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Abstract. The Dynamic Disclosure Monitor (D2Mon) is a security
mechanism that executes during query processing time to prevent sensi-
tive data from being inferred. A limitation of D2Mon is that it unneces-
sarily examines the entire history database in computing inferences. In
this paper, we present a process that can be used to reduce the number of
tuples that must be examined in computing inferences during query pro-
cessing time. In particular, we show how a priori knowledge of a database
dependency can be used to reduce the search space of a relation when
applying database dependencies. Using the database dependencies, we
develop a process that forms an index table into the database that iden-
tifies those tuples that can be used in satisfying database dependencies.
We show how this process can be used to extend D2Mon to reduce the
number of tuples that must be examined in the history database when
computing inferences. We further show that inferences that are computed
by D2Mon using our extension are sound and complete.

1 Introduction

Providing a balance between security requirements and data availability is an
ongoing challenge in data management. Current security access models, such
as Mandatory Access Control, Discretionary Access Control, and Role-Based
Access Control do not prevent the discovery of sensitive information through
inference channels. An inference channel discloses data that is classified at a
higher level by using data that is classified at a lower level. Detecting and pre-
venting the disclosure of sensitive data via inference channels is referred to as
the inference problem [9]. Solutions to the inference problem can be catego-
rized as either a database design [2,3,7,8,11,14,15,17,18,21] or a query process-
ing [4,10,12,13,16,19] solution.

A database design solution involves identifying and removing inference chan-
nels at design time. This solution can result in over-classifying data items. The
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procedure for preventing sensitive data from being inferred during query pro-
cessing time involves examining query results to determine if the user can use
the results along with some database constraints to infer some sensitive data. In
this approach, current query results are released if the results cannot be com-
bined with previously released query results and the metadata to determine some
sensitive data; otherwise, query results are not released to the user.

Consider the following example using a query processing security mechanism
called Dynamic Disclosure Monitor (D2Mon) [6]. The architecture is shown in
Figure 1. The algorithm is shown in Algorithm 1. For this example we use the
Employee relation in Table 1, which contains information about employee Name,
Rank, Salary, and Department. The relation satisfies the functional dependency
(FD) Rank → Salary. The security requirement is that the employees’ salaries
should be kept confidential for which partial tuples over attributes Name and
Salary can only be accessed by authorized users. However, to increase data avail-
ability unauthorized users are allowed to access Name and Salary separately.
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Fig. 1. Dynamic Disclosure Monitor (D2Mon)

Suppose an unauthorized user requests the following two queries:
Query 1: ”List the name and rank of the employees working in the Toy depart-
ment.” (ΠName,RankσDepartment=′Toy′)
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Input:
1 User’s query (object) Qi

2 User’s id U
3 Security classification < O,U , λ >
4 User’s history database Uhistory (i.e., data which were previously

retrieved by the user)
5 D, a set of database constraints

Output: Answer to Qi and update of the user’s history database or
refusal of Qi

1 Mandatory Access Control (MAC) evaluates direct security violations

if direct security violation is detected then
Qi is rejected (i.e., D2Mon functions as the basic MAC mechanism)

else
(no direct security violation was detected)
begin

2 Use Update Consolidator (UpCon) to modify Uhistory according to
the relevant updates to create Uupdated−history

Let Uall−disclosed = Uupdated−history ∪ Qi(answers)

repeat

3 Use Disclosure Inference Engine (DiIE) to generate all data
that can be disclosed from the Uall−disclosed and the database
constraints D

4 Uall−disclosed = Uall−disclosed ∪ Unewly−disclosed

until no change occurs

end

MAC reevaluates security violations in Uall−disclosed :
5 if Illegal disclosure is detected then

6 Reject Qi and Uhistory = Uupdated−history

else

7 Accept Qi and Uhistory = Uall−disclosed (i.e., security is not violated)

end
end

Algorithm 1: Dynamic Disclosure Monitor (D2Mon )

Query 2: “List the salaries of all clerks in the appliance department.”
(ΠSalaryσRANK=′Clerk′∧Department=′Appliance′).

In Table 1, we show the user history database that is used by D2Mon to store
released query results. Delta values represent values that were not released to
the user. Since the Employee relation satisfies the FD Rank → Salary and both
Query 1 and Query 2 have Rank = ′Clerk′ in the respective result sets, a user
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Table 1. Employee relation

ID NAME RANK SALARY DEPT.

1 John Clerk 38,000 Toy
2 Mary Secretary 28,000 Toy
3 Chris Secretary 28,000 Marketing
4 Joe Manager 45,000 Appliance
5 Sam Clerk 38,000 Appliance
6 Eve Manager 45,000 Marketing

can join the two queries via the Rank value to reveal the fact that John’s salary
is $38,000 (i.e., δ1 = $38, 000). D2Mon is capable of detecting such indirect data
disclosures.

