppliers did not change from their initial framework. Varying the error
rates, εS and εR, we assess the effect of errors on the formation of institutions.

3.1 Erroneous Interpretation by Suppliers

To assess the effects of the suppliers’ interpretation error on the formation of
institutions, we conduct experiments in which only the suppliers make errors.
The error rates are εS = 1E − 5, 1E − 4, 0.001, 0.01, 0.1 and 0; and εR = 0.

We observed how the receivers’ selection of suppliers changed over time. A
group in which the receivers adopted the same supplier is called a cluster. The
size of the kth cluster, denoted by Ck, is the number of receivers in the cluster.
The graph shown in Fig. 2(a) shows the dynamics of the size of the largest
cluster, C, for various values of εS. Only in the case of εS = 0.1, the cluster
size expanded rapidly and reached the maximum, Cmax = W 2 = 441. Clusters
hardly developed for other values of the error rate.

The degree of (dis)accordance between the cognitive frameworks of the re-
ceivers is measured by the Hamming distance between two receivers’ frameworks

dist(r, r′) =
L∑

i=1

∣∣∣f r
i − f r′

i

∣∣∣ , (7)

where r and r′ represent two receivers and | · | is the absolute value. The average
distance in the kth cluster,

Dk =
1

2Ck

∑
dist(r, r′) , (8)

is a measure of the (dis)accord of the framework in the cluster, where the sum
is taken over all receivers, r and r′, in the kth clusters.

Figure 2(b) shows the dynamics of the average distance in all clusters,

Dave =
1

W 2

∑
k

CkDk. (9)

Except in the case of εS = 0.1, the average distance converges to a value that
depends in a straightforward manner on the error rate. Specifically, larger error
rate were associated with grater distance. In the case of εS = 0.1, following
the rapid growth of the largest cluster (around 7,000th turn), the receivers’
frameworks begin to show accordance (around 8,000th turn) and finally become
completely common to all the receivers (Dave = 0, around 30,000th turn).
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Fig. 2. The dynamics of the largest cluster size, C ((a) and (c)), and the average
distance in clusters, Dave ((b) and (d)), when the suppliers made errors in their inter-
pretation process ((a) and (b)), and when the receivers made such errors ((c) and (d)).
The x-axis is the turn. The error rates are εS = 1E − 5, 1E − 4, 0.001, 0.01, 0.1, and 0;
and εR = 0 in (a) and (b); εR = 1E − 5, 1E − 4, 0.001, 0.01, 0.1, and 0; and εS = 0 in
(c) and (d). All results are ensemble averages over 10 runs for each point.

3.2 Erroneous Interpretation by Receivers

The situation differs from the previous case when only the receivers make errors
(εR = 1E − 5, 1E − 4, 0.001, 0.01, 0.1, and 0; and εS = 0). The dynamics of the
largest cluster size, depicted in Fig. 2(c), is similar to the case of supplier’s error,
Fig. 2(a). Only when εR = 0.1, the largest error rate in the present experiments,
a cluster expanded. However, the speed of growth of the cluster was much slower
than in the case of suppliers’ error. The average distance did not decrease at all
for εR = 0.1, as shown in Fig. 2(d).

3.3 Social and Physical Facts

In our society, not all facts are constructed fully socially, but some are determined
physically or externally. How a fact is determined socially or physically is a
matter of gradient. Therefore, in addition to social construction, we incorporated
the physical determination of facts into our model by identifying the facts with
the objective situation. That is, if the ith bit of a fact is determined physically,
then Fi = Oi. The degree of social construction is parameterised by Sc = Ls/L,
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Fig. 3. Effects of the mixture of social and physical facts on (dis)accordance of cog-
nitive frameworks. The x-axis shows the ratio of social construction in facts (Sc), and
the facts are fully socially constructed at the right edge, Sc=1.0. The y-axis shows the
average distance in clusters. (a) The suppliers make errors, εR = 0. (b) The receivers
make errors, εS = 0. All results are ensemble averages over 10 runs for each point.

where Lsis the number of bits constructed by the majority vote, (5). In this
study, each bit was fixed to either a social or physical fact according to the
parameter Sc.

Figure 3 shows the average distances in clusters at the stationary states
for various values of Sc for both cases of suppliers’ (Fig. 3(a)) and receivers’
errors (Fig. 3(b)). In the case of εS = 0.1, εR = 0 and Sc = 1.0, the receivers’
frameworks come to complete accordance, as described in the previous section.
This accordance is broken when no more than one bit is determined physically,
i.e., Sc < 1.0. The mixture of social and physical facts affects on the formation
of institutions only for εS = 0.1, εR = 0. The other lines in Fig. 3 are virtually
flat for all values of Sc.

4 Discussion

4.1 Superficial and Cognitive Regularity

We showed that the effects of errors at an error rate of 0.1 on cluster formation
and accordance of frameworks were different from the other error rates. Further,
the effects also differed between suppliers’ and the receivers’ errors. The results
for the social construction of facts are summarised in Table 1.

At an error rate of 0.1, the relative cluster size is 1 for both the suppliers’
and the receivers’ errors. This situation represents the formation of superficial
regularity. Large-scale errors in the information supplied or of the receivers’
interpretation cause large-scale fluctuations in the receivers’ scores, which pro-
motes the receivers’ revision of suppliers. As the change is based on imitation of
the externally observable behaviours of others, i.e., selection of the information
supplier, the selections are finally canalised to one supplier.
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Table 1. Effects of errors on cluster formation and the accordance of frameworks.
The relative cluster size is the ratio of cluster size to all receivers.

error by error rate the relative cluster size distance in clusters

suppliers’ < 0.1 0.1∼0.2 0.5∼2.5
0.1 1 0

receivers’ < 0.1 0.1∼0.2 0.5∼2.5
0.1 1 ∼4.0

For suppliers’ error, there is also regularity in the cognitive frameworks,
Dave = 0, when the error rate is εS = 0.1. Once all receivers obtain infor-
mation from only one supplier, the interpretation error by the supplier does
not matter, as the facts are constructed by the receivers themselves through
a majority vote based on the uniform information in the society. Any receiver
with a different framework from the majority must revise its framework to con-
form to the majority. Thus, the cognitive frameworks are built up until they
are common to all receivers. This situation provides individuals in the society
with consistency/regularity in their world views and has a self-enforcement func-
tion. Accordingly, we consider this situation the formation/establishment of a
(cognitive) institution.

In contrast, frequent receiver error (εR = 0.1) does not result in concordance
of the cognitive frameworks, i.e., Dave

∼= 4.0. The error prevents them achieving
a good score and they keep changing their framework forever.

When the fact is partly determined physically, the formation of an institu-
tion cannot be completed. There remains diversity in the cognitive framework,
Dave > 0, as shown in Fig. 3. Suppliers’ interpretation errors about the phys-
ically determined facts induce the receivers to revise their frameworks. With
regard to physical facts, the revisions keep occurring as the receivers are not
forced to come into accordance with the majority and frequent errors by the
suppliers weaken enforcement upon receivers to conform to the same framework
as the suppliers1.

4.2 Phase Transition at Error Threshold

At an error rate of 0.1 per bit, the agents always make errors in interpretation
as the frameworks are 10 bits in length. This value corresponds to the error
threshold, εth = 1/L, which was proposed by Eigen[13] as the critical accuracy
of information copy in the context of the origin of life. He showed that there
was a phase transition at the critical value in the distribution of information
entities2.

Figure 4 shows thorough calculation of the dependence of the average dis-
tance, Dave, on the suppliers’ error rate, εS, and the degree of social construction,
1 When there is no error, εS = εR = 0, the enforcement works well, as shown in our

previous study[11], and indicated in Fig. 3 for all cases of the mixture of facts.
2 The information entities are genes in the context of the origin of life.
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Fig. 4. Dependence of the average distance on the suppliers’ error rate, εS (log scale),
and the degree of social construction, Sc. These results are ensemble averages over 10
runs for each point.

Sc. The distance, Dave, is an order parameter in this system, as complete accor-
dance of the framework in clusters brings the distance Dave = 0, and the random
state Dave = L/2. The distance increases monotonically with the error rate from
small values to εS ∼= 0.03. It decreases for large values of Sc at εS = 0.03 ∼ 0.1.
Especially, for Sc = 1.0, it falls abruptly to Dave = 0, i.e., complete order. This
abrupt descend indicates full accordance of the cognitive framework, i.e., social
order, established at εS = 0.1. This result suggests a phase transition in the
formation of institutions at the point of the error threshold of the suppliers’
error, when facts are mainly constructed socially. In this graph, the change to
Dave = 0 is not completely discontinuous but is smooth. This may be caused by
the finiteness of the system.

5 Conclusion

Using a multi-agent-based simulation, in which agents are equipped with adap-
tive cognitive frameworks, we studied the formation of institutions when the
facts are constructed through social consensus.

Our simulation results suggested the following conditions for the formation of
cognitive institutions, the ordered state of the cognitive framework in a society:
1) the information suppliers frequently make interpretation errors; 2) the infor-
mation receivers seldom make interpretation errors; and 3) facts are constructed
through social consensus. It was also suggested that there is a phase transition
at the error threshold of the suppliers’ error in the formation of institutions.

The present system remains to be improved in regard to several points. The
model of agents is very simple and static, and we should therefore test how
the results are reproduced with a more dynamic agent model, such as that of
a cognitive individual with internal dynamics[14]. Another point is the intro-
duction of a temporal correlation between objective situations and to let the
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agents predict the future situation. This is also possible by using the individual
model with internal dynamics. Future studies should also compare the suggested
conditions to empirical evidence. Of course, while there are many difficulties in
direct comparisons, political elections would be a possibility.
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Abstract. Typogenetics was originally devised as a formal system with 
operations on DNA strands. It was recently demonstrated to be an effective 
model on which to study the emergence of self-replication by Kvasnicka et al.'s 
work. We make several extensions and variations on their work. The way of 
measuring difference and similarity between strands are improved. Many 
different mappings between doublet codes and their enzyme functions are tried. 
Triplet codes are also introduced. Through various experiments we observe 
frequent emergence of autoreplicators. We also find that emergence of self-
replicators are robust phenomenon under various environments in typogenetics. 

1   Introduction 

Typogenetics is one of the approaches to studies on origins of life. It is a system 
consisting of strings originally devised by D. Hofstadter [3]. It was established as a 
formal system to study artificial life by Morris [8], and then it was demonstrated as a 
system where autoreplication can occur by Varetto [12, 13]. Kvasnicka et al. showed 
that construction of autoreplicators is a complicated combinatorial problem that must 
satisfy very involved constraints [4]. They pointed out that exhaustive enumeration is 
hopeless in discovering autoreplicators, and instead used evolutionary algorithms to 
construct autoreplicators.  

We extended Kvasnicka et al.'s work in several ways. They used Hamming 
distance as a measure of similarity between two strands. We used minimum edit 
distance, and as a result we could construct many autoreplicators. We also tried 
various permutations of enzymes functions. We found that autoreplicators emerge 
regardless of particular associations between sub-strands and enzyme functions. 
Kvasnicka et al. used a doublet of nucleotides as a unit that encodes an enzyme. We 
tried triplets as units encoding enzymes. Autoreplicators still emerged, even though it 
took longer compared with the case of doublet encoding. All these results of our 
extension demonstrate that emergence of autoreplicators in typogenetics is quite a 
likely event under various environments.  

2   Backgrounds  

We briefly explain basic concepts of typogenetics and describe Kvasnicka et al.'s 
work. The alphabet of the typogenetics consists of four letters, called bases, A, C, G, 
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and T. A and G are classified as purines, and C and T pyrimidines. A and T are 
complementary, and C and G are complementary. Strands are strings composed of 
four bases. A complementary strand S  of a strand S  has every base 
complementary to the corresponding base in S . For example, complementary strand 

of S  = CCAGATTA is S  = GGTCTAAT. A double strand, called DNA, consists 
of two strands S (lower strand) and R (upper strand) that are complementary, that is, 

S = R . For example, D = 
GGTCTAAT
CCAGATTA  is a double strand. A quasistrand is a 

strand with occasional hash symbols (#) which represent empty positions. For 
example, C##GATT# is a quasistrand. The distance between two quasistrands of the 
same length is the number of bases that are different from the corresponding bases 
divided by the length of a strand. More formally, the distance between two 

quasistrands nXXXS 21= and nYYYR 21= is defined as ),(11
1

ii

n

i

YX
n

d
=

−= δ , 

where ≠==
otherwise

YXif
YX

0
#1

),(δ . For example, the distance between S  = 

C##GATT# and R  = C#TGACTG is 
2
1)01011001(

8
11 =+++++++− . It can be 

easily observed that 1),(0 ≤≤ RSd  and that 0),( =RSd  if and only if RS = .  

Table 1. Mapping from doublet to instruction and inclination 

no. doublet instr. Inclin. no. doublet instr. inclin. 
1 AA mvr l 9 GA rpy s 
2 AC mvl s 10 GC rpu r 
3 AG mvr s 11 GG lpy r 
4 AT mvl r 12 GT lpu l 
5 CA mvr s 13 TA rpy r 
6 CC mvl s 14 TC rpu l 
7 CG cop r 15 TG lpy l 
8 CT off l 16 TT lpu l 

Table 2. Functions of instructions 

no. instruction function 

1 cop 
Enzyme turns on copy mode, until turned off, enzyme produces 
complementary bases 

2 off Enzyme turns off copy mode 
3 mvr Enzyme moves one base to the right 
4 mvl Enzyme moves one base to the left 
5 rpy Enzyme finds nearest pyrimidine to the right 
6 rpu Enzyme finds nearest purine to the right 
7 lpy Enzyme finds nearest pyrimidine to the left 
8 lpu Enzyme finds nearest purine to the left 
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A substrand of length two, called a doublet, is considered as a gene and expressed 
to be an enzyme performing a predefined function, called an instruction. Hence a 
strand can be translated into a stream of instructions. Table 1 shows the mapping from 
the doublets to the instructions. Table 2 describes the meaning of each instruction.  

For example, the strand S = CCAGATTA is translated into the sequence of 
instructions mvl-mvr-mvl-rpy. It is denoted as instructions( S ) = mvl-mvr-mvl-rpy.  

The sequence of instructions corresponds to the primary structure of the enzyme. 
A tertiary structure is needed to determine the binding site. It is determined by the 
sequence of inclinations in Table 1. The inclinations l, s, and r represent left-turn, 
straight, and right-turn, respectively. The binding site is determined by the 
combination of the first inclination and the last arrow (Table 3). For example consider 
the inclinations sequence of the strand S  = AGCGTTTG, which is s-r-l-l. The initial 
inclination (the zero-th inclination) is always assumed to be eastward. Hence the last 
arrow is upward (Figure 1).  

 

r

l

l

s

 

Fig. 1. An example of tertiary structure 

Since the first inclination is s and the last arrow is upward, by Table 3, the binding 
site is the position of the first occurrence of C in whatever the strand to which the 
strand S  is applied. It is denoted as binding-site( S ) = C.  

Table 3. Determination of binding sites 

no. 1st inclin. last arrow binding no. 1st inclin. last arrow binding 
1 s  A 7 l  G 
2 s  C 8 l  T 
3 s  G 9 r  A 
4 s  T 10 r  C 
5 l  A 11 r  G 
6 l  C 12 r  T 

 
Now that the primary structure (the instructions) and the tertiary structure (the 

binding site) are defined, we denote the function of the strand S  as enzyme( S ) = 
(instructions( S ), binding-site( S )). Now the replication process is defined as the 
process of applying the enzyme( S ) to the strand S  to produce the strand R , and 
denoted as replication( S ) = R . 

The following shows the replication process of the strand S  = AGCGTTTG. 
Then instruction( S ) = mvr-cop-lpu-lpy, binding-site( S ) = s-r-l-l = (s, ) = C. Hence 
the replication process goes as follows:

s 
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GTTTGCGA
######## mvr

GTTTGCGA
######## cop

GTTTGCGA
####C### lpu

GTTTGCGA
####CGC# lpy

GTTTGCGA
####CGCT . 

 

A double strand 
S
R  is called an autoreplicator if replication( S ) = R  and 

replication( R ) = S , in other words, the strand S  is replicated to R  and the strand 
R  is replicated to S . The requirement that each of autoreplicator's complementary 
strands is replicated exactly into the other is a very restrictive constraint. Since there 
are 4n different strands of length n, it is not feasible to search exhaustively for an 
autoreplicator. For n = 10, there are about one million different strands of length n. 
For n = 15, there are one billion strands, and for n = 20, one trillion strands, and so on.

An evolutionary method was used to construct autoreplicators.  In order to evolve 
double strands to an autoreplicator, fitness of double strands is defined to measure 
how close the double strand is to an autoreplicator, and mutation operations are 

applied to the bases of strands. Fitness of a double strand 
S
R  is defined as follows: 

fitness
S
R  = )))(,())(,(2(

2

1
RrepSdSrepRd −− . It can be easily observed that 

≤0  fitness
S
R 1≤ , and that fitness

S
R  =1 if and only if )(SrepR = and 

)(RrepS = , that is, 
S
R  is an autoreplicator. Recall that in a double strand 

S
R , 

SR = . Hence the fitness of a strand S  can be defined as follows:  

fitness ( )S  = )))(,())(,(2(
2

1
SrepSdSrepSd −− . 

Three kinds of mutation operators are introduced: change, insertion, and deletion. 
The following example illustrates these operations.  

  CCAGATTA  CCATATTA    (change)  

  CCAGATTA  CCAGATCTA   (insertion)  
  CCAGATTA  CCGATTA      (deletion).  

The population size N = 1000, the lengths of the initial random strands ranged 
from 15 to 30, and the mutation rate continuously decreased from the initial mutation 
rate 01.0=initp  to the final mutation rate 001.0=finalp as the generation proceeds 

according to the rule :  

sgenerationtotalofnumber

numbergenerationcurrent
pppp finalinitinitmut )( −−= . 

The following is the autoreplicator thus obtained: 

S
R =

ACTCTTTTCTGCCG
TGAGAAAAGACGGC . First note that each of S  and R  is the 

complement of the other. The instruction sequence of S , according to Table 1, is 
rpu-cop-rpu-lpu-lpu-off-mvr. The inclination sequence is r-r-l-l-l-l-s. The first 
inclination is r, and the last arrow is downward . Hence according to Table 3, the 
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binding site is the first occurrence of base T, which is at position 5 of the strand S . 
The following Figure 2 (a) shows the steps of the replication process of the strand S .  

The instruction sequence of R  is cop-rpu-mvr-mvr-mvr-rpy-lpu. The inclination 
sequence is r-r-s-l-l-s-l. The last arrow is . Hence the binding site is C. Figure 2 (b)  

shows the replication process. Figure 2 clearly demonstrates that =S
R  

ACTCTTTTCTGCCG
TGAGAAAAGACGGC  is an autoreplicator. 

ACTCTTTTCTGCCG
##############        

##############
TGAGAAAAGACGGC  

 rpu      cop 

ACTCTTTTCTGCCG
##############       

#############G
TGAGAAAAGACGGC   

 cop       rpu 

ACTCTTTTCTGCCG
T#############        

############CG
TGAGAAAAGACGGC   

 rpu       mvr 

ACTCTTTTCTGCCG
T#############        

###########CCG
TGAGAAAAGACGGC  

 lpu           mvr 

ACTCTTTTCTGCCG
TGAGAAAAGAC###        

##########GCCG
TGAGAAAAGACGGC  

 lpu           mvr 

ACTCTTTTCTGCCG
TGAGAAAAGACGGC        

#########TGCCG
TGAGAAAAGACGGC  

 off           rpy 

ACTCTTTTCTGCCG
TGAGAAAAGACGGC        

ACTCTTTTCTGCCG
TGAGAAAAGACGGC  

 mvr          lpu 

ACTCTTTTCTGCCG
TGAGAAAAGACGGC = S

R         
ACTCTTTTCTGCCG
TGAGAAAAGACGGC = S

R  

Fig. 2. (a) Replication of strand S . (b) Replication of strand R . 

3   Improvements and Extensions  

The previous section described Kvasnicka et al.’s work. We made three kinds of 
improvements and extensions on their work: refinement of the notion of distance 
between strands, shuffling of the functions of enzymes, and introduction of triplet 
codes for enzymes.  

3.1   Refinement of Distance  

We refined the definition of distance between two strands. Kvasnicka's definition of 
distance just compares the bases at the same positions of two strands, the bases at the 
first positions, the ones at the second positions, and so on. And if two strands are not 
of the same length, then the extra positions of the longer one are simply ignored. We 
employed minimum edit distance, or Levenshtein distance, as the measure of 
difference between two strands [l]. Minimum edit distance is also the way of 
comparing nucleotide sequences or amino acid sequences in bioinformatics [9, 10]. 
More formally, we defined the distance between two strands nXXXS 21= and 
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nYYYR 21= as follows: ),(
2

1 RSlcs
nm

d
+

−=  where ),( RSlcs  stands for the 

length of the longest common subsequence of S  and R . It is easy to see that 
10 ≤≤ d .  

For example, let S = TGGACT and R = CGTGAT. Then the longest subsequence 
of S  and R  is GGAT, since GGAT is a subsequence of S  and also a subsequence  
of R  and there is not any common subsequence longer than GGAT. Hence the 

distance 
3

1

66

4
21 =

+
−=d . Recall that the Kvasnicka's distance is 

=

−=
p

n
ii YX

p
d

1

),(
1

1 δ , where },min{ nmp = . The distance between S  and R  by 

the Kvasnicka's definition is 
3

2

6

2
1 =−=d , since S  and R  coincide only at the 

second position and the sixth position. We believe that our definition reflects the 
similarity and difference between two strands better than Kvasnicka's. There is a 
simple and efficient dynamic programming algorithm that finds the longest common 
subsequence in )( nm +θ  time [1].  

3.2   Enzyme Functions  

Kvasnicka's work found an autoreplicator under the fixed assignment of functions to 
enzymes. Table 1 in Section 1 shows the functions of enzymes. We tried many 
different associations of enzymes and their functions to see whether particular 
associations affect the chance of emergence of autoreplicators. We randomly 
permuted the instructions in the "instructions" column of Table 1. We found that 
emergence of autoreplicators were not affected by particular associations between 
enzymes and functions. The details are described in Section 4.  

3.3   Triplets  

Kvasnicka's work used doublets to encode enzymes. We experimented with triplet 
codes for enzymes to examine what difference they would make to the chance of 
emergence of autoreplicators and the lengths of autoreplicators. We found that it took 
more time for an autoreplicator to emerge, but the lengths of autoreplicators were not 
much longer than those with doublet enzymes. The details are described in Section 4.  

4   Experiments  

We implemented our algorithms on Pentium4 2.8GHz cpu with 1GB memory in 
Visual C++ language running on Windows XP Professional Service Pack1. For our 
evolutionary algorithm, we used the same mutation rates as the Kvasnicka's described 
in Section 2. The population size was set to 1000. The lengths of the strands in the 
initial population range from 15 to 30. They range from 15 to 45 for triplet codes. 
Note that length of a strand may be increased or decreased when mutated by the result 
of insertion or deletion operation. It may also stay still.  
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First, we compared the results obtained by using Hamming distance and edit 
distance. For doublet codes we used Table 1, and for triplet codes Table 4. 

We ran the evolutionary algorithm for 100 times with doublet codes in Table 1. 
When the Hamming distance was used for distance between two strands, 8 
autoreplicators emerged out of 100 runs. With the edit distance, 9 autoreplicators 
emerged out of 100 runs. We also ran the algorithm with triplet codes described in 
Table 4. With the Hamming distance 11 autoreplicators emerged out of 100 runs. 
With the edit distance 17 emerged out of 100 runs. As expected, we found that the 
edit distance was more effective than Hamming distance in measuring the difference 
between strands.  

Table 4. Mapping from triplet to instruction and inclination 

no. triplet instruct. inclin. no. triplet. instruct. inclin. no. triplet. instruct. inclin. 
1 AAA mvr s 23 CCG rpu l 45 GTA mvl s 
2 AAC lpy s 24 CCT lpu l 46 GTC lpy l 
3 AAG lpy r 25 CGA lpy l 47 GTG cop s 
4 AAT rpy s 26 CGC mvl r 48 GTT mvr r 
5 ACA off l 27 CGG rpy s 49 TAA mvl l 
6 ACC lpy l 28 CGT off l 50 TAC lpy r 
7 ACG mvr r 29 CTA lpu s 51 TAG cop r 
8 ACT off r 30 CTC rpy r 52 TAT mvr s 
9 AGA mvr s 31 CTG rpy l 53 TCA off l 

10 AGC lpy l 32 CTT lpu l 54 TCC rpu l 
11 AGG rpy r 33 GAA rpy r 55 TCG rpu s 
12 AGT rpu l 34 GAC lpu r 56 TCT mvl l 
13 ATA mvr s 35 GAG mvl s 57 TGA cop r 
14 ATC cop r 36 GAT mvl s 58 TGC rpy l 
15 ATG mvr r 37 GCA mvr s 59 TGG mvr s 
16 ATT lpu s 38 GCC rpu l 60 TGT rpu l 
17 CAA mvl r 39 GCG rpu r 61 TTA mvr r 
18 CAC mvr s 40 GCT mvr l 62 TTC mvl s 
19 CAG mvl r 41 GGA rpy l 63 TTG mvl l 
20 CAT lpy s 42 GGC lpu s 64 TTT rpu r 
21 CCA lpu l 43 GGG mvl l    
22 CCC mvl r 44 GGT lpu l    

For the rest of the experiment we used the edit distance as the measure of 
difference between strands. We ran the algorithm for 1000 times with the doublet 
instructions defined in Table 1. Autoreplicators emerged 86 times. We also ran it 
1000 times with the doublet instructions randomly shuffled at every run. In this case, 
autoreplicators emerged 32 times. The same experiment was performed with triplet 
instructions. With the triplet instructions defined in Table 4, 31 autoreplicators were 
observed out of 1000 runs. With the instructions randomly shuffled at every run, 5 
autoreplicators emerged.  
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Let us trace the autoreplication process of 
S
R =

TGGAGGAGGCTCTTCG
ACCTCCTCCGAGAAGC  

which is one of the 86 autoreplicators that emerged in our experiment with the 
doublet codes defined in Table 1. The instruction sequence of R  is cop-mvr-rpy-rpu-
off-mvl-rpu-mvr. The inclination sequence is r-l-s-r-l-s-l-s. The last arrow is . 
Hence the binding site is C.  

################
ACCTCCTCCGAGAAGC      

TGGAGGAGGCTCTTCG
################  

 cop      rpu 

###############G
ACCTCCTCCGAGAAGC       

TGGAGGAGGCTCTTCG
################  

 mvr      lpu 

##############CG
ACCTCCTCCGAGAAGC      

TGGAGGAGGCTCTTCG
################  

 rpy      off 

########GCTCTTCG
ACCTCCTCCGAGAAGC       

TGGAGGAGGCTCTTCG
################  

 rpu      cop 

TGGAGGAGGCTCTTCG
ACCTCCTCCGAGAAGC       

TGGAGGAGGCTCTTCG
######T#########  

 off      rpy 

TGGAGGAGGCTCTTCG
ACCTCCTCCGAGAAGC       

TGGAGGAGGCTCTTCG
ACCTCCT#########  

 mvl      lpu 

AGGAGGAGGCTCTTCG
ACCTCCTCCGAGAAGC       

TGGAGGAGGCTCTTCG
ACCTCCTCCG######  

 rpu      mvr 

TGGAGGAGGCTCTTCG
ACCTCCTCCGAGAAGC      

TGGAGGAGGTCTTCG
ACCTCCTCCG######

C
 

   mvr      lpu 

TGGAGGAGGCTCTTCG
ACCTCCTCCGAGAAGC       

TGGAGGAGGCTCTTCG
ACCTCCTCCGAGAAGC  

Fig. 3. Autoreplication process with doublet codes 

CGGGGAAAGCGTAAAGAT
##################   

##################
GCCCCTTTCGCATTTCTA  

 cop          cop  

CGGGGAAAGCGTAAAGAT
#################A   

#################T
GCCCCTTTCGCATTTCTA  

 mvr          rpu 

CGGGGAAAGCGTAAAGAT
################TA   

###########TAAAGAT
GCCCCTTTCGCATTTCTA  

 rpy          mvr 

CGGGGAAAGCGTAAAGAT
###########ATTTCTA   

##########GTAAAGAT
GCCCCTTTCGCATTTCTA  

 rpy          lpu 

CGGGGAAAGCGTAAAGAT
#########GCATTTCTA   

##########GTAAAGAT
GCCCCTTTCGCATTTCTA  

 rpy          rpu 

CGGGGAAAGCGTAAAGAT
GCCCCTTTCGCATTTCTA   

#########CGTAAAGAT
GCCCCTTTCGCATTTCTA  

 lpu          rpu 

CGGGGAAAGCGTAAAGAT
GCCCCTTTCGCATTTCTA   

CGGGGAAAGCGTAAAGAT
GCCCCTTTCGCATTTCTA  

Fig. 4. Autoreplication process with triplet codes 
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The instruction sequence of S  is rpu-lpu-off-cop-rpy-lpy-mvr-lpu. The inclination 
sequence is r-l-l-r-s-r-s-l. The last arrow is . Hence the binding site is A. Figure 3 
shows the autoreplication process with doublet codes. 

Now let us trace the autoreplication process of 

 
S
R =

CGGGGAAAGCGTAAAGAT
GCCCCTTTCGCATTTCTA  which is one of the 31 autoreplicators 

that emerged in our experiment with the triplet codes defined in Table 4. The 
instruction sequence of S  is cop-mvr-rpy-rpy-rpy-lpu. The inclination sequence is r-
s-l-r-r-s. The last arrow is  . Hence the binding site is T.  

The instruction sequence of R  is cop-rpu-mvr-lpu-rpu-rpu. The inclination 
sequence is r-r-r-l-l-l. The last arrow is . Hence the binding site is A. Figure 4 shows 
the autoreplication process with triplet codes. 

5   Conclusions 

Studies on self-replication have been carried out over the last fifty years. The models 
on which self-replication are studied include cellular automata, computer programs, 
strings, molecules, and even mechanical devices. Sipper provides an excellent survey 
on self-replication [11]. Typogenetics is one of the models based on strings. It has 
been around for over twenty five years, and recently its usefulness was rekindled by 
Kvasnicka's et al.'s work. We made several improvements and extensions on their 
work. Through various experiments we showed that spontaneous emergence of self-
replicators is a robust phenomenon under varied environments. 

We improved the way to measure the distance and similarity between strands. As a 
result, we could observe more frequent emergence of self-replicators. We tried many 
different mappings from the doublet enzymes to their functions. It was found that 
emergence of self-replicators were not affected by particular associations between 
doublet codes and their functions. We also introduced triplet codes instead of doublet 
codes. Although it took a little longer, self-replicators still emerged under various 
associations between triplet codes and their enzyme functions.  

In our work, the set of instructions for the triplet codes stayed the same as in the 
case for the doublet codes. Our future work will include enlargement of repertoire of 
instructions for the triplet codes. Kvasnicka et al.'s work included studies on 
emergence of hypercycles [2]. We also plan to apply our improvements and 
extensions to the emergence of hypercycles. 

Laing also studied self-replication on strings [6]. Sipper [2] noted, “Replication in 
Laing’s model is achieved by self-inspection, where the description of the object to be 
replicated is dynamically constructed concomitantly with its interpretation.” Our work 
evolves self-replicating strings under fixed rules. Morita and Imai used similar 
approach to Laing’s for constructing self-reproducing cellular automata [7], where 
“the machine can encode its shape into a description by checking its body 
dynamically.” Another work on evolving self-reproducing cellular automata is by 
Lohn and Reggia [5]. They evolved CA rules using genetic algorithms on a space of 
randomly strewn structures. Our work uses mutation only as a means of evolving self-
replicating strings. We consider that it is appropriate to use mutations only in 
evolving self-replicating molecules. 
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Abstract. A self-reproducing cycle has the fundamental organization,
A + X −→ 2A, and is autocatalytic, i.e. the products catalyze the for-
mation of the products. The rate of increase of A is proportional to A,
i.e. exponential. Asexual living entities often grow exponentially when re-
sources are abundant, and decay exponentially when resources are scarce,
according to autocatalytic kinetics. If two previously independently repli-
cating autocatalytic entities can form a physical union that is still capable
of autocatalysis but with a reduced decay rate, then the symbiosis can
be viable in an environment in which resources have been depleted, even
if the symbiont has a lower growth rate than either of its component
particles. A good symbiont possesses the following features: i. low steric
hindrance between components, ii. policing of defection or cheating by
symbiont components. iii. low decay rate back to components. iv. ab-
sence of emergence of active sites susceptible to decay reactions. v. high
rate of the final reproductive step. Failure to form stable symbiosis can
result from deficits in any of these features, and is a problem central to
the origin of both metabolism and template replication.

1 Recycling Autocatalytic Systems

For persistence of the biosphere, the net ‘biosphere metabolism’ must be re-
cycling [22]. Cells are autocatalytic systems, i.e. fluid automata composed of
coupled autocatalytic cycles, at a stoichiometric level, that underly enzymatic
catalysis [5]. Therefore we must explain how recycling autocatalytic systems
evolved. This paper develops the work of G.A.M King on symbiosis of autocata-
lysts [1][2][3], by isolating 5 properties that a successful chemical symbiotic event
requires.

Autocatalytic cycles must not be confused with ‘autocatalytic sets’, or ‘reflex-
ively autocatalytic systems’, capable of ‘collective autocatalysis’ [7] [8], nor with
other models of higher-order replicators [10][9][11]. Autocatalytic cycles consist
of stoichiometricly described entities, consisting of small intermediates. Chem-
ically feasible autocatalytic cycles of chemicals exist, for example, the Formose
cycle [12], the reductive citric acid cycle [14], and the reductive citric acid cycle
[15], but only the formose cycle ‘bioid’ has been implemented [13]. No reflexively
autocatalytic system is known to exist unless superimposed upon an autocat-
alytic cycle. Even recent models of Kaufmann type autocatalytic sets ignore the

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 695–704, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Top Left: Concentration on the y-axis, and time on the x-axis. k1 = 0.001,k′
1 =

10−8 ,k2 = 0.0001,k′
2 = 10−7,d = 2 × 10−5 ,r = 10−6. Initial [X] = 0.5M , Initial

[A] = 10−7M , and all other concentrations = 0. [X] decays, being converted into A and
XA, and eventually decaying to D, which is recycled to X. After an initial overgrowth
of A, equilibrium is reached. Top Right: A simple recycling autocatalytic system. A
uses the food molecule X forming the intermediate XA. A catalyses a conformational
change in X to produce another A molecule. Therefore 2 A molecules pass out of the
reaction. A degrades to D, and D is recycled by some environmental process, e.g using
light energy, back into X. Bottom Left: Concentration on the y-axis, and time on the
x-axis. For the autocatalytic particle B, the reaction network is of identical topology
to particle A. k2 = 0.0001, k′

2 = 10−8 , k3 = 0.00001, k′
3 = 10−8, d2 = 2 × 10−6 ,

r2 = 10−6. Initial [Y ] = 0.5M, initial [B] = 10−7 M. The concentrations of particle
A and its products are included for comparison. Note particle A grows faster and
earlier than particle B, but that particle B reaches a higher equilibrium concentration
than A. Bottom Right : y-axis: Concentration, x-axis: Time. Note the long timescale
compared to figures 2 and 3. A and B increase to reach their previous equilibrium
concentrations. However, the particle AB (small dashed line) invades the population
to eventually reach a higher concentration than A and B. Y AB (large dashed line)
exists at lower concentration, and XY AB at even lower concentration (not visible).

problem of depleting side-reactions [16], which would turn otherwise neat auto-
catalytic sets into tar [17]. This problem must be faced head on when tackling
autocatalytic cycles [18] [19]. ’Chemical’ symbiosis has been explored recently by
Fontana and Buss who describe a ‘parasite route’ to organization, where parasite
‘autocatalytic cycles’ incompletely deplete a core cycle. However, the likelihood
of such a mechanism cannot be addressed with λ-calculus alone[20]. The aim
here is not to contribute to the very sophisticated work on symbiosis [21], but
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merely to confirm that symbiosis of autocatalytic cycles is what needs to be
explained.

Consider the simple recycling system containing an autocatalytic replicator
in the top right of figure 1. A is the growing state and XA is the reproducing
state of the autocatalyst. This translates into the differential equations below.

X ′(t) = −k1A(t)X(t) + k′
1XA(t) + r1DA(t) (1)

A′(t) = −k1A(t)X(t) + k′
1XA(t) + 2k2XA(t) − 2k′

2A(t)2 − d1A(t) (2)
XA′(t) = k1A(t)X(t) − k′

1XA(t) − k2XA(t) + k′
2A(t)2 (3)

DA′(t) = d1A(t) − r1DA(t) (4)

Figure 1 top left, shows that a stable equilibrium is reached in a recycling
system. If the rate of recycling, r1, is increased then the constituents of the cycle
persist at a higher concentration. There is a fixed point at

DA = d1A/r1 (5)
X = (d1k

′
1 + d1k2 + k′

1k
′
2A)/k1k2 (6)

XA = (A(d1 + k′
2A))/k2 (7)

When [A] = 0, [Xthreshold] = d1k
′
1/k1k2 + d1/k1. This means that to main-

tain a non-zero concentration of A,[X ] must be greater than [Xthreshold]. The
threshold is increased as decay of A increases, and is decreased with increasing
forward rates of reaction. Note that the rate of recycling of D into X , r, has no
effect on [Xthreshold].

Figure 1 bottom left, shows another system with the same organization as
above, but with a 10 times slower rate of uptake of reagent, Y , and a 10 times
slower decay rate. Even though A grows more rapidly than B, at equilibrium a
higher concentration of B is maintained at the same rate of recycling.

2 Symbiosis of Recycling Autocatalytic Particles

Now imagine that the two particles A and B can very rarely join together in the
reaction A + B −→ AB, with a forward rate of as and a backward rate as′ 1.
Assume that the system starts with a very small amount of AB (the symbiotic
particle), i.e. 10−9M, in the presence of a much larger amount of A (0.0001M),
and B (0.0001M). For the moment let us prevent the formation of further AB
by association between A and B, but still allow degradation of AB into A and
1 King has elsewhere considered the symbiotic event to be the association not of A

and B, but of XA and Y B. Also he has compared the symbiotic state not with two
previously independently replicating chemical species but with two species previously
associated by mutual exchange of materials, i.e. the products of A are the food
molecules of B and vice versa. The intermediate stage is not necessary (logically) for
the emergence of physical union, although it may have promoted spatial associations
between particles that would otherwise have not existed [3].



698 C. Fernando

B at a low rate, as = 10−7sec−1. This simple autocatalytic system is shown in
figure 2 and described by the equations below.

X ′(t) = −k1A(t)X(t) + k′
1XA(t) + r1DA(t) + j′1XY AB(t)

−j1Y AB(t)X(t) (8)
A′(t) = −k1A(t)X(t) + k′

1XA(t) + 2k2XA(t) − 2k′
2A(t)2 − d1A(t)

+as′AB(t) − asA(t)B(t) + j2XAB(t) + d5XY AB(t) (9)
XA′(t) = k1A(t)X(t) − k′

1XA(t) − k2XA(t) + k′
2A(t)2 (10)

DA′(t) = d1A(t) − rDA(t) (11)
Y ′(t) = −k3B(t)Y (t) + k′

3Y B(t) + r2DB(t) − j3Y (t)AB(t)
+j′3Y AB(t) (12)

B′(t) = −k3B(t)Y (t) + k′
3Y B(t) + 2k4Y B(t) − 2k′

4B(t)2 − d2B(t)
+as′AB(t) − asA(t)B(t) + d3Y AB(t) + d4XY AB(t) (13)

Y B′(t) = k3B(t)Y (t) − k′
3Y B(t) − k4Y B(t) + k′

4B(t)2 (14)
DB′(t) = d2B(t) − r2DB(t) (15)
AB′(t) = asA(t)B(t) − as′AB(t) − j3Y (t)AB(t) + j′3Y AB(t)

−2j′0AB(t)2 + 2j0XY AB(t) + d3Y AB(t) + j2XAB(t) (16)
Y AB′(t) = j3Y (t)AB(t) − j′3Y AB(t) + j′1XY AB(t) − d3Y AB(t)

+d5XY AB(t) − j1Y AB(t)X(t) (17)
XY AB′(t) = −j0XY AB(t) + j′0AB(t)2 − j′1XY AB + j1Y AB(t)X(t)

−d4XY AB(t) − d5XY AB(t) (18)
XAB′(t) = d4XY AB(t) − j2XAB(t) (19)

If the reactions shown in Figure 2 can take place, AB will be autocatalytic.
Imagine that in the particle AB, the subunit Aab does not block the active
site of the subunit Bab for Y , and so let Y react with Bab to produce Y AB at
the same rate j3 = k3, as B associates with Y to produce Y B. Assume also
that Y can dissociate from Y AB at the same rate as Y dissociates from B (i.e.
j′3 = k′

3). Assume that the subunit Y Bab on Y AB has the same properties as
Y B, so that dissociation of Y AB into AB + B occurs at the same rate (i.e.
d3 = k4) as dissociation of Y A to produce 2B. This is a tapping side-reaction of
the autocatalytic cycle of AB. The reverse reaction AB+B −→ Y AB is ignored,
as it can only help the replication of AB. Assuming that Y Bab does not interfere
with Aabs active site for X , then X can associate with Y AB to form XY AB
at the same rate as A associates with X independently (i.e. j1 = k1). The same
is true for the reverse reaction (i.e. j′1 = k′

1). Assume that XY AB is subject to
two possible side-reactions. Let it decay to B + XAB at rate d4 = k4, and into
A + Y AB at rate d5 = k2, again assuming no steric interference between the
active sites of subunits XAab and Y Bab. XAB then reacts to form AB and A
at rate j2 = k2. The formation of XAB by AB binding to X , before Y binds to
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Fig. 2. Shows the higher order autocatalytic cycle of AB, the independent cycles of
A and B, and the corresponding decay reactions. A is the red triangle, B is the blue
circle. X is a pale red double triangle shape, and Y is the pale blue pair of hemi-circles.
Complexes are shown as combinations of these elements. Rate constants correspond to
those described by eqn. 8 to 19.

AB, has been ignored. This would either produce another possible autocatalytic
cycle with X binding first and Y binding second, or produce a non-cycling decay
chain. The consequences of this alternative cycle are significant but here it is
assumed that XAB cannot re-enter the cycle apart from by further decay into
food molecules. XY AB can complete the autocatalytic cycle by promoting the
simultaneous uni-molecular conformational change of XY AB into AB + AB. It
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is assumed that this occurs at the forward rate of jz = 0.001 = k2 > k4, although
it may be more reasonable to expect that it would take the sum of the average
period of dissociation of A from XA and B from Y B, i.e. (k−1

1 + k−1
2 )−1).

Figure 1 bottom right, shows the concentrations of substrates for the reaction
system described above . Each species undergoes exponential growth followed by
depletion. Growth of the symbiont is delayed not because it must be produced
by further symbiosis (these are forbidden), but because of its initial low concen-
tration and lower growth rate than A or B. Its growth is limited by the X and
Y concentrations that have been established previously by the growth of A and
B. Neverthaless eventually AB outgrows A and B, and A and B continue to
persist at low concentrations.

3 Kinetic Analysis

How do the kinetic properties of the particle AB affect the equilibrium concen-
tration of AB? The system behaviour in figure 1 bottom right, is dependent on
the following assumptions.

1. Aab does not interfere with the binding of Y to Bab, and Bab does not
interfere with the binding of X to Aab. This means j3 = k3, j1 = k1 and j′3 = k′

3,
j′1 = k′

1.
2. Aab does not interfere with the production of B from Y AB, nor from

XY AB. Bab does not interfere with the production of A from XY AB. This
means that d3 = d4 = k4 and d5 = j2 = k2.

3. The rate of production of 2AB from XY AB is equal to the rate of pro-
duction of 2A from XA. This means jz = k2 > k4. jz′ is negligible.

4. The decay of AB into A and B, (as), occurs at a low rate, 10−7, and the rate
of production of AB from A and B, (as), is zero. The results are similar if the rate
of production, (as), of AB is 10−14 and the initial concentration of AB is 0.

5. AB does not undergo emergent decay reactions caused by novel active
sites uncovered by their union. This means no alternative decay reactions of AB
other than those above have been considered.

As with any autocatalytic cycle, the concentration of constituents reaches a
fixed point when the rate of production of constituents equals the rate of decay
of the constituents. The fixed point [AB∗] is determined by the assumptions,
which are now relaxed.

3.1 Interference Between Components

Assume that Sab is the steric hindrance of A upon the binding of Y to B, and
Sbais the steric hindrance of B upon the binding of X to A. Both range from 0
to 1, 1 being maximal hindrance and 0 being no hindrance. Let j3 = (1−Sab)k3
and j1 = (1 − Sba)k1. What happens to the equilibrium concentration of AB as
Sab and Sba are varied? Figure 3 top left, shows the equilibrium concentration of
AB for different values of Sab and Sba. At high values of steric hindrance [AB∗]
is virtually zero.
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Fig. 3. Top Left: Steric Hindrance between components can prevent symbiont repli-
cation. [AB∗] drops off rapidly at high rates of hindrance resulting in very low con-
centrations of AB. Top Right: The z-axis shows not [AB*] alone, but the summed
equilibrium concentration of all configurations of AB, i.e. YAB, XYAB, AB, and XAB.
The symbiont has greater concentration with greater amounts of protection of prema-
ture detachment. There is an anomaly at high Pba, where [AB∗] actually decreases
rapidly. This is associated with an increase in [Y ] and [XAB] and a decrease in [Y AB],
[AB] and [XY AB] and is explained because the cycle is tapped by XAB which cannot
be recycled with maximal policing of A by B. Bottom Left: The z-axis shows the
ratio of AB particles to A and B particles. At low [X] and low [Y ] , AB dominates,
but increasing either one makes the simpler particles more successful. The sensitivity
of [AB∗] to increasing [X] is sharper than its sensitivity to increasing [Y ]. Bottom
Right : jz was increased from 0 to k4 in 100 increments. There is a threshold of jz
below which [AB∗] is very low. This threshold depends on as′. as′ was increased from
0 to 10−7 and as expected [AS∗] decreased as decay of AB into A and B increased.

3.2 Policing by Components

Assume that Aab is actually able to prevent the premature detachment of Y from
Y AB to produce B, and also of Y from XY AB, by an equal amount. Therefore
let d3 = d4 = k(1−Pab) where Pab is the extent of protection or policing afforded
by Aab to Y . Also let Bab protect the X particle from premature detachment
from XAB and XY AB, so that d5 = j2 = k2(1 − Pba). Assume that Sab and
Sba are reset to 0 as before.
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As expected figure 3 top right, shows that [AB∗] increases with increasing
policing by Aab of Bab and Bab of Aba. However, at very high values of Pba

the cycle is drained into XAB which cannot decay. This anomaly is due to our
assumption that XAB can only take part in one decay reaction. Note the build
up of XAB by the irreversible reaction at rate d4, but since Pba = 1 then j2 = 0
so XAB builds up.

3.3 Reversion to Components, and Reproduction Rate

Let us reduce the rate of the reproduction reaction producing 2AB from XY AB.
Let jz = Rk2 where R ranges from 0 to 1. Also let us make as′ = 10−7F ,
where F ranges from 0 to 1. Reset Sab, Sba, Pab and Pba to 0. Figure 3 bottom
right, shows the results we expect, that decreasing as′ increases [AB∗], as does
increasing jz. Note that below a threshold of jz, [AB∗] decreases rapidly to
zero.

3.4 The Effect of Resource Concentration

AB competes for the same reactants as A and B. All follow the overall growth
law shown below, where C is the constituent concentration, β the growth rate,
α the decay rate, and R the resource concentration, dC/dt = −α + βR. When
R is high, growth is dominated by β, but when R is low, decay (the α term)
predominates. The growth of the fastest constituent (A in this case) depletes R,
and starts the process of decay rate based selection, where particles with low α
decay more slowly. This simple process is slightly complicated due to the presence
of two resources X and Y . Figure 3 bottom left, shows the effect of increasing X
from 0 to 0.03M and Y from 0 to 0.02M, and keeping them fixed at these values
by magical topping up. Each particle is started at the same initial concentration,
0.0001M. The z-axis shows the ratio [AB]/([A] + [B]).It shows that AB obtains
higher values relative to A and B, at low resource concentration.

4 Conclusion

If the symbiont can reduce its decay rate relative to the composing particles decay
rates, then it can obtain higher equilibrium concentrations. However, at high
resource concentration selection is on the basis of growth rate, not decay rate, and
here A and B out-compete AB, since growth is exponential, and the growth rates
of A and B are greater (under reasonable assumptions) than the growth rate
of AB. Once AB depletes X and Y to even lower levels, another autocatalytic
particle may arise which utilizes a wider range of food molecules, e.g. ABCD,
using P and Q as food, if appropriate particle varieties exist. The probability
of further symbiosis depends on particle structure. How can the specificity of
reactions required for a successful symbiont be achieved? In chemistry this is
done by addition reactions that consume active sites. King proposes that the
coordination compounds of metal ions in aqueous solution have the appropriate
properties.
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The problem of reducing the decay rate of the autocatalytic particle is a very
general one for the origin of life. It is encountered in the origin of metabolism
in the problem of how the autocatalytic formose cycle can be viable (e.g. in
the chemoton) when it is subject to so many side-reactions, and where no en-
zymes are yet available [4][5]. The side-reaction problem is surprisingly also
faced in non-enzymatic template replication, in which a chain of coupled au-
tocatalytic cycles of replicating templates are tapped by elongating side reac-
tions. How the side-reaction problem can be solved defines a continuing research
program [6].
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mado, Zoltan Szatmary and Katalin Csepi for their kindness.
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Abstract. In this paper, we consider how self-description can be realized
for construction and execution in a single framework of a variant of graph
rewriting systems, called graph rewriting automata. As an example of self-
description for construction, self-replication based on a self-description is
shown. A meta-node structure is introduced for self-description for execu-
tion that enables us to embed rule sets in the graph structure. It can be a
model of systems that maintain and modify themselves.

1 Introduction

Although precise definition of self-description is difficult, some systems both in
nature and artificial world seem to utilize properties of self-description. One of
them is apparently genome information for living things. Living things are con-
structed using genetic information by appropriate construction mechanism em-
bedded in cells, and it can be viewed as a kind of self-description for construction.
More specifically, the family of aminoacyl-tRNA synthetase can be considered
as a constructor of proteins from RNA by associating codons to amino acids.
Their blueprint is also described in DNA and interpreted by themselves. This
information is transferred when cells are divided. Before the discovery of DNA
structure [14], a similar mechanism to such genetic information was devised by
von Neumann as a blueprint of self-reproducing cellular automata [13]. After
that, much study has been done on self-replication in two dimensional cellular
automata [9,10].

Other examples of self-description in computer science are reflective pro-
gramming languages such as 3-Lisp [11]. Information on computation (environ-
ment and continuation in 3-Lisp) to execute programs is described explicitly
in the same level, and can be referenced and altered by constructing reflective
tower as much as needed. It is viewed as a self-description for execution. These
self-descriptions have potential for increasing the stability and flexibility of the
systems, but both are not realized simultaneously.

In this paper, we consider how self-description can be realized for construc-
tion and execution in a single framework of a graph rewriting system [3]. Graph
rewriting systems or graph grammar studies rewriting of graphs according to

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 705–715, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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some rewriting rules. It can be regarded as generalization of formal grammars
on strings and cellular automata. Thanks to its expressibility for dynamic behav-
ior of various structures, it has been studied in wide area. Recently, it is used for
self-reconfigurable robots [5,7], artificial chemistry [2] and also self-replicating
systems [12,4]. Usually rules of such systems are defined outside of the graph
structures, and many examples are based on elaborate rule design. However,
direct dependence on the rules outside makes it difficult to construct entities
that have autonomy. Considering self-replication, processes without such inde-
pendence are like crystal growth. Embedding the rules, at least in part, in the
structure can introduce some kind of hierarchy and enhance its autonomy on
the upper level. In order to realize self-replication process of graph structures
using self-description, we define operations for graph rewriting, introduce a con-
struction arm, and design a sequence of operations to construct itself encoded
in the structure.1 Along this design, we can envision evolvability of systems by
introducing modification of the program codes [6].

In the following, after introducing the framework in Sect. 2, we show self-
replicating process based on self-description for construction in Sect. 3. Then, we
suggest that the self-description for execution can be realized in our framework
in Sect. 4. Section 5 concludes the paper.

2 Graph Rewriting Automata

In this section, we show the framework we consider in this paper. It is a variant of
graph rewriting systems, and called graph rewriting automata. We assume that
the base graph structure is a 3-regular graph, i.e., each node has three neighbor
nodes. Each node has an internal state chosen from a finite set. At each node,
a cyclic order of links is defined. Graphs are rewritten by state transition, as
in state transition in cellular automata, and by structure rewriting. We use five
kinds of graph rewriting rules as shown in Fig. 1. Division rule divides a node
into three nodes. Commutation rule rotates a pair of nodes counter-clockwise.
Annihilation rule eliminates a pair. Swap rule changes the local connection re-
lation. Note that application of rules except for swap rule preserves planarity of
graphs. Also, there is asymmetry in swap rule, i.e., ‘swap n1 n2’ and ‘swap n2
n1’ produce different results — upper or lower links crossed in the figure.

An initial graph and a set of rules determine the development process. Rules
are applied synchronously on the time of natural numbers; all the node rules
(state transition and division) at even time and all possible link rules (commu-
tation, annihilation and swap) at odd time.

1 Uniform treatment of description and machine is addressed in Salzberg et al. [8].
They introduced tangled construction hierarchy, and examined graph-constructing
graphs on the basis of directed graphs using a construction head. In this paper,
we assume undirected 3-regular graphs as underlying structures and focus on self-
replication process in detail. In particular, in our system, the construction head
is also realized as a sub-graph, and it can be constructed in the course of graph
rewriting.
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swap rule

n1 n2
swp n1 n2

n1 n2
com

commutation rule

annihilation rule

n1 n2
anh

state transition rule

division rule

n1

n2 n3

m0
1m

div

n3

n1

n2

m0 1mtrans

Fig. 1. Rules of graph rewriting automata; two node rules (trans and div) and three
link rules (com, anh and swp)

3 Construction Using Self-description

3.1 Outline of Self-replication Process

In this section, we show how self-replication is performed based on its self-
description for construction. The idea is to introduce a construction arm with
three components: a manipulator, a controller and a reader. The manipulator
performs modification on the graph structure, and the reader reads a coded plan
(program) so that the manipulator can construct a structure according to the
program sequentially. The controller controls their execution by switching its
modes. Figure 2 illustrates the structure of the construction arm (left) and a
schematic of the manipulator located in a usual state (middle). As in this figure,
the manipulator usually indicates a target node. The base graph is undirected,
but the directions of the manipulator and the reader are introduced using differ-
ent states for the heads and tails of them. They are represented by the arrows in
the figure. In the following, when we illustrate the motion of the manipulator,
it is indicated just as an arrow (Fig. 2(right)). In this section, black circles indi-
cate nodes of the construction arm, and white circles indicate other nodes. (This
distinction is not fixed and, according to the internal states, the role changes.)

reader

target  node

manipulator

R

RT

RH

M MH

MT

construction arm

manipulator

M

MH

MT

controller

C1

C0

Fig. 2. Structure of construction arm

The manipulator executes the following eight operations on the target node.

– State transition operations: Reset, Inc
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b

a

abb

a
b

b

b

b+1

a

0

a

c

Reset Inc

Div Com Anh Swp

b

ac

b

a

Right

b

a

Left

Fig. 3. Execution of eight operations

– Move operations: Left, Right
– Operations of executing graph rewriting rules: Div, Com, Anh, Swp

We assume that states of the nodes are chosen from {0, ..., N − 1}, and Inc op-
eration is for increment (modulo N). We distinguish these operations from the
corresponding graph rewriting automata rules (div, com, anh, swp) by capital-
izing. The effect of each operation is summarized in Fig. 3. In this figure, the
node with state c is omitted except for Anh operation from the result.

Figure 4 illustrates the outline of the whole process of self-replication. It
resembles the one proposed by von Neumann [13]. At the initial state, two com-
ponents are connected by the construction arm: a circular ladder structure (or,
simply, a ring) storing programs, and a four-node structure as a seed structure.
Two programs for construction and cut-off are encoded rightwards on the upper
ladder. At first, the reader interprets the program and the manipulator con-
structs an intermediate structure, which is similar to the original but without
the programs. Then, a copy process follows to add the programs. Next, execu-
tion of cut-off program makes the child structure complete and separates both
structures. This cut-off activates the child structure. Both develop independently
thereafter. We assume that the programs are encoded on the ring as sequences
of 0 and 1.

3.2 Execution of Self-replication Process

Motion of the Manipulator. Each operation is realized by an appropriate
combination of the rules of graph rewriting automata.

(1) State transition operation
Execution is simple and realized only by state transition. The manipulator

node M changes its state to the state corresponding to the state of Reset or Inc,
and it propagates to nodes MH and MT. Then the target node updates its state.

(2) Move operation
Execution of this operation requires rearrangement of links around the ma-

nipulator. Move Right operation is realized as follows (Fig. 5). Here, three in-
termediate states (m r, mt r and mh r) are used to represent different states of
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construction program cut-off program

construction

copy

cut-off

initialization

...

......

...

Fig. 4. Outline of self-replication process. Details of construction step are in Fig.7.

execution. When the manipulator receives Right operation from the controller,
it changes the state of node M from m to m r. It propagates to MT and MH, and
changes their states into mt r and mh r, respectively. Then, swap rule is applied
between two nodes with states m r and mh r to form the required structure.
Finally, additional state transitions set appropriate states to the involved nodes,
and completes the execution. (Note that only connection relations among nodes
are in concern and their actual positions in the figures are chosen for understand-
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m
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swp

Fig. 5. Execution of Right move operation
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ability.) We do not give necessary rules of graph rewriting automata explicitly,
but describing them is straightforward.

Structure change for move Left operation is shown in Fig. 6. The manipulator
is indicated as an arrow to simplify the figure. Internal states are not shown.
Dotted lines indicate nodes to which graph rewriting rules are to be applied.

(3) Operation of executing graph rewriting rules
Four graph rewriting operations for the target node can be executed by ap-

propriate state change and motion of the manipulator as in the move operations
above. Figure 6 illustrates the steps of structure changes for each operation.

