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Preface

One of the superb characteristics of Intelligent Data Analysis (IDA) is that it is
an interdisciplinary field in which researchers and practitioners from a number
of areas are involved in a typical project. This also creates a challenge in which
the success of a team depends on the participation of users and domain experts
who need to interact with researchers and developers of any IDA system. All
this is usually reflected in successful projects and of course on the papers that
were evaluated by this year’s program committee from which the final program
has been developed.

In our call for papers, we solicited papers on (i) applications and tools, (ii)
theory and general principles, and (iii) algorithms and techniques. We received
a total of 184 papers, reviewing these was a major challenge. Each paper was
assigned to three reviewers. In the end 46 papers were accepted, which are all
included in the proceedings and presented at the conference.

This year’s papers reflect the results of applied and theoretical research from
a number of disciplines all of which are related to the field of Intelligent Data
Analysis. To have the best combination of theoretical and applied research and
also provide the best focus, we have divided this year’s IDA program into tuto-
rials, invited talks, panel discussions and technical sessions.

We have managed to organize two excellent tutorials on the first day by
Luc De Raedt and Kristian Kersting, entitled Probabilistic Inductive Logic Pro-
gramming, and by Bruno Apolloni, Dario Malchiodi and Sabrina Gaito, entitled
Statistical Bases of Machine Learning. Our invited speakers are Prof Ivan Bratko
from the Jozef Stefan Institute in Slovenia, and Prof Alex Freitas from the Uni-
versity of Kent.

We wish to express our sincere thanks to many people who have worked
hard for the IDA conference to happen in Madrid. Special thanks to tutorial,
publicity, local organization, and panels chairs who have been in charge of a
large portion of our responsibilities. We would also like to thank Xiaohui Liu
and Michael Berthold who worked as advisors to this conference and members
of the local organizing committee for their hard work. Finally, we are grateful to
the members of our program committee; without their help it would have been
impossible to put together such a valuable program.

September 2005 With our best wishes,

A. Fazel Famili,
José Maria S. Peña,

Joost Kok,
Arno Siebes,
Ad Feelders
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Universidad Rey Juan Carlos
Madrid, Spain

Julián Sánchez
Quinao S.L.
Madrid, Spain

Local Organization Chair Vı́ctor Robles
Universidad Politécnica de Madrid
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Hans-Joachim Lenz, Freie Universität Berlin, Germany
Xiaohui Liu, Brunel University, UK
Sofian Maabout, LaBRI-Université Bordeaux, France
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Frank Rügheimer
Lucia Sacchi
Alberto Sánchez
Karlton Sequeira
Zujun Shentu
David James Sherman
Hendrik Stange
Micheal Syrjakow
Xiaomeng Wang
Bernd Wiswedel
Marta Elena Zorrilla



Table of Contents

Probabilistic Latent Clustering of Device Usage
Jean-Marc Andreoli, Guillaume Bouchard . . . . . . . . . . . . . . . . . . . . . . . . 1

Condensed Nearest Neighbor Data Domain Description
Fabrizio Angiulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Balancing Strategies and Class Overlapping
Gustavo E.A.P.A. Batista, Ronaldo C. Prati,
Maria C. Monard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Modeling Conditional Distributions of Continuous Variables in
Bayesian Networks

Barry R. Cobb, Rafael Rumı́, Antonio Salmerón . . . . . . . . . . . . . . . . . . 36

Kernel K-Means for Categorical Data
Julia Couto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Using Genetic Algorithms to Improve Accuracy of Economical Indexes
Prediction
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Pasi Lehtimäki, Kimmo Raivio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Sentiment Classification Using Information Extraction Technique
Jian Liu, Jianxin Yao, Gengfeng Wu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Extending the SOM Algorithm to Visualize Word Relationships
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Ricardo Ñanculef, Carlos Valle, Héctor Allende,
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Probabilistic Latent Clustering of Device Usage

Jean-Marc Andreoli and Guillaume Bouchard

Xerox Research Centre Europe, Grenoble, France
FirstName.LastName@xrce.xerox.com

Abstract. We investigate an application of Probabilistic Latent Seman-
tics to the problem of device usage analysis in an infrastructure in which
multiple users have access to a shared pool of devices delivering different
kinds of service and service levels. Each invocation of a service by a user,
called a job, is assumed to be logged simply as a co-occurrence of the
identifier of the user and that of the device used. The data is best mod-
elled by assuming that multiple latent variables (instead of a single one
as in traditional PLSA) satisfying different types of constraints explain
the observed variables of a job. We discuss the application of our model
to the printing infrastructure in an office environment.

1 Introduction

It is nowadays common that printing devices in an office or a workplace be ac-
cessed through the local network instead of being assigned and directly connected
to individual desktops. As a result, a large amount of information can easily be
collected about the actual use of the whole printing infrastructure, rather than
individual devices. To be useful, this data needs to be analysed and presented
in a synthetic way to the administrators of the infrastructure. We are interested
here in analysing the correlation between users and devices in the data, ie. how
the printing potential of users translates into actual use of the devices. We as-
sume here that users are not strongly constrained in their use, the extreme case
being when any user is allowed to print anything on any device in the infrastruc-
ture. The expected outcome of such an analysis may be diverse. For example,
the administrator could discover communities of device usage, corresponding to
different physical or virtual locations of the users at the time of the jobs, and,
from these, form hypotheses on the actual behaviour of the users, both in the
case of normal functioning of the infrastructure and in case of exceptions (device
down or not working properly). This in turn could lead to more refined decisions
as to the organisation of the infrastructure and to the instructions given to its
users. It could also help work around failures of devices inside the infrastruc-
ture, by redirecting a job sent to a failing device toward a working one chosen
in accordance with the community to which the job belongs.

A study on inhabitant-device interactions [6] shows that the recorded device
usage can be mined to discover significant patterns, which in turn could be
used to automate device interactions. To the authors knowledge, generic user-
device interaction analysis in the presence of devices delivering possibly multiple
services or levels of service has not been studied extensively.

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 1–11, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 J.-M. Andreoli and G. Bouchard

Problem statement. Our overall goal is to analyse usage data in an infrastructure
consisting of a set of independent devices offering services of different or identical
classes, and operated by a set of independent users. An interaction between a
user and a device is called a job. The usage data consists of a log of these jobs
over a given period of time. More precisely, we make the following assumptions.

– Let NU , ND, NK denote the number of, respectively, users, devices and ser-
vice classes, assumed invariable over the analysed period. Each user, resp.
device, resp. service class, can therefore be identified by a number u ∈
{1, . . . , NU}, resp. d ∈ {1, . . . , ND}, resp. k ∈ {1, . . . , NK}. Each user, de-
vice, service class also has a print name, for display and reference purpose.

– Each device offers services of one or more classes. This is captured in a
boolean matrix f of dimension NK × ND where fkd is 1 if device d offers
the service class k and 0 otherwise. This matrix is assumed static over the
analysed period.

– All the jobs are recorded over the analysed period. Let N be the num-
ber of recorded jobs. Each job can therefore be identified by an index i ∈
{1, . . . , N}. Each job i contributes exactly one entry in the log, consisting of
the pair (ui, di) identifying the user and device involved in that job. Thus
the data is entirely defined by the matrix n of dimension NU × ND where
nud is the number of jobs by user u on device d.

A printing infrastructure in an office is a typical example where our method
applies. In that case, a service class could be a particular type of printing. For
simplification purpose, in the examples, we consider only two service classes:
black&white (k = 1) and colour (k = 2). Note that a colour printer can always
also perform black&white jobs, meaning that if f2d = 1, then f1d = 1.

Outline of the method. The purpose of our analysis is essentially to discover
clusters in the usage data. Since the observed data correspond to co-occurrences
of discrete variables, we have chosen an aspect model, which is an instance
of latent class models [1], nowadays often referred to as Probabilistic Latent
Semantics Analysis (PLSA) [5]. This model is particularly relevant here as its
basic assumption has a straightforward interpretation in our context. Indeed,
the PLSA assumption is that the data can be generated according to a process
that first selects a (latent) cluster, then a user and a device, in such a way that,
conditionally to the cluster, the choices of user and device are independent. There
is a natural interpretation of such clusters as communities of usage which are
associated to physical or virtual locations within the infrastructure. The PLSA
assumption means that at a given location, users tend to choose devices in the
same way, which is quite reasonable. For example, in an office infrastructure
comprising multiple floors, each floor can correspond to a community, whose
users share the same perception of the infrastructure and tend to choose printers
in a similar fashion. PLSA clustering therefore offers a powerful tool to discover
such communities of usage.

However, another important determining factor for the choice of device is the
nature of the job to be performed. This information may not be directly available
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C K

U D

index i

Fig. 1. Graphical representation of the variables dependencies. Observed variables are
shaded.

from the logs, still it can be partially inferred from the knowledge of the service
class supported by the chosen device. For example, a job sent to a non-colour
printer is certainly a black&white job (assuming that users normally do not
make mistakes by launching a job on a device not supporting the service class
of that job). As a consequence, the basic PLSA model in which a single latent
variable (the cluster) explains the observed ones must be extended to account for
the presence of additional latent variables with specific constraints attached to
them. Some hierarchical extensions to PLSA have already been proposed [4] but
where the two factors are assumed to be independent. Here, the service class of
the job is an additional latent variable, and, unlike the cluster, its range is known
in advance (it is the set of possible service classes supported by the devices of
the infrastructure) and its dependency to the chosen device is constrained by
the knowledge of the service classes supported by each device. Studying this
multi-factor constrained latent structure motivates our investigation.

2 Definition of the Model and Parameter Estimation

The random variables of the model. The recorded jobs are assumed to be in-
dependent and identically distributed. We consider 4 random variables that are
instantiated for each job: two observed variables U and D defining the user id
and the device id, and two latent (or unobserved) discrete variables C and K
corresponding to the index of a job cluster and the job service class. We consider
that the instantiation of these variables comes from the following generative pro-
cess: 1. Generate the cluster index C, 2. Generate the user id U , 3. Generate the
job service class K depending only on the user, 4. Generate the device choice D
depending only on the cluster and the job service class. This process is equivalent
to assuming that C is independent to K conditionally to U . A possible factorisa-
tion1 of the joint distribution is p(U, D, C, K) = p(C)p(U |C)p(K|U)p(D|C, K)
which is illustrated in the graphical model of Figure 1. Let π(C) be the parameters
of the multinomial distributions p(C), ie. a vector of proportions of dimension
NC that sums to 1. The other parameters are conditional discrete distributions:
p(U |C), p(K|U) and p(D|C, K) are parameterised by the conditional probabil-
ity tables π(U), π(K) and π(D), respectively. The distribution of the devices is
1 Another equivalent factorisation is p(U, D, C, K) = p(U)p(C|U)p(K|U)p(D|C, K),

where the generative process starts with the choice of a user and then a cluster.
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constrained by the knowledge of the service classes they support: fkd = 0 implies
π

(D)
dck = 0 for all c ∈ {1, · · · , NC}. Writing θ = (π(C), π(U), π(K), π(D)) the set

of parameters involved in the model, the joint distribution is p(u, d, c, k|θ) =
π

(C)
c π

(U)
uc π

(K)
ku π

(D)
dck . The maximum likelihood estimator is not always satisfactory

when the number of jobs is small. We use instead a bayesian framework by defin-
ing a prior distribution on the parameters. Since they corresponds to conditional
probability tables, we assume Dirichlet priors: π

(X)
.pa(X) ∼ D(m(X)

j , j = 1, . . . , Nj)
where X denotes one of the variables U , K, D and C and pa(X) denotes the
parents of variable X . In the application below, the hyper-parameter m(K) is set
according to the expected device usage and the others are set to 0.5 (Jeffrey’s
uninformative prior). In particular, it may happen that during the analysed pe-
riod, a given user u never performs jobs of a given service class k (eg. never prints
in colour), in which case the maximum likelihood estimator will yield π

(K)
ku = 0,

meaning that user u never uses service class k. The prior knowledge on the users’
needs in terms of service classes can be used to compensate for insufficient data.
In the printer example below, the expected B&W/colour job ratio will be used
to define m(K). These can be seen as pseudo-counts of usage of each service class
given a priori for a “prototypical” user.

Parameter estimation. The MAP estimator θ̂ = argmaxθ p(θ|x), where x de-
notes the observed data ie., here, the raw data matrix n.., is obtained using the
EM algorithm [3]. For space reasons, the EM update equations are omitted here.
As usual with that algorithm, some care has to be taken in the initialisation.
If the number of clusters NC is known, the MAP estimator can be computed
directly. If it is unknown, the MAP estimator must be computed for each pos-
sible value of NC , and the model maximising the BIC score [8] is chosen. This
criterion is given by:

BIC(NC) = log p(x|θ̂; NC) + log p(θ̂; NC)− ν(NC)
2

log N

Here, log p(x|θ̂; NC) is the likelihood of the estimated parameter, p(θ̂; NC) is the
probability a priori of the estimated parameters and ν(NC) is the number of free
parameters of the model. The selected number of clusters N̂C is the one that
maximises BIC(NC). To compute a set of models with different complexities NC ,
we first initialise a model with a relatively large complexity, and then decrease
it step-by-step until having only one cluster. For each intermediate step, the
BIC criterion is computed at the MAP solution obtained by the EM algorithm.
Instead of re-initialising the model at each step, we use for level c the c + 1
different initialisations that are obtained by removing one cluster from the model
learnt at level c + 1.

3 Exploitation of the Model

There are various ways in which the probabilistic model, once estimated, can be
used. We consider two in particular: outlier detection and smoothing.
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Outlier detection. An outlier2 is a user whose usage profile observed in the log
does not match its expected value by the model. Identifying outliers can help
an administrator to understand individual needs that are not provided for by
the current configuration of the infrastructure. Recall that the raw usage data is
given by matrix nud which gives the number of jobs involving user u and device
d. It is the realisation of the random variable Xud =

∑N
i=1 I{Ui = u, Di = d}.

Let n∗
ud be its expectation according to the model. We have n∗

ud = E [Xud] =
N p(u, d|θ̂). The matrix n∗

.. is the smoothed version of n.. in which information
orthogonal to the model space is considered as noise and eliminated. One possible
way to compute outliers is to define a quality-of-fit measure of each user and
then find the user above a given threshold. The standard chi-squared statistic
is used to test if the actual usage of the devices fits that estimated by the
model: χ2

u =
∑ND

d=1 (n∗
ud − nud)2/n∗

ud. A user is considered an outlier whenever
χ2

u is superior to the inverse cumulative distribution of the chi-squared law with
ND − 1 degrees of freedom.

Smoothing. Any statistic computed from the raw data matrix n.. can now be
applied to the smoothed data matrix n∗

.., yielding more precise information:

– Correction of the primary devices A good way to check the benefit of smooth-
ing is to look at the primary device of a user u for a service class k, which
is defined by rku = argmaxd nudfkd. Its smoothed version is given by r∗ku =
argmaxd n∗

udfkd. The users for which rku �= r∗ku have a non-standard be-
haviour which may be of interest to the administrator.

– Visualisation of the infrastructure A useful tool for an administrator is a
2D map of the infrastructure s/he administrates. Even if it does not corre-
sponds exactly to the map of the physical setting, such a low dimensional
representation provides the administrator with a synthetic view of the over-
all infrastructure usage. A map of users and devices based on matrix n∗

..

instead of n.. is particularly interesting as n.. contains outliers which usually
have a strong impact on the dimension reduction algorithms. The use of a
smoothed version of the data increases the precision and clarity of the map.

– Estimating redirections in the infrastructure Another important tool for ad-
ministrators is the redirection matrix of the infrastructure for each of the
NK service classes. This matrix gives for each device d and service class k
the device choice distribution conditionally to the fact that d is out of order.
There are various ways of computing this matrix, taking as input a variant
of the data matrix which gives, for a user u, a device d and a service class k,
an a priori estimate of the number of jobs of service class k involving user
u and device d, computed by nudk = nudm

K
k fkd/

∑NK

k′=1 mK
k′fk′d. Whatever

the algorithm to compute the redirection matrix, more precise results are to
be expected if the smoothed version of matrix n... is used instead of its raw
version.

2 We consider here only user outliers. Other types of outliers, eg. devices, can also be
treated in the same way.
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4 Experiment on a Print Infrastructure Usage Log

Printing logs from an office infrastructure were used to test our model. About
30 000 jobs were logged over a 5 month period, involving 124 users and 22 printers
(5 of them colour). The initial number of clusters was the number of observed
primary device configurations and was equal to No

C = 21. From an initial solution
including all the previous configurations, the step-by-step procedure described
above learnt 21 models with decreasing complexity. Figure 2(a) shows that there
is clearly a minimum of the BIC score within the range of estimated models. The
optimal value is N̂C = 13 clusters. This number of clusters is relatively stable
when considering only subsets of the data: from 5 000 to 30 000 jobs, the same
number of clusters was selected.
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Fig. 2. (a)BIC score of the model for various numbers of clusters. (b) Effect of the
prior on the estimations.

For most of the parameters, we used uninformative priors, since the amount
of data was sufficient. The only parameter with informative prior was π(K).
To check the effect of the priors on the estimation, we tried three different
values of the hyper-parameter mK . We compared mK = (1, 1), ie. no prior,
equivalent to maximum likelihood estimation, mK = (8, 2), ie. small prior, and
mK = (80, 20), ie. strong prior. The ratio 80/20 means that B&W jobs are
a priori considered 4 times more frequent than colour jobs for any user. The
histogram of the values π

(K)
u1 is represented on Figure 2(b) and shows that the

priors prevent the parameters from being 0 (only colour jobs) or 1 (no colour
job). With the small prior, a user having 25% only of B&W jobs still appears.
This corresponds to a user who generally prints B&W jobs to a colour printer.
In the sequel, we use the results obtained with the “strong” prior.

Discussion of the results. Most of the cluster parameters are summarised in
Table 1. Among the 13 clusters, we can see that the first 4 B&W/Colour pairs
represent nearly 50% of the jobs. Some remarks:
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Table 1. Summary of the estimated parameters for each job cluster c. The “B&W
printer” (k = 1) and “colour printer” (k = 2) are the printers that are most used,
as given by argmaxd π

(D)
dck , where the percentage indicates how often this “preferred”

printer is chosen. The % column gives the probability of each cluster, as given by π
(C)
c ,

and the “main users” are the users u corresponding to the 5 biggest values of π
(U)
cu .

cluster B&W printer colour printer % user IDs (% of usage)
C1 Pre(99%) Lib(98%) 12.7 ej(13%) cu(9%) bw(8%) cm(8%) el(8%)
C2 Stu(100%) Lib(100%) 10 be(16%) ds(9%) cp(7%) au(7%) dc(6%)
C3 Tim(85%) Ver(99%) 15.6 db(9%) ar(9%) bm(8%) az(8%) er(7%)
C4 Vog(99%) Rep(52%) 13.8 cg(25%) aw(20%) ei(18%) dy(15%) ep(4%)
C5 Hol(100%) Lib(100%) 7.7 ch(51%) ay(31%) bs(13%) ec(2%) bw(0%)
C6 Her(98%) Tel(98%) 7 ef(26%) dq(18%) ce(11%) dt(10%) dm(8%)
C7 Geo(97%) Ver(96%) 5.6 ac(65%) bv(31%) dx(2%) eq(0%) ec(0%)
C8 Bib(99%) Rep(100%) 6.8 ag(42%) bu(38%) dh(10%) ec(9%) et(0%)
C9 Mes(73%) Ver(84%) 4.5 dx(72%) em(26%) ba(0%) do(0%) bt(0%)
C10 Lem(97%) Rep(100%) 3.5 an(92%) ei(5%) et(1%) ch(0%) bt(0%)
C11 Hod(89%) Ver(69%) 5.5 eq(20%) et(14%) cy(13%) cc(12%) ek(9%)
C12 Mid(76%) Fig(91%) 1.7 da(99%) ba(0%) do(0%) dx(0%) em(0%)
C13 Sta(99%) Tel(95%) 5.6 av(12%) de(10%) ea(10%) bh(8%) cz(8%)

– Each cluster is dominated by the use of a “preferred” printer. One example is
cluster C2, where 100% of the jobs are sent to printer Stu for B&W printing
and Lib for colour printing.

– As an exception, cluster C4 associated to the B&W printer Vog has two
main colour printer (Lib and Rep) with equal importance. The reason of this
behaviour cannot be found in the model, but indicates to the administrator
that there is a non-standard use of colour printers among the users of Vog.

– Clusters C3 and C12 contain colour printers (Lib at 4.7% and Ver at 2%)
among the B&W printers. This may indicate the use of colour printer when
the nearest B&W device is unavailable.

– There are two clusters composed of only one user: “an” in C10 and “da”
in C12. In fact, these users have a specific position in the company, and
each of them has her own printer, resp. Lem and Mid. These users are not
considered outliers since they print a sufficient number of jobs to create
individual clusters.

Many other informations about the print usage can be extracted from a deeper
analysis of the parameters, depending on the infrastructure administrator’s goal.

Outlier identification. We applied the method described in Section 3. Only 3
users were rejected from the 80% confidence test: “bx”, “aw” and “bd”. User
“bx” is in fact a generic login for a group of people. Users “aw” and “bd” are
using specific printers Pho and Leq that are rarely used by other users. They
were not put into a specific cluster and are therefore considered as outliers from
a usage point of view.
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Table 2. Users for which the estimated primary printer is different from the observed
one

B&W jobs
az Ver →Tim
ba Lib →Pre
bd Pho→Hod
ci Ver →Tim
dr Tel →Sta
eh Hod→Stu
es Lib →Pre

colour jobs
al Lib→Tel co Lib→Ver
aw Lib→Rep cv Lib→Ver
ba Lib→Ver cw Lib→Ver
bd Lib→Ver db Lib→Ver
bu Lib→Rep dj Lib→Tel
by Lib→Rep dk Lib→Ver
cc Lib→Ver ek Lib→Ver
cf Lib→Tel eo Tel→Ver

Correction of the primary devices. Following the method of Section 3, Table 2
lists, for each of the two service classes k (B&W and colour), the users whose esti-
mated primary printer differs from their observed one (ie. r∗ku �= rku). The “raw”
primary device rku is on the left-hand side of the arrow while the “smoothed”
one r∗ku is on the right-hand side. In the B&W case, some colour printers3 such
as Lib or Ver are replaced by a more suitable B&W printer. In the colour case,
printer Lib is often replaced by another colour printer which is generally closer
to the users. The specific role of printer Lib may be due to the fact that it has a
high-quality output, contrary to other colour printers. Our model is in fact bi-
ased in that case, as it does not distinguish within the service classes the speed
or quality of individual printers. This could be improved by introducing more
service classes.