To satisfy the FD Rank → Salary, we need to identify those tuples that
have the same value for RANK. The tuples with ID’s 1 and 5, respectively,
are the only tuples that can satisfy the FD and therefore need to be used in
the inference processing. It follows trivially from the definition of FD’s, that the
FD Rank → Salary means that only those tuples that have the same attribute
value for Rank should be retrieved. In this paper, we present an approach that
shows “how” to apply database dependencies represented as a Horn-clause in an
efficient manner. We propose a concept called Useful Common Attribute, that
defines a list of attributes from the prerequisite of the dependency which must
contain the same values. We use this concept to develop an index table from
the database dependencies prerequisite onto the tuples in the history database
that satisfies the database dependency. The index table will reduce the search
space to a constant operation. This will in turn provide a means by which we
can retrieve the tuples in the history database in an efficient manner and hence
reduce the overall inference processing time.

In this paper, we deal with generalized dependencies, which cover equality
generating (e.g., functional) and tuple generating (e.g., multivalued and join)
dependencies, respectively (see Ullman [20]). Our examples, for simplicity, show
a simple functional dependency application.

We are not proposing a new concept with respect to a history database.
We are proposing a “prediction” on which attributes are needed to apply de-
pendencies. We use this prediction to index the history database to improve
performance.

Table 2. History Database

Query # ID NAME RANK SALARY DEPARTMENT

1 1 John Clerk δ1 Toy
1 2 Mary Secretary δ2 Toy
2 5 δ3 Clerk $38, 000 Appliance
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This paper is organized as follows. In Section 2 we give an overview of the
Dynamic Disclosure Monitor (D2Mon) security architecture. This section also
provides some preliminary notation and concepts. In Section 4 we develop our
proposed solution. In Section 5 we discuss the complexity of our solution. Sec-
tion 6 presents some related work. In Section 7 we conclude this paper and
discuss some future work.

2 Preliminaries

2.1 Dynamic Disclosure Monitor (D2Mon)

D2Mon is a security architecture that runs during query processing time to pre-
vent disclosure of sensitive data. The D2Mon architecture is shown in Figure 1.

D2Mon first uses the Mandatory Access Control (MAC) module to examine
the user’s query to determine if the user has the proper authority to submit the
query. If the user does not have the proper authority, then the query is rejected;
otherwise, the query is submitted to the Database Management System (DBMS)
for execution. Once the query results are returned from the DBMS, then D2Mon
executes a module called Update Consolidator (UpCon). This module retrieves
the updates from the Update Log that have occurred since the last query was
processed.1 UpCon retrieves the updates and performs a process called “stamp-
ing”. That is, UpCon marks the data items in the history database that have
been updated in the base relation with the updated data value from the Up-
date Log. The motivation behind stamping the history database is to identify
attributes that produce outdated inferences that do not lead to a security vio-
lation because the values do not produce values that are current in the history
database.

D2Mon will then add the current query results to the user’s history database.
D2Mon uses a separate history database for each user which allows the system
to manage the query results and inference processing of an individual user in a
central location. Then, the Disclosure Inference Engine (DiIE) is applied to the
history database to compute newly disclosed data. After which, MAC inspects
the history database to determine if sensitive data has been revealed. If a security
violation exists, then the current query is rejected and the history database is
reset to the state before DiIE was ran; otherwise, if not sensitive data is revealed,
then the current query results are returned to the user.

3 Preliminary Notation

In this paper we follow the notation defined in our earlier work [6]. We assume,
as in [1,11,20,21] the existence of a universal relation as defined in [20], which
states that a single relation can be constructed from the relations in a database

1 We assume that the updates are executed by users with the appropriate access
authority and that these updates are stored in an Update Log.



Dynamic Disclosure Monitor (D2Mon) 129

by taking the cross-product of those relations. Let R = {A1, . . . , Ak} denote
the schema of a universal relation and r the actual database instance over R.
We shall denote by dom(Ai) (1 ≤ i ≤ k) the domain of attribute Ai and t =
(. . . , Ai = c, . . .) ∈ r a sub-tuple of r, where the value of attribute Ai is c. We
also use the notation t[Ai] = c to represent the value c of attribute Ai in tuple t.

Definition 1 (Stamped Attribute). Let r be a relation over schema R. Let
A be an attribute name from a schema R and dom(A) = a1, . . . , al the domain
of A. A stamped attribute SA is an attribute such that its value sa is of the
form ai

aj (i, j = 1, . . . , l), where ai ∈ dom(A) ∪ {−} and aj ∈ dom(A) ∪ {−}.
We call ai the value of sa and aj is the stamp or updated value of sa. We assign
aj the value that the attribute A has been updated to in the relation r. If the
attribute A has been deleted, then we assign aj the symbol {−}. We call this
process stamping.

For example, assume at some time t1 that the user has received the tuple
< Clerk, $38, 000 > over the attributes RANK and SALARY from the Employee
relation. Since the tuple was released, it is also stored in the user’s history
database.

If at some time t2(t1 < t2) the salaries of the clerks are modified, e.g, in-
creased to $39,520, the corresponding tuple in the history database is stamped
as follows < Clerk, $38, 000$39,520 >. We are able to determine from this tuple:
(1)The attribute values Clerk and $38,000 have been released to the user and
(2) The attribute value RANK has not been modified; however, the attribute
value of Salary has been modified to $39,520. This modification is unknown to
the user.

We recognize that previous stamped values can be overwritten by successive
stamping procedures, but our proposed solution only requires that the most
recent update to an attribute be stored.