Motion of the Reader. The reader reads coded programs when requested,
and transmits the codes to the controller. Appropriate treatment of the codes,
including decoding, is left to the controller. Required rewriting of structures is
simple and realized by simultaneous execution of com rule. (It is the same as
that of the move Left operation above.)

Execution of Construction Program. Execution of the construction pro-
gram generates the intermediate structure on which the programs are to be
copied. Figure 7 shows the steps of construction and the corresponding sequence
of operations. The reader and the programs of the parent are not shown. From
the initial structure (upper left), the final structure (lower right) is constructed.
This corresponds to the construction step in Fig. 4. In the resulting graph struc-
ture, the four-node structure on the left is the seed structure from the parent,
and the right one is for the child. The reader is located at the Plus node after
this construction.

In the figure, for simplicity, Left and Right move operations are denoted
as L and R, respectively. The manipulator is designated as an arrow. Leftmost
structures (A and B) on the second and the third rows are substructures of the
last ones on the first and the second rows, respectively.

Div

Com

Swp

Left

Anh

bdiv
com

anh

com

com

com

com
swp

com

com
com

com

com

Fig. 6. Execution of four graph rewriting operations
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Fig. 7. Execution steps of the construction program and corresponding operations

Copy of the Program. The copy process repeats i) read the information on
the ring, ii) divide the target node of the manipulator, iii) set the information
on the target node, iv) move forward the manipulator to the left, until it finishes
reading all the program. Figure 8 shows structure change to extend the ladder
structure. We assume that appropriate set of rules is embedded. In this case, the
program codes are copied without being interpreted.

Div Left

Fig. 8. Structure rewriting for copy process
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Execution of Cut-off Program. The cut-off program separates the parent and
the child structures, and restores the position of the manipulator to the initial
position in the parent. The operation sequence of the program is as follows:

Com R Anh R L Anh R L R L Anh.

The Com operation above completes the ring structure of the child, and the last
Anh actually separates two structures (see Fig. 4).

Execution of Controller. There are three kinds of modes in the self-replicating
process: move, exec, and copy. In exec mode, the operations are decoded and
executed. In move and copy modes, the operations are not decoded. The codes
are sent to the manipulator in the copy mode. Mode transition is carried out
by reading the special codes in the program: Star and Plus in Fig.4. The codes
of Star/Plus makes the transition of modes respectively as: copy → copy/exec,
exec → exec/copy, and move → exec/—. The controller switches these modes,
and controls the execution of the reader and manipulator appropriately.

Control Flow. Program execution starts in the exec mode at the position next
to the Star node in Fig. 4. The construction program constructs the intermediate
structure according to the steps above. This moves the reader to the position
of Plus node on the program. Reading the Plus changes the mode into copy.
Then a set of copy rules are activated and the whole program information on
the ring is copied, i.e., until it reads the Plus again. Reading the Plus in copy
mode changes the mode into exec again. Then, the cut-off program is activated
and the parent and child structures are separated. The parent structure is in the
same state (location of the reader and the mode) as that of the initial, and can
repeat this process. The child structure needs some post-processing because the
position of the reader is next to the Plus node. This process is triggered by the
separation of the structures. This separation activates the child structure in the
move mode, and it skips the program until the Star, and then it changes the
mode into exec. After this, the same process as that of the parent is executed.

3.3 Implementation

This self-replicating process was implemented and verified. Encoding of the
operations and special codes are: L(0000), R(0001), Reset(0010), Inc(0011),
Div(0100), Com(0101), Anh(0110), Swp(0111), Star(10), Plus(11). The whole
program including the state setting is as follows:

Div Com R L Div L Div L L R Com L R R Com L L L Div L Div R R L Div
L R Com R Anh Div Div R R L Div L Com L L R L Inc R L R Div R Com
Com Div L R Anh Inc Inc Inc L R Swp R R L Swp L Com L L L Com Inc R
L R L R R Swp L Inc Inc L L Plus Com R Anh R L Anh R L R L Anh Star.

The length of its codes is 380. State arrangement in the initial state of the child
structure is as follows: R: 2, C1: 3, RH, MH: 1, RT, M, MT, C0: 0. Annihilation
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of a link makes the nodes with state 2 and 3 adjacent. Other states are used
for intermediate states during the execution. Total number of the states and
the rules are 115 and 1099, respectively. Snapshots of the process are shown in
Fig. 9; Figure 9(a) shows the child structure after the construction step. Each
node is drawn as a triangle. Figure 9(b) is the structure several steps before the
separation of the child structure.

Fig. 9. Simulation result

4 Self-description for Execution

We have focused on construction. Now we consider rule execution. By intro-
ducing meta-nodes, the rule itself can be embedded in the structure in part.
Such embedding permits the possibility of altering the rule and will enhance its
adaptability. Note that we cannot decide the required size of internal structures
in advance when the number of states can increase. Usual cellular automata are
restricted on a lattice structure, and one meta-cell would have a fixed number of
cells. Increasing the size of one meta-cell requires all of the other cells to increase
the size at the same time. Thus, such embedding is very difficult in usual cellu-
lar automata. On the other hand, our framework permit fragments of graphs to
have arbitrary many nodes inside.

One possible meta-node structure would be a hexagonal one with six nodes
on exterior, three connect to outer nodes, and other three to inner structure with

Fig. 10. Execution of commutation rule by meta-nodes
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a rule set for the meta-node. The meta-node executes one graph rewriting rule
by an appropriate sequence of rules on base level. For instance, commutation of
meta-nodes are realized as shown in Fig. 10. In this figure, a shaded circle in
each meta-node indicates the part where the program is stored. It shows only
the structure change of graphs and, though indispensable, appropriate state
transitions are omitted.

5 Conclusions

In this paper, we showed how self-description for construction and execution can
be realized in a single framework of graph rewriting automata. In particular, we
discussed self-replication in detail, and designed a sequence of operations to
construct itself encoded in the structure and executed by a construction arm.
This process was implemented and verified. In our formulation, operations are
embedded explicitly on the graph structure, but still we rely a lot on the rules for
controlling the construction arm. It is because of its simple structure. Instead,
it was also possible to reduce the complication of rules by providing a graph
structure in the construction arm that controls execution. Such organization is
preferable for considering evolvability of the systems. It will however increase
the length of construction program when we consider self-replication.

It may seem that using the construction arm dissipates in part the intricate
nature of concurrency in the framework. Concurrency can be achieved by intro-
ducing multiple construction arms or naturally on the upper level as suggested
in Sect. 4. Our future work includes investigation of rule rewriting strategy, and
in that case it will require some external environment to be introduced. With
such extensions, evolvability of systems can be envisioned. Acquisition of self-
description is also an important problem in future.
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Abstract. Recent studies of complex networks offer new methods for
characterizing large scale of networks and provide new insights on how
such networks are developed. In particular, researchers focused on bi-
ological networks such as gene regulatory systems, protein interactions
and metabolic pathways in order to understand how these elemental
reactions are integrated as an organism. Although various statistical fea-
tures of network structures, such as scale-free or small-world, have been
studied to approach underlying principles of network organization, more
detailed analysis on network properties is required to understand their
functions.

The community finding algorithm proposed by Girvan and Newman
provides another useful technique for investigating topological structures
of large networks. Applying this method to metabolic networks, we found
that behavior like that of Zipf’s law of the distribution of community size
is shared very generally among a wide range of organisms. With the aim
of realizing how this property is achieved, we present a new evolutionary
model of metabolic reactions based on artificial chemistry.

1 Introduction

Recent studies of biological systems have focused on large-scale complex net-
works of biological interactions and found some interesting general properties
such as scale-free structure and small-world [15,20] properties including gene
expression [1,6], protein interaction [21,18], and metabolic pathways [19,11]. To
understand the underlying principles of the emergence of those properties, vari-
ous theoretical models of network evolution have been proposed [4,17,13].

On the other hand, from a biological viewpoint, a number of theories have
been advanced to explain the evolution of enzyme-catalyzed metabolic networks.
Horowitz proposed the retrograde model of pathway evolution [9] focusing on
flows of substrates. He suggested that a new catalyst would be introduced to
compensate the environmental changes and maintain metabolic flows. On the
other hand, Jensen suggested a patchwork model [10] that is focusing on recruit-
ment of enzymes across pathways. They suggest that a copy of catalyst is intro-
duced by gene duplication at first, then, it may become to interact with a new,

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 716–724, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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related substrate. Teichmann and others investigated distribution of homologs
over metabolic pathways and showed that domains within the same family are
widely found across different pathways [16]. Those discussions suggest that both
genetic and dynamic constraints should be considered in order to understand
the evolution of metabolic systems.

The purpose of this study was to investigate the effect of these evolution-
ary constraints on the network structures through topological analysis, in order
to understand how metabolic networks are organized. One problem with anal-
ysis of metabolic networks is how to translate a stoichiometric equations to
a subgraph. Arita and others indicated that properties of networks may seri-
ously depend on the data-preparation scheme [3]. It implies that indexes such
as clustering coefficients reflect only dependent features of networks rather than
meaningful structures. More robust measures reflecting functional features will
be required. Holme and others [8] present a method for decomposing biochemi-
cal networks into subnetworks according to the global geometry of the network.
They showed interesting hierarchical subnetwork structures in metabolic path-
way networks. Girvan and Newman proposed a effective algorithm for finding
community structures in networks [7], which was further improved by Clauset [5]
and others. Along this line, we focus on subnetwork structure analysis in order
to inquire characters of network topology. We applied the Girvan and Newman’s
(GN) method to networks of the small molecule metabolic pathways and found
that a common behavior, that is, power-law distribution of community size, is
shared very widely. Next, to approach the origin of this characteristic structure,
we propose an abstract model based on artificial chemistry. We introduced in
this model the evolution of metabolic networks driven by gene duplication, and
also considered the simple dynamics of chemical reactions to evaluate the ef-
fects of substrate-driven evolution. We show that the power-law distribution of
community size is also observed in the networks evolved using this model.

2 Finding Community Structures in Metabolic Networks

The algorithm for finding subnetwork structures in networks [7] is based on the
concept of “modularity”. Consider a division of vertexes into some subgroups –
termed “communities” – and let eij be the fraction of edges from vertexes in
community i to those in community j. The modularity Q of the division which
is defined as

Q =
∑

i

(eii −
∑

j

eij)

gives a measure of whether the division is meaningful. Although true optimiza-
tion of Q for a large network requires much computation, various approximate
(“greedy”) optimization methods are available and seem to work well. The
method of optimization presented here is one of the fastest, and is described
by Clauset [5]. First, let each node represent a community of size 1. ΔQ whose
element ΔQij gives the difference of Q when community i and j are combined
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into one community i′. Then find maximum value of ΔQij and combine com-
munity i and j. Repeat it until there is no pair that increases Q.

According to this method, we examined the metabolic networks based on
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 1. Here are deposited
metabolic pathways and an annotated genome database for hundreds of model
organisms. We selected 100 of the largest organisms in order of the number of
their reactions and prepared a network as follows: let p and q be the number of
different compounds on each side of the equation, respectively (stoichiometric
coefficients are ignored), then the equation is embedded as a complete biograph
Kp,q. The average number of nodes and edges of the metabolic networks is
N̄v = 1025.0 and N̄e = 5368.84. It is worth noting that the behavior of some
indexes, such as clustering coefficients, seriously depends on the preparation
scheme; however, we found that the structures of communities does not change
qualitatively (a detailed analysis of the community structures will be reported
elsewhere).

2.1 Community Size Distribution

The first quantity to be considered is the distribution of community size (i.e., the
number of nodes in a community). It is reported that in some social networks
the distribution appears to have a power-law form over some significant range
[2]. We applied this analysis to the metabolic networks.
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Fig. 1. Properties of metabolic networks and model networks. (a) Community size
distribution of 5 popular organisms. (b) Average of community size distribution over
100 organisms. The solid line indicates a slope with exponent −3.0. (c) Community
size distribution of model networks.

Figure 1(a) shows the rank-size plot of communities found in the metabolic
networks of five major organisms. It is interesting that a common trend is shared
by all organisms, despite the variation of their domains. Figure 1(b) shows the
average of 100 organisms. There is a slow slope of large communities up to rank
r ∼ 10, followed by power-law-like decay with an exponent 2 ∼ 3. Although
there seems to be a tail at the right end, i.e., some smallest communities seem to

1 http://www.genome.jp/kegg
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be larger than expected from power-law, it might be because of noise or errors;
for example, since such minor compounds might be involved in some unknown
or undetectable reactions, we will not discuss this aspect further at present.

To confirm that this Zipf’s-law–like behavior is due not to the algorithm of
community finding, but to structures of metabolic networks, we examined some
models of scale-free networks in the same manner. Figure 1(c) shows the com-
munity size distribution of networks generated by methods known as preferential
attachment (PA) [4] and connecting nearest neighbors (CNN) [17]. Their behav-
ior is clearly different from that of metabolic networks. While the network of
the PA model does not show power-law behavior, that of the CNN model does,
although the exponent is different from metabolic networks.

3 Model: String Metabolic Network

In order to understand how this characteristic distribution of community size
emerges, we here propose a model of the evolution of metabolic networks based
on a framework of artificial chemistry, named String Metabolic Network (SMN).
In this model, chemical compounds are represented by abstract strings and chem-
ical reactions are recombination of the strings. A compound is an arbitrary length
of string composed of eight letters, {a, b, c, . . . , h }. For simplicity, we consider
only two types of fundamental reaction, as follows:

(type 1)
A1A2 + A3A4 −→ A1A4 + A3A2 (1)
A1A4 + A3A2 −→ A1A2 + A3A4 (2)

(type 2)
A5 + A6 −→ A5A6 (3)

A5A6 −→ A5 + A6 (4)

where Ai are arbitrary compound substrings. The forward and backward reac-
tions are always coupled. A metabolic system of an “organism” is represented
by two lists, a compound list containing all the strings of the chemicals appears
in the cell and a reaction list corresponding to the set of enzymes encoded in its
genome.

Next, we introduce evolution of the organisms. At the beginning, we start
from a small set of compounds and reactions as a root ancestor. In each genera-
tion, a new reaction is appended by gene duplication and random mutation, as
follows:

1. Choose a reaction from its reaction list randomly.
2. Replace a compound in the equation by a compound chosen from its com-

pound list. If the same set of substrate already have appeared in the reaction
list, back to step 1.

3. Generate a recombination rule from the new set of substrate. The reaction
site, i.e., where the compound string is cut is determined randomly.
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Table 1. Example of mutations

step equation
1 ababcdcd + efefghgh −→ ababghgh + efefcdcd
2 ababcdcd + ddcccbbbaa
3 ababcdcd + ddcccbbbaa −→ ababcdbaa + ddcccbbcd
1 aabccc + deefff −→ aabcccdeefff
2 aabccc + ggghha
3 aabccc + ggghha −→ aabcccggghha
1 aabcccdeefff −→ aabccc + deefff
2 gggbbcca
3 gggbbcca −→ gggbb + cca

4. Append the new reaction to the reaction list.
5. If new compounds that are not in the compound list are created in step 3,

append them to the list, too.

At step 4, the reverse reaction is automatically generated and appended, too.
Table 1 shows examples of mutation processes.

3.1 Neutral Evolution

In this paper, we introduce two different types of evolution, with or without
selection pressure, according to the efficiency of the metabolic system.

First, we evolved a metabolic network without biases, i.e., we simply repeated
the mutation processes 2000 times. The properties of the network generated
by this evolutionary rule are shown in Fig. 2. The average is taken from 30
simulation results – 10 runs each for three different initial sets of strings and
reactions (see Table 2 for more information). Because the mutation scheme of
this model naturally leads to a sort of preferential attachment, the probability
of a compound being involved in a new reaction is proportional to the number of
the reactions in which it is already involved. Therefore, it is not surprising that

Table 2. Initial compound sets

compound set reaction set
set I abcde, fghab, abcde + efgha ←→ abha + efgcde

cdefg, habcd, fghab + habcd ←→ fghabhabcd
efgha cdefg ←→ cde + fg

set II ab, cde, bcdef + ab ←→ bcdb + aef
fgha, bcdef, fgha + cde ←→ fghacde

ghabcd ghabcd ←→ gh + abcd
set III ba, efg, acbaha + efg ←→ acbag + efha

abba, addba, addba + ba ←→ addbaba
acbaha abba ←→ ab + ba
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Fig. 2. Properties of the artificial metabolic networks. (a) Degree distribution (5 sam-
ples). (b) Community size (5 samples). (c) Community size (the average of 30 runs).

the degree distribution shows a scale-free property (Fig. 2(a)). On the other
hand, although the global trends of the community size distribution seem to
somehow reproduce that of living organisms, no power law behavior is observed
(Fig. 2(b,c)).

3.2 Selection with Metabolic Flow

Next, we introduce flow dynamics of chemical reactions and selection for effi-
cient metabolic network. Assume the initial set of compounds listed in Table 2
to be “resources” that are supplied from some external source. The flow rate
into an organism depends on the total amount of compounds inside. Then con-
sider that the organism synthesizes compounds from these resources through
established metabolic pathways. We assume a penalty against the synthesis of
larger molecules, namely, all reactions shown Equ.1–3 share a common reaction
constant K, but that of Equ.4 is 0.1K (it corresponds to a penalty of bonding
energy about 1 ∼ 2kcal/mol at standard temperature). In general, a cell reg-
ulates the inflow/outflow of substances to keep the chemical conditions inside
it stably. Although it may depend on various factors, in this model, we simply
assumed that a cell maintains total amounts of substances in itself. Finally, com-
pounds of length less than 4 escape through membranes at a constant rate KY .
Let density of compound A at time t be cA(t) and its length be LA and the set
of resources be {SR}, the chemical dynamics is described as follows:

˙cA(t) = SA(
∑
X

cX (t)) +
∑
X ,Y

KXY cX (t)cY (t)

−(
∑
W

KWAcW (t) + δA)cA(t) (5)

SA =
{

0 (A 
∈ {SR})
KS(S0 −∑

W cW (t)) (A ∈ {SR}) (6)

δA =
{

0 (LA ≥ 4)
KY (LA < 4) (7)

where KXY , KWA are corresponding reaction coefficients, respectively, KS gives
the resource supply rate and S0 gives the total concentration of resources outside
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Fig. 3. Properties of the artificial metabolic networks evolved with selection on effi-
ciency. (a) Degree distribution (5 samples). (b) Community size (5 samples). (c) Com-
munity size (the average of 30 runs).

the cell. In the initial state, concentrations of all compounds are equal to 0 except
resources whose concentration is c0.

To select metabolic networks, we focus on “mass” of an organism, i.e., the
total amount of characters in the k-th organisms which is given by Ck(t) =∑

X LXck
X(t). Because of Equ. 6, the total amount of compounds always tends

to converge to a constant value. Therefore, the mass of an organism repre-
sents its efficiency in synthesizing larger compounds. We evolved the network as
follows:

1. Create Nμ mutants from the original organism by appending a reaction
according the scheme described in the previous section.

2. Start metabolic reaction from the initial state, and after a constant time
step TG, evaluate the mass of each organisms Ck(TG).

3. Choose the organism whose Ck(TG) is the largest, and let it be the seed of
the next generation.

Moreover, we add a new constraint on mutation, that is, compounds whose
amounts are less than a threshold Ccut are ignored when we choose a new com-
pound to replace a former entry in an equation to be mutated. In the simulation
presented in this section, the parameters are given as follows: resource supply
rate KS = 0.1; amount of resources S0 = 0.2; decay rate KY = 0.1; reaction rate
K = 0.1; cut-off threshold Ccut = 10−20.

Figure 3(c) shows the community size distribution of the results with the
efficiency selection. Unlike the previous result without selection, a power-law
like behavior similar to real metabolic networks can be observed.

4 Discussion and Conclusions

We have demonstrated that the analysis of the community size distribution al-
lows us to investigate detail topology of networks. It showed the structural dif-
ference of scale-free networks whose degree distribution is quite similar. Though
we reproduced a similar community size distribution, it is not clear the detail
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dynamics of community organization. We are now studying some mathematical
models to explain the distribution.

We have presented a model based on artificial chemistry and evolved re-
action networks showing topological structure. Although there remains much
to be realized, including, for example, differences of reaction coefficients, in-
creased variety of reaction types, specific catalytic activity, we presume this
model provides a useful framework for approaching the evolution of metabolic
reactions.

The dominant process of metabolic enzyme evolution has been discussed to
understand how the metabolic pathways were organized. There are two leading
aspects were based on either substrate flow or genetic homology. For example, the
retrograde evolution model is based on the former and the patchwork evolution
model is later. By analyzing topology of the metabolic networks, Light and
Kraulis pointed out that retrograde evolution may have played some small part
while patchwork evolution seems the predominant process of metabolic enzyme
evolution[12]. Our results support their observations, namely, we found that the
fundamental structures of network are mainly owing to the evolutionary process,
that is, new enzymes are introduced by a partial mutation of existing enzymes.
While selection by the efficiency of metabolic system also plays some important
part of the organization, it remains a secondary effect. Detailed investigation of
the evolutionary process and quantitative analysis are required to evaluate the
underlying principle of the organization of metabolic systems.

The SMN model can be further extended, for example, by introducing more
realistic reaction types, the effect of chemical potential, reaction coefficients de-
pending on the chemical types. These would be promising approaches and would
be useful tools for addressing other questions about the evolution of metabolic
networks, such as how ubiquitous compounds (ATP and NADP, for example)
emerged.

More complex models of artificial chemistry, for example, the one based on
combinator [14] has been proposed. The difference depends on their phase struc-
tures and should be studied. Evolution under different selection rules should be
studied in order to understand resistance to environmental change, as well as to
other properties of metabolic systems.
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Abstract. A Toy Model of an artificial chemistry that treats molecules
as graphs was implemented based on a simple Extended Hückel Theory
method. Here we describe an extension of the model that models chemi-
cal reactions as the result of “collisions”. In order to avoid a possible bias
arising from prescribed generic reaction mechanisms, the reactions are
simulated in a way that treats the formation and breakage of individual
chemical bonds as elementary operations.

Keywords: Artificial Chemistry, Energy Conservation, Elementary
Reactions.

1 Introduction

A chemical reaction might be regarded as a (quite arbitrarily defined) episode in
the life of an aggregate of atoms. Viewing a chemical reaction as a clipping from
the collection of atoms’ walk through its energy landscape, which is eventually
defined by quantum mechanics, we get the following picture: In the beginning,
the atoms or molecules are localized in an energy well from which they cannot
escape by vibrations triggered by the thermic energy. Adding thermic energy, by
e.g heating the reaction vessel or radiation, enables the molecule to overcome the
barriers surrounding the starting well and “hop” into one of the neighboring wells.

In many cases, the newly reached well is shallow and the molecule possesses
sufficient thermic energy to escape again. These kind of wells are often called
intermediary states. Eventually, the aggregate of atoms will fall into a well deep
enough to be stabilized.

Artificial chemistries simulate molecules by means of matrices, strings, Tur-
ing machines, graphs or λ calculus [1,2,6,8,15,19], for a recent review see [5].
Interesting algebraic theories, in particular a theory of chemical organizations,
have been developed based on such model. They all lack, however, a crucial in-
gredient featured prominently in our sketch of a chemical reaction above: they
lack a natural energy function. In earlier work [3,4], we have implemented an
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artificial chemistry at an intermediate level of reality and computational com-
plexity. The algorithms used here are derived from computational chemistry but
simplified to a very high degree. This level of abstraction was chosen rather
than more accurate or more general models for its balance between the compu-
tational tractability to guarantee a fast toy chemistry simulation and the fact
that important properties of chemistry are still retained. By building on the sim-
ple Extended Hückel Theory (EHT) method [12], it naturally provides a wave
function and energy as a state function. This is required for the “look-and-feel”
of chemistry as a constructive system with combinatorial production of new
molecules.

Knowledge-based models, in contrast, would be biased due to the intrinsic
sampling bias of chemical databases as well as very expensive due to access
fees. An explicit description, however, requires a natural definition of mass and,
in particular for chemical reactions, energy conservation. This is ensured by
representing molecules by graphs and defining energy as a state function. The
difference in energy is then the driving force for chemical reactions. A more
complete picture of chemical reactions must in addition include the calculation
of activation barriers. Here we describe an extension to the Toy Model formalism,
inspired by the ideas above, allowing the simulation of chemical reactions in line
with the simplicity of the EHT method.

2 The Model

Basis

The Toy Model is derived from the 1-electron Schrödinger equation

ĤΨα = EαΨα (1)

using a simplified extended Hückel theory method. A basis set consisting of 1s
for H and 2spn-hybridized Slater-type orbitals {χi} for other atoms is used to
expand the molecular orbital (MO) in the form

Ψα =
∑

i

cα,iχi . (2)

An overlap matrix Sij =
∫

χiχjdτ and Hamiltonian matrix Hij =
∫

χiĤχjdτ is
set up for a molecule using fixed parameter values that are zero for non-bonded
atoms. For bonded atoms, the values are tabulated according to the atoms in-
volved, their hybridization, and their type of interaction. Valence-shell electron
pair repulsion (VSEPR) theory [11] is used to determine the hybridization spn

of an atom. Only the connectivity of the molecule is required as input.
The secular equation

Hcα = EαScα, (3)

relates the matrices H and S to the wave function described by the vector of
coefficents cα. Solving eq. 3 yields the energy Eα of molecular orbital α and the



Explicit Collision Simulation of Chemical Reactions 727

wave function. In principle, any molecular property might be computed from
these values. In particular, we calculate the spectrum, charges, energy, and, in
combination with a spectral embedding, the dipole and solvation energy. The
Toy Model comes with parameter values for C, H, N, O, P, and S, and can be
easily extended by editing the parameter file. The calculation takes into account
σ bonds, π bonds, backbonding and hyperconjugation through indirect spn-spn

and spn-p overlaps, banana overlaps in rings, and stronger backbonding in P
and S. In line with [9] d orbitals are seen as polarization functions, which we
“replace” in our simplified framework by stronger backbonding in P and S.

Extension to Chemical Reactions

We extended the Toy Model to chemical reactions by decomposing a reaction
into small “moves”: the formation, breaking, or shifting of bonds, in analogy to
the elementary moves of the Dugundji-Ugi model [6,16]. We took into account
both single bond formation and simultaneous formation of two bonds, as there
is for example controversy about whether the Diels-Alder reaction (see below)
proceeds in a concerted fashion (simultaneous bond formation) or via a diradical
(sequential bond formation). The same applies for single and double breaking of
bonds. Finally, also the shifting of a bond was included in our simulation. The
sequence of moves is determined by a simulation based on a continuous time
Monte Carlo method proposed in [10]:

1: if reaction is monomolecular (one reacting molecule) then
2: find neighbors produced by single/double formation, single/double break-

ing, shifting
3: end if
4: if reaction is bimolecular (two reacting molecules) then
5: find neighbors produced by single/doubleform, shifting
6: end if
7: loop
8: if all neighbors are of higher energy then
9: stop

10: end if
11: move to neighbor with lowest energy
12: if this neighbor is a split molecule then
13: stop
14: end if
15: find neighbors produced by single/double formation, single/double break-

ing, shifting
16: end loop

Interaction of Orbitals

We now describe how the selection of bonds that may form during a move was
restricted. Atomic orbitals were divided into four types in view of possible inter-
actions and thus bond formations: the sp3 orbital as it features a particularily
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Table 1. Table of allowed interactions

Atom hybridization
and type of orbital 1
sp3 sp2 sp s
b l p l p l

b • • •
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l • • • •
p • • • •
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p • • • •
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l • •
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s • • • • •

accessible back lobe (b), the s orbital, the p orbital, and the orbital occupied
by a lone electron pair or lone electron (l). The b type is important for its role
in the SN2 reaction (nucleophilic substitution): there a l type orbital interacts
with the back lobe of a sp3 orbital and eventually creates a new bond.

We further define that only the interactions p − l, l − s, p − p, p − s and
b− l, shown in Fig. 1, are possible between the orbital types. This “sophisticated
guess” is based on the importance of those interactions in common organic reac-
tions, as shown in any standard organic chemistry textbook [20] and in Orbital
Interaction Theory [7,14,17]. In Fig. 1(right column), we show for example the
interactions in the hydroboration, the E1 elimination, the Diels-Alder, the hy-
drogen shift, and the aforementioned SN2 substitution reaction.

The possible interactions according to the hybridization of the two interacting
atoms are summarized in Tab. 1. Fig. 2 shows some allowed interactions for an
example pair of molecules.

The bonds that may break are not restricted to special types. However, we
take into account that bond fission can be homolytic or heterolytic. Thus there
are three cases: (1) the two fragments each inherit one electron of the bond
(radical formation); (2) the first fragment receives both electrons; (3) the second
fragment received both electrons (ion formations). The shifting of a bond is
simulated in our model by simultaneous fission (unrestricted) and formation
(restricted by the allowed interactions above) of a bond.

3 Examples

Chemical reactions were simulated for two sets of reacting molecules: first, ethene
and butadiene, and second, the enolate of ethanal (acetaldehyde). We generated
all molecular configurations (products) accessible from the reactant(s) within
our framework, and whose energies were lower than or within 3 kcal/mol of the
energy of the reactant(s).

For ethene and butadiene, both molecules can react by themselves (mono
molecular reactions), with another specimen of the same type, or with each
other (bimolecular reactions) (Tab. 2).
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Orbitals interacting Orbital description
of example reaction

p − l

Br Br

Bromination

l − s

H +

H

O

Elimination E1

p − p

Diels-Alder

p − s

H
H

+

Hydride shift

b − l

Nucleophilic
substitution SN2

Fig. 1. Allowed interactions. Sketches follow [20].
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Fig. 2. Selected allowed interactions between two propenamide molecules. The
molecules are shown with their atoms surrounded by their valence orbitals. Curved
lines indicate some of the allowed interactions: p-p, p-s, and p-l (the sp2 orbital on O
is occupy lone pair and thus a l-type orbital).

Table 2. Reactions of ethene and butadiene. Molecules are written in the SMILES
notation [21], which is very similar to a structural formula. Diels-Alder educts are
indicated by (DA). Energies are total atomization energies.

Structural formula Energy (kcal/mol)
Reactant C(H)(H)=C(H)(H) -415.95
Products none (no reaction)

Reactant C(H)(H)=C(H)C(H)=C(H)(H) -789.62
Products C(H)(H)(CC(H)=C(H)H)H -787.86
(of higher C(H)(H)(C(H)[C-]=C(H)H)[H+] -787.88
energy) C(H)(H)([C-]C(H)=C(H)H)[H+] -787.86

Reactants C(H)(H)=C(H)(H) + C(H)(H)=C(H)(H) -831.90
Products none (no reaction)

Reactants C(H)(H)=C(H)C(H)=C(H)(H) + C(H)(H)=C(H)C(H)=C(H)(H) -1579.24
Products C1(H)(H)C(H)C(H)C(H)(H)C(C(C(C1(H)H)H)H)(H)H (DA) -1588.74

C(H)(H)=C(H)C1(H)C(H)(H)C(C(C(C1(H)H)H)H)(H)H (DA) -1587.39
Products C(H)(H)(C(H)C(H)=C(H)H)[C+](C(H)H)C(H)=C(H)H + [H-] -1577.75
(of higher C(H)(H)[C+](C(H)=C(H)H)C(H)(H)C(H)C(H)=C(H)H + [H-] -1577.83
energy) C(H)(H)[C+](C(H)=C(H)H)C(C(C(=C(H)H)H)H)(H)H + [H-] -1577.42

C(H)(H)=[C-]C(H)=C(H)H + [H+]C(H)(H)C(H)C(H)=C(H)H -1577.49

Reactants C(H)(H)=C(H)(H) + C(H)(H)=C(H)C(H)=C(H)(H) -1205.57
Product C1(H)(H)C(H)(H)C(C(C(C1(H)H)H)H)(H)H (DA) -1222.33

As expected, one of the reactions occuring is the formation of a ring. This
pericyclic [4+2]-cycloaddition reaction between a diene and an alkene is called
the Diels-Alder (DA) reaction. The DA reaction is thermally allowed since the
HOMO of the butadien is of the same symmetry as the LUMO of the alkene.
The model reproduces the correct behavior between butadien and ethene. In
addition, the model correctly predicts that the thermal [2+2]-cycloaddition re-
action between two alkenes (in our case ethenes) to a cyclobuten derivate does
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Table 3. Reactions of the enolate of ethanal. Aldol condensation products are indicated
by (ac).

Structural formula Energy (kcal/mol)
Reactant [C-](H)(H)C(H)=O -667.48
Product [C-](H)(H)([C-]=O)[H+] -676.65

Reactants [C-](H)(H)C(H)=O + [C-](H)(H)C(H)=O -1334.95
[C-](H)(H)[C-]=O + [H+][C-](H)(H)C(H)=O -1344.14
[C-](H)(H)(C(H)=O)[C+]([C-](H)H)O + [H-] -1343.72

Products [C-](H)(H)[C+](O)[C-](H)(H)C(H)=O + [H-] -1343.88
[C-](H)(H)C(H)(O)[C-](H)(H)C(H)=O (ac) -1336.94
[C-2](H)C(H)=O + [H+][C-](H)(H)C(H)=O -1335.50

Products [C-](H)(H)(C(H)=O)C(H)C(H)=O + [H-] -1332.64
(of higher energy)

not occur, since this reaction is symmetrically forbidden. There are, however,
several examples of [2+2]-cycloaddititons in the literature which are believed to
occur through a radical or dipolar intermediate.

The reactants alone, as well as a collision of two ethene molecules, do not
form products of lower energy, i.e., they do not react without energy input
from outside (first three parts of Tab. 2). The kinetic energy or the energy
stored in molecular rotation or vibration may however suffice depending on the
temperature to attain products of higher energy. The isomers of butadiene within
3 kcal/mol of the ground state are hydrogen shifts and are artifacts of the model
and its parameters which favor sp3 over sp2 atoms.

On the other hand, butadiene can react with either ethene or another butadi-
ene (last two parts of Tab. 2). It forms rings by two simultaneous bond formations
bridging twice the gap between two molecules. This Diels-Alder reaction has two
possible outcomes for the reaction of butadiene with itself (regioisomers). Again,
products of higher energy include artifacts like hydrogen shifts or formation of
hydride.

The condensation reaction of enolate anions and carbonyl derivates, one of
the most useful reactions in organic chemistry, is as well correctly rendered by
our model. We simulated the case for the enolate of ethanal (Tab. 3). This
reaction is termed Aldol Condensation (ac) and is an acyl addition reaction
of the nucleophilic enolate to the electrophilic carbonyl carbon. However, here
also the other products of lower energy are artifacts (hydrogen shift or hydride
formation).

The artifacts in the two examples above are results of the particular param-
eter set, which is taken from the literature. For example, the values Sij and Hij

for sp2 hybridized carbons are based on experimental bond lengths. Adjusting
them in order to improve the results only produced more artifacts. The artifacts
might also result from underestimating the electronic repulsion between charges
in the molecule, or neglecting the energy involved in the separation of charges.
Future implementation will take these effects into account.
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4 Concluding Remarks

The model presented here tries to build a formalism of chemistry with the least
possible bias. To this end, we choose a simple molecule representation using
graphs which still allows an energy calculation. On the other hand, we use a
rather drastic abstraction from reality. While the approach is still based on
quantum chemistry, it avoids e.g. the complications of spatial embedding in or-
der to keep the resource requirements tractable even for large scale simulations.
Chemical reactions are implemented here not in the forms of prescribed rewrite
rules as in [3,4]. Instead, the model relies on a decomposition into bond for-
mations, fissions, and shifts. The result is an artificial chemical reaction which
reproduces some of the experimental results and features energy dependence,
reaction specificity, and multiple possible reaction outcomes.

In the present implementation, we only looked at the thermodynamic de-
scription of a chemical reaction. In future work, we intend to include the kinetic
constraints, in particular by incorporating the reaction barriers calculated using
the Klopman-Salem equation [13,18]. Since our basic model included also the
calculation of solvation energies, we will also take into account solvation effects
on chemical reactions.

The simulation results show that our model is indeed capable of producing
the chemically expected reaction pathways despite drastic simplifications of this
artificial chemistry relative to “real” quantum chemistry. Due to these simplifi-
cations, artifacts (relative to reality) are to be expected, and indeed do occur.
However, these artifacts still conform to the ’look-and-feel’ of chemistry, and
could be avoided by choosing different parameters — probably at the expense
of opening up other reaction pathways that do not occur in reality. We em-
phasize, that our model is not intended as a replacement of quantum-chemical
computations for the predictions of properties and reactions of real molecules.
Rather, our goal is a computationally tractable artificial chemistry model, in
which not all combinatorially possible reactions occur indiscriminately, but de-
pend on an energy state function. In this setting multiple reaction outcomes are
possible so that different reaction channels in general have different rates that
self-consistently determined from within the model.
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3. Gil Benkö, Christoph Flamm, and Peter F. Stadler. Generic properties of chem-
ical networks: Artificial chemistry based on graph rewriting. In W. Banzhaf,
T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, editors, Advances in Artificial
Life - Proceedings of the 7th European Conference on Artificial Life (ECAL), pages
10–20. Springer, 2003.
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Abstract. Is it possible to create a simple physical system that is capa-
ble of replicating itself? Can such a system evolve interesting behaviors,
thus allowing it to adapt to a wide range of environments? This pa-
per presents a design for such a replicator constructed exclusively from
synthetic DNA. The basis for the replicator is crystal growth: informa-
tion is stored in the spatial arrangement of monomers and copied from
layer to layer by templating. Replication is achieved by fragmentation of
crystals, which produces new crystals that carry the same information.
Crystal replication avoids intrinsic problems associated with template-
directed mechanisms for replication of one-dimensional polymers. A key
innovation of our work is that by using programmable DNA tiles as the
crystal monomers, we can design crystal growth processes that apply in-
teresting selective pressures to the evolving sequences. While evolution
requires that copying occur with high accuracy, we show how to adapt
error-correction techniques from algorithmic self-assembly to lower the
replication error rate as much as is required.

1 Introduction

It is widely accepted that Darwinian evolution is responsible for the complexity
and adaptability seen in modern biology. However, the mechanisms by which
evolving organisms adapt to their environment are not well understood. An
important roadblock in studying evolution is the dearth of physical systems
in which evolution can be studied; a tractable synthetic system for replication
and evolution would facilitate the study of how physical selection pressures lead
to evolutionary adaptation. A chemical self-replicator might also be used to
evolve solutions to problems in chemistry or nanotechnology. If such a system
were simple enough, it could also shed light on how self-replication emerged
spontaneously at the origin of life.

In 1966, Graham Cairns-Smith proposed a simple mechanism by which poly-
typic clay crystals could replicate information in the absence of biological en-
zymes [3,4]. Polytypic clay crystals are crystals where the orientations of subse-
quent layers can differ, and therefore a cross-section of the crystal contains an
information-bearing sequence. Crystal growth extends the layers and copies the
sequence of orientations, which may be considered its genotype. Occasionally,
physical forces break a crystal apart. Because crystals replicate their genotype
many times during growth, splitting of a crystal can yield multiple pieces, each
containing at least one copy of the entire genotype. Cycles of growth and frag-
mentation cause each sequence to be exponentially amplified.
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We propose a method of self-replication that works by similar growth and
fragmentation of algorithmic DNA crystals. DNA crystals are composed of DNA
tile monomers [8]. Different types of DNA tiles can be designed to assemble via
programmable rules [18]; a typical DNA crystal is assembled from several tile
types. As in Graham-Smith’s conception, DNA crystals can contain a sequence
that is copied during growth, in this case a linear arrangement of DNA tile types
(Figure 1a). Unlike most types of clay crystal growth, DNA crystal growth is
tractable in the laboratory and occurs at time scales (hours) that are suitable
for experimental investigation.

It is perhaps surprising that DNA crystal replication exhibits many of the
phenomena of interest for the study of Darwinian evolution. In Section 2, we de-
scribe in more detail how crystal evolution works and introduce the components
of DNA crystals and a model of the growth process. The examples in Sections 3
and 4 illustrate how DNA crystals can copy arbitrary amounts of information
and how in particular environments, this information affects the replication rate.
In Section 5, we describe techniques for increasing the accuracy of replication.

2 Replicating Information with DNA Crystals

DNA crystals consist of DNA tile monomers [8] which can attach to other tiles in
a programmable fashion: each of the four sides of the DNA tile has a short single
stranded portion which can hybridize with the complementary strand of another
tile (Figure 1b). DNA tiles can assemble into 2-dimensional crystals [21] and can

(a) (b) (c)

Fig. 1. DNA crystals. (a) The DNA crystal life cycle. The materials required for
growth are constantly replenished. Crystals die when they are flushed out of solution
in an exit stream. (b) Tiles with complementary single-stranded sticky ends can attach
by hybridization. For convenience, DNA tiles may be represented as square tiles; tiles
with the same side labels correspond to molecules with matching sticky ends. (c)
Atomic force microscopy image of DNA crystals formed by the molecules shown in
Figure 2b. At higher resolutions, individual tiles can be discriminated.
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(b)

(c)

(a)

Fig. 2. The zig-zag tile set. (a) A zig-zag assembly. Two alternating tile types in
each row enforce the placement of the double tiles on the top and bottom, ensuring
that under algorithmic assembly conditions, growth occurs in a zig-zag pattern. Al-
though only growth on the right end of the molecule is shown here, growth occurs
simultaneously on both ends of the molecule. At each step, a new tile may be added
at the location designated by the small arrow. (b) The basic zig-zag tile set consists of
six molecules (tile types). Each square and rectangle shown is a logical representation
of the molecule shown to its left. By convention, tiles cannot be rotated. The tiles
shown here have unique bonds that determine where they fit in the assembly: each
label has exactly one match on another tile type. While the logical representations of
DNA tiles have the same connectivity as DNA tile molecules, the logical representation
of a tile has a different aspect ratio and labels in different orientations than the actual
molecules. (c) The tile set shown in Figure 2b forms only one type of assembly. A
tile set consisting of the tiles in (b) and the four tiles shown here allows four types of
assemblies to be formed. The vertical column of each type contains a different 2-bit
binary sequence.
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be programmed to form other structures, such as thin ribbons (Figure 1c). A
wide variety of DNA tile crystals have been synthesized [10,15,5].

Under algorithmic assembly conditions [19], the assembly of DNA tiles into
a crystal is only energetically favorable when it occurs cooperatively, i.e. by the
formation of two or more sticky end bonds. The attachment of a tile to a crys-
tal performs a step of a computation in the sense that a unique tile (among
many possible in solution) may attach at a particular growth location. With an
appropriate choice of tiles, DNA tile assembly can perform universal computa-
tion [18,2].

The zig-zag crystal shown in Figure 2a is formed from the tiles shown in
Figure 2b. Matching rules determine which tile fits where. When a zig-zag crystal
is added to a solution of free tiles under algorithmic assembly conditions, growth
is constrained to occur in a zig-zag pattern by the requirement that each tile
addition must form two or more sticky end bonds, as shown in Figure 2a. It is
easy to confirm that under such conditions, there is always a unique tile that
may be added on each end of the ribbon.

Zig-zag crystals are designed so that under algorithmic assembly conditions,
growth produces one new row at a time, and continued growth repeatedly copies
a sequence. The requirement that a tile must attach by two bonds means that
it must match both its vertical neighbor (another tile that is part of the new
column being assembled), and its horizontal neighbor (in a previously assembled
row). Several tiles might match the label on the vertical neighbor, but because
tiles must make two correct bonds in order to join the assembly, only a tile
that also matches the label on the horizontal neighbor can be added. Therefore,
the tile being added in the new column must correspond to the one in previous
column. As a result, information is inherited through templated growth. The set
of tiles formed by adding the tiles in Figure 2c to those shown in Figure 2b can
propagate one of four strings. Additional tiles may be added to the set of tiles
in Figures 2b and 2c to create a tile set that copies one of 2n sequences of width
n. We will later discuss tile sets in which an unbounded amount of information
can be copied.

The growth of a zig-zag DNA crystal increases the number of copies of the
original information present in the ribbon, but does not change the rate at which
new copies of the sequence are produced. The rate of copying can be sped up
by shear forces that cause crystals to break. With each new crystal that is cre-
ated by breakage, two new sites become available to copy information. Repeated
applications of shear force interspersed with time to grow therefore exponen-
tially amplify an initial piece of information. Occasionally, a tile matching only
one bond rather than two will join the assembly, resulting in occasional copying
errors, which are also inherited. If errors happen during copying, which they
will under almost any achievable condition [19], and crystals with particular
sequences grow faster than others, then evolution can occur.

3 The Royal Road

A selection experiment for DNA crystal evolution involves both an environment
(available resources and laws of chemistry and physics) and DNA crystals that
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grow and reproduce within that environment. Artificial evolution experiments
must set up both. Here, a set of DNA tiles is used to define an environment for
crystal growth. The set of DNA tiles determines the set of sequences which may
be copied and the “chemistry” of the system, i.e. the rules which tiles bind to
each other 1. A particular arrangement of DNA tiles is the information that is
propagated in these experiments, the genotype; it is the organism being evolved.
The phenotype of a sequence is its replication rate in the given environment. In
this section we describe a tile set that allows many kinds of sequences to grow;
a selection pressure results from physical conditions in which tile concentrations
differ for each tile type.

A DNA crystal can grow only when it comes in contact with a tile that can
be added favorably to the crystal. In a well-mixed reaction vessel, the higher
the concentrations of tiles of the type that may be legally added, the more
quickly such contact occurs. Therefore, a simple selection pressure results from
a difference in concentration between tile types used to copy the sequence infor-
mation: assemblies with sequences containing tiles present at high concentrations
will grow and reproduce faster than assemblies with sequences containing tiles
present at very low concentrations.
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Fig. 3. The royal road tile set. (a) The royal road tile set consists of four tiles for
each of n sequence positions, two for propagating an X bit and two for propagating
a Y bit. Two boundary tiles are also used. 2n different sequences can be copied with
this tile set. (b) When more Y than X tiles are present, sequences containing more
Y tiles tend to grow faster. (c) As growth progresses, sequences containing mostly Y
tiles become more and more common. Each sequence shown represents an assembly
consisting of many copies of the illustrated sequence.

1 Our choice of terminology reflects the observation that whether a self-replicator is
made from clay, biological polymer or other material, the chemistry of the specific
elements involved determines the evolutionary landscape. As an example, the chem-
istry of nucleic acids can make some sequences hard to copy. Certain sequences fold
up or bulge [9], making copying of those sections more difficult. Here, the constraints
are not on how a sequence folds, but on how its elements fit together: the tile set
similarly determines the evolutionary landscape.
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A tile set in which one of two bits can be propagated at each of n sequence
positions is shown in Figure 3a. Let Xi and Yi be the two tile types that can be
propagated at position i. If Yi is present in solution at a concentration higher
than that of Xi, as in Figure 3b, the fitness landscape for this selection resembles
the simplest case of a well-studied problem in genetic algorithms, the “royal
road” [12]. Here, the growth rate increases monotonically with the number of
Yi’s in the sequence s. So long as the Yi tiles remain more common in solution,
sequences containing only Yi tiles will quickly dominate (Figure 3c).

4 Selection of Regular Languages

Section 3 illustrated how tile concentration can create a selection pressure, caus-
ing some sequences to grow faster than others. While this is a simple selection
pressure to understand, the adaptation that occurs is also simple. In this section
we describe how a single tile set allows for the replication of an infinite number
of sequences and how sequence constraints imposed by the tile set can provide
more interesting selection pressures.

In the previous example, the “chemistry” of the tile set determined the length
of sequences that could be copied, and which tiles could be used in which posi-
tion of the sequence. Here we consider evolution when the tile set “chemistry”
allows only certain sequences to be copied, but they may be arbitrarily long. In
particular, the tile set environment allows copying only of sequences that are
accepted by a particular finite state machine.

A finite state machine is an abstract device that can perform a computation
requiring only a fixed amount of memory. It consists of a set of states and
rules describing how to transition between states as each character of input is
received. Computation begins in a prescribed state. When the inputs have all
been received, the current state is either in an accept state, in which case the the
input is accepted, or a reject state. Figure 4a shows a simple finite state machine
(along with the tiles that implement the transition steps of the machine) which
detects whether the number of ones in a binary sequence input is divisible by
three.

The self-assembly of DNA sequence [1] and tile [13] alphabets can generate
the set of sequences accepted by a given finite state machine, also known as a
regular language. Accepted sequences can be of any length. In contrast to the
tile sets described in Section 3, where the top and bottom sides of a tile encode
the position in the fixed-length sequence where the tile can be added, the top
and bottom sides of the tiles in Figure 4a encode the state of the machine as it
processes each character of the sequence being copied.

A tile set that copies only inputs accepted by a given finite state machine is
constructed as follows. Each possible transition between states is encoded as a
single tile (Figure 4a). The left and right sides of the tile encode the input, the
top side encodes the state that machine is in before the input is received and the
bottom side encodes the state that the machine transitions to after the input
has been received. The top boundary tile encodes the start state and a bottom
boundary tile encodes each accept state (Figure 4b). Another set of tiles copies
a sequence that has been accepted by the machine. These tiles have only one
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Fig. 4. Selection of sequences with particular numbers of logical 1’s. (a)
A diagram of a finite state machine that can determine whether a binary sequence
contains a number of 1’s that is divisible by 3. The double circled state is both the
start and the accept state. (In general these states are not the same.) The tiles shown
can be used with the tiles in (b) to follow the instructions of the machine during tile
assembly. (b) Additional tiles needed to complete the tile set in (a). The construction
shown in (a) and (b) can be generalized to any finite state machine. (c) An assembly
encoding a sequence accepted by the machine in (a). Evaluation ends in an accept
state, so a bottom tile may be added and assembly can continue. (d) An assembly
encoding a sequence not accepted by the finite state machine in (a). Because execution
of the finite state machine ended with a state other than the accept state, assembly
cannot continue.

state on their bottom and top sides, and encode the same sequence bit on their
left and right sides.

During growth down the crystal2, assembly evaluates the sequence according
to the finite state machine’s rules. If the machine ends in an accept state, a
bottom tile can bind to the site and upward growth can begin (Figure 4c). If
the machine is not in an accept state, no bottom tile exists which matches the
2 Growth on the left side of the zig-zag crystal in Figure 4c reads the sequence elements

backward, and evaluates the finite state machine in reverse. While running the finite
state machine shown in Figure 4a backward accepts the same set of states as running
the machine forward, for other machines there may be non-determinism when the
machine is run in reverse. A step may be possible that cannot lead to the start state,
leaving an uncompleted assembly. Assemblies corresponding to tile sets of this type
will grow mostly in the direction where the finite state machine is evaluated in the
correct direction. With some additional complexity, it is also possible to replace this
tile set an equivalent tile set that can grow only in the forward direction [17].
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growth front, and growth stops (Figure 4d). Thus, only sequences which are
accepted by the machine will continue to be replicated. These sequences will be
the ones that are selected for.

More complex selection pressure results if the crystals grown in this tile set
environment are moved to an environment containing tiles that accept a different
language of sequences. For example, crystals grown using the tiles shown here
might be moved to a mixture containing tiles that allowed only sequences with
a number of ones that is divisible by 5 to grow. Only sequences with a number
of ones divisible by 15 could survive in both environments.

5 Acceptable Error Rates for DNA Tile-Based Evolution

While several experimental studies have shown that DNA tiles can process in-
formation through cooperative binding [11,15], it is also becoming clear that
errors occur often during algorithmic assembly [15]. This is a concern because a
low error rate is vital to the design of a self-replicator. If the error rate exceeds
an error threshold [7], genetic meltdown occurs and sequences become totally
random. In this section we describe how to decrease the error rate below any
relevant error threshold.

Errors during assembly occur when a tile binds to a growing assembly by
fewer than two bonds, an event called an unfavorable attachment. A mismatch
error, an unfavorable attachment that only partially matches the adjacent tiles,
causes an error in replication (Figure 5a). Additionally, in the absence of a pre-
existing crystal, a series of unfavorable attachments occasionally produces a full-
width crystal with a random sequence, an event called spontaneous nucleation.

Both these kinds of errors can be analyzed using a reversible model of DNA
tile self-assembly based on the physics and chemistry of DNA hybridization [19].
Prior work on the robustness of algorithmic self-assembly in this model can
be adapted in order to show that, at a moderate cost of tile set complexity and
assembly speed, mismatch error rates can be made as small as is desired. “Proof-
reading” tile sets implement the same logic of an original tile set but assemble
more robustly, dramatically reducing mismatch error rates without significant
slow-down [20,6,14]. The general idea of proofreading is to redundantly encode
each element of sequence. When the proofreading method is applied to the zig-
zag tile set (Figure 5b), correct tile additions are stabilized by additional tiles in
the same block that encode the same sequence element, whereas several incor-
rect additions instead of just one are needed to propagate a sequence element
incorrectly (Figure 5c). Error rates decrease exponentially as larger blocks of
proofreading tiles are used [20].

Similar error correction techniques also exist for the prevention of sponta-
neous nucleation errors. Like other crystallization processes, the rate at which
spontaneous nucleation of growing zig-zag assemblies occurs is dependent on the
energy of the critical nucleus for growth. For zig-zag crystals, this critical nu-
cleus is a small assembly that contains both a top and bottom boundary tile. By
increasing the minimum width of an assembly that can contain both these tiles,
it is possible to increase the energy of the critical nucleus. For example, the rate
of spontaneous nucleation of the zig-zag tile set shown in Figure 3a decreases
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Fig. 5. Proofreading for zig-zag assembly. (a) Kinetic trapping is the major cause
of mismatch errors in DNA tile assembly. When a tile attaches to an assembly on only
one side, it forms a low energy bond and usually dissociates quickly. However, if another
tile attaches to the assembly at an adjacent location before it can dissociate, the tile
may be trapped. The mutated sequence will be copied to subsequent columns. (b)
Zig-zag proofreading transformations of the four zig-zag middle tiles in Figures 2b. (c)
Zig-zag assembly of the original sequences using the transformed tile set. When a single
tile that produces an error attaches to the assembly, either the tile must fall off and be
replaced by the correct tile, or further errors are necessary in order to continue growth.

exponentially with the width n [16]. We expect that the same qualitative result
applies to the more complex tile sets described in this paper.

6 Conclusions

To study the physical principles of Darwinian evolution, we propose a physical
system based on DNA crystals in which a combinatorial variety of genotypes can
be faithfully replicated and a genotype can direct a behavior or other measurable
parameter that can be subject to selection. DNA crystals are simple, containing
no biological parts, and can be programmed to replicate an infinite variety of
genotypes. The ability to program the interactions between tiles allows us to
induce selection pressures which favor the growth of assemblies with interesting
properties. Error correction techniques exist which can lower the replication error
rate as much as is required to avoid genetic meltdown, at the cost of a small
amount of additional complexity.
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Abstract. The classical approach to using utility functions suffers from
the drawback of having to design and tweak the functions on a case
by case basis. Inspired by examples from the animal kingdom, social
sciences and games we propose empowerment, a rather universal func-
tion, defined as the information-theoretic capacity of an agent’s actuation
channel. The concept applies to any sensorimotoric apparatus. Empow-
erment as a measure reflects the properties of the apparatus as long as
they are observable due to the coupling of sensors and actuators via the
environment.

1 Introduction

A common approach to designing adaptive systems is to use utility functions
which tell the system which situations to prefer and how to behave in general.
Fitness functions used in evolutionary algorithms are similar in spirit. They
specify directly or indirectly which genotypes are better.

Most utility functions and fitness functions are quite specific and a priori.
They are designed for the particular system and task at hand and are thus not
easily applicable in other situations. Each time the task and the properties of the
system have to be translated into the “language” of the utility or fitness function.
How does Nature address this problem? Is there a more general principle?

One common solution found in living organisms is homeostasis [1]. Organisms
may be seen to maintain “essential variables”, like body temperature, sugar
levels, pH levels. Homeostasis provides organisms with a local gradient telling
which actions to make or which states to seek. The mechanism itself is universal
and quite simple, however the choice of variables and the methods of regulation
is not. They are evolved and are specific to different phyla.

2 Empowerment

2.1 Motivation

Our central hypothesis is that there exist a local and universal utility function
which may help individuals survive and hence speed up evolution by making
the fitness landscape smoother. The function is local in the sense that it doesn’t

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 744–753, 2005.
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rely on an infinitely long history of past experience, does not require global
knowledge about the world. The utility function is applicable to all species,
hence, it should be universal. At the same time it should adapt to morphology
and ecological niche. The utility function should be related to other biologically
relevant quantities.

In the quest for the function one invariably notices certain traits reappear in
different contexts over and over again. In animal kingdom we see the striving for
domination and control. Humans and even states strive for money, power and
control. In board games such as Reversi or Othello there is a concept of mobility,
which is defined as the number of moves a player can make. Everything else being
equal players should seek higher mobility.

The unifying theme of these and many other examples is the striving towards
situations where in the long term one could do many different things if one
wanted to, where one has more control or influence over the world. Predators
with better sensors and actuators can hunt better. Having high status in a group
of chimpanzees allows one more mating choice. Having a lot of money enables one
to engage in more activities. One can choose from an array of options. However,
if one doesn’t know what to do, a good rule of thumb is to choose actions leading
to higher status, more power, money and control. We will now apply this idea
to “embodied” agents.

2.2 The Concept of Empowerment

In his work on ecological approach to visual perception [2] Gibson proposed that
animals and humans do not normally view the world in terms of geometrical
space, independent arrow of time, and Newtonian mechanics. Instead, he argued,
the natural description is in terms of what one can perceive and do. Thus,
different places in the world are characterized by what they afford one to perceive
and do.

This perspective is agent-centric. The concept of “the environment” is a by-
product of the interplay between the agent’s sensors and actuators. In this spirit
we base our utility function solely on the sensors and actuators, without the
need to refer to the “outside” of the agent.

We propose empowerment, a quite general utility function, which only relies
on the properties of “embodiment”, the coupling of sensors and actuators via
the environment. Empowerment is the perceived amount of influence or control
the agent has over world. For example, if the agent can make one hundred dif-
ferent actions but the result, as perceived by the agent, is always the same, the
agent has no control over the world whatsoever. If, on the other hand, the agent
can reliably force the world into two states distinguishable by the agent, it has
two options and thus two futures to choose from. Empowerment can be seen as
the agent’s potential to change the world, that is, how much the agent could
do in principle. This is in general different from the actual change the agent
inflicts.