Visualisation of the infrastructure. We tried several dimension reduction tech-
niques. PLSA is sometime referred to as a multinomial PCA (mPCA). With our
model, the user repartition π(U) can also be interpreted as latent coefficients
and plotted if we set NC = 2. However, this technique (as well as standard
PCA) gave unsatisfactory results, due to the fact that the first two eigenvalues
of the covariance matrix contain less that 50% of the data variance. We also tried
Kernel PCA with a Gaussian Kernel, but the amount of explained information
remained below 60%, which cannot yield a reliable map. Instead, we used a sim-
ple non-linear dimensionality reduction technique called Sammon’s mapping [7]
applied to the raw data matrix n.. (Figure 3, upper map) and to its smoothed
version n∗

.. (Figure 3, lower map), and compared the results. In both maps, ser-
vice classes (B&W and colour) are represented with different colours. Each user
has two links: one to its primary B&W printer and one to its primary colour
printer. The colour of the users is given by the primary B&W printer. The global
distortion value of the dimension reduction equals 9.9% with the raw data ma-
trix and 4.0% with the smoothed matrix. The printer positions were computed
on the reduced space by a weighted means of the community positions. The map
based on smoothed data is much more readable than the original one using the
3 Recall that colour printers also support the B&W service class and hence can appear

as primary printers for that class
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Table 3. The redirection matrices for colour service class based on, respectively, raw
and smoothed data

Raw data Smoothed data
Lib Ver RepTel Fig

Lib 0 42 55 2 1
Ver 74 0 21 0 4
Rep 82 18 0 0 0
Tel 88 12 0 0 0
Fig 25 72 3 0 0

Lib Ver RepTel Fig
Lib 0 23 75 1 0
Ver 69 0 26 1 5
Rep 90 10 0 0 0
Tel 71 29 0 0 0
Fig 19 76 5 0 0

raw data. In the latter, users are spread out around their “preferred” printer, but
the relation between clusters in confused and hidden by undesired links between
users and wrongly estimated “preferred” color printer (e.g. the links to printer
Lib). Because of this noise effect, the map does not concentrate the information
into clearly distinct clusters. In the smoothed data map, on the other hand,
clusters of usages are more visible. Moreover, the different builings and floors of
the actual office environment are more separated, mainly due to the corrective
effect of the “preferred” user printers.

Estimating printer redirections. The expression Rdd′k ∝
∑

u nudknud′kI{d �= d′}
is one way to compute the redirection matrix for the service class k. This for-
mula can be justified by assuming that the choice of the redirection printer d′

conditionally to the initial printer d follows a multinomial distribution with pa-
rameters proportional to nudI{d �= d′}. Looking at the raw redirection matrix
in the colour case on Table 3, printer Lib is redirected at 42% onto printer
Ver which is in another building. This quantity is decreased to 23% using the
smoothed matrix, while Rep is increased from 55% to 75%, which is more sen-
sible since Rep is much closer to Lib (in the same building). We see that the
model uses information about the B&W printers proximity to guess proximity
of colour printers. This is of great interest because B&W data is more abun-
dant, leading to an increased precision of the knowledge of the B&W behaviour,
which indirectly increases the precision of the estimation of the redirection in
the colour case.

5 Conclusion

In this paper, we proposed to analyse usage data in an infrastructure consisting of
users operating devices offering services of different classes. We defined precisely
the assumptions on the available data, then built a probabilistic latent class
model to cluster the jobs (a job is an interaction user-device). From this model,
multiple analysis tools were derived that can help administrators monitor the
usage. Instead of studying each user profile individually, the model gives a small
number of relevant usage patterns which “compress” the probability distribution
into a small number of parameters. One important feature of the proposed model
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is that it takes into account the device functionalities, without assuming that
the specific functionality required by each job is observed.

The case study on an office printing infrastructure showed relevant informa-
tions about the actual usage of the printers. The model efficiently summarised
the whole printing behaviour of the employees, identified non-standard printer
usage and proposed changes to the “preferred” user printers that are coherent
with the other profiles. The model was used as input to build a map of the printer
and user positions, much more readable than those obtained by model-free di-
mensionality reduction techniques. Finally, the data smoothed by the model gave
more sensible results in the estimation of the redirection matrix.

This approach can be generalised to other applications areas. The ability to
isolate independent factors can be useful if the observed data is generated by
several sources, as with ICA extensions to PLSA [2].
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Abstract. A popular method to discriminate between normal and ab-
normal data is based on accepting test objects whose nearest neighbors
distances in a reference data set lie within a certain threshold. In this
work we investigate the possibility of using as reference set a subset of
the original data set. We discuss relationship between reference set size
and generalization, and show that finding the minimum cardinality ref-
erence consistent subset is intractable. Then, we describe an algorithm
that computes a reference consistent subset with only two reference set
passes. Experimental results confirm the effectiveness of the approach.

1 Introduction

Data domain description, also called one-class classification, is a classification
technique whose goal is to distinguish between objects belonging to a certain
class and all the other objects of the space. The task that it is needed to solve in
one-class classification is the following: given a data set of objects, called training
or reference set, belonging to a certain object space, find a description of the
data, i.e. a rule partitioning the object space in an accepting region, containing
the objects belonging to the class represented by the training set, and a rejecting
region, containing all the other objects. Data domain description is related to
outlier or novelty detection, as the description of the data is then used to detect
the objects deviating significantly from the training data.

Given a data set, also called reference set, of objects from an object space,
and two parameters k and θ, we call Nearest Neighbor Domain Description rule
(NNDD) the classifier that associates to each object p a feature vector δ(p) ∈ Rk,
whose elements are the distances of p to its first k nearest neighbors in the ref-
erence set, and accepts p iff δ(p) belongs to the hyper-sphere (according to one
of the Lr Minkowski’s metrics, r ∈ {1, 2, . . . ,∞}) centered in the origin of Rk

and having radius θ, i.e. iff ‖δ(p)‖r ≤ θ. The contribution of this work can be
summarized as follows. We define the concept of reference consistent subset for
the NNDD rule, that is a subset of the reference set that correctly classifies all
the objects in the reference set, and we discuss relationship between the VC
dimension of the NNDD classifier and size of the reference set, concluding that
replacing the original reference set with a reference consistent subset improves

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 12–23, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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both space requirements, response time, and generalization. We show that find-
ing the minimum cardinality reference consistent subset is a computationally
demanding task, and we provide the algorithm CNNDD that computes a refer-
ence consistent subset with only two data set passes. Experimental results show
that the CNNDD algorithm achieves notable training set reduction and sensibly
improves accuracy over the the NNDD rule. Finally, we compare the CNNDD
algorithm with a related nearest neighbor based approach.

Literature related to this work can be grouped into three main categories:
nonparametric binary classification using the nearest neighbor rule, one-class
classification, and outlier detection. Next, we briefly describe these approaches.

In the nonparametric binary classification problem we have available a train-
ing set {(x1, y1), . . . , (xn, yn)} of n pairs (xi, yi), 1 ≤ i ≤ n, where xi is an object
from an object space and yi ∈ {−1, 1} is the corresponding class label. The near-
est neighbor rule (1-NN-rule) [7] assigns to a new object q the label yj , where xj

is the nearest neighbor of q in {x1, . . . , xn} according to a certain metric. This
rule is based on the property that the nearest neighbor xj of q contains at least
half of the total discrimination information contained in an infinite-size training
set [3, 14, 4]. The generalization of the 1-NN-rule, the k-NN-rule, in which a new
pattern q is classified into the class with the most members present among its k
nearest neighbors in {x1, . . . , xn}, has the property that its probability of error
asymptotically approaches the Bayes error [5].

There exists several approaches to one-class classification. In the nearest
neighbor one-class classification method NN-d [16], a test object p is accepted
if the distance to its nearest neighbor q in the training set is less or equal than
the distance from q to its nearest neighbor in the training set. This measure
is comparable with the Local Outlier Factor [2] used to detect outliers. The k-
center method covers the data set with k balls with equal radii [20]. Ball centers
are placed on training objects such that the maximum distance of all minimum
distances between training objects and the centers is minimized. One-class clas-
sification techniques based on Support Vector (SV) Machines extend the SV
algorithm to the case of unlabelled data [13, 15].

Research on outlier detection in data mining focuses in providing techniques
for identifying the most deviating objects in an input data set. Distance-based
outlier detection has been introduced in [11]: a point in a data set is a DB(c, d)-
outlier with respect to parameters c and d, if at least fraction c of the points in the
data set lies greater than distance d from it. This definition generalizes several
discordancy tests to detect outlier given in statistics and it is suitable when the
data set does not fit any standard distribution. The definition of [12] is closely
related to the previous one: given a k and n, a point p is an outlier if no more
than n− 1 other points in the data set have a higher value for Dk than p, where
Dk(p) denotes the distance of the kth nearest neighbor of a point p. In order
to take into account the sparseness of the neighborhood of a point, [1] considers
for each point p the measure wk(p), denoting the sum of the distances to its
k nearest neighbors. [6] provides further algorithms for distance-based anomaly
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detection. We point out that the measure ‖δ(p)‖r here used, generalizes all the
distance-based measures, since Dk(p) = ‖δ(p)‖∞, and wk(p) = ‖δ(p)‖1.

The rest of the paper is organized as follows. In Section 2 we formally define
the NNDD rule and the concept of reference consistent subset. Generalization
of the rule is discussed in Section 3. In Section 4 we describe the algorithm
CNNDD. Finally, Section 5 reports experimental results.

2 The NNDD Rule

In the following we denote with U a set of objects, with d a distance on U , with
D a set of objects from U , with k a positive integer number, with θ a positive
real number, and with r a Minkowski metric Lr, r ∈ {1, 2, . . . ,∞}.

Given an object p of U , the kth nearest neighbor nnD,d,k(p) of p in D ac-
cording to d is the object q of D such that there exists exactly k − 1 objects s
of D with d(p, s) ≤ d(p, q). In particular, if p ∈ D, then nnD,d,1(p) = p. The k
nearest neighbors distances vector δD,d,k(p) of p in D is

δD,d,k(p) = (d(p, nnD,d,1(p)), . . . ,d(p, nnD,d,k(p))).

The Nearest Neighbor Domain Description rule (NNDD for short) NNDDD,d,k,θ,r

according to D, d, k, θ, r, is the function from U to {−1, 1} such that

NNDDD,d,k,θ,r(p) = sign(θ − ‖δD,d,k(p)‖r),

where sign(x) = −1 if x ≤ 0, and sign(x) = 1 otherwise.
Intuitively, the NNDD rule returns 1 when the object belongs to the class

represented by D, while it returns −1 when the object does not belong to that
class. In the special case k = 1 and θ = 0, the rule accepts an object p iff p ∈ D,
while for k = 1 and θ > 0, the rule accepts an object if it lies in the neighborhood
of radius θ of some object in D.

Let f be NNDDD,d,k,θ,r. The accepting region R(f) of f is the set {x ∈ U |
f(x) = 1}. The rejecting region R(f) of f is the set U \R(f). An object x ∈ R(f)
is said to be an outlier. The empirical risk, or training set error, of the NNDD
classifier f is the quantity

Remp(f) = |D∩R(f)|
|D| .

The empirical risk is directly proportional to the value of k and inversely
proportional to the value of θ. Indeed, ‖δD,d,k−1(p)‖r ≤ ‖δD,d,k(p)‖r, for k > 1.
In particular, Remp(f) is certainly zero for k = 1 or for arbitrarily large values
of θ.

When the reference set D is large, space requirements to store D and time
requirements to find the nearest neighbors of an object in D increase. In the
spirit of the reference set thinning problem for the k-NN-rule [9, 17], next we
define the concept of NNDD reference consistent subset, and then we show that
finding a minimum NNDD reference consistent subset is NP-hard.
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A NNDD reference consistent subset of D w.r.t. d, k, θ, r, is a subset S of D
such that

(∀p ∈ D)(NNDDD,d,k,θ,r(p) = NNDDS,d,k,θ,r(p)),

i.e. a subset of D that correctly classifies the objects in D.
The complexity of finding a minimum reference consistent subset is related

to the complexity of the following decision problem: given an integer number
m, 1 ≤ m ≤ |D|, the NNDD minimum reference consistent subset problem
〈D, d, k, θ, r, m〉 is: does there exist a NNDD reference consistent subset S of D
w.r.t. d, k, θ, r such that |S| ≤ m ?

Theorem 1. Let r ∈ N+ denote a finite Minkowski metrics Lr. Then the
〈D, d, k, θ, r, m〉 problem is NP-complete.

Proof. (Membership) Given a subset S of D, having size |S| ≤ m, we can check
in polynomial time that, for each p ∈ D, NNDDD,d,k,θ,r(p) = NNDDS,d,k,θ,r(p).

(Hardness) The proof is by reduction to the Dominating Set Problem [8]. Let
G = (V, E) be an undirected graph, and let m ≤ |V | be a positive integer. The
Dominating Set Problem is: is there a subset U ⊆ V , called dominating set of G,
with |U | ≤ m, such that for all v ∈ (V −U) there exists u ∈ U with {u, v} ∈ E ?

Let G = (V, E) be an undirected graph. Define the metric dV on the set V of
nodes of G as follows: dV (u, v) = 1, if {u, v} ∈ E, and dV (u, v) = 2, otherwise.
Let θk,r be (1 + 2r(k− 1))1/r. Now we prove that G has a dominating set of size
m iff 〈V, dV , k, θk,r, r, m〉 is a “yes” instance.

First, we note that, for each v ∈ V , ‖δV,dV ,k(v)‖r ≤ (0+2r(k−1))1/r ≤ θk,r.
(⇒) Suppose that G has a dominating set U such that |U | ≤ m. Then U

is a reference consistent subset of V w.r.t. dV , k, θk,r, r. Indeed, let v a generic
object of V . If v ∈ U , then ‖δU,dV ,k(v)‖r ≤ (0 + 2r(k − 1))1/r < θk,r, otherwise
v �∈ U and ‖δU,dV ,k(v)‖r ≤ (1 + 2r(k − 1))1/r ≤ θk,r.

(⇐) Suppose that there exists a reference consistent subset U of V such that
|U | ≤ m. By contradiction, assume that there exists v ∈ (V − U) such that, for
each u ∈ U , {v, u} �∈ E. Then, ‖δU,dV ,k(v)‖r ≥ 2k1/r > θk,r, and U is not a
reference consistent subset of V . It follows immediately that U is a dominating
set for G. �
Theorem 1 also holds for the special case k = 1 and r =∞. It follows immediately
from Theorem 1 that the problem of computing the minimum size reference
consistent subset is NP-hard.

3 SRM and NNDD Rule

Given a set F of functions from U to {−1, 1} and a set of examples {(xi, yi) ∈
U × {−1, 1} | 1 ≤ i ≤ n} generated from an unknown probability distribution
P (x, y), the goal of nonparametric binary classification is to find a function f ∈ F
providing the smallest possible value for the risk R(f) =

∫
|f(x) − y|dP (x, y).

But R(f) is unknown, since P (x, y) is unknown. According to the Structural
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Risk Minimization (SRM) principle, for any f ∈ F , with a probability of at least
1 − ν, the bound R(f) ≤ Remp(f) + ε(f, h, ν) holds, where ν ∈ [0, 1], Remp is
the empirical risk, or training set error, defined as Remp(f) = 1

n

∑n
i=1 |f(xi) −

yi|, ε(f, h, ν) is the confidence term, and h is the Vapnik-Chervonenkis (VC)
dimension of (a subset of) F [18]. The VC dimension h = VCdim(F) of a
set F of binary classifiers, is the maximal number h of objects that can be
separated into two classes in all possible 2h ways using functions from F . It
can be shown that the confidence term ε(f, h, ν) monotonically increases with
increasing VC dimension h [19]. In order to bound the confidence term, one
induces a structure of nested subsets F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ . . . of F , such that
VCdim(F1) ≤ VCdim(F2) ≤ . . . ≤ VCdim(Fn) ≤ . . . and chooses the function
f ∈ Fi, i ∈ N+, such that R(f) is minimal.

Next we define such a structure for sets of NNDD classifiers. Let F k0
n de-

note the set composed by the NNDD classifiers NNDDD,d,k0,θ,r on the object
space U with metric d, having the same value k0 for k, and the same value
r ∈ {1, 2, . . . ,∞} for r, and such that |D| ≤ n. Clearly, F k

n ⊂ F k
n+1, for each

n ≥ 1. Next, we give bounds for the VC dimension of the sets F k
n .

Theorem 2. VCdim(F k
n ) ≥ n/k.

Proof. For any set X = {x1, . . . , xh} of h distinct objects of U , with class la-
bels yi ∈ {−1, 1}, i = 1, . . . , h, we can build the set D =

⋃
yi=1{xi, . . . , xi},

where each xi is repeated k times. Clearly, the classifier NNDDD,d,k,0,r correctly
classifies the objects in the set X , and D is such that |D| ≤ kh. �

Theorem 3. Let U be a normed linear space, and let r ∈ {1,∞}. Then
VCdim(F k

n ) ≤ 2
(
n
k

)
.

Proof. First, we prove the following claim.

Claim. Let U be a normed linear space, with norm ‖ · ‖U , and let d(x, y) =
‖x− y‖U be the distance induced by the norm of U . Let D be a subset of U of
size n, and let f be NNDDD,d,k,θ,r, r ∈ {1,∞}. Then R(f) is the union of at
most m =

(
n
k

)
convex sets.

Proof. First, we note thatR(f) =
⋃m

i=1R(NNDDEi,d,k,θ,r), where Ei, 1 ≤ i ≤ m,
is one of the subset of D having cardinality k. Indeed, x ∈ R(f) iff there
exists Ei ⊆ D, |Ei| = k, such that ‖δEi,d,k(x)‖r ≤ θ. It remains to show
that each Ri = R(NNDDEi,d,k,θ,r) is convex. We have to prove that, for each
x, y ∈ Ri, the object z = (1 − λ)x + λy, 0 < λ < 1, is such that z ∈ Ri,
i.e. that ‖δEi,d,k(z)‖r ≤ θ. Let Ei = {ei,1, . . . , ei,k}. For r = 1, we have:
‖δEi,d,k(z)‖1 =

∑k
j=1 ‖ei,j − z‖U =

∑k
j=1 ‖(1− λ)ei,j + λei,j − (1− λ)x−λy‖U

≤
∑k

j=1 [(1− λ)‖ei,j − x‖U + λ‖ei,j − y‖U ] = (1 − λ)
∑k

j=1 ‖ei,j − x‖U+
λ
∑k

j=1 ‖ei,j − y‖U = (1− λ)‖δEi,d,k(x)‖1 + λ‖δEi,d,k(y)‖1 ≤ (1− λ)θ + λθ ≤ θ.

The proof for r = ∞ is analogous. �
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Now we can resume to the main proof. Let x0 be an object of U , and let m be(
n
k

)
. Consider the set X = {xi = xi−1 + x0 | 1 ≤ i ≤ 2m + 1} of 2m + 1 objects

of U , with class labels y2i−1 = 1, y2i = −1, 1 ≤ i ≤ m, y2m+1 = 1. Suppose
that there exists fn ∈ F k

n such that fn classifies X correctly. Then, it is the
case that there exist i∗, j∗ ∈ {1, . . . , m}, such that Rj∗ = R(NNDDEj∗ ,d,k,θ,r) ⊇
{x2i∗−1, x2i∗+1}. As Rj∗ is convex, this implies that x2i∗ ∈ Rj∗ , and hence to
R(fn), a contradiction. �

From bounds provided by Theorems 2 and 3 the following relationship between
the VC dimensions of sets of NNDD classifiers on a normed linear space hold:
VCdim(F k

n ) ≤ VCdim(F k
2k(n

k)
). Thus, in order to minimize the risk, given a data

set D and values of k0 and θ0 for k and θ respectively, one can choose the smallest
reference consistent subset S of D w.r.t. d, k0, θ0, r, and then build the classi-
fier NNDDS,d,k0,θ0,r. Indeed, by definition of reference consistent subset, S is the
smallest subset, among all the subsets of D, such that Remp(NNDDD,d,k0,θ0,r) =
Remp(NNDDS,d,k0,θ0,r). Thus, replacing the reference set D with a small refer-
ence consistent subset of D has a twofold usefulness: both response time and
generalization of the classifier are improved. Analogously to the argumentation
of [10] for the nearest neighbor rule, this establishes the link between reference
set thinning for NNDD classifiers and the SRM principle.

4 The Condensed NNDD Rule

In this section we describe the algorithm CNNDD that computes a reference
consistent subset RefSet of a given dataset with only two data set passes. The
algorithm, shown in Figure 1, receives in input the dataset DataSet and param-
eters d, k, θ, and r. Let f denote the classifier NNDDDataSet,d,k,θ,r. We recall
that RefSet must be such that, for each p of DataSet, the property

f(p) = NNDDRefSet,d,k,θ,r(p) (1)

holds. InRefSet and OutRefSet are sets used to partition the objects of the
reference consistent subset RefSet as described in the following. Each object pj

in OutRefSet has associated two heaps, δj and δt
j , storing, respectively, the k

nearest neighbors of pj in RefSet, and the k nearest neighbors of pj in DataSet.