Definition 2 (Projection Fact). Let {A1, . . . , Ak} and {SA1, . . . , SAk} be
a set of attribute and stamped attribute, respectively, over schema R. A pro-
jection fact (PF ) of type A1, . . . , Ak is a mapping m from {A1, . . . , Ak} to
⋃k

j=1 dom(Aj) ∪ ⋃k
j=1 dom(SAj) such that m(Aj) ∈ dom(Aj) ∪ dom(SAj)

for all j = 1, . . . , k. A projection fact is denoted by an expression of the form
R[A1 = v1, . . . , Ak = vk], where R is the schema name and v1, . . . , vk are values
of attributes A1, . . . , Ak, respectively. A PF is classified as one of the following:

1. A stamped projection fact (SPF ) is a projection fact R[A1 = v1, . . . , Ak =
vk], where at least one of vj (j = 1, . . . , k) is a stamped attribute value.

2. A non-stamped projection fact is a projection fact R[A1 = v1, . . . , Ak = vk],
where all vjs are constants in dom(Aj).

For example, Employee[NAME = John,Rank = Clerk] is a non-stamped
projection fact, while Employee[NAME = John,Rank = ClerkManager] is a
stamped projection fact.

In the remainder of this paper the term projectionfact may refer to either
a stamped or a non-stamped projection fact. The type of projectionfact (i.e.,
stamped or non-stamped) will be clear from its context.
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Definition 3 (Query-answer pair). An atomic query-answer pair (QA-pair)
is an expression of the form (P,ΠY σC), where P is a projection fact over Y that
satisfies C or P is a stamped projection fact, such that the un-stamped projection
fact generated from P satisfies C. A query-answer pair is either an atomic QA-
pair or an expression of the form (P,ΠY σC), where P is a set of projection facts
(stamped or non-stamped) {P1, . . . , Pl} such that every Pi, (i = 1, . . . , l) is over
Y and satisfies C.

Similar to Brodsky et al. [1], the database dependencies will be defined by way
of Horn-clauses, which can express tuple generating-dependencies and equality-
generation dependencies [20]. The definition is as follows.

Definition 4 (Database Dependencies). ) Let r denote a relation with
schema R = {A1, . . . , Al}. Let D= {d1, . . . , dm}, where m > 0, be a set of depen-
dencies for R. Each di ∈ D is of the following form: ∀x1, . . . , xl p1∧ . . .∧pk → q,
where x1, . . . , xl are the free variables in p1, . . . , pk (k ≥ 1). The pi’s are called
the prerequisites and have the form R[A1 = a1, . . . , Al = al], where ai is either
a constant or a variable that must appear in the prerequisite. The consequence q
can have the following forms:

1. If the consequence q is either of the form Ai = Aj (Ai, Aj ∈ R) or Ai = c
(c ∈ dom(Ai)), then di is an equality generating dependency

2. If the consequence q has the form R[A1 = a1, . . . , Al = al] where A1, . . . , Al

are all of the attributes of the schema R (i.e., the constraint is full) and each
ai is either a constant or a variable that must appear in the prerequisite pi

(i = 1, . . . , k), then di is a tuple generating dependency.

Generating dependencies are outside the scope of this paper. The interested
reader is referred to [1,20]. We now show how we can represent an equality
generating dependency (i.e., functional dependency).

As an example of functional dependency (FD) consider the Employee rela-
tion in Table 1 that satisfies the FD: Rank → Salary. Using Definition 4, this
would be represented as follows. Due to space limitations, we use N, R, S, and
D for Name, Rank, Salary, and Department, respectively:

Employee(N = a1, R = b, S = c1,D = d1) ∧ Employee(N = a2, R = b, S =
c2,D = d2) → c1 = c2.

We now define how the prerequisites (i.e., body) of the Horn-clauses are
mapped to a tuple of a relation.

Definition 5 (Atom mapping of dependencies). Given a Horn-clause con-
straint p1, . . . , pn → q and a relation r over schema R, we define an atom
mapping as a function h : {p1, . . . , pn} → r such that

1. h preserves constants; i.e., if h(R[. . . , Ai = c, . . .]) = (c1, . . . , ci, . . . , cm) ∈ r
and c is a constant (i.e., c ∈ dom(Aj) ∪ dom(SAj)), then c = ci

2. h preserves equalities; i.e., if pi = R[. . . , Ak = a, . . .], pj = R[. . . , Al = a, . . .]
and h(pi) = (c1, . . . , ck, . . . , cm), h(pj) = (c′1, . . . , c

′
l, . . . , c

′
m), then ck = c′l.
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4 Useful Common Attribute

We proposed in our initial work a security mechanism called the Dynamic Dis-
closure Monitor (D2Mon) [6]. We develop in this section a procedure that can
be used to reduce the search space and ultimately the complexity of D2Mon.

