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Abstract. To specify, verify, and reason about various reciprocal relationships 
in a human society and/or a cyber space, we need a right fundamental logic sys-
tem to provide us with a criterion of logical validity of reasoning as well as a 
representation and specification language. This paper proposes a new family of 
conservative extensions of relevant logic, named �reciprocal logic,� for specify-
ing, verifying, and reasoning about reciprocal relationships. The paper shows 
that various reciprocal logics can be obtained by introducing predicates and re-
lated axioms about reciprocal relationships into strong relevant logics and spa-
tial-temporal relevant logics. A case study is focused on trust relationships.  

1   Introduction 

In human society and/or a cyber space, there are many reciprocal relationships that 
must concern two parties, such as parent-child relationship, relative relationship, 
friendship, adjacent relationship, high and low relationship, cooperative relationship, 
complementary relationship, adverse relationship, dependent relationship, trust rela-
tionship, trade relationship, buying and selling relationship, and so on. As a result, 
many reciprocal relationships appear in various disciplines including Artificial Intel-
ligence, Cryptography, Economics, Game Theory, Information Security Engineering, 
Knowledge Engineering, Linguistics, Logic, Multi-agent Systems, Philosophy, Psy-
chology, and Software Engineering.  

To specify, verify, and reason about various reciprocal relationships in a human 
society and/or a cyber space, we need a right fundamental logic system to provide us 
with a criterion of logical validity of reasoning as well as a representation and speci-
fication language. The question, �Which is the right logic?� invites the immediate 
counter-question �Right for what?�  Only if we certainly know what we need, we can 
make a good choice. It is obvious that different applications may require different 
characteristics of logic.  

The present author considers that we should consider the following essential re-
quirements for the fundamental logic. First, as a general logical criterion for the valid-
ity of reasoning as well as proving, the logic must be able to underlie relevant reason-
ing as well as truth-preserving reasoning in the sense of conditional, i.e., for any 
reasoning based on the logic to be valid, if its premises are true in the sense of condi-
tional, then its conclusion must be relevant to the premises and true in the sense of 
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conditional. Second, the logic must be able to underlie ampliative reasoning in the 
sense that the truth of conclusion of the reasoning should be recognized after the 
completion of the reasoning process but not be invoked in deciding the truth of prem-
ises of the reasoning. From the viewpoint to regard reasoning as the process of draw-
ing new conclusions from given premises, any meaningful reasoning must be amplia-
tive but not circular and/or tautological. Third, the logic must be able to underlie 
paracomplete reasoning and paraconsistent reasoning. In particular, the so-called 
principle of Explosion that everything follows from a contradiction cannot be ac-
cepted by the logic as a valid principle. In general, our knowledge about various re-
ciprocal relationships may be incomplete or even inconsistent in many ways, i.e., it 
gives us no evidence for deciding the truth of either a proposition or its negation, or 
even it directly or indirectly includes some contradictions. Therefore, reasoning with 
incomplete and/or inconsistent knowledge is the rule rather than the exception in our 
everyday lives and almost all scientific disciplines. Finally, because reciprocal rela-
tionships themselves may change over space and time, the right fundamental logic 
system must be able to underlie spatial reasoning, or temporal reasoning, or both.  

Classical mathematical logic (CML for short) cannot satisfy any of the above es-
sential requirements because of the following facts: a reasoning based on CML is not 
necessarily relevant; the classical truth-preserving property of a reasoning based on 
CML is meaningless in the sense of conditional; a reasoning based on CML must be 
circular and/or tautological but not ampliative; reasoning under inconsistency is im-
possible within the framework of CML [1, 2, 4, 5]. The above facts are also true to 
those classical conservative extensions or non-classical alternatives of CML includ-
ing temporal (classical) logics [3, 11, 12] and spatial (classical) logics [8-10] where 
the classical account of validity is adopted as the logical validity criterion and the 
notion of conditional is directly or indirectly represented by the material implication. 
CML does not underlie spatial reasoning and temporal reasoning explicitly.  