1st phase: first dataset pass. During this step OutRefSet stores the ob-
jects of RefSet such that ‖δj‖r = ‖δRefSet,d,k(pj)‖r > θ, while InRefSet
contains the remaining objects of RefSet. The heap δ, associated to the cur-
rent data set object pi, stores the k nearest neighbors of pi in RefSet. Hence,
‖δ‖r = ‖δRefSet,d,k(pi)‖r. For each incoming data set object pi, the distances
among pi and the objects pj of OutRefSet are computed and the heaps δt

j

are updated. Next, until the value ‖δ‖r remains above the threshold θ, the dis-
tances among pi and the objects pj of InRefSet are computed. After hav-
ing compared pi with the objects in InRefSet, if ‖δ‖r remains above θ, then
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Algorithm CNNDD(DataSet,d,k,θ,r)
InRefSet = ∅; OutRefSet = ∅; // — First data set pass —
for each (pi in DataSet)

δ = ∅;
for each (pj in OutRefSet)

Update(δ,d(pi, pj), pj);
Update(δt

j , d(pi, pj), pi);
for each (pj in InRefSet) if(‖δ‖r > θ) Update(δ,d(pi, pj), pj);
if (‖δ‖r > θ)

for each (pj in OutRefSet)
Update(δj , d(pi, pj), pi);
if (‖δj‖r ≤ θ)

OutRefSet = OutRefSet − {pj};
InRefSet = InRefSet ∪ {pj};

Update(δ, 0, pi);
if (‖δ‖r > θ) OutRefSet = OutRefSet ∪ {pi}
else InRefSet = InRefSet ∪ {pi};

RefSet = InRefSet ∪ OutRefSet; // — Second data set pass —
for each (pi in (DataSet − RefSet))

for each (pj in OutRefSet) if (‖δt
j‖r > θ)

if (i < j) Update(δt
j, d(pi, pj), pi);

IncrRefSet = ∅; // — Reference set augmentation —
for each (pj in OutRefSet) if (‖δt

j‖r ≤ θ)
for each (pi in IncrRefSet) Update(δj, d(pj , pi), pi);
while (‖δj‖r > θ)

Let pi be the object of (δt
j − δj) with the minimum value of d(pi, pj);

Update(δj , d, pi);
IncrRefSet = IncrRefSet ∪ {pi};

RefSet = RefSet ∪ IncrRefSet;
return(RefSet);

Fig. 1. The CNNDD rule

pi is inserted in RefSet. In this case, the heap δ is updated with the object
pi, and the heaps δi and δt

i associated to pi are set equal to δ. Furthermore,
the heaps δj of the objects already contained in OutRefSet are updated with
pi: if the value ‖δj‖r becomes less or equal than θ, then the object pj is re-
moved from OutRefSet and inserted into InRefSet. We note that the heaps
associated to these objects are no longer useful and can be discarded. Being
RefSet = OutRefSet ∪ InRefSet a subset of DataSet, then it is the case
that ‖δDataSet,d,k(p)‖r ≤ ‖δRefSet,d,k(p)‖r. Thus, the points p of DataSet not
stored in RefSet, are such that ‖δDataSet,d,k(p)‖r ≤ ‖δRefSet,d,k(p)‖r ≤ θ, and
Property (1) is guaranteed for these objects. Furthermore, for each p ∈ R(f),
θ < ‖δDataSet,d,k(p)‖r ≤ ‖δRefSet,d,k(p)‖r, and, hence, RefSet contains the
set R(f).

2nd phase: second dataset pass. Let pj stored in OutRefSet at the end of
the first scan. Unfortunately, ‖δt

j‖r > θ does not imply that pj ∈ R(f), as pj was
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not compared with all the data set objects during the first data set pass. Thus,
in order to establish whether ‖δDataSet,d,k(pj)‖r is greater than θ, a second data
set scan is performed. For each pj ∈ OutRefSet, the heap δt

j is updated in order
to compute exact value of δDataSet,d,k(pj), by comparing pj with all the objects
pi in (DataSet − RefSet) such that i < j, i.e. with the objects preceding pj

that are not stored in RefSet. Indeed, a generic object pj of OutRefSet was
compared, during the first scan, exactly with all the objects pi of DataSet, j < i,
and with all the objects {pi ∈ RefSet | i < j}.

3rd phase: reference set augmentation: The third phase of the algorithm is
introduced to guarantee Property (1) for the objects stored in OutRefSet. To
this aim, the set RefSet is augmented with the set IncrRefSet. In particular, for
each pj ∈ OutRefSet such that ‖δDataSet,d,k(pj)‖r ≤ ‖δt

j‖r ≤ θ, IncrRefSet is
augmented with some nearest neighbors of pj , until ‖δRefSet∪IncrRefSet,d,k(pj)‖r

goes down the threshold θ. To conclude, we note that at the end of the algorithm,
the objects of RefSet having ‖δt

j‖r > θ are the outliers of DataSet.

Theorem 4. The CNNDD rule computes a reference consistent subset for the
NNDD rule.

The CNNDD rule is suitable for disk-resident data sets, as it tries to minimize
the number of I/O operations performing only two data set passes. As for the
spatial cost of the CNNDD rule, it is O(|RefSet|·k), due to space needed to store
heaps associated to objects in OutRefSet. The temporal cost is O(|RefSet| ·
|DataSet| · (d + log k)), where d is the cost of computing the distance between
two objects, and log k is the cost of updating an heap of k elements. The cost
above stated is a worst case, but usually each data set object is compared only
with a fraction of the objects in the reference subset. Thus, the temporal cost of
the CNNDD rule depends on the size of the computed reference subset and it is
subquadratic in general, while it becomes quadratic when the reference subset
consists of all the data set objects, i.e. if we set θ = 0. As shown in the following
section, for values of θ of interest, the reference consistent subset is composed
by a fraction of the data set objects.

5 Experimental Results

In this section we describe experiments executed on the following data sets1: Im-
age segmentation (19 attributes, 330 normal objects, 1,980 abnormal objects),
Ionosphere (34 attributes, 225 normal objects, 126 abnormal objects), Iris (4
attributes, 50 normal objects, 100 abnormal objects)), Letter recognition (16 at-
tributes, 789 normal objects representing the letter “a”, 19,211 abnormal objects
representing the other letters), Satellite image (36 attributes, 1,533 normal ob-
jects, 4,902 abnormal objects), Shuttle (9 attributes, 34,108 normal objects, 3,022

1 See the UCI Machine Learning Repository for more information.



20 F. Angiulli

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
Image segmentation data set (k=5)

Threshold [θ]

F
al

se
 p

os
iti

ve
, D

et
ec

tio
n 

R
at

e,
 |S

|/|
D

| f.p. S
d.r. S
f.p. D
d.r. D

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
Ionosphere data set (k=7)

Threshold [θ]

F
al

se
 p

os
iti

ve
, D

et
ec

tio
n 

R
at

e,
 |S

|/|
D

| f.p. S
d.r. S
f.p. D
d.r. D

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
Iris data set (k=3)

Threshold [θ]

F
al

se
 p

os
iti

ve
, D

et
ec

tio
n 

R
at

e,
 |S

|/|
D

| f.p. S
d.r. S
f.p. D
d.r. D

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
Letter recognition data set (k=10)

Threshold [θ]

F
al

se
 p

os
iti

ve
, D

et
ec

tio
n 

R
at

e,
 |S

|/|
D

| f.p. S
d.r. S
f.p. D
d.r. D

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1
Satellite image data set (k=10)

Threshold [θ]

F
al

se
 p

os
iti

ve
, D

et
ec

tio
n 

R
at

e,
 |S

|/|
D

| f.p. S
d.r. S
f.p. D
d.r. D

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
Shuttle data set (k=15)

Threshold [θ]

F
al

se
 p

os
iti

ve
, D

et
ec

tio
n 

R
at

e,
 |S

|/|
D

| f.p. S
d.r. S
f.p. D
d.r. D

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
Vehicle data set (k=7)

Threshold [θ]

F
al

se
 p

os
iti

ve
, D

et
ec

tio
n 

R
at

e,
 |S

|/|
D

| f.p. S
d.r. S
f.p. D
d.r. D

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
Wine data set (k=5)

Threshold [θ]

F
al

se
 p

os
iti

ve
, D

et
ec

tio
n 

R
at

e,
 |S

|/|
D

| f.p. S
d.r. S
f.p. D
d.r. D

Fig. 2. Comparison between the NNDD and the CNNDD rules
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Fig. 3. ROC curves of the CNNDD and NN-d methods
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abnormal objects), Vehicle (18 attributes, 218 normal objects, 628 abnormal ob-
jects), and Wine (13 attributes, 59 normal objects, 119 abnormal objects). We
used the Euclidean distance, and set the parameter r to 12 in all the experiments.

First, we compared the NNDD and CNNDD rules. For a fixed value of k,
we varied θ in the range [0, θmax], and measured the empirical error, the false
positive rate (f.p. in the following) and the detection rate (d.r. in the following)
of the NNDD and CNNDD rules, and the size of the consistent reference subset
computed. The f.p. (d.r. resp.) is the fraction of normal (abnormal resp.) objects
rejected by the classifier. We recall that the abnormal objects are unknown at
learning time, being the data set composed only by the normal objects. We
computed both f.p. and d.r. by 10-fold cross-validation.

Results are shown in Figure 2. The x axe reports the threshold value θ, while
the y axe varies between 0 and 1 and reports f.p., d.r., and the normalized size
of the reference consistent subsets. Solid and dotted lines represent the f.p. and
d.r. of the CNNDD rule respectively. Dashed and dash-dotted lines represent
the f.p. and d.r. of the NNDD rule. The empirical error is very close to the
f.p. of the NNDD rule, thus it is not reported. Finally, pointed line reports the
normalized size of the reference consistent subset computed by the CNNDD rule.
We note that the CNNDD rule sensibly improves the d.r. over the NNDD rule
with a little loss of f.p. when θ is high. When θ approaches the value zero, in
any case f.p. and d.r. approach value one, while the consistent reference subset
computed by the CNNDD rule tend to contain all the data set objects, as they
are almost all outliers. From these figures it is clear that the consistent reference
subset guarantees improvements in terms of d.r. and reference set size reduction,
thus making the NNDD rule efficient and effective, and that the best trade-off
is achieved in the curve elbow of the false positive rate.

Finally, we compared the CNNDD rule with a different nearest neighbor
method, the NN-d method3 [16] through ROC analysis. ROC curves are the
plot of f.p. versus d.r., and the area under the curve gives an estimate of the
ability of the method in separating inliers from outliers. Figure 3 reports the
ROC curves and the ROC areas of the two methods (we obtained similar areas
for values of k different from those displayed). On the data set considered the
CNNDD rule performes better than the NN-d. Furthermore, we point out that
the NN-d rule uses all the data set objects as reference set.
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Abstract. Several studies have pointed out that class imbalance is a
bottleneck in the performance achieved by standard supervised learning
systems. However, a complete understanding of how this problem affects
the performance of learning is still lacking. In previous work we identified
that performance degradation is not solely caused by class imbalances,
but is also related to the degree of class overlapping. In this work, we
conduct our research a step further by investigating sampling strategies
which aim to balance the training set. Our results show that these sam-
pling strategies usually lead to a performance improvement for highly
imbalanced data sets having highly overlapped classes. In addition, over-
sampling methods seem to outperform under-sampling methods.

1 Introduction

Supervised Machine Learning – ML – systems aim to automatically create a classi-
fication model from a set of labeled training examples. Once the model is created,
it can be used to automatically predict the class label of unlabeled examples. In
many real-world applications, it is common to have a huge intrinsic disproportion
in the number of examples in each class. This fact is known as the class imbalance
problem and occurs whenever examples of one class heavily outnumber examples
of the other class1. Generally, the minority class represents a circumscribed con-
cept, while the other class represents the counterpart of that concept.

Several studies have pointed out that domains with a high class imbalance
might cause a significant bottleneck in the performance achieved by standard
ML systems. Even though class imbalance is a problem of great importance
in ML, a complete understanding of how this problem affects the performance
of learning systems is not clear yet. In spite of poor performances of standard
learning systems in many imbalanced domains, this does not necessarily mean
that class imbalance is solely responsible for the decrease in performance. Rather,
� This research is partly supported by Brazilian Research Councils CAPES and

FAPESP.
1 Although in this work we deal with two-class problems, this discussion also applies

to multi-class problems. Furthermore, positive and negative labels are used to de-
nominate the minority and majority classes, respectively.
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it is quite possible that beyond class imbalance yields certain conditions that
make the induction of good classifiers difficult. For instance, even for highly
imbalanced domains, standard ML systems are able to create accurate classifiers
when classes are linearly separable.

All matters considered, it is crucial to identify in which situations a skewed
dataset might lead to performance degradation in order to develop new tools
and/or to (re)design learning algorithms to cope with this problem. To accom-
plish this task, artificial data sets may provide a useful framework, since their
parameters can be fully and easily controlled. For instance, using artificial data
sets Japkowicz [3] showed that class imbalance is a relative problem depending
on both the complexity of the concept and the overall size of the training set.
Futhermore, in previous work [6] using artificial datasets, we showed that per-
formance degradation of imbalanced domains is related to the degree of data
overlapping between classes.

In this work, we broaden this research by applying several under and over-
sampling methods to balance the training data. Under-sampling methods bal-
ance the training set by reducing the number of majority class examples, while
over-sampling methods balance the training set by increasing the number of
minority class examples. Our objective is to verify whether balancing training
data is an effective approach to deal with the class imbalance problem, and how
the controlled parameters, namely class overlapping and class imbalance, affect
each balancing method. Our experimental results in artificial datasets show that
balancing training data usually leads to a performance improvement for highly
imbalanced data sets with highly overlapped classes. In addition, over-sampling
methods usually outperform under-sampling methods.

This work is organized as follows: Section 2 presents some notes related to
evaluating the performance of classifiers in imbalanced domains. Section 3 intro-
duces our hypothesis regarding class imbalances and class overlapping. Section 4
discusses our experimental results. Finally, Section 5 presents some concluding
remarks and suggestions for future work.

2 Evaluating Classifiers in Imbalanced Domains

As a rule, error rate (or accuracy) considers misclassification of examples equally
important. However, in most real-world applications this is an unrealistic sce-
nario since certain types of misclassification are likely to be more serious than
others. Unfortunately, misclassification costs are often difficult to estimate. More-
over, when prior class probabilities are very different, the use of error rate or
accuracy might lead to misleading conclusions, since there is a strong bias to
favour the majority class. For instance, it is straightforward to create a classifier
having an error rate of 1% (or accuracy of 99%) in a domain where the majority
class holds 99% of the examples, by simply forecasting every new example as
belonging to the majority class. Another point that should be considered when
studying the effect of class distribution on learning systems is that misclassifi-
cation costs and class distribution may not be static.
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When the operating characteristics, i.e. class distribution and cost parame-
ters, are not known at training time, other measures that disassociate errors (or
hits) that occurred in each class should be used to evaluate classifiers, such as the
ROC (Receiving Operating Characteristic) curve. A ROC curve is a plot of the
estimated proportion of positive examples correctly classified as positive — the
sensitive or true-positive rate (tpr) — against the estimated proportion of nega-
tive examples incorrectly classified as positive — the false alarm or false-positive
rate (fpr) — for all possible trade-offs between the classifier sensitivity and false
alarms. ROC graphs are consistent for a given problem even if the distribution
of positive and negative examples is highly skewed or the misclassification costs
change. ROC analysis also allows performance of multiple classification functions
to be visualised and compared simultaneously. The area under the ROC curve
(AUC) represents the expected performance as a single scalar. The AUC has a
known statistical meaning: it is equivalent to the Wilconxon test of ranks, and is
equivalent to several other statistical measures for evaluating classification and
ranking models [2].

3 The Effect of Class Overlapping in Imbalanced Data

There seems to be an agreement in the ML community with the statement that
imbalance between classes is the major obstacle when inducing good classifiers
in imbalanced domains. However, we believe that class imbalance is not always
the problem. In order to illustrate our conjecture, consider the two decision
problem shown in Figure 1. The problem is related to building a classifier for a
simple-single attribute problem that should be classified into two classes, positive
and negative. The conditional probabilities of both classes are given by a one-
dimensional unit variance Gaussian function, but the negative class centre is
one standard deviation apart from the positive class centre in the first problem
– Figures 1(a) and 1(b) – and four (instead of one) standard deviations apart
from the positive class centre in the second problem– Figures 1(c) and 1(d).

In Figure 1(a), the aim is to build a (optimal) Bayes classifier, and perfect
knowledge regarding probabilitiy distributions is assumed. The vertical line rep-
resents the optimal Bayes split. In such conditions, the optimal Bayes split should
be the same however skewed the dataset is. On the other hand, Figure 1(b) de-
picts the same problem, but now no prior knowledge is assumed regarding proba-
bility distributions, and the aim is to build a Näıve-Bayes classifier only with the
data at hand. If there were a huge disproportion of examples between classes, the
algorithm is likely to produce poorer estimates for the class with fewer examples,
rather than for the majority class. Particularly, in this figure, the variance is over-
estimated at 1.5 (continuous line) instead of the truly variance 1 (dashed line).
In other words, if we know beforehand the conditional probabilities (a constraint
seldom applicable for most real-world problems) which makes the construction
of a true Bayes classifier possible, class distribution should not be a problem at
all. Conversely, a Näıve-Bayes classifier is likely to suffer from poor estimates
due to few data available for the minority class.
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(a) The learner has perfect knowledge
about the domain

(b) The learner only uses the data at
hand

(c) The learner has perfect knowledge
about the domain

(d) The learner only uses the data at
hand

Fig. 1. Two different decision problems (vide text)

Consider now the second decision problem. As in Figure 1(a), Figure 1(c)
represents the scenario where full knowledge regarding probabilities distribution
is assumed, while Figure 1(d) represents the scenario where the learning algo-
rithm must induce the classifier only with the data at hand. For the same reasons
stated before, when perfect knowledge is assumed, the optimal Bayes classifier
should not be affected by the class distribution. However, if this is not the case,
the final classifier is likely to be affected. Nevertheless, due to low overlapping
between the classes, the effect of class imbalance in this case is lower than when
there is a high overlapping. This is to say that the number of examples misclas-
sified in the former scenario is, therefore, higher than the number of examples
misclassified in the latter. This might indicate that class probabilities are not
solely responsible for hindering the classification performance, but instead the
degree of overlapping between classes.

4 Experiments

The main goal of this work is to gain some insight on how balancing strategies
may aid classifier’s induction in the presence of class imbalance and class over-
lapping. In former work [6], we performed a study aimed to understand when
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class imbalance causes performance degradation on learning algorithms when
applied to class overlapped datasets. In this work we broaden this research by
investigating how several balancing methods affect the performance of learning
in such conditions. We start describing the experimental set up conducted to
perform our analysis, followed by a description of the balancing methods used
in the experiments. To make this work more self-contained, we continue by sum-
ming up the findings reported in [6] and conclude the section with an analysis
of the obtained results.

4.1 Experimental Set Up

To perform our analysis, we generated 10 artificial domains. Two clusters com-
pose these domains: one representing the majority class and the other one rep-
resenting the minority class. The data used in the experiments have two major
controlled parameters. The first one is the distance between both cluster cen-
troids, and the second one is the imbalance degree. The distance between cen-
troids enable us to control the “level of difficulty” of correctly classifying the two
classes. The grade of imbalance let us analyse if imbalance is a factor by itself
for degrading performance.

Each domain is described by a 5-dimensional unit-variance Gaussian variable.
Jointly, each domain has 2 classes: positive and negative. For the first domain,
the mean of the Gaussian function for both classes is the same. For the following
domains, we stepwise add 1 standard deviation to the mean of the positive class,
up to 9 standard deviations. For each domain, we generated 14 data sets. Each
data set has 10,000 examples with different proportions of examples belonging to
each class, ranging from 1% up to 45% in the positive class, and the remainder
in the negative class as follows: 1%, 2.5%, 5%, 7.5% 10%, 12.5%, 15%, 17.5%,
20%, 25%, 30%, 35%, 40% and 45%. We also included a control data set, which
has a balanced class distribution.

Although the class complexity is quite simple (we generated data sets with
only 5 attributes, two classes, and each class is grouped in only one cluster), this
situation is often faced by supervised learning systems since most of them fol-
low the so-called divide-and-conquer (or separate-and-conquer) strategy, which
recursively divides (or separates) and solves smaller problems in order to in-
duce the whole concept. Furthermore, Gaussian distribution might be used as
an approximation of several statistical distributions. To run the experiments, we
chose the C4.5 [8] algorithm for inducing decision trees. The reason for choosing
C4.5 is twofold. Firstly, tree induction is one of the most effective and widely
used methods for building classification models. Secondly, C4.5 is quickly be-
coming the community standard algorithm when evaluating learning algorithms
in imbalanced domains. In this work, the induced decision trees were modified
to produce probability decision trees (PET) [7], instead of only forecasting a
class. We also use the AUC as the main method for assessing our experiments.
All experiments were evaluated using 10-fold stratified cross validation.

Moreover, the choice of two Gaussian distributed classes enables us to easily
compute the theoretical AUC values for the optimal Bayes classifier. The AUC
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can be computed using Equation 1 [5], where Φ(.) is the standard normal cumu-
lative distribution, δ is the Euclidean distance between the centroids of the two
distributions and φpos as well as φneg are, respectively, the standard deviation
of positive and negative distribution.

AUC = Φ

(
δ√

φpos + φneg

)
(1)

4.2 Summary of Our Previous Findings

Figure 2 summarises results of our previous findings [6]. For a better visualiza-
tion, we have omitted some proportions and distances, however the lines omitted
are quite similar, respectively, to the curves with 9 standard deviations apart
and 50% of examples in each class. Figure 2(a) plots the percentage of positive
examples in the data sets versus the AUC of the classifiers induced by C4.5 for
different centroids of the positive class (in standard deviations) from the nega-
tive class. Consider the curve of the positive class where the class centroids are 2
standard deviations apart. Observe that these classifiers have good performance,
with AUC higher than 90%, even if the proportion of positive class is barely 1%.

Figure 2(b) plots the variation of centroid distances versus the AUC of classi-
fiers induced by C4.5 for different class imbalances. In this graph, we can see that
the main degradation in the classifiers performance occurs mainly when the dif-
ference between the centre of positive positive and negative classes is 1 standard
deviation apart. In this case, the degradation is significantly higher for highly
imbalanced data sets, but decreases when the distance between the centre of the
positive and negative classes increases. The difference in the performance of the
classifiers are statistically insignificant when the difference between centres goes
up 4 standard deviations, independently of how many examples belong to the
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Fig. 2. Experimental results for C4.5 classifiers induced in data sets with several over-
lapping and imbalance rates [6]
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positive class. Thus, these results suggest that datasets with linearly separable
classes do not suffer from the class imbalance problem.

4.3 Balancing Methods

As summarized in Section 4.2, in [6] we analyzed the interaction between class
imbalance and class overlapping. In this work we are interested in analysing
the behaviour of methods that artificially balance the (training) dataset in the
presence of class overlapping. Two out of five evaluated methods, described next,
are non-heuristic methods, while the other three make use of heuristics to balance
the training data. The non-heuristic methods are:

Random under-sampling is a method that aims to balance class distribution
through random elimination of majority class examples.