4.1 Problem Discussion and Motivation

The complexity of the inference algorithm used by D2Mon is high, since it applies
the database dependencies to the entire history database in a brute force manner.
That is, D2Mon does not use any a priori knowledge about the prerequisite
tuple mapping into the history database to reduce the number of tuples that
should be retrieved when performing inference processing. As discussed in the
Introduction, we need to define a process such that only those tuples that satisfy
the body of the database constraints are retrieved, which will reduce the number
of tuples in the history database to be examined. Consider, the example from
the Introduction that uses the Employee relation from Table 1 that satisfies the
FD Rank → Salary. This database constraint is represented as a Horn-clause
in the following manner:

Equation 1. Employee(N = a1, R = b1, S = c1,D = d1) ∧ Employee(N =
a2, R = b1, S = c2,D = d2) → c1 = c2.

Consider the history database in Table 1 in which we use Definition 5 to map
h(p1) → (N = John,R = Clerk, S = δ1,D = Toy) and h(p2) → (N = δ3, R =
Clerk, S = $38, 000,D = Appliance), respectively. It follows from the FD that
John’s salary is $38, 000.

Notice that the mapping of p1 to a particular tuple restricts the mapping
of p2. That is, we know that both tuples that are mapped to by p1 and p2, re-
spectively, must contain the same attribute value for Rank (i.e., Clerk). There-
fore, once the mapping h(p1) → (N = John,R = Clerk, S = δ1,D = Toy)
is performed, then the tuples that p2 maps to must be of the form h(p2) →
(N = a2, R = Clerk, S = c2,D = d2), where a2, c2, d2 are free-variables and
Rank = Clerk. Instead of using this knowledge to map p2 to (N = δ3, R =
Clerk, S = $38, 000,D = Appliances), D2Mon would use an exhaustive search
to check each tuple in the history database to determine the tuples that p2

can be mapped to in order to satisfy the prerequisite of Equation 1. To pro-
cess the entire history database in Table 1, D2Mon would test 32 = 9 mappings
of the tuples in the history database. This comes from the fact that there are
two prerequisites and three tuples in the history database. However, to satisfy
the database constraint Rank → Salary in the history database, D2Mon only
needs to map h(p1) → (N = John,R = Clerk, S = δ1,D = Toy) and h(p2) →
(N = δ3, R = Clerk, S = $38, 000,D = Appliance), respectively. Therefore,
there are eight mappings that D2Mon can omit from the inference process.

We use the aforementioned observation to construct an index file on the
history database that will be used to retrieve only those tuples that satisfy the
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prerequisites of a database dependency. That is, given a database dependency
p1∧ . . .∧pl → c, we use prerequisite pi, the tuples to which pi maps to, and pi+1

to construct a modified p′i+1 that can be used to form an index on the history
database that contains only those tuples that satisfy the prerequisite, pi+1. If
we use this approach in the previous example, then we would construct p′2 =
(N = a2, R = Clerk, S = c2,D = d2), which will map h(p′2) → (N = δ3, R =
Clerk, S = $38, 000,D = Appliance) in the history database.

4.2 Our Solution

We define in this section a prerequisite index table that will be used to retrieve
only those tuples that can be used to satisfy the prerequisites of a database
dependency. This prerequisite index table requires some preliminary definitions
which we now present.

Definition 6 (Set of Prerequisite Attributes). Let r denote a relation with
schema R = {A1, . . . , Al}. Let p1 ∧ . . . ∧ pn → q be a Horn-clause constraint
as defined in Definition 4. We define the set of prerequisite attributes for a
prerequisite pj as the set of attributes Ai ∈ pj. We denote the set by A(pj).

As an example, suppose we have prerequisite p1 = Employee(N = a1, R =
b, S = c1,D = d1). Then, the set of prerequisite attributes A(p1) = {N,R, S,D}.
Definition 7 (Useful Common Attributes). Let r denote a relation with
schema R = {A1, . . . , Al}. Let p1∧. . .∧pn → q be a Horn-clause constraint on r.
Let pi = R[Ai1 = ai1 , . . . , Ail

= ail
] and pj = R[Aj1 = aj1 , . . . , Ajl

= ajl
], where

(1 ≤ i < j ≤ l). Let A(pi) and A(pj) denote the set of prerequisite attributes in
pi and pj, respectively. We define the useful common attributes of pi and pj as
the set of attributes Ak ∈ A(pi) ∩ A(pj) such that for each Aik

= aik
∈ pi and

each Ajk
= ajk

∈ pj, either (1) One of the values aik
or ajk

is a variable, or (2)
Both aik

and ajk
are the same variables (i.e., aik

= ajk
). We shall denote the

useful common attributes by Ai−j = A(pi) ∩cu A(pj), where (1 ≤ i < j ≤ l).

Definition 7 is used to identify those attributes that must have the same
attribute values in the tuples that are used in the mapping of the prerequisite of
a database dependency. In Equation 1, A1−2 = A(p1) ∩cu A(p2) = {Rank}. It
is the case that Name, Rank, Salary, and Department are all attributes that are
in the intersection of p1 and p2; however, we must also apply that latter part of
Definition 7. That is, we select attributes that appear in the intersection of p1

and p2 only if the value of one of the intersecting attributes in the prerequisite
are a variable or if both prerequisite attribute values is the same, which is the
case in the intersection of prerequisites p1 and p2.