In the section 2.4 we will quantify empowerment using Information The-
ory [3]. Briefly, empowerment is defined as the capacity of the actuation channel
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of the agent. The main advantage of using Information Theory for defining em-
powerment is that the measure is universal in the sense that it does not depend
on the task or on the “meaning” of various actions or states.

2.3 The Communication Problem

Here we provide a brief overview of the classical communication problem from
Information Theory and define channel capacity for a discrete memoryless chan-
nel. For an in depth treatment we refer the reader to [3,4].

There is a sender and a receiver. The sender transmits a signal, denoted by
a random variable X , to the receiver, who receives a potentially different signal,
denoted by a random variable Y . The communication channel between the sender
and the receiver defines how transmitted signals correspond to received signals.
In the case of discrete signals the channel can be described by a conditional
probability distribution p(y|x).

Given a probability distribution over the transmitted signal, mutual informa-
tion is defined as the amount of information, measured in bits, the received signal
on the average contains about the transmitted signal. Mutual information can
be expressed as a function of the probability distribution over the transmitted
signal p(x) and the distribution characterizing the channel p(y|x):

I(X ; Y ) =
∑
X ,Y

p(y|x)p(x) log2
p(y|x)∑

X p(y|x)p(x)
. (1)

Channel capacity is defined as the maximum mutual information for the
channel over all possible distributions of the transmitted signal:

C = max
p(x)

I(X ; Y ) . (2)

Channel capacity is the maximum amount of information the received signal
can contain about the transmitted signal. Thus, mutual information is a function
of p(x) and p(y|x), whereas channel capacity is a function of the channel p(y|x)
only. Another important difference is that mutual information is symmetric in X
and Y and is thus acausal, whereas channel capacity requires complete control
over X and is thus asymmetric and causal (cf. [5]).

There exist efficient algorithms to calculate the capacity of an arbitrary dis-
crete channel, for example, the iterative algorithm by Blahut [6].

2.4 Definition of Empowerment

For the sake of simplicity of the argument, let us assume a memoryless agent in
a world. Following the information-theoretic approach to modeling perception-
action loops described in [7,8] we can split the whole system into the agent’s
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sensor, the agent’s actuator and the rest of the system1 including the environ-
ment. The states of sensor, actuator and the rest of the system at different
time steps are modeled as random variables (S, A, and R respectively). The
perception-action loop connecting these variables is unrolled in time. The pat-
tern of dependencies between these variables can be visualized as a Bayesian
network (Fig. 1).
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Fig. 1. The perception-action loop as a Bayesian network. S – sensor, A – actuator, R
– rest of the system. R is included to formally account for the effects of the actuation
on the future sensoric input. R is the state of the actuation channel.

Previously we colloquially defined empowerment as the amount of influence
or control the agent has over the world as perceived by the agent. We will now
quantify the amount of influence as the amount of Shannon information2 the
agent could “imprint onto” or “inject into” the sensor. Any such information
will have to pass through the agent’s actuator.

When will the “injected” information reappear in the agent’s sensors? In
principle, the information could be “smeared” in time. For the sake of simplicity
in this paper will be using a special case of empowerment: n-step sensor empow-
erment. Assuming that the agent is allowed to perform any actions for n time
steps, what is the maximum amount of information it can “inject” into the mo-
mentary reading of its sensor after these n time steps (Fig. 2)? The more of the
information can be made to appear in the sensor, the more control or influence
the agent has over its sensor.

We view the problem as the classical problem of communication from Infor-
mation Theory [3] as described in Sec. 2.3. We need to measure the maximum
amount of information the agent could “inject” or transmit into its sensor by
performing a sequence of actions of length n. This is precisely the capacity of the
channel between the sequence of actions and sensoric input n time steps later.

Let us denote the sequence of n actions taken, starting at step t, as a ran-
dom variable An

t = (At, At+1, . . . , At+n−1). Let us denote the state of the sensor

1 We include the rest of the system, denoted by R, only to account for the effects of
actuation on the future sensoric input. R is the state or memory of the actuation
channel. For the problem of channel with side information it is established [4] that
knowing the state of the channel may increase its capacity. Thus, in addition to
actuator, sensor and the rest of the system it is useful to define context, a random
variable approximating the state of the actuation channel in a compact form (cf.
Information Bottleneck [9], ε-machines [10,11]). However, we omit this more general
treatment from the present discussion.

2 The word “information” is always used strictly in the Shannon sense in this paper.
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Fig. 2. 3-step sensor empowerment. Actions are independent of system’s state (agent
with “free will”). The communication channel goes from actions (At, At+1, At+2) to
sensor St+3.

n time steps later by a random variable St+n. We now view An
t as the trans-

mitted signal and St+n as the received signal. The system’s dynamics induce a
conditional probability distribution p(st+n|an

t ) between the sequence of actions
An

t and the state of sensor after n time steps St+n. This conditional distribution
describes the communication channel we need.

We define empowerment as the channel capacity of the agent’s actuation
channel terminating at the sensor (see Eq. 1 and Eq. 2):

E = C = max
p(an

t )

∑
An,S

p(st+n|an
t )p(an

t ) log2
p(st+n|an

t )∑
An p(st+n|an

t )p(an
t )

. (3)

Empowerment is measured in bits. It is zero when the agent has no control
over what it is sensing, and it is higher the more perceivable control or influence
the agent has. Empowerment can also be interpreted as the amount of informa-
tion the agent could potentially “inject” [8] into the environment via its actuator
and later capture via its sensor.

The maximizing distributions over the sequences of actions can be interpreted
as distributions of actions the agent should follow in order to inject the maximum
amount of information into its sensors after n time steps.

The conditional probability distribution p(st+n|an
t ) may induce equivalence

classes over the set of sequences of actions. For example, if the various sequences
of actions produce only two different outcomes in terms of the resulting prob-
ability distribution of sensoric input p(st+n) then the agent may view all the
sequences of actions just in terms of two meta-actions corresponding to the two
different distributions over the resulting sensoric input.

3 Experiments

In this section we present two experiments to illustrate the concept of empower-
ment. The first experiment demonstrates how an agent’s empowerment looks in a
grid world and how it changes when a box is introduced. The second experiment
illustrates empowerment of an agent in a maze.
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3.1 Box Pushing

Consider a two-dimensional infinite square grid world. An agent can move in the
world one step at a time into one of the four adjacent cells. The actuator can
perform five actions: go left, right, forward, back, and do nothing. For the sake
of simplicity, let’s assume that the agent has a sensor which reports the agent’s
absolute position in the world. What is this agent’s n-step empowerment?

For this scenario the n-step empowerment turns out to be the logarithm of the
number of different cells the agent can reach in n time steps: log2(2n2 +2n+1).
This is log2 5 for 1 step, log2 13 for 2 steps, and so forth. The empowerment does
not depend on where the agent starts with the sequence of actions (Fig. 3, b).

We now add a box occupying a single cell. The agent’s sensor, in addition to
the agent’s position, now also captures the absolute position of the box. Let us
assume that the box cannot be moved by the agent and thus remains stationary.
If the agent tries to move into the cell occupied by the box the agent remains
where it was. In this case the agent’s empowerment is lower the closer the agent
is to the box (Fig. 3, c). This can be explained by the fact that the box blocks
some paths, and as a result it may render unreachable some of the previously
reachable cells. Empowerment is high in the box because from there the agent
can reach the maximum number of cells including the one occupied by the box.

Fig. 3. 5-step empowerment field over the grid. The field is centered at the box. Because
empowerment in cells further than 5 cells away from the box is always log2(61) ≈ 5.93
bits, only the 13×13 cells central part of the field is shown. Cells are colored according to
scaled empowerment of the agent in the cell. Darker color means higher empowerment.
Maps are scaled independently of each other. Corresponding ranges of empowerment
are provided below the maps. Note that the ranges are different in size.

stationary box pushable box

the agent
does not
perceive
the box

a. E ∈ [5.86; 5.93] b. E = log2 61
≈ 5.93 bit

the agent
perceives
the box

c. E ∈ [5.86; 5.93] d. E ∈ [5.93; 7.79]
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Let us now assume that the box can be pushed by the agent. If the agent tries
to move into the cell occupied by the box, it succeeds and the box is pushed in
the direction of the agent’s move. Empowerment is now more complex than just
the number of cells reachable by the agent, because it also includes the position
of the box. In this scenario the agent’s empowerment in a given cell is the binary
logarithm of the number of unique combinations of the agent’s and the box’s
final positions achievable from a given cell. The agent’s empowerment is higher
the closer the agent is to the box (Fig. 3, d). The number of cells the agent can
reach in n time steps is still the same as for the case without the box. However,
some paths leading to same cells after n steps can now be differentiated by
different positions of the box, because it was pushed differently. Thus, because
the position of the box is observable and controllable by the agent, it can be
viewed as an extra reservoir for empowerment.

It is also interesting to see what happens if the agent doesn’t perceive the
box, that is when the sensor captures only the agent’s position. In the case of
the stationary box, the empowerment field does not change (Fig. 3, a is identical
to Fig. 3, c). This is because the position of the box never changes. Excluding it
out from the sensor thus cannot decrease the amount of control over the sensor.
With a stationary box, a sensor for the box’s absolute position is useless. Having
no sensor for the box, just by noticing the change in the conditional probability
distribution p(st+n|an

t ) describing the actuation channel the agent could infer
that something changed in the world (no box → stationary box).

In the case of the pushable box leaving out the position of the box from the
sensor results in the completely flat empowerment field over the grid (Fig. 3, b),
exactly as in the initial setup without the box. This is because the movement of
the agent and hence its position is not influenced by the box at all. Thus, if the
agent doesn’t see the box, it cannot perceive it even indirectly.

To summarize, empowerment as a general utility function in this scenario
translates to a simple measure of reachability for simple cases (no box, stationary
box). Furthermore, it reacts reasonably to changes in the dynamics of the world,
which do not need to be explicitly encoded into empowerment. We believe that
empowerment discovers intuitively interesting places in the world.

3.2 Maze

Consider a two-dimensional square grid world. Similar to the previous scenario
an agent moves in the world one step at a time into one of the four adjacent
cells. Some cells have walls between them preventing the agent from moving. A
maze is formed using the walls (Fig. 4). The agent has a sensor which captures
the agent’s global position.

We measure the n-step empowerment of the agent. Similar to the previous
scenario, because of deterministic actuation and the nature of the sensor, em-
powerment is the logarithm of the number of the cells reachable in n moves.
Empowerment maps for several time horizons are shown on Fig. 5.

A natural measure for navigation in mazes is the average shortest path from
a given cell to any other cell. To navigate through any place in the maze fastest
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Fig. 4. A 10 × 10 maze. Walls between cells are shown in black.

E ∈ [1; 2.32] E ∈ [1.58; 3.70] E ∈ [3.46; 5.52] E ∈ [4.50; 6.41]

Fig. 5. 1-, 2-, 5-, and 10-step empowerment field over a 10 × 10 maze (left to right).
Walls are shown in white. Cells are colored according to empowerment. Darker color
corresponds to higher empowerment in the cell. Maps are scaled independently of each
other. Corresponding empowerment ranges are shown below each map.

Fig. 6. Map of average shortest distance to other cells. Darker color corresponds to
lower average distance.

one would want to start in a cell with lowest average distance to any other cell.
The map of average shortest distances is shown on Fig. 6. It is similar to the
map obtained using empowerment with several time steps. In fact, empowerment
and average shortest path are roughly anti-correlated (See Fig. 7). However, the
two types of maps need not coincide. For instance, if the task were to avoid a
predator, the average distance map would not be of much help. However, n-step
empowerment with straightforward modifications3 would implicitly include the
effects of the predator into the picture.

3 A natural way to make the presence of the predator “known” to empowerment is to
assume that once the agent is dead, for example, eaten by the predator, all actions
have the same effect. As a result, empowerment drops to zero.
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Fig. 7. 10-step empowerment of cells (vertical) vs. the average distance to other cells
(horizontal)

4 Discussion and Conclusions

In the search for a general principle for adaptive behavior we have introduced
empowerment, a natural and universal quantity derived from an agent’s “em-
bodiment”, the relation between its sensors and actuators induced by the en-
vironment. Empowerment is defined for any agent, regardless of its particular
sensorimotor apparatus and the environment, as the information-theoretic ca-
pacity of the actuation channel. Empowerment maximization, as a utility or
fitness function, can be colloquially summarized as “everything else being equal,
keep your options open.”

We have shown two simple examples where the empowerment measure cap-
tures features of the world which have not and need not be specially encoded.
For example, in the box pushing scenario, if the box is pushable the agent is
more empowered the closer it is to the box, if the box is not pushable the agent
is, vice versa, less empowered the closer it is to the box.

The presence of the box need not be “encoded” into empowerment at all.
In both cases empowerment was calculated identically, the sensor and the ac-
tuator over which empowerment was measured remained unchanged. It was the
dynamics of the world that changed, and empowerment generalized naturally to
capture the change. The result was different depending on whether the box was
pushable or not.

In the example with walking in a maze, empowerment is anti-correlated with
the average shortest distance from a cell to any other cell. However, these two
measures will cease to coincide, if, for example, a predator were introduced.

Our central hypothesis is that similar to the two simple examples, where em-
powerment in most cases was related to the number of reachable cells, empow-
erment maximization may translate into simpler measures and interpretations,
like homeostasis, phototaxis, avoidance, etc.

Empowerment is useful for a number of reasons. Firstly, it is defined univer-
sally and independently of a particular agent or its environment. Secondly, it
has a simple interpretation – it tells the agent to seek situations where it has
control over the world and can perceive the fact. Thirdly, if the agent were to
estimate empowerment on-board, it would know what actions lead to what situ-
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ations in the future – this knowledge could be used for standard planning. Last
but not least, empowerment can be calculated on-board in an agent-centric way
or externally, as, for example, a fitness function in evolutionary search. In the
latter case the agent need not know anything about empowerment – it would
just behave as though it maximizes empowerment.
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Abstract. Many researchers are developing frameworks inspired by natural, es-
pecially biological, systems to solve complex real-world problems. This work 
extends previous work in the field of biologically inspired computing, propos-
ing an artificial endocrine system for autonomous robot navigation. Having in-
trinsic self-organizing behaviour, the novel artificial endocrine system can be 
applied to a wide range of problems, particularly those that involve decision 
making under changing environmental conditions, such as autonomous robot 
navigation. This work draws on “embodied cognitive science”, including the 
study of intelligence, adaptivity, homeostasis, and the dynamic aspects of cog-
nition, in order to help lay down fundamental principles and techniques for a 
novel approach to more biologically plausible artificial homeostatic systems. 
Results from using the artificial endocrine system to control a simulated robot 
are presented. 

1   Introduction 

In previous work, Timmis and Neal [22] presented a model for an artificial endocrine-
system (AES) as a module of a broader conceptual framework including artificial 
neural networks (ANN) and artificial immune systems (AIS), with the ultimate goal 
of developing an artificial homeostatic system (AHS). The AHS (e.g., a mobile robot) 
is capable of autonomously interacting with an unknown and changing environment 
while maintaining its internal state (e.g., energy level and integrity) and optimizing 
some objectives. It is now believed in biology that there is an interconnection and 
dependence among the immune, nervous and endocrine systems, which is fundamen-
tal for cognition, maintenance of the internal state of an organism (called homeosta-
sis), immune-regulation and host defenses [1]. The present work concentrates on the 
neuro-endocrine interactions and mechanisms in order to create a more biologically 
plausible artificial homeostatic system. The approach borrows some ideas from “em-
bodied intelligence”, introduced by Rodney Brooks [2][3][4] to synthesize a cognitive 
system based on coupled dynamics and nonstationary mappings. 
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The paper is organized as follows: Section 2 gives a brief description of the fun-
damentals of the nervous and endocrine systems, followed by some key interactions 
between the two systems and the biological mechanisms that motivated this work. 
Section 3 revisits some aspects of the embodied cognitive science related to robot 
autonomous navigation. In Section 4 the previous model of the artificial homeostatic 
system is presented, and Section 5 introduces the novel artificial homeostatic system. 
Some preliminary simulations are presented in Section 6. Discussions and future work 
compose Section 7. 

2   Nervous and Endocrine Systems Interactions 

The nervous system (NS) is primarily responsible for the reception of stimuli, by 
detecting changes in the internal and external environments, and for processing and 
transmitting the nerve impulses as appropriate responses to those changes [14].  

The endocrine system can be viewed as a system of glands [20] that works with the 
nervous system in controlling the activity of internal organs and in coordinating the 
long-range response to external stimuli. The main roles of the endocrine system are to 
assist the maintenance of homeostasis, growth, differentiation, metabolism, reproduc-
tion, and to help the organism to cope with stress [14][15]. All these tasks are accom-
plished by the hormones, which are chemical substances produced, stored and se-
creted by the components of the endocrine system, including a group of glands, spe-
cialized cells, body tissues and organs.  

One of the most important neuro-endocrine interactions happens within the hypo-
thalamus and the pituitary gland (or hypophysis). The hypothalamus is a region in the 
brain beneath the thalamus. It consists of many aggregations of nerve cells and its 
main function is to control release of pituitary hormones. The hypothalamus is re-
sponsible for the integration of many basic behavioural patterns, involving the corre-
lation of neural and endocrine functions. Its neurons are also affected by a variety of 
hormones and other circulating chemicals [10]. In fact, due to this interaction, in the 
last three decades the hypothalamus has been often referred to as the “endocrine hy-
pothalamus” [9][20]. The pituitary gland is located at the base of the brain. The hypo-
thalamus controls the release of hormones from the pituitary that will in turn control 
other target organs, and also other target endocrine glands. 

This hypothalamus-pituitary interaction is controlled by feedback mechanisms. 
There exists a positive feedback when the production and release of hormones is exci-
tatory. Nonetheless, normally these physiological functions are under a negative feed-
back mechanism regulation, in which the hormone production and release is inhibi-
tory [10]. Feedback is carried out by three mechanisms: a sensor that will sense the 
controlled variables under supervision, a reference point, and an error signal. Release 
of some hypothalamic hormones is ruled by external and internal neural inputs (short 
loops), and also by long feedback loops involving remote organs and external meta-
bolic processes [9]. 

The important point is that the release of hormones influences nervous activity 
(thus cognition, motor control, etc.), whilst nervous activity influences endocrine 
function (thus growth, metabolism, etc.), in a semi-closed control loop: internal  



756 P. Vargas et al. 

 

processes are allowed to regulate themselves whilst external environmental factors 
can also regulate and control the system. In the novel homeostatic system to be devel-
oped here, an artificial endocrine system will be adopted to aid an artificial neural 
network in the process of robot autonomous navigation. 

3   Robot Autonomous Navigation – A Cognitive Challenge 

Attempts to understand the mind and its operation have been ongoing since the an-
cient Greeks philosophers [21]. This study has lead to the development of cognitive 
science. Simply put, cognitive science is the interdisciplinary study of mind and intel-
ligence [19]. This in turn has lead to the appearance of a novel field of research at the 
end of the 1980’s, called “embodied cognitive science”, also known as “behaviour-
based robotics”. The new term was based on the ideas of “embodied intelligence” 
coined by Rodney Brooks [2][3][4]. For Brooks, the only way to understand intelli-
gence is by giving it a body, i.e. by turning it into an embodied system it will be pos-
sible to focus upon the interaction between the embodied system and the real world, 
therefore releasing it from the human interpreter. 

These ideas are best understood when potential applications for intelligent robots 
are considered. Sea and submarine prospecting, space exploration, discovery of 
mines, firefighting, military assistance, and search and rescue services are among the 
plethora of challenges that might be faced by an autonomous mobile robot. There are 
many ways of conducting artificial agent experiments productively and systemati-
cally, among which there are experiments designed for simulated and real robotic 
agents. The merits of simulation versus physical embodiment are still under discus-
sion (see Pfeifer and Scheier [19]). In our work both approaches are adopted. There is 
a real robotic agent, the Khepera II®

 Robot, and a simulated robot agent, using the 
WSU Khepera Simulator [18]. 

Among the methods for tackling robot autonomous navigation problems, it is 
worth highlighting evolutionary approaches [6][7][8][17]. Evolutionary theory pro-
poses that the brain has evolved to control behaviour in order to ensure our survival 
[19]. Additionally, it is agreed that intelligence manifests itself in behaviour and thus 
we must understand behaviour before we can completely understand intelligence and 
therefore create embodied intelligence. Toward this goal, another extremely important 
concept, which can be considered behaviour–based, is adaptivity, i.e. the ability to 
adapt to a continuously changing and unpredictable environment. In fact, there is a 
direct relation between intelligence and adaptivity [19]. During adaptation, some 
variables need to be kept within certain pre-determined bounds, either by evolutionary 
changes, physiological reactions, sensory adjustment, or by simply learning novel 
behaviours. This definition of adaptivity has to do with the concept of homeostasis, a 
term first coined by Ashby in 1960 [19]. Within the limits controlled by homeostatic 
processes, the organism or the artificial agent can function and stay alive in a “viabil-
ity zone”. While trying to design artificially homeostatic (and self-organizing) sys-
tems, this work proposes a novel biologically plausible artificial homeostatic system 
based on previous work for autonomous navigation [22]. 



 Artificial Homeostatic System: A Novel Approach 757 

 

4   Artificial Homeostatic System – Previous Work 

In previous work, Timmis and Neal [22] presented a model for an artificial endocrine 
system (AES), which would be part of a broader conceptual framework including 
artificial neural networks (ANN) and artificial immune systems (AIS) (Figure 1). The 
system was based on the mammalian body and its mechanisms for the maintenance of 
homeostasis, where the authors have chosen an intermediate level of granularity.  

 

Fig. 1. Artificial homeostatic system overview (adapted from Timmis and Neal [22]) 

The AES was described as a system that employed controlling hormones. In the 
present paper, only the AES and ANN interactions will be discussed (the entire ho-
meostatic system is discussed in greater detail in Timmis & Neal [22]). 

The ANN proposed uses a standard error backpropagation-learning algorithm to 
train a multi-layer perceptron (MLP) neural network [11]. Initially there is no explicit 
interaction between the ANN and the AES. The AES provides a medium-term regula-
tory control mechanism for the behaviour of the system. It consists of gland cells that 
secrete hormones stored using a pool mechanism in response to external stimuli: 
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(1) 

where rg is the quantity of hormone released by gland g; g is the rate at which hor-
mones are released by gland g; xi  is the i-th input to gland g; and nx is the number of 
inputs to gland g. 

Given that cg(t) is the hormone concentration in gland g at a time t, then the varia-
tion in concentration obeys (where  < 1 is a decay constant): 

β×=+ )()1( tctc gg
 (2) 

Gland cells secrete and record the concentration of hormones present in the system 
and use it to moderate the strength of reaction. Each gland cell secretes a specific 
hormone, represented by a simple bit-string. The hormone levels would affect the 
input weights in the ANN, i.e. the recorded hormone level would affect each input 
weight on a particular neuron as follows: 
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where u is the internal activation of the neuron, wi is the weight for the i-th input xi; n 
is the number of weights; ng is the number of glands in the system; Cj is the concen-
tration of hormone j; Sij is the sensitivity of the connection from receptor i to hormone 
j; and Mij is the match between receptor i and hormone j. 

5   Artificial Homeostatic System: A Novel Approach 

Towards the goal of designing a more biologically plausible model and a system with 
a greater potential to promote artificial homeostasis, we focused on mimicking some 
mechanisms of the endocrine system used to control the concentration level of hor-
mones within the artificial agent (a simulated robot in our study). A novel artificial 
endocrine system is composed of three main modules: hormone level repository (HL), 
hormone production controller (HPC), and endocrine gland (G) (Figure 2). The hor-
mone level repository has a record of the level of hormone in the organism; the hor-
mone production controller is responsible for controlling the production of hormones 
in response to variations in the internal state of the organism and external stimulation; 
and the endocrine gland receives inputs from the HPC, being responsible for produc-
ing and secreting hormones when required.  

Note that, in such a system, any variation in the internal and external states may 
promote or suppress the activity of the nervous (ANN) and endocrine (AES) systems. 
For instance, the variation of the internal state of the organism as a result of hormone 
production may act as a feedback mechanism to the hormone production itself, result-
ing in the release of inhibitory hormones or in the cessation of hormone production. 

 

Artificial 
Endocrine 

System 

HPCHL G 

Internal inputs

External inputs

ANN

 

Fig. 2. The main components of the new AES and their interaction with the environment 

The system dynamics is founded on some of the main biological mechanisms of 
homeostasis, particularly positive and negative feedback mechanisms of the endocrine 
system. The HPC module sends excitatory signals, which work as a positive feedback 
to the gland G, which in turn starts to produce and release hormone (without imple-
menting the pool mechanism previously proposed [22]), thus increasing the hormone 
level. The level of hormone will in turn alter the internal state by driving neural net-
work actions upon the environment. By sensing inhibitory signals that promote  
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negative feedback from the internal state, the HPC module ceases the production of 
excitatory signals (positive feedback) until once again it senses specific changes in the 
internal state. 

5.1   System Dynamics 

The internal state (IS) of the system described in this paper is modeling a seeking 
behaviour, i.e. it drops to zero or null state when the robot reaches the target. By 
drawing an analogy to human drives and desires, the target can be governed by many 
types of possible behaviors, such as, desire to eat: target = food; desire to charge: 
target = base; desire to wander: target = no collision. 

The internal state of the artificial agent will depend on the level of external stimu-
lus (ES) and also on the hormone level (HL) present within the artificial organism at 
instant t. If the ES and HL are above certain pre-determined thresholds (λ and ω, 
respectively), then the internal state is equal to zero; that is, the level of “desire” falls 
down to zero. This happens because there are enough external stimuli present and 
there are enough hormones to trigger the behaviour. Otherwise, the internal state will 
increase at a pre-determined rate  until it reaches a pre-defined maximum level 
Max(IS): 

))(IS)IS(Max()(IS)1(IS else

0ISthen)HL(  and  )ES(  If

ttt −+=+
=≥≥

β
ωλ  (Rule 1) 

The external stimulus (ES) depends on the proximity of the artificial agent to the 
targets. Analogous to the human body sensitivity to external stimuli, this distance can 
be sensed by the artificial agent using its sensor inputs. This information will be made 
available not only to the artificial neural network but also to the artificial endocrine 
system. 

The hormone production controller (HPC) effectively “selects” in a completely 
sub-symbolic way the behaviour to be exhibited by the robot. The HPC mimics the 
hypothalamus and thus senses both the external environment and the internal state, 
and thus triggers the hormone production and release by the gland G. This triggering 
may cause the hormone concentration level to increase and therefore to stimulate its 
target cells (the neurons) to perform a certain task. While this task is not accom-
plished, the HPC will keep on producing and releasing hormones, thus maintaining a 
suitable hormone level. When the task is accomplished, i.e. when the HPC receives a 
negative feedback signal, it ceases the production and release of hormone. Based on 
this mechanism, Rule 2 synthesizes the control of hormone production and release: 

0HP else

))(HL)HL(Max()ES%100()1(HPthen IS If

=
−×−=+≥ tt αθ

 (Rule 2) 

where  is the target threshold of the internal state IS; HP is the hormone production; 
ES is the external stimulus;  is the scaling factor; HL is the hormone level; and t is 
the time index. 

If the internal state IS is greater than or equal to a target threshold , then hormone 
will be produced at a rate that will depend upon the level of the external stimulus 
received and the level of hormone already present within the artificial organism.  
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Otherwise, if the internal state IS is less than a target threshold , then hormone pro-
duction will cease. 

The hormone level represents the amount of hormone stimulating the neural net-
work (ANN). The hormone level will undergo a constant updating in its value due to 
its internal half-life measure [8] and the amount of hormone produced:  

where T is the hormone half-life. 

6   Preliminary Experiments 

In order to better clarify and assess the performance of the new AHS three prelimi-
nary experiments were conducted. Experiments I and II were designed for a simulated 
robotic agent using the WSU Khepera Robot Simulator [18] (Figure 3) and Experi-
ment III was designed for a real robotic agent using the Khepera II Robot® [13]. The 
rationale behind these experiments is twofold: first, to show the systems’ adaptivity 
through its ability to cope with internal and external changes; and, second, to confirm 
the systems’ ability to adapt to a dynamical environment, by presenting the phenome-
non of biological cyclic behaviour synchronized with the amount of resources avail-
able via homeostatic control. 

6.1   Experiments with a Simulated Robotic Agent 

The simulated robot first learned two separate tasks: to avoid collision and to detect a 
light source (here associated with a food source). Both tasks were learned via a stan-
dard error backpropagation-learning algorithm used to train two separate multilayer 
perceptron (MLP) neural networks [11]. The input-output training data is composed 
of samples from a diverse set of relevant navigation conditions. After training, the 
robot was introduced into the arena with walls (obstacles) and a light source (food 
source) in the middle (Figure 3). 

 

Fig. 3. Experiment I: Sequence of steps performed by the robot. The robot leaves the top right 
corner moving towards the light source (in the middle of the arena). 

 

)(HP)(HL)1(HL /1 tett T +×=+ −  
(4) 
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In Experiment I, once the robot begins to navigate, its behaviour was solely con-
trolled by the AES, which was designed to manage its internal state “desire to eat” 
(here, eat means recharge) employing the endocrine mechanisms described previ-
ously. The robot’s light sensor values ranged from 50 to 500 depicting the presence of 
external stimulus (high values mean lack of food). Note that the robot reaches the 
target, fulfils its “desire to eat” and then moves away from the target towards the left 
wall. All other values were printed from the system behaviour/reaction to this infor-
mation. Figure 4a shows the hormone and the internal state levels and Figure 4b 
shows the external stimuli during 55,000 iterations or navigation steps. The hormone 
and internal state values ranged from 0 to 100 units at most. The internal state de-
picted in Figure 4a refers to the need of energy (desire to eat). The highest level of 
hormone production added to the proximity to the target caused the robot to fulfil its 
“desire to eat” four times during the simulation. This confirms the influence of the 
hormone level over the robot’s autonomous behaviour. The parameter values adopted 
in this simulation were: β = 0.0001; α= 1.8; T = 500.0; λ= 150; ω= 90.0; and 
θ = 75.0, and were defined empirically. 

  

 
       (a)     (b) 

Fig. 4. Experiment I: (a) Hormone and internal state levels.(b) Output of the light sensor along 
navigation. 

Experiment II explored a scenario where the robot actions were influenced by two 
external stimuli, the distance to the target and a varying, cyclical availability of food, 
meaning that the higher the food quantity (FQ), the greater the amount of food avail-
able. This experiment was divided into two distinct simulations: A and B. 

In Simulation A, the FQ was created based on a smooth sine curve function and its 
value had an influence over the parameter of the internal state (Rule 1), providing a 
self-adaptive behaviour for the robot in a way that it tends to eat only when the FQ 
value is higher than 50 (in a 0 to 100 scale) (Figure 5a). This adaptability accounts for 
the cyclic behaviour observed when the robot’s drive to eat synchronized with the 
availability of food.  

In Simulation B, the FQ was created based on a stepwise sine curve function (to 
facilitate a future simulation designed for a real robotic agent) and its value had also 
an influence over the β parameter of the robot’s internal state (Figure 5b). For in-
stance, the FQ could be implemented by an automatic discrete electronic apparatus for 
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the control and adjustment of the light source blinking speed. The faster the blinking 
speed, the greater the quantity of food available. 

 

 
     (a)     (b) 

Fig. 5. (a)Experiment IIA: synchronous behaviour for a sinusoidal stimulus (b) Experiment IIB: 
synchronous behaviour for a cyclical stepwise stimulus 

6.2    Experiments with a Real Robotic Agent 

In Experiment III, the concepts of embodied intelligence were incorporated into a real 
robotic agent. The main idea of this experiment is to use the same control system 
developed for the simulated robotic agent in a real robotic agent. There was just a fine 
tuning of the input sensors  

 

 

Fig. 6. Experiment III(a): A complete trajectory of the real Khepera robot, in an environment 
surrounded by walls, with a light source in the middle (b): An extended simulation from a 
different starting point. 

Figure 6a shows a complete trajectory in an environment surrounded by walls, with 
a light source in the middle. The robot initiates the navigation searching for the near-
est wall and starts to follow it. When its internal state level exceeds a predetermined 
limit, the artificial endocrine system determines the increase of the hormone level. 
This will cause the robot to follow the light (to recharge its battery). As soon as the 
robot reaches the light, the hormone level starts to decrease and the robot switches 
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back to the wall-follower behaviour. Figure 6b illustrates the same idea, but shows a 
higher number of behaviour changes from a different starting point. 

7   Conclusion 

This paper presented a biologically inspired artificial homeostatic module of an artifi-
cial endocrine system based on a previous work for robot autonomous navigation. It 
also contributed with fundamental principles and concepts for the novel approach 
towards the goal of creating artificially homeostatic (and self-organizing) systems. 

The experiments conducted support the adaptability capacity of the artificial ho-
meostatic system (simulation and experiments with real robots) through its ability to 
cope with internal and external changes, and also the ability to adapt to a dynamical 
environment by presenting a cyclic behaviour synchronized with the resources avail-
able. We made the robot react in synchrony with the environment without any internal 
world model and only using sub-symbolic representation. The results presented also 
show the basic operation of the control loop generally associated with homeostasis, 
where internal processes and external environmental factors are allowed to regulate 
the system. 

The ultimate perspective is that the system proposed constitutes part of a new form 
of implementing embedded cognitive science. Comparative analysis of the current 
proposal and alternative Bio-inspired mechanisms to endow an artificial organism 
with autonomy is being considered as a further step of the research. 
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Abstract. A framework for natural language processing based on an ar-
tificial life model is introduced. Human-computer interfaces require mod-
els of dialogue structure that capture the variability and unpredictability
within dialogue. In this paper, taking as starting point the notion of eco-
grammar system, and by extending it to the concept of Conversational
Grammar Systems (CGS), we introduce a new formal framework for
conversation modelling.

1 Introduction

Grammar systems theory is a consolidated and active branch in the field of formal
languages [3]. Grammar systems have been defined as grammatical models of
multi-agent architectures, stressing in this way the relationship between that
theory and models coming from Artificial Intelligence. While grammar systems
are related to AI, a subfield of the theory, –the so-called eco-grammar systems–
is closely related to Artificial Life. Eco-grammar systems provide a syntactical
framework for eco-systems, this is, for communities of evolving agents and their
interrelated environment.

In this paper, we suggest the possibility of modeling dialogue by means of
formal languages using eco-grammar systems. Eco-grammar systems present sev-
eral advantages to account for dialogue: generation process is highly modularised
by a distributed system of contributing agents; contextualized, linguistic agents
re-define their capabilities according to context conditions given by mappings;
and emergent, it emerges from current competence of the collection of active
agents. Taking as starting point the notion of eco-grammar system, we intro-
duce Conversational Grammar Systems (CGS)

Throughout the paper, we assume that the reader is familiar with the basics
of formal language theory, for more information see [13] and [12].

2 Eco-Grammar Systems

Briefly, an eco-grammar system can be defined as a multi-agent system where
different components, apart from interacting among themselves, interact with
� This research has been supported by a Marie Curie European Reintegration Grant

(ERG) under contract number MERG-CT-2004-510644.

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 765–774, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



766 G. Bel-Enguix and M.D. Jiménez-López
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Fig. 1. Eco-Grammar System

a special component called ‘environment’. So, within an eco-grammar system
we can distinguish two types of components environment and agents. Both are
represented at any moment by a string of symbols that identifies current state
of the component. These strings change according to sets of evolution rules
(L systems). Interaction among agents and environment is carried out through
agents’ actions performed on the environmental state by the application of some
productions (rewriting rules) from the set of action rules of agents.

The concept of eco-grammar system is based on six postulates formulated
according to properties of artificial life:

1. An ecosystem consists of an environment and a set of agents. Both state of
the environment and states of agents are described by strings of symbols of
given alphabets.

2. In an ecosystem there is a universal clock which marks time units, the same
for all the agents and for the environment, according to which agents and
environment evolution is considered.

3. Both environment and agents have characteristic evolution rules which are
in fact L systems, hence are applied in a parallel manner to all the symbols
describing agents and environment; such a (rewriting) step is done in each
time unit.

4. Evolution rules of environment are independent on agents and on the state
of the environment itself. Evolution rules of agents depend on the state of
the environment (at a given moment, a subset of applicable rules is chosen
from a general set associated to each agent).

5. Agents act on the environment according to action rules, which are pure
rewriting rules used sequentially. In each time unit, each agent uses one
action rule which is chosen from a set depending on current state of the
agent.
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6. Action has priority over evolution of the environment. At a given time unit
exactly the symbols which are not affected by action (in the environment)
are rewritten (in a parallel manner) by evolution rules.

Main features of eco-grammar systems are captured in Figure 1.

3 Conversational Grammar Systems: Basic Definitions

Eco-Grammar System has been defined as a grammatical model that tries to
capture the distinctive features of an ecosystem, this is, a community of devel-
oping agents that interact with their dynamically changing shared environment.
Within such a device we can distinguish two types of components: environment
and agents. If we define an eco-grammar system as a syntactic model for a col-
lection of cooperating agents that modify a shared common context and dialogue
as maintained production of strings of mutually dependent acts built by two or
more agents controlling and basing each other on the actions of the other ones.
The analogy is quiter clear. However, eco-grammar systems lack some important
features of conversation and this is the reason why we introduce Conversational
Grammar Systems.

3.1 Context and Speakers

In any conversation we find two essential elements: context and speakers. Context
must refer to factors relevant to understanding communicative behaviour and it
is something shared by every participant in dialogue. It determines the actions
speakers perform. But, at the same time, context is the addressee of such actions.
We describe a dialogue as a sequence of acts that change current context (cf. [1]).
Context –called environment– may be simply described as a string of symbols
wE , over an alphabet VE . wE contains any type of information necessary to
develop the dialogue activity and it is shared by every agent in the system, this
is, every participant in the talk exchange takes into account the state of wE

whenever it is to perform an action. wE , at the same time, is changed during the
dialogue act through speakers’ actions. But, since not every aspect of context
changes due to the speakers’ utterances, we endow environment with a set of
rules (PE) that can be responsible for any change in the environmental string
not directly produced by the agents’ actions.

In order to have a dialogue, we need at least two participants, although more
than two speakers may participate. On this basis, in CGS we have n agents,
with n ≥ 2. Each agent in the system is represented at any moment of time by
a string of symbols wi, over an alphabet Vi, 1 ≤ i ≤ n. This string of symbols
–representing the state of the agent– is modified during dialogue. Essentially,
our state of knowledge at the end of the conversation is not the same as it was
at the start. Therefore, we define a set of rules that accounts for the evolution,
modification or change of the state of an agent. This finite set of rewriting rules
over V ∗

i is denoted by Pi, 1 ≤ i ≤ n. However, since the state of speakers
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in a conversation depends very much on the context where the interaction is
taking place, we define a mapping which, on the basis of the current state of the
environment, selects the rules from Pi that can be applied to an agent’s state:
ϕi : V ∗

E → 2Pi . Moreover, participants need a mechanism that allows them to
perform acts. Such a tool may be a set of rules Ri over V ∗

E , called the set of action
rules of i-th agent. Finally, we need to relate somehow the choice of actions to
both the state of the context and the state of the agent. To do so, we can make
use again of a mapping: ψi : V ∗

E × V +
i → 2Ri . The following definition captures

what we have said up to now:

Definition 1. A Conversational Grammar System (CGS) of degree n, n ≥ 2,
is an (n + 1)-tuple:

Σ = (E, A1, ..., An),

where:

– E = (VE , PE),
• VE is an alphabet;
• PE is a finite set of rewriting rules over VE .

– Ai = (Vi, Pi, Ri, ϕi, ψi, πi, ρi), 1 ≤ i ≤ n,
• Vi is an alphabet;
• Pi is a finite set of rewriting rules over Vi;
• Ri is a finite set of rewriting rules over VE ;
• ϕi: V ∗

E → 2Pi ;
• ψi: V ∗

E × V +
i → 2Ri ;

• πi is the start condition;
• ρi is the stop condition;
• πi and ρi are predicates on V ∗

E . We can define the following special types
of predicates. We say that predicate σ on V ∗

E is of:
∗ Type (a) iff σ(w) = true for all w ∈ V ∗

E ;
∗ Type (rc) iff there are two subsets R and Q of VE and σ(w) = true

iff w contains all letters of R and w contains no letter of Q;
∗ Type (K) iff there are two words x and x′ over VE and σ(w) = true

iff x is a subword of w and x′ is not a subword of w;
∗ Type (K ′) iff there are two finite subsets R and Q of V ∗

E and σ(w) =
true iff all words of R are subwords of w and no word of Q is a
subword of w;

∗ Type (C) iff there is a regular set R over VE and σ(w) = true iff
w ∈ R.

The items of the above definition have been interpreted as follows: a) E repre-
sents the environment described at any moment of time by a string wE , over
alphabet VE , called the state of the environment. The state of the environment
is changed both by its own evolution rules PE and by the actions of the agents of
the system, Ai, 1 ≤ i ≤ n. b) Ai, 1 ≤ i ≤ n, represents an agent. It is identified
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at any moment by a string of symbols wi, over alphabet Vi, which represents
its current state. This state can be changed by applying evolution rules from
Pi, which are selected according to mapping ϕi and depend on the state of the
environment. Ai can modify the state of the environment by applying some of
its action rules from Ri, which are selected by mapping ψi and depend both
on the state of the environment and on the state of the agent itself. Start/Stop
conditions of Ai are determined by πi and ρi, respectively. Ai starts/stops its ac-
tions if context matches πi and ρi. Start/stop conditions of Ai can be of different
types: (a) states that an agent can start/stop at any moment. (rc) means that
it can start/stop only if some letters are present/absent in the current sentential
form. And (K), (K ′) and (C) denote such cases where global context conditions
have to be satisfied by the current sentential form.

Notice that definition 1 provides the necessary elements to maintain coher-
ence in conversation. By limiting agents, in our system, to apply only rules
included in ψi, we are forcing them to keep coherence. That is, by defining func-
tions ψi and ϕi we are trying to ensure that actions performed by agents are
connected to each other, thus preventing non-coherent sequences of actions.

3.2 Context-Change-Actions

CGSs intend to describe dialogue as a sequence of context-change-actions allowed
by the current environment and performed by two or more agents. According
to this idea, we define dialogue as a sequence of acts performed by two or more
agents in a common environment. However CGS has to reflect the fact that ac-
tions in conversation are constrained by the context, by the interlocutors’ actions
and, of course, by our knowledge, beliefs, intentions, understanding, etc. In order
to highlight all these facts, we have defined a mapping: ψi : V ∗

E × V +
i → 2Ri .

With this mapping we have formalized the idea that not every action is allow-
able in dialogue. In the view of dialogue as a sequence of context-change-actions
allowed by the current environment and performed by two or more agents, an
action is defined as the application of a rule on the environmental string:

Definition 2. By an action of an active agent Ai in state σ = (wE ; w1, w2,
. . . , wn) we mean a direct derivation step performed on the environmental state
wE by the current action rule set ψi(wE , wi) of Ai.

Definition 3. A state of a CGS Σ = (E, A1, . . . , An), n ≥ 2, is an n + 1-tuple:

σ = (wE ; w1, . . . , wn),

where wE ∈ V ∗
E is the state of the environment, and wi ∈ V ∗

i , 1 ≤ i ≤ n, is the
state of agent Ai.

This rule is applied by an active agent and it is a rule selected by ψi(wE , wi).
We define an active agent in relation to the allowable actions it has at a given
moment. That is, an agent can participate in conversation –being, thus, active–
only if its set of allowable actions at that moment is nonempty:
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Definition 4. An agent Ai is said to be active in state σ = (wE ; w1, w2, . . . , wn)
if the set of its current action rules, that is, ψi(wE , wi), is a nonempty set.

Since conversation in CGS is understood in terms of context changes, we have
to define how the environment passes from one state to another as a result of
agents’ actions:

Definition 5. Let σ = (wE ; w1, . . . , wn) and σ′ = (w′
E ; w′

1, . . . , w
′
n) be two

states of a CGS Σ = (E, A1, . . . , An). We say that σ′ arises from σ by a si-
multaneous action of active agents Ai1 , . . . , Air , where {i1, . . . , ir} ⊆ {1, . . . , n},
ij 
= ik, for j 
= k, 1 ≤ j, k ≤ r, onto the state of the environment wE , denoted
by σ

a=⇒Σ σ′, iff:

– wE = x1x2 . . . xr and w′
E = y1y2 . . . yr, where xj directly derives yj by using

current rule set ψi(wE , wij ) of agent Aij , 1 ≤ j ≤ r;
– there is a derivation:

wE = w0
a=⇒∗

Ai1
w1

a=⇒∗
Ai2

w2
a=⇒∗

Ai3
. . .

a=⇒∗
Air

wr = w′
E

such that, for 1 ≤ j ≤ r, πij (wj−1) = true and ρij (wj) = true. And for
f ∈ {t,≤ k,≥ k} the derivation is:
wE = w0

a=⇒f

Ai1
w1

a=⇒f

Ai2
w2

a=⇒f

Ai3
. . .

a=⇒f

Air
wr = w′

E

such that, for 1 ≤ j ≤ r, πij (wj−1) = true1, and
– w′

i = wi, 1 ≤ i ≤ n.

However, in the course of a dialogue, agents’ states are also modified and the
environmental string is subject to changes due to reasons different from agents’
actions. So, in order to complete our formalization of dialogue development, we
add the following definition:

Definition 6. Let σ = (wE ; w1, . . . , wn) and σ′ = (w′
E ; w′

1, . . . , w
′
n) be two

states of a CGS Σ = (E, A1, . . . , An). We say that σ′ arises from σ by an
evolution step, denoted by σ

e=⇒Σ σ′, iff the following conditions hold:

– w′
E can be directly derived from wE by applying rewriting rule set PE ;

– w′
i can be directly derived from wi by applying rewriting rule set ϕi(wE),

1 ≤ i ≤ n.

In CGS, the development of dialogue implies that both the state of the en-
vironment and state of agents change. Such changes take place thanks to two
different types of processes: action steps and evolution steps. By means of the
former, active agents perform actions on the environmental string modifying its
state; the latter imply the reaction of context and agents which, according to the
changes produced by agents’ actions, modify their states. So, action steps and
evolution steps alternate in the course of dialogue. At the end, what we have is
a sequence of states reachable from the initial state by performing, alternatively,
action and evolution derivation steps:
1 In this latter case the stop condition ρi(wj) = true is replaced by the stop condition

given the f -mode.
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Definition 7. Let Σ = (E, A1, . . . , An) be a CGS and let σ0 be a state of Σ. By
a state sequence (a derivation) starting from an initial state σ0 of Σ we mean a
sequence of states {σi}∞i=0, where:

– σi
a=⇒Σ σi+1, for i = 2j, j ≥ 0; and

– σi
e=⇒Σ σi+1, for i = 2j + 1, j ≥ 0.

Definition 8. For a given CGS Σ and an initial state σ0 of Σ, we denote the
set of state sequences of Σ starting from σ0 by Seq(Σ, σ0).

The set of environmental state sequences is:

SeqE(Σ, σ0) = {{wEi}∞i=1 | {σi}∞i=0 ∈ Seq(Σ, σ0), σi = (wEi; w1i, . . . , wni)}.
The set of state sequences of the j-th agent is defined by:

Seqj(Σ, σ0)={{wji}∞i=1 | {σi}∞i=0 ∈ Seq(Σ, σ0), σi =(wEi; w1i, . . . , wji, . . . , wni)}.
Seq(Σ, σ0) describes the behaviour of the system, this is, the possible state se-

quences, directly following each other, starting from the initial state. SeqE(Σ, σ0)
and Seqj(Σ, σ0) are the corresponding sets of sequences of the states of the en-
vironment and of the states of j-th agent, respectively.

Now, we associate certain languages with an initial configuration:

Definition 9. For a given CGS Σ and an initial state σ0 of Σ, the language of
the environment is:

LE(Σ, σ0) = {wE ∈ V ∗
E | {σi}∞i=0 ∈ Seq(Σ, σ0), σi = (wE ; w1, . . . , wn)}.

and the language of j-th agent is:

Lj(Σ, σ0) = {wj ∈ V ∗
A | {σi}∞i=0 ∈ Seq(Σ, σ0), σi = (wE ; w1, . . . , wj , . . . , wn)}.

for j = 1, 2, . . . , n.

LE(Σ, σ0) and Lj(Σ, σ0) correspond to those states of the environment and
to those states of the j-th agent, respectively, that are reachable from the initial
configuration of the system.

3.3 Selection Techniques

Two important selection techniques in dialogue are the turn-taking system and
the adjacency pairs. If we want to provide a formal language account of turn-
taking, we should focus on the most important traits of this phenomenon, and
make it susceptible to formalization. It is possible to reduce turn-taking to
the stop of a participant and the start of another one. But, since this stop-
ping/starting is carried out with no gap and no overlap, it should be necessary
to endow agents with some mechanism that allows them to recognize when they
can start/stop their contributions without overlapping and with no gap between
them. If we want to guarantee turn-taking we should, firstly, make sure that
whenever an agent starts to perform actions, it will stop. In order to do so, we
define different derivation modes that control how long an agent can act in the
environmental state:
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Fig. 2. Conversational Grammar Systems

Definition 10. Let Σ = (E, A1, ..., An) be a CGS. And let wE = x1x2...xr and
w′

E = y1y2...yr be two states of the environment. Let us consider that w′
E directly

derives from wE by action of active agent Ai, 1 ≤ i ≤ n, as shown in Definition
5. We write that:

wE
a=⇒≤k

Ai
w′

E iff wE
a=⇒≤k′

Ai
w′

E , for some k′ ≤ k;

wE
a=⇒≥k

Ai
w′

E iff wE
a=⇒≤k′

Ai
w′

E , for some k′ ≥ k;

wE
a=⇒∗

Ai
w′

E iff wE
a=⇒k

Ai
w′

E, for some k;

wE
a=⇒t

Ai
w′

E iff wE
a=⇒∗

Ai
w′

E and there is no z 
= y with y
a=⇒∗

Ai
z.

In words, ≤ k-derivation mode represents a time limitation where Ai can per-
form at most k successive actions on the environmental string. ≥ k-derivation
mode refers to the situation in which Ai has to perform at least k actions when-
ever it participates in the derivation process. With ∗-mode, we refer to such
situations in which agent Ai performs as many actions as it wants to. And fi-
nally, t-derivation mode represents such cases in which Ai has to act on the
environmental string as long as it can.

One way of getting transitions with no gap and no overlap in CGS is to
endow agents with an internal control that contains start/stop conditions that
allow agents to recognize places where they can start their activity, as well as
places where they should stop their actions and give others the chance to act.
This is, start/stop conditions help agents to recognize transition relevance places,
i.e. places where speaker change occurs. Start/stop conditions have been formally
defined in Definition 1.

It seems quite common in talk exchanges to find paired actions. Notions
such as adjacency pairs, reactive pressures, discourse expectations etc. intend to
account for the fact that utterances produced in dialogue are somehow deter-
mined and constrained by preceding utterances in the talk exchange. Mapping
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ψi(wE , wi) fulfils in CGS a function analogous to the one carried out by all the
above notions in their respective conversational models. This mapping estab-
lishes which actions are allowed for agent Ai at any given moment. Notice that
ψi : V ∗

E × V +
i → 2Ri does not contain a single rule allowed for Ai at a given

moment, but, on the contrary, it specifies a set of permitted actions from which
Ai can choose one to apply on the environmental string.

3.4 Closings

Closing a dialogue implies that participants stop their conversational activity
because they have reached their goal in the talk exchange. For deciding when the
computation terminates, we have to determine which string is to be considered
as the reference point to signal the end of the derivation. It seems that it should
be possible to identify various cases in which the derivation process in a CGS is
finished. We can consider, for example, that derivation is finished if there is some
agent that has reached a terminal string or just in the case when every agent
in the system has a terminal state. And we can take into account, as well, such
cases in which derivation is ended if there is an identified agent that has already
got a terminal string. Summing up, we can identify at least three different styles
of closing derivation process in CGS:

Definition 11. Let Σ = (E, A1, ..., An) be a CGS as in Definition 1. Derivation
in Σ terminates in:

– Style (ex) iff for A1, ..., An, ∃Ai : wi ∈ Ti, 1 ≤ i ≤ n;
– Style (all) iff for A1, ..., An, ∀Ai : wi ∈ Ti, 1 ≤ i ≤ n;
– Style (one) iff for A1, ..., An, Ai : wi ∈ Ti, 1 ≤ i ≤ n.

According to the above definition, a derivation process ends in style (ex) if
there is some agent Ai that has reached a terminal string. It ends in style (all) if
every agent in the system has a terminal string as state. And it finishes in style
(one) if there is one distinguished agent whose state contains a terminal string.
Styles (all), (ex) and (one) might account for three different ways of closing
a dialogue. They may refer, respectively, to such cases in which a dialogue is
closed by mutual agreement of all the participants, those in which some speakers
decide to end the exchange irrespectively of the fact that the rest of speakers still
have something to say, and those in which one identified participant is holding
conversation and can close the talk interaction as soon as he/she has fulfilled
his/her goals.

4 Final Remarks

In this paper we have introduced some elements for a formal modelling of hu-
man communication using eco-grammar systems. Basic issues related to an eco-
grammar system approach to conversation have been developed in order to test
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the suitability of the model. Nevertheless, since this is just an initial approxi-
mation to the possibility of describing conversation by means of an artificial life
model, many important aspects remain to be approached. Anyway, we claim that
conversational grammar systems are able to model dialogue with a high degree
of flexibility, what means that they are able to accept new concepts and mod-
ify rules, protocols and settings during the computation. Evolution and action
are involved in a consistent way in environment/contexts, while interaction of
agents with the medium is constant. Moreover, conversational grammar systems
present the following advantages to account for conversation:

– generation process is highly modularised by a distributed system of con-
tributing agents;

– it is contextualized, linguistic agents re-define their capabilities according to
context conditions given by mappings;

– and emergent, it emerges from current competence of the collection of active
agents.
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Grammatical Approach to Distribution and Cooperation, Gordon and Breach, Lon-
don (1994).
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Abstract.  This paper presents a model of the co-evolution of transmissible dis-
ease and a population of non-randomly mixed susceptible agents. The presence 
of the disease elements is shown to prevent the onset of genetic convergence of 
the agent population. The epidemiological model also acts in a distributed fash-
ion to counter the tendency of the agent population to occupy spatially close-
knit communities. The simulation applies a modified mathematical SIR epide-
miological model of disease transmission in combination with the well-studied 
technique of artificial ecosystems. It includes various aspects of disease trans-
mission that are not usually modelled due to the effort required to incorporate 
them into mathematical models. These include a distributed agent population 
with non-uniform infectiousness and immunity as well as a mutable disease 
model with evolving latency and infections that evolve to prey on diverse agent 
characteristics. 

Keywords: Epidemiological model, co-evolution, artificial death, ecosystem. 

1 Motivation and Past Work 

Digital evolutionary simulations may converge with the population predominantly of 
similar genetic composition. This convergence is undesirable if it occurs (for exam-
ple, due to the presence of local maxima in the fitness landscape) before a solution to 
an optimisation problem has been discovered. Hence where the desired simulation 
result is an exploration of diverse solutions within some constraints, early conver-
gence needs to be avoided. This is also the case when the problem is to generate an 
interesting, evolving agent population of sonic or visual forms for an artwork or inter-
active installation [1]. For this latter reason it was decided to explore a strategy for 
preventing the convergence of a population that would be applicable generally to 
agent simulations. 

To meet its aim, this paper prefers an elegant, emergent, decentralized approach 
over that of a hard-coded or centralized controller. Hence, it focuses primarily on a 
notable omission from many Artificial Life models and publications, disease. Typical 
Artificial Life ecological simulations model creatures competing for food, mating, 
fighting, and dieing. Yaeger’s PolyWorld is a seminal example in which agents inter-
act utilizing colour vision [2]. Todd has noted strategies for removing creatures from 
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a population subject to a genetic algorithm but stops short of exploring different rea-
sons for their death [3] (for example disease or suicide). Mascaro et al. have dealt 
specifically with suicide in a population of simple agents [4]. Ray’s Tierra simulation 
eliminates elderly or ineffective population members with a “reaper”. Also of interest 
is the emergence of “parasitic” code in his system [5]. The usual methods of remov-
ing members of a population may also have been employed – culling random agents, 
unfit agents or replacing parents with their offspring for example. These standard ap-
proaches do not improve the diversity of the population at any one time, in fact if 
carelessly applied they may be responsible for its convergence. 

The Artificial Life literature has much to say on co-evolution as a means of im-
proving a genetic algorithm’s performance through increased population diversity [6, 
7]. This work is similarly inspired, only the simulation models virtual worlds and 
does not optimise explicit fitness functions. The co-evolutionary model presented 
here is novel also since the disease/parasite that co-evolves with the agent population 
is wholly dependent for its position in space (and in fact its existence) on the suscep-
tible agents. 

1.1 An Introduction to Models rom Epidemiology 

A fully-cited history of the mathematical theory of epidemics is beyond the scope of 
this paper. The history leading to the classic model discussed below is provided in  
[8, 9]. 

At least since the 1920’s, stochastic models of epidemics have been utilized. The 
standard model is based on a population of individuals who are either susceptible to a 
specific disease (susceptibles denoted S) or infected with the disease and capable of 
transmitting it to others (infectives denoted I). Population members who overcome a 
disease may become immune to further infection1 or may become susceptible once 
again depending on the particular disease. Population members who are immune to a 
disease or remain infected but through isolation cannot transmit it, are considered 
removed (denoted R). The model as described is known as an SIR model. It may be 
modified slightly to provide fresh susceptibles through birth or immigration. 

Some pertinent parameters of epidemic models are as follows. The period of time 
during which a disease exists entirely within an organism is known as the disease’s 
latent period. The organism is not infective during this period. An incubation period 
often follows latency. During incubation the organism may not show outward sign of 
infection but is nevertheless infective. Usually once the incubation period is over, the 
victim of the disease is clearly marked by symptoms and can therefore be avoided by 
susceptibles. 