Random over-sampling is a method that aims to balance class distribution
through random replication of minority class examples.

Several authors agree that the major drawback of Random under-sampling is
that this method can discard potentially useful data that could be important for
the induction process. On the other hand, Random over-sampling can increase
the likelihood of occurring overfitting, since it makes exact copies of the minority
class examples. In this way, a symbolic classifier, for instance, might construct
rules that are apparently accurate, but actually cover one replicated example.
The remaining three balancing methods, which are described next, use heuristics
in order to overcome the limitations of the non-heuristic methods:

NCL. Neighbourhood Cleaning Rule [4] uses the Wilson’s Edited Nearest Neigh-
bour Rule (ENN) [10] to remove majority class examples. ENN removes any
example whose class label differs from the class of at least two of its three
nearest neighbours. NCL modifies ENN in order to increase data cleaning.
For a two-class problem the algorithm can be described in the following
way: for each example Ei in the training set, its three nearest neighbours
are found. If Ei belongs to the majority class and the classification given by
its three nearest neighbours contradicts the original class of Ei, then Ei is
removed. If Ei belongs to the minority class and its three nearest neighbours
misclassify Ei, then the nearest neighbours that belong to the majority class
are removed.

Smote. Synthetic Minority Over-sampling Technique [1] is an over-sampling
method. Its main idea is to form new minority class examples by interpo-
lating between several minority class examples that lie together. Thus, the
overfitting that may occur with random over-sampling is avoided and causes
the decision boundaries for the minority class to spread further into the
majority class space.

Smote + ENN. Although over-sampling minority class examples can balance
class distributions, some other problems usually present in data sets with
skewed class distributions are not solved. Frequently, class clusters are not
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well defined since some majority class examples might be invading the mi-
nority class space. The opposite can also be true, since interpolating minority
class examples can expand the minority class clusters, introducing artificial
minority class examples too deeply in the majority class space. Inducing a
classifier under such a situation can lead to overfitting. In order to create
better-defined class clusters, we propose applying ENN to the over-sampled
training set as a data cleaning method. Differently from NCL, which is an
under-sampling method, ENN is used to remove examples from both classes.
Thus, any example that is misclassified by its three nearest neighbours is re-
moved from the training set.

4.4 Experimental Results

From hereafter, we focus on data sets up to d = 3 standard deviations apart,
since these data sets provided the most significant results. Furthermore, we gen-
erated new domains, also a 5-dimensional unit variance Gaussian variable having
the same class distributions than the previous domains, every 0.5 standard devi-
ation. Therefore, 7 domains were analysed in total, with the following distances
in standard deviation between the centroids: 0, 0.5, 1, 1.5, 2, 2.5 and 3. The
results of theoretical AUC values for these distances are shown in Table 1. As
we want to gain some insight into the interaction between large class imbalances
and class overlapping, we also constraint our analysis for domains up to 20% of
examples in the positive class, and compared results with the naturally balanced
dataset.

Table 1. Theoretical AUC values

δ 0 0.5 1 1.5 2 2.5 3
AUC 50.0 % 78.54 % 94.31 % 99.11 % 99.92 % 99.99 % 99.99 %

Smote, Random over-sampling and Random under-sampling methods have
internal parameters that enable the user to set up the resulting class distribution
obtained after the application of these methods. We decided to add/remove
examples until a balanced distribution was reached. This decision is motivated
by the results presented in [9], in which it is shown that when AUC is used as
a performance measure, the best class distribution for learning tends to be near
the balanced class distribution.

Figure 3 presents in graphs2 the experimental results for distances between
centroids of 0, 0.5, 1 and 1.5 standard deviations apart. Note that we have pro-
moted a change in the scale of the AUC axis, in order to better present the
results. These graphs show, for each distance between centroids, the mean AUC

2 Due to lack of space, tables with numerical results were not included in this article.
However, detailed results, including tables, graphs and the data sets used in the
experiments can be found in http://www.icmc.usp.br/∼gbatista/ida2005.
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Fig. 3. Experimental results for distances 0, 0.5, 1 and 1.5.

measured over the 10 folds versus the number of positive (minority) class exam-
ples in percentage of the total number of examples in the training set. Distance
0 was introduced into the experiments for comparison purposes. As expected,
AUC values for this distance oscillate (due to random variation) around random
performance (AUC = 50%). In our experiments, the major influence of class
skew occurs when the distance is 0.5 standard deviations. In this case, the theo-
retical AUC value is 78.54%, but the archived AUC values for the original data
set is under 60% for proportions under 15% of positive instances.

In almost all cases, sampling methods were able to increase the AUC values
for the induced classifiers. As can be observed, NCL shows some improvements
over the original data, however these improvements are smaller than those ob-
tained by Random under-sampling; the over-sampling methods usually provide
the best results, with the Smote-based methods achieving almost a constant per-
formance for all class distributions. Smote + ENN presents better results than
other methods for almost all class distributions. We believe this is due to the
data cleaning method, which seems to be more efficient in highly overlapped
regions. The ENN data cleaning method starts to become less effective as the
distance increases, since there are less data to be cleaned when the clusters are
more distant from each other. Therefore, results obtained by Smote + ENN are
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Fig. 4. Experimental results for distances 2, 2.5 and 3.

becoming more similar to the results obtained by Smote. From distance 1.5, al-
most all methods present good results, with most values greater than 90% AUC,
and the over-sampling methods reaching almost 97% AUC. Nevertheless, the
Smote-based methods produced better results and an almost constance AUC
value in the most skewed region.

Figure 4 presents the experimental results for distances between centroids of
2, 2.5 and 3 standard deviations apart. For these distances, the over-sampling
methods still provide the best results, especially for highly imbalanced data sets.
Smote and Smote + ENN provide results that are slightly better than Random
over-sampling, however the data cleaning provided by ENN becomes very in-
effective. Observe that the Smote-based methods provide an almost constant,
near 100% AUC for all class distributions. It is interesting to note that the per-
formance decreases for the Random over-sampling method for distance 3 and
highly imbalanced data sets. This might be indicative of overffiting, but more
research is needed to confirm such a statement.

In a general way, we are interested in which methods provide the most accu-
rate results for highly imbalanced data sets. In order to provide a more direct
answer to this question, Figure 5 shows the results obtained for all distances for
the most imbalanced proportions: 1%, 2.5% and 5% of positive examples. These
graphs clearly show that the over-sampling methods in general, and Smote-based
methods in particular, provide the most accurate results. They also show that,
as the degree of class imbalance decreases, the methods tend to achieve similar
performance.
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Fig. 5. Experimental results in graphs for proportions 1%, 2.5% and 5%.

5 Conclusion and Future Work

In this work, we analyse the behaviour of five methods to balance training data
in data sets with several degrees of class imbalance and overlapping. Results
show that over-sampling methods in general, and Smote-based methods in par-
ticular, are very effective even with highly imbalanced and overlapped data sets.
Moreover, the Smote-based methods were able to achieve a similar performance
as the naturally balanced distribution, even for the most skewed distributions.
The data cleaning step used in the Smote + ENN seems to be especially suitable
in situations having a high degree of overlapping.

In order to study this question in more depth, several further approaches can
be taken. For instance, it would be interesting to vary the standard deviations of
the Gaussian functions that generate the artificial data sets. It is also worthwhile
to consider the generation of data sets where the distribution of examples of the
minority class is separated into several small clusters. This approach can lead to
the study of the class imbalance problem together with the small disjunct prob-
lem, as proposed in [3]. Another point to explore is to analyse the ROC curves
obtained from the classifiers and simulate some misclassification cost scenarios.
This approach might produce some useful insights in order to develop or analyse
methods for dealing with class imbalance.
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{rrumi, Antonio.Salmeron}@ual.es

Abstract. The MTE (mixture of truncated exponentials) model was
introduced as a general solution to the problem of specifying conditional
distributions for continuous variables in Bayesian networks, especially as
an alternative to discretization. In this paper we compare the behavior of
two different approaches for constructing conditional MTE models in an
example taken from Finance, which is a domain were uncertain variables
commonly have continuous conditional distributions.

1 Introduction

A Bayesian network is a model of an uncertain domain which includes conditional
probability distributions in its numerical representation. Methods of modeling
the conditional density functions of continuous variables in Bayesian networks
include discrete approximations and conditional linear Gaussian (CLG) mod-
els [5]. Modeling continuous probability densities in Bayesian networks using
a method that allows a tractable, closed-form solution is an ongoing research
problem.

Recently, mixtures of truncated exponentials (MTE) potentials [6] were in-
troduced as an alternative to discretization for representing continuous variables
in Bayesian networks. Moral et al. [8] suggest a mixed tree structure for learn-
ing and representing conditional MTE potentials. Cobb and Shenoy [2] propose
operations for inference in continuous Bayesian networks where variables can
be linear deterministic functions of their parents and probability densities are
approximated by MTE potentials. This approach can also be implemented to
represent the conditional density of a continuous variable, as we demonstrate in
this paper.

This paper compares the results obtained using the four previously mentioned
methods of modeling conditional densities of continuous variables in Bayesian
networks. The remainder of the paper is outlined as follows. In Section 2 we
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establish the notation and give the definition of the MTE model. Section 3
contains the description of the models of conditional distributions used in this
work, and Section 4 reports on the comparison of those models for an econometric
example. The paper ends with conclusions in Section 5.

2 Notation and Definitions

Random variables will be denoted by capital letters, e.g., A, B, C. Sets of vari-
ables will be denoted by boldface capital letters, e.g., X. All variables are as-
sumed to take values in continuous state spaces. If X is a set of variables,
x is a configuration of specific states of those variables. The continuous state
space of X is denoted by ΩX. MTE potentials are denoted by lower-case greek
letters.

In graphical representations, continuous nodes are represented by double-
border ovals and nodes that are deterministic functions of their parents are
represented by triple-border ovals.

A mixture of truncated exponentials (MTE) [6,9] potential has the following
definition.

Definition 1 (MTE potential). Let X = (X1, . . . , Xn) be an n-dimensional
random variable. A function φ : ΩX �→ R+ is an MTE potential if one of the
next two conditions holds:

1. The potential φ can be written as

φ(x) = a0 +
m∑

i=1

ai exp{ n∑
j=1

b
(j)
i xj} (1)

for all x ∈ ΩX, where ai, i = 0, . . . , m and b
(j)
i , i = 1, . . . , m, j = 1, . . . , n

are real numbers.
2. The domain of the variables, ΩX, is partitioned into hypercubes {ΩX1 , . . . ,

ΩXk
} such that φ is defined as

φ(x) = φi(x) if x ∈ ΩXi , i = 1, . . . , k , (2)

where each φi, i = 1, ..., k can be written in the form of equation (1) (i.e. each
φi is an MTE potential on ΩXi).

In the definition above, k is the number of pieces and m is the number of
exponential terms in each piece of the MTE potential. We will refer to φi as
the i-th piece of the MTE potential φ and ΩXi as the portion of the domain
of X approximated by φi. In this paper, all MTE potentials are equal to zero
in unspecified regions. Cobb and Shenoy [1] define a general formulation for a
2-piece, 3-term un-normalized MTE potential which approximates the normal
PDF is
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ψ′(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ−1(−0.010564 + 197.055720 exp{2.2568434(x−μ
σ

)}
−461.439251 exp{2.3434117(x−μ

σ
)}

+264.793037 exp{2.4043270(x−μ
σ

)}) if μ − 3σ ≤ x < μ

σ−1(−0.010564 + 197.055720 exp{ − 2.2568434(x−μ
σ

)}
−461.439251 exp{ − 2.3434117(x−μ

σ
)}

+264.793037 exp{ − 2.4043270(x−μ
σ

)}) if μ ≤ x ≤ μ + 3σ.

(3)
An MTE potential f is an MTE density for X if it integrates to one over the

domain of X. In a Bayesian network, two types of probability density functions
can be found: marginal densities for the root nodes and conditional densities for
the other nodes. A conditional MTE density f(x|y) is an MTE potential f(x,y)
such that after fixing y to each of its possible values, the resulting function is a
density for X .

3 Modeling Conditional Distributions

3.1 Discrete Approximations

Discretization of continuous distributions can allow approximate inference in a
Bayesian network with continuous variables. Discretization of continuous chance
variables is equivalent to approximating a probability density function (PDF)
with mixtures of uniform distributions. Discretization with a small number of
states can lead to poor accuracy, while discretization with a large number of
states can lead to excessive computational effort. Kozlov and Koller [4] improve
discretization accuracy by using a non-uniform partition across all variables rep-
resented by a distribution and adjusting the discretization for evidence. However,
the increased accuracy requires an iterative algorithm and is still problematic for
continuous variables whose posterior marginal PDF can vary widely depending
on the evidence for other related variables.

Sun and Shenoy [10] study discretization in Bayesian networks where the tails
of distributions are particularly important. They find that increasing the number
of states during discretization always improves solution accuracy; however, they
find that utilizing undiscretized continuous distributions in this context provides
a better solution than the best discrete approximation.

3.2 Conditional Linear Gaussian (CLG) Models

Let X be a continuous node in a hybrid Bayesian network, Y = (Y1, . . . , Yd) be
its discrete parents, and Z = (Z1, . . . , Zc) be its continuous parents. Conditional
linear Gaussian (CLG) potentials [5] in hybrid Bayesian networks have the form

£(X | y, z) ∼ N(wy,0 +
c∑

i=1

wy,izi, σ
2
y), (4)
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where y and z are a combination of discrete and continuous states of the parents
of X . In this formula, σ2

y > 0, wy,0 and wy,i are real numbers, and wy,i is defined
as the i-th component of a vector of the same dimension as the continuous part
Z of the parent variables. This assumes that the mean of a potential depends
linearly on the continuous parent variables and that the variance does not de-
pend on the continuous parent variables. For each configuration of the discrete
parents of a variable X , a linear function of the continuous parents is specified
as the mean of the conditional distribution of X given its parents, and a posi-
tive real number is specified for the variance of the distribution of X given its
parents. CLG models cannot accommodate continuous random variables whose
distribution is not Gaussian unless each such distribution is approximated by a
mixture of Gaussians.

3.3 Mixed Probability Trees

A conditional density can be approximated by an MTE potential using a mixed
probability tree or mixed tree for short. The formal definition is as follows:

Definition 2. (Mixed tree) We say that a tree T is a mixed tree if it meets the
following conditions:

i. Every internal node represents a random variable (either discrete or contin-
uous).

ii. Every arc outgoing from a continuous variable Z is labeled with an inter-
val of values of Z, so that the domain of Z is the union of the intervals
corresponding to the arcs Z-outgoing.

iii. Every discrete variable has a number of outgoing arcs equal to its number of
states.

iv. Each leaf node contains an MTE potential defined on variables in the path
from the root to that leaf.

Mixed trees can represent MTE potentials that are defined by parts. Each
entire branch in the tree determines one sub-region of the space where the po-
tential is defined, and the function stored in the leaf of a branch is the definition
of the potential in the corresponding sub-region. In [7], a method for approxi-
mating conditional densities by means of mixed trees was proposed. It is based

[0,1]

[0,1]

(1,2]

(1,1.5]
[0,1.5]

XX

Y

3.33 exp{−0.3x}
2 exp{−2x}2.32 exp{−2x}

Fig. 1. A mixed probability tree representing the potential φ in equation (5)
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on fitting a univariate MTE density in each leaf of the mixed tree. For instance,
the mixed tree in Figure 1 represents the following conditional density:

φ(x, y) = f(x|y) =

⎧⎪⎨⎪⎩
2.32 exp{−2x} if 0 ≤ y ≤ 1, 0 ≤ x ≤ 1
3.33 exp{−0.3x} if 0 ≤ y ≤ 1, 1 < x ≤ 1.5
2 exp{−2x} if 1 < y ≤ 2, 0 ≤ x ≤ 1.5

(5)

3.4 Linear Deterministic Relationships

Cobb and Shenoy [2] describe operations for inference in continuous Bayesian
networks with linear deterministic variables. Since the joint PDF for the variables
in a continuous Bayesian network with deterministic variables does not exist,
these operations are derived from the method of convolutions in probability
theory.

Consider the Bayesian network in Figure 2. The variable X has a PDF repre-
sented by the MTE potential, φ(x) = 1.287760−0.116345 exp{1.601731x}, where
ΩX = {x : x ∈ [0, 1]}. The variable Z is a standard normal random variable, i.e.
£(Z) ∼ N(0, 1), which is represented by the 2-piece, 3-term MTE approxima-
tion to the normal PDF defined in (3) and denoted by ϕ. The variable Y is a
deterministic function of X and Z, and this relationship is represented by the
conditional mass function (CMF), α(x, y, z) = pY |{x,z}(y) = 1{y = 3x + z + 2},
where 1{A} is the indicator of the event A.

X Y Z

Fig. 2. The Bayesian network used to demonstrate the operations for linear determin-
istic relationships

The joint PDF for {X, Z} is a 2-piece MTE potential, defined as

ϑ(x, z) = (φ⊗ ϕ)(x, z) =
{

φ(x) · ϕ1(z) if (−3 ≤ z < 0) ∩ (0 ≤ x ≤ 1)
φ(x) · ϕ2(z) if (0 ≤ z ≤ 3) ∩ (0 ≤ x ≤ 1) ,

where ϕ1 and ϕ2 are the first and second pieces of the MTE potential ϕ. The
symbol ‘⊗’ denotes pointwise multiplication of functions. The un-normalized
joint PDF for {Y, Z} is obtained by transforming the PDF for {X, Z} as follows:

θ(y, z) =
{

φ((y − z − 2)/3) · ϕ1(z) if (−3 ≤ z < 0) ∩ (0 ≤ (y − z − 2)/3 ≤ 1)
φ((y − z − 2)/3) · ϕ2(z) if (0 ≤ z ≤ 3) ∩ (0 ≤ (y − z − 2)/3 ≤ 1) .

This transformation is a marginalization operation where X is removed from
the combination of ϑ and α and is denoted by θ = (ϑ ⊗ α)−X . The function θ
remains an MTE potential because the function substituted for x in θ is linear
in Y and Z. The un-normalized marginal PDF for Y is obtained by integrating
the MTE potential for {Y, Z} over the domain of Z as follows:
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η(y) = θ−Z(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫ y−2

−3
θ1(y, z) dz if − 1 ≤ y < 2∫ 0

y−5
θ1(y, z) dz +

∫ y−2

0
θ2(y, z) dz if 2 ≤ y < 5∫ 3

y−5
θ2(y, z) dz if 5 ≤ y ≤ 8 .

(6)

The variables Y and Z are dependent, so the limits of integration in (6) are
defined so that the function is integrated over the joint domain of Y and Z. The
result of the operation in (6) is an MTE potential, up to one linear term in the
first and third pieces. This linear term is replaced by an MTE potential so the
densities in the Bayesian network remain in the class of MTE potentials (for
details, see [3]). The above operations are extended with new notation to model
linear deterministic relationships in hybrid Bayesian networks in [3].

4 An Example and Comparison

In this section we compare the four methods described in Section 3 using an
example taken from an econometric model. Consider the model in Figure 3
where the daily returns on Chevron-Texaco stock (Y ) are dependent on the
daily returns of the Standard & Poor’s (S&P) 500 Stock Index (X).

Suppose Sn is the stock or index value at time n. The return on S between
time n and time n + 1 is a rate r defined such that Sn exp{r} = Sn+1, as-
suming continuous compounding. Thus, we can calculate the daily returns as
r = ln (Sn+1/Sn) if the time interval is assumed to be one day. If we assume
that stock or index prices follow a geometric Brownian motion (GBM) stochastic
process, the distribution of stock or index prices is lognormal with parameters
determined by the drift and volatility of the GBM process. If stock prices are
lognormal, stock returns are normally distributed because the log of stock prices
are normally distributed and because r = ln (Sn+1)−ln (Sn). Thus, stock returns
are a linear combination of normal random variables, which is itself a normal
random variable.

In this example, we use data on daily closing prices for the S&P 500 and
Chevron-Texaco for each business day in 2004 to calculate daily returns. There
are 251 observations in the sample. We randomly selected 50 as a holdout sample
to test the marginal distributions created for Chevron-Texaco returns (Y ) and
used the remaining 201 to parameterize the various models.

A least-squares regression of Chevron-Texaco stock prices on S&P 500 index
prices defines the linear equation yi = a + b · xi + εi, where a is an intercept, b

S&P 500
Returns (X)

Chevron Texaco
Returns (Y)

Fig. 3. The Bayesian network for the Chevron-Texaco stock example
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is a slope coefficient, and εi is an error term for observation i. Estimating the
parameters for this model from the data yields the equation ŷi = â + b̂ · xi. The
residuals, calculated as ei = yi − ŷi, are an estimate of the error term in the
model, and are assumed to be normally distributed with a mean of zero and a
variance denoted by σ2

Z .
Using the 2004 data for Chevron-Texaco and the S&P 500 yields the linear

model, ŷi = 0.083749 + 0.305849 · xi, with σ2
Z = 1.118700. For this model, the

coefficient b̂ is referred to as the beta of the stock, which is an index of the stock’s
systematic risk, or the sensitivity of returns on the stock to changes in returns
on the market index. This coefficient is statistically significant with a t−score of
2.86 and a two-tailed p−value of 0.0043.

We use the parameters from the linear regression model and the data on daily
returns for Chevron-Texaco and the S&P 500 to parameterize sixteen Bayesian
network models and compare the results obtained with the actual distribution of
Chevron-Texaco prices using the KS test statistic. Where applicable, the meth-
ods are tested using 2, 3, and 4-piece MTE approximations to the marginal
distribution for S&P 500 returns (X) determined using the method in [7]. We
will refer to these as marginal approximations (MAs).

4.1 Discrete Approximation

We have considered three discretizations by dividing the domain of the con-
tinuous variables into 6, 9 and 12 sub-intervals respectively. The intervals have
been determined according to the data such that each contains the same num-
ber of sample points. The probability for each discretized split is calculated by
maximum likelihood.

4.2 CLG Model

Using the CLG model for this example requires that we assume S&P 500 re-
turns (X) are normally distributed, i.e. £(X) ∼ N(μX , σ2

X), and Chevron-
Texaco returns (Y ) are normally distributed with a mean stated as a linear
function of X and a variance independent of X , i.e. £(Y | x) ∼ N(aμX +
b, σ2

Z). The mean and variance of the S&P 500 returns calculated from the
data are 0.028739 and 0.487697, respectively, i.e. X ∼ N(0.028739, 0.487697).
We use the results of the regression model to define Y | x ∼ N(0.305849x +
0.083749, 1.18700). Since E(Y ) = 0.305849 · μX + 0.083749 and V ar(Y ) =
(0.305849)2 ·V ar(X)+σ2

Z , the CLG model determines the marginal distribution
of Y as N(0.102797, 1.137741).