Traditional relevant (or relevance) logics ware constructed during the 1950s in or-
der to find a mathematically satisfactory way of grasping the elusive notion of rele-
vance of antecedent to consequent in conditionals, and to obtain a notion of implica-
tion which is free from the so-called �paradoxes� of material and strict implication [1, 
2]. Some major traditional relevant logic systems are �system E of entailment�, �sys-
tem R of relevant implication�, and �system T of ticket entailment�. A major charac-
teristic of the relevant logics is that they have a primitive intensional connective to 
represent the notion of (relevant) conditional and their logical theorems include no 
implicational paradoxes. The underlying principle of the relevant logics is the rele-
vance principle, i.e., for any entailment provable in E, R, or T, its antecedent and 
consequent must share a propositional variable. Variable-sharing is a formal notion 
designed to reflect the idea that there be a meaning-connection between the antece-
dent and consequent of an entailment. It is this relevance principle that excludes those 
implicational paradoxes from logical axioms or theorems of relevant logics. Also, 
since the notion of entailment is represented in the relevant logics by a primitive in-
tensional connective but not an extensional truth-function, a reasoning based on the 
relevant logics is ampliative but not circular and/or tautological. Moreover, because 
the relevant logics reject the principle of Explosion, they can certainly underlie para-
consistent reasoning. However, traditional relevant logics still include conjunction-
implicational paradoxes and disjunction-implicational paradoxes [4, 5]. As a result, 
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they only can guarantee the relevance between the premises of a valid argument and 
its conclusion and the validity of its conclusion in a sense of weak relevance. Rele-
vant logics do not underlie spatial reasoning and temporal reasoning explicitly.  

Thus, no existing logic can satisfy all essential requirements for the fundamental 
logic. This paper proposes a new family of conservative extensions of relevant logic, 
named �reciprocal logic,� for specifying, verifying, and reasoning about reciprocal 
relationships. The paper shows that various reciprocal logics can be obtained by in-
troducing predicates and related axioms about reciprocal relationships into strong 
relevant logics and spatial-temporal relevant logics. A case study is focused on trust 
relationships.  

2   Strong Relevant Logics and Spatio-temporal Relevant Logics 

In order to establish a satisfactory logic calculus of conditional to underlie relevant 
reasoning, the present author has proposed strong relevant (or relevance) logics [4]. 
The logics require that the premises of an argument represented by a conditional 
include no unnecessary and needless conjuncts and the conclusion of that argument 
includes no unnecessary and needless disjuncts. As a modification of traditional rele-
vant logics, strong relevant logics reject all conjunction-implicational paradoxes and 
disjunction-implicational paradoxes in traditional relevant logics. What underlies the 
strong relevant logics is the strong relevance principle: If A is a theorem of strong 
relevant logics, then every propositional variable in A occurs at least once as an ante-
cedent part and at least once as a consequent part. In the framework of strong relevant 
logics, if a reasoning and/or argument is valid, then both the relevance between its 
premises and its conclusion and the validity of its conclusion in the sense of condi-
tional can be guaranteed in a certain sense of strong relevance.  

The logical connectives, axiom schemata, and inference rules of strong relevant 
logics are as follows: 

Primitive Logical Connectives: { ⇒ (entailment), ¬ (negation), ∧ (extensional con-
junction) }  

Defined Logical Connectives: { ⊗ (intensional conjunction, A⊗B =df ¬(A⇒¬B)), ⊕ 
(intensional disjunction, A⊕B =df ¬A⇒B), ⇔ (intensional equivalence, A⇔B =df 
(A⇒B)⊗(B⇒A)), ∨ (extensional disjunction, A∨B =df ¬(¬A∧¬B)), → (material im-
plication, A→B =df ¬(A∧¬B) or A→B =df ¬A∨B), ↔ (extensional equivalence, A↔B 
=df (A→B)∧(B→A))  } 