Probabilistic epidemiological models that operate in discrete time steps are particu-
larly suited to implementation in software.2 At any time step, the probability of a new 
case of the disease appearing is proportional to the number of susceptibles multiplied 
 

                                                           
1 Following a bout of a disease a victim may be deceased, alternatively their immune system 

may prevent repeat infiltration by the same virus. 
2 It is interesting to note that in the 1920’s two American epidemiologists Reed and Frost dem-

onstrated a discrete mechanical model in which coloured balls represented susceptibles and 
infectives. 

f
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by the number of infectives. This basic model assumes random mixing of individuals 
in the population and does not allow for the complex interactions between physically 
separated sub-populations, nor for variable incubation or latent periods of a disease.  
The problems inherent in models that make simplifying assumptions concerning the 
nature of spatial distributions are discussed in [10]. Various extensions to the SIR 
model to allow for these phenomena have been added over the last fifty years. Some 
mathematical models and computer simulations deal with the spatial distribution of 
susceptibles along a line, across a lattice or over a network to overcome the inaccura-
cies due to the assumption of random mixing of the population. Cellular-automata and 
other discretized versions of the SIR method have been utilized also [11, 12]. Some of 
these models have also incorporated disease carriers (e.g. some viruses are trans-
ferred by mosquito), and non-homogeneous populations. The model presented in the 
current paper allows all of these phenomena to emerge from the simulation without 
hard-coding their behaviour. 

The current threats of biological warfare and terrorism have raised the stakes in 
Western society for epidemiology. The U.S. National Institute of General Medical 
Sciences has devoted $1.6 billion to a fledgling agent-based study of epidemics [13]. 
Like the U.S. project, this paper adopts agent modelling to represent the principles of 
epidemiology in an intuitive but realistic fashion. As shall be shown, the process of 
epidemic spread offers a means of increasing the genetic and phenotypic diversity of 
a population and of capping its density. 

1.3 Relevant Consequences of Basic Epidemic Theory 

There are two theories of epidemiology that are particularly relevant here. The first of 
these is known as the Threshold Theorem [14]: a disease cannot take hold in a popula-
tion of susceptibles unless the population density is above a particular threshold. This 
value relates to the infectivity of a disease and the death and recovery rates it induces. 
If population density passes beyond the threshold, the disease will reduce the popula-
tion to a level as far below the threshold as it was above it prior to the epidemic. 

The Threshold Theorem has many consequences, one of which has come to be 
known as Herd Immunity [8, pp. 27-31]. This theory indicates that a calculable num-
ber less than the full population needs to be immunized to prevent an epidemic. Un-
fortunately the theory has been shown to provide inaccurate figures in practice, due to 
its assumption of random mixing in a population. Nevertheless, it highlights an im-
portant aspect of epidemics, namely that the spread of a disease is not dependent on 
the percentage of a population who are immune, but on the contact between suscepti-
bles and infectives. When a population does not mix uniformly, the supply of suscep-
tibles may be similarly irregular.3 The model presented in this paper does not assume 
random mixing of a population, rather the agent interactions are emergent from the 
simulation. 

                                                           
3  For example, if a socio-economic group is immunized against a disease, and these people do 

not mix randomly with people from other groups, an epidemic may still occur within the lat-
ter groups whilst the former is immunized. I.e. sub-group mixing is important in considering 
the spread of a disease. 



778 A. Dorin 

2 An Agent-Based Simulation of Infectious Disease Epidemics 

The present simulation runs in discrete time steps during which a population of agents 
moves freely about a continuous-space, virtual world. The model was originally de-
vised as a part of a generative, interactive artwork (described elsewhere [15]) that 
exhibits numerous emergent features typical of Artificial Life simulations. The 
model’s essential features are described below. 

2.1 Agent Composition, Behaviour and Evolution 

Agents are represented visually as coloured boxes. These have a position and velocity 
on a continuous toroidal surface. Each agent may wander randomly over the space at 
a speed inversely proportional to its volume. During each time step of the simulation, 
agents expend an amount of energy proportional to their volume to move and metabo-
lise. At each simulation time step, energy is gained by an agent from the environment 
in an amount proportional to its upper surface area as if each box-top was equipped 
with a solar cell charging a battery. Agents exhausting their energy supply “die” and 
are removed from the simulation. Agents also age throughout a simulation and are 
removed if they reach the end of their lifespan. 

Agents perceive their neighbours’ positions, dimensions and colours within a lim-
ited visual range. An agent may accelerate towards (or away from) a neighbour that it 
finds attractive (or repulsive) as determined by reference to colour and dimension 
templates it stores. Each agent stores colour and dimension templates marking proper-
ties it finds attractive in its partners and templates marking repulsive properties. The 
closer the match of a particular template the greater the tendency of the agent to seek 
or flee the neighbour that exhibits it. These tendencies are used to adjust the velocity 
of the agent as it moves. 

If two agents’ bodies intersect one another, find one another attractive, and pass a 
maturity/age threshold test, they may produce a single offspring agent per time step at 
their current location. The offspring is initiated with energy donated by each of the 
parents. This donation costs parents an amount of energy specified in their property 
list. The characteristics of the offspring are specified by the crossover and mutation of 
the parents’ genotypes. This is an array of floating-point values coding the properties 
listed in Table 1. The system employs a single crossover point and mutation of one 
gene in every offspring by a random amount between +/- 5%. 

New births are subject to an overflow test of the available simulation space. If a 
birth would cause an overflow the request is refused. Following an unsuccessful re-
quest, a random member of the population may be eliminated from the simulation to 
make room for future requests. 

Table 1. Floating-point agent genotype contents (italics indicate vector quantities) 

Colour (R,G,B) Colour preference Colour abhorrence 

Dimension (X,Y,Z) Dimension preference Dimension abhor-

Visual range Offspring energy dona-
ti

Lifespan 
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2.2 Disease Behaviour and Evolution 

The agents in the model may carry virtual diseases, transmit them to other agents and 
succumb to infection themselves. The diseases in the simulation co-evolve alongside 
the agent population but may only exist within a host agent i.e. disease does not per-
sist in the environment. A susceptible agent is exposed to a disease when it intersects 
with an infective agent. An agent that is carrying a disease cannot be infected by a 
second disease (i.e. an active disease blocks secondary infection). 

If an agent is not carrying a disease, its susceptibility is determined by the match 
between its own colour and the colour-signature of the carried disease to which it is 
brought into contact. The closer the match between the agent’s colour and the colour-
signature template of the disease, the higher the probability the disease will infect the 
susceptible agent during a time step of contact. Simulation diseases also possess a 
devastation value that measures the virulence of a disease. This parameter is used to 
scale the probability of infection and the amount of energy required of a host to sur-
vive a time step of infection. 

A parameter determines the lifespan of a simulation disease in each host. Long-
lived diseases require a host to invest substantial amounts of energy to overcome in-
fection. If a disease is overcome without the death of the host, the agent acquires im-
munity to the strain of the disease by adding it to an immunity list. Any further contact 
with this disease will result in an immune response that prevents the disease from 
infecting the agent a second time. If a disease kills its host, or the host dies for any 
reason, the disease it carries dies also, irrespective of its lifespan. 

Each disease has parameters determining its latent and incubation periods (see sec-
tion 1.1). A latent disease does not require energy of its host and is not infectious. 
During the incubation period the agent is infective but does not exhibit symptoms. 
Agents may visually detect disease symptoms in neighbours, potentially allowing 
them to steer clear, however this feature was not utilized in the current experiments. 

Real diseases such as viruses replicate and mutate within a host much more rapidly 
than the hosts themselves reproduce, circumventing the host’s auto-immune response. 
Consequently, it is possible for humans to repeatedly catch viruses such as the com-
mon cold and flu. To model this, a simulation disease undergoes reproduction during 
every time step of its lifespan. Disease reproduction is asexual and may result in mu-
tation of the disease parameters: colour-signature; devastation; lifespan; incubation 
and latent periods. A parameter that sets the frequency of a disease’s mutation during 
reproduction may itself be mutated. Together these parameters allow the diseases to 
co-evolve with the more slowly evolving agent population. 

Diseases are represented in the simulation as coloured shapes rendered within the 
box bodies of the agents. Fig. 1 illustrates the visualization scheme employed. 

The parameters for the disease and agents outlined fully specify the features of a 
epidemic models discussed above. A complex and flexible simulation has been de-
vised that allows for studies of epidemics in non-homogeneous populations with non-
random mixing. This agent-based model eliminates many of the problems inherent in 
earlier epidemiological models. 
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Fig. 1. The visualization scheme for agents and infection 

3 Results 

As indicated in the motivation for this work, it had been noted that ecological simula-
tions in which agents competed for resources (including mates and energy) often re-
sulted in a genetically impoverished, homogeneous population. It was hoped that by 
introducing a novel co-evolutionary model of disease, diversity might be encouraged 
and uniformity exploited and eliminated by infection. 

3.1 Qualitative Discussion 

It was found that the disease did indeed exploit the population’s uniformity when it 
arose. Disease also exploited populations of agents that clustered tightly together. In 
the absence of disease, agents of particular colours and sizes often dominated a simu-
lation, forming large colonies of potential mates. A typical screen shot after 14,000 
time steps of the simulation without disease is reproduced in fig. 2(a). Fig. 2(b) illus-
trates a run after 14000 time steps with identical initial conditions, but in which the 
disease model was introduced. The diversity in dimensions, colour and spread of the 
population is far greater in fig. 2(b) than in fig. 2(a). In fact, after as few as 2500 time 
steps, the non-diseased model often converges to homogeneity and does not break 
from this condition but drifts gently through genetic space. The population model 
incorporating disease maintains its diversity indefinitely. 

A disease simulation run involves the spontaneous appearance of a disease on av-
erage once every one-hundred-thousand agent updates. This new disease is generated 
with a colour-signature that matches the colour of a randomly selected agent. The 
agent is infected with the disease and left to continue its travels. Apart from the col-
our-signature, all other disease parameters for the new infection are randomly  
generated. 

Depending on the parameters of the new disease, the traits of the infected agent 
and the population as a whole, the new disease may or may not cause an epidemic. 
The likelihood of an epidemic is specified by the Threshold and Herd Immunity theo-
ries described above. Some observed outcomes are described below along with the 
conditions giving rise to them in the present simulation environment. 
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Fig. 2. Two simulation screenshots after 14,000 time steps: (a) without the epidemiological 
model; (b) with the epidemiological model. 

Disease elimination (immediate). If the disease is insufficiently long-lived, or the 
population is insufficiently dense, or the host does not co-habit with others of a simi-
lar colour to itself, then the disease may fail to contact any susceptibles before it dies 
within the host. The disease will be eliminated from the population immediately. 

Disease spread (immediate). A disease may mutate sufficiently within a host to in-
fect susceptibles of a colour significantly different to the original host. If the host 
mixes amongst others of its kind they may become infected with the disease also. 
Occasionally the stochastic mechanism allows for a disease to infect a host coloured 
differently to its own signature. In this case, the devastation of the disease will be low 
in the infected host but the host nevertheless is able to infect other susceptibles. Such 
a host may be considered a “carrier” of the disease. 

Disease elimination (eventual). If the disease manages to take a hold in the popula-
tion it may nevertheless die out eventually if the number of susceptibles is reduced. 
This may happen when a sizeable proportion of the agents encountered by infectives 
is immune to the disease (even though the population as a whole may not have a sig-
nificant number of immune members – see footnote 3 above). Circumstances like this 
arise when agents overcome the disease and acquire immunity, or when the disease is 
so devastating that it rapidly wipes out the supply of susceptibles before the agents are 
able to produce many offspring. 

Disease spread (continual). A disease well-suited to its environment has sufficient 
lifespan to ensure it is passed from one susceptible agent to another. Such a disease 
also needs to be sufficiently devastating that it can be transferred successfully, but not 
so devastating that it kills off its supply of susceptibles. Diseases that fit these criteria 
also have to be sufficiently stable to avoid unwanted mutations that would render 
them ineffective, but sufficiently mutable so that they can keep infecting an evolving 
population of hosts. The simulation has given rise to diseases that meet all of these 
criteria and persist in the population for long periods of time. 
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Of particular interest are diseases that sustain themselves indefinitely when they 
are able to utilize susceptibles that are prolific breeders. Such diseases are able to 
spread through contact between mates who seek one another out (sexually transmitted 
diseases?) and also by contact between a parent and its newly born. Newly born 
agents may have traits slightly different to their parents so that occasionally one tends 
to wander off to seek its own preferred companions, taking the disease to infect oth-
ers. As long as the disease remains latent for a sufficiently long interval, it will not 
kill or weaken the agent prior to its immigration to a further enclave. 

3.2 Gene Diversity Plot Analysis 

Figure 3 gives example plots of the red colour gene value of each agent in the popula-
tion, versus the simulation time step for (a) a healthy agent population and (b) a popu-
lation in which disease is present. Each simulation commences with a population of 
randomly generated agents, and therefore figures 3(a) and 3(b) show red gene values 
to be widely spread at time step 0. 

   

Fig. 3. Plots of all agents’ red colour gene values against simulation time step: (a) without the 
epidemiological model; (b) with the epidemiological model 

Time step 2500 of plot 3(a) commences a long-term decline in the diversity of the 
red gene in the population. Without the presence of disease, the combination of colour 
genes an agent possesses determines its mating success based on the presence of po-
tential mates who find the colour of the agent attractive. Thus, agent colour in the 
disease-free population is driven purely by its ability to attract mates. The decline in 
diversity is visible as the vertical dispersal of the red colour gene in the population is 
reduced over time. The few “outliers” at each time step are excursions into new col-
ours brought out by a momentary success of a sub-population with a specific colour-
ation. Such events may be the result of spontaneous mutations during reproduction. 
The main population drift in figure 3(a) has red gene values focussed from 0.5 to 0.8. 
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Figure 3(b) shows the red gene diversity in the diseased population. After the ini-
tial random spread of red gene values, the diversity in the population declines dra-
matically by time step 2500 to a range limited between 0.6 and 0.7. This was the re-
sult of a few randomly introduced diseases culling a population that had not yet 
adapted to existence without the presence of disease, i.e. they could not yet locate 
mates and produce offspring efficiently. A few rapidly acting random diseases there-
fore wiped out much of the population before it had a chance to evolve strategies for 
sustaining itself. The system has been programmed to generate several offspring 
automatically from two randomly selected parents (even if they are not close to one 
another) in situations like this in order to “jump start” the simulation. This has the 
drawback of starting a population with a limited gene pool. 

The situation depicted in figure 3(b) is especially interesting because with the pres-
ence of disease, even this limited gene pool (at time step 2500) does not simply drift 
about genetic space as did the disease-free simulation when it encountered homogene-
ity. Instead, as can be seen from subsequent time steps of figure 3(b), the diversity of 
the population actually expands. The co-evolutionary pressure between the disease 
and the agents ensures that this situation is maintained indefinitely. 

Figure 3 can therefore be seen to confirm the discussion at the beginning of this 
section and the interpretation of figure 2 given above. In summary, the disease acts to 
maintain colour diversity in the population, despite pressure applied by mating prefer-
ences to the contrary. The disease also forces the population to spread across the 
available space and it allows the agents to explore a wider variety of shapes than the 
pressure of the environment alone would have permitted. Both these latter results are 
clearly depicted in figure 2. 

4 Conclusions and Future Work 

A model of epidemics has been introduced to an evolutionary, agent-based simula-
tion. The model improved the overall diversity of the population as desired and also 
encouraged its spread across the available virtual space. A wide variety of disease 
outcomes emerged from the simulation, each an apparently plausible model of real-
world outbreaks. 

Future work of interest to the author is a full investigation of the impact of the 
Threshold Theorem utilizing the present simulation. Can its behaviour be predicted 
mathematically and demonstrated successfully using this model? It would also be 
interesting to conduct experiments that model known infectious diseases and their 
dispersal based upon known interactions of animal or human populations. 
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1 IRIDIA - Université Livre de Bruxelles, 1050 Brussels, Belgium
cphilemo@iridia.ulb.ac.be
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Abstract. This paper elaborates upon an idea and a development
introduced and presented by Bersini in [1]. Roughly, by observing the
search space of a combinatorial problem in a “clever” way, it can be
drastically reduced. In order to discover this “clever way”, a second
search process has to be engaged in the space of the observables. So
two Genetic Algorithms (GAs) are intertwined to solve the whole prob-
lem: one in the original space and one in the space of observables of the
original one. We are going to present and evaluate this idea on a Cel-
lular Automata (CA) implementation of a binary numbers adder. The
experiments show that the new algorithm, combining the two evolution-
ary searches, speeds up the research and/or increases the quality of the
solutions in a significant way.

1 Introduction

The essential part of research about evolutionary algorithms or any optimisa-
tion algorithm in general is the discovery of mechanisms to improve the search,
when the problem is characterized by a huge search space. Many metaheuristics
and hybridisations of those algorithms are invented and compared with their
capacity to traverse this search space in the most effective way. One alternative
approach when facing the problem of the space dimension is to discover some
clever ways to reduce it. The notion of “intrinsic emergence” originally inspired
by the developments of Crutchfield and Mitchell appears to be very helpful [2].

According to them and other authors [2,3,4,5,6], and as further discussed in
[1], a macro property, labelled as “emergent”, should supply some mechanical
and non-human observer with additional functional meaning. This “functional
device” replaces the common need of a human observation to characterize emer-
gence [7,8,9,10,11,12]. Indeed, as shown in [1], this concept offers an interesting
way to encode macroscopically the genome of a multi-agent system, and by do-
ing so, to reduce temporally the size of the search space. In [1], the different
ways to observe the search space were tested randomly, while here, for greater
coherence, the search in the “space of observables” extends the idea and uses an
evolutionary mechanism. This combination of the two evolutionary searches is
the core of the new algorithm presented in this paper.
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To test the effectiveness of this approach, the problem treated here is the
evolution and the discovery of a CA able to simulate a binary adder. This prob-
lem is chosen for different reasons. First of all, CA is the favorite computational
platform to illustrate emergent phenomena [8,10,13,14]. Secondly, the generalisa-
tion of the new approach to other multi-agents systems might be easy: masking
the influence of agents neighbourhood to update an agent. A final major reason
is the engineering interest in binary addition. Indeed, this task is more rele-
vant than “density classification” or “synchronisation” [3,4,5,15] for computer
applications.

Section 2 will describe in detail the experimental platform (the CA) and
the task to be performed. In Section 3, we give more details on the simple
evolutionary algorithm applied to discover efficient CA. These principles are
both used for the classical GA and for the extension we propose: the Genetic and
Emergent Algorithm (GEA). Then, in Section 4, we define the macro observable
to emerge and show how the complete GEA works. Finally, in Sections 5 and 6,
we present the main results and show how the added evolution of the observable
subsequently accelerates the discovery of a satisfactory solution.

2 CA and Binary Addition

The task of the CA, which has been chosen to illustrate the algorithm, is to
perform the binary addition. This choice is mainly motivated by its engineering
relevance which might lead to new engineering practices in the construction of
logical circuits.

The CA used here is bi-dimensional with periodic boundaries and character-
ized by the classical 8-cells Moore neighbourhood. The state domain is the binary
set {0, 1} and the state update law is synchronous. This update law composed
of the CA rules table is coded in a binary array. It is composed by all possible
28 update cellular cells which are indexed by the corresponding neighbourhood.
We adopt a non-uniform version of CA which offers more computational power
than the uniform case [15]. Each cell is then characterized by a “variety” v and
updated by the corresponding rules table [13].

Considering n the bit string length, the CA used is a square of n2 ×n2 cells.
We set at time 0, in the first line, the two n bits binary terms: the first one
on the left and the second one on the right. All other cells are initialized to 0.
Then, we compute n2 time steps of the CA by obeying the rules table explained
above. To perform the addition task, a n + 1 bits encoding of the sum of the
two previous numbers have been obtained in the bottom left corner. Finally, the
whole problem consists in achieving this addition task for m given couples of
binary numbers. The process of addition defined above is very reminiscent of
classical addition logical circuits: we set the numbers at one side, they cascade
through a sequence of logical gates, and we finally take out the result on the other
side. We have no guarantee of obtaining a universal adder but just a specific one
for m additions. However and very naturally, the larger m, the more universal
the adder.
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3 Adopted Evolutionary Strategy

Note that we are only interested in the whole idea of the intrinsic emergence and
thus the precise evolutionary strategy adopted here to find the good solution is
not relevant. This same idea can be applied to any search and evolutionary
algorithm for multi-agent or combinatorial problems.

The individual, namely the non-uniform CA, is genetically represented by its
evolution law, the different varieties of rules. Hence, the length of the chromo-
some, which is composed of the v bit strings representing the different rules, is
v28: a huge search space of dimension 2 to the power v28. To fit every candidate,
we sum Hamming distance between the exact solution and the sum obtained by
evolved the CA and this over each addition problem. Thus, the fitness belongs
to the integer interval [0, m(n + 1)]. We decide to use the same evolutionary
method as the one used in [1], the “elitist version”. After evaluating every CA
performing m binary additions, the individuals are ranked by decreasing fitness.
We select the half best population sr/2. The best individual is preserved without
any genetic change in the next generation. The second and the third offspring
are generated by randomly mutating two individuals selected randomly in the
population. One bit of their chromosomes is randomly chosen and flipped. The
next (sr − 3) offspring are obtained by applying the simplex crossover on three
individuals randomly selected from the population. This crossover method, first
introduced in [16], has been shown to improve on the classical one. This strategy
is adopted here for the classical GA.

4 A Useful Way to Observe CA

As already discussed, even if the variety parameters is limited to three values, the
space cardinality is still around 10231, making it hard for a classical GA to find
the global optimum in a decent time. Based on the intrinsic emergence concept,
an original way to observe the CA is discussed in [1]: the macro observable
consists in masking some of the eight neighbours of all cells to be updated. As a
result the search space is considerably reduced. Consequently, at any update step
of the CA, the algorithm does not take into consideration the masked neighbours
in order to compute the new state. For instance, in Figure 1 a) a specific mask of
five cells is seen. Suppose the neighbourhood state to be 01100101, the masked
version is compressed to 101.

The CA working is not modified by excessive simplification. Indeed, the mask
determines a set of neighbourhood states that gives an identical result following
the given rules (and its variety). Only the unmasked cells state is important.
This fact allows us to compress the rules coding. In our previous example, for
instance, the following neighbourhood states give the same result: 01100101,
01110100, 01000111, 11010110, 11100101, . . . any b1bb01bb where the masked
bits b are not taken into consideration. Thus, we can strongly reduce the space
needed for coding the rules and therefore the whole search space. The mask acts
on the search space by prohibiting some areas as shown in Figure 1 b), hence
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Fig. 1. a) The black cell is the cell to update. The grey ones are the masked cell
neighbours and the white ones are the unmasked cell neighbours. We have here a mask
imposed on five cells reducing the neighbourhood to a 3-cells one. b) Interpretation of
the action of the mask in the rules search space.

restricting the search to the permitted regions. If the number of masked cells
is denoted by lm, we have (8 − lm) unmasked cells and the rules are coded on
v28−lm . The size of the search falls down to 2 to the power v28−lm. For instance,
by considering 3 varieties and 5 masked cells, the space cardinality collapses to
around 107.

Now all masks are certainly not similarly adequate to observe the CA since
some masks may turn out to hide the region where the global optimum really
takes place. Thus, it is important to find the best mask among the Clm

8 possi-
bilities. This approach does not defer the combinatorial explosion on the mask
search. As shown in [1], this new way of observation trims the problem before
actually searching for a more precise solution. We explain in the next section how
to automate the search of a good mask and how to have the best “intrinsically
emerged” one.

Before presenting the GEA, the main topic of the paper, some explanations
might be useful about how to transform the reduced rules table, i.e. the rules
used in the CA masked version, into the complete rules table and conversely. The
reduced complete rule table transition is achieved in three steps. First, we gen-
erate all the possible 28 bit strings. Second, we define a function to project the
unmasked neighbour binary number on the masked version. Finally, for each va-
riety, we convert the update value of the unmasked rules table to the masked one.

5 How to Evolve the Mask: The Genetic Emergence
Algorithm (GEA)

The mask constitutes a macro observable of the system, abstracting or skip-
ping unnecessary details during some periods of the optimisation process. The
algorithm below presents the complete process. The mask is submitted to the
evolutionary operations following the feedback of the system: it is selected by
the system itself, and the best one will intrinsically emerge with no need for
human intervention. In comparison with [1], the improvement proposed in this
paper consists in obtaining the best mask, no anymore by random trials, but by
the same evolutionary process as the one searching for the optimal rule table.
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We have here another instance of a co-evolution process where the observable
evolves and emerges in the same time as the CA.

To evolve the mask, a given population of corresponding masking rules is
evolved and the fitness of the mask is evaluated by computing the fitness of the
rules set obtained under this masking condition. After given iterations both the
mask and the population of the best rules obtained with this mask are memorized
in order to start a new set of simulations in which the complete coding (i.e. we
take back the 8 neighbours) of the cell states and the rules are re-established. The
following pseudo code describes the working of our GEA into three sequential
steps:

– The initialisation phase:
RULES POP: RANDOM INIT
CA: RANDOM INIT OF VARIETY OF CA CELLS
MASK POP: RANDOM INIT

– The masking phase: a mask population is evolved. To perform this task,
each mask has to be evaluated by evolving the corresponding masked rules
population (see Figure 2), defining following parameters:
• gm the evolution time for the mask,
• sm the size of the mask population,
• gmr the evolution time for masked rules,
• sr the size of the rules population (masked and unmasked), and
• gr the evolution time for unmasked rules.

FOR tm = 0 TO gm

FOR i = 0 TO sm

MASK RULES POP: RULES POP+MASK POP[i]
FOR tmr - 0 TO gmr

FOR j = 0 to sr

EVALUATE MASK RULES POP[j]
ENDFOR
SELECT BEST HALF MASK RULES POP
GENERATE NEW MASK RULES POP

ENDFOR
EVALUATE MASK POP[i]
SAVE TMPBESTMASK RULES POP

ENDFOR
SELECT BEST HALF MASK POP
SAVE BESTMASK RULES POP
GENERATE NEW MASK POP

ENDFOR

RULES POP: SAVE BESTMASK RULES POP

– The classical phase: using the best masked rules set, a new unmasked
rules population is built. This population is then evolved by a classical GA.
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FOR tr = 0 TO gr

FOR k = 0 to sr

FOR m PROBLEM
EVALUATE RULES POP[k] ON CA

ENDFOR
ENDFOR
SELECT BEST HALF MASK RULES POP
GENERATE NEW MASK RULES POP

ENDFOR
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Fig. 2. The mechanism of the GEA masking phase

So, we can approximately evaluate the number of GA iterations needed in
order to have an equivalent running complexity as for the GEA:

IGA = gr + smgmgmr

Before presenting the results, we must clarify how the fitness of a mask is com-
puted on the basis of the fitness of the corresponding masking rules population.
The best way, obtained after various trials, is to compute the product between
the mean of the fitness of all rules and the best fitness (i.e. the lowest). Other
methods have been tried (only the mean or the best), but the following sim-
ple method gives a faithful estimation of the quality of the population: both on
average and with respect to the best individual.

6 GA vs GEA

In order to verify in a fair way the average benefit in time and in fitness offered
by GEA, the results need to be compared to a GA running without any mask.
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Four kinds of experiment are conducted for each algorithm, for five different
varieties (1 to 5). Here, the common parameters are:

– a CA of 25 × 25 cells (n = 5) and an CA evolution on 25 steps,
– five non-uniform rules sets (v ∈ {1, 2, 3, 4, 5}),
– ten addition problems chosen randomly (m = 10), where the addition terms

is coded on 5 bits and the solution on 6 (big endian coding),
– a population of rules of 20 individuals (sr = 20),
– a population of masks of 6 individuals (sm = 6),
– and a mask length of 5 (lm = 5, we thus have 56 possible masks),

Four different sets of the “time” parameters (i.e. gm, gmr and gr) are chosen:

1. Experiment 1, Figure 3 a): gm = 5, gmr = 2, gr = 10 and IGA = 70,
runs 100 times;

2. Experiment 2, Figure 3 b): gm = 10, gmr = 7, gr = 70 and IGA = 490,
runs 50 times;

3. Experiment 3, Figure 4 a): gm = 25, gmr = 8, gr = 200 and IGA = 1400,
runs 50 times;

4. Experiment 4, Figure 4 b): gm = 5, gmr = 14, gr = 70 and IGA = 490,
runs 50 times.

Obviously, the size of the mask search space is ridiculously small here for the
discovery of the optimal mask. We are however only in its generalisation ability
for any size of the masks and any size of the original search space. This is the
reason we chose to evolve the mask. The motivations behind each choice are
given below:

1. Experiment 1: How do GEA and GA react for a few number of iterations ?
2. Experiment 2: Being sure to test nearly all mask possibilities, what is the

benefit of GEA ?
3. Experiment 3: Does the GEA confirm its improvement for a greater num-

ber of iterations even if the search in mask space is too long for the cardinality
of the mask space ?

4. Experiment 4: Proper use of the evolutionary strategy on mask, is the
GEA more powerful than the GA ?

The results are shown in Figure 3 and Figure 4. For each experiment, the mean
fitness is given over all simulations obtained for the GA, the masking phase of
GEA (noted GEA1) and the complete GEA (noted GEA2). We remember that
the lowest the fitness is, the best the CA is. The three differences between these
results are: GA-GEA1, GA-GEA2 and GEA1-GEA2. With these figures, each
main question find answers and some remarks can be added.

According to the first experiment, the fitness obtained with GEA is 25%
better on average than with GA except for the uniform CA, in terms of quality.
Due to the small number of iterations, there is no real gain between the GEA
masking phase and the GEA classical phase. This is because the GEA classical
phase does not have enough time to converge. Furthermore, there are also no
significant differences between the different non-uniform case.
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Fig. 3. a) Results for experiment 1. Mean fitness (over 100 simulations) is plotting
against CA varieties. The first graph shows the results obtained after the GA, the
GEA masking phase (GEA1) and the complete GEA (GEA2). The second graph gives
the differences between these 3 functions: GA-GEA1, GA-GEA2 and GEA1-GEA2. b)
Results for experiment 2. Mean fitness over (50 simulations) is plotting against CA
varieties. The first graph shows the results obtained after the GA, the GEA masking
phase (GEA1) and the complete GEA (GEA2). The second graph gives the differences
between these 3 functions: GA-GEA1, GA-GEA2 and GEA1-GEA2.

Concerning the second experiment, we are sure to test nearly all possible
mask. We are sure to find the optimal mask, i.e. the best macro observation.
The improvement is confirmed: about 20% in quality of solution is obtained
except for the uniform case. The GEA gives again worse results than GA for the
uniform case. Probably because it is too much masked for the size of the rules

Fig. 4. a) Results for experiment 3. Mean fitness (over 50 simulations) is plotting
against CA varieties. The first graph shows the results obtained after the GA, the
GEA masking phase (GEA1) and the complete GEA (GEA2). The second graph gives
the differences between these 3 functions: GA-GEA1, GA-GEA2 and GEA1-GEA2. b)
Results for experiment 4. Mean fitness (over 50 simulations) is plotting against CA
varieties. The first graph shows the results obtained after the GA, the GEA masking
phase (GEA1) and the complete GEA (GEA2). The second graph gives the differences
between these 3 functions: GA-GEA1, GA-GEA2 and GEA1-GEA2.
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search space. Because more time is spent in the GEA classical phase, a better
solution is obtained than after the masking phase. This fact is very interesting,
because the number of iterations used by the classical phase represents only a
seventh of the whole for the complete GEA. The convergence is thus faster: the
optimal mask gives a good area where the solution can be searched.

The results of third experiment confirm the improvement: about 20% of im-
provement except again for the uniform case. We notice that the difference GA-
GEA1 is this time worse than in the two previous experiments. It is certainly
because we spend too much time in the masking phase to find the optimal mask.
The masks are too much evolved for the size of its search space and the masking
rules population is not sufficiently evolved to evaluate accurately the observation
quality. The best convergence of the GEA classical phase is again confirmed after
finding the optimal mask. Finally, similar results are obtained for the classical
GA than for GEA in the first experiment: an impressive improvement in time.

The fourth experiment yields similar results to the second experiment. the
“intrinsic emergence” concept is well represented by the chosen parameters be-
cause the mask is really evolved this time. The coevolution of the system macro-
observable really improves the classical GA.

7 Conclusions

In this work, we have examined in more details the concept of “intrinsic emer-
gence” from an engineering point of view. To do so, how to find a good CA
implementation of a binary adder is the problem that has been chosen. To solve
this problem, a classical GA can be used. However, this choice does not give
good results due to the large size of the search space. As it was shown in [1],
“intrinsic emergence” can be helpful to improve the classical GA.

A macro observable, a mask, represents then the intrinsic emergent property.
By evolving the mask, the machine observer is fulfilled: this is the foundation of
the main subject of this paper, the GEA. Indeed, added to a GA, we obtain a
coevolution mechanism which is an improvement of the classical evolution strat-
egy. To show this improvement, the efficiency of a classical GA is experimentally
compared with the GEA on a given problem.

The results obtained through 4 experiment sets confirm the improvement of
this new approach (see Figure 3 and Figure 4): a gain in time or in fitness for
all non-uniform cases. So, making intrinsic system emergent property is a good
way to reduce the search space and to boost the adaptative capacity of the CA
population.

This work is a first practical interest of the “intrinsic emergence”, and a lot
of future work remains to be done. The concept of macro-observables could be
extended to other kind of multi-agent systems and more generally to all opti-
misation problems which can be represented by bit string chromosome: masking
becomes grouping given loci where the genes take the same allele. This will
permit a true generalisation of the GEA and a starting point to a theoretical
formalisation of the algorithm. Other ideas such as incremental masking or het-



794 C. Philemotte and H. Bersini

erogeneous masking could be also interesting to test. But all these works must
test this concept through a larger space of problems. By doing so, we will be
able to better understand the subjacent basis of the discussed concept and the
effect of the parameters on the efficiency of GEA.
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Abstract. This research investigates an evolutionary approach to engineering 
agent collectives that accomplish tasks cooperatively. In general, reproduction 
and selection form the two cornerstones of evolution and in this paper we study 
various reproduction schemes in an evolving population of agents. We classify 
reproduction schemes in temporal and spatial terms, that is, by distinguishing 
when and where agents reproduce. In terms of the temporal dimension, we 
tested schemes where agents reproduce only at the end of their lifetime or mul-
tiple times during their lifetime. In terms of the spatial dimension we distin-
guished locally restricted reproduction (agents reproduce only with agents in 
adjacent positions) and panmictic reproduction (when an agent can reproduce 
with any other in the environment). This classification leads to four different 
reproduction schemes, which we compare, via their overall impact upon collec-
tive performance. Results using two completely different types of evolvable 
controllers (hand-coded or neural-net based) indicate that utilizing single repro-
duction at the end of an agent’s lifetime and locally restricted reproduction af-
forded the agent collective a significantly higher level of performance in its co-
operative task. 

1   Introduction 

The research theme of this paper is described by the term: Emergent Collective Intel-
ligence (ECI). The end goal of ECI research is to combine and exceed achievements 
in multi-agent systems [1], swarm intelligence [2], and evolutionary computation [14] 
research via developing synthetic methodologies such that groups of computationally 
complex agents produce desired emergent collective behaviors resulting from the 
bottom-up development of certain individual properties and social interactions. This 
paper investigates certain technical aspects of artificial evolution as means of achiev-
ing adaptability at the local level and desired emergent behavior at the global level. 
     In many multi-agent tasks, such as those common to multi-robot systems, the cor-
rect input-output mappings for the agents’ controllers are not known in advance so it 
is not possible to program or train them with supervised learning methods [3]. To 
solve this problem many researchers have used neuro-evolution [4] as a generalized 
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methodology for adaptability in agent behavior. Many researchers have highlighted 
that neuro-evolution is most appropriately applied to complex problems that are  
neither effectively addressed via pure artificial evolution nor neural processing ap-
proaches [5], [6], [7]. For example, Gomez [8] devised the enforced sub-populations 
(ESP) neuro-evolution methodology that was used for deriving the correct input-
output mappings for the agents’ controllers in the learning of multi-agent control tasks 
[9] with small numbers of agents. ESP has been shown to work well for various dis-
crete-state applications such as the game Go, as well as the classical pole-balancing 
task [10]. Neuro-evolution approaches investigated in collective robotic systems such 
as RoboCup soccer [11], simulated pursuit-evasion tasks [12], and multi-agent com-
puter games [13] were only able to derive limited forms of cooperative behavior, and 
the behavior did not scale with the number of agents. 
     Our application domain is the gathering of renewable resources from an environ-
ment. This gathering task is divided into locating, retrieving, and transporting the 
resources in question. It is an essential assumption that this task is interfaced to the 
population of agents via fitness rewards that are given after delivering the resources to 
a given ‘home area’. Additionally, we distinguish resources with different values and 
postulate that gathering of higher value (more complex) resources necessitates a 
higher degree of cooperative behavior (more agents). The performance evaluation 
criterion for the agent collective as a whole is then the total value gathered coopera-
tively, measured at the final generation of the simulation. Clearly there are many par-
ticular applications fitting into this general description. One could think of collecting 
some renewable resources, for example: harvesting farming produce, or minesweep-
ing. We use the minesweeping example throughout this paper. That is, we consider 
the task of the agent collective to be the location, and extraction of different types of 
mines, and their transportation to the home area within a simulated mine field. The 
successful delivery of a mine to the home area is equated with a fitness reward and 
fitness rewards are proportional to the type and amount of mines gathered.  
     Our approach to developing successful agents for this task is evolutionary; in par-
ticular, we evolved agent controller parameter values.  Hence, we studied two differ-
ent types of agent controllers, one heuristic controller with evolvable parameters, and 
a neural net controller with the same set of evolvable parameters and evolvable con-
nection weights. The technical research goal of this paper was to compare the efficacy 
of different agent reproduction scheme settings for accomplishing the minesweeping 
task. We classified reproduction schemes in temporal and spatial terms, that is, by 
distinguishing when, with which agents a given agent reproduces. For the temporal 
dimension, the agent reproduction schemes we tested were termed: Single Reproduc-
tion at the End of the Agent’s Lifetime (SREL) and Multiple Reproductions During an 
Agent’s Lifetime (MRDL). For the spatial dimension, we distinguished locally re-
stricted reproduction (agents reproduce only with agents in adjacent positions) and 
panmictic reproduction (when agents reproduce with other agents located anywhere in 
the environment). This classification led to four different reproduction schemes, 
which we compared experimentally, using the collective performance of the popula-
tion accomplishing its task as the basic measure.                                                          
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2   Collective Behavior Design 

The experiments utilized a simulated minefield and an initial population of 1000 
agents, placed at random positions on a grid-cell environment with a 50 x 50 
resolution. A maximum of four agents could occupy any given grid-cell within the 
environment. A home area spanning 4 x 4 grid-cells was randomly placed within the 
environment. This home area was where gathered mines were taken. Gathering was 
the term applied to the process of locating, extracting, transporting, and delivering a 
mine to the home area. Within the simulated minefield there were three types of 
mines: type A, type B and type C. The different types of mines had differing values to 
reflect the difficulty (degree of cooperation) associated with gathering it.  The cost of 
gathering mines comprised two sub-costs: the cost of extracting a mine from its 
location in the environment, and the cost of transporting a mine to the home area.  
The costs of extracting and transporting one unit of each of the three mine types are 
presented in table 1. The transport cost was applied per unit being transported, and 
per grid-cell traversed. Initially, a quantity of between 0 and 3 mines of each type 
were randomly initialized and placed within each grid-cell.  It is assumed that a long-
term process of gathering and replenishment in a minefield is being simulated, where 
mines are considered a renewable resource, and each mine type is renewed at a rate of 
3 per simulation iteration.  That is, the simulation is of a long-term process of 
collective gathering behavior being evolved, whilst an unseen competitor renews 
gathered mines.  Additionally, it is assumed that an agent never triggered a mine to 
detonate. 
     In order to gather the different mine types a degree of cooperative behavior was 
necessitated. Cooperation was necessary when at least one agent was attempting to 
extract a given mine type, and the value of the prevalent agent controller parameter 
was too low for the agent to individually gather the mine. These prevalent agent con-
troller parameters were termed: Mine type A capacity, Mine type B capacity, Mine 
type C capacity and transport capacity, and provided an indication of the capability of 
an agent for gathering a particular mine type.  Specifically, to gather one unit of a 
particular mine type, the sum of the values of the capacity parameter for that mine 
type (for all agents simultaneously attempting to extract the mine) must exceed a 
given capacity threshold. These capacity thresholds are presented for each mine type 
in table 1. The task of each agent was to gather the highest possible value of mines 
during the course of its lifetime. This task was interfaced to the agent collective by 
providing fitness rewards for gathered mines.  
     The fitness rewards for gathering one unit of the different mine types are presented 
in table 1.  The total value of mines that all agents gathered in cooperation with at 
least one other agent during the course of its lifetime was termed the value gathered 
cooperatively. Further to playing its conventional role in survivor selection, fitness 
was also used as a metaphor of energy (actions cost fitness).  An agent was able to 
move one grid-cell in any direction per simulation iteration at a cost of one unit of 
fitness.   
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Table 1. The capacity thresholds, and the costs for extracting and transporting mines, as well as 
the fitness reward for gathering one unit of the different mine types 

                                                           Capacity        Extraction    Transport     Fitness 
                                                          Threshold            Cost               Cost         Reward 
 

                         Mine type A                  300                     8                 0.04               20 
 

                         Mine type B                  150                     4                 0.02               10 
 

                         Mine type C                   75                      2                 0.01                5 
 

 

                              Fig. 1.                                                              Fig. 2. 
 

Fig. 1. Evolvable and non-evolvable agent controller parameters. Fig. 2. Heuristics utilized by 
agents operating under the pure-evolution approach. AmA, AmB, and AmC denote the amount of 
mine type A, B and C, respectively, on a given grid-cell. Holding denotes the current amount of 
all mine types a given agent is currently transporting. CA, CB, CC and CT, denote the gathering 
capacities for mine types A, B, and C, and the transport capacity, respectively.  

2.1   Pure-Evolution Approach 

For the evolution of agent controller parameter values, a standard evolutionary algo-
rithm was used [14]. When an agent initiated reproduction, the fittest partner (with the 
highest energy) of m potential partner agents was selected for reproduction. The popu-
lation initially contained 1000 individuals (agents), and the genotype of each agent 
was its set of gathering and transport capacities (evolvable parameters illustrated in 
figure 1). These parameter values directly influenced the heuristic agent lifetime be-
havior, though the behavioral heuristics (figure 2) remained static over the course of 
the evolutionary process. That is, once an agent had gathered as many mines as it 
could transport, it would begin transporting the mines back to the home area. During 
reproduction, agent controller heuristics (figure 2) were copied from parent to child, 
and the fitness inherited by a child was the average fitness of the two parent agents. 
Ninety percent of the inherited fitness was then subtracted from each parent’s fitness.  
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                               A                                                                             B  
 

Fig. 3A. Neural network agent controller (neuro-evolution approach). Note that, sensory input 
neurons SI1 to SI6 , hidden layer neurons HL1 and HL2 , input weights IW1 through to IW31 , and 
output weights OW2 through to OW5 are not presented. B. Neuro-evolution approach.   

2.2   Neuro-evolution Approach  

Figure 3A presents the feed-forward neural network agent controller operating under 
the neuro-evolution approach. Input-output weights connecting the hidden layer neu-
rons from sensory input neurons to motor output neurons were evolved over succes-
sive generations under the neuro-evolution process. Agent controller parameter values 
(the evolvable parameters illustrated in figure 1) were evolved over successive gen-
erations using a standard evolutionary algorithm [14]. Evolved parameter values were 
then used as part of the sensory input (figure 3A) of the next generation of agents. 
Thus, as with the pure-evolution approach, the initial population contained 1000 indi-
viduals (agents), where the genotype of each agent was the set of input-output weights 
for the hidden layer of the neural network controller (figure 3A), and the set of gather-
ing and transport parameters (figure 1).  Figure 3A presents the neural network con-
troller as having 8 sensory input nodes (SI0 through to SI7) to account for 8 surround-
ing grid-cells, 4 hidden layer nodes (HL0 through to HL3), and 2 motor output nodes 
(MO0 and MO1) to account for the x, y position that the agent moves to. As illustrated 
in figure 3A, each sensory input neuron (SI0 through to SI7) was comprised of a 9 
value input array.  The first four inputs of the array (I0, I1, I2, I3) correspond to: the 
number of agents observed on the given grid-cell, the value of mine type A, mine type 
B, and mine type C observed on the given grid-cell, respectively. The fifth value of 
the sensory input neuron (I4) was the expected value to be gathered cooperatively. The 
neural network operated via attempting to select actions that minimized error. Error 
was the difference between expected value to be gathered cooperatively at simulation 
time t, and actual value gathered cooperatively at simulation time t+1.  The final four 
values (I5, I6, I7, I8) were the mine types A, B, C and transport capacities of this agent.  
The evolvable aspects were the 40 input-output weights connecting hidden layer  
neurons, and the gathering and transport capacities of the agent. 
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Fig. 4. Neuron reproduction to produce a new child agent sub-population. Note that, only the 
input-weights of the first hidden layer neuron of parent 1 are presented. 

 
     In the neuro-evolution approach, as presented in figure 3B, individual neurons for 
neural network controllers were evolved as a result of being evaluated, and recom-
bined in a social context.  As illustrated in figure 3B, n individual controllers are ini-
tially derived by randomly selecting u neurons from each sub-population as the u 
neurons for the hidden-layers of n controllers. The genetic representation of each sub-
population neuron is a string of input and output weights for each hidden-layer  
neuron. 
    That is, the approach evolved partial solutions (neurons) that were recombined in 
novel ways so as to form complete solutions (a group of heterogeneous neural net-
works). Combinations of hidden layer neurons from two parent agents formed a child 
sub-population (16 neurons) from which a child network was derived (4 neurons for 
the hidden layer). Figure 4 presents the 10 input-output weights of each hidden layer 
neuron (w0 to w9). During reproduction, those in the first parent were recombined (via 
single-point crossover) and each weight mutated (0.05 probability) with hidden layer 
neurons in the second parent. This allowed for recombination and mutation of the 
hidden neuron input-output weights, and produced a new sub-population, from which 
the fittest 25% of neurons were selected as the hidden layer of a child network.   
    The key idea of this methodology was that over the course of multiple generations, 
cooperation occurs within the sub-populations themselves and competition between 
the n sub-populations so as to produce neural network controllers that operate effec-
tively at addressing both individual and social tasks. The key difference delineating 
this approach from other neuro-evolution methodologies (most notably: ESP [8]) is 
that it provides a separate sub-population of neurons for the derivation of each neural 
network. Also, after each evaluation, fitness is assigned to all neurons within a net-
work, and networks can reproduce with any other network in the population of net-
works.  The approach was split into several phases. In the initial phase, the first time 
the n neural network controllers are created, the genotype of each neuron (set of in-
put-output weights) is randomly initialized and u neurons are then randomly selected 
from each of the n sub-populations in order to form the hidden-layer of n neural net-
work controller. The n neural network controllers are then evaluated in the mine 
sweeping task. Fitness values are awarded to each agent when a mine is delivered to 
the home area. This fitness is then equally distributed to each hidden-layer neuron 
participating in the agent’s neural network controller. 
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2.3   Reproduction Schemes and Settings 

The experiments compared the four agent reproduction schemes, specifically, SREL 
and panmictic, SREL and locally restricted, MRDL and panmictic, as well as MRDL 
and locally restricted reproduction. Each of these schemes was tested and evaluated 
for a heuristic agent controller with evolvable parameters (operating under a pure-
evolution approach), and a neural network controller with evolvable parameters 
(operating under a neuro-evolution approach).   
     During the reproduction action, 90% of the fitness of two parent agents was di-
vided amongst and passed onto p offspring agents.  During reproduction only one 
partner agent of m potential partner agents was selected for reproduction. An agent’s 
fitness could only be replenished when it delivered a mine to the home area. The 
precondition for locally restricted reproduction setting was that there was at least one 
potential partner agent in the same grid-cell or an adjacent grid-cell.  For either the 
locally restricted or panmictic settings, reproduction was only possible when  
both parents current fitness was greater than the value of the min fit reproduction 
parameter. 
     When p offspring agents were produced using the panmictic reproduction setting, 
each offspring would be placed in a random free grid-cell adjacent to one of the par-
ents. The chance that an offspring an agent was placed in a grid-cell adjacent to parent 
1 was 0.5, and the chance that an offspring was placed in a grid-cell adjacent to parent 
2 was 0.5. If no adjacent grid cells were free, then the offspring agent died.  Using the 
locally restricted setting offspring agents were always placed in a random free grid-
cell adjacent to the parent agent that initiated reproduction.  The number of offspring 
to be produced was determined as m = the total amount of fitness to be inherited (x) 
divided by 10. According to the reproduction scheme setting being used, pairs of 
agents produced p offspring using the genetic operations of crossover and mutation 
[14]. For both the pure evolution and neuro-evolution approaches, the core of repro-
duction was the application of uniform crossover to ‘recombine’ the controller pa-
rameters: mine type A, B, C and transport capacities of two parent agents in order to 
derive the agent controller parameter values of a child agent. The uniform crossover 
operator selected a parameter value to be inherited from either parent agent with a 0.5 
probability. Child controller parameter values were mutated by a value of either plus 
or minus 10 with a probability of 0.05. If mutation occurred, the probability of adding 
versus subtracting 10 from the inherited parameter value was 0.5.   

3   Experiments, Results, and Discussion 

The four agent reproduction schemes were tested and evaluated under the pure-
evolution and neuro-evolution approaches. 100 independent runs (each executed for 
2000 iterations) were performed. For each of the four reproduction schemes operating 
under the pure-evolution and neuro-evolution approaches, a control experiment was 
performed. Each control experiment was non-evolutionary, using static values for the 
gathering and transport agent controller parameters. The static values utilized were those 
attained at the end of the evolutionary process (pure-evolution or neuro-evolution) using 
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a given reproduction scheme. The performance criterion for evolved agent collective 
behaviors was the total value of mines gathered cooperatively.  
     Table 2 presents the values gathered cooperatively attained for the four reproduc-
tion schemes, operating under the pure-evolution and neuro-evolution approaches.  
For each approach, the values attained in the control experiments are presented below 
the values gathered cooperatively. The value in parentheses presented next to each of 
the values gathered cooperatively is the standard deviation. A high standard deviation 
indicates that the agent collective was less stable in its gathering behavior. High stan-
dard deviations were the result of many agent populations (of the 100 replications) 
becoming extinct before the end of a simulation.  A low standard deviation indicates a 
low portion of agent populations dying out prematurely and hence a high stability in 
the gathering task. Here, the term stability indicates that, for the gathering and trans-
port parameter values evolved, a particular value gathered cooperatively (plus or 
minus some variance) was expected.  
     The control experiments demonstrated that both the pure-evolution and neuro-
evolution approaches (using the SREL and locally restricted reproduction scheme) 
were operating within a region of the parameter space (defined by the four agent con-
troller parameters) where a high value gathered cooperatively was attainable. This 
was especially the case for the neuro-evolution approach, which, when using the 
SREL and locally restricted, and SREL and panmictic reproduction schemes, was able 
to attain values gathered cooperatively over an order of a magnitude higher than com-
parative agent collectives. 
     Also, table 2 highlights that, agents using the SREL and panmictic reproduction 
scheme and operating under the neuro-evolution approach, were able to achieve a 
higher stability comparative to the other reproduction schemes.  This is theorized to 
be a result of the panmictic reproduction scheme that selects a partner agent from 
anywhere in the environment.  
     Under the neuro-evolution approach, panmictic reproduction encourages and pre-
serves the heterogeneity and diversity in the n sub-populations corresponding to the n 
agent controllers.  Locally restricted reproduction restricts the diversity produced in 
child sub-populations (hence agent controllers) by only selecting from agent sub-
populations local to the proximity of the reproducing agent.  
     Under the pure-evolution approach, all agent controllers are initialized with the 
same heuristics, and the agent controllers do not evolve over successive generations. 
This heterogeneity of controllers under the neuro-evolution approach, and the homo-
geneity of controllers under the pure-evolution approach, refers only to the structure 
of the agent controllers, and not to the evolvable parameters (as used in both ap-
proaches). 
     The result of the SREL and locally restricted agent reproduction scheme being 
most appropriate for both approaches (pure-evolution and neuro-evolution) is theo-
rized to be consequent of agents only reproducing at the end of their lifetimes. Using 
the SREL setting, agents that have performed their task well and have thus survived 
until the end of allotted lifetime, are allowed reproduce. Given that the reproduction 
action costs 90% of the parents’ energy, agents using the MRDL setting have less of a 
chance of producing offspring that are well suited to successful task accomplishment.  
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Table 2. The values attained for the total value gathered cooperatively (standard deviations in 
parentheses) under pure-evolution and neuro-evolution. Values attained in the control experi-
ments are presented under the respective approach and reproduction scheme setting used.  
 
                                       SREL                  SREL               MRDL              MRDL 
                                      Panmictic             Local               Panmictic           Local  

 

Neuro-Evolution        159.67 (12.96)      300.95 (46.56)     37.92 (7.75)     30.61 (4.90)  
 

Control                        610.23 (9.10)       870.67 (60.34)     92.91 (3.67)     68.50 (2.93)            
 

Evolution                     23.59 (33.37)       39.10 (17.20)      32.56 (10.00)    22.85 (17.60)           
 

Control                        60.25 (1.85)         71.70  (3.50)       43.04 (5.46)      54.28 (0.63) 
 

 
    This is especially the case for the neural-evolution approach, since neural network 
controller weights need sufficient time to change and produce an effective agent be-
havior, in order for that behavior to be propagated in the next generation of agents.  In 
the case of the heuristic controller, child agents inherit only recombined and mutated 
agent parameter values and an average of parent fitness. However, the nature of the 
SREL setting holds, in that only agents with appropriate controller parameter settings 
will have survived until the end of their allotted lifetime (that is, those agents with a 
high fitness).   

Hence, table 2 illustrates that for the pure-evolution and neuro-evolution ap-
proaches, the SREL and locally restricted reproduction scheme is the most appropri-
ate for the given task.  It is theorized the superior performance of the neuro-evolution 
approach is a result of agent lifetime behavior adapting over successive generations, 
and no direct reliance upon controller parameter values. The heuristic behavior under 
the pure-evolution approach relies directly upon the values of the gathering and trans-
port capacities in order for an agent to decide where to move and what type of mine 
can be gathered.  
     Furthermore, as a benchmark to illustrate the efficacy of evolved agent controller 
parameter values, additional control experiments were run using the four reproduction 
schemes under the pure-evolution and neuro-evolution approaches. These control 
experiments utilized the maximum possible values (at initialization) for the gathering 
and transport parameters.  That is, 100, 100, 100, and 300 for the mine type A, B, C, 
and transport capacities respectively.  
     The resulting values gathered cooperatively (average taken over 100 runs) were 
always low with high standard deviations (comparative to values attained in other 
experiments) for collectives using the pure-evolution approach.  The low values and 
high standard deviations for each of the reproduction scheme settings operating under 
the pure-evolution approach indicate that all agent populations died prematurely.      
     Under the neuro-evolution approach, low values gathered cooperatively and high 
standard deviations were attained, indicative of few collectives (of the 100 replica-
tions) surviving until the final simulation iteration. This was a result of high values for 
the agent controller gathering and transport capacities (table 1) yielding correspond-
ingly high gathering and transport costs, where these costs usually exceeded an 
agent’s fitness. 
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4   Conclusions 

This paper compared the efficacy of different agent reproduction scheme settings for 
accomplishing a cooperative gathering task. Results indicated that agent collectives 
utilizing the single reproduction at end of lifetime (SREL) and the locally restricted 
reproduction scheme yielded a superior performance in a collective gathering task. 
This agent reproduction scheme setting attained the highest performance in terms of 
the evaluation criterion for both a heuristic agent controller (operating under a pure-
evolution approach) and a neural network agent controller (operating under a neuro-
evolution approach).  The evaluation criterion was defined as the total value of  
resources gathered cooperatively in a simulated environment within a given time  
period.   
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Abstract. After a survey of some typical realizations of self-replicating
machines, this paper presents the self-replication based on construction
and the self-replication based on inspection of an interactive loop, chosen
as an easily understandable example. The construction-based replication
process is achieved by translation and transcription of the configura-
tion information of the loop in the processing unit of a data and signals
cellular automaton (DSCA). The inspection-based replication process is
realized by duplication and translation of the same configuration infor-
mation in the processing unit of the DSCA.

1 Introduction

In the history of non trivial self-replicating machines, there are mainly two dif-
ferent approaches: (1) the self-replication based on construction, and (2) the
self-replication based on inspection.

Using construction in order to self-replicate structures was the way von Neu-
mann [1] conceived to solve the problem. It was Langton [2] who realized the
first practical implementation of the process. In these approaches, the informa-
tion is successively used in two different modes, interpreted and uninterpreted.
First, in the interpreted mode or translation, the signals are executed as they
reach the periphery in order to construct the replicated structure. After, in the
uninterpreted mode or transcription, the signals are copied in the replicated
structure.

Using inspection in order to implement self-replicating structures was the
approach chosen by a few researchers. Morita and Imai [3] present configura-
tions named worms and loops able to self-replicate by using a shape-encoding
method. Ibanez and al. [4] describe also a self-inspecting loop capable of self-
replication. In these works, the data are only used in an uninterpreted way called
transcription. It is accomplished by duplication of signals at the periphery of the
structure.

The main goal of this paper is to carry out construction and inspection
in order to self-replicate a simple interactive loop [5]. These self-replication
processes are achieved in data and signals cellular automata (DSCA) [6] im-
plementing the so-called Tom Thumb algorithm which allows the design of
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c© Springer-Verlag Berlin Heidelberg 2005



806 A. Stauffer, D. Mange, and G. Tempesti

structures with universal construction properties [7]. The fundamentals of this
algorithm and its application to the DSCA implementation of construction-
based loop replication are defined in Section 2. Section 3 presents the modified
Tom Thumb algorithm and its application to the DSCA implementation of the
inspection-based loop replication. Section 4 will conclude by comparing func-
tionally and structurally the DSCA implementations of the two self-replicating
processes.

2 Construction-Based Replication

Using the Tom Thumb algorithm [7] in order to configure a 4 × 3 interactive
loop (Figure 1a), chosen as an easily understandable example, the string of data
given in Figure 1b is applied twice.

This configuration string, which consists of alternate structural data (Fig-
ure 1c) and functional data (1, 2, ..., 10), allows the growth of the loop every four
time-steps (Figure 2a). The corresponding cellular signals and cellular modes are
defined in Figure 2b and 2c.

An external input, applied to one of the four cells having a branch data (i.e.
the corner cells), initiates the construction-based self-replication of the loop.
According to the branch data of the cell, this process generates first an east,
north, west or south directed growth signal. It provides then twice the string of
data in order to construct the loop structure (translation) and to save a copy of
the configuration in the replicated loop (transcription).