Definition 8 (Modified Prerequisite). Let r denote a relation with schema
R = {A1, . . . , Al}. Let d be a Horn-clause of the form p1 ∧ . . .∧pk → q. Let pi =
R[A1 = ai1 , . . . , Al = ail

] and pj = R[A1 = aj1 , . . . , Al = ajl
] be prerequisites

in d (1 ≤ i < j ≤ k) and Ai−j = A(pi) ∩cu A(pj), the set of useful common
attributes. Let h(pi) → t, where t ∈ r. We construct a modified pj as follows:
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– If Am ∈ Ai−j and Am = aim
(1 ≤ m ≤ l) is in pi, where aim

is a constant
value, then replace the attribute value for Am in pj with t[Am] (i.e., the
attribute value for Am in t).

We denote a modified prerequisite pj as [pj ]modified.

Using Definition 8, if we have p1 = R(N = a1, R = b1, S = c1,D = d1),
p2 = R(N = a2, R = b1, S = c2,D = d2), A1−2 = A(p1) ∩cu A(p2) = {Rank},
and h(p1) → (N = John,R = Clerk, S = δ1,D = Toy), then [p2]modified =
R(N = a2, R = Clerk, S = c2,D = d2). Then, the modified prerequisite could
be mapped into the history database. That is, h([p2]modified) → (N = δ3, R =
Clerk, S = $38, 000,D = Appliance).

Definition 9 (Prerequisite Index Mapping). Let r denote a relation over
schema R = {A1, . . . , Al} and let p1 ∧ . . .∧ pl → q be a Horn-clause constraints.
Let S be the set of tuples mapped to in r by either h(pi) or h([pi]modified) (1 ≤
i ≤ l). We define a prerequisite index mapping by the function ν : {S} → r,
such that

– For each tuple t ∈ S, we form a 3-tuple of the form (i, t[time], t[ID]), where
i is the subscript of the prerequisite (i.e., pi) that mapped to tuple t, t[time]
is the time in which tuple t is inserted into r, and t[ID] is the tuple ID,
respectively.

Definition 9 forms a 3-tuple relation consisting of the time and ID2 of those
tuples in the prerequisite mapping. We can use this definition to reduce the pro-
cessing time of the dependency. That is, if we use Definition 9 to form a Prereq-
uisite Index Mapping Table (PIM - Table) called Idx into the history database,
then to determine if prerequisites pi (i = 1, . . . , l) satisfy the dependency re-
quires only a linear search of Idx . Because of the way the modified prerequisite
is constructed, the entries in Idx must satisfy the prerequisites which can be de-
termined in a linear time in the size of the Idx. We can use the tuple time and
ID from the indexing table to retrieve the tuple(s) from the history database in
one operation using the tuple time and ID. We shall use the notation Idx[i] as
the set of tuples in r that satisfies prerequisite pi.

For example, in Figure 2 we show a history database with tuple time included.
If a modified prerequisite [p2]modified = R(N = a2, R = Clerk, S = c2,D = d2)
is constructed, then ν(h([p2]modified)) = {< 1, 1, 1 >,< 2, 3, 5 >} from which
we construct the PIM - Table in Figure 2. Again we need only search the index
table to determine if entries in the mapping ν(h([p2]modified)) satisfy database
dependency in Equation 1. We discuss further complexity in Section 5.

Figure 3 shows the D2Mon architecture that includes the PIM - Table. In
Algorithms 2 and 3, we present the algorithms that compute the set of useful
common attributes (Definition 7) and the modified prerequisite (Definition 8),
2 Although we do not address tuple generating dependencies in this paper, we use

the tuple time to distinguish those tuples that are generated via a tuple generation
dependencies in D2Mon which are assigned the same tuple ID (i.e., ID = −999).
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Time ID NAME RANK SALARY DEPARTMENT

1 1 John Clerk δ1 Toy
2 2 Mary Secretary δ2 Toy
3 5 δ3 Clerk $38, 000 Appliance History Database

Prerequisite Number Time ID

1 1 1
2 3 5 Prerequisite Index Table

Fig. 2. Index table and history database with tuple time

respectively. We show in Algorithm 5 how Algorithms 2 and 3 can be used to-
gether to compute the consequence of a Horn-clause database constraint. That
is, Algorithm 5 presents the Apply Database Constraints algorithm, which re-
ceives as input a set of Horn-clause dependencies and a history database. This
algorithm returns a modified history database with the database dependencies
applied as defined in Definition 4.

Input:
1 Prerequisite, pi = R[A1 = ai1 , . . . , Al = ail ]
2 Prerequisite, pj = R[A1 = aj1 , . . . , Al = ajl ]

Output: S, a set of useful common attributes for D
1 Let S = ∅
2 for k = 1 to l − 1 do

Let Ak ∈ A(pi) ∩ A(pj)
if (aik or ajk is a variable) OR (aik and ajk are the same variables) then

S = S ∪ Ak

end
end
return S

Algorithm 2: Set of Useful Common Attributes

As an example of Algorithm 5, suppose that the database constraint that is
shown in Equation 1 is applied to the History Database in Figure 2. These steps
are as follows:

1. Step 1, let hi(p1) → {(Time = 1, ID = 1, N = John,R = Clerk, S =
δ1,D = Toy), (Time = 2, ID = 2, N = Mary,R = Secretary, S = δ2,D =
Toy), (Time = 3,ID = 5, N = δ3, R = Clerk, S = $38, 000,D = Appliance)}
in the history database and store these tuples in Q