Axiom Schemata: E1: A⇒A, E2: (A⇒B)⇒((C⇒A)⇒(C⇒B)), E2′: (A⇒B)⇒ 
((B⇒C)⇒(A⇒C)), E3: (A⇒(A⇒B))⇒(A⇒B), E3′: (A⇒(B⇒C))⇒((A⇒B)⇒ 
(A⇒C)), E3′′: (A⇒B)⇒((A⇒(B⇒C))⇒(A⇒C)), E4: (A⇒((B⇒C)⇒D))⇒ 
((B⇒C)⇒(A⇒D)), E4′: (A⇒B)⇒(((A⇒B)⇒C)⇒C), E4′′: ((A⇒A)⇒B)⇒B, E4′′′: 
(A⇒B)⇒((B⇒C)⇒(((A⇒C)⇒D)⇒D)), E5: (A⇒(B⇒C))⇒(B⇒(A⇒C)), E5′: 
A⇒((A⇒B)⇒B), N1: (A⇒(¬A))⇒(¬A), N2: (A⇒(¬B))⇒(B⇒(¬A)), N3: 
(¬(¬A))⇒A, C1: (A∧B)⇒A, C2: (A∧B)⇒B, C3: ((A⇒B)∧(A⇒C))⇒(A⇒(B∧C)), 
C4: (LA∧LB)⇒L(A∧B), where LA =df (A⇒A)⇒A, D1: A⇒(A∨B), D2: B⇒(A∨B), 
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D3: ((A⇒C)∧(B⇒C))⇒((A∨B)⇒C), DCD: (A∧(B∨C))⇒((A∧B)∨C), C5: (A∧A)⇒A, 
C6: (A∧B)⇒(B∧A), C7: ((A⇒B)∧(B⇒C))⇒(A⇒C), C8: (A∧(A⇒B))⇒B, C9: 
¬(A∧¬A), C10: A⇒(B⇒(A∧B)), IQ1: ∀x(A⇒B)⇒(∀xA⇒∀xB), IQ2: (∀xA∧∀xB) 
⇒∀x(A∧B), IQ3: ∀xA⇒A[t/x] (if x may appear free in A and t is free for x in A, i.e., 
free variables of t do not occur bound in A), IQ4: ∀x(A⇒B)⇒(A⇒∀xB) (if x does not 
occur free in A), IQ5: ∀x1 ... ∀xn(((A⇒A)⇒B)⇒B) (n≥0)  

Inference Rules: ⇒E: from A and A⇒B to infer B (Modus Ponens), ∧I: from A and 
B to infer A∧B (Adjunction), ∀I: if A is an axiom, so is ∀xA (Generalization of axi-
oms) 

Various relevant logic systems are defined as follows, where we use �A | B� to de-
note any choice of one from two axiom schemata A and B: T⇒ =df {E1, E2, E2′, E3 | 
E3′′} + ⇒E, E⇒ =df {E1, E2 | E2′, E3 | E3′, E4 | E4′} + ⇒E, E⇒ =df {E2′, E3, E4′′} + 
⇒E, E⇒ =df {E1, E3, E4′′′} + ⇒E, R⇒ =df {E1, E2 | E2′, E3 | E3′, E5 | E5′} + ⇒E, 
T⇒,¬ =df T⇒ + {N1, N2, N3}, E⇒,¬ =df E⇒ + {N1, N2, N3}, R⇒,¬ =df R⇒ + {N2, N3}, 
T =df T⇒,¬ + {C1~C3, D1~D3, DCD} + ∧I, E =df E⇒,¬ + {C1~C4, D1~D3, DCD} + 
∧I, R =df R⇒,¬ + {C1~C3, D1~D3, DCD} + ∧I, Tc =df T⇒,¬ + {C3, C5~C10}, Ec =df 
E⇒,¬ + {C3~C10}, Rc =df R⇒,¬ + {C3, C5~C10}, TQ =df T + {IQ1~IQ5} + ∀I, EQ 
=df E + {IQ1~IQ5} + ∀I, RQ =df R + {IQ1~IQ5} + ∀I, TcQ =df Tc + {IQ1~IQ5} + 
∀I, EcQ =df Ec + {IQ1~IQ5} + ∀I, RcQ =df Rc + {IQ1~IQ5} + ∀I. Here, T⇒, E⇒, 
and R⇒ are the purely implicational fragments of T, E, and R, respectively, and the 
relationship between E⇒ and R⇒ is known as R⇒ = E⇒ + A⇒LA; T⇒,¬, E⇒,¬, and 
R⇒,¬ are the implication-negation fragments of T, E, and R, respectively;  Tc, Ec, 
Rc, TcQ, EcQ, and RcQ are strong relevant logics.  

However, both traditional relevant logics and strong relevant logics do not underlie 
spatial reasoning and temporal reasoning explicitly. In order to specify, verify, and 
reason about spatio-temporal knowledge, we have proposed spatio-temporal relevant 
logics [7], which are obtained by introducing region connection predicates and axiom 
schemata of RCC [8-10], point position predicates and axiom schemata, and point 
adjacency predicates and axiom schemata into temporal relevant logics [6]. Below 
we present a modification of spatio-temporal relevant logics in [7].  