We will now describe the detailed architecture of our basic cell which corre-
sponds to a data and signals cellular automaton (DSCA) cell [6]. This DSCA cell
is designed as a digital system, resulting from the interconnection of a processing
unit handling the data and a control unit computing the signals.

The processing unit is made up of three resources (Figure 3):

east connect and activate, south branch

north connect and activate, east branch

west connect and activate, north branch

east connect

north connect

west connect

south connect south connect and activate, west branch

(c)

54321 6 7 8 9 10

(b)

321 4

5

6789

10

(a)

Fig. 1. Interactive loop. (a) Cellular structure. (b) Configuration string. (c) Structural
data.
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t=-1 3 7 11 15 19

23 27 31 35 39 43
(a)

empty growth empty transfer

(c)(b)

Fig. 2. Growth of the loop. (a) Automaton evolution. (b) Cellular signals. (c) Cellular
modes.

DIMUX GA
DI

GB PA PB

DOBUF

GEN
ENC

M

I

R

EDI
NDI
WDI
SDI

ESI
NSI
WSI
SSI

GA
PA
PB

R

DO

ESO
NSO
WSO
SSO

Fig. 3. Detailed architecture of the DSCA cell

– An input multiplexer DIMUX, selecting one out of the four input data EDI,
NDI, WDI or SDI.

– A 4-level stack organized as two registers GA and GB (for mobile string
data), and two registers PA and PB (for fixed string data).

– An output buffer DOBUF producing the output data DO.

The control unit consists of five resources (Figure 3):

– An encoder ENC for the input signals ESI, NSI, WSI, and SSI.
– A transmission register I for the memorization of the input selection.
– A mode register M.
– A replication register R.
– A generator GEN producing the output signals ESO, NSO, WSO, and

SSO.

The specifications of these resources are given in Appendix A.

3 Inspection-Based Replication

In the inspection-based replication process, only one string of data is needed to
construct the replicated structure. This string is obtained by duplication of the
configuration data of the structure to replicate (transcription).
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To replicate the 4×3 interactive loop (Figure 1a), the Tom Thumb algorithm
[7] must be modified in order to recreate the configuration string (Figure 1b)
from the structure of the loop. The increased complexity of the process involves
new cellular signals and cellular modes (Figure 4).

empty bypass

(b)(a)

empty bypass

growth

branch

generate

close

transfer

branch

switch

Fig. 4. Replication process. (a) Cellular signals. (b) Cellular modes.

Performed on one of the four cells having a branch data (i.e. the corner cells),
an external input initiates the inspection-based self-replication of the loop. When
the external input is applied to the lower right cell of the loop at time-step t =i,
the replication process builds first the bypass datapath of Figure 5.

t=i i+1 i+2 i+3 i+4

Fig. 5. Bypass datapath construction

Starting from the lower right cell, the process recreates then the configuration
string by selecting successively the fixed data (structural data and functional
data) of each cell and propagating them as mobile data through a transmission
register (Figure 6).
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Fig. 6. Configuration string generation
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As the recreated string reaches the lower right cell, it starts the growth of
the replicated loop every three time-steps (Figure 7).

20 23 26 29 3217

t=-1 2 5 8 11 14

Fig. 7. Growth of the loop

Finally, when the replication is accomplished, the bypass datapath of the
replicating loop is suppressed (Figure 8).

t=i i+1 i+2 i+3 i+4

Fig. 8. Bypass datapath suppression

In order to carry out the whole process needed for the inspection-based repli-
cation of the loop, the implementation of the DSCA cell comprises a total of 15
resources. The processing unit interconnects eight of them (Figure 9):

– Two input multiplexers D1IMUX (resp. D2IMUX), selecting one out of the
four input data ED1I, ND1I, WD1I or SD1I (resp. ED2I, ND2I, WD2I
or SD2I).

– Two switch multiplexers D1MUX (resp. D2MUX), selecting the outputs of
the input multiplexers.

– A 3-level stack organized as a transfer register GA (for mobile data), and
two configuration registers PA and PB (for fixed data).

– A bypass register GB.
– An output multiplexer DOMUX selecting the output data D1O.
– An output buffer DOBUF producing the output data D2O.

The control unit involves the seven remaining ones (Figure 9):

– An encoder ENC for the input signals ESI, NSI, WSI, and SSI.
– A transmission register I for the memorization of the input selection.
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– A signal register S.
– A mode register M.
– An output register O to control the output data D1O.
– A replication register R.
– A generator GEN producing the output signals ESO, NSO, WSO, and

SSO.

The specifications of these resources are given in Appendix B.
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Fig. 9. Detailed architecture of the DSCA cell

4 Conclusion

In our construction-based approach, a copy of the configuration string is always
circulating and the replication process consists to pick this information twice.
First, in order to construct the replicated structure and after, in order to supply
the circulating information.

In our inspection-based approach, there is no moving information. A copy of
the configuration string is obtained by duplication of the fixed data. This copy
is sufficient for the construction of the replicated structure, but the replication
process in order to get it is more complex.

For the loop example, where the functional data are minimal (one digit per
cell), the hardware cost of the inspection-based implementation exceeds by far
that of the construction-based one. However, for a less trivial example with a
greater amount of functional data, the hardware costs of the implementations
are just the opposite.

The construction-based and inspection-based loops presented in this paper
are implemented in our reconfigurable electronic medium for bio-inspired sys-
tems: the BioWall (Figure 10). This medium is a vertical board made of 2000
units with input, output and computation abilities [8].
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Fig. 10. The BioWall used to physically implement the loops
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Appendix A: Construction-Based Specification

Figures 11 and 12 are the truth tables and transition tables of the resources
needed for the implementation of the construction-based replication cell.
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Fig. 11. Truth tables. (a) Input multiplexer DIMUX. (b) Output buffer DOBUF. (c)
Output generator GEN (0: empty signal).

Fig. 12. Transition tables. (a) 4-level stack. (b) Replication register R. (c) Input
encoder ENC.

Appendix B: Inspection-Based Specification

Figures 13 and 14 are the truth tables and transition tables of the resources
needed for the implementation of the inspection-based replication cell.
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Fig. 13. Truth tables. (a) Selection multiplexers D1IMUX and D2IMUX. (b) Switch
multiplexers D1MUX and D2MUX. (c) Output multiplexer DOMUX. (d) Output buffer
DOBUF. (e) Output generator GEN (growth, branch and close signals; 0: empty sig-
nal). (f) Output generator GEN (bypass, generate and close signals).
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Fig. 14. Transition tables. (a) 3-level stack. (b) Replication register R. (c) Input
encoder ENC (input data control). (d) Input encoder ENC (cell mode and signal). (e)
Input encoder ENC (output data control).
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Abstract. This paper presents a novel method for coordinating multiple
biomimetic robotic fish in box-pushing task. Based on our successfully devel-
oping a robotic fish prototype of which the swimming modes can be switched
flexibly and smoothly, we step further to study coordination problems of multiple
robotic fish in unstructured and dynamic environments. To simplify the difficul-
ties of path planning and action decision when the robotic fish is approaching
the box, we employ the situated-behavior method, and for each situation a spe-
cific behavior is elaborately designed. On dealing with the synchronization and
coordinated pushing problems in the particular underwater environment, fuzzy
logic method is adopted for motion planning of the fish. Experimental results
of box-pushing performed by two robotic fish validate the effectiveness of the
proposed method.

1 Introduction

Fish, through billions of years evolution, has long been the unique king of the ocean.
Natural selection ensures that the mechanical systems involved in fish are efficient and
adaptive to their living environments. It is well-known that a fish in nature propels it-
self by coordinated motion of the body, fins, and tail, achieving tremendous propulsive
efficiency and excellent maneuverability. From the perspective of engineering science,
fish is a prototype of a distinguished autonomous underwater vehicle. Taking advantage
of progress in robotics, control technology, artificial intelligence, hydrodynamics of
fish-like swimming, new materials, sensors, and actuators, emerging research has been
focused on developing novel fish-like vehicles, to imitate the locomotion mechanism of
fish in nature to get favorable efficiency, maneuverability and low noise performance.
Research on robotic fish has become a hot topic and received much attention[1]-[6].
Observations show that a majority of fishes in nature are gregarious. As a colony, fish
can exhibit incredible power on foraging for foods, avoiding enemies/predators, cruis-
ing, and so on. Since most of the previous research on robotic fish was mainly con-
cerned with the hydrodynamic mechanism of fishlike swimming, coordinated control
of multiple robotic fish is definitely an important research topic for future engineering
applications. However, at present, few research results are available in the literature. In
addition, although fruitful cooperation methods and valuable experimental results for
ground robots have been published, it’s very difficult to apply these methods directly

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 815–824, 2005.
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to robotic fish due to the complexity and particularity of the underwater working en-
vironment and the particular movement modes of robotic fish. Coordinated control of
multiple robotic fish remains certainly a challenging research topic.

(a) The Fishes (b) Links Based Body-wave Fitting

Fig. 1. The Fishes and Links Based Body-wave Fitting

Previously we have developed several radio-controlled, four-linked robotic fish of
different forms and functionalities (shown in Fig.1(a)), each propelled by the flexible
posterior body and the oscillatory tail. In this paper, we study multiple robotic fish co-
ordination problem in context of the box-pushing task, since box-pushing has long been
viewed as one of the canonical task domains and benchmark problems for cooperative
robotics[7]. In the box-pushing task, several robotic fish are required to cooperatively
move a rectangular box from an initial location to a designated goal location in the
water environment. Because of the complex hydrodynamics of the fluid environment
and dynamics of the fish when it swims, it is difficult to establish precise mathemati-
cal model by purely analytical methods[1], and we can only predict approximately the
response of the fish on the control commands. Under these limitations, to simplify the
path planning and action decision for the individual fish when it is in different positions
relative to the box, we utilize the situated-behavior method to divide the environment
into a set of complete and exclusive situations, and for each situation, a specific behavior
is elaborately designed, which may include several actions. To implement the method,
a geometry-based approach called Comfortable Circle Approach (CCA) is proposed.
Since the robotic fish can not stop immediately on a ”stop” command, fuzzy logic
method is employed to facilitate the synchronous arrival of the two fish to the box.
The direction of the box is controlled by the coordinated motion of the fish, obtained
through a set of fuzzy logic rules. In fact, when a robotic fish is in different situations,
different motion performances are required, i.e. when the robotic fish is far from the
box, the fish shall swim with high speed toward the box to reduce the time consuming;
while when the fish has come close to the box, precise point-to-point control is required
to lead the fish to the Attacking Point (on the box, where the fish pushes the box),
and the fish shall swim smoothly. However, fast swimming performance and smooth
swimming performance conflict with each other. We define two different motion modes
for the robotic fish, FAST-SWIMMING mode and SMOOTH-SWIMMING mode. So
the robotic fish is called dual-mode fish, and the mode switch is embedded in our con-
trol method. Experiments on two robotic fish validate the effectiveness of our proposed
method.
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The paper is organized as follows. In section 2, a review of the robotic fish design is
presented. In section 3, we describe our box-pushing task and the coordination method
in detail. Experimental results are given in section 4. Section 5 concludes the paper.

2 Robotic Fish Prototype

We have designed and implemented several radio-controlled, 4-link and free-swimming
biomimetic robotic fish. Each fish uses a flexible posterior body and an oscillating foil
as the propulsor. Next, we give a brief review of the prototype of the robotic fish.

2.1 Simplified Propulsive Model of the Robotic Fish

Body and/or caudal fin (BCF) swimming movements of natural fish are usually catego-
rized into anguilliform, carangiform, subcarangiform, and thunniform mode primarily
according to the wavelength and the amplitude envelope of the propulsive wave underly-
ing fish′s behavior[1][8]. Recent research on robotic fish mainly focuses on the anguil-
liform swimming mode and the carangiform swimming mode. Carangiform swimmers
are generally faster than anguilliform swimmers, and also the carangiform propulsion
is more convenient for engineering implementation. For carangiform movement, the
undulation of the swimmer’s body is mainly confined to the last 1/3 part of the body.
Barrett et al. has presented a relative swimming model for RoboTuna (carangiform) in
[9], and the undulatory motion is assumed to take the form of a propulsive travelling
wave. The discrete form of the wave is described by:

ybody(x, i) = [(c1x + c2x2)][sin(kx− 2π
M

i)], (1)

where ybody is the transverse displacement of the fish body, x the displacement along
the main axis, k the body wave number, i the index of the sequences in an oscilla-
tion cycle, M the body wave resolution, representing the discrete degree of the overall
travelling wave. The designed oscillatory part of a robotic fish consists of several ro-
tating hinge joints, as shown in Fig. 1(b). It is modelled as a planar serial chain of
links along the axial body displacement, and the positions of the links in the chain is
achieved by numerical fitting. See [1] for details of determination and optimization of
the ratio l1 : l2 : ... : ln. The swimming mode of the robotic fish can be switched flex-
ibly between the FAST-SWIMMING (with big oscillating amplitude) mode and the
SMOOTH-SWIMMING (with small oscillating amplitude) mode.

3 Multiple Robotic Fish Box-Pushing

3.1 Task Description

The box-pushing task is stated as follows: Two robotic fish are required to coordinately
move a rectangular box 365 mm ×260 mm ×95 mm (length × width × depth) from
an initial location to a goal location in a swim pool 3200 mm ×2200 mm ×700 mm
(length × width × depth). The box has a direction and the fish are only allowed to push
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the box behind the box with their heads, one on the left side, the other on the right side.
The directions of the box and the fish can be recognized by the overhead camera. In
fact, the locomotion of a robotic fish is nonlinear, and the changing swimming pattern
makes it difficult for the fish to keep balance. Difficulties of robotic fish control in the
box-pushing task are briefly summarized as follows:

� It is difficult for a robotic fish to trace a linear path. In addition, the fish can not
back off like a wheeled ground robot.

� The robotic fish can not stop immediately on receiving a ”stop” command because
the resistance in water is much less than that on the ground. So the two fish shall
synchronize the arrival at the Attacking Points of the box, but it is hard to control.

� Waves occur when a robotic fish moves, which affect the movement of the robotic
fish and others even in static state. This leads to great difficulty in precise point-
to-point (PTP) control. Also the box will drift and rotate when waves occur, or
collided by the fish.

� Since it is very difficult to establish the hydrodynamic model of fishlike swimming
using analytical method, we can only predict approximately the response of the
robotic fish on a control command.

Under the these limitations, the box-pushing problem is decomposed into two sub-
problems: path planning, which is to plan a feasible path allowing the fish to reach
the Attacking Point under the limitation of the minimum turn radius; and motion plan-
ning, which is to lead the two fish to arrive at the Attacking Points synchronously, and to
control the direction of the box toward the goal location by coordinating the swimming
speeds of the two fish.

3.2 Comfortable Circle Approach to Path Planning

Before the fish can push the box, they shall first reach the box, so a feasibl e path
shall be planned for the fish to trace. Considering the difficulties in precise locomo-
tion control mentioned above, we employ the ”situated-behavior” method to reduce the
difficulties of path planning and action casting in the box-pushing task. This method
divides the environment into a set of exclusive and complete situations, and for each
situation, a behavior is elaborately designed to solve the situation associated problem
individually. The advantage of employing this method is that it is a ”divide and con-
quer” strategy, which reduces the task difficulty; in addition, the real-time behavior
coordination problem need not to be taken into consideration, since the situations are
complete and exclusive. These behaviors can also include and share low-level behav-
iors, i.e., obstacle-avoidance behavior. We propose a geometry-based implementation
of the situated-behavior method called Comfortable Circle Approach (CCA). Next we
will describe CCA in detail.

The Situations. The situations are obtained according to the relative states of the prob-
lem entities (i.e. the robotic fish, the box, the Attacking Points, and the goal location).
Shown in Fig. 2, the environment is divided into Box Region, Attacking Regions, Left
Forbidden Region, Right Forbidden Region, and Outer Region. The Attacking Regions
are semicircular regions centered at the Attacking Points with radius of 1/4 length
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(a) SYN situation (b) NSYN situation (c) NFAD situation

(d) FP situation (e) NFP situation

Fig. 2. Situations and Associated Behaviors Design

of the box. In these regions, the fish can attack the box directly. The boundaries of
the Forbidden regions are directed circles with constant radius, passing the Attacking
Points with directions the box direction. We assume that the radius is 1.3 length of the
minimum turn radius of the fish and call it a ”comfortable” radius which means that the
fish can turn comfortably with this radius at each speed. A directed circle with a ”com-
fortable” radius is called a Comfortable Circle. Here we discuss only the situations for
the Left Attacking Point and the fish whose goal attacking point is the left one. The
situations for the Right Attacking Point and the fish whose attacking point is the right
one are similar. Our objective is to plan appropriate paths which lead the robotic fish to
arrive at the Attacking Points with the box direction, in order to prepare for the next step
− box-pushing. We use a decision tree to define the set of situations according to the
relative states of the problem entities. The decision tree is traversed through binary deci-
sion rules according to several criteria (the situations are hand-designed, however, with
different criteria, different situations can be defined, and these situations are exclusive
and complete). As shown in Fig. 3, the inputs of the decision tree are the goal location
information and sensory information from the overhead camera, including the locations
and directions of the fish and the box. The current situation is identified according to
the input information. Finally we derive five complete and exclusive situations:

(1) SYN (synchronizing) situation: both fish are in the Attacking Regions and their
directions are feasible, that is, the directions are consistent with the box direction within
a constant limit (in our experiment, we select 45◦), as well intersect with the boundary
of the box )(see Fig. 2(a)).

(2) NSYN (not synchronizing) situation: the other fish is not in the Attacking region
or its direction is not feasible (see Fig. 2(b)).

(3) NFAD (not feasible attacking direction) situation: The fish is in the Attacking
Region but not with a feasible direction (see Fig. 2(c));
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Fig. 3. Decision Tree of CCA

(4) FP (Feasible Path) situation. First we give the following definitions.
Feasible Comfortable Circle:
Let P(x,y) denote the current position of the robotic fish, φ the current direction, and

Rc the comfortable radius, CC a comfortable circle, dir(x) an operator which represents
the direction of x, bl, br the boundaries of the Left Forbidden Region and the Right
Forbidden Region, the Feasible Comfortable Circle is defined as:

if there exists a CC passing P(x,y) with direction φ , and exists a common tangent
(ptan) between the CC and bl (or br), and dir(ptan) is consistent with dir(CC) and
dir(bl) (or dir(br)), then CC is called a Feasible Comfortable Circle associated with
the current posture of the fish.

free path:
A path which is not obstructed by obstacles is called a free path.
Semi-Feasible path (shown in Fig.2(d)):
A path from the current position of the fish to the Left Attacking Point, which is

composed of an arc of the Feasible Comfortable Circle, an arc of the boundary of the
Forbidden Region, and the directed tangent between these two circles.

Feasible Path:
A Feasible Path is a free Semi-Feasible path.

Based on the above definitions, FP situation is described as a situation in which there
exits at least one Feasible Path from the current position of the fish to the Left Attacking
Point (see Fig. 2(d)).
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(5) NFP (No Feasible Path) situation: there exits no Feasible Path from the current
position of the fish (see Fig. 2(e)).

Associated Behavior Design. The design of the behaviors is required to lead the ro-
botic fish to the destination posture with position the Left Attacking Point and direction
the box direction, along a fine path considering the limit of the minimal turn radius of
the fish.

(1) BSY N : The two fish push the box coordinately since they have synchronized,
while adjusting their heads toward the box direction (see Fig. 2(a)).

(2) BNSY N : The NSYN situation shall be avoided with our motion planning which
will be described later. Once this situation appears, the fish in position has to stop to
wait for synchronizing with the other fish (see Fig. 2(b)).

(3) BNFAD: In NFAD, although the fish is in the Attacking Region, it can not push
the box because it has not a feasible direction. In this situation, the fish moves toward
outside of the Attacking Region until a feasible path exits (see Fig. 2(c)).

(4) BFP: The fish approaches the Left Attacking Point along the shortest Feasible
Path (see Fig. 2(d)).

(5) BNFP: The fish approaches the Left Attacking Point along the shortest Semi-
Feasible Path while avoiding obstacle if the obstacle is near (within a specific distance
r to the fish)(see Fig. 2(e)).

3.3 Dual-Mode Fuzzy Logic Based Motion Planning

As mentioned above, it is difficult to realize precise control of the robotic fish. To syn-
chronize the arrival of the two robotic fish, and to move the box successfully to the
goal location, we employ fuzzy logic control method to plan the motion of the fish,
because rule-based fuzzy logic provides a scientific mechanism for reasoning and de-
cision making with uncertain and imprecise information. The mode switch between
FAST SWIMMING mode and SMOOTH SWIMMING mode is embedded in the fuzzy
logic control to satisfy the different performance requirements.

Motion Planning in Synchronizing Procedure. Aiming to direct the two fish to reach
the Attacking Points synchronously, we control the speeds of the fish when they are
approaching the Attacking Points with several fuzzy rules. The inputs are WL(i) and
WR( j), which are described as:

WL(i) = len(LP,Pi)+CNLob j, WR( j) = len(RP,Pj)+CNRob j, (2)

in which LP (respectively RP) denotes the Left (respectively Right) Attacking Point;
Pi (respectively Pj) the current position of fish i (respectively fish j, which is the other
fish); NLob j (respectively NRob j) is 1 if there is an obstacle on the planned path from Pi

(respectively Pj) to LP (respectively RP), and 0 otherwise; C is a positive constant,
and W L(i) (respectively WR( j)) represents the approximate time consuming of the
fish during approaching the Left (respectively Right) Attacking Point. Let VL (respec-
tively VR) denote the speed of the fish with role Left (respectively role Right). Firstly
WL(i) and WR( j) are represented by the linguistic fuzzy sets {VL,L,M,S}, abbrevi-
ated from VERY LARGE, LARGE, MEDIUM, SMALL, with the membership func-
tions (MF) shown in Fig. 4(a). V L, VR are represented by {F,M,S}, abbreviated from
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(a) MF of WL, WR (b) MF of VL, VR (c) MF of The Relative Angle

Fig. 4. The Membership Functions

FAST, MEDIUM, SLOW, with MF shown in Fig. 4(b). When WL(i) or WR(i) is un-
der a threshold (in our experiment, we select 200 cm), precise point to point control is
required. Considering that the head of the fish oscillates significantly with big oscil-
lating amplitude, SMOOTH SWIMMING mode (mode=0) is selected. While, when
WL(i) or WR(i) exceeds the threshold, since the robotic fish is far from the Attacking
Point, it moves to the point with FAST SWIMMING mode (mode=1), since it is unnec-
essary for precise point to point control. Let mode(i) denote the swimming mode of fish
i, some of the fuzzy logic rules are (for space limitation, not all of them are listed here):

1) If WL(i) is VL ∧ W R( j) is L ∧ W R( j) > 200, then mode(i)=1, VL is F , mode( j)=1,
VR is M;
2) If W L(i) is L ∧ WL(i) > 200 ∧ W R( j) is M, Then mode(i)=1, VL is F , mode ( j)=0,
VR is M.

The parameters of the membership functions can be derived and tuned through the
experiments, and the final speeds V̂L and ˆVR are computed using the Center-of-Gravity
(Centroid) defuzzification method.

Motion Planning in Coordinated Box-pushing Procedure. When the two fish are
both in SYN situation, they shall push the box coordinately toward the goal location
with their heads. Let θ denote the relative angle of the box direction to the goal di-
rection. The positive direction of θ is shown in Fig. 2(a). To move the box toward
the goal location, we devise that the direction of the box is controlled by coordinat-
ing the speeds of the two fish, which are derived through several fuzzy rules. Here
θ is the input, and VL, VR are the outputs. We represent θ by the linguistic fuzzy sets
{PB,PM,PS,Z,NS,NM,NB}, abbreviated from positive big, positive medium, positive
small, zero, negative small, negative medium, negative big, respectively. Let mode(L)
(respectively mode(R)) denote the swimming mode of the fish on the left (respectively
right) side. MF of θ are shown in Fig. 4(c). When |θ | exceeds a threshold (in our ex-
periment, we select 30◦), especially when the box is rotating away the goal direction, it
is very difficult for the fish to control the box toward the goal direction with SMOOTH
SWIMMING mode, although SMOOTH SWIMMING is more stable. This is because
the thrust force produced by the fish with SMOOTH SWIMMING mode is not enough
to change the direction of the box significantly in short time. Since the robotic fish
with FAST SWIMMING mode can produce bigger thrust force, when |θ | exceeds the
threshold, for example, when θ exceeds the threshold, the fish on the left side will select
FAST SWIMMING mode (mode=1). Let mode(L) (respectively mode(R)) denote the
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swimming mode of the fish on the left (respectively right) side. Some of the fuzzy logic
rules are listed here:

1) If θ is PB, then mode(L)=1, VL is F , mode(R)=0, VR is S;
2) If θ is PM ∧ θ > 30 , then mode(L)=1, VL is M, mode(R)=0, VR is S.

4 Experimental Results

Typical experiment scenarios are depicted in Fig. 5. The goal location is at the top left
corner of the swim tank, marked by a blue pole. If the location of the box is within a
distance of 35 cm (determined by the size of the box, and the pole) to the goal loca-
tion, we state that the box is moved to the goal location successfully. Fig. 5(a) shows
the initial scenario, in which the two fish start out along the paths planned by CCA.
The orange fish is assigned with role Left, while the yellow fish is assigned with role
Right. Fig. 5(b) shows the scenario in which the two fish are trying to synchronize with
different swimming speeds derived from the fuzzy logic rules. Since the yellow fish
is far away the Attacking Point, it moves with FAST SWIMMING mode and a higher
speed; while the orange fish swims with SMOOTH SWIMMING mode since it is near
the Attacking Point, and a lower speed to wait for the yellow fish to synchronize. In Fig.
5(c), the two fish have synchronized successfully. Fig. 5(d) shows the scenario at 20.9s.
Since the deflection angle of the box direction to the goal direction exceeds the thresh-
old, the orange fish swims with FAST SWIMMING mode, while the yellow fish moves
with SMOOTH SWIMMING mode, and the speeds of them are computed through the
fuzzy logic rules. In Fig. 5(e), the direction of the box has been gradually changed to-
ward the goal direction, and both fish move with SMOOTH SWIMMING mode. At
42.9s, the box has been pushed to the goal location successfully, shown in Fig. 5(f). For
videos of the experiments, please visit: http://www.mech.pku.edu.cn/robot/mfbp.html.

(a) 0.0 s (b) 3.0 s (c) 5.9 s

(d) 20.9 s (e) 26.9 s (f) 42.9 s

Fig. 5. Experiment Scenarios
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5 Conclusion

We have presented a coordination method for multiple robotic fish box-pushing. Con-
sidering the complexity of the underwater working environment and the particularity
of the movement modes of robotic fish, Comfortable Circle Approach has been pro-
posed to simplify the path planning and action decision. In addition, dual-mode fuzzy
logic method is employed to synchronize the motion of the two fish, and to control
the moving direction of the box by adjusting the swimming speeds of the fish. Experi-
mental results demonstrated that the proposed method is effective. Although the coor-
dination method was evaluated through the box-pushing task domain, it can be utilized
potentially to the object manipulation problem, or task domains which require coop-
eration of several smaller robots to move larger objects. In addition, our coordination
method can be regarded as an improvement of Kube’s work[10], in which a formalized
model of cooperative transport in ants was provided and implemented on several phys-
ical robots, however, their robotic system was not very efficient. Our future research
will focus on developing robotic fish with more locomotion modes, such as fast turning
swimming mode, low energy swimming mode, etc. In addition, we plan to equip the
fish with various sensors, so that the robotic fish is able to navigate autonomously in
unknown environments and react to the environment changes flexibly. Eventually, skill-
fully swimming, favorably maneuverable and intelligent robotic fish will be developed,
with which we can study coordination problem in more complex environments.

References

1. J. Yu, M. Tan, S. Wang, and E. Chen: Development of a biomimetic robotic fish and its
control algorithm. IEEE Trans. Sys. Man and Cyber. Part B, Vol. 34. (2004) 1798–1810

2. X. Tu and D. Terzopoulos: Artificial Fishes: Physics, Locomotion, Perception, Behavior. In:
ACM Computer Graphics Proceedings. Orlando, FL (1994) 43–50

3. J. Yu, and L. Wang: Parameter optimization of simplified propulsive model for biomimetic
robot fish. In: Proc. IEEE Int. Conf. Robotics and Automation. Barcelona, Spain (2005)
3317–3322

4. J. Yu, S. Wang and M. Tan: Basic motion control of a free-swimming biomimetic robot fish.
In: Proc. IEEE Conf. Decision and Control. Maui, Hawaii, USA (2003) 1268–1273

5. D. Barrett, M. Triantafyllou, D. K. P. Yue, M. A. Grosenbaugh, and M. J. Wolfgang: Drag
reduction in fish-like locomotion. J. Fluid Mech. Vol. 392. (1999) 183C212

6. M. J. Lighthill: Note on the swimming of slender fish. J. Fluid Mech. Vol. 9. (1960) 305C317
7. Gerkey, B.P., and Mataric, M.J.: Sold!: Auction Methods for Multirobot Coordination. IEEE

Trans. Robot. Autom. Vol. 18. (2002) 758–768
8. M. Sfakiotakis, D. M. Lane, and J. B. C. Davies: Review of fish swimming modes for aquatic

locomotion. IEEE J. Oceanic Eng. Vol. 24. (1999) 237–252
9. D. Barrett, M. Grosenbaugh, and M. Triantafyllou: The optimal control of a flexible hull

robotic undersea vehicle propelled by an oscillating foil. In Proc. IEEE AUV Symp. (1996)
1–9

10. C. R. Kube and E. Bonabeau: Cooperative transport by ants and robots. J. Robot. Auton.
Syst. Vol. 30. (2000) 85–101



Effects of Spatial Growth on Gene Expression
Dynamics and on Regulatory

Network Reconstruction

Jan T. Kim

School of Computing Sciences,
University of East Anglia, Norwich NR4 7TJ, United Kingdom

jtk@cmp.uea.ac.uk
http://www.cmp.uea.ac.uk/people/jtk

Abstract. Morphogenesis and the spatial structure of an organism have
repercussions on gene expression. These effects can influence the results
of regulatory network reconstruction. An integrated, flexible and exten-
sible computational framework for modelling gene expression dynamics
within spatially growing structures is developed and used as a test system
for evaluating a reconstruction algorithm. With complex morphological
structures, significant effects of spatial organisation on the reconstruc-
tion process are observed. The results also reveal that stronger regulatory
interactions result in more frequent cases of indirect regulation, posing
a challenge for accurate network reconstruction.

1 Introduction

Regulatory gene networks are a central mechanism of organising and realis-
ing complex biological processes and structures based on genetic information.
Since initial, now classical models, such as the NK model [1], there has been a
steady interest in understanding regulatory networks [2,3,4,5,6,7]. High through-
put “post-genomic” techniques, specifically microarrays for measuring gene ex-
pression [8,9], currently lead to renewed interest in biological networks [10,11],
and various suggestions for reconstructing regulatory networks from gene expres-
sion data [12,13,14,15]. However, understanding the relation between regulatory
network structure and the resulting gene expression dynamics remains a major
challenge [16]. Artificial Life simulations provide a means to advance scientific
understanding of gene expression dynamics in biological systems.

Complex spatial structures, which are key features of almost all biological
systems. The morphology of an organism is encoded by the genome, from where
it is decoded by regulatory networks. Conversely, spatial structures can have a
substantial impact on gene expression dynamics. The effects of spatial growth on
gene expression have to be expected to be significant for network reconstruction.
In this contribution, transsys simulations [4] are used to explore the impact of
morphogenesis and of other parameters on network reconstruction using the
algorithm by Rung et.al. [13].
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2 Methods

2.1 Concept

Transsys networks were generated as a target of reconstruction. Various types
of random network topology, as well as different characteristics of gene regula-
tion were used for network generation. Target networks were integrated into an
L-transsys Lindenmayer system. Development of this system was simulated for
a fixed time interval, after which expression data on all genes of the target net-
work is collected from the grown structure. For each gene in the target network,
a knockout mutant was generated and gene expression values were collected.
The resulting data set was used as input for regulatory network reconstruction.
Reconstruction was evaluated by comparing the reconstructed network to the
target network.

2.2 Modelling of Gene Expression in a Spatially Extending System

Generating Target Networks. Target networks were generated as random
graphs. The number of nodes (genes) was set to 100 and the number of edges
(regulatory interactions) was either set to 200 or to 500. Edges were drawn at
random according to the following random network models:
NK graphs [1] are networks in which each of the N genes is regulated by K

other genes, chosen at random. Thus, the incoming degree of all genes is K
(either 2 or 5), while the outgoing degrees are Poisson distributed.

Random graphs are constructed by choosing each of the possible edge with
equal probability. Differently from NK networks, both the incoming degree
and the outgoing degree are characterised by a Poisson distribution.

Scale free graphs are characterised by a power law distribution of both in-
coming and outgoing degrees.

Activating and repressing edges were generated equiprobably. Networks of the
same type and with the same edge density have identical topologies in this study.

For all genes, the default level of expression was set to 1.0+ rnd(0.01), where
rnd(0.01) denotes a random value from a uniform distribution over [0, 0.01[. A
new random value is generated each time expression of the gene is computed.
This source of variation is essential for allowing spatial gene expression patterns
to form. The default expression level is subject to modification by activation or
repression.

Activation and repression are described by two parameters, the maximum
amount of regulation amax, and aspec, which is the concentration of the reg-
ulator at which activation amounts to amax/2. These parameters were set to
the same values for all edges in a network. aspec was set to 0.1 in all simulations
whereas amax was chosen from {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. The parameters for
repressing edges, rmax and rspec, were always set to the corresponding activation
parameters.

The decay rate of all factors in the target networks was set to the same
value. Simulations were run with decay rates of 0.8 and 0.2. For the diffusibility
parameter, values of 0.1 and 0.3 were tested.
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Fig. 1. Final growth stages for the single shoot structure (left) and the Arabidopsis
thaliana model (right). Red and blue spheres represent represent meristems, i.e. growth
centres from which new morphological elements are generated.

Embedding Networks into L-transsys Systems. The process of morpho-
genesis within which gene expression dynamics controlled by the target network
takes place is externally specified in the scenarios studied here. Three morpho-
logical structures, depicted in Fig. 1, are used. The cell structure consists of
just one symbol, the cell, and no L-system rules. Therefore, no spatially ex-
tended structure develops. This serves as a control. The single shoot structure
starts out with one meristem, which produces a phytomer consisting of a leaf
and an internode (a stem piece) every 20 time steps. The Arabidopsis structure
is a rather coarse-grained L-transsys model of Arabidopsis growth, proceed-
ing through stages of rosette leaf growth with decussate and spiral phyllotaxis,
bolting, and flower formation.

All three structures are specified by a growth controlling transsys program
and an L-transsys specification. The factors and genes of the target network
are inserted into the transsys program. The target network does not have any
effect on morphogenesis, but growth of the plant structure does have effects
on gene expression dynamics. This ensures that all measurements of knockout
mutants are based on identical morphological structures.

This approach simulates reconstruction of a target network that does not or-
ganise morphogenesis, but may be informed by it. It was chosen here to enable
attribution of differences to individual morphological structures, rather than
to collections of mutant structures with complex and unfavourable statistical
properties. For example, if morphogenesis was controlled by the target network,
there may not be any growth in a significant fraction of knockout mutants. Such
non-growing mutants would be equivalent to the single cell structure, and conse-
quently, differences between the single cell and the more complex morphological
structures would be blurred.

Simulation of Gene Expression Measurement. 504 cases, resulting from
combination of 3 structures, 3 random graph types, 2 edge densities, 7 regulatory
strength settings, 2 decay settings and 2 diffusibility settings, were assayed. Each
structure was grown for 250 time steps, starting out with a single symbol. After
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the final time step, the expression level of all factors of the target network,
averaged over all symbols, was measured. The resulting vector of gene expression
levels corresponds to one microarray experiment in molecular biology.

2.3 Reconstruction of Regulatory Networks

The method for regulatory network reconstruction introduced by Rung et.al.
[13] uses a set of mutants, called knockout mutants, each of which has one
gene disrupted such that it encodes a non-functional gene product. For each
knockout mutant, and for the wild type as a control, expression of all genes is
measured. The results are assembled into an expression data matrix in which
the elements rij denote the logarithm of the ratio of the expression level of gene
i in the mutant with gene j disabled to the expression level of gene i in the
wild type. Subsequently, normalised values r̃ij = rij/σ̂ij are computed, where
σ̂ij are estimated standard deviations. As measurement is undistorted in the
simulations, this step was effectively omitted by setting all σ̂ij = 1.

The regulatory network graph is then reconstructed by starting with the
genes as isolated nodes and placing an edge from gene j to gene i if |r̃ij | ≥ γ,
where γ is a user-supplied threshold. For negative values of r̃ij (gene i expressed
at lower level in absence of gene j), an activating effect is predicted.

2.4 Analysis of Reconstruction

The threshold γ controls the sensitivity and the specificity of the reconstruction
algorithm by Rung et.al., low values providing a high sensitivity but low speci-
ficity while high threshold settings give good specificity at the expense of a low
sensitivity. Since choice of the threshold value is arbitrary in the sense that it is
not systematically deduced from the expression data, ROC (Receiver-Operator-
Characteristic) curves were used to assess the performance of reconstruction. A
ROC curve is computed by reconstructing networks with different threshold set-
tings, ranging from 0 to maxi,j |r̃ij |. For each threshold, sensitivity and specificity
are determined. Connecting these points yields the ROC curve. The area under
the curve indicates the potential of of the reconstruction procedure. A value of
1 means that perfect reconstruction is possible while a value of 0.5 indicates no
potential. By integrating over all possible threshold values, this approach allows
assessing the reconstructive potential independently of γ.

To further investigate the reconstruction process, the length of the shortest
connecting path, denoted by pij , was computed for all pairs (i, j) of genes in
the target network. For this purpose, no difference between activating and re-
pressing regulatory connections was made, both types were treated as directed
edges with length 1. For perfect reconstruction to be possible, there has to ex-
ist a γ such that ∀(i, j) : pij = 1 ⇔ γ ≤ |r̃ij |. A scatter plot of all pairs
(pij , r̃ij) reveals whether this condition is satisfied, and provides further insight
into the effects which the different variants of network structures and the param-
eters controlling gene expression dynamics have on the performance of network
reconstruction.
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2.5 Software

Generation of knockout mutants and collection of gene expression measurements
was implemented in Python,1 based on the transsys framework [4]. R [17] was
used for programming data analysis and visualisation. The code underlying the
results presented here will be made available on the transsys website,2 which
also provides further information on technical aspects of transsys.

3 Results and Discussion

3.1 Effects of Spatial Structure

Fig. 2 shows ROC curves for a random graph network, expressed in the single
cell and in the Arabidopsis structure. A clear difference between reconstruction
is observed. In the single cell case, almost perfect specificity is possible up to
a sensitivity of 0.95, while a significant decline of specificity is seen with the
Arabidopsis structure even at sensitivity levels below 0.5.
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Fig. 2. ROC curves showing the reconstructive potential for a random graph with
N = 100 genes and 200 edges, regulatory strength amax = 1 and a decay rate of 0.2.
Left: results with a single cell, right: results with the Arabidopsis structure.

The scatter plot of pij vs. r̃ij , shown in Fig. 3, reveals that this decline in
specificity is due to a substantial increase of variance in the r̃ij values. There
are gene pairs i, j separated by up to 9 network links (pij up to 9) and r̃ij > 2
observed in the Arabidopsis structure, while in the single cell, −0.297 ≤ r̃ij ≤
0.297 for all gene pairs with pij > 4. There is a clear trend that effects of a gene
knockout on the expression level are more pronounced if the disabled gene is
close within the regulatory network, but effects on genes that are distant in the
network are possible as well.

While there are substantial differences between reconstruction based on the
single cell and the Arabidopsis structure, the results obtained with the shoot and
the cell structures were not significantly different, as summarised in

1 http://www.python.org/
2 http://www.cmp.uea.ac.uk/~jtk/transsys/
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Fig. 3. Scatter plots of path length pij vs. normalised log ratios r̃ij for the same target
network as in Fig. 2. Left: results with a single cell, right: results with the Arabidopsis
structure. The gray area shows the range [−γ, γ] of r̃ij where no edge is predicted, for
γ = 0.297, the optimal γ value for the Arabidopsis structure.
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Fig. 4. Box-plots summarising reconstruction performance for the cell, shoot and Ara-
bidopsis structures. Boxes show interquartile range of the area under the ROC curve,
the horizontal line within each box shows the median value. The differences between the
structures are more pronounced with stronger regulatory interactions, as exemplified
by amax = 1 (right plot).

Fig. 4. The box-plots show a significantly lower reconstructive potential with
the Arabidopsis structure, as exemplified by the case discussed above, is gener-
ally observed with strong regulatory effects, provided by amax = 1.

Reconstruction performance was generally similar with the single cell and
the single shoot structure. This observation indicates that more complex spatial
structures have more pronounced effects on regulatory dynamics and network
reconstruction.

3.2 Effects of Regulation Strength

Regulation strength has a major impact on reconstruction. The scatter plots
shown in Fig. 5 show that with weak regulation with amax up to 0.4, there are
no significant indirect regulatory effects: For all gene pairs with pij > 1, the
corresponding value of r̃ij does not substantially deviate from 0. Consequently,
very accurate reconstruction can be achieved.
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Fig. 5. Scatter plots of path length pij vs. normalised log ratios r̃ij for an random graph
network with N = 100 genes and 500 edges. Left: amax = 0.4, middle: amax = 0.6, right:
amax = 1. Notice the different scale of the r̃ij axis in the right plot.
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Fig. 6. Box-plot summarising reconstruction performance as a function of regulatory
strength amax

With amax = 0.6, significant indirect regulatory effects occur, making perfect
reconstruction impossible, as the algorithm by Rung et.al. cannot distinguish di-
rect from indirect effects. With amax = 1, regulatory effects increase by an order
of magnitude and more overlap between direct and indirect effects that result in
γ ≤ r̃ij results. Overall, this results in a decline of reconstruction potential as
amax, and hence the extent of indirect regulation, increases, as summarised in
Fig. 6.

3.3 Effects of Network Structure

The effects of network structure on reconstruction are summarised by the ex-
ploits in Fig. 7. This analysis was restricted to the samples with stronger
regulation (amax ≥ 1) because this reveals effects that are obscured by the large
number of cases of near perfect reconstruction if the entire data set is included.

For the graphs with 200 edges, the median reconstruction potential achieved
for the three networks exhibits different levels of variance, but the median re-
construction potential is very similar. In contrast to this, the networks with
500 edges result in different reconstruction potentials; the random graph can be
reconstructed significantly better than the other types.

Considering that only one representative of each type and density has been
evaluated, the results presented here are not sufficient for a deeper analysis of
the effects caused by network structure. It is, however, interesting to note that
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Fig. 7. Box-plots summarising reconstruction performance for sparse (200 edges, left
plot) and the dense (500 edges, right) variants different types of networks (NK graph,
random graph and scale free graph), for networks with amax ≥ 1

effects of network structure on reconstruction performance depend quite strongly
on parameters of gene expression such as strength of regulation.

4 Conclusion and Outlook

Artificial Life simulations provide a basis for evaluating methods to reconstruct
regulatory networks based on gene expression measurements. Here the transsys
framework was used to investigate the reconstruction method by Rung et.al.

This algorithm assumes that significant changes in expression levels resulting
from a gene knockout indicate a direct target gene. The results presented here
show that indirect regulation is more frequent in systems with stronger regula-
tory effects. It would therefore be important to develop criteria for estimating
the extent of indirect regulation, and to further develop methods to identify
cases of indirect regulation to refine reconstruction by improving specificity.

The results presented here indicate that embedding gene expression within
a complex, growing spatial structure results in the formation of patterns that
are different from those observed with the same dynamical system within a spa-
tially unstructured environment. This is, in fact, a classical topic in Artificial
Life [18,19]. In the interest of focusing on the effects of spatial growth on gene
expression dynamic and on network reconstruction, the converse effects of gene
expression on morphogenesis have been excluded in this study. This model ap-
proximates the case of subnetworks that realise functions other than morphogen-
esis, but it does not adequately capture networks that organise morphogenesis.
This important case will be addressed by studying networks evolved to control
morphogenesis. An evolutionary model, based on LindEvol [3], is currently being
developed for this purpose.

The framework presented here provides points of departure for various further
studies. More detailed studies of the impact of decay and diffusion on expression
dynamics and network reconstruction are currently underway, and the spectrum
of network topologies and dynamical parameters will be further extended. Stud-
ies of noise effects will use simulation of measurement errors, as described in
[20], and employ the standard deviation of gene expression within the spatial
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structures as a measure for biological noise. This will allow to include the nor-
malisation step used by Rung et.al. in the evaluation, and make the framework
more useful for testing other reconstruction methods.
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Abstract. Song communication of artificial birds is simulated in a 2D
space, in which male and female birds communicate and then leave their
offspring based on their communication performance. The communica-
tion is modeled as interaction between different types of finite-state au-
tomata, one for song production by males, the other is for song evalua-
tion by females. In addition, an abstract space is introduced for studying
how spatial structure affects the evolution of song communication sys-
tem. We find a correlation between global spatiotemporal patterns and
local communications between artificial birds. In particular, we report a
habit segregation phenomenon of our simple ecosystem.

1 Introduction

Recent studies of a particular songbird have shown that males have complex
rules for singing (henceforth, song grammar), which are represented by finite-
state automata (FAs). In addition, males that can sing complex songs tend to
be preferred by females [9, 13, 17] These findings give us an insight that the
complexity of song rules can be driven not only by natural selection but also by
sexual selection [13].

So far, sexual selection has been studied in a variety of ways focusing on dif-
ferent aspects [2,8,11]. By modeling song communication, we have been studying
the co-evolution of males and females modeled as two types of FA, interacting
(communicating), replicating (producing offspring) in a simple ecosystem. With
a homogeneous space (e.g. bird-cage), in which every male has an equal chance
to communicate with every female, it has been clearly demonstrated that the
complexity of song grammars could evolve as a result of the diversity of female
preferences [14, 15]. However, due to the lack of spatial structure, open-ended
evolution is missing in our model; for example, the males with similar complexity
of song grammars occupied the ecosystem in the later stages of the evolution.

The importance of space for open-ended evolution has been indicated in
some simulation studies. [6, 5, 12]. One of the main reasons is that a model
with a spatial structure allows unbounded evolution of strategies. For example,
Lindgren (1994) demonstrated the cooperation and community structure in an
artificial ecosystem by considering the iterated Prisoner’s Dilemma game in a

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 835–844, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2D lattice space [6]. Some field research of song birds has also been focused
on spatial structure investigating geographical variation in songs [16]. To study
diverse evolution of song grammars, we extend the previous model by introducing
a 2D space. We study the correlation between the spatiotemporal patterns of
birds and their evolving communication features. Finally we discuss essential
differences in evolution between a homogeneous and a 2D space.

2 Modeling

2.1 Song Communication

We introduce the following song communication along with the previous homo-
geneous space model, which was inspired by experimental observations [3, 15].
Real female finches do not sing during communication with males. Instead they
may synchronize their body motion with the males’ song. In our artificial model,
a male sings according to his song grammar and a female inserts a special symbol
when the male pauses. This behavior of the females we call interjection.

In sexual selection, novelty may play a key role because courtship songs seem
to be sexual displays for tempting females [7,4,8]. So we assume a song to which
a female can interject perfectly is boring for her, i.e. has a lack of novelty. In
other words, a female must make at least one mistake in interjection in our model
(henceforth, this is called the novelty condition). Unless the novelty condition
is satisfied in courtship songs, the males involved are not eligible candidates for
mating.

2.2 Artificial Birds

To model the song communication described above, two different types of au-
tomaton (FA) are employed. A male has a song grammar modeled as a sequen-
tial machine: G = (Q, Σ, Δ, δ, λ, q0), where Q is a finite set of states, q0 is an
initial state, Σ is a finite set of input symbols, Δ is a finite set of output sym-
bols, δ is a state transition function, Q × Σ → Q, λ is an output function and
Q × Σ → Δ [1]. In this model, Δ = {blank, A, B, ..., J}, where each letter de-
notes a song chunk and ‘blank’ denotes a silent interval between chunks. A male
sings (outputs chunks) in accordance with his song grammar G. A collection of
combinatorial chunks between blanks represents a phrase and the whole output
sequence expresses a courtship song.

To estimate the structural complexity of a song grammar, the linearity (LI)
of a FA is defined as Nmale

node /Nmale
arrow, where Nmale

node denotes the number of nodes
and Nmale

arrow denotes the number of arrows leaving from a node. If Nmale
node = N ,

this value ranges between 1/N ≤ LI ≤ 1 as Narrow varies from N2 to N . Thus
more complex song grammars have lower values of LI.

On the other hand, a female has a preference P expressed by a FA that
determines the timing of interjection: P = (Q, Σ, δ, q0, F ). Here Q, Σ, δ, and
q0 are the same as above, and F is a set of accepting states, which is a subset
of Q. A female changes her internal state by listening to a song (receiving a
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start q0 endq1
G

q2
blank

B

q0

C, E, F, G, H q1

blank, A, B, J

q2
D, I

A, E, J

B, D, F, G, H, I

blank, C

blank, A, F, G, J

B, C, D, E, I

H

Song gramamr (G)

Preference (P)

Communication

Courtship song:  G_B_B_G_G_G_B_B_G_G_B...

Interjection:   #__#_##__##__#_##__#_...

Fig. 1. Example of song grammar, mat-
ing preference and communication. The
top FA represents a male’s song gram-
mar (G) and the middle FA represents
a female’s preference (P ) for courtship
songs. A communication of these birds
is illustrated in the bottom. ’#’ denotes
a interjection and ’ ’ denotes a silent in-
terval.

Male Layer Female Layer

2D Space

Communication 

     vs. (8)

Offsprings  (2) (3)

Mating  

Selection by score

's territory 's territory

Fig. 2. Schematic representation of the
2D simulation. The space consists of two
lattice layers. One bird may dominate
each cell.

song sequence as an input) and interjects when her internal state becomes an
accepting state. When a female hears her favorite phrases (favorite arrangements
of chunks) and interjects to the breaks, blank, of a song while listening, it is
deemed as a successful interjection. An example of FA of a male and a female
and their song communication are illustrated in Fig.1.

2.3 Spatial Structure

We introduce a space consisting of a square lattice (i.e. Moore neighborhood)
with rigid boundary. The entire space has a double-layered structure; a male
and a female layer are constructed on the lattice (see Fig.2). Then males and
females live in their respective layers. Only one bird may dominate each cell of
each layer. In each layer, the Moore neighborhood of a bird is considered his or
her territory.

2.4 Courtship and Mating

A male selects a female randomly from his territory and sings to her for song
length Lsong in accordance with his song grammar G. In total, a male sings for
up to Ltotal

song, where Ltotal
song denotes the total length he can sing. For example,



838 K. Sasahara and T. Ikegami

if a male has Lsong = 10 and Ltotal
song = 80, he sings to eight females within his

territory in total. In a single time step, half of all males randomly selected behave
as mentioned above.

In a communication with a male, a female hears his song by interjecting
with her preference P . In proportion to the successful interjection (Nsucc

interj), the
communication score is assigned as follows:

S =
1

N thresh
interj

min(Nsucc
interj , N

th
interj) +

Nsucc
interj

Nall
interj

+
Nchunk

Lsong
(1)

where, 0 ≤ S < 3. The first term denotes the evaluation of the number of
successful interjections; when Nsucc

interj ≥ N thresh
interj , this term becomes one (i.e. the

female’s evaluation is saturated). The second term denotes the success rate of
interjection. The third term denotes the fraction of non-empty chunks in a song.
In total, the communication score considers the evaluation of both quantity and
quality of interjection, and the richness of chunks. A female evaluates all songs
that she hears. According to the communication scores, each female selects the
male with which she has the highest communication score as a mating partner.

In this model, polygamy is adopted as a mating style. Thus a male favored by
many females can leave many offspring; the sons inherit song grammars similar
to their father’s.

2.5 Evolution

The number of offspring is calculated as Coffs · S, which is proportional to the
communication score. A female produces offspring in either her or her mating
partner’s territory. For example, if a female has two sons and three daughters,
she randomly leaves the daughters in her territory and the sons in that of her
partner (see Fig.2).

Then their offspring’s genders are randomly assigned and they are added
into the ecosystem as new child birds. Since child birds learn songs from their
fathers or may have similar song preferences to their mothers as a result of their
upbringing, their characters become similar to those of their parents. In our
model, therefore, the child birds inherit FAs similar to their parents, changed
according to one of the following genetic mutation operations (the frequency of
each mutation is the same):

(a) Arrow mutation: Select an arrow of the FA at random and change the
transition with the number of nodes remaining fixed. The probability of
adding a new transition is 1/N total

chunk, where N total
chunk is fixed at 11.

(b) Node mutation: Change the number of nodes (±1) and then add or remove
arrows as required. The probability of adding a new transition is same as
above.

(c) Random mutation: A new FA is made at random.

These (a)-(c) express the possible inaccuracy in child birds inheritance of their
parents’ characteristics, song grammars G and preferences P . In particular, the
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accuracy of inheritance is highest in (a). On the other hand, (c) represents com-
plete failure to inherit any characteristics from the parents.

Moreover, the following mutation is performed for the male child birds:

(d) Song length mutation: Change Lsong (±5), and change Ltotal
song (±2)

After both production and mutation of all offspring, selection is performed to
all birds. In parent birds, it depends on the highest scores they got; in child birds,
it depends on the score their parents got. Then, in every cell of the male layer,
only the male with the highest score can survive. The same holds for females.

3 Simulation Results

We show some typical results of our 2D simulations. At the initial state, every
male and female had a FA constructed randomly with Nnode = 2. A 100 × 100
lattice was adopted, and 10000 individuals were set in the male and female layer,
respectively. The other parameters are listed in table 1. To aid comparison, these
are almost the same as those used previously [15].

Table 1. Parameter setting

Initial males Nmale = 10000, Nmale
node = 2, Lsong = 10, Ltotal

song = 50
Initial females Nfemales = 10000, Nfemale

node = 2
Communication N total

chunk = 11, N th
interj = 100 (c.f.(1)), max(Ltotal

song) = 500;
half of all males communicate in one time step

Mating Coffs = 1.5; polygamy
Spatial structure a 100 × 100 lattice (rigid boundary) ×2

3.1 Global Dynamics

A global dynamics of the 2D model is shown in Fig.3: (a) communication fea-
tures, (b) communication score, (c) the number of nodes of males’ and females’
FAs, (d) song complexity. In Fig.3(a), the average total song length (Ltotal

song) lin-
early increased toward the maximum length (500) and then remained saturated.
The average song length (Lsong) was suppressed under 40 during the early stages
of the evolution. Around t = 7800, then, Lsong rapidly increased to about 200
for the next 5000 time steps and settled down to about 160. Note that the ratio
of Lsong to Ltotal

song represents the number of male courtships each time step. The
change of Ltotal

song/Lsong indicates that most of the males had been singing short
songs to many females in the early stages of the evolution; whilst after t = 7800
they had been singing longer songs to fewer females. This is considered as a
change in courtship strategies depending on song length.

The communication score also increased after t = 7800 in Fig.3(b). In particu-
lar, a component of the score, ’the quantity of interjection’ (dotted line), abruptly
increased after the emergence of males with longer songs. Such courtship strate-
gies were observed in our previous simulations of a homogeneous (bird-cage)
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Fig. 3. Global dynamics of the 2D space model: (a) Males which could sing longer
songs emerged at about t = 7800. (b) The quantity of successful interjection increased
rapidly after the emergence of the males with longer songs. (c) Complex females with a
bunch of nodes were observed from t = 5000 to 10000. (d) The complexity and novelty
of songs increased gradually over time.

space, although much more time was needed for the appearance of males with
longer songs [15].

However, the evolved females look different from ones obtained in the pre-
vious model. If we look at the average number of nodes in males and females
(Nmale

node and Nfemale
node ) in Fig.3(c), most of the females developed FAs with about

Nfemale
node = 10 before t = 5000. Then, the females with a large number of nodes

had been dominating the space from t = 5000 to 10000 (also see Fig.4). Note that
when females’ FAs have many internal states (i.e. many nodes), their preferences
can be very complex. Such complex females were not observed in the previous
model. Unexpectedly, after t = 10000, the complex females disappeared.

In Fig.3(d), we see that the structural complexity of song grammars was in-
creasing (i.e. LI was decreasing). This trend was accompanied by the emergence
of males with longer songs. The number of novel songs also increased according
to the alternation of courtship strategies. So far, we have seen that the change
of courtship strategies and song complexity depends on song length.
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(b) t = 7800
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(c) t = 9600
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Fig. 4. Communication features as spatiotemporal patterns. The vertical and horizon-
tal axis is the position of birds. (a) There is no correlation in communication features
of males and females. (b) The male and female layer become correlated after t = 7800.
(c) Habitat segregation of birds is clearly observed in between the number of nodes of
females and the song length of males.

3.2 Spatiotemporal Patterns and Communications

Fig.4 shows snapshots of the spatiotemporal patterns of communication fea-
tures: the number of nodes in females’ FAs, song length and the number of both
novel and non-novel songs. Males which could sing longer songs did not exist
in the male layer at t = 6000. Meanwhile, complex females with many nodes
dominated the female layer. At this time, there was no correlation between the
spatiotemporal patters of the song length of males and the number of nodes in
females’ FAs.

As the males with longer songs dominated the space, the spatiotemporal
patterns of communication features mentioned above became correlated. For
example, similar patterns are observed in both Nfemale

node and Lsong in Fig.4(b);
that is, the males with shorter songs and the females with many nodes co-evolved,
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dominating the same part of the space. Such a correlation became prominent at
t = 9600, at which the ’habitat segregation phenomenon’ was observed. Fig.4(c)
clearly shows the coexistence of specific males and females, in which the males
with shorter songs and complex females with many internal states (i.e. with a
high number of nodes) aggregated in the upper-left corner of the space while the
males with longer songs and simple females with a moderate number of nodes
(Nfemale

node ∼ 10) occupied the remaining area.
This habitat segregation was largely concerned with the emergence of longer

songs because it happened during the transition period from shorter to longer
songs. After t = 10000, the habitat segregation phenomenon began to be dis-
rupted, and consequently the males with longer songs and simple females began
to dominate the space. In the later stages of the evolution, such a phenomenon
was not observed.