2. In Step 2, t = (Time = 1, ID = 1, N = John,R = Clerk, S = δ1,D = Toy)
3. In Step 3, the PIM - Table, Idx is loaded with {< 1, 1, 1 >}, the index entry

for tuple t
4. Step 4, we continue the prerequisite evaluation process.
5. The loop that states in Step 5 computes the useful common attributes be-

tween the current pi and preceding pj ’s (1 ≤ i < j ≤ l).
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Fig. 3. D2Mon with prerequisite index mapping table

Input:
1 Prerequisite, pi = R[A1 = ai1 , . . . , Al = ail ]
2 Prerequisite, pj = R[A1 = aj1 , . . . , Al = ajl ]
3 Ai−j , useful common attributes between pi and pj

4 Idx, a PIM - Table

Output: A modified prerequisite pj if useful common attributes exist; other-
wise, an unmodified prerequisite pj

1 foreach Am ∈ Ai−j do

2 if aim in pi is a constant value then
Let t ∈ Idx[i]
Let pj = R[. . . , Am = t[Am], . . .] {Replace the attribute value Am in pj with
the attribute value t[Am]}

end
end
return pj

Algorithm 3: Modified Prerequisite
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Input:
1 Set of Horn-clause constraints D
2 Relation r, which may contain null-values

Output: Updated relation r

begin
repeat

foreach di ∈ D do
Apply Database Constraints(di,r)

end
until No more changes to r occurs
return r

end

Algorithm 4: Chase process

6. The dependency in Equation 1 only has two prerequisites, so Step 6 computes
only the useful common attribute set, A1−2 = A(p1) ∩cu A(p2)

7. Step 7, constructs the modified prerequisite [p2]modified by calling Modified
Prerequisite with p1 = R(N = a1, R = b1, S = c1,D = d1), p2 = R(N =
a2, R = b1, S = c2,D = d2), A1−2 = {Rank}, and the PIM - Table, Idx.

8. In Step 9 we store in X the result of the mapping h([p2]modified). If
h([p2]modified) does not successfully map to an entry in r, then the prerequi-
site cannot be satisfied. We would then execute Step 12 to begin processing
the next tuple.

9. Since X is not the empty, in Step 13 we store {< 2, 3, 5 >} in the PIM -
Table.

10. Since we have completed the evaluation of the prerequisite for database
dependency using t = (Time = 1, ID = 1, N = John,R = Clerk, S =
δ1,D = Toy), we go to Step 14.

11. In Step 14, we can linearly traverse the PIM - Table to retrieve the tuples
from r that satisfies the prerequisites of the database dependency. That is, we
have reduced the number of tuples that need to be examined to successfully
evaluate the prerequisite of the database dependency.

12. Step 14, Since all of the prerequisites have been satisfied, the consequence
can be computed (i.e., S = {δ1 = $38, 000}) and applied to r.

13. In Step 15, we go back to Step 2 to process the next tuple.

Suppose in Step 2, that hi(p1) → (Time = 2, ID = 2, N = Mary,R =
Secretary, S = δ2,D = Toy) occurs, then Algorithm 5 will correctly determines
that this mapping will not lead to a successful evaluation of the body of the
dependencies. This will be discovered when the algorithm processes the prereq-
uisite p2. That is, A1−2 = {Secretary} in Step 6. In Step 7, [p2]modified =
R(N = a2, R = Secretary, S = c2,D = d2). Then, in Step 9 the mapping will
fail. This in turn will cause Step 11 the condition will evaluate to false and we
would execute Step 12 which will begin processing the next tuple.

As shown in Figure 1, the DiIE component of the D2Mon architecture com-
putes the inferences. Algorithm 1 shows the D2Mon algorithm. Because of space
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Input:
1 d = p1 ∧ . . . ∧ pl → q, a Horn-clause dependency
2 Relation r, which may contain null-values

Output: Updated r

map to in H
1 Let Q be the set, such that atom mappings h1, . . . , hk maps p1 to t1, . . . , tk in

r
2 foreach mapping hi in h1, . . . , hk do

3 Store an entry in the Prerequisite Index Mapping Table, Idx, consisting of
the prerequisite number 1 (i.e., p1), t[time], t[ID]

4 for j = 2 to l do
Let [pj ]

modified = pj

5 for i = 1 to j do

6 Ai−j = A(pi) ∩cu A(pj)
7 [pj ]

modified = Modified Prerequisite(pi, [pj ]
modified,Ai−j , Idx)

end
8 if [pj ]

modified �= pj then

9 X = ν(hi([pj ]
modified)) {Get the index values from tuples mapped to by

the modified prerequisite, Definition 9 }
else

10 X = ν(hi(pj)) {Get the index values from tuples mapped to by the
unmodified prerequisite pj , Definition 9}

end
11 if X = ∅ then

12 Go to Step 2 {Unable to satisfy dependency using initial tuple, t}
else

13 Add X to Idx using prerequisite number, j

end
end

14 Using Idx, apply the dependency d to r as follows:

1. If d is an equality-generating dependency of the form p1, . . . , pl → a = b
then equate hi(a) and hi(b) as follows: (a) If both hi(a) and hi(b) are
null-values then replace all occurrences of one of them in r with the other,
(b) If one of them say hi(a), is not a null-value, then replace all occurrence
of hi(b) in r with hi(a), (c) If both are not null-values (i.e., constants), do
nothing. If hi(a) �= hi(b), we say that inconsistency occurred.