Let {r1, r2, r3, �} be a countably infinite set of individual variables, called region 
variables. Atomic formulas of the form C(r1, r2) are read as �region r1 connects with 
region r2.�  Let {p1, p2, p3, �} be a countably infinite set of individual variables, 
called point variables. Atomic formulas of the form I(p1, r1) are read as �point p1 is 
included in region r1.�  Atomic formulas of the form Id(p1, p2) are read as �point p1 is 
identical with p2.�  Atomic formulas of the form Arc(p1, p2) are read as �points p1, p2 
are adjacent such that there is an arc from point p1 to point p2, or more simply, points 
p1 is adjacent to point p2.�  Note that an arc has a direction. Atomic formulas of the 
form Path(p1, p2) are read as �there is a directed path from point p1 to point p2.� Here, 
C(r1, r2), I(p1, r1), Id(p1, p2), Arc(p1, p2), and Path(p1, p2) are primitive binary predi-
cates to represent relationships between geometric objects. Note that here we use a 
many-sorted language.  

Temporal Operators: { G (future-tense always or henceforth operator, GA means �it 
will always be the case in the future from now that A�), H (past-tense always opera-
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tor, HA means �it has always been the case in the past up to now that A�), F (future-
tense sometime or eventually operator, FA means �it will be the case at least once in 
the future from now that A�), P (past-tense sometime operator, PA means �it has been 
the case at least once in the past up to now that A�) }  Note that these temporal opera-
tors are not independent and can be defined as follows: GA =df ¬F¬A, HA =df ¬P¬A, 
FA =df ¬G¬A, PA =df ¬H¬A.  

Primitive Binary Predicate: { C (connection, C(r1, r2) means �r1 connects with r2�), 
I (inclusion, I(p1, r1) means �p1 is included in r1�), Id (the same point, Id(p1, p2) 
means �point p1 is identical with p2�), Arc (arc, Arc(p1, p2) means �p1 is adjacent to 
p2�), Path (path, Path(p1, p2) means �there is a directed path from p1 to p2�) } 

Defined Binary Predicates: DC(r1, r2) =df ¬C(r1, r2) (DC(r1, r2) means �r1 is discon-
nected from r2�), Pa(r1, r2) =df ∀r3(C(r3, r1)⇒C(r3, r2)) (Pa(r1, r2) means �r1 is a part 
of r2�), PrPa(r1, r2) =df Pa(r1, r2)∧(¬Pa(r2, r1)) (PrPa(r1, r2) means �r1 is a proper part 
of r2�), EQ(r1, r2) =df Pa(r1, r2)∧Pa(r2, r1) (EQ(r1, r2) means �r1 is identical with r2�), 
O(r1, r2) =df ∃r3(Pa(r3, r1)∧Pa(r3, r2)) (O(r1, r2) means �r1 overlaps r2�), DR(r1, r2) =df 
¬O(r1, r2) (DR(r1, r2) means �r1 is discrete from r2�), PaO(r1, r2) =df O(r1, r2)∧ 
(¬Pa(r1, r2))∧(¬Pa(r2, r1)) (PaO(r1, r2) means �r1 partially overlaps r2�), EC(r1, r2) 
=df C(r1, r2)∧(¬O(r1, r2)) (EC(r1, r2) means �r1 is externally connected to r2�), 
TPrPa(r1, r2) =df PrPa(r1, r2)∧∃r3(EC(r3, r1)∧EC(r3, r2)) (TPrPa(r1, r2) means �r1 is a 
tangential proper part of r2�), NTPrPa(r1, r2) =df PrPa(r1, r2)∧(¬∃r3(EC(r3, 
r1)∧EC(r3, r2))) (NTPrPa(r1, r2) means �r1 is a nontangential proper part of r2�).  