4.3 Mixed Tree Model

The three mixed tree models considered in this example are constructed ac-
cording to the method proposed in [8], partitioning the domain of the variables
into 2, 3 and 4 pieces respectively. In each piece, an MTE density with two
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exponential terms plus a constant is fitted, i.e., an MTE of the form φ(y) =
a+ b exp{cx}+d exp{ex}. The marginals are computed using the Shenoy-Shafer
propagation algorithm adapted to MTEs [9].

During the computation of the marginals, which involves multiplication of
MTE potentials, the number of exponential terms in each potential increases.
In order to keep the complexity of the resulting MTE potentials—measured
in total number of terms used—equivalent to the number of splits in the dis-
crete approximation, we employ an approximate version of the Shenoy-Shafer
algorithm which restricts potentials to two exponential terms and a constant,
with extra terms pruned as described in [9]. We refer to this model as pruned
mixed tree.

4.4 Linear Deterministic Model

The linear deterministic model assumes that Chevron-Texaco returns (Y ) are a
linear deterministic function of S&P 500 returns (X) and a Gaussian noise term
(Z), Y = a+ b ·X +Z. A Bayesian network representation is shown in Figure 4.

S&P 500
Returns (X)

Chevron Texaco
Returns (Y)

Residuals (Z)

Fig. 4. The Bayesian network for the linear deterministic model in the Chevron-Texaco
stock example

To parameterize the model, we use the 2, 3, and 4-piece marginal MTE
potentials for X obtained by the marginal approximation and denoted by φ. The
variable Z is a Gaussian noise term which is modeled by the 2-piece, 3-term MTE
approximation to the normal PDF defined in (3) with μ = 0 and σ2 = 1.118700
and denoted by ϕ . The CMF for Y given {X, Z} is α(x, y, z) = pY |{x,z}(y) =
1{y = 0.305849x+z+0.083749}. In each test case, the joint PDF ϑ = (φ⊗ϕ) for
{X, Z} is an MTE potential. The un-normalized joint PDF θ(y, z) = (ϑ⊗α)−X

is obtained by substituting (y − z − 0.083749)/0.305849 into the joint PDF for
{X, Z}.

The marginal PDF for Y is obtained by integrating the joint PDF θ for {Y, Z}
over the domain of Y , as in (6). The marginal distributions for Y determined
using the 2, 3 and 4-piece marginals for X have 8, 11, and 14 pieces, respectively.

4.5 Comparison

The methods in Sections 4.1 through 4.4 are compared using the Kolmogorov-
Smirnov (KS) statistic, which is defined as

D(F, G) = sup
−∞<x<∞

|F (x) −G(x)| , (7)

where F is a target distribution and G is the empirical distribution of the sample.
This statistic can be used to construct a test for the hypothesis that the data
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actually come from the target distribution F . The results of the KS test (value
of the D statistic and p-value of the test) are displayed in Table 1.

The results of the test for the example considered in this paper show that
the methods based on MTE models provide better results than the discrete
approximation. Even the case of pruned mixed trees outperforms the discrete
approximation.

Table 1. KS test statistics comparing the holdout sample with the marginal distribu-
tions for each method

KS Test

Method Intervals D p-value No. of terms
2 0.099 0.71 6

Marginal approx. 3 0.1013 0.6842 9
4 0.102 0.6758 12
2 0.1086 0.5969 16

Mixed tree 3 0.0912 0.7996 27
4 0.0842 0.8702 76

Pruned 2 0.1098 0.5826 6
mixed 3 0.0974 0.73 9
tree 4 0.1031 0.6628 12

6 0.1136 0.5389 6
Discrete approx. 9 0.1226 0.4399 9

12 0.1352 0.3198 12
Linear 2 0.0871 0.8426 64
deterministic 3 0.0832 0.8794 85
model 4 0.0866 0.8472 110
CLG 1 0.0863 0.85 2

The theoretical model for this example is a CLG model. The results of the
experiment show that the MTE models result in marginal distributions for the
dependent variables that are very similar to the CLG model, with the best results
obtained by the linear deterministic model. This result is not surprising since the
relationship between the variables is assumed to be linear with Gaussian noise,
as in the theoretical model. However, it must be pointed out that case of four
intervals is favorable to the mixed tree model in terms of p-value, and using a
lower number of terms.

Most importantly, the MTE models yield similar results (in terms of marginal
distributions) to the CLG model and the discrete approximations. The MTE
model is extended to the non-Gaussian case as easily as the discrete model, and
marginals are defined in terms of densities rather than discrete probabilities. The
discrete approximations tested in this paper are comparable in computational
complexity to the MTE models, e.g., the 6-bin discrete approximation has the
same number of parameters as the 2-piece MTE approximation.
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5 Conclusions

In this paper we compared alternative methods of specifying conditional distri-
butions in Bayesian networks with continuous variables. The results show that
the MTE model is appropriate in problems where the theoretical model has
Gaussian distributions, which is common in Econometric examples. We use an
example where continuous variables are known to be normal to compare the
results with CLG models; however, since the MTE model can be used to ap-
proximate any continuous probability distribution, the results extend to models
with non-Gaussian densities. Using the results in this paper, we can deduct that
the results obtained in larger models using the two approaches for estimating
conditional MTE models are likely to be accurate; however, additional research
is needed to compare the complexity of propagation in large models that employ
the two approaches.
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Abstract. Clustering categorical data is an important and challenging
data analysis task. In this paper, we explore the use of kernel K-means
to cluster categorical data. We propose a new kernel function based on
Hamming distance to embed categorical data in a constructed feature
space where the clustering is conducted. We experimentally evaluated
the quality of the solutions produced by kernel K-means on real datasets.
Results indicated the feasibility of kernel K-means using our proposed
kernel function to discover clusters embedded in categorical data.

1 Introduction

Clustering is an important data analysis task aimed to partition data into groups
such that objects in the same group are similar among themselves while objects
in different clusters are different. Most of the clustering algorithms found in
the literature seek to cluster numerical data. Typically, numerical clustering al-
gorithms rely on a distance metric, such as Euclidean distance or Minkowski
distance, to measure the dissimilarity among objects. Categorical data, data
whose attributes are discrete and unordered, lack a natural metric to assess the
dissimilarity among categorical objects [5]. As a consequence, clustering cat-
egorical data is a difficult and challenging problem. The discovery of natural
groups embedded in categorical datasets is a relevant issue in several fields such
as psychology and bioinformatics.

In recent years, several clustering algorithms for categorical data have been
proposed [1,2,5,9,20]. In this paper, we present a novel approach for clustering
categorical data by means of kernel methods. Kernel methods [17] focus on the
application of standard machine learning algorithms to data embedded into an
inner product feature space through kernel functions. In applying this approach,
we propose to embed categorical objects into an inner product feature space
of large dimensionality where the clustering is conducted. The embedding of
the categorical data into the feature space is expected to exploit the intrinsic
correlations of the groups in the data [17]. The inner product in the new space
defines a distance metric among the embeddings of the objects. The computation
of the inner product of the embedding of any pair of objects is performed through
kernel functions. A standard clustering algorithm that relies on a distance metric
can be applied to discover the clusters of the categorical data in the feature
space. To the best of our knowledge, there are no other categorical clustering
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algorithms that follow this approach. In this paper, we formulate a novel kernel
function for categorical data based on Hamming distance to embed the data into
a constructed inner product feature space. Due to its simplicity, we have chosen
the popular clustering algorithm K-means as the clustering algorithm to carry
out the discovering of the clusters in a feature space.

This paper is organized as follows. Section 2 briefly describes some related
work in clustering algorithms for categorical data. Section 3 formulates a new
kernel function based on Hamming distance to compare categorical objects and
describes the family of diffusion kernel functions for categorical data. Section
4 describes kernel K-means, an extension of K-means for clustering data in a
feature space. Section 5 compares and discusses the quality of the clustering
produced by kernel K-means using the kernel functions discussed in Section 3
with respect to other clustering algorithms for categorical data.

2 Related Work

K-modes [11] is an extension of the K-means clustering algorithm for categorical
data. K-modes uses the modes of the objects grouped in the same cluster as
its representative. The algorithm minimizes the dissimilarity of the objects in a
cluster with respect to its mode.

STIRR [7] is an iterative method based on non-linear dynamic systems on
multiple instances of weighted hypergraphs (known as basins). Each attribute
value is represented as a weighted vertex. Two vertices are connected when the
attribute values they represent co-occur at least once in the dataset. The weights
are propagated on each hypergraph until the configuration of weights in the main
basin converges to a fixed point.

ROCK [9] is an agglomerative hierarchical clustering algorithm for categor-
ical data that uses the concept of links between objects. A link between two
categorical objects is defined as the number of common neighbors. Two objects
are neighbors when their Jaccard coefficient exceeds a certain threshold θ defined
by the user. ROCK proceeds in an agglomerative fashion to maximize its crite-
rion function. The choice of threshold θ is critical to the quality of the clusters
found by ROCK and seems to be dataset dependent. ROCK does not exploit
correlations among attributes and it does not deal with noise or missing values
in a dataset.

CACTUS [5] is a combinatorial search based algorithm that uses intra-
attribute and inter-attribute summary information to discover clusters of at-
tribute values. A cluster is defined as a maximal set of strongly connected at-
tribute values. A set of attribute values are strongly connected if the number
of tuples in the dataset containing the attribute values exceeds their expected
co-occurrence by a user-defined threshold under the attribute independence as-
sumption. CACTUS uses the intra-attribute and inter-attribute summaries to
compute all the cluster-projections on each attribute. Then, CACTUS heuristi-
cally constructs a set of candidate clusters by combining cluster-projections to
ensure that the attribute values in the candidate clusters are pairwise strongly
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connected. At last, CACTUS discards those candidate clusters whose attribute
values are not strongly connected.

CLICK [20] is a graph approach for clustering categorical data sets that
characterizes a cluster as a maximal k-partite clique. In CLICK, each attribute
value is a vertex in a k-partite graph, two vertices in the k-partite graph are linked
by an edge when they belong to different attributes and are strongly connected
[5]. CLICK uses a heuristic approach to detect all the maximal k-partite strongly
connected.

COOLCAT [2] and LIMBO [1] use information theory to discover clusters
in categorical data. COOLCAT is an incremental partition clustering algorithm
to minimize the expected entropy. COOLCAT uses a sample to identify k cat-
egorical objects with maximum pairwise entropy. Afterward, COOLCAT incre-
mentally places each object in a cluster that achieves the minimum expected
entropy. COOLCAT assumes the independence of the attributes to compute the
entropy of each cluster. LIMBO is a scalable two-stage clustering algorithm for
large categorical datasets based on the agglomerative information bottleneck al-
gorithm (AIB) [18]. LIMBO starts partitioning the dataset into a set of initial
clusters in such a way that the loss of information is minimized. Then, LIMBO
applies AIB to the initial clusters until it obtains the desired number of clusters.

More recently, some clustering kernel methods have been proposed [3,6,17,21].
Ben et al.[3] formulate the clustering problem as a convex optimization problem
that finds the smallest enclosing sphere of the embedding of the data in a feature
space. The preimages of the smallest enclosing sphere define the contours of the
clusters in the data. In [6], the author proposes an iterative procedure similar to
expectation maximization to discover clusters in a feature space in such a way
that the intra-cluster distance is minimized. Objects whose embeddings belong
to the same cluster in the feature space are clustered together. A kernel clustering
scheme based on K-means for large datasets is proposed in [21].

3 Kernel Functions for Categorical Data

Kernel methods applies standard learning machine algorithms that rely on dis-
tance metrics or inner products to data embedded into a feature space using
kernel functions. The embedding of the data into a feature space is expected to
capture and enhance the patterns and regularities in the data [17]. Kernel meth-
ods proceed in two steps. The first step embeds the data into a feature space of
high or infinite dimension, while the second step uses standard algorithms for
classification, clustering and principal component analysis to detect the regulari-
ties of the data in the feature space. The core of kernel methods relies on the use
of kernel functions. A kernel function computes the inner product in a feature
space of the embedding of two data points under a certain mapping φ. Formally
speaking:

Definition 1. Let X be an n-dimensional input space and F be a N-dimensional
inner product feature space F , N >> n. A kernel function K : X ×X → � is a
symmetric function such that for all x, y ∈ X satisfies
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K(x, y) =< φ(x), φ(y) > . (1)

where φ : X → F is a mapping between X and F such that for all x ∈ X

φ(x) → (φ1(x), φ2(x), . . . , φN (x)). (2)

φi(x), i = 1, . . . , N , are the features of x in the feature space F .

Definition 2. The normalised kernel K̃ of a kernel function K is computed as
follows:

K̃(x, y) =
K(x, y)√

K(x, x)K(y, y)
. (3)

The square distance between the embeddings of two points x, y ∈ X , φ(x)
and φ(y) respectively, is computed in terms of the kernel function K(x, y):

d2(φ(x), φ(y)) = ‖φ(x)− φ(y)‖2 = K(x, x) − 2K(x, y) + K(y, y) . (4)

A kernel function can be formulated by defining the mapping between in-
put space and some feature space where the inner product is computed [17]. A
kernel function defined in this way requires the characterization of the feature
space F , the specification of the embedding φ : X → F , and finally the com-
putation of the inner product between the embedding of two points. However,
the computation of the features and the evaluation of the inner product have
high computational costs that depend on the dimension of the feature space. An
efficient approach uses computational methods such as dynamic programming to
compute the kernel function for any pair of points without explicitly embedding
the points in the feature space and then computing their inner product [16,17],
which is the approach applied in this paper. Alternatively, the characterisation
of kernel functions as finitely positive semi-definite functions [17] allows deter-
mining whether a function is a kernel function without knowing the nature of
the feature space and the specification of the mapping φ. Finally, kernel func-
tions satisfy several closure properties that allows constructing complex kernel
functions by manipulating and combining simpler ones[17].

3.1 Hamming Distance Kernel Function

We formulate a kernel function for categorical data that uses Hamming distance
to embed categorical data into a constructed inner product feature space. Our
proposed kernel function does not depend on a generative model or a priori
information about the nature of the data. The construction of the feature space
and the kernel function follows the same methodology proposed in [16].

Definition 3. Let Di be a finite domain of categorical values. Let (a1, . . . , an)
be a categorical object such that ai ∈ Di. Let Dn =

∏n
i=1 Di be the cross product

over all the domains of the attributes such that for each (u1, . . . , un) ∈ Dn,
ui ∈ Di. Given a categorical object s = (s1, . . . , sn), sk denotes the value of the
k-th attribute of s. The feature space F is a subspace of �Dn

.
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Definition 4. The mapping of a categorical object s into the feature space F
is defined by the u coordinate φu(s) = λH(u,s), for all u ∈ Dn, λ ∈ (0, 1). The
Hamming distance H(u, s) between s and u is defined as:

H(u, s) =
n∑

i=1

δ(ui, si) . (5)

where δ(x, y) is 0 when x = y and 1 otherwise. The u coordinate of s according
to the mapping φ can be rewritten as:

φu(s) = λH(u,s) =
n∏

i=1

λδ(ui,si) . (6)

Definition 5. The kernel function KH(s, t) between two input categorical ob-
jects s and t is defined as:

KH(s, t) =
∑

u∈Dn

φu(s)φu(t) =
∑

u∈Dn

n∏
i=1

λδ(ui,si)λδ(ui,ti) . (7)

It can be shown that the kernel function KH(s, t) can be computed recursively
in the following manner:

K0(s, t) = 1
Kj(s, t) = (λ2(|Dj | − 1− δ(sj , tj)) + (2λ− 1)δ(sj , tj) + 1)Kj−1(s, t) 1 ≤ j ≤ n

KH(s, t) = Kn(s, t) . (8)

Due to lack of space, we omit the proof of the correctness of this recursion.
Finally, K̃H(s, t) denotes the normalised kernel of KH(s, t).

3.2 Diffusion Kernels

Kondor and Lafferty [14] proposed a family of kernel functions for categorical
data based on an extension of hypercube diffusion kernels. The feature space
is a graph induced by the set Dn. Each categorical object s ∈ Dn is a vertex
in the graph. Two vertices vs and vt are connected by an edge whenever their
underlying categorical objects s and t differ only in the value of one attribute,
i.e., H(s, t) = 1. Let β be a bandwidth parameter, the family of diffusion ker-
nel functions KDK(β) for categorical data with n attributes is defined in the
following way:

KDK(β)(x, y) =
n∏

i=1

(
1− e−|Di|β

1 + (|Di| − 1)e−|Di|β

)δ(xi,yi)

. (9)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are categorical objects.
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4 Kernel K-Means

Kernel K-means is an extension of the popular clustering algorithm K-means to
discover clusters in a feature space in which the distance is calculated via kernel
functions. Let φ : X → F be an embedding of a set X into a feature space F and
K : X ×X → � its associated kernel function. Let z1, . . . , zk be the centroids
of clusters C1, . . . , Ck respectively. Kernel K-means can be formulated in the
following way:

1. Initialization Step: Select k data points and set their embeddings in feature
space as the initial centroids z1, . . . , zk.

2. Assignment Step: Assign each data point xi to a cluster Cq such that:

q = argmin
j

d2(φ(xi), zj)

zj =
1
|Cj |

∑
xp∈Cj

φ(xp)

d2(φ(xi), zj) = K(xi, xi)−
2
|Cj |

∑
xp∈Cj

K(xi, xp)+
1

|Cj |2
∑

xp∈Cj

∑
xm∈Cj

K(xp, xm) .

3. Repeat 2 until convergence.

We use the scheme for kernel K-means for large datasets proposed in [21]. Never-
theless, in our implementation of kernel K-means, the initialization step applies
a heuristic similar to [13] to select the initial centroids. The heuristic selects k
well-scattered points in the feature space by maximizing their minimum pairwise
distance. The initialization heuristic proceeds as follows:

1. Selects the two most distant embeddings of the dataset in the feature space
as the initial centroids of the first two clusters C1 and C2, namely z1 and z2.

2. Then, the selection of the initial centroid zi, i = 3, . . . , k, of the remaining
clusters proceeds in an iterative fashion. First, it computes the minimum
distance between the embeddings of the remaining points to the existing
centroids. Then, the object with the largest minimum distance in the feature
space to the existing centroids is selected as the initial centroid zi of cluster
Ci. This step is repeated until k initial centroids have been obtained.

Table 1

Dataset N. Records N.Classes Attributes Missing Values

Votes 435 2 16 288
Mushrooms 8125 2 22 2480
Soybean 47 4 35 0
Zoo 101 7 15 0
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5 Experimental Evaluation

We conducted a series of experiments to evaluate and compare the quality of
the clustering produced by kernel K-means using both the kernel functions K̃H

(KKM-NH) and diffusion kernels KDK(β) (KKM-DK) with ROCK, COOLCAT
and K-modes. The experiments were run in a DELL computer equipped with a
Pentium 4 running at 2.8 GHz, and 1 Gigabyte of main memory, running SUSE
Linux 9.1. We assessed the quality of the clustering produced by aforementioned
clustering algorithms on four real categorical datasets obtained from the UCI
Machine Learning Repository [4]. Missing values were treated as another at-
tribute value. The characteristics of the datasets are summarized in Table 1.

5.1 Clustering Quality Measures

Validation of the quality of the clustering produced by a clustering algorithm
is one of the most important issues in clustering analysis. Several quantitative
measures have been proposed to evaluate the quality of the clustering solution
found by a clustering algorithm [12,10]. In our experiments, we used three quan-
titative measures, External Entropy, F-Measure and Category Utility, to assess
the quality of the solutions produced by the aforementioned algorithms. When
comparing several clustering algorithms, if a clustering algorithm outperforms
the others in most of these measures for a given dataset, it is assumed to be the
best clustering algorithm for that dataset [19].

External Entropy. The external entropy is a measure of the purity of the
clusters found by a clustering algorithm. Let D = {x1, . . . , xN} be a dataset of
categorical objects. Let C = {C1, . . . , Ck} be a clustering and let c = {c1, . . . , ck}
be the classes in the data. The expected entropy of the clustering C is the
weighted external entropy of each cluster:

E(C) =
k∑

i=1

|Ci|
N

k∑
j=1

P (cj |Ci)log(P (cj |Ci) . (10)

F–Measure. The F–measure is a combination of precision and recall measure-
ments from information retrieval [15]. Let P (ci, Cj) be the precision of a class
ci in a cluster Cj and R(ci, Cj) be the recall of a class ci in a cluster Cj . The
F-measure of a class ci in a cluster Cj is defined as follows:

F (ci, Cj) =
2R(ci, Cj)P (ci, Cj)

R(ci, Cj) + P (ci, Cj)
. (11)

The overall F–measure of a clustering is given by [19]:

F =
∑

i

|ci|
N

max
j
{F (ci, Cj)} . (12)

A larger F–measure indicates a better quality of the clustering.
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Category Utility (CU). Category utility [8] measures the increase of the ex-
pected probability of attribute values of the objects in the same clusters over the
expected probability of the attributes. Category Utility is computed as follows:

CU =
k∑

j=1

|Cj |
N

n∑
i=1

∑
v∈Di

[P (Ai = v|Cj)2 − P (Ai = v)2] . (13)

5.2 Experimental Details

We performed several experiments on synthetic datasets to empirically determine
the parameters λ and β for KKM-NH and KKM-DK respectively that produce
the best clustering of the data. Our experiments indicated that the parameters
for KKM-NH and KKM-DK that achieve the best clustering are dataset de-
pendent. Nevertheless, KKM-NH with λ between 0.6 and 0.8 produced a good
clustering of the data with respect to External Entropy, F-Measure and Cate-
gory Utility. In our experiments on the UCI datasets, we set the parameter λ to
0.6 for KKM-NH and the parameter β for KKM-DK was set between 0.1 and
2.0.

COOLCAT is sensitive to the size of the sample used to seed the initial
clusters as well as the ordering of the data points in the datasets [1]. For each
dataset, we ran COOLCAT on twenty random orderings. In each run, the whole
dataset was set as the sample used to find the initial seeds of the clusters.