2. If d is a tuple-generating dependency of the form
p1, . . . , pl → R[A1 = a1, . . . , An = an] and the tuple (hi(a1), . . . , hi(an)) is
not in r, then add it to r.

15 Goto Step 2 {Begin processing next tuple.}
end
return r

Algorithm 5: Apply Database Constraints
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limitations, the DiIE algorithm is not presented. We do, however, use the fact
that the DiIE algorithm uses a variation of the Chase method from Ullman [20] to
compute inferences. Algorithm 4 shows how we propose that our Apply Database
Constraints algorithm should be used in the Chase algorithm.

We now present and prove some theoretical results.

Theorem 1. Let D be a set of Horn-clause dependencies. The Chase algorithm
is sound and complete when used with the Apply Database Constraints algorithm.

We will use the following lemmas to prove Theorem 1.

Lemma 1 (Algorithm 3: Modified Prerequisite). Let r be a relation and
d = p1 ∧ . . . ∧ pk → q a Horn-clause dependency. Let T = h(pi) (i.e., tuples
to which pi maps to in r) and Ai−j = A(pi) ∩cu A(pj), a set of useful com-
mon attributes between pi and pj (1 ≤ i < j ≤ k). Let [pj ]modified be the
modified prerequisite returned from Algorithm 3 using pi, pj , and t ∈ T . Then,
h([pj ]modified) ⊆ h(pj).

Proof Sketch 1. Let d = p1∧. . .∧pk → q be a dependency. If A(pi)∩cuA(pj) =
∅, then h([pj ]modified) = ∅. Therefore, h([pj ]modified) ⊆ h(pj) is trivially true.

Suppose that A(pi) ∩cu A(pj) = {Ai}. Assume by contradiction that
h([pj ]modified) �⊆ h(pj). Then there must exists some tuple t = (. . . , Ai = ai, . . .)
in h([pj ]modified), such that t �∈ h(pj). It follows from Definition 8 that there
exist some tuple t′ = (. . . , Ai = ai, . . .) in h(pi), such that t[Ai] = t′[Ai]. But,
for h(pj) to participate in the evaluation of dependency d, then there must be a
tuple t′′ = (. . . , Aj = aj , . . .) in h(pj), such that Aj ∈ A(pi) ∩cu A(pj). This as-
serts that, Aj = Ai and t′′[Aj ] = t′[Ai]. Hence, t and t′′ must be the same tuple.
Therefore, h([pj ]modified) ⊆ h(pj) and we have a contradiction to our original
assumption. �
Lemma 2 (Algorithm 5: Apply Database Constraints). Given a relation
r over schema R, a set of Horn-clause database dependencies D = {d1, . . . , dm}
on r. Let A = {A1, . . . ,Am} be a set of useful common attributes computed with
Algorithm 2. Then, the inferences computed by Algorithm 5 are valid.

Proof Sketch 2. Assume by contradiction that q is an invalid consequence that
was computed from a dependency di ∈ D. But, for this to happen, a pj ∈ di had
to be incorrectly mapped to a tuple in r. Algorithm 5 has two steps in which
prerequisite mapping occurs to tuples in r. We know by Definition 5 that if a
mapping occurs in Step 10, it is performed correctly. In Step 9, we map to a
tuple in relation r by using a modified prerequisite. By Definition 5, h(pj) are
valid mappings. Then by Lemma 1, we know that h([pj ]modified) ⊆ h(pj) and
therefore h([pj ]modified) is a valid mapping in Step 9 of the Algorithm 5. Since
all of the tuples that are mapped to by the prerequisites of di are valid, then
the consequence q must be a valid inference and we have a contradiction to our
original assumption. �

We now use Lemma 1 and Lemma 2 to prove Theorem 1.
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Proof Sketch 3. We know that D2Mon is sound and complete without the use
of Algorithm 5 [6]. To prove Theorem 1, we need to show that (1) All tuples
disclosed by D2Mon using Algorithm 5 are valid (i.e. soundness) and (2) D2Mon
discloses all valid inferences when used with Algorithm 5 (i.e., completeness).