3.3 Complexity of Mating Preferences

Fig.5 shows histograms of the total communication score of simple females
(Nfemale

node < 10) and complex females (Nfemale
node > 30) at t = 9600. It is in-

teresting to note that during the habitat segregation, the simple and complex
females obtained comparable scores; S = 1.3 ± 1.2 and 1.0 ± 1.2, respectively.
However, they differ in the distribution of scores; the histogram of the complex
females has three peaks, while the simple females’ histogram has one peak. Each
peak reflects a different strategy of successful interjection depending on males’
song length.

In Fig.4(c), novel and non-novel songs were both aggregated in the upper-
right area where females could distinguish them by having a large number of
internal states (nodes) in their FAs. The reason is that such females are sensitive
to the order of inputs, so that they can predict song inputs better than those
with a few nodes, if songs are short enough. Those females could therefore leave
their offspring successfully.

On the other hand, we see from Fig.6 that the simple females (Nfemale
node < 10)

tended to get higher scores (more than six) for longer songs at t = 9600. This
shows that simple females having a moderate number of nodes (about 10) were
advantaged in successful interjection to longer songs. The habitat segregation phe-
nomenon broke down as the offspring of the simple females dominate the space.

4 Discussion

By introducing a 2D space structure, we demonstrated the evolution of song
communication of artificial birds. We focused on the global spatiotemporal pat-
terns and local communication features in artificial birds. The global behaviors of
the homogeneous model and the 2D spatial model had a number of common fea-
tures. For example, as with the previous model, males with longer songs emerged
thereby changing courtship strategies and song complexity in the evolution of
males [15]. This shows that the homogeneous model is an adequate mean field
approximation of the 2D spatial model.
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On the other hand, there were also significant differences from the previ-
ous model; evolution in the 2D space was more diverse than in the homoge-
neous model. For example, we observed the transition from complex females
(Nfemale

node > 30) to simple ones (Nfemale
node < 10). Such complex females with

many nodes were not observed in previous simulations. Furthermore, the habi-
tat segregation lasted for about 2000 time steps in the evolution. During this
period, males with shorter songs and complex females had been dominating the
upper-left region of space while the males with longer songs and simple females
dominated the rest of the space.

We did not assume any inhomogeneity in the 2D space. The co-existence and
co-prosperity of the specific males and females did not result from geographic
variation (e.g. obstacles or other discontinuities). Instead, the habitat segregation
was self-organized and maintained dynamically by song communication itself.
Our simulations illustrate that a spatial structure can enhance the diversity of
song communication system.
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Abstract. In a recent article Chu et al. presented a computational
model investigating the evolutionary origin of so-called uptake signal
sequences in bacteria. In that contribution the authors used an agent-
based approach. The main aim of this article is to understand the fitness-
landscape on which the agents operate. We propose such a fitness-
landscape and discuss its implications. This opens the possibility to use
GAs for future simulations rather than the computationally expensive
agent-based model.

1 Introduction

Many species of bacteria are, at least under certain conditions, competent mean-
ing they have the ability to take up (relatively short) DNA fragments from their
environment through genetically programmed developmental pathways[7,12,9];
natural competence is only one type of horizontal gene transfer available to
bacteria. The others are conjugation and transduction. Those are not genetically
controlled but are rather mediated by direct cell contact and phages respectively.

While many of the competent bacterial species are in-discriminant as to what
type of DNA they take up, others have a strong preference for conspecific DNA
fragments, i.e. DNA from dead members of their own species. Some of the species
with this preference have a highly repeated uptake signal sequence (USS) on their
DNA[10]. The USS mediates the uptake of DNA fragments from the environ-
ment. Examples of such species are Haemophilus influenzae, Neisseria gonor-
rhoeae, or N. meningitidis.

In H. influenzae[6,11] the USS is 9 bp long (AAGTGCGGT) and relatively evenly
distributed throughout the DNA. Being repeated over 1400 times (on both
strands) the USS is statistically highly overrepresented on the DNA; on a ran-
dom DNA with the same G/C content one would only expect approximately
8 copies. About 34% of the USS are in non-coding parts of the genome (which
makes about 10.4% of the DNA). Bakkali and coworkers[1] suggested that the
remaining 56% of USS are contained in parts of genes that code for non-essential
parts of the protein. USS in other species have similar statistical properties.

Researchers consider two scenarios[1,4,9] for the evolutionary origin of USS:
The “USS First” scenario states that naturally competent bacteria had a
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certain preference to bind to USS. The high USS content is a result of recombi-
national inclusion of bound DNA fragments containing USS. This is opposed to
the “Preference First” scenario according to which conspecific DNA is more
beneficial than non-conspecific DNA. The USS evolved as a signal to allow bac-
teria to decide whether a DNA fragment stems from a member of their own
species or not. Those bacteria that could effectively recognize conspecific DNA
fragments had higher fitness.

Biologists have recently started to doubt that a USS can actually emerge in a
“Preference First” scenario, arguing that this would require biologically unreal-
istic group selection[8]. In response to that Chu et al.[2,3] used a computational
model to demonstrate experimentally that under the assumption of the “Pref-
erence First” scenario a USS actually emerges under a wide range of conditions
(i.e. parameter settings).

Chu’s model is an individual-based model with adaptive agents[5]. The fit-
ness of agents is not evaluated according to a pre-defined fitness-function, but is
an emergent result of the biologically motivated behavioral rules of the agents.
However, in order to develop a clearer understanding of both the dynamics
of the model and of the evolutionary challenges of real bacteria a clear un-
derstanding of the fitness-landscape for the evolution of uptake signals is
essential.

In real biological systems it is often not possible to actually specify such
a fitness-landscape. In this article we will argue that the emergence of USS is
an exception in this respect. In section 4 we will specify a good approximation
for a fitness-landscape capturing the essential features of the evolution of USS.
The model itself will be described in section 2 and the results of one typical
simulation run are presented in section 3. Finally, section 5 provides a discussion
and a conclusion.

2 The Model

In this section we provide an informal overview of the basic elements of the com-
putational model. The bacteria (“agents”) live in an computational environment
that contains strings of the letters a,c,g,t of length f (the DNA fragments).
At every time-step the environment is replenished with alien fragments, i.e. ran-
domly generated DNA fragments.

The agents themselves have a DNA of length l � f , i.e. strings of a,c,g,t.
The main activity agents engage in is the uptake of DNA fragments from the
environment. Before uptake, agents compare the candidate DNA fragment under
consideration with a specific sub-sequence of their own DNA; the length of this
subsequence is u < umax, where umax is determined by the user at compile-time.

Agents mainly die because of over-crowding. The environment in which agents
live is assumed to have a limited carrying capacity. Once this upper limit is
reached, for every new born agent, the oldest agent currently in the system
will be killed. Another possible reason for the death of an agent is old age.
Whenever an agent is killed, a randomly chosen piece of its DNA is placed into
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the environment. These pieces taken from agents constitute the second type of
DNA, which we will refer to as bacterial fragments.

Agents can give rise to offspring if they have collected enough pay-off. Newly
born offspring might be mutated. There are several ways in which mutations can
affect the agent: Firstly, the DNA itself might be changed (either through point
mutations or copy-mutations). Secondly, mutations might change the length or
position of the sub-sequence that determines the receptor sequence.

The following algorithm is used to update the agents:

1. Initialise the population of agents by endowing them with a randomly gen-
erated DNA of fixed length l.

2. Specify for each agent a random subsequence of the DNA with maximal
length umax; this subsequence functions as receptor sequence s.

3. Seed the environment with randomly generated DNA fragments of length f .
4. Update all agents as follows:

(a) Check k DNA fragments from the environment for the sequence s.
i. If no fragment contains s, then take the last fragment.
ii. If a match is found, then take the matching fragment and abort

search.
(b) Exchange the fragment for payoff points. Randomly generated (“alien”)

fragments and fragments taken from dead agents (“bacterial”) receive
different amounts of payoff.

(c) If the accrued number of payoff points exceeds a certain threshold then
reproduce.
i. If the system has reached its carrying capacity, then kill off one of

the oldest agents to create space for offspring.
ii. Offspring is mutated with probability mut in one of the following

ways:
– A point mutation of the DNA
– A copy-mutation of the DNA
– Change the subsequence of the DNA that is used to determine s

in one of the following ways:
• Shift it by one, either to the left or to the right
• Adjust its length by ±1 either to the left or to the right

(d) If an agent has reached the maximum age, kill it.
5. For each agent killed in this time step choose a random piece of its DNA of

length f and place it into the environment.
6. Refill the environment with randomly generated DNA fragments of length

f .
7. Goto 4.

3 A Typical Simulation Run

An exhaustive discussion of experimental results under various parameter set-
tings can be found in [2,3]. In this section we will only briefly describe one typ-
ical simulation run showing the essential features of the emergence of USS (see
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Fig. 1. Results from a typical simulation. We use the parameters in table 1. Left: Time
series of the length of the reference averaged over the population. One measurement
is taken every hundred time steps. Right: The number of repeats of the reference
sequence on the DNA. Note that this measure is very noisy. Particularly, there exist
some agents with very short reference sequences that cause considerable fluctuations
of the average value of the repetition of the reference sequence.

figure 1; see table 1 for the parameters used). We found that the behavior of the
model is best understood by looking at the behavior of the following variables
over time:

– Length of the Reference: This variable measures the length of all the refer-
ences in the population averaged over the population.

– Repetitions of Reference: Measures the number of repetitions of the reference
sequence of an agent on her DNA averaged over the population.

An efficient USS must be neither too short nor too long, thus maximizing the
agents’ ability to find the USS on conspecific DNA fragments while minimizing
false positive recognitions. Furthermore, in order to function effectively as an
uptake signal, a USS needs to be highly repeated on the DNA. Thus, if a USS
emerges in the current model, we would expect the reference sequence to be
rather short, and also highly repeated on the DNA.

In figure 1 the emergence of a USS in the population is indicated by the
discontinuity between time step 500000 and 600000; at this time the average
reference length drops to a low value and the average number of repetitions of
the reference sequence on the agents’ DNA increases. Note that some of the
repetitions of the reference sequence are due to very short reference sequences in
the population. However, the emergence of a USS is also indicated by a sharp in-
crease of the rate of correct recognitions of bacterial fragments (data not shown).
We thus conclude that in this particular run the USS emerges.

4 The Reduced Fitness-Landscape

Agent-based models such as the present one do not assume a pre-specified fitness-
landscape (for example a fitness function), but rely on implicit fitness that emerge
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from the actions and interaction rules of the agents. Those actions/interactions
are in turn motivated by the problem at hand (in this case the evolution of USS
mediated uptake). Particularly if the interactions between agents is relevant for
their reproductive success, then it might not be possible to describe a relevant
fitness-landscape for the particular model. In the present case, however, there is
no direct interaction between the agents. A complication of the current model
is that at each time the fitness of a population partly depends on the DNA of
past populations, as fragments taken from them serve as food for the current
population. This might effectively prevent us from finding a general description
of the fitness-landscape. However, if we assume that the DNA of the population
changes only slowly compared to generation times, then we can also assume
that past generations (and thus the bacterial fragments that are currently in the
environment) will be very similar to the current population. A possible measure
of the fitness of an agent is thus the probability with which she would find her
reference sequence on a randomly taken piece of her own DNA of the length of a
food fragment, while at the same time avoiding false positive recognitions. This
measure is not a completely accurate description, but it provides nevertheless
some important insights about the evolutionary pressures the agents face.

Table 1. The values of the para-
meters used in the simulation runs
presented in section 3

DNA length 10000
World Size 30
population max. size 300
mutation Rate 0.9
energy for bacterial
fragment

3

max. number of frag-
ments presented to
agents

20

size of fragment 100
min. energy to repro-
duce

6

maximum lifetime 10
limit lifetime 20

Conventionally fitness-landscapes are
considered over the space of possible genetic
configurations; in the particular case there is
another useful representation. In the current
model the fitness of agents primarily depends
on the reference sequence and how often it is
repeated on the DNA, whereas the particu-
lar letter sequence of the DNA is irrelevant. It
is therefore instructive to consider a reduced
(and easy to represent) fitness-landscape first
in order to generate an understanding of the
adaptive pressures involved.

Let the length of the DNA be l, the frag-
ment size f , the length of the reference se-
quence u and the number of repetitions of
the reference sequence on the DNA n. Then
the probability that a random fragment of
length f taken from a DNA will contain a
specific signal is equal to the probability that
at least one of the last f − u letters of the
fragment contains the last letter of a copy of
the reference sequence.

P1 = 1 −
(
1 − n

l

)f−u+1

In order to calculate the fitness it is also important to take into account the
possible influence of false positive recognitions. In order to estimate this we need
to know the probability that a random sequence of length f contains the specific
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Fig. 2. The reduced fitness-landscape over the number of copies of a signal and the
signal length (according to eq. 4). For this particular graph we assume a fragment size
of 150 and DNA length of 10000. The right figure is a blow-up of the left figure. Note
that agents will be very restricted in the possible paths to climb the fitness-landscape.
See main text for an explanation.

reference sequence of length u. The probability that a random sequence contains
at least one such sub-sequence is equal to the probability that it does not con-
tain none. This probability can be calculated by using a simple sliding window
method. The first window covers the first to the u-th letter of the fragment. The
probability that this window is equal to the reference sequence is 1 − (1/4)u.
The second window covers the second to the (u + 1)-st position of the fragment
and has the same probability not to contain the reference sequence. Altogether,
we have to consider f − u + 1 windows to make sure that the entire fragment
does not contain any reference sequences. We thus obtain the probability that a
random fragment contains at least one copy of the reference sequence.

P2 = 1 −
(

1 −
(

1
4

)u)f−u+1

Having calculated those probabilities, we can now give an estimate for the re-
duced fitness of an agent, based on the observation that an agent is fitter if it
is efficient in recognizing fragments taken from its own (or very similar) DNA
sequences without mistaking random sequences for bacterial fragments.

Fit = P1(1 − P2) (1)

While this reduced fitness-landscape allows us to calculate the associated fitness
of an agent given its DNA and GENOME, it does not allow us to directly show
what fraction of the possible genomic configurations correspond to a particular



A Fitness-Landscape for the Evolution of Uptake Signal Sequences 851

fitness-value; another drawback is that it somewhat misrepresents the neighbor-
hood relations of points as not all points that are close to each other on the
reduced fitness-landscape are also close to each other in the un-reduced fitness-
landscape over the genomic space. To see this, consider as an example the case
of a DNA of length 10 and a signal of size 6. If the DNA is homogeneous, that is
its entire sequence consists of the same letters, then there will be 5 copies of the
signal on the DNA. No mutation will be able to take the agent to the neighboring
point in the reduced fitness-landscape with 6 copies of the signal and a reference
length of 6 as this does not correspond to any possible genomic configuration.
On the other hand, a point-mutation within the reference sequence will imme-
diately take the agent to a place on the reduced fitness-landscape corresponding
to a reference sequence of length 6 and one copy of it. Thus, while the pro-
posed measure of fitness does allow us to calculate the fitness of any given agent,
it does not truthfully reflect neighborhood relations between possible genomic
configurations of agents.

In all simulations agents are initialized with random genomic configurations
(that is the DNA and the reference sequences will be random). Consequently,
the reference sequence will take a random value from one to the maximally
allowed value. The probability that the reference sequence is short (say <12)
is 12 divided by the maximum allowed size of the reference sequence; for high
maximum allowed values it might thus be relatively small. The probability that
a random DNA contains two copies of a longer reference sequence is vanishingly
small for all DNA lengths we simulated. Thus, initially most agents are in the
the one-dimensional sub-space n = 1 (compare figure 2) of the fitness-landscape;
in figure 1 this corresponds to few repetitions of the reference sequence before
the emergence of the USS. As can be seen from figure 2 in this part of the
fitness-landscape the fitness is very low.

From there, there are two ways to go: Firstly, copy-mutations might increase
the number of copies of the reference sequence. The probability P3 that a copy-
mutation creates a new copy of the signal is the probability that the source of
the copy-mutation contains at least one copy of the relevant sequence and that
the target does not contain any. If the length of the copy-mutation is c, then
the former probability is equal to the probability that the last c − u + 1 letters
of the source area of the copy-mutation contain the last letter of one of the n
repetitions of the reference signal; similarly, the probability that the target does
not contain any letter of a copy of the reference sequence is the probability that
none of the letters of the target area and none of the u letters to the right of the
target area contain a last letter of the reference sequence.

P3 =
[
1 −

(
1 − n

L

)c−u+1
]
·
(
1 − n

L

)c+u−1
(2)

The probability that a copy-mutation produces a new copy of the reference se-
quence depends on the length of the reference sequence. The longer the reference
sequence the more unlikely it becomes that a copy-mutation creates a second
copy of the reference sequence; moreover, even if there is a copy of the reference
sequence, the probability of it being destroyed by a copy-mutation increases with
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its length. For agents it is thus very difficult to leave the sub-space n = 1 as long
as their reference sequence is very long. Even if they leave this sub-space, they
are then likely to get stuck in the sub-space n = 2.

First Derivative of Fitnes vs. Reference Length
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Fig. 3. This figure shows the derivative of the
fitness with respect to a change of the reference
length, when n is set to one. This shows that
for reference lengths >10 changes of the reference
length have a very small relevance for the fitness.

Agents can go in another
direction. Mutations of the
GENOME can change the
length of the reference-sequence.
As can be seen by looking at the
derivative of the fitness-function
in the sub-space n = 1 (see
figure 3), the slope of the fit-
ness function is essentially zero
for longer (>12) reference se-
quences. In this context it is in-
teresting to note that the fitness
is maximal (i.e. its derivative is
zero) for a reference length of
about 9, closely corresponding
to the length of the USS in H.
influenzae. This means that all
mutations of the GENOME in
this area are essentially neutral.
Strong adaptive pressures will
only appear for short reference
sequences. Thus, while the ref-
erence sequences are very long
the agents essentially perform a
one-dimensional random walk over the space of possible reference sequence
lengths. The average displacement from the starting point in such random walks
is zero, but the average distance traveled after N steps is proportional to N

1
2 .

Note that N does not correspond to actual time-steps in the model, but to mu-
tation events changing the length of the reference sequence. If the mutation rate
is m, the point mutation rate is p, the average age at which an agent produces
offspring is t, and the population size is s, then the reference sequence will be
adjusted only every 8t/m(1 − p) time steps. In order to observe the emergence
of USS in the model, it is thus crucial to restrict the initial size of the reference
sequence.

5 Discussion and Conclusion

From this we can now understand how the USS emerges in the model. Initially
agents will drift through the sub-space n = 1 without being subject to a strong
adaptive gradient. In figure 1 this corresponds to the first half of the run, where
the length of the (average) reference sequence is between 50 and 70 long and
there are very few copies of the reference sequence on the DNA.
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The sudden drop indicates the point where one or several agents have man-
aged to reduce the length of their reference sequence sufficiently; a reference
sequence of about 9 or 10 optimizes the probability to recognize conspecific frag-
ments, while avoiding false-positive recognitions. From then on they are driven
upward on the fitness-landscape by increasing the number of copies of the refer-
ence sequence on their DNA.
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Abstract. Recently, all the human genes were identified. But understanding the 
functions coded in the genes is of course a much harder problem. We are used 
to view DNA as some sort of a computer code, but there are striking differ-
ences.  For example, by using entropy, it has been shown that the DNA code is 
much closer to random code than written text, which in turn is less ordered than 
ordinary computer code. Instead of saying that the DNA is badly written, using 
common programming standards, we might say that it is written in a different 
style − an evolutionary style. In this paper the coding style of creatures from the 
artificial life platform Avida has been studied. Avida creatures that have 
evolved under different size merit methods and mutation rates have been ana-
lysed using the notion of stylistic measures. The analysis has shown that the 
evolutionary coding style depends on the environment in which the code 
evolved, and that the choice of size merit method and mutation probabilities af-
fect different stylistic properties of the genome. A better understanding of 
Avida’s coding style, might eventually lead to insights of evolutionary codes  
in general. 

1   Introduction 

It was shown, using block entropy, in [1], that the DNA is much closer to random 
code than human written computer code. Furthermore a lot of examples have been 
found where genes have been reused for different purposes during development. As 
an example, take the runt gene in Drosophila, which has been shown [2] to be used 
in sex determination, segmentation, and central nervous system creation. These find-
ings suggest that the DNA is coded in a rather different fashion compared to human 
computer code.  

C. Adami made in his survey talk in Stony Brook 10/27/98 on artificial life, a brief 
remark about the quality of the evolved program codes of the digital organisms [3] in 
the artificial life platform Avida [4]:``The codes that are evolved will eventually be 
almost totally unreadable. Things are never used only once, but two or more times. It 
is a kind of a 'madman's' code.''  

How can we capture these comments about the style, or quality, of the computer 
code and the DNA, in a quantified manner? Can we do that in such a general manner 
that we will be able to use analogous quality measure both for carbon − and silicon 
based genetic codes? 
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When a population evolves and adapts to an environment, information about what 
traits or chemical reactions that are beneficial in that environment are written into the 
genome. The environment of course influences what information is coded into the 
genome, but what we are interested in is to investigate how the information is coded. 
In this paper we will investigate the different coding styles that the environment en-
forces on the genomes by examining Avida creatures that have evolved under differ-
ent size merit methods and mutation rates. This will be done using the notion of a 
stylistic measure that was introduced in [5].  

2   Codes  

One common way to view functions is as black boxes. Here we are interested in the 
internal structure of such black boxes performing equivalent tasks.  Let us give a sim-
ple example of two codes that interprets the same simple real valued function: 

2

2
  if 2

1 4( )              ( )
2 1

       if 2.
4

x
x

xf x g x
x

x

+
≠ −

−= =
−

− = −

 
 

(1) 

The genome of a creature can be thought of as a code that is written in an alphabet 
consisting of a finite numbers of letters, which is read or interpreted by the CPU. The 
genomes found in nature are written with the four letters A, T, G and C, which corre-
sponds to the base pairs in the DNA. In Avida the genomes consists of a combination 
of 24 different CPU instructions, which alter the state of the virtual CPU in some 
manner.  

We will therefore define a code to be a finite string of letters taken from a finite al-
phabet A, such that when the code is interpreted, the code will represent a well-
defined function or process, f.   

1{ } ,    where .k
i i iCode Aα α== ∈  (2) 

From the above definition it is clear that different codes can have the same function 
representation. Let us therefore define a class of codes Cf to be the set of all codes that 
perform the function f when they are interpreted. From a genetic point of view one 
can interpret the function of the code as the phenotype of a creature, and thus the code 
classes as classes of phenotypically equivalent creatures.  

In Avida the interpretation is performed by running a creature through the virtual 
CPU for one generation. If a successful divide occurs the function that the code de-
fines is simply the tasks that the creature performs during one generation. 

3   Styles of a Code 

If we look at two codes from the same class we know that they perform the same 
function, i.e. they have the same phenotype, but their genotype may differ. As the 
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evolutionary process is very sensitive to perturbations we cannot expect to find the 
same genotype if evolution occurred two times in the same environment. It’s therefore 
interesting to study the style of the code, as this is more likely to be invariant between 
two instances of the same process. We would therefore like to define the style of a 
code. This is done by introducing measures (3) on the code class Cf, that maps each 
code to a point in [0,1]. 

: [0,1].i fCμ →  (3) 

Putting together several of these measures we can create a profile measure μ = (μ1, μ2, 
μ3,…..), which might serve as a ‘fingerprint’ of the code. 

4   Measures 

As we are interested in distinguishing between different coding styles of creatures 
from Avida we have constructed four different measures that measure different prop-
erties of the genome. Three of the measures are calculated from the functional ge-
nomic array (FGA) of the genome, a representation which reveals the genetic struc-
ture and the localisation of genes [6]. The FGA is a N×M binary matrix, where N is 
length of the genome and M is the number of tasks the creature manages including 
replication. The entry at position (i,j) is 1 if instruction number i is involved in the 
calculation of task number j and 0 otherwise. An example of a typical FGA can be 
found in fig. 3. 

4.1   Gene Correlation 

This measure shows how correlated different genes are and is constructed in the fol-
lowing manner. Sum the functional genomic array along the rows, and remove all 
zero entries in the resulting vector. Sum up all entries that are larger than one and 
divide by the number of tasks plus one (for replication) and by the number of non-
zero entries in the vector.  

If we let T be the row sum of the FGA, N be the number of tasks the creature man-
ages plus one (for replication), LE, the number of non-zero entries in T (the number of 
essential instructions), then the gene correlation is given by (4), where the sum runs 
over all indices for which Ti > 1. 

.
i

i
c

E

g
NL

=
T

    (4) 

The gene correlation is a number between 0 and 1, where 0 means that all tasks in-
cluding replication are coded disjoint in the genome, and 1 means that they all depend 
on the same instructions. Note that this measure also can be interpreted as the com-
pression of information in the genome.  
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4.2   Redundancy 

This measure gives the fraction of instructions that don’t affect the tasks and replica-
tion of a creature. As above the FGA is summed along the rows, but this time we 
count how many zero entries the vector holds, this number is then normalised by the 
length of the creature. 

4.3   Introns 

This measure simply gives the fraction of instructions that never are executed when 
the creature is executed for one life-cycle. Under the default size merit method 4, the 
fraction of introns is rather low (see table 1), as they are punished. Note that the in-
trons are a subset of the redundant instructions. 

4.4   Fragility 

This measure gives the number of instructions that are essential for replication, and is 
constructed from the FGA by simply summing the replication column. This measure 
isn’t normalised with the length of the creature because the number of instructions 
needed to replicate are independent of the length of the creature, as the creatures use 
copy loops. But as we want a measure to lie in [0,1] this measure is normalised using 
the map (5). 

( ) ,    0
x

f x c
x c

= >
+

 (5) 

From preliminary data we know that the number of instructions essential for repli-
cation in most cases lie between 5 and 50. The c in (5) is therefore optimised so that 
the image of the interval f ([5,50]) is maximised. The optimisation is straight forward 
and gives the value c = (50·5)  15.8, which gives f(50)  0.76 and f(5)  0.24.  In an 
environment that doesn’t reward computational efforts it is only the fragility that is 
minimised [7], which results in a minimised genome length. 

5   Comparison of Different Styles 

5.1   Size Merit Methods 

The different size merit methods in Avida generate qualitatively different styles of 
coding, for example size merit method 1, which gives merit proportional to copied 
size, tends to produce introns and does not put any pressure on the lengths of the crea-
tures, while size merit method 0 does quite the opposite, because merit is independent 
of size. The third size merit method, 4, takes the minimum of copied and executed 
size as merit.  

The merit is a very important property as it is used in the calculation of the fitness. 
This implies that the size merit method has a direct impact on how selection is per-
formed in Avida [4]. 
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The question is if these differences in merit calculation can show in a stylistic 
analysis of the different methods. To investigate this we created three sets of creatures 
each containing approximately 60 creatures, from the three size merit methods 0, 1, 4, 
the full settings for these runs can be found in the appendix.  

The optimal comparison would be to compare creatures from the same code class 
(phenotype), but as evolution in Avida proceeds with different pace each run one has 
no guarantee that a certain phenotype has evolved after a fixed number of updates. 
One way to accomplish this would be to reward only those functions that we want the 
phenotype to perform and use a large number of fixed updates, but this approach also 
has its drawbacks. If the required phenotype appears early in evolution, then the code 
is optimised during the rest of the run as no new functions are rewarded. If a creature 
from the above run is compared to a creature from a run where the required phenotype 
appeared just before the maximal number of updates their coding styles would cer-
tainly differ, as one creature has optimised its coding while the other has not. Instead 
we decided to compare creatures with approximately the same complexity. This was 
done by extracting a creature from the dominant genotype after 40 000 updates in 
each run and if it had reached a certain degree of complexity (it managed at least three 
boolean functions) it was kept for analysis.  

Table 1 shows the average and standard deviation for each measure under the three 
size merit methods. Another way to analyse the data is to perform a principal compo-
nent analysis on the data, which reduces the dimensionality to 2, and gives a better 
graphical representation. The result of the PCA can be seen in fig. 2. The vectors that 
span the plane in fig. 1, are the 1st and 2nd principal components (6). 

Table 1. The average and standard deviation of the stylistic measures for creatures from three 
different size merit method 

Size-Merit 
Method 

Gene    
correlation  

Redundancy Introns Fragility 

0 0.2655       
(0.1221) 

0.1666 
(0.1102) 

0.0249      
(0.0496) 

0.4860 
(0.0402) 

1 0.2647 
(0.1161) 

0.6443 
(0.1836) 

0.3581 
(0.1767) 

0.5639 
(0.0706) 

4 0.2288 
(0.0990) 

0.5230 
(0.1905) 

0.0708  
(0.0911) 

0.5565 
(0.0705) 

  

( )
( )

1

2

-0.0132   -0.6263   -0.5723   0.1700   -0.5011

0.7861   -0.1275    0.0156   -0.5990   -0.0825

P

P

=

=
  (6) 

5.2   Mutation Rates 

The mutation rates in Avida play an important role in the adaptive process. If the mu-
tation rates are low evolution tends to proceed very slow as the fitness landscape is 
explored at a low pace and if they are high the population will have trouble sustaining 
information in the genomes [8,9].  
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Fig. 1. Principal component analysis of the profile measure of creatures that have evolved un-
der different size merit methods 

To investigate how the mutation rates influence the coding style we created three 
sets of creatures that had evolved under different copy mutation probabilities each 
containing approximately 60 creatures. The point mutation rates were set to zero, the 
insert/delete mutation probabilities were kept constant at 0.05 per divide and the size 
merit method was set to 4 (the default value in Avida). The copy mutation probability 
was set to one low value (pc = 0.001), one intermediate value (pc = 0.005) and one 
high value (pc = 0.025).  

Table 2. The average and standard deviation of the stylistic measures for three sets of creatures 
that have evolved under different copy mutation rates 

pc Gene  
correlation 

Redundancy Introns Fragility 

0.001 0.2263 
(0.1093) 

0.6076 
(0.2006) 

0.0487 
(0.0883) 

0.5877 
(0.0811) 

0.005 0.2288 
(0.0990) 

0.5230 
(0.1905) 

0.0708  
(0.0911) 

0.5565 
(0.0705) 

0.025 0.3037 
(0.1372) 

0.2847 
(0.1558) 

0.0372 
(0.0985) 

0.4872 
(0.0465) 

As in the experiment above the populations evolved for 40 000 updates after which 
the dominant genotype was extracted, but it was only kept for analysis if it managed 
three or more boolean functions. A detailed description of the settings can be found in 
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the appendix. The three sets of creatures where then analysed using the stylistic meas-
ures and the results can be found in table 2 and a PCA-plot in fig. 2. The 1st and 2nd 
principal components are given by (7). 

( )
( )

1

2

-0.2087     0.6374     0.4462   0.2359   0.5435

-0.7657   -0.0693    -0.5643   0.2695   0.1337

P

P

=

=
 (7) 
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Fig. 2. Principal component analysis of the profile measure of creatures that have evolved un-
der different copy mutation probabilities  

6   Discussion 

6.1   Size Merit Methods 

In fig. 1 one can see a separation between the different size merit methods, which 
clearly indicates that there are differences in their coding style enforced by the size 
merit method. One way of analysing these differences is to look at the composition of 
the 1st principle component (6). The measures with the larger weights show where the 
styles differs the most. This shows that the coding styles differ most with respect to 
the redundancy, intron and fragility measures. What can also be seen in the PCA plot 
is that the coding style within each size merit methods varies quite much, a thing that 
also can be seen in the standard deviations in table 1. The reason for this is that the 
evolutionary process in Avida takes different paths each run due to the randomness in 
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the process, and thus giving rise to a unique coding each run. The large standard de-
viations makes it impossible to draw any conclusions about how the gene correlation 
is affected by the size merit method, but the other measures show separation between 
the different size merit methods. 

The results of this experiment are intuitive and can be explained directly from how 
the merit is calculated. Size merit method 1 for example has a high fraction of introns 
as the method gives merit proportional to copied size and therefore does not punish 
introns and method 0, which gives merit independent of size, gives a efficient coding 
with a low fraction of both introns and redundant instructions. 

 

Fig. 3. The Functional Genomic Array (FGA) of a typical Avida creature. Each column in this 
array indicates a task, including replication, where the line element is white if the task depends 
on that specific line in the Avida code. 

6.2   Mutation Rates 

The principal component analysis plot (fig. 2) in this case does not show the same 
separation between the coding styles as in the case with size merit method. The cod-
ing style of the creatures from the low and intermediate mutation probabilities seem 
clustered together, but the coding style of the high mutation probability show at least 
some separation from the other two. The 1st principal component (7) shows that the 
largest differences between the coding styles lie in the redundancy, fragility and gene 
correlation measures.  

The averages of the stylistic measures (table 2) shows the same tendency as the 
PCA plot, the low and intermediate mutation probabilities give approximately the 
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same values while the high probability differs in the gene correlation, redundancy and 
fragility measures. 

The fragility decreases when the mutation probability increases. The reason for this 
is that a high mutation probability requires a more efficient coding of the self-
replication. A creature that uses too many instructions for self-replication would be 
less likely to produce a viable offspring when the copy mutation probability is high. 

The gene correlation on the other hand increases when the mutation probability in-
creases.  The high mutation probability forces the creatures to compress the informa-
tion in the genome, in order to make it less likely to be struck by a deleterious muta-
tion. This compression corresponds to that the genes share instructions which gives a 
higher gene correlation. 

The reason why the redundancy decreases when the mutation probability increases 
is because a redundant instruction that is copied incorrectly may alter the execution in 
the offspring which may lead to the loss of a gene or even the capability to self-
replicate. It is therefore disadvantageous to have a high redundancy when the muta-
tion probability is high.  

7   Conclusion 

The results of the experiments clearly show that settings in Avida produce different 
coding styles. Most of the differences that appear are intuitive and can be explained 
directly from for example how the merit is calculated. While some results, like the 
change in gene correlation in the experiments with mutation probabilities, requires an 
understanding of the evolutionary process in Avida.  

What these experiments show is that different environmental settings affect differ-
ent stylistic properties of the genome. The gene correlation does not seem to depend 
much on the size merit method but rather on the mutation probabilities and the frac-
tion of introns seems independent of the mutation probabilities but depends strongly 
on the size merit method. The fragility measure on the other hand seems to depend on 
both mutation probabilities and size merit method. But the main result is that we can 
distinguish between different coding styles from different environments using a stylis-
tic profile measure.  It would be very interesting if one could study other evolutionary 
driven systems using this stylistic approach in order to look for universal features of 
evolutionary driven code in general and DNA in particular. 
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Appendix 

All experiments for this paper were performed with Avida 1.3.0 for Windows.  The 
settings used for the experiments were the default settings in Avida, except for the 
changes in size merit method and copy mutation rates. The task bonuses were set to 
the default value except for the fact that the rewards for 3-input boolean functions 
were removed. In the runs with size merit 0 the task bonuses were raised slightly in 
order to prevent the evolution from going in to a size minimising state. Each run was 
started with a time based random seed and the ancestor used in all experiments was 
creature.base, which is supplied with Avida. The ancestor, genesis and 
task_set files for all experiments can be downloaded from http://www.math. 
chalmers.se/~torbjrn/coding_style. 
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Abstract. How can a new incoming biological node measure the degree
of nodes already present in a network and thus decide, on the basis of
this counting, to preferentially connect with the more connected ones?
Although such explicit comparison and choice is quite plausible in the
case of man-made networks, like Internet, leading the network to a scale-
free topology, it is much harder to conceive for biochemical networks.
The computer simulations presented in this article try to respect sim-
ple and, as far as possible, basic biological characteristics such as the
heterogeneity of biological nodes, the existence of natural hubs, the way
nodes bind by mutual affinity, the significance of type-based network
as compared with instance-based one and the consequent importance of
the nodes concentration to the selection of the partners of the incoming
nodes.

1 Introduction

Recent years have brought a resurgent interest for evolving networks showing
interesting and far from random connectivity structure like a power-law or scale-
free one (Barabási and Albert) (BA in the following) [1,2,3,4,5,6,7]. Although
the most representative of these networks have been spotted in the human and
social worlds (like the Internet or epidemic networks), the fact that such a con-
nectivity structure allows the nodes to optimally connect (these networks exhibit
the small-world and good robustness properties allowing a fast and reliable com-
munication), has encouraged an increasing number of biological researchers to
believe that this scale-free connectivity should hopefully be shared by biological
networks. Based on rough experimental data, some cellular, genetic and chemi-
cal networks seem, as a matter of fact, to structure their connectivity in such a
particular way [8,9,10,11,12,13].

In this paper, computer experiments of growing networks will be proposed as
more elementary and tractable versions of a long tradition of simulations of im-
mune networks and chemical reaction networks popular in Artificial Life. When
adopting a more biological perspective, the BA preferential attachment [1] poses

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 864–873, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Growing Biochemical Networks 865

serious difficulties1. How could a new biological node, discovering and observing
potential partners, preferentially decide to connect with one of these on the basis
of its connectivity? Although a human being can perform such a conscious choice
while involved in the construction of any technological network (such as the In-
ternet, the Web or public transportation) or entering a sexual network, namely
to express a certain preference for some nodes to attach to, this same preferential
choice appears quite unlikely in natural systems growing with no human inter-
vention. In order to remain faithful to observed biological networks, some basic
principles need to be incorporated: (i) every node has a different identity based
on its physical properties defining its type; (ii) every node connects to a selected
set of nodes based on mutual attractiveness (affinity) ; (iii) certain nodes have in-
trinsically more ways to connect than others i.e. they are natural hubs and (iv),
since every node represents a type, biological networks are type-based network in-
stead of instance-based.

Take for instance chemical [15] or metabolic networks [9]. Here molecules ap-
pear only once in the network and the connections refer to the reactions in which
these molecules are involved. Every node corresponds to a molecular type and
has a particular concentration, and this will play a key role in the attachment
mechanism: a new node should connect to other nodes based on the distribution
of concentrations since this determines the probability of interaction. Further-
more, it is well-known that some molecules are more reactive than others due to
their structure. Consequently, some molecules are more attractive than others.
Due to this, the connectivity of a node is not only an outcome of the growing
history (like in [1]), but also a result of the nodes’ intrinsic features. Some of
these nodes have such a high attractiveness that they become hubs (in protein
networks, p53 is famous for that [16]) prior to any connection with others; they
were born like hubs. Given this interpretation of molecules, chemical reaction
networks represent interactions between molecular types as opposed to molecu-
lar instances. The many technological and social networks observed recently to
be scale-free are all instance-based. Only one single airport, one single Web site,
one single computer server or one single sexual partner corresponds to the asso-
ciated node in the respective network. In contrast, some of the few biochemical
networks being plotted and discussed in the literature thanks to the existence
of experimental data (such as chemical reaction network or proteome map) are
type-based.

1 The BA model for building scale-free graphs is made of two main steps: (i) at each
time step a new node with m links is added to the network (growth) ; (ii) the prob-
ability pi that a new vertex will be connected to a node i is pi = ki/

∑
ki, ki being

the degree of node i ( preferential attachment). The more partners a node has the
more likely this same node will be the partner of a new node that enters the network.
The application of this BA law during the growing of the network, instead of a pure
random attachment law (where a new node would randomly connect with existing
nodes), will give more chance to some nodes to acquire a larger connectivity, driving
the distribution to a power-law decay for the number of nodes as a function of their
number of partners (with an exponent -3) rather than an exponential decay produced
by a random growing [14].
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The next sections will introduce the basic ingredients of the successive com-
puter simulations and discuss expected results obtained by three experiments: a
first one with no natural hub and the two successive ones with high frequency
and low frequency hubs. The purpose of these experiments is the study the im-
plications of these features on the modelling of complex (growing) networks. In
this way, we hope to arrive at a biochemical plausible model of growing networks
that can explain the observed degree distributions in biochemical data.

2 Basic Ingredients of the Computer Models

Let’ s describe the basic ingredients of our tentatively more biology-like computer
simulations of network structural evolution. Every node of the network is a
binary string of length N so that only 2N nodes are possible when the network
has been entirely filled. Reflecting the key-lock aspect of biological or chemical
binding, a node ni will connect with another one on the basis of their hamming
distance (DH). So the simplest binding rule will be for a node ni to connect to
another one nj if:

DH(ni, nj) > t (1)

meaning an Hamming distance (DH) superior to a given threshold t.
Eventually, each node should potentially be able to connect with other nodes.

Each node i has a certain concentration that, in a very first attempt, simply
changes as an effect of the on-going recruitment of nodes. When a node, ran-
domly chosen, is recruited into the network, either it exists already and thus its
concentration is just incremented by 1 or it does not exist so far and is included
in the network with a concentration initially fixed to 1.

As discussed in the introduction, one instance node is not the same thing as
one node type and we are interested here in growing type-based networks. While
one instance node will be able to connect with one possible partner and only one
at the moment of its recruitment, various nodes of this same type (namely the
same binary string) will be able to connect to different node types. Therefore
the final connectivity topology will be drawn as a function of the types of node
and not of the instance nodes for which we assume one and only one partner is
allowed.

The simulation goes as follows:

a) In the beginning a small number of nodes with initial concentration equal to
one are recruited in the system just to kick off the growing.

b) Afterwards, at each time step, a new instance node, generated randomly,
will enter the network only if it connects with an existing node type. To test
this, whenever a new random instance node is proposed, a given number
of trials is done with existing nodes selected probabilistically as a function
of their concentration, the more concentrated the more likely to be tested.
So the probabilistic preferentially of attachment is here a function of the
concentration of the current nodes instead of their connectivity.



Growing Biochemical Networks 867

c) The test is based on the defined affinity criterion (here it is the simplest one
described in Equation (1)). If following this given number of trials, the test
was never successful, a new random node is proposed.

d) Once the test is succeeded and if not already existing in the network, the
new node gets in and creates a new node type with initial concentration one.

e) If the incoming node ni, although able to connect to another node nj , already
exists as a node type in the network, it is not included as a new type in the
network but instead its concentration is increased by one. This explains how
the concentration of the types of node composing the network can change in
time, reproducing a very elementary form of dynamics.

f) If the node nj already contains the node ni among its partners nothing
changes besides the increase in concentration of ni. While if ni was not
yet among the partners of nj , it will be added as such. So, on account of the
type-based nature of our network, the computer model allows at each simu-
lation step either to add one node type to be connected with an existing one
or just one new edge between two types of node already there.

g) The simulation stops after the recruitment of an arbitrary number of types of
node. The graphical results of the simulation, in the form of the now classical
log-log degree distribution, is presented below (Figure 1) for N=13, t=9 and
the recruitment of 4000 nodes (approximately half the number of potential
types).

The resulting network’s degree distribution follows an exponential decay,
which is not surprising as such distribution is theoretically obtained through a
random growth rule [14]. In fact, no node is favoured during the attachment of
any new node since the concentration of all nodes in the network approximately
remains the same. The average degree is 2.72 very much below the 378 potential
nodes any node could connect with. More problematic is the very weak value of
the average clustering coefficient (coefficient discussed in [3]), 0.00067, showing
that two partners of a same node have very low probability to bind (as a matter
of fact, most of the nodes has zero value for their local clustering coefficient).
Although in strong contrast with very high values observed for instance in neu-
ral and metabolic networks, this small number essentially reflects the way the
attractiveness between two nodes is defined, by means of their hamming dis-
tance. This attractiveness test makes very improbable for a same lock to have
two very different keys which could bind together. In the following, the presence
of natural hubs will tend to recover from this unwelcome and challenging result.

3 Similar Simulations But Allowing the Presence of
Natural Hubs

One key observation done recently has been that the networks observed do not
show the kind of homogeneous distribution that a random growing network
would produce. These observations show a bigger heterogeneity in the connec-
tivity of the nodes as compared to the randomly growing case. Moreover certain
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Fig. 1. The log-log degree distribution for a simulation based on the binding rule given
in Equation (1). 4000 nodes are recruited in the network. The number of edges is 5457
giving an average degree of 2.72. The variance of the degree is 4.23. The clustering
coefficient is 0.00067 and nearly all nodes have local clustering coefficient equal to 0.
The plot takes an exponential shape typical of a random growing.

have a huge connectivity an are referred to as hubs. For most of the authors, the
presence of this heterogeneity is just an outcome of the preferential attachment
rule. In biology instead, types of nodes are far from identical, and some, just by
their internal shaping or constitution, are more naturally inclined to play the
role of hub than others. We believe this to be the main reason for the presence of
hubs detected in the real biological networks; hubs are not products but simple
data of history.

We propose two refinements of the computer simulations introduced in
Section 2. In the first one, the frequency of hubs will not be different than
the frequency of any other node types while in the second one hubs will turn out
to be much rarer (as a type not in necessarily in frequency). In the two following
sections these refinements will be discussed.

3.1 Refinement 1: Introducing Attractiveness

In this simulation, see Figure 2, any node is a binary string of length N and
possesses an additional attribute called its attractiveness threshold (ATi) com-
prised in between [1,N-1]. The new rule of binding is that two nodes can bind if
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Fig. 2. The log-log degree distribution for a simulation based on the definition of nodes
with attractiveness threshold between [0,9], node length = 10, the binding rule given in
Equation (2) and high frequency hubs. 4000 nodes are recruited in the network. The
number of edges is 5542 giving an average degree of 2.77. The variance of the degree is
4.51. The clustering coefficient is 0.00083. The plot takes an exponential shape typical
of a random growing. The effect of natural hubs is negligible.

and only if:
DH(ni, nj) > min(ATi, ATj) (2)

As a consequence, a node with a low attractiveness threshold has much more
possibilities to connect than a node characterised by the same binary string but
with a higher threshold. We performed a simulation with N = 10 2. A node
with a small attractiveness threshold is a potential natural hub but, by the way
it is defined, any type of hub is as likely as any other type. For instance, there
will be as many strong hubs of length 10 (for which AT = 1) as any other type
of length 10 and many nodes (i.e. 2N) share a same attractiveness. Again, as
shown in Figure 2, plotting the degree distribution following the recruitment
of 4000 random nodes, nothing really exciting is to be pointed out since the
presence of these natural hubs does not really modify the distribution. Either
hub or not, all types will tend to have a same concentration and so an equal

2 The reason for this reduction in length being to have a same potential number of
types as in the previous simulation (210 ∗ 9) despite the additional attribute differ-
entiating types with same bit strings.
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chance to be selected. The curve is slightly shifted on the left with respect to the
previous simulation (average degree = 2.77) and the presence of natural hubs
slightly increases the average clustering coefficient to 0.00083. This is a situation
that the last kind and most innovative simulation proposed in this paper will
challenge. In this new set up, we want the hubs to be naturally much less frequent
than the other types of node. The idea is that there are less biological ways to
become a natural hub than an anonymous node. For a node to present one set
of characteristics which makes it appealing for a certain category of potential
nodes it is something, but possessing all characteristics to make it appealing
for all categories of partners is a complete different story. On the whole, hubs
should be harder and thus less frequent to appear in any environment, biological
or technological.

3.2 Refinement 2: Inverting Dependence Between Hubness and
Type Frequency

To achieve an inverse dependency between the hubness and the frequency, a
node type can now have its length varying between 1 and N bits (so that at the
end, the potential number of cell is equal to 2N+1 − 2, we take N = 12 for the
simulation). Nodes are defined so that the smaller one type is in size the more
potential connections it can present. The new rule of binding is defined as follows.
Let’s call li the length of node ni and make the new distance DHL between two
nodes i and j of different length to be the Hamming distance between the li
bits of ni (here we will suppose li smaller than lj) and li contiguous bits of nj

beginning from a position selected randomly between 1 and (N − li). The two
nodes will bind if:

DHL(ni, nj) = Min(li, lj) (3)

To some extent, the random choice of the position of the beginning bit to
compare aims at reproducing the spatial orientation the two biological enti-
ties must adopt in order to bind or interact. Also, by avoiding a node to only
connect to a complementary node with contiguous opposite bits departing al-
ways from the same constant position, the probability of forming triangular
clusters is increased, an apparently important facet of biological networks. A
node of length 1 (here 0 and 1 ) becomes a very strong hub, able to connect
to nearly every other nodes, while nodes of length N are just able to con-
nect to a very limited amount of nodes. An interesting consequence of this
new binding rule is that a natural power law emerges simply by the defini-
tion of the nodes and the way they can connect. It is indeed elementary to
verify that for a given length l, each one of the 2l nodes can approximately
connect to 2(N−l+1) + (l − 2) other nodes so that the function relating the
number of nodes with their potential number of partners adopts a power-law
shape. In other words, we get scale-free for free and the complete network
with all types and all edges is inherently scale-free, independently of any grow-
ing mechanism. Results of the simulation (the log-log degree distribution) for
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Fig. 3. The degree distribution for a simulation based on the definition of nodes with
varying length between 1 and 12, the binding rule given in Equation (3), and in the
presence of low frequency hubs, the smaller in length the stronger in attractiveness.
4000 nodes are recruited in the network. The number of edges is 5619 giving an average
degree of 2.80. The variance of the degree is 353.07. The clustering coefficient is 0.040
with many nodes having a local clustering coefficient above 0.5. The plot takes an
exponential shape typical of a random growing but now the effect of natural hubs is
largely visible in the distribution tail, showing numerous picks at very high degree.

N = 12 and again the random generation of 4000 nodes (all nodes what-
ever their length have equal chance to be generated) is plotted in Figure 3.
Once again this distribution is shaped as an exponential decay coming out of
the randomness of the recruitment, of the attachment rules and the somewhat
homogeneity of the concentration, but a key difference appears in the tail of
the curve: some peaks come into view, testifying for the presence of the natu-
ral hubs. Despite the maintenance of an exponential decay for small degrees,
the effect of natural hubs, although less represented than poorly connected
nodes, is very patent for higher degrees and makes the first, the second and
the third simulations as well as their respective topologies very distinct in the fi-
nal part of the distribution. Despite an average degree which is still small (2.81),
strong hubs show up. For instance, the ten top hubs with their respective de-
gree are: 1 (670), 0 (601), 11 (463), 100 (272),00 (263), 01 (233), 110 (205),
10 (153), 000 (153), degrees much bigger than the average value. An expo-
nential decay for low degree seems to be still compatible with the presence of
hubs in the network at much higher degree (a very heavy and rugged tail), a
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presence that just mirrors their existence in reality, independently of any history
of growing.

4 Discussion

Is preferential attachment a realistic method for growing biological networks?
Based on biological observation, corresponding networks are more likely to grow
in a less constrained and more random way, possibly producing the type of
exponential distribution given by the various simulations presented in this paper.
The question then becomes how these simulations correspond to the observations
made in biological data. Since biological data is obtained using a relatively small
amount of nodes, one can wonder whether the observed power-law distributions is
correct. Besides hubs, high clustering and all the biological functional properties
they could be responsible for are still compatible with an exponential decay at
low degree, although their presence is often and (perhaps wrongly) written to
be conditioned by a scale-free topology. When noticing the large influence of the
concentration increase in the topology obtained by the simulations (mainly the
third one), we need to restrain from definitive claims on network topology until
at least a deeper attention is paid to the interplay between the concentration
dynamics and the meta-dynamics, the original project of many authors adept of
Alife and studying the evolution of biological networks 15 years ago [17,18,19,20].

A remarkable observation coming from our simulations with the varying
nodes length is that in spite of a natural topology inherently scale-free, the
simulation of the growing network somewhat counters this intrinsic topology by
insisting in producing again an exponential distribution. This again illustrates
the importance of the sampling done through the biological species in order to
see how they do connect. A certain sampling could produce an exponential topol-
ogy while another one, performed on the same biological system but selecting
different species, would produce a scale-free version of it. This dependency on
the sampling should be taken into account more carefully in, for instance, the
study of protein-protein interaction map composition, which is undertaken by
a lot of researchers, yet with very different outcomes [21,22]. Moreover, a static
sampling could produce a different topology than the one spontaneously adopted
by the network when preserved in its natural environmental conditions.
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Abstract. Inspired by the phenomenon of symbiosis in natural ecosystem, a 
master-slave mode is incorporated into Particle Swarm Optimization (PSO), 
and a Multi-population Cooperative Optimization (MCPSO) is thus presented. 
In MCPSO, the population consists of one master swarm and several slave 
swarms. The slave swarms execute PSO (or its variants) independently to 
maintain the diversity of particles, while the master swarm enhances its 
particles based on its own knowledge and also the knowledge of the particles in 
the slave swarms. In the simulation part, several benchmark functions are 
performed, and the performance of the proposed algorithm is compared to the 
standard PSO (SPSO) to demonstrate its efficiency. 

1   Introduction 

The particle swarm optimization (PSO) algorithm, first developed by Kennedy and 
Eberhart [1, 2], has already come to be widely used in many areas [3, 4]. However, it 
was pointed out that although PSO can show significant performance in the initial 
iterations, the algorithm might encounter problems in reaching optimum solutions 
efficiently for several approximation problems [5]. This indicates that particle swarm 
lost its diversity and all the particles were attracted towards the best position so far by 
any of particles. Research addressing the shortcomings of PSO is ongoing and 
includes such changes as dynamic or exotic sociometries [6, 7, 8], spatially extended 
particles that bounce [9], increased particle diversity [10, 11], evolutionary selection 
mechanisms [12], and of course tunable parameters in the velocity update equations 
[13, 14]. 

The foundation of PSO is based on the hypothesis that social sharing of 
information among conspecifics offers an evolutionary advantage [1]. It reflects the 
cooperative relationship among the individuals (fish, bird, insect) within a group 
(school, flock, swarm). However, in natural ecosystem, many species have developed 
cooperative interactions with other species to improve their survival. Such 
cooperative-----also called symbiosis-----co-evolution can be found in organisms going 
from cells (e.g., eukaryotic organisms resulted probably from the mutualistic 
interaction between prokaryotes and some cells they infected) to superior animals 
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(e.g., African tick birds obtain a steady food supply by cleaning parasites from the 
skin of giraffes, zebras, and other animals), including the common mutualism 
between plants and animals (e.g., pollination and seed dispersion in change of food) 
[15, 16]. 

Inspired by this research, a multi-population cooperation particle swarm 
optimization (MCPSO is proposed in this paper, which is devoted to solve the 
problems of premature convergence and lacking in diversity encountered in many 
applications of PSO.  

The paper is organized as follows: Review of SPSO is provided in section 2. 
Description of the proposed algorithm MCPSO is given in section 3. Next, 
experimental settings and experimental results are given in section 4. Finally, 
section 5 concludes the paper. 

2   Standard Particle Swarm Optimization (SPSO) 

The basic PSO is a population based optimization tool, where the system is initialized 
with a population of random solutions and the algorithm searches for optima by 
updating generations. In PSO, the potential solutions, called particles, fly in a D-
dimension search space with a velocity which is dynamically adjusted according to its 
own experience and that of its neighbors. 

The ith particle is represented as 
1 2( , ,..., )i i i iDx x x x=r , where [ , ]id d dx l u∈ , [1, ]d D∈ , 

,d dl u  are the lower and upper bounds for the dth dimension, respectively. The rate of 

velocity for particle i is represented as 
1 2( , ,..., )i i i iDv v v v=r , is clamped to a maximum 

velocity vector 
maxv
r , which is specified by the user. The best previous position of the 

ith particle is recorded and represented as 
1 2( , ,..., ),i i i iDP P P P= which is also 

called .pbest  The index of the best particle among all the particles in the population is 

represented by the symbol g , and 
gp  is called .gbest  At each iteration step, the 

particles are manipulated according to the following equations: 

1 1 2 2( ) ( )id id id id gd idv wv R c P x R c p x= + − + −  (1) 

,id id idx x v= +  (2) 

where w is inertia weight [16]; 
1c  and 

2c  are acceleration constants; and 
1 2,R R  are 

random vectors with components uniformly distributed in [0, 1]. For Eq. (1), the por-
tion of the adjustment to the velocity influenced by the individual’s own pbest posi-
tion is considered as the cognition component, and the portion influenced by gbest is 
the social component. After the velocity is updated, the new position of the ith parti-
cle in its dth dimension is recomputed. This process is repeated for each dimension of 
the ith particle and for all the particles in the swarm. 
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3   Multi-population Cooperative Particle Swarm Optimization 

In MCPSO, firstly ( 2, 2)N n N n× ≥ ≥  particles are initialized, and the particles can 

be divided into N swarms (one master swarm and N-1 salve swarms). Each slave 
swarm with n particles adapts itself according to its own evolutionary strategy 
independently. For the master swarm, the particles enhance themselves based on not 
only the social knowledge of the master swarm but also that of the slave swarms. This 
idea was realized by further incorporating a new dimension on the velocity of the 
particles in standard PSO. The resulting equations for the manipulation of the master 
swarm are: 

1 1 2 2 3 3 ,( ) ( ) ( )M M M M M M S M
id id id id gd id gd idv w v R c p x R c p x R c p x= + − + − + −  (3) 

,
M M M
id id idx x v= +  (4) 

where M represents the master swarm, 3c  is the migration coefficient, and 3R  is a 

uniform random sequence in the range [0, 1]. Note that the particle’s velocity update 
in the master swarm is associated with three factors: 

i. M
idp : Previous best position of the master swarm.  

ii. M
gdp : Best global position of the master swarm. 

iii. S
gdp : Previous best position of the slave swarms. 

As Shown in Eq. (3), the first term of the summation represents the inertia (the 
particle keeps moving in the direction it had previously moved), the second term 
represents memory (the particle is attracted to the best point in its trajectory), the third 
term represents cooperation (the particle is attracted to the best point found by all 
particles of master swarm) and the last represents information exchange (the particle 
is attracted to the best point found by the slave swarms).  