Axiom Schemata: T1: G(A⇒B)⇒(GA⇒GB), T2: H(A⇒B)⇒(HA⇒HB), T3: 
A⇒G(PA), T4: A⇒H(FA), T5: GA⇒G(GA), T6: (FA∧FB)⇒F(A∧FB)∨F(A∧B)∨ 
F(FA∧B), T7: (PA∧PB)⇒P(A∧PB)∨P(A∧B)∨P(PA∧B), T8: GA⇒FA, T9: HA⇒ PA, 
T10: FA⇒F(FA), T11: (A∧HA)⇒F(HA), T12: (A∧GA)⇒P(GA), RCC1: 
∀r1∀r2(C(r1, r2)⇒C(r2, r1)), RCC2: ∀r1(C(r1, r1)), PRCC1: ∀p1∀r1∀r2((I(p1, r1)∧ 
DC(r1, r2))⇒¬I(p1, r2)), PRCC2: ∀p1∀r1∀r2((I(p1, r1)∧Pa(r1, r2))⇒I(p1, r2)), 
PRCC3: ∀r1∀r2(O(r1, r2)⇒∃p1(I(p1, r1)∧I(p1, r2))), PRCC4: ∀r1∀r2(PaO(r1, 
r2)⇒∃p1(I(p1, r1)∧ I(p1, r2))∧∃p2(I(p2, r1)∧¬I(p2, r2))∧∃p3(¬I(p3, r1)∧I(p3, r2))), 
PRCC5: ∀r1∀r2(EC(r1, r2)⇒∃p1(I(p1, r1)∧I(p1, r2)∧∀p2(¬Id(p2, p1)⇒¬I(p2, 
r1)∧¬I(p2, r2))), PRCC6: ∀p1∀r1∀r2((I(p1, r1)∧TPrPa(r1, r2))⇒I(p1, r2)), PRCC7: 
∀p1∀r1∀r2((I(p1, r1)∧ NTPrPa(r1, r2))⇒I(p1, r2)), APC1: ∀p1∀p2(Arc(p1, 
p2)⇒Path(p1, p2)), APC2: ∀p1∀p2∀p3((Path(p1, p2)∧Path(p2, p3))⇒Path(p1, p3)).  

Inference Rules: TG: from A to infer GA and HA (Temporal Generalization) 
The minimal or weakest propositional temporal relevant logics are defined as fol-

lows: T0Tc =df Tc + {T1~T4} + TG, T0Ec =df Ec + {T1~T4} + TG, T0Rc =df Rc + 
{T1~T4} + TG. Note that the minimal or weakest temporal classical logic Kt = all 
axiom schemata for CML + →E + {T1~T4} + TG. Other characteristic axioms such 
as T5~T12 that correspond to various assumptions about time can be added to T0Tc, 
T0Ec, and T0Rc respectively to obtain various propositional temporal relevant logics. 
Various predicate temporal relevant logics then can be obtained by adding axiom 
schemata IQ1~IQ5 and inference rule ∀I into the propositional temporal relevant 
logics. For examples, minimal or weakest predicate temporal relevant logics are as 
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follows: T0TcQ =df T0Tc + {IQ1~IQ5} + ∀I, T0EcQ =df T0Ec + {IQ1~IQ5} + ∀I, 
T0RcQ =df T0Rc + {IQ1~IQ5} + ∀I.  

We can obtain some spatial relevant logics by adding region connection, point po-
sition, and point adjacency axiom schemata into the various predicate strong relevant 
logics. For examples: STcQ =df TcQ + {RCC1, RCC2, PRCC1~PRCC7, APC1, 
APC2}, SEcQ =df EcQ + {RCC1, RCC2, PRCC1~PRCC7, APC1, APC2}, SRcQ =df 
RcQ + {RCC1, RCC2, PRCC1~PRCC7, APC1, APC2}.  

Finally, we can obtain various spatio-temporal relevant logics by adding region 
connection, point position, and point adjacency axiom schemata into the various 
predicate temporal relevant logics. For examples: ST0TcQ =df T0TcQ + {RCC1, 
RCC2, PRCC1~PRCC7, APC1, APC2}, ST0EcQ =df T0EcQ + {RCC1, RCC2, 
PRCC1~PRCC7, APC1, APC2}, ST0RcQ =df T0RcQ + {RCC1, RCC2, 
PRCC1~PRCC7, APC1, APC2}.  

3   Reciprocal Logics 

Based on strong relevant logics and spatio-temporal relevant logics, we can construct 
various reciprocal logics to underlie specifying, verifying, and reasoning about recip-
rocal relationships by introducing predicates and related axioms about various recip-
rocal relationships into strong relevant logics and spatial-temporal relevant logics. 
Therefore, they are conservative extensions of temporal relevant logics as well as 
strong relevant logics. As a case study, here we focus our interests on trust relation-
ships. Other reciprocal relationships can be considered and dealt with in the same 
way.  