The quality of the clustering produced by ROCK is highly influenced by both
the choice of the threshold θ as well as the ordering of the data. The threshold θ
that results in the best performance is dataset dependent. For each dataset, we
generated twenty random orderings and ran ROCK with threshold θ between
0.1 to 0.95.

Both K-modes and kernel K-means are sensitive to the initial centroids of
the clusters. In our experiments, we ran K-modes with twenty random restarts.
Kernel K-means KKM-NH and KKM-DK were run using twenty different initial
centroids selected according to the initialization heuristic explained in section 4.

Finally, the quality measures reported for all the clustering algorithms are
averages over all the runs. For ROCK and KKM-DK, we also report the algo-
rithm’s parameter that produced the best average results.

5.3 Results

The average quality measures produced by K-modes, COOLCAT, ROCK, KKM-
HN and KKM-DK on the UCI datasets are shown in Table 2.

KKM-NH and KKM-DK achieved the best clustering for Congressional Votes
and Soybean with respect to the three quality measures. On the ZOO dataset,
KKM-NH and KKM-DK outperformed the other algorithms with respect to
External Entropy and Category Utility. F-measure obtained by both KKM-DK
and KKM-DK on this dataset were comparable to the F-Measure obtained by
ROCK. On the Mushrooms dataset, K-modes produced the best results with
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Table 2

Dataset Clustering Algorithm EE F CU

Congressional Vote K-Modes 0.519 0.864 2.896
ROCK (θ=0.73) 0.654 0.798 1.891
COOLCAT 0.511 0.864 2.839
KKM-NH 0.477 0.880 2.941
KKM-DK (β=1.6) 0.475 0.880 2.941

Mushrooms K-Modes 0.751 0.706 1.504
ROCK (θ=0.8) 0.849 0.653 1.064
COOLCAT 0.791 0.701 1.465
KKM-NH 0.910 0.618 1.313
KKM-DK (β=0.5) 0.811 0.634 1.510
KKM-NH(*) 0.715 0.751 1.404
KKM-DK(*) (β=0.3) 0.786 0.713 1.183

Soybean K-Modes 1.229 0.560 2.950
ROCK (θ=0.75) 0.021 0.996 5.493
COOLCAT 0.033 0.986 5.489
KKM-NH 0.000 1.000 5.558
KKM-DK (β=0.6) 0.000 1.000 5.558

Zoo K-Modes 1.229 0.560 2.950
ROCK (θ=0.69) 0.294 0.898 4.127
COOLCAT 0.376 0.793 4.320
KKM-NH 0.272 0.803 4.454
KKM-DK (β=1.2) 0.262 0.844 4.476

(*) Random centroids

respect to the three quality measures. However, the poor performance of KKM-
NH and KKM-DK can be explained by an inadequate selection of the initial
centroids using our initialization heuristic. To confirm this hypothesis, we ran
20 trials of KKM-NH and KKM-DK selecting the initial centroids at random
(Table 2). Our experiments showed an overall improvement in the quality of the
clustering produced by KKM-NH with respect to External Entropy, F-Measure
and CU. The results for KKM-DK(β=0.3) showed an improvement of External
Entropy and F-Measure. Nevertheless, its CU was significantly lower than the
one obtained by KKM-DK(β=0.5) applying the initialization method explained
in section 4.

6 Conclusions and Future Work

In this paper, we have proposed the use of kernel clustering methods to cluster
categorical data in a constructed feature space via kernel functions. We have in-
troduced a new kernel function for categorical data, K̃H , based on the Hamming
distance. We have applied kernel K-means to cluster categorical data embedded
in a feature space via the kernel functions K̃H and diffusion kernels KDK(β).
The results of our experiments indicate that the embedding of categorical data
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by means of the kernel functions K̃H and diffusion kernels KDK(β) preserves
the clusters in the data. Furthermore, our results demonstrate that the solutions
produced by kernel K-means embedding categorical data through the new kernel
function K̃H (λ=0.6) are generally better than the other categorical clustering
algorithms compared in this paper. With regard to KKM-DK, our experiments
show that the choice of the parameter β is crucial for discovering the clusters
in the data. As a consequence, the application of KKM-DK for clustering cate-
gorical data is deterred by the selection of the appropriate parameter β that fits
the data.

In our future work, we will focus on an incremental approach for kernel K-
means to overcome the disk-space and I|O requirements of the method when
dealing with massive datasets. In addition, we plan to investigate the perfor-
mance of KKM-NH on datasets containing noise and missing values. Finally, we
will evaluate the sensitivity of KKM-HN to the number of classes and number
of relevant attributes defining the classes of a dataset.
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Abstract. All sort of organizations needs as many information about their target
population. Public datasets provides one important source of this information.
However, the use of these databases is very difficult due to the lack of cross-
references.

In Spain, two main public databases are available: Population and Housing
Censuses and Family Expenditure Surveys. Both of them are published by Span-
ish Statistical Institute. These two databases can not be joined due to the different
aggregation level (FES contains information about families while PHC contains
the same information but aggregated). Besides, national laws protects this infor-
mation and makes difficult the use of the datasets.

This work defines a new methodology for join the two datasets based on Ge-
netic Algorithms. The approach proposed could be used in any case where data
with different aggregation level need to be joined.

1 Introduction

Nowadays marketing needs all possible social, demographic and economical informa-
tion about its potential customers and target environments. Marketing uses the typolo-
gies provided by micromarketing tools such as MOSAIC [7]. These typologies must be
updated periodically with actual data.

In Spain, the National Statistics Institute (INE) [3] publishes the most reliable
source of this kind of information which is protected by Spanish privacy laws. This
protection makes very difficult the use of this data.

INE publishes two different databases:

– Population and Housing Censuses (PHC) [4]. Provides demographic data every
10 years. The last two census were done on 1991 (published on 1996) and 2001
(published on first quarter of 2005).

– Family Expenditure Surveys (FES) [5]. Information about consumptions of a
sample of 9000 individual families each year. INE selects the most representative
families.

It is possible to assign consumption (economic) indexes to each censal section by cross-
ing PHC and FES data sources but a problem arises: this joining is impossible due to
the different aggregation level and the lack of cross-references.

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 57–65, 2005.
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PHC contains demographic data aggregated at censal section level. A censal section
is a group of 500 households (Spain is covered by 32000 censal sections) without any
kind of reference about its members.

On the other hand, FES contains a detailed description about families. The data
of each family is referenced by economical status of its main earner. The selection
algorithm assures that the chosen families represents the whole population: INE selects
8 families from the more important autonomous region and stratum.

A previous work [11] solved the same problem using the previous databases for
PHC and FES of the year 1991. This work used one attribute (pollster identifier) to
group near families. The new datasets erase the pollster identifier so the previous work
can not be applied and other approach is needed.

This paper proposes a new approach for this issue and expose a method to assign
economical indexes to each censal section based on the use of Genetic Algorithms [1].
These indexes could be used to estimate the economical situation of new customers.

This paper is organized as follows. Second section explains the format of the used
data. Third section explains the new defined process and the results of the experimenta-
tion done for the region of Madrid. The last section presents the conclusions and further
future work

2 Data Fusion

The work is related to Data Fusion, also know as micro data set merging. In short, we
have two data sets that could not be joined but share some variables. The target of Data
Fusion is add new variables from one dataset based on shared variables.

Nowadays, it is used to reduce the cost of surveys. For example, we could create
two samples of the target population and use two small surveys to each sample. The
results of the two surveys could be joined using Data Fusion techniques.

As said in [9], one of the most complex issues in data fusion is the measure of the
quality. In our particular case, this issue has an important impact because this quality is
the best measurement for fitness functions.

3 Data Formats

This work is heavily based on the available data. All steps must take into account data
sources, their formats and aggregation levels.

Spanish Statistics Institute (INE) published two main sources of information. These
two datasets are:

– Population and Housing Censuses (PHC). Contains all demographic data aggre-
gated at censal section level.
This data set contains attributes such as sex (male, female), age (ranges), profes-
sional occupation, income... as shown in Table 1.

– Family Expenditure Surveys (FES). This dataset contains mainly economic data
with a few demographic variables aggregated at family level. Each family is repre-
sented by its main earner.
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Table 1. Example of PHC data set

Censal section Sex Male Sex Female Basic studies Medium studies High studies ... Income
CS1 60 40 10 60 30 ... 20,000
CS2 45 55 20 40 40 ... 15,000
CS3 49 51 35 40 25 ... 12,500
... ... ... ... ... ... ... ...

Table 2. Example of FES data set

Family Id. Sex Age Study level ... Income
1 Male 40 Basic ... 20000
2 Male 55 Medium ... 22000
3 Female 35 Medium ... 15000
4 Male 60 High ... 17000
5 Female 40 Medium ... 19000
... ... ... ... ... ...

Table 3. FES data set from Table 2 converted to unified format

Family Id. Sex male Sex female ... Age 35-39 Age 40-44 Age 45-49 ... Income Index
1 100% 0% ... 0% 100% 0% ... 1.08
2 100% 0% ... 0% 0% 0% ... 1.18
3 0% 100% ... 100% 0% 0% ... 0.81
4 100% 0% ... 0% 0% 0% ... 0.91
5 0% 100% ... 0% 100% 0% ... 1.02
... ... ... ... ... ... ... ... ...

The dataset contains data such as age, studies, income, expenses... as shown in
Table 2

These two datasets are converted to a unified data format. This unified format, shown
in Table 3, is based on PHC format with few changes and defines two sets of variables:

– Demographic data attributes are converted to marks. For each value or range of val-
ues a new variable is created (i.e., Studies Basic, Studies Medium and Studies High
are derived from Studies attribute and Age 0-4, Age 5-9, Age 10-14... are derived
from Age variable).
The data stored is the percent of the value over the total: valuei = valuei∑

∀j valuej

– Economic data are converted to indexes relative to the mean of the values: indexi =
valuei

mean

This proccess is also called binarization.
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4 A New Proposal to Join PHC and FES Datasets

Previous work [11] solved this problem with the data of 1991. This study involved three
steps:

1. The groups of families were generated. The generation took into account a geo-
graphical proximity criterion: the pollster identifier.

2. The groups created in the previous step were used to train models for economical
indexes. These models had as input the variables shared between FES and PHC and
as output the desired economic indexes.

3. The models were applied to the PHC dataset. This step assigned the economic
indexes to each censal section.

This old approach can not be applied to the new dataset due to the lack of the pollster
identifier used as proximity criterion. A new methodology must be defined based on the
ideas of this previous work. Besides, we can use new knowledge related to the selection
of families done by INE for the FES dataset.

The documentation of the FES [2], provided by INE, shows a stratified selection of
families:

– First, the most important censal sections of each autonomic region are chosen.
– Then, on each censal section, the criteria of the importance of the town (the stratum

attribute of the dataset) is used. Groups of eight families are randomly chosen for
each stratum.

In conclusion, the National Statistics Institute chooses a number of groups taking into
account the importance of the autonomous region and stratum. The number of groups
can be calculated with the expression households in FES

8 . For example, in Madrid, 776
families are chosen in 97 groups, as shown in Table 4.

The new methodology has the same steps that the old one but differs in the genera-
tion of the groups of families. The new methodology tries to create groups of 8 families
as similar as possible to the real ones. Our process mimics the INE procedure and cre-
ates groups of 8 families from the same autonomic region and stratum. Two different
approaches has been proposed and compared:

– Random selection
– Optimization based selection. This approach uses Genetic Algorithms as optimizer.

Table 4. Number of groups of families in each stratum (Madrid)

Autonomous Region Stratum (importance of the town) Groups Families
Madrid 1 57 456
Madrid 2 22 176
Madrid 3 6 48
Madrid 4 5 40
Madrid 5 3 24
Madrid 6 4 32
Total - 97 776



Using Genetic Algorithms to Improve Accuracy 61

4.1 Random Approach

The first idea used to solve the problem is the random approach. The detailed steps are
shown in Figure 1.

PHC
(Censal section level)

FES
(Family level)

(1)

(1)
(2)

Random

(3)
(4)

(4)

Unified PHC
(Censal section level)

Unified FES
(Family level)

Aggregated FES

1
(Groups level)

Model

(5)

Demographic data

Economical indexes

Predicted economical indexes

Fig. 1. Random process

The main steps are:

1. PHC and FES dataset are converted to the unified format (described on Section 3).
The result is two datasets with the same attributes. The difference between these
datasets is the aggregation level:

– PHC aggregated at censal section level.
– FES aggregated at family level

In both datasets, we could distinguish two sets of attributes:

– Demographic data used as input.
– Economic indexes used as output.

2. Assign random groups to each family of the unified FES and aggregate the resulting
groups. The resulting dataset is aggregated at group level.
The algorithm generates groups of 8 families, randomly chosen without repetition,
from each autonomous region and stratum.

3. Economic indexes models are trained using the previous groups. In this case, we
train lineal models using as input the demographic attributes and as output the in-
come index.

4. Trained models are applied to PHC dataset (it has the same unified format). This
will assign the predicted economical indexes to each censal section.

5. Thus, if the real index is available it is possible to measure the accuracy of the
prediction.
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Fig. 2. Random grouping algorithm for Madrid (Experiment 1)

4.1.1 Results
The random approach is tested with two set of groups. Each group is treated separately
to analyze how the initial random initialization of groups affects the final results.

The Figure 2 and Figure 3 shows the comparison between real income index (pub-
lished by the INE) and the index predicted by the model for 50 censal sections of
Madrid.

The results of each experiment depend on the random set of groups generated. This
random generation introduces noise in the models so the final results have high errors.

The cause of these bad results is the poor similarity between generated groups.
As an example, Figure 4 shows the income index distributions used for training. The
random selection creates random distributions so the results depend on this selection so
the generated distributions differ from the real ones.

4.2 Genetic Algorithm (GA) Approach

Due to the bad results obtained by the random approach, other approach is proposed.
On this second approach, we use a grouping algorithm that takes into account the final
objective. This method could improve the results of the trained models.

The proposed method is based on genetic algorithms. The group generation and
selection are controlled by a genetic algorithm which evaluation function is the accuracy
of the trained models.

In this sense, the evolution of the genetic algorithm will create the best set of groups
of families.

The global view of the algorithm:

1. As in the random approach, both PHC and FES are converted to the unified format.
The result is two datasets with the same set of attributes but aggregated at different
levels:
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Fig. 3. Random grouping algorithm for Madrid (Experiment 2)
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Fig. 4. Distributions of the Income Index used for training

– PHC aggregated at censal section level
– FES aggregated at family level

2. The genetic algorithm will create ”random” groups derived from its individuals.
The data in FES dataset is aggregated according with the generated groups. At this
point both PHC and FES has the same format and both are aggregated.

3. Then the fitness of each group is calculated. These main steps are involved:
(a) Each set of groups (individual) of the previous step is used to train a model

for economical indexes. This model uses the demographic data as input and
income index as output.

(b) Each previous model is applied to the PHC dataset. This step assigns the pre-
dicted income index to each censal section.

(c) Using the prediction of income index and the real index (available in PHC) is
possible to measure the accuracy of the set. In this case the sum of the differ-
ences is used as the fitness value of each set of groups.
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Fig. 5. Genetic Algorithm process

In this case, a Steady-State genetic algorithm is used. The individuals are a array of real
numbers as long as the number of families. This array is sorted and divided in groups
of 8 (according with the rank) to generate the groups.

4.2.1 Results
As said before, the difference between real and modeled income index are used to evalu-
ate each set of groups. The figure Figure 6 compares the real index and the modeled one.

The error is still high but better than the random approach. The best point is that
the error is independent from the random initial set of groups. In almost cases, the final
solution is the same.

The differences between families in the same censal section could be the reason of
the high error. Censal sections with average income have the lowest error while those
with lowest of highest income have the highest errors.
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5 Conclusions and Future Work

This paper proposes a new workaround to join Spanish Population and Housing Cen-
suses and Families Expenditure Surveys datasets. The work studies two different ap-
proaches to the problem: random and Genetic Algorithms.

The results show that the Genetic Algorithm approach obtains better results that the
random approach due to the noise introduces by the random selection of families. But
these are only the first steps to be done to resolve this issue. A lot of work are still
undone.

First of all, the accuracy of the results used could be improved. This could be
achieved changing the model that is learned from data or changing the optimization
algorithm.

The learned models could be improved using the most significant variables as in-
puts. This involves the feature subset selection (FSS) of the used variables.

Multiple optimization algorithms could be used. This work uses only Steady State
Genetic Algorithm but it is possible to use other implementations of GA [1], Estimation
Distribution Algorithms (EDA) [6], Local Search [8], mixed hybrid approach, etc.

Only the income index is used to evaluate the groups generated by the optimization
algorithm. If more indexes were used the results could be more accurate and the possible
over-fitting of the groups will be avoided.
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Abstract.  The pairwise comparison method is an interesting technique for as-
sessing priority weights for a finite set of objects. In fact, some web search en-
gines use this inference tool to quantify the importance of a set of web sites. In 
this paper we deal with the problem of incomplete paired comparisons. Specifi-
cally, we focus on the problem of retrieving preference information (as priority 
weights) from incomplete pairwise comparison matrices generated during a 
group decision-making process. The proposed methodology solves two prob-
lems simultaneously: the problem of deriving preference weights when not all 
data are available and the implicit consensus problem. We consider an ap-
proximation methodology within a flexible and general distance framework for 
this purpose. 

1   Introduction 

The pairwise comparison method is a useful tool for assessing the relative impor-
tance of several objects, when this can not be done by direct rating. In fact, some 
web search engines use this inference tool  to quantify the importance of a set of web 
sites ([9]). 

Formally, the problem we are interested in can be formulated as follows. Suppose 
there is a finite set of objects { }nxxX ,...,1=  which are compared by an expert in the 

form of paired comparisons, i.e. he assigns the value 0>ijm  to the answer to the 

question “of object 
ix  and 

jx , which  is more important and by what ratio?”. Then, 

an nn ×  pairwise comparison (pc) matrix 
jiijmM ,)(=  is defined. 

A wide range of techniques have been developed  to deriverelative importance as a 
priority vector from a pc matrix. In a multicriteria decision-making context, where 
objects are criteria, Saaty [11] proposed a well-known solution in his Analytical Hier-
archical Process (AHP) method. This solution is based on searching the principal 
eigenvector associated with a “rational” pc matrix. 

In practice, noise and/or imperfect judgements lead to non “rational” pc matrices. 
In this case, the challenge is to obtain a priority vector from non-ideal matrices. To do 
this, a distance-based point of view may be adopted. The problem should be stated as 
follows. How can a “rational” matrix, B , which is “as close as possible” to M be 
found?. Priority weights associated with M are obtained from B . Most of the papers 
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using this approach has been based on Euclidean distance ( see [2] and [8]). A more 

general pl -distance framework was stated in [4]. 

Another problem associated with pairwise comparison methods is missing infor-
mation. There are several possible sources for incomplete information (see [13]): too 
many paired comparisons to process, time pressure, lack of knowledge and a DM's 
limited expertise related to the problem domain... 

There are some studies in the literature on how to deal with incomplete informa-
tion. In an AHP context, some methods for estimating unknown data are introduced in 
[7], [3] and [14]. For specific distance-based frameworks, [12] and [5] solve the prob-
lem using mathematical programming. 
In this paper, we are interested in dealing with a particular case that leads to incom-
plete matrices: a group of experts with limited expertise give their preference infor-
mation on subsets of X in which their domains of expertise are defined.  In this case, 
two different problems appear simultaneously: the problem of deriving preference 
weights when not all data are available and the implicit consensus problem. We pro-

pose a general pl -distance framework, where the p-parameter can be interpreted as  

having a preference meaning. A study for the complete case appears in [6].  
The paper is organized as follows. The main definitions are introduced in section 2. 

Section 3 focuses on the formulation of the problem and the proposed problem-
solving  method. The above ideas are illustrated with the help of a numerical example 
in section 4. Finally, the main conclusions derived from this research and some appli-
cations of preference information retrieval are included in section 5. 

2   Preliminaries 

Let { }nxxX ,...,1=  be a finite set of ( )2≥nn  objects. Let { }mEEE ,...,1=  be a group 

of m experts. Let  XX k ⊆  be the cluster (subset) of 
kn  objects, in which expert kE  

is considered to be qualified to express precise preference information. Some points 
should  be made about these subsets: 

1. 
m

k
kXX

1=

=  

2. .,...,1,Xsuch that i mjiXiji j =∅≠∩≠∃∀  

We assume that expert 
kE  only reports his preferences on the elements of 

kX . 

This is the reason why incomplete pairwise comparison (pc) matrices are considered 
in this paper. Thus expert Ek gives an incomplete pc matrix on X, Mk=(

ijm )i,j as fol-

lows: k
ijm  represents the estimation of the preference ratio between elements ix  and 

jx  if kji Xxx ∈, . Otherwise, the comparison value is underdetermined, there is no 

information, and we will denote the missing comparison by  zero . 
The problem is how to retrieve global preference information from incomplete pc 

matrices Mk in order to obtain the consensus preference weights for the elements of 
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X . In the underlying estimation problem, there are two issues about rationality for 
consideration: 

1. The preference information of each expert 
kE  is expected to verify normative 

properties (“local rationality”) as defined by  Saaty, i.e. for each { }mk ,...,1∈  

kji
k
ji

k
ij Xxxjimm ∈∀= , such that   ,1                         (local reciprocity) (1) 

klji
k
lj

k
il

k
ij Xxxxljimmm ∈∀= ,, such that   ,,          (local consistency) (2) 

2. In the ideal case, interactions of individual preferences should verify normative 
properties (“global rationality”), i.e. for all { }mkkk ,...,1,, 321 ∈  

21

21 , such that   ,1 kkji
k
ji

k
ij XXxxjimm ∩∈∀=           (global reciprocity) (3) 

.,

, such that   ,,

3231

21

321

kklkkj

kki
k
lj

k
il

k
ij

XXxXXx

XXxljimmm

∩∈∩∈

∩∈∀=
   (global consistency) (4) 

We find that the second issue deals implicitly with a consensus pc matrix that veri-
fies rational properties as described by  Saaty. On the other hand, it is quite clear that 
global properties imply local ones. Therefore, we will refer to global rationality in the 
rest of the paper. 

In practice, the complexity of the decision-making problem, the existence of im-
perfect and subjective judgements, independent evaluations… lead to pairwise infor-
mation without rational properties. Moreover, different values could be assigned by 
different experts to the same objects. In this context, the challenge is to derive a con-
sensus preference weight vector ( )nww ,...,1

 for the elements of X . 