The initialized populations are distributed with different regions of the search 
space of the entire feasible solution to maintain the diversity of the individuals. In this 
paper, the following population scheme is proposed (see Fig. 1): a master-slave 
communication model is used to assign fitness evaluations and maintain algorithm 
synchronization. Independent populations are associated with nodes, called slave 
swarms. Each node independently executes PSO or its variants, including the update 
of particles’ position and velocity, and the creation of a new local population. When 
all nodes are ready with the new generations, each node then sends the best local 
individual particle to the master node. The master node selects the best one of all 
received individuals and evolves according to Eqs. (3) and (4). The pseudo-code for 
the MCPSO algorithm is listed in Fig. 2. 
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Fig. 1. The master-slave model 

Algorithm MCPSO 
Begin 

Initialize all the populations 
Evaluate the fitness value of each particle 
Repeat 

Do in parallel 
Node I, 1 ≤≤ i  K  //K is the number of slaver swarms 

End Do in parallel 
Barrier synchronization  //wait for all processes to finish 
Select the fittest local individual S

gp   from the slave swarms 

Evolve  the mast swarm   
//Update the velocity and position using Eqs. (3) and (4), respectively 
Evaluate the fitness value of each particle 

Until a  terminate-condition is met 
End  

Fig. 2. Pseudo-code for the MCPSO algorithm 

4   Experiment and Result 

In this section, three nonlinear benchmark functions that are commonly used in 
evolutionary computation literature [13, 17] are performed. All functions are designed 
to have minima at the origin. 
1. Rosenbrock function 

222

1
11 )1()(100)( ii

n

i
i xxxxf −+−×= ∑

=
+    Global minimum: 0)(,1 1 == xfxi

   (5) 

2. Rastrigrin function 

10)2cos(10()(
1

2
2 +−= ∑

=
i

n

i
i xxxf π    Global minimum: 0)(,0 2 == xfxi

   (6) 

3. Griewank function 

Node k Node 2  Node 1 

Local best

Master
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To evaluate the performance of the proposed MCPSO, two variants of SPSO are 
used for comparisons: SPSO1 [18], SPSO2 [18]. The parameters used for SPSO1 are 
recommended from Shi and Eberhart [18] with an asymmetric initialization method 
and a linearly decreasing w which change from 0.9 to 0.4. SPSO2 provides a 
transitional comparison to SPSO1 as a symmetric initialization. In our case, three 
populations of SPSO1 are involved in MCPSO as slave swarms to optimize the above 
benchmark functions and each of them has the same parameter settings as SPSO1. For 

SPSO1, SPSO2 and MCPSO, maxx and maxv are set to be equal and their values 

for
1f , 

2f and 
3f  are 100, 10, 600, respectively. The acceleration constants 1c and 

2c for SPSO1and SPSO2 are both 2.0. The acceleration constants 05.221 == cc  

and migration coefficient 8.03 =c  are used in MCPSO. The parameters setting for all 

algorithms are summarized in Table 1. 

Table 1. Parameter setting 

Type SPSO1 SPSO2 MCPSO 
initialization      asymmetric symmetric  asymmetric 
Inertia  weight 0.9 to 0.4 0.9 to 0.4 0.9 to 0.6 
number of swarms 1 1 4 

1c  
2.0 2.0 2.05 

2c  
2.0 2.0 2.05 

3c
 

— — 0.8 

Table 2. Mean fitness values for Rosenbrock function 

P Dim G SPSO1 SPSO2 MCPSO 

10 1000 96.1715 44.1374 4.5229 

20 1500 214.6764 87.2810 19.6717 

 
20 

30 2000 316.4468 132.5973 17.5155 

10 1000 70.2139 24.3512 4.1054 

20 1500 180.9671 47.7243 11.1590 

 
40 

30 2000 299.7061 66.6341 15.7867 

10 1000 36.2945 15.3883 3.1391 

20 1500 87.2802 40.6403 10.2597 

 
80 

30 2000 205.5596 63.4453 33.4982 

10 1000 24.4477 11.6283 2.6322 

20 1500 72.8190 28.9142 17.3233 

 
160 

30 2000 131.5866 56.6689 18.8168 
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Table 3. Mean fitness values for Rastrigrin function 

P    Dim G  SPSO1  SPSO2 MCPSO 

10 1000 5.5572 5.2062 3.5848 

20 1500 22.8892 22.7724 12.9345 

 
20 

30 2000 47.2941 49.2942 37.8082 

10 1000 3.5623 3.5697 2.5869 

20 1500 16.3504 17.2975 11.9404 

 
40 

30 2000 38.5280 38.9142 28.2703 

10 1000 2.5379 2.3835   0.9950 

20 1500 13.4263 12.9020 8.9546  

 
80 

30 2000 29.3063 30.0375 23.879 

10 1000 1.4943 1.4418 0.9948 

20 1500 10.3696 10.0438 5.9698 

 
160 

30 2000 24.0864 24.5105 12.934 

Table 4. Mean fitness values for Griewank function 

P    Dim G  SPSO1 SPSO2 MCPSO 

10 1000 0.0919 0.0920 0.0503 

20 1500 0.0303 0.0317 0.0068 

 
20 

30 2000 0.0182 0.0482 0.0035 

10 1000 0.0862 0.0762 0.0602 

20 1500 0.0286 0.0227 0.0078 

 
40 

30 2000 0.0127 0.0153 0.0031 

10 1000 0.0760 0.0658 0.0462 

20 1500 0.0288 0.0222 0.0106 

 
80 

30 2000 0.0128 0.0121 0.0007 

10 1000 0.0628 0.0577 0.0406 

20 1500 0.0300 0.0215 0.0098 

 
160 

30 2000 0.0127 0.0121 0.0022 

In order to investigate whether MCPSO scales well or not, different population 
sizes P are used for each function with different dimensions. The population sizes P 
are 20, 40, 80 and 160. The maximum number of generations G is set as 1000, 1500, 
and 2000 corresponding to the dimensions 10, 20 and 30, respectively. For fair 
comparison, in all cases the population size of SPSO1 and SPSO2 is the same as those 
used in MCPSO (i.e., for each population size used in MCPSO, /P N  particles are 
allocated for each sub-swarm). A total of 50 runs for each experimental setting are 
conducted.  

Table 2 to Table 4 list the mean fitness values of the best particle found for the 50 
runs for the three benchmark functions. From the Tables, MCPSO outperforms 
SPSO1 and SPSO2 significantly for almost all the cases. In a general analysis of all 
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Fig. 3. Evolution of average fitness for MCPSO and SPSO when optimizing: a)
1f , Rosenbrock 

function, b)
2f , Rastrigrin function, c)

3f , Griewank function (notice that the scale is natural 
logarithmic) 

tables we may conclude that MCPSO with different population sizes has almost the 
similar performance and scales well for all three functions. Fig. 3 (a) to Fig. 3 (c) 
show the mean fitness value of the best particles found during 1500 generations with 
20 dimensions by 20 particles for

1f , 
2f  and 

3f  respectively. With the same setting 

with linearly decreasing ,w  SPSO2 is superior to SPSO1 for 
1f , and is similar to 

SPSO1 for 
2f  and 

3f . The little difference of the results between SPSO1 and SPSO2 

verifies that PSO is only slightly affected by the asymmetric initialization. However, 
for all the functions the result generated by MCPSO is better than those generated by 
SPSO1 and SPSO2. The graphs presented in Fig. 3 (a) to Fig. 3 (c) illustrate MCPSO 
will sustainable evolve when SPSO1 and SPSO2 is almost stagnated. 
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Fig. 4. Multi-population evolutionary process for benchmark functions: d)
1f , Rosenbrock 

function, e)
2f , Rastrigrin for function , f)

3f , Grienwank function (notice that the scale is 
natural logarithmic) 

Fig. 4 (d) to Fig. 4 (f) show the multi-population evolutionary process for the three 
benchmark functions, where the population sizes P is set as 20, and the maximum 
number of generations G is set as 1500 corresponding to the dimensions 20. By 
looking at the shapes of the curves in the graphs, it is easy to see that each particle in 
the master swarm can keep track of the previous best position found by slave swarms, 
as well as find a better position based on its own knowledge. In fact, since the 
competition relationships of the slave swarms the master swarm will not be 
influenced much when a certain slave swarms get stuck at a local optima. It may be 
concluded that the results generated by MCPSO is more robust than SPSO1  
and SPSO2. 
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5   Conclusions and Future Work 

This paper presents a biologically inspired mechanisms designed to improve the 
performance of SPSO. A symbiosis mechanism is implemented in addition to the 
SPSO, which result in a new algorithm (called MCPSO) characterized by a master-
slaver mode. In MCPSO, one master swarm lives in symbiosis with several slave 
swarms. The evolution of slave swarms is likely to amplify the diversity of 
individuals of populations and consequently to generate more promising particles for 
the master swarm. The master swarm updates the particle states based on both its own 
experience and that of the slave swarms. 

This new method is capable of controlling the balance between exploration and 
exploitation. Three benchmark functions are performed in the simulation part using 
different algorithms. The performance comparisons indicate that MCPSO is superior 
to SPSO in both the high quality of the solution and the robustness of the results. 

Future work is focused on optimizing the performance of the proposed MCPSO. In 
addition, extensive application on more complicated practical optimization tasks is 
necessary to fully investigate the properties and evaluate the performance of MCPSO. 
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Abstract. Efficient hierarchical architectures for reconfigurable and adaptive
multi-agent networks require dynamic cluster formation among the set of nodes
(agents). In the absence of centralised controllers, this process can be described as
self-organisation of dynamic hierarchies, with multiple cluster-heads emerging as
a result of inter-agent communications. Decentralised clustering algorithms de-
ployed in multi-agent networks are hard to evaluate precisely for the reason of
the diminished predictability brought about by self-organisation. In particular,
it is hard to predict when the cluster formation will converge to a stable con-
figuration. This paper proposes and experimentally evaluates a predictor for the
convergence time of cluster formation, based on a regularity of the inter-agent
communication space as the underlying parameter. The results indicate that the
generalised “correlation entropy” K2 (a lower bound of Kolmogorov-Sinai en-
tropy) of the volume of the inter-agent communications can be correlated with
the time of cluster formation, and can be used as its predictor.

1 Introduction

Dynamic creation and maintenance of “optimal” hierarchies in large dynamic networks
is a well-recognised challenge. It appears in many different contexts, e.g., as dynamic
hierarchies in Artificial Life [15], coalition formation in Agent-based Systems [17],
decentralised clustering in Multi-Agent Systems [12], dynamic cluster formation in
Mobile Ad Hoc Networks [10], etc. In this paper, we consider a sub-problem from
this class: dynamic cluster formation in a sensor and communication network without
centralised controllers. This process can be described as self-organisation of dynamic
hierarchies, with multiple cluster-heads emerging as a result of inter-agent communi-
cations. Importantly, the emphasis is on rules of interactions (or communication proto-
cols) between the engaged lower-level entities (cells, agents, network nodes, etc.) and
the structures and patterns emerging at a higher-level (multi-cellular boundaries, multi-
agent coalitions, local hierarchs or cluster-heads, etc.).

In general, the clustering of sensor-data aims at grouping entities with similar char-
acteristics together so that main trends or unusual patterns may be discovered. Self-
organising cluster formation in multi-agent networks/systems has two specific primary
challenges: a) decentralised clustering: even if a correct classification can be determined
with the incomplete information available, the location of items belonging to a class
also needs to be discovered, “data is widely distributed, data sets are volatile, or data
items cannot be compactly represented” [12], and; b) dynamic (on-line) clustering: new
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events may require reconfiguration of clusters: the resulting patterns or clusters have
to be constantly refined. This requires efficient algorithms for decentralised sensor-data
clustering in a distributed multi-agent system. A method for grouping networked agents
with similar objectives or data without collecting them into a centralised database is pre-
sented by Ogston et al. [12], and shows very good scalability and speed in comparison
with the k-means clustering algorithm. It employs a heuristic for breaking large clusters
when required, and a sophisticated technique dynamically matching agents objectives,
represented as connections in the multi-agent network.

However, decentralised clustering algorithms deployed in multi-agent networks are
hard to evaluate precisely for the reason of the diminished predictability brought about
by self-organisation. In particular, it is hard to predict when the cluster formation will
converge to a stable configuration. Such a predictive ability is, however, important for
deciding whether clusters will form in time for multi-agent diagnostics, being a prereq-
uisite for the overall damage propagation prognosis. The specific objective of this paper
is an identification and evaluation of potential predictors for the convergence time of
dynamic cluster formation.

In achieving this goal, we analyse two levels of multi-agent dynamics: macro-level,
where coordination patterns form and can be observed, and micro-level, where the inter-
agent messages are exchanged, creating a multi-agent communication space. We con-
sider irregularity of the inter-agent communication space, and propose it as a possible
predictor for our task. This predictor is estimated via the generalised “correlation en-
tropy” K2 of the underlying time series: the traffic volume of inter-agent communica-
tions. The estimates are shown to be correlated with the convergence time of cluster
formation.

The experiments required to evaluate the predictor were carried out on a self-
monitoring sensor and communication network developed CSIRO-NASA “Ageless”
Aerospace Vehicle (AAV) project, in the context of Structural Health Management
(SHM). The AAV project is briefly described in the next section, followed by a simpli-
fied version of a decentralised adaptive clustering algorithm developed for evaluation
purposes. Section 3 presents the proposed predictor for the convergence time of cluster
formation, followed by a discussion of the obtained results and future work.

2 Adaptive Clustering in Self-organising SHM Networks

Structural health monitoring and management of complex, safety-critical structures
such as aerospace vehicles will ultimately require the development of intelligent net-
works systems that can process the data from large numbers of sensors; evaluate and
diagnose detected damage; form a prognosis for the damaged structure; make decisions
regarding response to or repair of the damage; initiate the required actions and monitor
their effectiveness [13,3]. Recently, several essential concepts for self-organising SHM
networks as well as their desirable characteristics, such as robustness, reliability and
scalability, have been identified in the literature [13,14]. Some of these concepts are be-
ing developed, implemented and tested in the AAV Concept Demonstrator (AAV-CD): a
hardware multi-cellular sensing and communication network whose aim is to detect and
react to impacts by projectiles that, for a vehicle in space, might be micro-meteoroids or
space debris. A stand-alone Asynchronous Simulator capable of simulating the AAV-
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CD dealing with some environmental effects such as particle impacts of various en-
ergies has been developed and used in the reported experiments. The damage sensing
network may consists of “cells” (agents) that not only form a physical shell (“skin”)
for a structure (e.g., an aerospace vehicle), but also have passive sensors detecting elas-
tic waves generated in the “skin” by impacts; and electronic modules, acquiring data
from the sensors, running the agent software and controlling the communications with
its neighbouring cells. Importantly, a cell should communicate only with immediate
neighbours, eliminating single critical points of failure: all data are processed locally,
and only information relevant to other regions of the structure is communicated.

Single cells may detect impacts and triangulate their locations, while collections of
cells may solve more complex tasks. Some responses could be purely local, while some
may require emergence of dynamic reconfigurable structures, with some cells taking the
roles of “local hierarchs”. A cluster-head may be dynamically selected among the set
of nodes and become a local coordinator of transmissions within the cluster. A typical
SHM task may require impact-data clusters, logically grouping the cells which detected
impacts with energies within a certain band (e.g., non-critical impacts). Moreover, clus-
ters would form and re-form when new damage is detected on the basis of local sensor
signals. Importantly, a cluster formation algorithm should be robust to changes caused
by new impacts, cells’ failures and possible repairs.

As pointed out earlier, our main goal is not a new clustering method per se, but
rather an analysis of a representative clustering technique in a dynamic and decen-
tralised multi-agent setting, exemplified by the AAV sensor and communication net-
work, in terms of predictability of its convergence time. There are some important spe-
cific details of our experimental setup which may be relevant to other multi-agent net-
works: a particular communication infrastructure where each cell is connected only to
immediate neighbours; constraints on the communication bandwidth; dynamic scenar-
ios where density of events may vary in time and space; a decentralised architecture
without absolute coordinates or id’s of individual cells on a large-scale multi-cellular
skin. To stay within a generic framework, we abstracted away almost all sensor-data
features. For example, instead of considering time-domain or frequency-domain impact
data, detected and/or processed by cell sensors [13], we represent a cell sensory reading
with a single aggregated value (“impact-energy”), define “differences” between cells in
terms of this value, and attempt to cluster cells while minimising these “differences”.
This approach can be relatively easily extended to cases where “differences” are defined
in a multi-dimensional space. In short, our focus is on inter-agent communications re-
quired by a decentralised clustering algorithm, dynamically adapting to changes, and
the convergence time.

2.1 Dynamic Cluster Formation Algorithm

The algorithm input can be described as a series (a flux) of events (impacts) detected at
different times and locations, while the output is a set of non-overlapping clusters, each
with a dedicated cluster-head (a network cell) and a cluster map of its followers (cells
which detected the impacts) in terms of their sensor-data and relative coordinates. The
algorithm is described elsewhere [11] and involves a number of inter-agent messages
notifying agents about their sensory data, and changes in their relationships and actions.
For example, an agent may send a recruit message to another agent, delegate the role
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of cluster-head to another agent, or declare “independence” by initiating a new cluster.
Most of these and similar decisions are based on the clustering heuristic described by
Ogston et al. [12], and a dynamic offset range. This heuristic determines if a cluster
should be split in two, and the location of this split.

Each cluster-head (initially, each agent) broadcasts its recruit message periodically,
with a broadcasting-period, affecting all agents with values within a particular dynamic
offset ε of the impact-energy data x detected by this agent. Every recruit message con-
tains the sensor-data of all current followers of the cluster-head with their relative coor-
dinates (a cluster map). Under certain conditions, an agent, which is not a follower in
any cluster, receiving a recruit message becomes a follower, stops broadcasting its own
recruit messages and sends its information to its new cluster-head indicating its rela-
tive coordinates and the sensor-data x. However, there are situations when the receiving
agent is already a follower in some cluster and cannot accept a recruit message by itself
— a recruit disagreement. In this case, this agent forwards the received recruiting re-
quest to its present cluster-head. Every cluster-head waits for a certain period, collecting
all such forward messages, at the end of which the clustering heuristic is invoked on the
union set of present followers and all agents who forwarded their new requests.

Firstly, all n agents in the combined list are sorted in decreasing order according to
their impact-energy value x. Then, a series of all possible divisions in the ordered set of
agents is generated. That is, the first ordering is a cluster with all agents in it; the second
ordering has the agent with the largest value in the first cluster and all other agents in
the second cluster; and so forth (the n-th division has only the last n-th agent in the
second cluster). For each of these divisions, the quality of clustering is measured by the
total square error:

E2
j =

z∑
i=1

∑
x∈Ai,j

‖x − mi,j‖2 ,

where z is a number of considered clusters (z = 2 when only one split is considered),
Ai,j are the clusters resulting from a particular division and mi,j is the mean value of the
cluster Ai,j . We divide E2 values by their maximum to get a series of normalised values.
Then we approximate the second derivative of the normalised errors per division:

f ′′(E2
j ) = (E2

j+1 + E2
j−1 − 2E2

j ) / h2 ,

where h = 1
n . If the peak of the second derivative is greater than some threshold for a

division j, we split the set accordingly; otherwise, the set will remain as one cluster.
The cluster-head which invoked the heuristic notifies new cluster-heads about their

appointment, and sends their cluster maps to them: a cluster-information message.
When the clustering heuristic is applied, it may produce either one or two clusters as
a result. If there are two clusters, the offset of each new cluster-head is modified. It is
adjusted in such a way that the cluster-head of the “smaller” agents (henceforth, refer-
ences like “larger” or “smaller” are relative to the value x) can now reach up to, but not
including, the “smallest” agent in the cluster of “larger” agents. Similarly, the cluster-
head of “larger” agents can now reach down to, but not including, the “largest” agent
(the cluster-head) of the cluster of “smaller” agents. These adjusted offsets are sent to
the new cluster-heads along with their cluster maps.

There are other auxiliary messages involved in the algorithm but importantly, the
cluster formation is driven by three types: recruit, cluster-information, and forward
messages. The first two types are periodic, while the latter type depends only on the
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degree of disagreements among cluster-heads. On the one hand, if there are no dis-
agreements in clustering (for instance, if a clustering heuristic resulted in optimal splits
even with incomplete data), then there is no need in forward messages. On the other
hand, when cluster-heads frequently disagree on formed clusters, the forward messages
are common. In short, it is precisely the number of forward messages traced in time —
the traffic volume of inter-agent communications — that we hope may provide an un-
derlying time series {vt} for our prognostic analysis, as it exhibits both periodic and
chaotic features.

The quality of clustering is measured by the weighted average cluster diameter [23],
but the algorithm does not guarantee a convergence minimising this criterion. In fact,
it may give different clusterings for the same set of agent values, depending on the
physical locations of the impact points. The reason is a different communication flow
affecting the adjustment of the offsets. Each time the clustering heuristic is executed in
an agent, its offsets are either left alone or reduced. The scope of agents involved in the
clustering heuristic depends on the order of message passing, which in turn depends on
the physical locations of impacts. The adjusted offsets determine which agents can be
reached by a cluster-head, and this will affect the result of clustering. Therefore, for any
set of agent values, there are certain sequences of events which yield better clustering
results than others.

We conducted extensive preliminary simulations to determine whether the algo-
rithm is robust and scales well in terms of the quality of clustering and convergence,
measured by the number of times the clustering heuristic was invoked before stability
is achieved with each data set [11]. Several scenarios were considered. The first sce-
nario kept the network size constant, while increasing the number of impacts detected
within it. The second scenario, on the contrary, fixed the number of impacts, while in-
creasing the network size. In other words, the density of impacts was increasing in the
first case, and decreasing in the second. Finally, we developed scenarios where impacts
appear periodically, with varying periods. While the simulation results show that the
algorithm converges and scales well in all cases, and in addition, is robust to dynamics
of the sensor-data flux, the convergence time varies significantly (Figure 1), without
obvious indicative patterns.

In the remainder of the paper we focus on our main objective: prediction of the
convergence time T , based on regularity of an initial segment 0, ...,D, where D < T ,
of the “communication-volume” series {v(t)}, where v(t) is the number of forward
messages at time t.

3 The Kq(D) Predictor: Entropy of Multi-agent
Communication-Volume

The observed variability of different communication-volume time series may indicate
that the underlying dynamics in the phase-space includes both unstable periodic and
chaotic orbits, and an unstable fixed-point. It is known that in many experiments, time
series often exhibit irregular behavior during an initial interval before finally settling
into an asymptotic state which is non-chaotic [1] — in our case, eventually converging
to a fixed-point (vT = 0). The irregular initial part of the series may, nevertheless,
contain valuable information: this is particularly true when the underlying dynamics is
deterministic and exhibits transient chaos [1,7]. We believe that the described algorithm
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Fig. 1. Varying convergence times Ts for 4 different experiments, 1 ≤ s ≤ 4

for dynamic cluster formation, employing the clustering heuristic and adjustments of
the offset ε, creates multi-agent transient chaotic dynamics.

Our plan is simple: for each experiment s, a) select an initial segment of length D
of the time series, {vDs }; b) estimate its generalised entropy Kq(D)s for a range of
estimation-dependent parameters (see the description below). Then, c) given the esti-
mates Kq(D)s for all the experiments, correlate them with the observed convergence
times Ts, e.g., by using a linear regression T = a + bKq(D) and the correlation co-
efficient ρ between the series {Ts} and {K2(D)s}. This would allow us to predict the
time Ts of convergence to vs(Ts) = 0, as Ts = a + bKq(D)s.

A simple characterisation of the “regularity” of the communication space is pro-
vided by the auto-correlation function of an integer delay τ :

γs(τ) =
D∑

t=τ+1

[vs(t − τ) − vs] [vs(t) − vs] /
D∑

t=1

[vs(t) − vs]2 . (1)

The auto-correlation is obviously limited to measuring only linear dependencies, and we
consider instead a more general and elaborate approach. One classical measure is the
Kolmogorov-Sinai (KS) entropy, also known as metric entropy [8,9,18]: it is a measure
for the rate at which information about the state of the system is lost in the course of
time. In other words, it is an entropy per unit time, or an “entropy rate”. Suppose that
the d−dimensional phase space is partitioned into boxes of size rd. Let Pi0...id−1 be the
joint probability that a trajectory is in box i0 at time 0, in box i1 at time Δt, ..., and in
box id−1 at time (d − 1)Δt, where Δt is the time interval between measurements on
the state of the system (in our case, we may assume Δt = 1, and omit the limit Δt → 0
in the following definitions). The KS entropy is defined by
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K = − lim
Δt→0

lim
r→0

lim
d→∞

1
dΔt

∑
i0...id−1

Pi0...id−1 lnPi0...id−1 , (2)

and more precisely, as a supremum of K on all possible partitions. This definition has
been generalised to the order-q Rényi entropies Kq [16]:

Kq = − lim
Δt→0

lim
r→0

lim
d→∞

1
dΔt(1 − q)

ln
∑

i0...id−1

P q
i0...id−1

. (3)

It is well-known that K = 0 in an ordered system, K is infinite in a random system, and
K is a positive constant in a deterministic chaotic system. Grassberger and Procaccia
[4] considered the “correlation entropy” K2 in particular, and capitalised on the fact
K ≥ K2 in establishing a sufficient condition for chaos K2 > 0. The Grassberger and
Procaccia (GP) algorithm estimates the entropy K2 as follows:

K2 = lim
r→0

lim
d→∞

lim
N→∞

ln
Cd(N, r)

Cd+1(N, r)
, (4)

where Cd(r) is the correlation integral:

Cd(N, r) =
1

(N − 1)N

N∑
i=1

N∑
j=1

Θ(r − ‖Vi − Vj‖) . (5)

Here Θ is the Heaviside function (equal to 0 for negative argument and 1 otherwise), and
the vectors Vi and Vj contain elements of the observed time series {v(t)}, “converting”
or “reconstructing” the dynamical information in one-dimensional data to spatial infor-
mation in the d-dimensional embedding space: Vk = (vk, vk+1, vk+2, . . . , vk+d−1)
[19]. The norm ‖Vi − Vj‖ is the distance between the vectors in the d-dimensional
space, e.g., the maximum norm [20]:

‖Vi − Vj‖ =
d−1
max
τ=0

(vi+τ − vj+τ ) (6)

Put simply, Cd(r) computes the fraction of pairs of vectors in the d-dimensional em-
bedding space that are separated by a distance less than or equal to r. In order to elim-
inate auto-correlation effects, the vectors in Equation (5) should be chosen to satisfy
|i − j| > L, for some positive L, and at the very least i 
= j [21]. Since we consider
only an initial segment of the times series, we simply set N = D in the Equation (5),
estimating the entropy as

K2(d, r,D) = ln
Cd(D, r)

Cd+1(D, r)
. (7)

Now we only need to identify the embedding dimension d̂ and the distance r̂ which
maximise the correlation coefficient for s experiments, ρ({Ts}, {K2(d, r,D)s}), over
a range of d and r, and designate

K2(D)s = K2(d̂, r̂,D)s. (8)

At this stage we need to make a comment on the correlation dimension. Within certain
ranges of r and d, the correlation integral Cd(r) may be proportional to some power of
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r, Cd(r) ∼ rν [5]. This power ν is called the correlation dimension. If the dynamical
process is unfolded by choosing a sufficiently large d > dν , a typical slope of the plot
lnCd(r) versus ln r becomes independent of d. We observed (see the next section) that
this minimum embedding dimension dν is not necessarily the embedding dimension d̂
maximising the predictor K2(D), but a possible connection is intriguing.

The correlation dimension provides useful information about the local structure of
the process and is an effective measure of its (possibly fractal) size: in particular, a ran-
dom process has an “infinite” correlation dimension (its orbit is not expected to have
any spatial structure). In contrast, the correlation dimension for a periodic orbit is 1,
while it could be higher for some non-regular processes. A non-integer ν < 1 is an in-
dication of a strange chaotic attractor [5]. It is worth pointing out that the GP algorithm
can be used to estimate the correlation dimension of underlying chaotic transients [1].

4 Experimental Results

The experiments included s = 1, ..., 20 runs of the clustering algorithm, tracing the
communi-cation-volume time series {vt}. As expected, the auto-correlation function
γs(τ), Equation (1), did not advance us in our experiments: the highest correlation
coefficient between convergence times Ts and auto-correlations γs(τ), for a range of
delays τ , was only 0.52.

We then selected an initial segment D = 400, and computed correlation integrals
Cd(400, r) for a wide range of embedding dimensions (d < 98) and distances (1 ≤ r ≤
1000, a median standard deviation of {v}s being about 100). A plot lnCd(r) versus
ln r is shown in Figure 2, illustrating the time series depicted in the top-left of Figure 1
(a quickly converged series, T = 415). We can observe three well-known regions:
1) the lower region distorted by fluctuations due to the small number of points, 2) a
linear “scaling” region where the power law Cd(r) ∼ rν holds, and 3) the upper region
distorted due to the finite size of the process. There are also anomalous shoulders in the
correlation integral due to remaining autocorrelation in the time-series data [22]. We
observed that quickly converged series have an earlier onset of the upper region than
slowly converged series. The plot strongly indicates a transient multi-mode process,
and suggests the possibility of extracting meaningful predictors K2(D)s, specified by
Equations (7)-(8).

Given data of s experiments: the 3-dimensional array K2(d, r,D)s for varying d
and r, and each s, the correlation coefficient ρ({Ts}, {K2(d, r,D)s}) was determined
for the range of d and r. It is shown in Figure 3, clearly reaching maximum at embed-
ding dimensions 6 ≤ d ≤ 10, almost uniformly for all the distances r. The maximum
(ρ = 0.898345) was attained at d̂ = 6 and r̂ = 41, and is a very encouraging corre-
lation value. Figure 4 shows the linear regression between {Ts} and {K2(D)s}, where
the latter is selected according to the Equation (8) for the identified d̂ and r̂.

5 Conclusions and Future Work

We considered decentralised and dynamic cluster formation in multi-agent sensor and
communication networks, proposed and experimentally evaluated a predictor for the
convergence time of cluster formation. The predictor K2(D) is based on the generalised
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“correlation entropy” (a lower bound of Kolmogorov-Sinai entropy) of the volume of
the inter-agent communications. The results indicate that K2(D) can be well correlated
with the time of cluster formation. The predictor Kq(D) can also be considered for
other orders q, and this work is ongoing.

The dynamic cluster formation may be interpreted in self-referential terms: inter-
agent messages contribute to emergence of cluster hierarchies at macro-level, and at the
same time are significantly influenced by them at micro-level. Such an interdependency
can also be characterised in terms of tangled hierarchies exhibiting Strange Loops [6]:
“an interaction between levels in which the top level reaches back down towards the
bottom level and influences it, while at the same time being itself determined by the
bottom level”. The observed multi-agent transient chaotic dynamics may appear pre-
cisely due to this self-referentiality.

The performance of the predictor K2(D) provides a very good support for deploy-
ing other, more sophisticated algorithms in the sensing networks. The density-based
algorithms may particularly be relevant in our application: e.g., DBSCAN algorithm
would allow us to discover clusters with arbitrary shape [2].
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Abstract. Evolution by natural selection is a process of variation and selection 
acting on replicating units. These units are often assumed to be individuals, but 
in a sexual population, the largest reliably-replicated unit on which selection 
can act is a small section of chromosome – hence, the ‘selfish gene’ model. 
However, the scale of unit at which variation by spontaneous mutation occurs is 
different from the scale of unit at which variation by recombination occurs. I 
suggest that the action of recombinative variation and mutational variation to-
gether can enable local optimization to occur at two different scales simultane-
ously. I adapt a recent model illustrating a benefit of sexual recombination to il-
lustrate conditions for two scales of optimization in natural populations, and 
show that the operation of natural selection in this scenario cannot be under-
stood by considering either scale alone. 

1   Nucleotides, Genes, and Individuals 

Although it is often convenient when providing evolutionary explanation to suppose 
that selection acts on individual organisms, in fact, in sexual populations the combina-
tion of alleles represented in an individual’s genotype is not reliably transferred to its 
offspring [1][2]. In sexual populations the largest unit of genetic material that repro-
duces with reliable fidelity is a subsection of chromosome small enough to avoid being 
disrupted by crossover. The size of these units will be determined by the crossover rate1, 
with higher rates defining smaller units, but for common purposes it is taken that the 
relevant unit is about the size of individual genes [1]. Accordingly, since the gene is the 
largest genetic unit that reproduces reliably, the gene is the largest unit on which natural 
selection can act [1] – hence, the well-known “selfish gene” framework [2]. These ob-
servations support fundamental axioms underlying the way evolution is defined, i.e. the 
change in frequencies of alleles in a gene pool [3], placing attention on the frequencies 
of individual alleles, not the frequencies of genotypes. Although the selective unit might 
seem unambiguous in evolutionary algorithms because evaluation is always applied to 
individuals and individual fitnesses determine reproduction, in fact the same issues 
apply if sexual recombination, or crossover, is used. Although individuals are selected 
to reproduce, the genetic material of individuals is broken-up by crossover, so it is only 
fragments of individuals whose frequencies can be affected by selection – hence, atten-
tion on “schema” in evolutionary computation theory [4].  

                                                           
1 The probability of recombining adjacent loci (not the probability that crossover is applied to 

an individual, as sometimes meant in evolutionary computation). See C in Table 1.  



896 R.A. Watson 

Biologically, the genes on which selection acts may consist of thousands of nucleo-
tides. New variants of genes (new alleles) are introduced by spontaneous point muta-
tion affecting one or a small number of individual nucleotides within a gene. Accord-
ingly, the scale of unit that is manipulated by mutation (individual nucleotides) is 
quite a different scale of unit from that which is manipulated by recombination (al-
leles of genes). However, since selection acts on whole alleles it is common in popu-
lation genetics models to abstract away the nucleotide-level details and simply refer to 
the variant alleles of a gene by unique labels, e.g. A and a. Each allele label represents 
a different combination of maybe thousands of nucleotides, but if one allele is pro-
duced by mutation of the other, then they may differ in only a few nucleotide substitu-
tions. This abstraction of the internal detail, hiding the level of individual nucleotides 
on which mutation acts, is appropriate for some purposes. Indeed, it sufficed perfectly 
well for all the population genetic results derived prior to the discovery of the molecu-
lar structure of DNA [5]. Historically, an allele is simply defined as a particulate unit 
of Mendelian inheritance (thus being intimately linked to the action of recombina-
tion), and the fact that, on a molecular basis, each consisted of thousands of nucleo-
tides was not known. Following conventional population genetic models, evolutionary 
computation models [4] used in artificial life rarely make the distinction between 
genes and nucleotides. Individuals are generally modelled as binary strings where 
each bit is taken to be synonymous with the allele of a gene at a particular locus and 
mutation changes the bit between one allele and the other, 0 or 1, standing in for A 
and a. The problem is that this abstraction is not consistent with a model of a gene 
containing a thousand nucleotides and 41000 different alleles – consider the probability 
of a reversion, or “back mutation”, for example, or more generally, the probability of 
finding a particular allele by random mutation. This inconsistency can cause more 
than a mere terminological problem, especially in cases where mutation and recombi-
nation are applied together.  

So, in population genetics and in evolutionary computation, does it matter whether 
genes are modelled as collections of nucleotides or simply abstracted into particulate 
alleles? There are many scenarios, lying within common assumptions, where it does 
not. But there are other scenarios that are biologically plausible where it does matter. 
The aim of this paper is to discuss the conceptual issues involved and examine the 
implications of moving outside common assumptions. I use some simulation results 
as an example just to illustrate some of the salient points.  My claim is that existing 
definitions of the unit of selection and common simplifying assumptions preclude 
some interesting phenomena, and more specifically, that it is necessary in some cases 
to recognise more than one level of optimisation to understand the action of evolu-
tionary systems. Cases (like those examined here) that step outside the usual simplify-
ing assumptions are necessary for understanding the operation of evolution in natural 
populations. They are also necessary for understanding how to use and model evolu-
tion in artificial life experiments, and in addressing the complex relationship that 
these observations have to concepts of the unit of selection and related processes such 
as Shifting Balance Theory [6].  

The following two sections introduce the basic ideas about why two levels of op-
timisation may be required to find fit genotypes in a fitness landscape, and how this 
might be provided. Section 4 describes a set of simulation experiments to illustrate the 
effect of changing the scales at which optimisation is applied. Specifically, I show 
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that optimisation at any one scale is insufficient to find fit genotypes, and a combina-
tion of optimisation scales is required. I illustrate two different ways in which these 
two scales can be provided, but the main idea is that mutation manipulates the nucleo-
tides and recombination manipulates the alleles of genes. The quite simple idea that 
mutation and recombination afford local optimisation in different spaces by operating 
on different units motivates a rethink about simplistic notions of the unit of selection. 

2   Background: Selective Units and Local Optima 

I suggested above that there are evolutionary scenarios that afford optimisation on 
some unit of genetic material and also on combinations of that unit: specifically, nu-
cleotides and combinations of nucleotides (i.e. alleles of genes). The consequences of 
this are the same for other scales of units, for example, alleles and combinations of 
alleles. In fact, discussion about the possibility of selection on combinations of alleles 
has quite a history in population genetics and we can use this to better understand the 
implications of having optimisation occur at the lower scales of nucleotides and com-
binations of nucleotides.  

If selection acts on individual units (of whatever scale), then this has important 
consequences for what evolution by natural selection can and cannot do. If selection 
acts on individual units, then evolution can only respond to the net fitness effects of 
individual units. Although a piece of genetic material like an allele may have different 
fitness effects in different genetic backgrounds, the change in frequency of that unit 
over several generations cannot be controlled by its fitness in any particular back-
ground in a sexual population (as its presence in a given background is not reliably 
reproduced). Instead, Fisher argues, the change in frequency of an allele will be con-
trolled by its average fitness excess [7], roughly, its average fitness effect over the 
backgrounds in which it occurs. A consequence of selection on the average effect of 
individual units is that if a particularly fit combination of units involves units that are 
individually disfavoured then, even if that combination should happen to arise in some 
individual, it cannot take hold in the population.  

A particular instance of this may occur when a population is stuck at a local fitness 
peak in a fitness surface. Consider a genotype A that is locally optimal and a second 
genotype B that is fitter. All single allele substitutions to A are deleterious (by the 
definition of being locally optimal) so B (necessarily) differs from A by several allelic 
substitutions. These allelic differences are thus collectively favourable but individu-
ally unfavourable to a genotype at A. Since sexual recombination re-assorts alleles 
into the different genetic backgrounds of other individuals in the population, even if 
such a combination of alleles were introduced to an individual in a population located 
at A, selection would act on the alleles individually and remove them from the popula-
tion. Sewell Wright considered the escape from a local fitness peak to a genotype of 
higher fitness to be the central problem of evolution [8], and devised Shifting Balance 
Theory, SBT, [6] to explain how population subdivision might enable an evolving 
population to achieve this. However, some consider the conditions for SBT to not be 
widely, if at all, available in natural populations [9]. 

Actually, it would be easy to facilitate selection on combinations of alleles if the 
crossover rate could be modified. That is, if the crossover rate were very low then 
alleles would not assort independently and would instead be selected as a unit, and in 
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the limit, the entire genotype of an asexual individual replicates as a whole. If an 
asexual population was centred on A, and the combination of alleles required to reach 
B were introduced to an individual in the population, then selection would have no 
problem in promoting the resultant B genotype to take over in the population. But 
selection on combinations of alleles has its disadvantages as well. In some circum-
stances it can be favourable to have selection act on the average fitness effect of indi-
vidual alleles rather than on combinations of alleles. For example, when a sub-optimal 
combination of alleles arises in a genotype, containing some favourable alleles and 
some disfavoured alleles, an asexual population is unable to promote the good alleles 
without also promoting the bad alleles. This is the basis of the classic Fisher/Muller 
model for the benefit of sexual recombination [7]. In short, in some circumstances it 
is preferable to have selection act on individual units and in others it is preferable to 
have selection act on combinations of units. The former cannot select for good com-
binations of units unless they involve only units which are also individually good, and 
the latter cannot select for good individual units unless they are in a collectively good 
combination of units. 

Fisher and Wright were concerned with the action of selection on alleles and com-
binations of alleles, but here we are concerned (for the most part) with nucleotides 
and combinations of nucleotides (alleles). The same reasoning applies: in some cases 
selection on individual nucleotides may be beneficial, and in others selection on al-
leles may be beneficial. In natural populations, it does not make sense to imagine that 
recombination rates are so high that selection acts on individual nucleotides. But I 
will argue that mutation effects local optimisation in nucleotide sequence space, and 
that if, at the same time, recombination is manipulating whole alleles, then this can 
effect a two-level process of optimisation. Such a scenario is precluded in prior mod-
els by common assumptions about the epistasis model, and also by the abstraction of 
nucleotide combinations into particulate alleles. In the next section I clarify what I 
mean by local optimisation and the different ways that evolving populations can  
provide it.  

3   Modes of Local Optimisation 

Given a combinatorial search space <u1,u2,u3,…uN> (where each point in the space is 
a combination of values for each of the units u1 to uN) local optimisation involves the 
movement of a point through this space where successive points are neighbouring or 
nearby. For example, hill climbing optimisation follows trajectories formed by mov-
ing to adjacent points that are higher in fitness. An evolving population is often con-
ceived as a hill climbing process. However, there are two qualitatively different 
means by which this may be provided in evolution by natural selection (one being 
more common in evolutionary computation and the other being more common in 
population genetics) and these are often not distinguished properly: I call these local 
mutation and direct selection. Fig.1a. illustrates local mutation as provided by, for 
example, an asexual population with a low rate of spontaneous point mutation on 
nucleotides. Here, although selection promotes entire genotypes, mutation modifies 
one or a small number of nucleotides (e.g. third locus) enabling only local movement 
in the combinatorial space of nucleotides. This maps very naturally to bit-mutation 
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hill climbers used in computational optimisation. Fig.1.b. illustrates local optimisation 
via direct selection on individual units as provided by, for example, a sexual popula-
tion that exhibits free recombination between alleles (that is, alleles assort independ-
ently during sexual reproduction). In this case, an evolving population can (with some 
simplifying assumptions about linkage equilibrium [10] and epistasis) be usefully 
described as a point in allele frequency space [8]. If selection acting on individual 
units makes small adjustments to the frequencies of these units, then the population 
has performed local movement in this space. This sense of local optimisation is the 
normal interpretation of evolution in population genetics models (though not with all 
the same terminology). 

Formally, local mutation and direct selection move in different spaces, genotype 
sequence space and allele frequency space, respectively. But note that genotype se-
quence space is coincident with the vertices of allele frequency space (i.e. points 
where frequencies are either 1 or 0). The more important difference is that the units in 
the natural interpretation of local mutation (in the post-molecular-genetics era) are 
nucleotides, whereas the units in the natural interpretation of direct selection are al-
leles (Mendelian units of inheritance). If the units that the two mechanisms manipu-
late are not the same scale then this makes a profound difference in the ‘locality’ of 
the spaces in which this optimisation occurs. Although local optimisation at any scale 
can become stuck on local optima at that scale, local optimisation at different scales 
‘sees’ different fitness landscapes, different fitness gradients, and different local  
optima. 

Unlike Fig. 1b where alleles are abstract, Fig. 1c illustrates alleles that are each 
composed of many nucleotides. Here if variation introduces new alleles that differ by 
only one nucleotide (left of Fig. 1c) then we still have local optimisation at the nu-
cleotide scale. In contrast, if variation introduces completely new alleles (right of Fig. 
1c), this effects local optimisation at the allele scale but not at the nucleotide scale. A 
combination of mutation on nucleotides and recombination of whole alleles has the 
potential to provide optimisation at two different scales simultaneously, and when the 
local optima of one scale are different from those of the other scale, the interaction of 
the two can provide optimisation that neither one scale can provide alone. 
 

 

Fig. 1. Rows are individuals in a population; boxes show units of genetic material; braces show 
selection pools. a) local mutation. b) direct selection. c) see text. 
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4   Examining a Model Landscape  

The consequences of optimisation at more than one scale will only be seen if we re-
move common simplifying assumptions about epistasis that would cause local optima 
at different scales to be coincident. Previous work [11] described a fitness landscape 
designed to illustrate a benefit of sexual recombination that is well suited for our 
purposes here. This work showed that a subdivided sexual population can discover the 
highest fitness genotypes of this landscape easily, but an asexual population (under 
the same conditions) cannot. In this paper I use this model to demonstrate that there 
are two levels of optimisation involved in this effect by explicitly examining the local 
mutation and direct selection mechanisms at the levels of nucleotides and alleles. 

In this model a genotype consists of two genes each containing many nucleotides. 
The epistasis in the model has strong ‘synergy’ of good mutations within a gene, and 
also a general field of random epistatic interactions among all mutations. The fitness 
of a genotype is given by:2 

 f(G)=Rij(2
-i+2-j)     (1) 

where i is the mutational (Hamming) distance of one of the genes (the first half of the 
genotype, {g1,g2,…,gn}) from an ideal allele, and j is the mutational distance from an 
ideal allele in the other gene (the second half of the genotype {gn+1,gn+2,…,g2n}), and 
each Rij is a random value drawn uniformly in the range [0.5,1] (for one instance of 
this random landscape, each Rij is a constant). The basic form of modularity used here, 
where genes are constituted by a large number of nucleotide sites that are grouped 
both functionally (with epistasis) and physically (by location on the chromosome), is 
also seen in natural systems where the nucleotides of a gene are grouped functionally 
and physically by virtue of the transcription and translation machinery. Without loss 
of generality, the maximum fitness allele for each gene can be that where all nucleo-
tides are 1s, and the maximum fitness genotype is that where both genes have their 
maximum fitness alleles, i.e. the all-1s genotype. This function can be conveniently 
drawn as a two dimensional fitness landscape where the two axes are the number of 
1s in each of the two genes (Fig. 2). 

The idea behind this model is that mutation will search locally to find good combi-
nations of nucleotides within each gene, and crossover will make new combinations 
of alleles to bring these the two good alleles together and hence find fit genotypes. 
This is a simple idea but it is worth pointing out that in most cases over-simplistic 
assumptions about epistasis preclude the need for a two-level description of the evolu-
tionary process, even if the two processes are available. That is, in simple landscapes, 
if selection can find good alleles by finding good nucleotide mutations, then fit geno-
types can be found by simply doing more of this, i.e. finding the good nucleotide 
mutations in all genes. However, in this landscape, it is easy to find the best allele for 
gene 1 by accumulating beneficial mutations only when gene 2 is not yet well  
optimised, and vice versa. Once either of the genes becomes well optimised it then 
 
                                                           
2 This is modified to keep the maximum fitness value to be 3 (and make it insensitive to n, the 

number of nucleotides per gene) but the original shape of the function is retained.  
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Fig. 2. The fitness landscape defined by Equation 1.left) as seen by nucleotide variation, right) 
as seen by combinations of good and bad alleles. 
 

becomes difficult to find the best allele for the second gene without disrupting the 
fitness contributions of the first. This can be seen by considering the problem of es-
caping the local optima in the fitness ridges shown at the back of Fig. 2 (left). Specifi-
cally, each local optimum shown is a local optimum in nucleotide sequence space, so 
although it is easy to find a good combination of nucleotides for either gene by select-
ing on nucleotides, it is not the case that continued selection on individual nucleotides 
will find the fittest genotypes. 

Thus local optimisation on nucleotides will easily find a good allele for one of the 
genes but will then be stuck on a local optimum. In a subdivided population different 
demes may find individuals on different local peaks, some having optimised gene-1 (but 
not gene-2) and others having optimised gene-2 (but not gene-1). But that is as far as it 
goes with optimisation only on nucleotides – to the nearest peak in nucleotide sequence 
space (Fig. 2. left). Additional selection on the allele scale, (taking the good alleles from 
different demes), can easily find fit genotypes. There are only two genes, and the best 
genotypes are simply the union of best alleles from these two genes (Fig. 2 right) – so 
local optimisation in allele space will easily find good genotypes if good alleles for 
these two genes are provided. However, if there were no nucleotide-scale optimisation 
there would be no good alleles on which this allele-scale optimisation could operate. 
Specifically, the number of possible combinations of nucleotides in a gene is exponen-
tial in the number of nucleotides it contains, and if fit alleles of the gene are rare then 
neither initial standing variation nor spontaneous mutation can be guaranteed to provide 
these fit alleles. In this example, the best alleles for each gene are unique in a space of 2n 
possible alleles for each gene. For large n, without local optimisation in nucleotide 
space, finding them relies on chance and is infeasible. Local optimisation on alleles 
alone will only be able to select on the best alleles that are in the initial population or 
any better alleles that might be provided by random search in the set of alleles for each 
gene. Thus although optimisation at the scale of alleles is not troubled by local optima in 
nucleotide sequence space, it also cannot exploit local search in nucleotide space as is 
required to find fit alleles. 

To examine the above reasoning the simulation experiments use the parameters 
given in Table 1. To maintain population diversity the population was subdivided 
with a total population of 10,000 individuals, subdivided into 100 demes of 100 indi-
viduals each. (These demes are bigger than those used in [11] so as to preclude the 
need to use elitism which would explicitly create a means for whole genotypes to 
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Table 1 also gives the results of these simulations. In Exps. 1 and 2 all 30 runs 
failed to find the best genotype in 2000 generations. Exps. 1 and 3 succeeded in find-
ing the best alleles for both genes in all 30 runs, but only Exp. 3 succeeds in finding 
the best genotypes in any runs, and in fact finds them in all runs. As hypothesised we 
see that optimisation on the scale of nucleotides only can find fit alleles but not fit 
genotypes, optimisation on the scale of alleles only cannot find fit alleles, and optimi-
sation on both nucleotides and alleles is necessary and sufficient to find fit genotypes. 
Unsurprisingly, Exps. 1 and 2 are no better in other simulations using a panmictic 
population, failing in all 30 runs, as does Exp. 3b. in 28 of the runs. But interestingly, 
Exp. 3a. does succeed in 14 of 30 runs with a panmictic population (mean 71 (98)) 
indicating that the two-scale optimisation is not entirely dependent on population 
subdivision. Exp. 3b is interesting because it uses recombination to provide optimisa-
tion at both scales.3 This appears to be dependent on the subdivision model and fur-
ther examination is required to ascertain its similarities and contrasts with SBT. Com-
paring with the simulations performed in [11] which use a recombination rate of 1/L 
(as in Exp. 3b) but also use mutation at a rate of 1/L (as in 3a), Exps. 3a and 3b sepa-
rate out the mechanisms that might be responsible for the result in [11]. 

5   Conclusions  

The simulations show that, in a scenario like the example modelled, two scales of 
optimisation are in operation and are required to find fit genotypes. What does this tell 
us about the relevant units of selection? Arguably, in Exp. 3 the unit of selection is 
still the gene because this is the largest unit that replicates reliably under recombina-
tion at these rates. But it would be a mistake to conclude that this is the whole story. 
Let us consider further what has historically been the main purpose of defining the 
unit of selection: i.e. to identify the unit that adaptation by natural selection acts in the 
interest of? A lot of relevant discussion has been focussed on evolution for the good 
of the group versus evolution for the good of the individual [1], but also on evolution 
for the individual versus evolution for the gene [2]. Should we add to this list the 
question of evolution for the good of the gene versus evolution for the good of the 
nucleotide? Although these are the two scales in question here, ascribing benefit to a 
nucleotide does not seem conceptually useful to me. Moreover, it is not clear to me 
that this is the right question to be asking, or that it has a sensible answer. In contrast, 
I find it relatively unambiguous to state that evolution is performing local optimisa-
tion at the nucleotide scale and at the allele scale. Moreover, Exp. 3b shows that this 
could in principle apply at other scales such as genes and combinations of genes, and 
that it would be incorrect to insist that any one scale was sufficient to understand the 
process. 

Accordingly, a preoccupation solely with the unit defined by the recombination 
rate does not necessarily capture all the important scales in evolutionary processes. In 
particular, sexual recombination and spontaneous mutation may provide different 
                                                           
3 This means that multi-scale optimisation is not necessarily restricted just to nucleotides and 

alleles, but in principle to alleles and combinations of alleles, although the utility of optimisa-
tion at the scale of combinations of alleles would depend on the structure of the genetic map 
and its correspondence with epistatic interactions [13]. 



904 R.A. Watson 

levels of optimisation. This suggests that it is not always appropriate to abstract the 
combinations of nucleotides within the alleles of genes into indivisible units simply 
because this is the unit that is particulate under crossover. Simplifying assumptions 
about epistasis may preclude the necessity for such distinctions, but biologically plau-
sible epistatic structures are complex, and simplistic models may overlook significant 
structure that makes these distinctions important, as shown in the example model. 
Similarly, simplifying assumptions about population structure (like panmixia), and 
recombination models (like uniform crossover), are also self-reinforcing in that they 
each exclude the phenomena that make the other interesting. Natural populations 
often lie outside these simplifying assumptions about sex, population structure, and 
epistasis and require a more sophisticated treatment of the mechanisms involved. 

More generally, these observations challenge our understanding of the underlying 
algorithmic principles of evolution by natural selection – in this example we cannot 
model the action of evolution as a hill-climbing process that operates at any one scale. 
Two-scale optimisation is more closely allied to a divide and conquer process of prob-
lem decomposition [13]. Such a distinction is implied in the evolutionary computation 
literature on the building block hypothesis [4][14][15]. Issues of selection on parts 
and wholes are also important to artificial life in understanding mechanisms that 
scale-up the processes of evolution [16], and to understand when evolutionary proc-
esses can do more than simple hill-climbers can [13]. 
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Abstract. This paper proposes a computational motion control model
of a redundant manipulator inspired by biological brain-motor systems.
The proposed model consists of two processing layers dubbed “CPG” and
“Dynamical memory”. Likewise biological central pattern generators in
spinal cord, the CPG layer plays a role in generating torque patterns
for realizing periodic motions. On the contrary, the higher brain model,
i.e. the Dynamical memory layer is a time-series pattern discriminator
implemented by a recurrent neural networks (RNN). By associating time-
series of the system states with optimized CPG parameters, the RNN can
predictively modulate the generating torque patterns by recalling well-
suited CPG parameters according to the sensorimotor time-series.

1 Introduction

In animal motions generation, a number of brain-nervous subsystems, such as
cerebral cortex, cerebellum, basal ganglia, brain stem, spinal cord etc., are in-
terdependently concerned, and the generated motions can be categorized into
voluntary movement, automatic movement or reflex according to the concerned
brain regions and the latent time. Among them, the automatic movement, such
as walking, swimming, breathing etc. is a fundamental motion for life-sustaining,
and has a periodic characteristic in common.

Walking experiments of decerebrate cats strongly evidenced the periodic
movement is basically induced by spinal central pattern generator (CPG) with-
out higher brain interference. Instead, the higher brain contributes to the gen-
erated gait pattern by activating/deactivating each CPG unit[1]. In addition,
Yanagihara et al. reported that decerebrate cats with the cerebellum are able to
learn new gait patterns under unknown environments[2]. The automatic move-
ment is mainly realized at the lower brain (i.e. brain stem or spinal cord) based on
proprioceptive feedback, while the higher brain can predictively select an appro-
priate motion pattern if the current situation is recognized as known, otherwise
it starts learning how to adapt to the situation.

In our previous papers[3], we proposed a computational periodic motion con-
trol model inspired by biological brain-motor systems, and it was adopted to

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 906–915, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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swing control of a simple pendulum with variable length. In this paper, we elab-
orate the proposed model and its applications in redundant manipulator control
for crank rotation.

As shown in Fig.1, the proposed model consists of two processing layers
dubbed “CPG” and “Dynamical memory”. Likewise biological central pattern
generator, the CPG layer plays a role in generating torque patterns for realiz-
ing periodic motions. In this study, the CPG layer is implemented by a neural
oscillator model[4]. Thanks to its entrainment feature, realized periodic mo-
tions can be stabilized against environmental perturbations. This structural sta-
bilization ability was called global entrainment[5]. Obviously, this stability is
dependent on CPG parameters, but tuning these parameters by hand seems
to be tremendously difficult since it should have lots of parameters. Thus in
general, genetic algorithms (GA) or other evolutionary optimizers were
utilized.

On the other hand, the Dynamical memory layer is a time-series pattern
discriminator implemented by recurrent neural networks (RNN). By associating
time-series observations of system states with the optimized CPG parameters,
the RNN can predictively modulate the generating torque patterns by recalling
well-suited CPG parameters according to the observed situation. In other words,
it can recognize environmental changes (e.g. joint viscoelasticity) via its propri-
oceptive feedback time-series (e.g. trajectories of joint angles, angular velocities
and so on).

In this paper, we describe details of the proposed model and demonstrate
its validity through the simulation results of a redundant manipulator
control.
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Fig. 1. A periodic motion control model
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2 A Periodic Motion Generation Model

2.1 CPG Layer

As shown in Fig.1, the CPG layer has to generate a specific torque pattern for
driving a controlled object suitably. In this study, we used a nonlinear neural
oscillator model proposed in [4] as a torque pattern generator. As can be seen in
Fig.2, dynamics of the neurons assumed in this oscillator model is represented
by the following simultaneous nonlinear differential equations:

τu̇
[k]
i = −u

[k]
i − w[k,k̄]y

[k̄]
i −

n∑
j=1( �=i)

wijy
[k]
j − βv

[k]
i + u0 + F

[k]
i (1)

τ ′v̇[k]
i = −v

[k]
i + y

[k]
i , (2)

y
[k]
i (u[k]

i ) = max(0, u
[k]
i ), (3)

torquei = Tr ·
[
−y

[e]
i + y

[f ]
i

]
, (4)

where yi is a CPG output, ui and vi correspond to internal state variables, τ
and τ ′ are time constants, w[k,k̄] is a mutual inhibition weight between comple-
mentary neurons, wij is an inhibition weight among oscillators, β is a fatigue
constant, u0 is a bias input, and Fi represents a proprioceptive feedback between
a controlled object and the CPG (See section 3.1). In the above equations, [k]
means complement representation of extensor ([e]) or flexor ([f ]), i.e. if [k] rep-
resents [e], the complement [k̄] corresponds to [f ]. The driving torque for motor
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Fig. 2. CPG model
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control can be generated in proportion to the difference of the outputs of the
extensor and flexor neurons (equation (4)). Tr is a torque conversion coefficient.

Although Matsuoka’s model has lots of parameters to be adjusted, some of
the parameters, e.g. fatigue constant, can be fixed because it has less correlation
with the frequency and the amplitude of the generated torque pattern[6]. Fur-
thermore, it is known that fixing the ratio of the time constants (τ/τ ′ = const.)
has an effect on preserving the wave form. In this study, the time constant τ and
bias input u0 are the target parameters to be optimized, and others are fixed
through out the whole experiments.

2.2 Dynamical Memory Layer

As has been noted, the Dynamical memory layer is expected to recall a corre-
sponding CPG parameter p (= [τ, u0, · · ·]T ) based on the time-series observation
of a system state X (e.g. X= [θ, θ̇, · · ·]T ). Therefore, it should have the follow-
ing functions; 1) finding optimal CPG parameter for a motor control task, 2)
the optimized CPG parameter should be stored in a dynamical memory stor-
age for reusability purpose, and 3) estimating current situation for selecting a
suitable operation mode (i.e. learn or recall CPG parameters). In the following,
we explain how to implement these functions in the proposed model, which is
schematically illustrated in Fig.3.