The proof of soundness follows directly from Lemma 2. To prove complete-
ness, assume that a tuple t is disclosed by D2Mon using Algorithm 5, but is not
disclosed by D2Mon that does not use Algorithm 5. Recall, that Algorithm 5
only reorders the tuples in r to reduce the dependency processing time. For tu-
ple t not to be disclosed by D2Mon that uses Algorithm 5, then a dependency
must have failed to be evaluated. We know that D2Mon is sound when executed
with Algorithm 5. So, if a tuple is not disclosed, then the PID-Table must be
missing some tuple t′, which causes the prerequisite of some dependency d to fail.
But, for this to occur the mapping in either Step 9 or Step 10 must have failed,
which would in turn execute Steps 11 and 12, respectively. We know that Step 9
and Step 10 could not fail since D2Mon using Algorithm 5 is sound. Therefore,
Step 13 will execute, which loads the PIM-Table with the index entries to eval-
uate the prerequisite of d. Since the prerequisites of d can be evaluate, we can
generate t. Hence, we have a contradiction to our original assumption. �

5 Complexity Analysis

The complexity analysis depends on the schema. We shall assume that there exist
a schema R = {A1, . . . , Ak}. The complexity of Algorithm 2 depends on Step 2.
The algorithm must check each of the k attribute values in the prerequisite.
Therefore, this algorithm runs in O(k), where k is the number of prerequisites
in the body of the dependency. Algorithm 3 is bounded by Step 1. This step
executes k times. So, the complexity of Algorithm 3 is also O(k), where k is the
number of prerequisites in the body of the dependency.

In computing the complexity of Algorithm 5, we need to compute the running
time for Steps 2, 4, and 5, respectively. We shall assume that Steps 9 and 10
execute in one operation by a database management system. Steps 6 and 7
both execute in O(k), where k is the number of prerequisites in the body of the
dependency. Step 5 can execute l, where l is the number of prerequisites in a
dependency. So, Step 5 can execute in O(l · k) time, where l is the number of
prerequisites and k is the number of attribute values in the prerequisite. Step 4
also executes in O(l). Step 2 can execute in O(n), where n is the number of
elements in the relation r. Therefore, the complexity of Algorithm 5 is O(n · l ·
l · k) = O(n · k · l2), where n is the number of tuples in r, k is the number of
attributes, and l is the number of prerequisites.

6 Related Work

For an overview of the inference problem, the reader is referred to Farkas et
al. [5] and Jajodia et al. [9]. There are several query processing solutions to the
inference problem.
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The solution to the inference problem proposed by Marks [11] forms equiva-
lence classes from the query results returned from the database. The equivalence
classes are then used to construct a graph, which can be used to reveal infer-
ences. The query results are referred to as views. The two types of views that
are discussed are referred to as total disclosed and cover by, respectively. A to-
tal disclosed view is one in which “tuples in one view can actually be created
from those in another” [11]. A cover by view is one in which the “release of even
one tuple will disclose a tuple in . . .” another view [11]. The inference process
is to convert a query to a view and insert it into the graph. Then, inspect the
graph to see if it will introduce any inference channels that will lead to some
sensitive data. If it does, then reject the query; otherwise, release the current
query results. Because the approach presented by Marks examines inferences at
the attribute level, preprocessing can be done by examining the query before
execution to see if it contains attributes that will produce an inference channel
that will reveal sensitive data. Obviously, in this approach, if the query pro-
duces an inference channel before execution, then the results from the queries
will as well.

The inference engine presented by Thuraisingham [19] is used to augment the
relational database by acting as an intermediary between the queries and the
database. The inference engine uses first order logic to represent queries, security
constraints, environment information, and real world information. That is, the
inference engine converts the current query to first order logic. The first order
logic query is then compared against the database constraints to determine if
a security constraint will be violated. If a security violation exists, the query is
rejected; otherwise, the query is converted into relational algebra and forwarded
to the database for execution. The results that are returned from the database
are assigned classification labels that ensure that no security violation exists.

Stachour and Thuraisingham propose a system called Lock Data Views
(LDV) [16]. This approach to the inference problem is similar to Thuraising-
ham [19]. That is, the solution proposed by Stachour and Thuraisingham per-
forms query processing that involves converting a query to an internal format,
determining if a violation exists by submitting the query to the DBMS and
classifying the query results accordingly. Unlike the approach presented by Thu-
raisingham [19], the approach presented in Stachour and Thuraisingham [16]
runs on top of a trusted computing base called LOgical Coprocessing Kernel
(LOCK) and is dependent on LOCK functioning correctly (i.e., securely).

Yip and Levitt [21] discuss an inference detection system that utilizes five
inference rules to uncover any possible inference channels that may be present.
These rules are applied to the initial query and the query results to determine if
an inference channel exists. These rules are sound, but not necessarily complete.

A major disadvantage of [11,16,19,21] is that the additional processing time
that is introduced during query processing time may have a significant adverse
effect on the overall query response time. Our solution does address this disad-
vantage. In particular, the additional processing time that is introduced by our
solution is polynomial in terms of the prerequisites.
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7 Conclusion and Future Work

In this paper, we have presented an approach that can be used to increase the
performance of a query processing solution to the inference problem. We have
presented a solution that forms an index on the history database that contains
only hose tuples that can be used in satisfy the database dependencies. We have
shown how our approach can be used in a query processing security mechanism
called D2Mon to produce inferences that are sound and complete.

In this paper we have proposed that an index table entry be constructed
for each database dependency prerequisite. Then each of these indices would be
stored in the prerequisite index table to assist in the inference processing. It may
be possible to combine these separate indices into one index structure. We have
discussed the construction of one-dimensional indices. Although it is beyond the
scope of this paper, we acknowledge that it may be possible to apply multi-
dimensional indices to reduce the complexity of our solution even further. Also,
we do not consider how our approach can be used in applying tuple generating
dependencies. These research questions can be investigated in future work.
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