Various reciprocal relationships may be symmetrical or unsymmetrical, transitive 
or non-transitive, but in general they are not reflective. Although there are many vari-
ous definitions on the concept of trust, various trust relationships should have some-
thing in common. In general, a trust relationship must concern two parties, say A and 
B, such that A trusts B to do something, and any trust relationship is not necessarily 
symmetrical and not necessarily transitive. In many cases, a trust relationship is con-
ditional in the form that A trusts B to do something, if some condition is true. On the 
other hand, the relationship of trust is just one of many kinds of reciprocal relation-
ships in a human society and/or a cyber space.  

Let {pe1, pe2, pe3, �} be a countably infinite set of individual variables, called 
person variables. Atomic formulas of the form TR(pe1, pe2) are read as �person pe1 
trusts person pe2.�  Let {o1, o2, o3, �} be a countably infinite set of individual vari-
ables, called organization variables. Atomic formulas of the form TRpo(pe1, o1) are 
read as �person pe1 trusts organization o1.�  Atomic formulas of the form TRop(o1, 
pe1) are read as �organization o1 trusts person pe1.�  Atomic formulas of the form 
TRoo(o1, o2) are read as �organization o1 trusts organization o2.�   

Primitive Predicate: { TR (trust, TR(pe1, pe2) means �pe1 trusts pe2�), B (belong to, 
B(pe1, o1) means �pe1 belongs to o1�) } 

Defined Predicates: NTR(pe1, pe2) =df ¬(TR(pe1, pe2)) (NTR(pe1, pe2) means �pe1 

does not trust pe2�), TREO(pe1, pe2) =df TR(pe1, pe2)∧TR(pe2, pe1), (TREO(pe1, pe2) 
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means �pe1 and pe2 trust each other�), ITR(pe1, pe2, pe3) =df ¬(TR(pe1, pe2)∧ TR(pe1, 
pe3)), (ITR(pe1, pe2, pe3) means �pe1 does not trust both pe2 and pe3� (incompatibil-
ity)), XTR(pe1, pe2, pe3) =df (TR(pe1, pe2)∨TR(pe1, pe3))∧(NTR(pe1, pe2)∨ NTR(pe1, 
pe3)), (XTR(pe1, pe2, pe3) means �pe1 trusts either pe2 or pe3 but not both� (exclusive 
disjunction)), JTR(pe1, pe2, pe3) =df ¬(TR(pe1, pe2)∨TR(pe1, pe3)), (JTR(pe1, pe2, 
pe3) means �pe1 trusts neither pe2 nor pe3�(joint denial)), TTR(pe1, pe2, pe3) =df 
(TR(pe1, pe2)∧TR(pe2, pe3))⇒TR(pe1, pe3), (TTR(pe1, pe2, pe3) means �pe1 trusts pe3, 
if pe1 trusts pe2 and pe2 trusts pe3�), CTR(pe1, pe2, pe3) =df TR(pe1, pe3)⇒ TR(pe2, 
pe3), (CTR(pe1, pe2, pe3) means �pe2 trusts pe3, if pe1 trusts pe3�), NCTR(pe1, pe2, pe3) 
=df ¬TR(pe1, pe3)⇒TR(pe2, pe3), (NCTR(pe1, pe2, pe3) means �pe2 trusts pe3, if pe1 