The CPG parameters to drive unexperienced controlled object are initially
undetermined. In order to find better parameters, the layer has an internal learn-
ing module, where an optimal parameter p∗ can be searched by using simulated
annealing (SA) method[7]. Accordingly, a promising parameter at nth trial p̂n

is given by the following equation,

p̂n = pn−1 + α · N(0, σI), (5)

where α is a learning rate and N(0, σI) represents a gaussian noise generator
(here σ indicates variance of the noise and I is the identity matrix.).
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Fig. 3. Implementation of Dynamical memory layer
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Now assuming that energy consumption of a controlled object at nth trial is
indicated by En (here the lower En corresponds to the better evaluation), the
tentative parameter p̂n is accepted with the following probability Paccept,

Paccept =

{
1 · · · if En < En−1

exp
[
− (En−En−1)

Gn

]
· · · otherwise. (6)

Owing to the probabilistic transition, the optimizer can avoid local minima.
Moreover, a control parameter Gn, i.e. it is sometimes likened to temperature,
is scheduled so as to converge the optimization process smoothly.

Gn =
G1

log n
, (7)

On the other hand, in order to store the optimized CPG parameter p∗ as
the function of time-series observation X, we used recurrent neural networks
(RNN). The dynamics of the RNN used in this model is formulated as,

τr
dsk(t)

dt
= −sk(t) +

∑
l∈H∪O

wklyl(t)

+
∑
l∈I

wklXl(t), (8)

yk(t) = g (sk(t)) ,

ỹ(t) = {yk(t) | k∈O} ,

where τr is a time constant, wkl is a connection weight, sk(t) is an internal state
variable of a unit k (k∈H∪O), yk(t) is the output of the unit, and g(·) is a
sigmoid function. The subset of the RNN outputs ỹ(t) can be linearly translated
to the CPG parameter (i.e. p= Aỹ, A is a diagonal coefficient matrix). Using
a number of data consist of an optimized CPG parameter and corresponding
time-series observation of the system state, the connection weight wkl can be
trained based on back propagation through time (BPTT) method [8].

As has been noted, there should be a system performance evaluation so that
the system can select a suitable operation mode (i.e. start learning or recall
stored parameter). For this aim, we also implemented evaluation module in the
layer.

3 Simulation of Redundant Manipulator Control

3.1 Crank Rotation Task

Like some more complicated control problems, the proposed motion control
model was applied to a crank rotation task shown in Fig.4. In this task, the
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aim is to rotate the crank many times as possible during a given period by
controlling a three link manipulator. As shown in the Fig.4, each joint of the
manipulator is controlled by a joint torque generated by a corresponding CPG
unit. Since the crank has a rotational viscous friction, in which the friction coeffi-
cient ρ can be varied by experimenter as an environmental changes, the proposed
model should be able to recognize changes through the time-series observations
of system states (e.g. joint angles and angular velocities) and select correspond-
ing CPG parameters to maintain the crank rotation.

The dynamics of the crank and three-link manipulator are simulated using
ODE (open dynamics engine) [9]. The Link parameters assumed in the simula-
tion are listed in Table 1 and refers to human forearm properties. The model
parameters assigned in the experiment are listed in Table 2.

In addition, the feedback term in the CPG dynamics, i.e. F
[k]
i in equation

(1) is given by the following equations:

F
[k]
i = κ(qi − qe

i ) (k = extensor)
= −κ(qi − qe

i ) (k = flexor),
(9)

qe = [qe
1, q

e
2, q

e
3]T = [0.25π, 0.083π, π]T . (10)

The evaluation functions for crank rotation task is given by following equa-
tions:

En = − [En1 − En2 − En3 ] , (11)

l
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l
3

crank

shoulder

elbow

wrist

q
1

q
2

q
3

subject

Fig. 4. A crank rotation task

Table 1. Link parameters

m1: 1.59 [kg] l1: 0.30 [m]
m2: 0.90 [kg] l2: 0.24 [m]
m3: 0.54 [kg] l3: 0.11 [m]
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Table 2. Parameters assigned in crank rotation task

Nh: # of hidden neurons 40
τr: time constant of RNN 1.0
α: leaning rate 0.95
σ: variance of gaussian noise 1.0

G1: default annealing gain 10
β: fatigue constant 3.0
κ: feedback gain 1.0

En1 = − 1
T

∫
T

φ̇dt, (12)

En2 =
1
T

∫
T

1
2
q̇T Dq̇dt, (13)

En3 =
1
T

∫
T

max
(
[torque]T Cq̇, 0

)
dt, (14)

C = diag [0.001, 0.03856, 34.15] ,

D = diag [0.1, 0.1, 0.1] ,

where φ̇ is the angular velocity of crank, D is viscosity matrix for rotation. En1

represents an averaged rotation velocity, En2 indicates the dissipative energy
arising from the viscous friction of each joint, and En3 corresponds to the energy
externally added.

3.2 Simulation Results

Based on the above explained simulation conditions, appropriate CPG parame-
ters for crank rotation task had been optimized.

As illustrated in Fig.5, the manipulator with optimized CPG parameters
can perform skillful rotation movement. Each snap in the figure was captured
in every 200 [ms]. During the first 1000[ms] (i.e. depicted A in the figure), the
manipulator adjusts its posture to rotate the crank, and after the preparation,
it starts periodic/sequence movements (i.e. B).

On the contrary, Fig.6 illustrates adaptation of three (i.e. shoulder, elbow
and wrist) joint trajectories and torques against sudden viscous friction change
(i.e. B=0.10[Nm/(rad/s)] for 0-10[sec] and B=0.15 for 10-20[sec]). According to
the figures, it can be seen that the proposed model could recognize the environ-
mental changes through proprioceptive feedback time-series and immediately
select appropriate torque patterns by recalling CPG parameters. The resultant
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A

B

B

Fig. 5. Snapshots of an optimized motion (B=0.10[Nm/(rad/s)])

rotation frequency is highly depend on the strength of viscous friction. In addi-
tion, the standout gain of the wrist joint amplitude can be confirmed from the
resultant trajectories after perturbations. This implies that the compliance of
the wrist joint is not changed in spite of the change of angular viscous friction.
Furthermore, it can be observed that the shoulder joint torque becomes larger,
so as to generate larger hand torque to overcome the frictional force.

4 Conclusions

Because of limited computational resources, cerebral cortex probably does not
store motion trajectories directly, rather recall some constraint parameters which
conduct reasonable trajectories in lower motor systems so as to realize on-line
adaptation. Based on this hypothesis, in the paper, we proposed a periodic
motion pattern control model and its adaptation mechanism by reference to
the biological brain-motor systems.

Compared with the modular selection based motor learning and control mod-
els which directly store representative motion trajectories as internal model
[10,11], the proposed method can generate motion trajectories by recalling con-
straints. The simulation results applied to redundant manipulator control with
environmental changes proved the proposed model is feasible.

Although there still exists a number of analogous motion generation
model, the important issue pointed out here is that embodiment of the system
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Fig. 6. Adaptation of joint angles/torques against perturbation

(i.e. dynamics of the system) has been considered in the proposed cognition/adapt
ation mechanism[12]. In fact, the number of stored motion patterns, i.e. attrac-
tors embedded in the RNN, is highly dependent on the pre-determined evaluation
function. The proposed model expected to be useful in robotics field, since it can
predictively recall a suitable parameter (i.e. motion primitive) with respect to
its time-series observations, and it also can compensate external perturbation
because of its dynamic entrainment ability.
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Abstract. This paper explores a universal property in the behavior of
growing scale-free networks. The characteristic of scale-free networks is
that the degree distribution follows the power-law. This structure has
been found in various kinds of self-organized networks. Most investiga-
tions conducted so far have demonstrated that network topologies are
scale-free at a specific point in time. On the other hand, we focus atten-
tion on universality in the growing process of networks. In our proposed
model, each node has its own fitness to designate the tendency allowing
the node to acquire new links. From the simulation results, spread of
the network follows the power-law, and power spectrum of the growing
process shows 1/f noise, not to mention that the network has scale-free
structure. It is found that those properties are in common with self-
organized criticality. In conclusion, self-organizational growing networks
follow the power-law not only in the sense of scale-free characteristic but
also in the spatial and temporal sense.

1 Introduction

Self-organization means that structures of some kind appear without explicit
pressures or constraints from outside the system. For complex systems, where
constituent elements interact with each other, self-organization is an extremely
important concept. Additionally, the interaction that emerges is more than a
mere aggregation of the elements. A number of researchers have studied self-
organization, for example galaxies, planets, compounds, cells, organisms and
societies. Par Bak, in particular, has put forward the idea of criticality in self-
organization. Par Bak has illustrated common phenomena in critical states seen
in various natural systems [1].

In recent years, networks or network structures have attracted much atten-
tion, as exemplified in [2], [3], [4]. One of the reasons for this is that the Internet
and World Wide Web have become more popular and closer than before in every-
day life. Moreover, although they are constructed by human beings with human
intentions, and these networks seem to be random because of their large scale
and complexity, it has been found that they have the common structures with
some other networks in nature.

M. Capcarrere et al. (Eds.): ECAL 2005, LNAI 3630, pp. 916–925, 2005.
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We consider now the implications of “networks” composed of elements and
their interactions in a system. Networks, which are fundamental to the universe,
include complex systems. Therefore, some networks would show self-organization
or self-organized criticality in complex systems.

1.1 Universality in Self-organized Networks

As described above, the Internet, World Wide Web, and some other natural
or artificial networks, for instance, metabolic network, human relations, airline
route etc. have a common structure termed “scale-free”. The most remarkable
feature of scale-free networks is seen in degree distribution. The number of nodes
that are connected to k links follows the power-law. That is, the probability P (k)
that one node connects to other k nodes is proportional to k−γ , where γ is the
number of connected links from other nodes.

P (k) ∼ k−γ (1)

As can be expected from the Eq.(1), a generic graph that indicates the relation
between two parameters of scale-free networks, the natural logarithm of the
number of links k and that of the degree distribution P (k), shows an almost
straight line.

Most previous studies have demonstrated that network topologies at a spe-
cific point in time are scale-free. Little is known about the growing process of
networks. We consider that the growing process has universality whether the
networks exist in nature or are constructed by artificial means. We would like
to point out a universal property in the behavior of growing scale-free networks
from the viewpoint of phenomena observed in nature. The purpose of this study
is to verify that self-organized criticality is observed in the formation process of
scale-free networks.

2 Self-organized Criticality

Self-organized criticality is the boundary between order and chaos where a large
system, in which many elements are intricately interrelated, moves spontaneously
without external control. The idea of a critical state is clear, but there is no
rigorous definition. In some articles, ‘power-law behavior without parameter fine
tuning’ or ‘scale invariance’ or ‘power-law distributed events’ is described as a
definition [5].

However, Per Bak is the most famous researcher who established the idea of
self-organized criticality. Per Bak et al. [1], [6], [7] state that certain extended
dissipative dynamical systems naturally evolve into a critical state, with no char-
acteristic length or time scales. That is, spatial signature is the emergence of
scale-invariant structure and the temporal signature of the self-organized critical
state is the presence of 1/f noise. The critical states system has the property in
which the power-law emerges in a spatial and temporal manner. Further studies
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[8], [9] show the spatial and temporal power-laws as the critical states. There-
fore, we use this definition in this paper. In the real world, for example, sand
piles that are described below, the fractal structure of river networks, turbidities,
earthquakes, starquakes, solar flares and so on have self-organized criticality.

Next, we will introduce two major models for self-organized criticality phe-
nomena in order to compare with our proposed model in section 3. The main
theoretical issues to be addressed are that these models organize themselves to
the critical state, which is characterized by the power-law.

2.1 Sand-Pile Model

When sand trickles down, a pile is formed on the ground. In the beginning, as the
process continues, the pile becomes steeper. Eventually, the pile has a constant
slope while there are large and small sand slides. The state in which the system
maintains the structure with recurrent avalanches is self-organized criticality.

The model which expresses the forming sand pile is simulated in a two-
dimensional grid (L×L). One grain of sand is dropped at the grid randomly by
one step. The grid is represented by (x, y), where 1 ≤ x ≤ L and 1 ≤ y ≤ L, and
the number of grains which are dropped in the grid is represented by Z(x, y).
That is

z(x, y) → z(x, y) + 1 (2)

Next, let us consider the avalanches of a sand pile. When the number of
grains at one grid exceeds the critical value Zcr (= 3), in other words the number
reaches four, one grain of sand is sent to each of the four neighbors. Fig. 1 shows
this model.

Z(x, y) → Z(x, y) − 4 (3)

The four neighbor sites go up by one as follows:

Z(x ± 1, y) → Z(x ± 1, y) + 1
Z(x, y ± 1) → Z(x, y ± 1) + 1 (4)

In this model, the number of influenced grids by one grain drop indicates
the size of the avalanches. The distribution of the size of avalanches follows the
power-law at the critical state. Moreover, in any grid, the power spectrum of the
number of changes in Z(x, y) for time steps follows 1/f noise. That is to say, the
Sand-Pile model follows the spatial and temporal power-law.

2.2 Evolutionary Model

The basic idea for evolution is that the species with lowest fitness is inclined to
disappear or mutate in environments. A simple model of evolution, which is as-
sociated with punctuated equilibrium and criticality is described in [10]. In this
model, uniform random numbers between 0 and 1 are arranged for each species
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Fig. 1. Sand-Pile Model: one unit is
a grain of sand. When the number of
grains exceeds Zcr at one grid, the
grains are sent to each of the four
neighbors.

Fig. 2. Evolutionary Model: a species
with the lowest fitness and the two
neighbors are mutated

as fitness. Each of them is on the circle and interacting with its two neighbors. At
every time step, the species with lowest fitness and its two neighbors mutate be-
cause of the interaction. Mutation means that each fitness of these three species
is replaced by new uniform random numbers between 0 and 1. This model is
shown in Fig. 2.

Although each species’ fitness fluctuates up and down, the average tends to
increase to a certain value. The envelope function of the lowest fitness, defining
the fitness gap, increases in a stepwise manner. Fitness gap is the difference
between the lowest and that of the one higher than it. Furthermore, the size of
avalanches is the length of the step while the fitness is unchanged, that is, the
number of mutations. When there is a gap, a new avalanche begins. There are
avalanches of all sizes; that is to say the distribution of the size of avalanches
follows the power-law. In the same manner as the Sand-Pile model, the power
spectrum of the cumulative number of mutations for any species at critical state
follows 1/f noise. The evolutionary model also follows the spatial and temporal
power-law.

3 Growing Scale-free Networks

Albert-László Barabási [11] has suggested that the formation of scale-free net-
work needs preferential attachment. “The rich get richer” mechanism makes the
property of scale-free structure related to degree distribution. This mechanism,
however, does not take into consideration the fact that each node has different
characteristics or properties. In the real world, nodes that form some networks
are not equal. For example, all web pages on the World Wide Web are different.
In this paper we propose a new model that takes into account each node’s fitness,
which indicates the variations in every node. As a result of the simulation exper-
iments, it is found that scale-free networks are formed not only by the degree of
nodes, as in Barabási’s study, but also by the fitness for each node. In addition,
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we investigate the spread of the network and the growing process in time taking
into account the fitness change for self-organized criticality.

3.1 Fitness Growth Model

The proposed model is the Fitness Growth Model. Our preferential attachment
depends only on node fitness. A node with a higher fitness has a higher proba-
bility of acquiring new links. Moreover, the node which gets a new link increases
its fitness depending on the new node’s fitness. The update equations for a new
link and fitness are represented by Eq. (5) and Eq. (6). A new node is added to
the network with two links as in the BA model [11] at one step over and over
again. This idea is represented in Fig. 3,

Et+1(i, j) = Vt(j) · fj(t)∑
m fm(t)

(5)

fj(t + 1) = fj(t) + α · fi(t) (6)

where Et(i, j) is link existence probability between nodes i and j at time t, Vt(j)
is existence probability for node j at time t, fi(t) is the fitness for node i at
time t and α is a positive parameter, in this paper α = 0.5. The initial value
of f is chosen from a uniform random number between 0 and 1. Our proposed
model includes BA model that related to the number of links for each node when
initial value f = 2 and parameter α = 0.5. Node fitness in our model represents
not discrete number such as natural number but more detailed information to
investigate the data for self-organized criticality.

Figs. 4–7 show the degree distribution of the growing network in this model.
As we can see from these figures, the network has scale-free structure and main-
tains the structure during the growth. The shapes of network structures appear

Fig. 3. Fitness Growth Model: when a new node attaches to two other nodes, their
fitness increase according to the new node’s fitness
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Fig. 4. Degree distribution at 100th
step
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Fig. 5. Degree distribution at 500th
step
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Fig. 6. Degree distribution at 900th
step
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Fig. 7. Degree distribution at 1300th
step

in Fig. 8. Therefore, it is clear that we can simulate a growing scale-free net-
work with our fitness model. We shall analyze the spread of the network and the
transition of node finesses to explain self-organized criticality phenomena.

3.2 Model Comparison

To explain critical phenomena in our model, it is necessary to compare with
other models that indicate self-organized criticality. Table 1 shows the models
and conditions for the critical phenomenon. First, there exists a critical point
or critical state where the system maintains equilibrium. In the case of the
Sand-Pile model, it is the constant slope of the sand pile and in the case of the
Evolutionary model, it is the minimum fitness in which almost all the species
possess an excess. When we consider a growing scale-free network with the fitness
model, structure preservation is the critical state. Even though the network is
growing, it maintains the scale-free structure with the constant slope of the
degree distribution graph.
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Fig. 8. Growing scale-free network with fitness growth model. N is the number of
nodes.

Next, we must investigate whether the growing scale-free network follows the
spatial and temporal power-law as described in the previous section. Par Bak
suggests that the size distribution of avalanches shows spatial power-law in the
Sand-Pile model and Evolutionary model. The size of avalanches refers to the
span of punctuated equilibrium, and during the span the elements in the system
interact with each other for the equilibrium. In the case of our fitness model,
the constant spans of maximum fitness represent the avalanche, because other
elements are added and the network is growing during the span to maintain the
structure. Maximum fitness is an index for expanding the whole network because
the straight line of degree distribution extends in a direction toward large fitness
nodes as Figs. 4–7. After the network grows to an extent, it is found that the
same node always has the maximum fitness.

In addition to spatial signature, temporal signature is the transition of any
node’s fitness in our model. If the power spectrum of the transition shows 1/f
noise, it indicates the critical state. In the Sand-Pile model and Evolutionary
model, temporal signatures at critical states emerge in the transition frequency
at one site or species. That is, to keep the equilibrium of the whole system,
the behavior of one element in the system shows temporal signature for critical
states. It is considered that the signature has a characteristic power-law 1/f
behavior. Therefore, we analyze the change of any node’s fitness that is chosen
randomly. Especially, in order to get enough data for spectral analysis we choose
a node which exists more than 2000 steps.

Here we only use a model that constructs scale-free structure. What hap-
pens with the growth of a random network? With the Erdös-Rényi random
model [12], even if we get the same data as the scale-free network model, max-
imum fitness or one node’s fitness, it is found that these data would not fol-
low any power-law. Although we would not show the results, nodes are added
to the network randomly in this case and the fitness for each node does not
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Table 1. Model comparison with self-organized criticality

Fitness Growth
Model

Sand-Pile Model Evolutionary Model

Critical state Constant slope of
degree distribution.

Constant slope of
sand pile.

Constant value of
minimum fitness.

Special signature Span distribution of
maximum fitness.

Size distribution of
avalanches.

Size distribution of
avalanches.

Temporal signature Transition of a node
fitness.

Transition of
avalanche’s cumu-
lative frequency at
one site.

Transition of mu-
tation’s cumulative
frequency at one
species.

increase in a staircase pattern such as the case of scale-free network. The reason
why we focus on scale-free structure is that the structure is under the power-
law.

On the grounds that critical states follow the spatial and temporal power-law,
such as in Table 1, we conduct simulation experiments with our fitness growing
network model. In the next section, some results are shown.

4 Spatial and Temporal Power-Law

As described above, Figs. 4–7 show the degree distribution in which a scale-
free network maintains the structure during the growth. Then, the transition
of maximum fitness in the whole network shown in Fig. 9 and Fig. 10 is the
result of the size distribution in Fig. 9 from step 1 to step 15000. The size of
one span is where the maximum fitness is constant between a step and the next
step in the graph. The size distribution is associated with the power-law, though
there has been no generic measure of how much of a power-law the network
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Fig. 9. The maximum fitness transi-
tion of growing scale-free network
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Fig. 11. Transition of a node’s fitness
during criticality, from step 1000 to
step 3000

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

S
pe

ct
ru

m
 S

(f
)

Frequency f

S(f)= 1/f0.93

Fig. 12. Temporal Power-Law: Power
Spectrum of Fig. 11 shows 1/f noise

is. We consider that the result indicates the spatial signature at critical state.
Moreover, the transition of one node’s fitness during the critical state (from step
1000 to step 3000) is shown in Fig. 11. When this transition is analyzed with
Fourier analysis, we get the power spectrum as shown in Fig. 12. The power
spectrum provides 1/f noise, which is approximated by S(f) ∼ 1/f0.93 in our
simulation.

From the results of spatiotemporal signature, it is found that growing scale-
free networks indicate self-organized critical phenomena. One of the reasons why
there exist scale-free structures in many fields in the real world is that com-
mon mechanisms that are explained by natural phenomena are at work in these
networks.

5 Conclusion

As consequences of simulation experiments, it is found that growing scale-free
networks have self-organized criticality because of the spatial and temporal
power-law. We use a simple model for growing networks; therefore, it becomes
the basis of the behavior of all scale-free networks. It follows from this that a
universal property exists in “networks” around us. In particular, we treat the
process of growing networks not only from network topology at a specific point
in time.

In closing, it is necessary to research and develop new information systems
using such universal properties associated with networks. We call this approach
“Hyper Net Intelligence”, the idea of which is to construct information processing
systems with intelligence hidden in network properties. With this approach, we
aim to develop Web applications in the future.
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Abstract. The Synapsing Variable Length Crossover (SVLC) algorithm pro-
vides a biologically inspired method for performing meaningful crossover be-
tween variable length genomes. In addition to providing a rationale for variable 
length crossover it also provides a genotypic similarity metric for variable 
length genomes enabling standard niche formation techniques to be used with 
variable length genomes. Unlike other variable length crossover techniques 
which consider genomes to be rigid inflexible arrays and where some or all of 
the crossover points are randomly selected, the SVLC algorithm considers ge-
nomes to be flexible and chooses non-random crossover points based on the 
common parental sequence similarity. The SVLC Algorithm recurrently “glues” 
or synapses homogenous genetic sub-sequences together. This is done in such a 
way that common parental sequences are automatically preserved in the off-
spring with only the genetic differences being exchanged or removed, inde-
pendent of the length of such differences. In a variable length test problem the 
SVLC algorithm is shown to outperform current variable length crossover tech-
niques. The SVLC algorithm is also shown to work in a more realistic robot 
neural network controller evolution application. 

1   Introduction 

Traditional Genetic Algorithms operate on a population of fixed length genomes, 
which are viewed as a set of potential solutions to a problem. Typically, the genome is 
regarded as a set of variables, which are to be optimised by the GA in order to solve a 
given problem. In other words the goal of the GA is to find an optimum within a 
given, fixed parameter space. If a large number of parameters are required to be opti-
mised then the search space a GA must traverse in order to find the optimum can be 
immense. Considering the length of biological genomes a classical GA is unlikely to 
be a good model of the long term process of biological evolution. 

The human genome, for example, is vast and consists of approximately three bil-
lion base pairs specifying some hundred thousand genes [1]. In fact, if the DNA from 
a single human cell were to be unravelled and stretched out it would be nearly two 
metres long. It would clearly be preposterous to think that evolution had started with 
strings of this length and merely optimised them over time. Instead it is thought that 
life started off rather more simply with complexity arising over time. First, single 
celled organisms evolved, these then led to multi-cellular organisms, which in turn led 
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to the first plants and animals. Complexity and genome length has been able to grow 
gradually over several billion years through the course of natural evolution. It is worth 
noting that biological evolution does not necessarily cause an increase in complexity 
or genome length both can change or remain static over time, all that matters is how 
good an organism is at passing on its genes to subsequent generations. Also, a longer 
genome does not necessarily lead to increased complexity. It is only possible for com-
plexity to increase, whether this occurs or not is likely to be dependent on the organ-
ism in question and the environmental conditions. 

2   Variable Length Genomes  

A number of studies have investigated variable length genomes in the context of Ge-
netic Algorithms. In all of the methods described below, a position independent geno-
type encoding must be used. This can be achieved by either encoding the locus in a 
fixed length representation or by letting certain genetic sequences acts as markers, 
that effectively identify the sections encoding problem data – see [2]. Other evolu-
tionary methods such as Koza’s Genetic Programming [3] and certain Evolution 
Strategies [4] also use variable length representations. However, the investigation 
presented in this paper is limited to the context of Genetic Algorithms as other non-
GA based variable length evolutionary methods differ in fundamental ways to those 
used by Genetic Algorithms. For example, Genetic Programming techniques evolve 
programs (such as Lisp S-expressions), whilst Evolution Strategies use adaptive muta-
tion rates and rather different selection strategies, making them exceedingly difficult 
to compare to any GA based methods in a consistent manner. 

2.1   Messy Genetic Algorithms 

One of the first studies to utilise a variable length representation was the messy GA 
[1]. In a messy GA the traditional crossover operator is replaced by the cut and splice 
operators. First the cut operator is applied on each parent genome, a point is selected 
at random on each genome cutting each genome into two strings, forming four strings. 
Then the splice operator is applied to rejoin the strings in a random order. 

Whilst messy GAs use a variable length representation they are in fact still based 
on a fixed length scheme. The reason for this is that genes in a messy GA contain 
both a value and a tag that specifies the position or locus of that value in a fixed 
length genome. The messy GA allows for both over specification and under specifica-
tion of the fixed length genome. In the case of over specification, there are multiple 
specified values for a specific locus. In this case an ad hoc rule is used to decide 
which value gets to be used at the specified locus – a popular method is to give prece-
dence to the last gene in the genome. An easy way of implementing this is to allow 
specified values to overwrite those contained in the fixed length genome, thereby 
giving precedence to the last value specified. In the case of under specification, some 
loci in the fixed length genome do not have a specified value. For such loci with miss-
ing values the value is taken from a universal template in order to fill in the gap – this 
template would usually contain a sensible initial or default value for that particular 
variable. 
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2.2   The SAGA Cross 

In [5] the concept of the SAGA cross is introduced. The idea of this algorithm is to 
maximise the similarity between sections that are exchanged during recombination 
thereby ensuring that a sensible and meaningful crossover occurs between the parent 
genomes. The SAGA cross is intended to be used within the general SAGA frame-
work. 

In a fixed length GA, crossover is trivial as the crossover point on both parents is at 
the same position - the offspring of such a cross will be of exactly the same fixed 
length as that of the parents thereby ensuring that each individual has a full comple-
ment of genes. Within the SAGA framework the evolving population is relatively 
converged - meaning that different values at the same locus are highly likely to reflect 
different values of the same phenotypic variable. 

The question is how crossover should be applied to variable length genomes in or-
der to ensure that resulting offspring have a full complement of genes and to ensure 
that only the values of like phenotypic variables are exchanged. 

The SAGA cross is based on the sequence similarity of the two parent genomes to 
be crossed – the metric used is the Longest Common Sub Sequence. The Longest 
Common Sub Sequence is the longest uninterrupted matching sequence of symbols 
found between two strings of arbitrary length. Meaning is therefore given by the con-
text of a gene within the genome. If a gene has the same context it is likely to be a 
different allele of the same gene. 

The SAGA algorithm works as follows: first a random crossover point is chosen on 
the first genome, then the algorithm tests every possible crossover point on the second 
genome. For each potential crossover point the algorithm calculates the sum of the 
LCSS on both the left and right portions of the genomes. Only the crossover point(s) 
with the highest score are eligible as a crossover point for the second genome. If there 
are multiple eligible crossover points then one of them will be selected at random.  

2.3   Virtual Virus 

A slightly more biologically plausible crossover is the homologous crossover used by 
the virtual virus (VIV) project [6]. Like the SAGA cross the VIV crossover algorithm 
is based on the sequence similarity between parent genomes. The major difference 
from the SAGA cross is that crossover can only occur in similar sections. In VIV the 
probability of crossover is controlled by the degree of local similarity between the 
parent genomes. This local similarity is determined by the number of matches be-
tween parents within a specified fixed size window. 

The VIV algorithm works as follows: as in the SAGA crossover algorithm a ran-
dom crossover point is initially chosen on one of the parent genome. The algorithm 
then compares a window of bases from the selected point with all possible windows 
of the same size on the other parent genome. The window position that achieves the 
greatest number of matches is then recorded. The genomes are then crossed within the 
matched window with a probability based on the similarity of the best matching  
window. 
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2.4   Overview of Current Methods 

All the above methods provide a rationale to perform Variable Length Genetic Cross-
over, messy GAs use a simple cut and splice implementation – however this totally 
ignores any sequence similarity between parent genomes and worse still, messy GAs 
are fundamentally based on an underlying fixed length representation. Both the 
SAGA and VIV crossover methods are based on the similarity between the two parent 
genomes. Both select a random point on one genome and then search the entirety of 
the other parent genome in order to find the optimal crossover point(s). The SAGA 
cross however explicitly attempts to preserve a complete genetic sequence using the 
parent genomes as a guide and is, in this respect, far superior to the VIV cross. It is 
important to note that in all these variable length methods the genomes are considered 
to be inflexible, rigid arrays of data. In addition the selection of the initial crossover 
points are entirely random – this is unlikely to be the case in biological crossover. 

3   Biological Crossover Revisited 

In animals genetic recombination by crossover occurs during the production of sperm 
or egg cells (gametes) this process is called meiosis. Before meiosis begins the chro-
mosomes within the cell have already been doubled, forming pairs of homologous 
dyads. Each dyad consists of two sister chromatids held together by a single shared 
kinetochore. First, each pair of homologous dyads align lengthwise with one other 
and form synapses between themselves resulting in a tetrad. The two homologous 
dyads are held together at one or more chiasmata. The chromatids attached by chias-
mata then slip apart and the homologous dyads separate from each other. 

Both DNA Strands of one non sister chromatid are Cut

3’ 5’

3’5’

3’

5’

5’

3’

3’

3’

An enzyme eats away at both exposed 5’ tails

One of the tails inserts itself between the double helix of the non sister chromatid

DNA synthesis then begins to fill the gaps using the unbroken strand as a template

effectively seperating and displacing the strands

All the strands are then cut again

The cut ends are exchanged and rejoined, swapping the arms of the non sister chromatids

 

Fig. 1. A plausible mechanism for crossover 
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Chiasmata are in fact the remnants of where non-sister chromatids swapped sec-
tions whilst they were joined together during the early stages of meiosis. The process 
of crossover effectively exchanges adjacent strands of DNA. However, this exchange 
must be performed in such a way that not even a single nucleotide is lost or gained 
during the exchange. The exact mechanism of crossover is unknown but a plausible 
mechanism that has significant support is as follows [7]. During the process of cross-
over one non-sister chromatid is cut through on both strands and an enzyme eats away 
at these exposed ends leaving two single stranded tails. One of these tails then invades 
the double helix of the other non-sister chromatid displacing the strands. The invading 
strand then aligns itself with a complementary sequence of nucleotides with which it 
can pair; the complementary tail also pairs up but with the other displaced strand. 
DNA synthesis then fills in any gaps using the second unbroken chromatid as a tem-
plate. Then all the strands are cut, exchanged and rejoined, effectively exchanging the 
arms of the non-sister chromatids, this process is illustrated in Fig. 1. 

4   Inspiration from Biological Crossover 

It is worth noting that crossover can only occur in regions that are homogenous due to 
the double stranded structure of DNA, consequently each strand of DNA can only 
pair with a complementary strand. Fig. 1 only shows a single chiasma however multi-
ple chiasmata are commonly found. 

We can therefore safely assume that, in general, crossover does not occur between 
regions that have a dissimilar sequence and that it is highly likely to occur between 
regions that have identical or a highly similar sequence. More importantly we should 
consider the regions between chiasmata – it is these sections that are likely to contain 
any significant genetic differences between genomes and it is these sections that are 
actually exchanged by crossover. Further, we should consider the fact that DNA is a 
flexible molecule and so the sections actually exchanged may be of differing length. 

Thus, by restricting crossover to homogenous sequences the common sequence 
similarity is preserved using both parent genomes as a template and only the differ-
ences between the parent genomes are exchanged independent of the length of those 
differences. Intuitively, it must be the differences between genetic sequences that 
cause any variation in phenotypic fitness. Thus by preserving the similarity and ex-
changing differences an efficient crossover is performed, therefore only genetic varia-
tions that may cause phenotypic fitness variations are recombined. 

5   SVLC Algorithm 

In order to perform such a crossover we must first have a method with which to com-
pare the two genetic sequences for similarity in order to find regions, which are to be 
subsequently synapsed together. The metric used is the same as that used by Harvey’s 
SAGA crossover algorithm – the Longest Common Sub Sequence. In addition Harvey 
also points us towards an efficient algorithm for finding the LCSS. A modified ver-
sion of this algorithm is used to recursively find the LCSS in order to find any simi-
larities between genomes with priority given to longer common sub sequences. Full 
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C++ source code to perform this crossover is available by e-mailing the author at 
[B.D.Hutt@rdg.ac.uk]. 

 

(A) (B) (C) (D)

Common
Sequence A

Common
Sequence B

 

Fig. 2. Example of Synapsing Variable Length Crossover. (A) Two similar parent genomes are 
shown; The common sequences on the parent genomes are labelled. (B) First regions that are 
identical are identified. (C) The genome is thought of as being flexible so that identical sections 
can be aligned - crossover is only permitted within these identical regions. (D) The implication 
of this is that the similarity between parent genomes is always preserved – it is only the differ-
ences between parent genomes that are exchanged. 

The rationale behind the algorithm is as follows, given two variable length parent 
strings the position and length of the LCSS between the two strings is located. 

The position and length of the LCSS is recorded and the beginning and end of the 
LCSS on both strings is then used to create two sub problems, finding the LCSS be-
tween the two sub strings to the left of the current LCSS and the two sub strings to the 
right of the current LCSS. This is repeated recursively only dropping out when the 
LCSS is shorter than a predefined limit. This process produces a list of matched or 
synapsed segments between the two parent strings. This list is then collated in order to 
form a set of possible crossover points between the two genomes. 

Crossover can then be performed by choosing one or more crossover points at ran-
dom from this set of possible crossover points in order to produce the offspring. 

This process is illustrated in Fig. 2, the two parent genomes are effectively syn-
apsed together at their points of similarity, with longer common sub-sequences being 
given priority. This aligns the chromosomes in a sensible fashion with identical re-
gions being synapsed together. Crossover is then only permitted within the synapsed 
regions producing offspring that inherit the entirety of the common sub sequences of 
the parents. Any sequence differences between the parent genomes may or may not be 
included in the offspring dependent on the crossover point(s) selected. 

5.1   Computational Requirements  

Since the SVLC (Synapsing Variable Length Crossover) algorithm recursively elimi-
nates the LCSS from each string it will always be somewhat less computationally 
efficient than the SAGA crossover algorithm. The SAGA crossover algorithm 
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chooses a one-point crossover between parent strings of length m and n, this is done 
extremely efficiently, being of the order O(mn) having the additional advantage of 
being time independent of the sequence similarity between parent genomes [5]. 

The SVLC algorithm is however highly dependent on the similarity between the 
parent strings. At worst case the SVLC algorithm will always be less than order 
O(mn2) however this is a worst case and things are exceedingly unlikely to be this 
bad, especially when we consider that evolving populations within a SAGA frame-
work are considered to be relatively homogenous [8]. In the best case the algorithm 
will be as efficient as the SAGA cross and be of order O(mn), this is when both parent 
genomes are identical or entirely dissimilar. Since we can expect the population to be 
relatively converged we can also expect that the order will be much closer to order 
O(mn) rather than O(mn2). 

Due to the fact that SVLC becomes increasingly computationally expensive the 
longer a genome grows, it is intended for use primarily when fitness evaluation is also 
computationally expensive, such as is the case when evolving neural network control-
lers for robots. If fitness evaluation is not computationally expensive and a large 
number of generations are required and the resulting genomes are likely to be exces-
sively long, then another variable or fixed length method should be considered. 

5.2   Similarity Metric 

In addition to locating crossover points the SVLC algorithm can be used to give an 
effective metric with which it is possible to compare the similarity of two variable 
length strings. This is given by: 
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Where, Li is the length of the ith synapsed section, ψ is the total number of synapsed 

sections and m and n are the lengths of the two parent genomes. H therefore gives us a 
hamming distance like measure of the similarity or homogeneity of the two genomes 
and varies between 0.0, for genomes that are totally dissimilar and 1.0 for identical 
genomes. This immediately provides a method by which standard fixed length genetic 
algorithm niche formation techniques can be directly applied to variable length ge-
netic algorithms. 

6   Initial Results 

In order to test the performance of the SVLC algorithm it was tested on a simple vari-
able length problem. The task was to produce a piecewise linear approximation of a 
non-linear target function T(x) given by: 

))..20sin(1(5.0)( xxT π+= where 10 ≤≤ x  

Genotypes are interpreted as a set of points between which lines are drawn in order 
to create the actual phenotype P(x). The fitness F is calculated using an estimate of 
the root-mean square error being given by: 
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Fig. 3. (A) Comparison of various crossover algorithms with a length penalty in place. (B) 
Comparison of SAGA and SVLC crossover algorithms with no length penalty in place. 

The RMS error is estimated by the sum over N discrete parts, with the constant μ  

effectively scaling the genome length L to create a weak genome length penalty. In all 
cases Harvey’s microbial GA [9] was used with a tournament size of 2 and an initial 
genome length of 32 with each crossover algorithm being tested over 10 runs of 5x105 
iterations. 

The first set of tests are shown in Fig. 3A with the length penalty μ  set to 10-6. As 

can be seen both the SAGA and SVLC crossover algorithms rapidly obtain excellent 
approximations of the target function. The VIV crossover algorithm takes far longer 
to obtain a good solution and the messy GA struggles to obtain a good solution. Fig. 
3B shows a similar test run for both the SAGA and SVLC crossover algorithms but 
with the length penalty μ  set to 0. Surprisingly this cripples the performance of the 

SAGA crossover to a similar level to that of the messy GA in the previous run whilst 
the SVLC algorithm remains unaffected. Without a length penalty in place it is possi-
ble for fitness neutral sequences to increase in length. It therefore seems likely that the 
SAGA crossover can be misled by long neutral sequences forming the LCSS. In such 
circumstances the SAGA algorithm will select crossover points based on neutral por-
tions of the genome. SVLC does not suffer from this deficiency since it recursively 
synapses common sequences together restricting crossover to such sections. It is 
worth noting that testing on a far wider range of variable length test problems is re-
quired to properly evaluate the performance of the SVLC algorithm. 

7   Neuro-controller Evolution Results 

In order to further test the effectiveness of the SVLC algorithm it was applied to a 
more difficult behavioural evolution task. An extended GA utilising the SVLC 
algorithm was employed to evolve spiking neural network controllers for simulated 
robots in a simple 2D environment. The environment consisted of an otherwise 
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empty square enclosure containing the entire population of 100 simulated robots. 
The robots themselves are of a differential drive type (similar to those described in 
[10]) and are equipped with their own genetically determined spiking neural net-
work controller and forward facing proximity sensors. In order to encourage an 
open-ended wandering/exploratory behaviour an implicit fitness metric was utilised. 
The fitness of each individual was a measure of the unique area a robot is able to 
cover in a fixed period of time. This was implemented by allowing each robot to 
collect “food” pixels as it moved around the enclosure, once a pixel has been col-
lected it changes state and cannot be collected again, the fitness of each robot was 
therefore the number of pixels collected during the evaluation period. 

A.  B.  

Fig. 4. (A) Evolution of population fitness. (B) Evolution of population genome length. 

The evolution of population fitness and genome length over 500 generations are 
shown in Fig. 4., as can be seen a high fitness is rapidly obtained within some tens 
of generations – in addition two different high fitness solutions are obtained as is 
apparent from the population genome length plots. This is due to the fact that in this 
application the SVLC algorithm was also coupled with a novel speciation algorithm 
(Adaptive Breeding Restriction [10]) - notably even in the simple simulation envi-
ronment used it is possible for two distinct “species” to develop, each following its 
own compact, relatively converged, course. The behaviour of the two “species” 
obtained is rather different; the first uses a random wandering approach whilst the 
second utilises a wall following strategy in order to explore the environment. It is 
worth noting that fitness is purely determined by the number of pixels collected, no 
length penalty is used. Despite this the genome lengths of both “species” are rela-
tively stable and are not subject to uncontrolled growth (comparable to “bloat” in 
Genetic Programming [11]) , instead the genome length has adapted to a suitable 
length in order to produce controllers that are able to solve the problem. 

8   Conclusion 

The SVLC algorithm offers a biologically inspired rationale for variable length 
crossover. It also provides a similarity metric allowing the possibility of using niche 
formation techniques. In the simple test problem it outperforms current variable 
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length techniques. The SVLC algorithm also seems to work well in more complex 
problem domains and is probably applicable to many other variable length  
problems. 
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Abstract. This paper introduces a novel study on the sense of valency
as a vital process for achieving adaptation in agents through evolution
and developmental learning. Unlike previous studies, we hypothesise that
behaviour-related information must be underspecified in the genes and
that additional mechanisms such as valency modulate final behavioural
responses. These processes endow the agent with the ability to adapt to
dynamic environments. We have tested this hypothesis with an ad hoc
designed model, also introduced in this paper. Experiments have been
performed in static and dynamic environments to illustrate these effects.
The results demonstrate the necessity of valency and of both learning and
evolution as complementary processes for adaptation to the environment.

1 Introduction

The relationship between an agent’s ability to monitor its internal physiology
and its capacity to display adaptation to its environment has received little
attention from the adaptive behaviour community. An aspect of this relationship
is the sense of valency, a mechanism evolved to foster the execution of beneficial
actions and to discourage those whose effect is harmful. Agents endowed with
this sense exhibit some advantage over others which cannot anticipate the effect
of some actions in their decision making. This facilitates the life of an agent in
a competitive environment. Formally, we have defined the sense of valency as
the notion of goodness or badness attached by an individual to the feedback from
the environment resulting from the execution of a behaviour. We therefore view
valency as a process occurring in a framework of interaction relating perception,
internal bodily dynamics and behaviour arbitration. We have implemented these
elements in a simulated animat, consisting of an artificial internal physiology
[6,5,15], a behaviour repertoire, a selection module and a valency module. The
goal of this agent is to survive, ergo to maintain its physiological parameters
within their viability zone [2].

Previous work [1,4] hypothesised genes to encode the valency of stimuli and
the behavioural responses to stimuli (represented as an evaluation network or as
a motivation system, respectively). Both studies use the valency as a feedback
loop that assesses and corrects their behavioural patterns. These studies focused
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on the interaction between learning and evolution via the Baldwin effect [3,9],
where certain action-related genes dominate and shield other genes encoding
the valency of related actions. They argue that random mutations allow devel-
opmental knowledge to be transferred to the genome, which may deteriorate the
valency-related ones. As stated by [1]: The well-adapted action network appar-
ently shielded the maladapted learning network from the fitness function. With
an inborn skill at evading carnivores, the ability to learn the skill is unnecessary.
However, we argue that this may be necessary in a variety of cases, e.g. if the
environment constantly changes, it does not seem reasonable to encode volatile
information in the genes (this may lead to the extinction of the species). Instead,
it seems wiser to genetically encode action-related information in an underspec-
ified manner to be completed via interaction with the environment (via reward
driven learning). If as a result of the combination of both processes this informa-
tion is transferred to the next generation, this would endow the next generation
with the necessary knowledge to survive while maintaining the flexibility for a
range of variation within its environment.

A model to test this hypothesis is introduced next with three different ver-
sions. Section 2 introduces the agent’s internal model. Section 3 presents the
three approaches examined, their corresponding elements and the results for sta-
tic and dynamic environments. Finally, Section 4 discusses the results
obtained.

2 Model Architecture

2.1 Internal Agent Structure

The agent’s internal physiology is a simplified version of the model proposed by
Cañamero [5]. In this model the agent’s internal resources are represented as
homeostatic variables. These are characterised by a range of operation and by
an optimal value or set point. They exhibit their status of deficit or excess via
a set of related drives [10], which together with the external stimuli configure
the agent’s motivational state [19]. For our case we are only interested in the
agent’s internal interpretation of the effect. Therefore, it is possible to simplify
the environment to its minimal expression: the feedback or effect per interaction.
This allows us to combine homeostatic variables and drives in a single parameter:
homeostatic drives. These drives decay according to

Level(t) = Level(t−1) × 0.9 +
∑

j

< effect of action >tj (1)

where level is the value of a drive and effect of action the value of the effect
of executing a certain behaviour (an incremental transition of +0.1, 0.0 or -0.1
on the drives). To simplify, the drives are generic (e.g. energy related) since
we are mostly concerned with them in terms of their functionality (e.g. decay,
discretised states, etc.). Figure 1(b) shows a schematic view of a single drive
with its discretised states and the hard bounds.
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Internal Physiology

Homeostatic Variables

Drives
Behaviour 
Intensities

 Selection
Mechanism

Environment

Valency
Module

Genetic Evolution

Developmental Learning

Behaviours

(a) General Schema

Level 1.0

Level 0.9

Level 0.8

Level 0.7

Level 0.6

Level 0.5

Level 0.4

Level 0.3

Level 0.2

Level 0.1

DRIVE STATES

TARGET LEVEL HARD BOUNDS

(b) Generic Homeostatic Variable

Fig. 1. Left: General Architecture. Right: A typical drive with 10 discretised states
from 0.1 to 1.0. The drive has hard bounds below 0.1 and above 1.0 (ad-hoc) to ensure
that agents operate within limits.

The selection mechanism consists of choosing the action exhibiting the largest
valency. As we shall see, the association action-valency is learned during the
lifetime of the agent.

2.2 Lifetime Learning

Valency is interpreted by the agent as the relative value of executing a behaviour.
This association is learned during lifetime via the valency module (cf. center-
bottom in Fig. 1(a)) and directly affects the behaviour intensities according to
the effect that executing a behaviour has on the internal physiology.

The learning of the agent is modeled as a ‘full’ reinforcement learning prob-
lem [17]. Every action and state transition of the agent’s physiological space is
evaluated according to the reward function that is provided by genetic evolution.
The learning has been modeled as a Temporal Difference (TD) algorithm [16],
since this learns by experience and without bootstrapping, i.e., lacking a model
for the environment. This should be of advantage in dynamic environments.

The Q-learning algorithm was used with the Q-Values representing the va-
lency of actions and the update rule (2) indirectly associating the effect of an
action to a specific valency through the individual reward function.

Q(st, at) ← Q(st, at) + α [rt+1 + γ max
a

Q(st+1, a) − Q(st, at)]. (2)

2.3 Genetic Evolution

The valency module is part of both processes, developmental and genetic. It acts
as a link between the two, using genetic information and lifetime experience in
order to create an individual sense of valency. According to our implementation
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the core element of valency is the reward function which is the genetically en-
coded information. This is independent of the behaviours and could be encoded
into the genome in a biologically plausible manner.

The reward function is evolved by a standard GA [12]; it is either directly
encoded in the animat’s chromosome or indirectly encoded as the weights of a
neural network. In other words, each animat is genetically “defined” to assign
a utility to each change in its physiological state due to the execution of a
behaviour.

The role of genetic evolution and developmental learning in the mechanism
of valency, the evolutionary nature (direct or indirect encoding) of the reward
function and their effect on adaptation to dynamic environments are, respec-
tively, the issues we have addressed with three different models, introduced in
the next section.

3 Experiments and Results

In order to examine the effect of valency in the developmental and genetic
processes, this approach has been implemented with direct and indirect encoding
of the reward function (Models 1a and 1b), and compared to a model that uses
genetic evolution only (Model 2). Models 1a and 1b are used to demonstrate that
the instabilities of Darwinian models in dynamic environments [11,14] are due
to having action selection (as opposed to just the reward function) encoded in
the genome. Model 2 is used to examine the necessity of developmental learning
in stable and dynamic environments.

Models 1a and 1b test different evolutionary encodings of the reward func-
tion. In Model 1a the reward function is directly encoding on the chromosome,
whereas in Model 1b the chromosome encodes synaptic weights of a neural net-
work that estimates the reward function. This second encoding method has been
extensively used and tested in previous work [4,8,13,14,18].

Finally, we examine the above approaches in both stable and dynamic envi-
ronments in order to observe their effect on the adaptability of our animats.

3.1 Experimental Setup

The environment has been modeled in terms of deterministic reward. Every
time the agent performs an action, the environment feedbacks a physiological
effect, which is unique for each behaviour. A static environment is characterised
by relating to each behaviour a unique effect, which is maintained throughout
generations (e.g. action 1 has always a -0.1 effect). In contrast, the effect related
to each behaviour is inverted every generations for dynamic environments (action
1 changes effect from -0.1 to +0.1).

The Q-Values represent the value of selecting a specific action in a given state.
Q-Values model the valency of actions and qualify an execution as successful or
not. Since for every drive we have 10 discrete states and in every state the same
action set is available, the Q-Value table for describing every state-action will be
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a matrix of dimensions 10× (#Actions per state×#Drives). The initialization
of the Q-Values has always been performed by setting them to 1 and the update
rule 2 converged those values to the individual valency of each agent based on
its reward function.

The learning episode of selecting actions for a number of steps is repeated for
at least 10,000 cycles where convergence of the best possible behaviour according
to the individual reward function is ensured. A competition procedure was used
to assign the fitness value at each agent at the end of the learning cycle (if
applicable). The agent was initialized on a minimum drive level, it was allowed
to use its action-selection mechanism (converged Q-values) for a specific number
of steps and it was scored according to its overall performance. The target was
to reach satiation on its drive(s) and to remain at that level (1.0).

The metrics used in our study are the average and maximum fitness progres-
sions through generations of animats. The maximum fitness score each time (10
for single drive and 20 for double drive cases) indicates a perfect performance
over the competition cycle and a successfully evolved/developed sense of valency.

3.2 Learning and Evolution with Indirect Encoding of Action
Selection

As has been shown previously [1,11,14], direct encoding of action selection leads
to animats that are behaviouraly predisposed. Consequently, their fitness pro-
gressions in dynamic environments suffer from relative instabilities. To over-
come these limitations, our Model 1a (RL & GA) was investigated (Fig. 2),
where the genome is not directly encoding action-selection. Instead it carries
information (reward for state transitions) used to build the behaviour-selection
mechanism via developmental learning.

An alternative version of the above implementation, Model 1b (RL &
GA with NN), which uses a neural network for the provision of the reward
function (Fig. 3), was also examined. The genome is still indirectly encoding
action selection.

3.3 Strictly Evolutionary Approach

The final model (Model 2) was used to test the necessity of lifetime learning
as a complementary process to genetic evolution. Model 2 (Q-Evolution) is
strictly evolutionary (Fig. 4).

3.4 Learning and Evolution, or Evolution Alone?

Static Environment. The base case considered first is that of a static envi-
ronment with an animat endowed with a single drive. As seen in Fig. 5, every
approach manages to produce ideal solutions, i.e., animats with a sense of va-
lency are able to guide selection toward the satiation of the drive. The results
confirm our hypothesis that a combined framework of learning and evolution
through the valency module performs better than those lacking it. However, the
strictly evolutionary approach (Q-Evolution model) still manages to achieve,
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Fig. 2. Model 1a (RL & GA) of combined Learning and Evolution. The chromosome
encodes the reward function of each agent (magnitudes in the range 0-10)and the Q-
learning update rule is used to create the action selection mechanism through lifetime.
Step-size parameter α=0.1 and ε=0.1
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Fig. 3. The Neural Network architec-
ture used in Model 1b (RL & GA with
NN). The input is the states, the bias,
and the action whereas the output is the
magnitude of reward. In this case a sim-
ple set of reward was used with +1, 0 or
-1 possible values. The bias is set to 1
and the network operates with a stan-
dard sigmoid function. In the case of
more then one drives an additional node
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Fig. 4. Model 2 (Q-Evolution), im-
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function and hence the genome of agents
encodes information that is directly con-
nected to the action selection mecha-
nism. The model is operating without
a valency module.
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Fig. 5. Average and Maximum Fitness results for the three models on a stable envi-
ronment where the animats have a single drive. The fitness function requires optimal
behaviour selection in order to achieve maximum status. Notice how the models utiliz-
ing developmental learning achieve higher fitness levels in a few number of generations.
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Fig. 6. Average and Maximum Fitness results for the three models on a stable environ-
ment where the animats are utilizing two drives. The results are for a “loose” fitness
function that allows suboptimal behaviour selection.

in certain occasions, maximum fitness and to increase the average of the pop-
ulation. The approach that directly evolves the reward function (RL & GA)
achieves a higher average fitness but is less stable in the maximum fitness devel-
opment compared with the alternative evolution of synaptic weights (RL & GA
with NN).

The double drive case in a stable environment increases the difficulty of the
task and explores the capabilities of all the approaches. The results in Fig. 6
compare the models on a “loose” fitness function (excess competition steps) that
allows for suboptimal behaviour selection (the animat can achieve maximum fit-
ness without selecting always the best possible action). For a fitness function
requiring optimal behaviour selection (that is, always to choose the best behav-
iour), the strictly evolutionary approach fails to produce a perfect solution even
after 50,000 generations [7].
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Dynamic Environments. The effect of the dynamic environment on the
adaptability of the animats is shown in Fig. 7. The extreme dynamic case is
considered where the effect of actions is changing at every generation. Under
these circumstances the models implementing a combined framework of learning
and evolution via an indirect encoding of action-selection, manage to produce
animats able to adapt to the environment overcoming the initial fluctuations on
the maximum fitness of the population.
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Fig. 7. Average and Maximum Fitness results for the three models on a dynamic envi-
ronment where the animats are utilizing two drives. Every 1 generation the environment
changes, causing the effect of actions to be inverted. Only the models implementing
both developmental and genetic approaches are adaptable to the changes and able to
achieve consecutive maximum fitness solutions. The Q-Evolution model is unstable.
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Fig. 8. The Q-Evolution model imple-
menting an evolutionary approach with-
out developmental learning fails to adapt
even to a relative low-dynamic environ-
ment that changes every 600 generations.
The limitation of the model is due to
the lack of a complete valency mod-
ule. Whenever the environment suffers a
change there is a sudden drop on both
the average and maximum fitness level
of the population.

In contrast, the Q-Evolution model, which implements a strictly evolution-
ary approach, is unable to adapt to the dynamic environment as it is shown
by the low-value and fluctuating average and maximum fitness developments.
Even in a dramatically less severe environment, where the changes occur every
600 generations (Fig. 8), evolution alone is unable to follow the changes of the
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environment and both the average and maximum fitness of the population have
a sudden drop at the instance of the change.

3.5 Direct or Indirect Encoding of Action Selection?

Contrary to the results of [11,14], the average fitness progression of the combined
learning and evolution approach does not suffer from large oscillations every
time the environment changes. This is due to the fact that action selection is
underspecified in the genes and hence the animats do not have to unlearn and
relearn the right behaviour. They just have to learn it during their lifetime.
This demonstrates and proves our hypothesis that underspecified encoding of
action selection, in a combined framework of developmental learning and genetic
evolution, endows animats with a further adaptive skill that facilitates their
survival.

In contrast, animats with an “inborn” skill for selecting and executing a
behaviour have to re-learn it at every change of the feedback from the environ-
ment. This is a dramatic disadvantage, leading to the animats’ extinction when
the genetically encoded behaviour becomes a deadly option.

4 Discussion and Conclusion

In the present study we have examined the role of valency as a process re-
lating developmental learning and genetic evolution to assist adaptation. We
implemented two different approaches, one that is strictly evolutionary and one
that makes use of both developmental and evolutionary mechanisms in order to
compare and draw conclusions on the nature of valency. Furthermore, we have
tested their performance on both stable and dynamic environments in order to
investigate their adaptability.

It has been demonstrated that in both stable and dynamic environments
a combined framework of learning and evolution performs better, since agents
achieve higher fitness in fewer generations. In the case of an animat equipped
with two drives, or in a dynamic environment, evolution alone fails to find a
perfect solution, implying that a valency mechanism is necessary if the animats
are to adapt at all. Furthermore, we have shown that action selection has to
be underspecified in the genome for the sake of adaptation. Instead of directly
encoding action selection (as in [1,14,11]), the genes should indirectly encode
that information in order to avoid becoming predisposed toward the execution
of a behaviour that could later become harmful.
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Benkö, Gil 725
Bentley, Katie 118
Bentley, Peter J. 312
Bersini, Hugues 785, 864
Beslon, Guillaume 423
Bonani, Michael 272, 282
Bowers, Chris P. 149
Bryden, John 551
Buchli, Jonas 210
Buckley, Christopher L. 292
Bull, Larry 322
Bullock, Seth 292
Burtsev, Mikhail S. 655

Capcarrere, Mathieu S. 138
Caprari, Gilles 169
Cardoso Siqueira, Sandra Regina 491
Cavazza, Marc 540
Chaudier, F. 423
Chen, Ling 562
Chu, Dominique 845
Chu, Tianguang 584, 604
Clack, Chris 118
Cohen, Netta 292
Collier, Travis C. 624
Cos-Aguilera, Ignasi 936
Crooks, Sean 540
Curran, Dara 383

D’Eleuterio, Gabriele M.T. 67
Damoulas, Theodoros 936
Dauscher, Peter 393
Davies, Mark S. 520
de Boer, Bart 614

de Castro, Leandro N. 754
de Oliveira, Gina Maira Barbosa 491
de Oliveira, Pedro P.B. 461
Defaweux, Anne 342
Di Paolo, Ezequiel 11, 221, 252, 262
Divina, Federico 644
Dorigo, Marco 231, 272
Dorin, Alan 775
Dyke, James 241

Egashira, Susumu 675
Eiben, A.E. 795
Epiney, Lucien 128

Fang, Yimin 815
Fayard, Jean-Michel 423
Fend, Miriam 302
Fernando, Chrisantha 695
Flamm, Christoph 500, 725
Flann, Nicholas 57
Floreano, Dario 189, 282
Fujiwara, Yoshi 716

Gabriele, Anna Rosa 443
Gapenne, O. 37
Garnier, Simon 169
Gaussier, P. 37
Gautrais, Jacques 169
Gerlee, Philip 854
Giacobini, Mario 665
Goncharova, Larisa B. 510
Groß, Roderich 272
Guignard, André 282
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