3   Problem Formulation and Problem-Solving Method 

Our objective is to derive a consensus priority vector for the problem stated above. 
The main idea is to deal simultaneously with an estimation problem and a consensus 

problem. A general pl - distance framework is proposed for this purpose. 

Let ),...,( 1 nwww =  be the positive vector that we are looking for, whose compo-

nents are normalized, i.e. 
=

=n

i iw
1

1 . In the ideal case, the relations between non-

null elements of pc matrices and the components of w are as follows 

0=−
j

ik
ij w

w
m  

.0such that},...,1{},...,1{, >∈∈∀ k
ijmmkandnji  

(5) 
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The above equations are non linear. To take advantage of linear algebra tools, the 
following equivalent linear equations are considered for 0>ijm  

0=− ij
k
ij wwm  

.0such that},...,1{},...,1{, >∈∈∀ k
ijmmkandnji  

(6) 

This constitutes an overdetermined homogeneous linear system. Generally, the 
above linear system does not have an exact non-trivial solution because rationality 
conditions are not verified in practice. Hence we shall look for a solution that gets 

compatibility as best as possible between the above equations in an pl - metric space. 

Formally, this is equivalent to searching approximated solutions that minimize the 

aggregation of residuals 
ij

k
ij

k
ij wwmr −=   for 0>k

ijm  in an pl - metric, ∞≤≤ p1 . 

Notice that the solution for the case 2=p  is the well-known linear least square solu-

tion of the over-determined linear system (6) (see [1]). 
Therefore, the following optimization problem is obtained for metric ∞<≤ p1  

{ }

pm

k mji

p

ij
k
ij

k
ij

wwm

1

1 0:,

min −
= ≠

 (7) 

subject to 

.,...,10

1
1

niw

w

i

n

i
i

=∀>

=
=

 (8) 

The feasible set is defined by normalization and positivity conditions for weights. 
     For ∞=p , the objective function is expressed as follows 

{ }

.,...,10

1

maxmin

1

0;,,

niw

w

wwm

i

n

i
i

ij
k
ij

mkji k
ij

=∀>

=

−

=

≠

 (9) 

In the above problems, the residual aggregation is affected by the p-parameter. Ac-
cordingly, as [ )∞∈ ,1p  increases, more importance is given to the larger residual 

values. Hence, the case 1=p  leads to a more robust estimation, whereas the estima-

tion for ∞=p  is more sensitive to extreme residual values. 

Once the analytical framework has been established, we focus on computing the 
approximated weights for different p-metrics. The above optimization problems can 
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be formulated as mathematical programming problems. The residuals k
ijr   are re-

placed in this formulation by k
ij

k
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Thus, for ),1[ ∞∈p , the optimization problem is equivalent to the following 

mathematical programming  problem 
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     For ∞=p , it can also be shown that the optimization problem is equivalent to the 

following linear programming  problem  
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(12) 

where D  is an extra positive variable that quantifies the maximum deviation. 
We should make some important points from a computational point of view for the 

most used commonly values of p . For 1=p  and ∞=p , the above formulations are 

reduced to linear programming problems that can be solved using the simplex 
method. The case 2=p  corresponds to the least square solution of an overdetermined 

linear for which several numerical tools are available (see[1]). 
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4   A Numerical Example 

We present a numerical example to illustrate the proposed method. We consider a set 
of four elements { }4321 ,,, xxxxX =  and a set of two experts {E1,E2}. We assume 

that experts E1 and E2 give their opinions on elements of { }3211 ,, xxxX =  

and { }4322 ,, xxxX = , respectively, in terms of the incomplete pc matrices 1M  and 
2M , respectively: 

==

12.05.00

5140

225.010

0000

0000

0132

03/115.0

05.021

21 MM  (13) 

Note that the zero entries in the above matrices represent missing of data. In one 
case, expert E1 is not able to give information about alternative 4x . On the other 

hand, E2   gives no information concerning the element 1x .  In this example, we find 

that information provided by the two experts verifies the local reciprocity property but 
does not verify local consistency. Moreover, the estimations given by experts on the 
common subset {x2, x3} are not compatible: A consensus between their preference 
information is required. 

 Now we translate the numerical estimations given in (13) by the experts in linear 
equations as in (6).  This constitutes a linear system with more equations than un-
known variables (overdetermined system). Because the matrices in question are not 

consistent , there is no exact positive solution. Hence we look for the pl - solution 

with ∞= ,2,1p , as described in the last section. For the case 2=p , the least square 

solution of the linear system (6), with positiveness and normalization restrictions, is 
computed. For the cases  1=p  and ∞=p , the solutions are computed  by solving 

the linear programming problems (11) and (12) , respectively.  MATLAB numerical  
software was used to do the computations. 

The preference weights and the associated rankings obtained by applying our 
methods for ∞= ,2,1p  are as follows 

Table 1. Priority vectors and their associated rankings for ∞= ,2,1p  

 Priority vector Ranking 

1=p  ( )102.0512.0128.0256.0  
4213 xxxx  

2=p  ( )094.0494.0139.0256.0  
4213 xxxx  

∞=p  ( )103.0482.0137.0275.0  
4213 xxxx  
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In the above example, the original pc matrices are near to locally consistent matri-
ces. Therefore, the priority vectors for different metrics are close and their associated 
rankings are the same.  

To illustrate the effect of the  p-parameter in the method, we assume that expert E2 
changes the comparison between objects x2 and x3. Now, M2 is not consistent and not 
even reciprocal. This change leads matrix M2 to be “more inconsistent”. On the other 
hand, “the level of consensus” between experts is lower. In this case, we get the fol-
lowing results. 

Table 2. Priority vectors and rankings for the perturbed example 

 Priority vector Ranking 

1=p  ( )090.0454.0151.0303.0  
4213 xxxx  

2=p  ( )044.0101.0108.0175.0  
4321 xxxx  

∞=p  ( )153.0205.0256.0384.0  
4321 xxxx  

 

We can see that the effect of the perturbation on the results differs depending on 
which p-parameter is used. The perturbation causes a rank reversal in the case of 

∞= ,2p , whereas the method with 1=p  is more conservative. 

5   Conclusions 

We have provided a flexible method for retrieving preference information (as priority 
weights) from incomplete pc matrices. We have focused on a particular problem 
where a set of incomplete pc matrices is obtained during a group decision-making 
process. The proposed methodology simultaneously solves two different problems: 
the problem of deriving preference weights when not all data are available and the 
problem of searching a consensus priority vector. These two problems have been  

solved using a unified pl - distance framework. This is equivalent to adopting the 

same point of view for the deviations of both local and global rationality. 
Moreover, the methodology proposed here can be applied to other related scenar-

ios. For instance, the proposed method could manage pc matrices with missing data in 
a general framework. Thus, our techniques do not force the decision maker to manage 
unknown or imprecise data. Following the procedure, point/local comparisons are 
smoothed out by the other seeking global rationality. 

On the other hand, our approach can be used to deal with pc problems on a set of 
objects with high cardinality. Thus, the whole set X could be split into several smaller 
sets Xk⊆X, based on an “idea of similarity”. This leads to a set of incomplete pc ma-
trices. In this context,  more accurate decision maker estimations can be obtained. 

Finally, the pl -distance framework offers a new preference interpretation based on 

the value of the p –parameter. Thus, the case 1=p  leads to a more robust estimation, 

whereas the estimation for ∞=p  is more sensitive to extreme residual values.  
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Abstract. High-throughput microarray data are extensively produced to study 
the effects of different treatments on cells and their behaviours. Understanding 
this data and identifying patterns of groups of genes that behave differently or 
similarly under a set of experimental conditions is a major challenge. This has 
motivated researchers to consider multiple methods to identify patterns in the 
data and study the behaviour of hundreds of genes. This paper introduces three 
methods, one of which is a new technique and two are from the literature. The 
three methods are cluster mapping, Rank Products and SAM. Using real data 
from a number of microarray experiments comparing the effects of two very 
different products we have identified groups of genes that share interesting ex-
pression patterns. These methods have helped us to gain an insight into the bio-
logical problem under study.   

1   Introduction

Over the last few years we have seen an explosion of high throughput microarray data 
being produced by biologists and other researchers, studying the behaviour of multi-
ple genes at the same time. These experiments, mostly related to gene response analy-
sis, have been applied to several biological processes. One of the most popular appli-
cations is to detect the differences of gene expressions between two or more condi-
tions. Each condition may be related to a treatment, physiological state or other type 
of study. Each experiment normally involves some biological replicates. When condi-
tions or treatments are studied, two hypotheses may exist:  

(i) there is no difference in gene expressions between two or more conditions, 
when conditions or treatments are compared directly. This implies that the true 
ratio between the expression of each gene in the comparing samples is one,  

(ii) there is a significant difference in gene expressions between two or more con-
ditions, when conditions or treatments are compared. This implies that the ra-
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tios between the two conditions is not the same and the goal is to identify 
group of genes that behaved differently and look for patterns that indicate their 
differences. 

The problem studied here was gene response analysis of microarray data from mul-
tiple biological experiments that involve using various treatments. The overall goal of 
this investigation was to identify the effects of these treatments on a particular prob-
lem under consideration. 

To achieve our data mining objectives, three issues were important: (i) selecting 
the right method, (ii) applying the correct data analysis strategy, and (iii) providing a 
certainty factor for each identified gene. Here we applied three methods, two of which 
are listed in the literature and one that has been introduced as part of our research. No 
a-priori information about attributes of interest or their behaviour was used in these 
studies. However, extensive validation techniques were used to evaluate the set of 
identified attributes.The paper continues as follows. We first provide a brief overview 
of related work and introduce methods applied. We then follow with a detailed sec-
tion on experimental analysis that consists of description of the data, our data pre-
processing, results and validation. In the last section we present our conclusions. 

2   Related Work 

Accurate identification of differentially expressed genes and their related patterns 
using high throughput data has been investigated by many researchers. Here we report 
most of the research related to the knowledge discovery aspect of this paper. Consid-
ering gene expression data as a matrix (the rows are genes and the columns the results 
of each experiment), identifying differentially expressed genes can be done by com-
paring rows or analyzing experiments. While most researchers investigate either gene 
dimensions or experiments, a few investigations combine both [1]. Getz et al [6] pro-
posed a complex, two-way clustering method with the idea of identifying subsets of 
the genes and samples so that when one group is used to cluster the others, stable and 
significant partitions are identified. Tang et al [8] also investigated a two-way cluster-
ing method in which relationships between genes and experiments are dynamically 
taken into account. The method iteratively clusters through both gene dimensions and 
experiments. Troyanskaya et al [9] compare three model-free approaches, to identify 
differentially expressed genes. These are: non-parametric t-test, Wilcoxon Rank Test, 
and a heuristic method based on high Pearson correlation. Their results using simu-
lated and real data showed very low false positive rates. Cui and Churchill [4] applied 
modified t-test and ANOVA to detect differential expressed genes in microarray ex-
periments.  Similarly, Tsai et al [10] used a combination of type-I error, power of 
one- and two-sample t-tests and one- and two-sample permutation tests for detecting 
differentially expressed genes. Their results showed the two-sample t-test to be more 
powerful than others. Of other comparative studies to be listed is the research on fea-
ture selection and classification by Li et al [7] where multi-class classification of 
samples based on gene expressions is investigated.  
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Among related work on methods directly related to our research are: (i) Rank 
Products [2] and (ii) Significance Analysis of Microarrays-SAM [11]. The Rank 
Products method is based on biological reasoning and has been evaluated on biologi-
cal data and shown to perform better than a t-test and SAM. SAM, on the other hand 
assigns a score to each gene on the basis of change in gene expression, relative to the 
standard deviation of all measurements. Performance of SAM was reported in the 
same paper to be better than conventional methods, in terms of false discovery rates.  
These methods are explained in the next section.  

3   Methods 

This section provides an overview of the three methods applied in this research. We 
start with Cluster Mapping, which is introduced in this paper, and continue with a 
brief description of the other two methods that are listed in the literature. 

3.1   Cluster Mapping

This method was originally introduced to search for interesting patterns in time series 
data [5]. It consists of a combination of unsupervised and supervised learning tech-
niques. Unsupervised learning does not need any user’s involvement or interference 
during the entire data mining process (e.g. clustering). Supervised learning requires 
some forms of user’s participation along the line of data analysis process. The first 
step is to apply a sliding window of size x for partitioning experiments (e.g. time 
points) and move the sliding window by a step of one. Therefore, for a data set con-
sisting of n experiments (n attribute vectors containing gene expression data), the total 
number of windows to analyze, S (or number of combined data points selected), is (n-
x) + 1. For example, for a data set with 5 experiments (n=5) and a window size of 2 
(x=2) with a step of one, we will have S=4.  

Fig. 1. Left side of the figure shows the initial structure of the data matrix and right side of the 
figure shows the structure of the data matrix with the list of all clusters obtained with the as-
signed labels 

Experiments  New Labels 

   X11 X12 X13  ...         X1n

   X21 X22 X23     ...       X2n

   X31 X32 X33     ...       X3n

   ... ... ...          ...     ... 
   ... ... ...          ...     ... 
   Xp1 Xp2 Xp3    ...        Xpn
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   v2

   v1

   … 
   … 
   vm

…
…
…
…
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E1     E2     E3     …     En

Xp*n=

X11 X12 X13   ...       X1n

X21 X22 X23      ...      X2n

X31 X32 X33      ...      X3n

... ...            ...     ... 

... ...              ...     ... 
Xp1 Xp2 Xp3       ...    Xpn

Experiments 

   v1

   v2

   v2

   … 
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   Xp*n=
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In the second step, an unsupervised learning process, a clustering method, is ap-
plied to each window to identify group of genes that, based on a measure of similar-
ity, belong to a particular group. The unsupervised method selected for this step will 
depend on the characteristics of the application for which the data is generated. The 
gene expression data matrix is then labeled with cluster assignments (Fig. 1). 

We then group together genes that always remain in the same cluster in the se-
quences of clustering on each window. Following is the pseudo code of the algorithm 
which recursively splits the data matrix based on the labels 

Procedure SplitData (DataMatrix, StartLabelIndex)
Attribute at StartLabelIndex with outcomes v1, v2 …, vm;

m is number of the clusters at the StartLabel (ini-
tially, L1 is the start label); 

    #Split DataMatrix D into subsets Dv1,…, Dvj, …, Dvm;

count = 0; # for new labels
    For i=0; i<m; i++ ;
        If (StartLabelIndex of Dvi + 1 != n - x + 1)

Then SplitData (Dvi, (StartLabelIndex + 1)) 
        Else
   count++; {Dvi ∈ D, Label Dvi with Lcount};

End if 
End for 

End

As an example, if we use K-Means for clustering with K=k, the total number of 
new attribute vectors S=s, and then the maximum number of new clusters could be ks.
The patterns in clusters would then be evaluated based on some domain knowledge 
and three main properties of cluster centroid information: (i) properties of individual 
experiments (e.g. mean, median, etc.), (ii) properties of each experiment with respect 
to comparing experiments (e.g. dimensionless terms such as forward-centroid ratio, 
backward-centroid ratio, etc.), and (iii) properties of all or a sub-set of experiments 
(e.g. partitioned slope).  

In this study, instead of clustering every two or three adjacent experiments or 
conditions, we applied K-Means clustering method, with k=8 to cluster all the genes 
in each individual experimental condition, which was the average of all biological 
replicates under that condition. The value of k=8 was chosen based on a set of ex-
periments, in which we tried to minimize the number of genes belonging to more 
than one cluster. The results showed visually good separation that the highly over- 
and under- expressed genes were clearly distinguished from other genes under each 
individual experimental condition. Due to the characteristic of the data, the way of 
choosing k could be priori, which usually requires a good understanding of the 
characteristic of the data and the background knowledge of the data. After choosing 
the value k, we then applied the algorithm described above to generate a set of new 
clusters.  



78 A.F. Famili et al. 

3.2   Rank Products 

This method has been recently introduced by Breitling et al [2], and is based on rank-
ing of genes across different experiments or replicates. The rank of up-regulation 
(denoted as upr ) for each gene in each experiment is defined as its position on the list 

after sorting all genes by decreasing expression values. Using these rank values across 
experiments, the combined probability of observing a certain rank pattern in random 
lists of genes can be estimated as ∏ =

= K

I i
up
gi

up
g nrRP

1 , )/( , where 
,
up

i gr is the position of gene 

g in the list of genes sorted by decreasing expression values in the ith experiment and 
ni is the total number of genes. In this way, lower RP values indicate a lower likeli-
hood of observing a gene on the top of the list of differentially expressed genes (up-
regulated genes) just by chance. The same procedure is carried out to detect down-
regulated genes, but sorting them by increased expression values. Breitling et al [2]
also proposed a simple procedure to measure the statistical significance of observed 
differentially expressed genes based on the likelihood of observing a given RP value 
or better in a random set of experiments. The procedure is based on generating a 
number of random experiments by randomly shifting ranks of genes from the original 
dataset. Then, for each gene, RP values are calculated in each random dataset and the 
number of simulated RP values smaller than or equal to a given experimental RP 
value are counted. We can then calculate the average expected value, E(RP), just 
dividing by the number of random experiments. For each gene g, the percentage of 
false-positives if this gene (and all genes with RP values smaller than this cutoff) 
would be considered as significantly differentially expressed can be also estimated as 

( ) )(/ grankRPEq gg = , where rank (g) denotes the position of gene g in a list of all 

genes sorted by increasing RP value. This estimates the false discovery rate and pro-
vides a way to assign a significance level to each gene. 

3.3   SAM (Significance Analysis of Microarrays) 

This statistical technique was introduced by Tusher et al [11] to identify differentially 
expressed genes under different experimental conditions. The method assigns a statis-
tics score to each gene by considering the relative change of each gene expression 
level with respect to the standard deviation of repeated measurements. The relative 
difference is calculated as following: 
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where )(ixa  and )(ixb are defined as the average levels of expression for gene i in 

condition a and b, respectively, and )(is  is the standard deviation of the repeated 

experiments: 
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where
m

and
n

are summations of the expression measurements in condition 

a and b, respectively. In this equation, q = (1/n1+1/n2 )/( n1+ n2-2), where n1 and n2 are 
the numbers of measurements in condition a and b. s0 is a small constant which is 
chosen to minimize the coefficient of variation. The genes with scores greater than a 
threshold are deemed potentially significant. A false discovery rate, which is the per-
centage of genes identified by chance, is also estimated by performing permutation. 
The number of falsely discovered genes corresponding to each permutation is com-
puted by counting the number of genes that exceed a user defined cutoff for the in-
duced and repressed genes. 

4   Experimental Analysis 

We performed a series of experiments to analyze the data, discover the most useful 
knowledge related to these experiments, and also evaluate the usefulness of CM in 
multi-experiment comparison. The following sections provide some details on these 
studies. 

4.1   The Data Sets 

The data used in this study were a large data set representing a set of attributes for 
multiple biological experiments. Each biological experiment had 2-4 replicates, with 
4 treatments of substance A and B. Each data set contained 31200 data points, with 
two measurements for each attribute of interest. Therefore, each experiment repre-
sented a log-ratio of biological stimulate and control for 15600 values. Missing data 
were flagged and the entire data was normalized using the Lowess method [3].

4.2   Data Preprocessing 

The preliminary investigation on the data characteristics showed no particular anoma-
lies, and there were only 0.29% of the values that were found to be missing. Accord-
ing to the correlation of gene expression among the replicates under the same treat-
ment, four biological samples did not correlate with others and therefore were re-
moved. In addition, 67 clones were removed due to a high standard deviation (thresh-
old used was 1, empirically determined) in duplicated data points. Then the gene 
expression values of intra duplicated clones were averaged. 53 clones were also fil-
tered out due to a high standard deviation (threshold used was 1, empirically deter-
mined) among replicates. Since some of our analysis methods did not accept data with 
missing values, we removed 40 data points which contained missing data. Finally, 
there were 15440 clones across the 8 experiments left for data analysis. They were: 3 
replicates of Substance A, 3 replicates of one kind of Substance B and 2 replicates of 
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another Substance B. We note that when CM was applied, the average of the biologi-
cal replicates under each experimental condition was used. 

4.3   Search for Patterns 

To identify the most informative genes and to discover all associated patterns in the 
data, we defined a data analysis strategy that is shown in figure 2. We applied the 
three methods that were described earlier and selected a common strategy to validate 
the significance of these genes. The main biological objective was to identify the most 
informative genes that showed a marked: 

(i) over- or under-expression in response to two different preparations of Substance 
B (common genes among Substance B); 

(ii) over- or under-expression in response to Substance B and Substance A com-
pared to untreated cells (common genes among Substance B and Substance A); 

(iii) difference in their expression behavior in response to Substance A compared 
to Substance B treatments (different genes among Substance B  and Substance A). 

To this end we evaluated the results reported by: (i) CM, SAM and RP, (ii) SAM 
and RP and not CM. We were further interested to learn about all the genes that were 
validated using one of the acceptable techniques. 

We applied CM, SAM and RP to detect genes that were significantly over- or un-
der- expressed in response to Substance A and Substance B treatments as well as 
genes that showed differences in their expression patterns between both treatments.
Specifically, to identify meaningful clusters applying CM, we obtained new features 
(e.g. forward centroid slope) from the centroids of the new clusters generated (as 
described in section 3.1). Two criteria are used to determine whether a gene cluster is 
differently expressed or similarly expressed under two conditions, the absolute value 
of centroid and the slope of the centroid under the two experimental conditions. 

Fig. 2. Data analysis process 

Microarray 
Experiments 
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   - RP  
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If the absolute value of the slope was greater than or equal to certain threshold (1 
was used in our case, which was determined by a domain expert), and the absolute 
value(s) of the centroid under either of the two conditions was greater than certain 
threshold (0.8 was used (in log 2 ratio), which was also determined by a domain ex-
pert), then we considered the cluster of genes as differently expressed under the two 
conditions. Otherwise, if the absolute value of the slope was less than certain thresh-
old (e.g. 1), and the absolute values of the centroid under both conditions were greater 
than certain threshold (e.g. 0.8), then we considered the cluster of genes similarly 
expressed under the two conditions. In our experiments for RP, the expected RP-
values and False Discovery Rate (FDR) were calculated using 100 random experi-
ments (number of permutations) of the same size of the original dataset. We selected 
genes based on the zero false discovery rate. As for SAM, a one-class response was 
applied to identify the genes which were highly over- or under-expressed in Sub-
stance B (similarly expressed genes among Substance B), and also applied to deter-
mine the genes which were highly over- or under-expressed in Substance B and Sub-
stance A (similarly expressed among Substance B and Substance A). Two-class un-
paired analysis was applied to identify genes which were similarly expressed among 
Substance B but different with respect to Substance A. In order to make proper com-
parison between the genes discovered by SAM and RP, we applied the following 
strategy: based on the X number of genes identified by RP, we selected approximately 
the same number of genes from SAM. We should mention that the false discovery 
rate for SAM was between 0.38 and 10.00 and the analysis was based on 100 random 
permutations. 