does not trust pe3�), CNTR(pe1, pe2, pe3) =df ¬TR(pe1, pe3)⇒ ¬TR(pe2, pe3), 
(CNTR(pe1, pe2, pe3) means �pe2 does not trust pe3, if pe1 does not trust pe3�), 
TRpo(pe1, o1) =df ∀pe2(B(pe2, o1)∧TR(pe1, pe2)), (TRpo(pe1, o1) means �pe1 trusts 
o1�), NTRpo(pe1, o1) =df ∀pe2(B(pe2, o1)∧NTR(pe1, pe2)), (NTRpo(pe1, o1) means 
�pe1 does not trust o1�, note that NTRpo(pe1, o1) is not a simple negation of TRpo(pe1, 
o1)), TRop(o1, pe1) =df ∀pe2(B(pe2, o1)∧TR(pe2, pe1)), (TRop(o1, pe1) means �o1 trusts 
pe1�), NTRop(o1, pe1) =df ∀pe2(B(pe2, o1)∧NTR(pe2, pe1)), (NTRop(o1, pe1) means 
�o1 does not trust pe1�, note that NTRop(o1, pe1) is not a simple negation of TRop(o1, 
pe1)), TRoo(o1, o2) =df ∀pe1∀pe2(B(pe1, o1)∧B(pe2, o2)∧TR(pe1, pe2)), (TRoo(o1, o2) 
means �o1 trusts o2�), NTRoo(o1, o2) =df ∀pe1∀pe2(B(pe1, o1)∧B(pe2, o2)∧NTR(pe1, 
pe2)), (NTRoo(o1, o2) means �o1 does not trust o2�, note that NTRoo(o1, o2) is not a 
simple negation of TRoo(o1, o2)), TRpoEO(pe1, o1) =df TRpo(pe1, o1)∧TRop(o1, pe1), 
(TRpoEO(pe1, o1) means �pe1 and o1 trust each other�), TRooEO(o1, o2) =df TRoo(o1, 
o2)∧TRoo(o2, o1), (TRooEO(o1, o2) means �o1 and o2 trust each other�) 

Axiom Schemata: TR1: ¬(∀pe1∀pe2(TR(pe1, pe2)⇒TR(pe2, pe1))), TR2: 
¬(∀pe1∀o1(TRpo(pe1, o1)⇒TRop(o1, pe1))), TR3: ¬(∀pe1∀o1(TRop(o1, pe1)⇒ 
TRpo(pe1, o1))), TR4: ¬(∀o1∀o2(TRoo(o1, o2)⇒TRoo(o2, o1))), TR5: 
¬(∀pe1∀pe2∀pe3((TR(pe1, pe2)∧TR(pe2, pe3))⇒TR(pe1, pe3))), TR6: 
¬(∀pe1∀pe2∀o1((TRpo(pe1, o1)∧TRop(o1, pe2))⇒TR(pe1, pe2))), TR7: 
¬(∀pe1∀pe2∀o1((TRop(o1, pe1)∧TR(pe1, pe2))⇒TRop(o1, pe2))), TR8: 
¬(∀o1∀o2∀o3((TRoo(o1, o2)∧TRoo(o2, o3))⇒TRoo(o1,o3))) 

We can obtain various reciprocal logics for specifying, verifying, and reasoning 
about trust relationships by adding axiom schemata about trust relationships into the 
various predicate strong relevant logics, predicate temporal relevant logics, spatial 
relevant logics, or spatial-temporal relevant logics, respectively. For examples: if we 
do not take the notions of space and time into account but just consider some �static�  
trust relationships, then we can use the following logics: TrTcQ =df TcQ + 
{TR1~TR8}, TrEcQ =df EcQ + {TR1~TR8}, TrRcQ =df RcQ + {TR1~TR8}. When 
we want to specify, verify, and reason about trust relationships themselves may 
change over space and time, we should use the following logics: TrST0TcQ =df 
ST0TcQ + {TR1~TR8}, TrST0EcQ =df ST0EcQ + {TR1~TR8}, TrST0RcQ =df 
ST0RcQ + {TR1~TR8}. While if minimal or weakest temporal relevant logics are not 
adequate, then those characteristic axioms such as T5~T12 that correspond to various 
assumptions about time can be added into TrST0TcQ, TrST0EcQ, and TrST0RcQ 
respectively to obtain various stronger logics.  
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4   Concluding Remarks 

We have proposed a new family of conservative extensions of relevant logic, named 
�reciprocal logic,� for specifying, verifying, and reasoning about reciprocal relation-
ships. We showed that various reciprocal logics can be obtained by introducing 
predicates and related axioms about reciprocal relationships into strong relevant lo-
gics and spatial-temporal relevant logics. Our case study is focused on trust relation-
ships.  

Because the strong relevance between the antecedent and the consequent of a con-
ditional is intrinsically important to representing conditional reciprocal relationships, 
it is intrinsically important to construct various reciprocal logics based on strong 
relevant logics rather than traditional relevant logics as well as classical mathematical 
logic and its various classical conservative extensions.  

On the other hand, the first three essential requirements for the fundamental logic 
mentioned in Section 1 are also essential to any applied logic for representing and 
reasoning about knowledge in a domain where there may be some incompleteness or 
inconsistency. Therefore, strong relevant logics can be considered as the universal 
basis of various applied logics for knowledge representation and reasoning.  
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