4.4   Results  

Our first attempt was to list all the genes identified by the three methods for all bio-
logical problems (groups). Table 1 shows the number of genes identified by all three 
methods. The numbers in brackets represent unique genes and do not include the 
unknown ones. 

Table 1. Number of genes discovered by different methods

SAM RP CM SAM & RP CM & SAM & RP     

Group1* 127 104 83 86 (60 known) 69 (46 known)     
Group2* 190 216 74 150 (106 known) 71 (48 known)     
Group3*  56 45 30 41 (13 known) 25 (9 known)    

Group1*: Highly over- and under-expressed genes in Substance B (similarly expressed genes 
among all treatments of Substance B). Group2*: Highly over- and under- expressed genes in 
Substance B and Substance A (similarly expressed genes among Substance B and Substance 
A). Group3*: Similarly expressed genes among Substance B, but differently with respect to 
Substance A. 
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The very first observation in this study was that the number of genes reported by 
CM method, especially in the case of genes that were differentially expressed in the 
treatments with respect to the control, was less than the other two methods (e.g. 83 for 
CM, vs. 127 and 104 for the other two, in group 1, in Table 1). SAM and RP methods 
tend to detect genes that are highly over- or under-expressed based on fold-changes in 
each condition compared to the control. CM aims to detect genes that show high abso-
lute ratios of treatment/control, but also show similarities in their expression patterns 
across treatments.  

To evaluate the usefulness of a complementary method, we defined two main 
properties for the list of genes in a Venn diagram, as listed in Figure 3. The usefulness 
of these genes was evaluated at a later step.  

4.5   Validation: Biological, Literature and Others 

To verify the biologically relevant gene expression changes, a series of literature and 
biological experimental validations were performed based on the random selection of 
the known genes from each group (unknown genes and replicates were not consid-
ered). In this study, we compared the ratios of the positive discovery of the number of 
genes identified by all three methods and by two only (SAM and RP). 

The three methods combined in this study, were able to take into account the statis-
tical significance of the genes, and also the gene expression patterns. Tables 2 and 3 
show that the true discovery rate of genes (which were calculated based on biological 
experimental validation and literature validation) related to the problem under study is 
increased when CM is involved for each biological problem (groups 1-2). Table 2 
shows the genes found in the literature. Table 3 contains results of biological experi-
mental validation. 

Fig. 3. The shadow in dark gray represents the number of genes identified by the three meth-
ods. The shadow in light gray is for the number of genes identified by SAM and RP only, and 
not CM
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Table 2. Number and percentage of literature validated genes from the known gene lists dis-
covered by all three methods and the genes discovered by SAM and RP (refer to fig. 3) 

  SAM and RP     SAM and RP and CM      SAM and RP (No CM) 
discovery rate     discovery rate       discovery rate 

 (dark gray + light gray)    (dark gray)       (light gray) 

Group1*   22/60 known genes = 36.6%    18/46 known genes = 39%        4/14 known genes = 28.6% 
Group2* 34/106 known genes = 32%       22/48 known genes = 45.8%   12/58 known genes = 20.1% 
Group3*       6/13 know genes = 46%       2/9 known genes = 22%    4/4 known genes = 100% 

Table 3. Number and percentage of biological experimental (RT-PCR) validated genes from 
randomly selected gene lists (refer to fig. 3)

 SAM and RP    SAM and RP and CM  SAM and RP (No CM) 
discovery rate   discovery rate   discovery rate 

(dark gray + light gray)    (dark gray)       (light gray)  

Group1*  8/60 known genes = 13%  7/46 known genes = 15%   1/14 known genes = 7% 
Group2*  7/106 known genes = 6.6%   6//48 known genes = 12.5%  1/58 known genes =1.7%   

CM has obviously been able to reduce the false discovery rate of the other two 
methods. This is evident from literature and biological experimental validation. For 
example, in table 2, for group 1 and 2, when CM was applied, the discovery rate in-
creased from 36.6% to 39% and 32% to 45.8%, respectively. However, for group 3 
CM did not perform this way. It is important to note that the validated results are 
based on some arbitrary selection of genes and did not follow any particular selection 
process. For example, in group3, for SAM and RP (not CM), all 4 genes were evalu-
ated; however for SAM, RP and CM, only 2 out of 9 genes were evaluated. This was 
due to the amount of time that was required for validation. Table 3 also shows that the 
CM involvement reduced the false discovery rate for the list of genes only listed by 
the other two (SAM and RP). For groups 1 and 2, the discovery rate increased from 
13% to 15% and 6.6% to 12.5%, respectively, when CM was applied.  

Overall the discovered patterns were very interesting and most of them had not 
been reported or validated before. 

5   Conclusion 

This paper deals with analyzing data from multiple biological experiments to identify 
gene responses to different experimental conditions. The main motivation for this 
research was to complement existing methods to achieve the best discovery rate when 
one needs to study the behaviour of hundreds of genes using an unsupervised ap-
proach. Two of the methods applied are from literature and one is a new approach. 
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These methods have been applied to analyze data from a number of microarray ex-
periments comparing the effects of two very different products. We have identified 
groups of genes that share interesting expression patterns. Through random selection, 
we have further validated certain genes from the list of genes identified by these 
methods. The approach has demonstrated (i) the strength and weakness of the three 
methods applied to genomics and (ii) that a single method may not be able to identify 
all gene responses under different experimental conditions, let alone that most meth-
ods by themselves provide a large list of genes.  

Overall, these methods have helped us to gain insight into the biological problem 
under study. The results also show that over-fitting may be resolved when multiple 
methods are applied. In addition to the methods presented here, other methods such as 
Wolpert’s stacked generalization [12], boosting and bagging also could be suitable. In 
the future research we will explore the possibility of using different k value for K-
Mean clustering, and also applying other clustering techniques such as SOM and 
Hierarchical clustering. We may also evaluate these methods to other data sets and 
consider other approaches for gene validation. This would be valuable support for 
gene identification and gene response analysis using microarray data and many other 
genomics data mining tasks that require a complex data analysis process.
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Abstract. Exploring the vast number of possible feature interactions in domains 
such as gene expression microarray data is an onerous task. We propose Back-
ward-Chaining Rule Induction (BCRI) as a semi-supervised mechanism for bi-
asing the search for plausible feature interactions. BCRI adds to a relatively 
limited tool-chest of hypothesis generation software, and it can be viewed as an 
alternative to purely unsupervised association rule learning. We illustrate BCRI 
by using it to search for gene-to-gene causal mechanisms. Mapping hypothe-
sized gene interactions against a domain theory of prior knowledge offers sup-
port and explanations for hypothesized interactions, and suggests gaps in the 
current domain theory, which induction might help fill.  

1   Introduction 

With the increasing investment in gene expression microarray technology, there has 
been a move toward a “systems biology” approach to understanding the coupling of 
gene networks and signaling cascades that describe the phenotypes of living matter 
(e.g., [1],[2],[3]).  This has led to a call for tools to (semi-)automatically explore the 
space of genomic interactions (e.g., [4]) in order to reduce the set of interactions to a 
manageable set for examination. The goal of this exploration is to focus analysts on 
plausible interactions, pathways, and markers, which can then be scrutinized further 
with hypothesis testing methods.  

Consistent with research on other exploratory strategies (e.g., [5],[6],[7],[8]), we 
describe an investigation of backward-chaining rule induction (BCRI) for hypothesiz-
ing molecular causality and functional interactions from gene expression microarray 
data. BCRI is a novel strategy for restricting the search through a rule-space to those 
rules with traceable influence on a given top-level target class. Put simply, BCRI is 
given a top-level classification with labeled data, and rule induction is performed to 
find rules that predict the specified class. Antecedent conditions found in discovered 
rules then become “sub-goals”, and rule induction is repeated on the data using these 
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sub-goal conditions as classes. The process of backward-chaining on rule antecedent 
conditions is repeated until a termination condition is satisfied. 

BCRI is intermediate between supervised rule induction and unsupervised rule in-
duction (e.g., association rule learning). Rather than an unconstrained exploration of 
the space of associations between variables, as would occur in association rule learn-
ing [9], only associations that are weakly tied to a top-level class are examined. While 
BCRI’s search through association space will miss many associations (with any given 
top-level class), we expect that the density of “interesting” rules that it discovers will 
be higher than if uncovered by standard association rule learning, though this paper 
does not test this hypothesis directly. 

BCRI can be viewed as one component in a process of iterative exploration. Induc-
tion from data (e.g., BCRI) can be used to find plausible interactions, which are then 
compared against prior knowledge. Prior knowledge can be used to (1) explain plau-
sible interactions found through induction, (2) filter or rank these possibilities for an 
analyst (e.g., interactions that are already well-established in the literature might be 
ranked low, as might be those in which prior knowledge offers too few constraints on 
possible explanations), (3) implicate additional features or suggest pruning “redun-
dant” features for subsequent induction (e.g., feature selection), (4) reveal gaps in 
current knowledge that induction may help fill. We look at examples of this last case 
in Section 3.

Our contributions are (1) the definition of the BCRI task abstraction, (2) the im-
plementation of an initial prototype of BCRI, which we call C45-BCRI, (3) an illus-
tration of BCRI in the domain of cancer prognosis, and (4) a demonstration of how 
BCRI generated hypotheses (e.g., gene interactions) may help fill gaps in prior knowl-
edge. In Section 2 we describe our implementation of BCRI and report our results in 
the domain lung cancer prognosis from clinical and gene expression data.  In Section
3 we match selected rules against prior knowledge in the form of an established gene 
interaction network. Inductively derived rules suggest values for gaps in current 
knowledge and suggest other plausible hypotheses. Section 4 closes with a discussion 
on automating aspects of iterative exploration by coordinating the application and 
derivation of domain and induced knowledge.  

2   Backward-Chaining Rule Induction (BCRI) 

To summarize, the initial step of BCRI builds decision rules for predicting a user-
specified class or outcome. The antecedents of rules discovered in this first step then 
become outcomes for which decision rule models are constructed in the second step. 
Antecedents of rules found in this second step, then become outcomes for decision 
rule learning in the third step, and so on.  

As an illustrative example, in this paper we apply BCRI to published gene-
expression and clinical data from lung cancer patients [10]. The data contains 61 
instances defined over 4,996 gene attributes and eleven clinical attributes (5007 total). 
Classification as High versus Low risk is the as a top-level task that “kick-starts” 
BCRI in our application. For our analysis, patients who died at 30.1 months or less 
following diagnosis are high risk, and others are low risk.   



88 D. Fisher et al. 

We distinguish the general BCRI task abstraction from our initial implementation 
of BCRI. We implement BCRI as a wrapper around a rule-induction engine, which is 
illustrated in Table 1 with pseudo-C code (local variable declarations excluded). 
BCRI is passed the labeled data, a set of the target classes used to label the data, and 
three functions: RuleInducer, PriorityFn, and TerminateFn.

Table 1. Pseudo-C for Backward-Chaining Rule Induction 

RuleSet BCRI (DataSet Data,  

                         TargetSet Classes,  

                         RuleSet (* RuleInducer) (DataSet, TargetCondition), 

                         float (* PriorityFn)(Rule), 

                         int (* TerminateFn) (Rule)) { 

       PQ = InitializePriorityQueue(PriorityFn); 

       FOR each class in Classes, Enqueue(PQ, [class   ___ ]);  

       WHILE (NOT Empty(PQ)) { 

              R = Dequeue(PQ);     /* and place R in Results SET*/ 

              IF (NOT (* TerminateFn)(R) { 

                   FOR each a IN ANTECEDENTS(R)  { 

                            Children =   (* RuleInducer) (Data, a);  

                            FOR each c IN Children  Enqueue(PQ, c)  

                   } 

              } 

          } /* end WHILE */ 

   } /* end BCRI */ 

RuleInducer can, in principle, be any supervised rule discovery system that, given 
a class, will return rules that predict that class (i.e., RuleInducer is not a classifier per 
se as no rules predicting the complement of class are explicitly returned). Parameters 
shown for RuleInducer might be changed in minor ways to support differing induc-
tion engines.  Our current implementation uses C4.5-rules [11], which first builds a 
decision tree to discriminate the values of a dependent attribute (i.e., C4.5-rules builds 
the classifier), then converts the tree to a set of rules. We do not detail the process 
here, as it is well established in the literature. We use the standard defaults for C4.5-
rules. Moreover, as stated, the wrapper model that we have implemented assumes that 
RuleInducer discovers rules whose consequents are all of the same class. Thus, while 
C4.5-rules would discover rules for the complement of a class as well, we filter these 
out. The BCRI prototype is not optimal in terms of cost, but it allows us to investigate 
the BCRI methodology by exploiting a well-established rule learning algorithm.  In 
the remainder of this section, we will refer to this C4.5-rules procedure, with filtering 
of complement rules, as simply C4.5.
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PriorityFn is applied to a rule and returns a score. This score is used to store the 
rule on a priority queue of other scored rules. In our current implementation, the cov-
erage of the rule (i.e., the number of instances in the data that satisfy the rule’s ante-
cedent), is used to organize the priority queue. Other possibilities include the rule’s 
accuracy or the like. Our choice of coverage, versus  accuracy or a like measure, is 
motivated by the observation that rule-learning systems tend to produce accurate rules 
(relative to a data specific upper bound), but that these rules vary significantly in 
coverage. We prefer to favor rules that cover a large proportion of data. 

TerminateFn returns 0/1, indicating whether a rule should be further expanded 
(i.e., continued backward chaining on its antecedents). Currently, we implement a 
depth bound and only backward chain a specified number of levels. Other strategies 
include specifying a minimal coverage or confidence bound. 

C45-BCRI, which includes a wrapper around C4.5 as just described, is what we 
call this paper’s implementation of BCRI. Using High and Low Risk as the top-level 
classification, C45-BCRI begins with (Risk=Low) (cov 42/61) and (Risk=High) (cov 
19/61) placed on the priority queue (i.e., passed as Classes to BCRI). The term “cov” 
is an abbreviation for data coverage (described above in PriorityFn) for the condition 
just described. 

(Risk=Low) is dequeued. Application of C4.5-rules yields a single rule, which is 
placed on the queue:  

[ (Stage=1)   (Risk=Low) (cov  48/61)  ||  (Risk=High)    (cov 19/61) ].  

(Stage=1)  (Risk=Low) is dequeued and C4.5-rules yields a rule, which is added to 
the queue:   

[ (ELA2 > 163.3)   (Stage 1)  (cov 45/61)   ||   (Risk = High   (cov 19/61) ] 

The first of these rules is dequeued. A new rule is learned: 

(MRPL19<= 161.4) & (EIF2S1 > 52) & (KRT15 <= 616.8)   (ELA2 >163.3)  
(cov: 45/61) 

This rule is queued, resulting in the following priority queue: 

[ (MRPL19<= 161.4)  & …    (ELA2 >163.3)  (cov: 45/61)  ||  (Risk = High 
(cov 19/61) ] 

Having the highest priority (coverage), this same rule is immediately dequeued. Each 
individual antecedent serves in turn as a class for rule induction. A simple depth 
bound is used to terminate backward chaining, and these labeled rules are terminal.  

Table 2 shows the 19 rules learned from the lung cancer data by backward chaining 
with C45-BCRI to a depth of three, beginning with an initial queue of 

   [ (Risk = Low)   ||  (Risk = High)   ]

The ordering of rules is not strictly indicative of the order in which they were dis-
covered. Rule number is given with its associated depth in the backward chaining  
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process. Indentation indicates a parent child relationship. “acc” denotes accuracy 
(percent correct predictions) and “cov” denotes coverage, which is the number of 
cases satisfying the antecedents over the total number of samples.  

The network of rules learned by BCRI (C45-BCRI and otherwise) is an AND/OR 
graph, much like the rule bases of expert systems such as Mycin [12].  We do not
discuss the inference possibilities of such networks from an expert-system perspec-
tive. Rather, our primary goal here is a limited, focused exploration of the associa-
tions between variables, which is directly (initially) or indirectly (as backward chain-
ing proceeds) tied to top-level class(es). 

3   Hypothesized Pathways from BCRI and Prior Knowledge 

BCRI rules can be used to find plausible interactions, which can then be compared 
against prior knowledge. Prior knowledge can be used to (1) explain plausible interac-
tions found through induction, (2) filter or rank these possibilities for an analyst (e.g., 
interactions that are already well-established in the literature might be ranked low, as 
might be those in which prior knowledge offers too few constraints on possible expla-
nations), (3) implicate additional features or suggest pruning “redundant” features for 
subsequent induction (e.g., feature selection), (4) reveal gaps in current knowledge 
that induction may help fill. We look at examples of this last case. 

We will focus here on C45-BCRI rules that are reflected in existing knowledge, or 
pathways where we can make inferences from a combination of induced and existing 
knowledge.  For each C45-BCRI rule we used Pathway Assist™ [13] to build the 
shortest pathway known from prior knowledge (as encoded in Pathway Assist™) 
between gene expression attributes of the rule.  We have also used PubMED [14], 
LocusLink ([15],[16]), and GeneCards [17] as sources for peer-reviewed literature, 
chromosomal location, and functional annotation, respectively.   

The type of interaction found in Pathway Assist™ pathways may involve gene ex-
pressions, which are the measured quantities in the data we used, or it may involve the 
protein product of gene expression, which is not measured but might be inferred from 
the gene expression level.  We say “might” because gene expression quantities are not 
always directly proportional to protein product concentrations secondary to other 
factors affecting protein concentration (e.g. degradation, export, etc.) 

Example 1: Our first example is one where a C45-BCRI-discovered rule is reflected 
by existing knowledge. In Rule 8./1, we have 

8. /1   (ELA2 < 163.3) & (SERPINA1> 65)  (Stage=3) [acc: 89.1%  cov: 12/61] 

Existing knowledge from Pathway Assist™, illustrated in Figure 1, gives us rela-
tionships between ELA2 and SERPINA1, where the protein products are indicated by 
the large ovals, a binding interaction is indicated by the dot relationship between the 
ovals, and regulation is indicated by a square along a dotted line.  Table 3 describes 
the type of reaction between specific nodes, the nodes themselves, and the effect of 
one node upon the other using the direction indicated in the nodes list. 
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Table 2. Rules induced by C45-BCRI 

 (Risk=Low) 
Rule # /Depth 
1. /0     (Stage=1)  (Risk=Low) 

2. /1         (ELA2> 163.3)  (Stage=1) [acc: 94.4% cov: 45/61]

3. /2         (MRPL19<161.4) & (EIF2S1 > 52)  & (KRT15 < 616.8)   
         (ELA2 >163.3)   [acc: 97.0% cov: 45/61]             

4. /3                 (TRIP12< 1176) & (NAPG <= 243)    (MRPL19 <161.4)   [acc: 97.4%  cov: 53/61]    
      
5. /3                   (FXN > 37.8)  (EIF2S1 >52)  [acc: 97.6% cov: 57/61]      

6. /3                    (CTRL > 194.4) & ( IDS < 163.3)    (KRT15 <=616.8)   [acc: 97.5% cov: 54/61]        

 (Risk=High) 

Rule # /Depth 
7./0     (Stage=3)  (Risk=High) 

8. /1         (ELA2 < 163.3) & (SERPINA1> 65)  (Stage=3) [acc: 89.1%  cov: 12/61] 
9./2                  (MRPL19 > 161.4)  (ELA2 < 163.3)  [acc: 84.1% cov: 8/61] 

10./3                       (TRIP12 >1176)  (MRPL19 >161.4)  [acc: 75.8%cov: 5/61]        

11./3     (NAPG> 243)  (MRPL19 >161.4)   [acc: 70.7% cov: 3/61]        

12./2                 (KRT15>616.8) (ELA2<163.3)  [acc: 79.4% cov: 5/61]                  

13./3                       (CTRL < 194.4)   (KRT15 >616.8)  [acc: 70.7% cov: 4/61] 

14./3      (IDS > 163.3)   (KRT15 >616.8)   [acc: 45.3% cov: 3/61]               

      15./2                 (PLAB < 3703.9)  &  (H3FD < 167.6)  & (ANXA5 > 750) & (DDX5 <2804.7) 
                                     (SERPINA1 >65)  [acc: 96.9%  cov : 44/61]             

16./3                        (KIAA0618  > 27.2)  (PLAB < 3703.9)  [acc: 95.5% Data cov: 54/61]       
       
17. /3                       (SC4MOL > 32)  (H3FD < 167.6)   [acc: 97.5%cov: 54/61]   

18./3      (AKAP > 496) & (SLC14A2 <  397.1)  (ANXA5 >750) [acc: 97.4% cov: 53/61]   

19./3      (KRT13 < 262.9)  (DDX5 < 2804.7)  [acc: 97.6% cov: 57/61]    

Fig. 1. Pathway Assist™ diagram showing SERPINA1 and ELA2 relationships of Example 1
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Table 3. Details of Example 1 relationships given by Pathway Assist™ 

Type   Nodes   Effect
Binding  ELA2 ---- SERPINA1   
Regulation ELA2 ---| SERPINA1 negative 
Regulation SERPINA1 ---| ELA2 negative  

There are three known interactions between ELA2 and SERPINA1.  Their protein 
products bind together, the protein product of ELA2 gene expression inhibits (i.e., 
Effect is negative) the gene expression of SERPINA1, and the protein product of 
SERPINA1 inhibits the gene expression of ELA2 (reciprocal down regulation).  

The C45-BCRI rule suggests that ELA2 and SERPINA1 are also coupled by recip-
rocal down regulation of gene expression. The reciprocal negative regulation effect 
(down regulation) is reflected in the opposing relative quantities of the attributes in 
the antecedent of the rule, i.e., that ELA2 is depressed below a value and SERPINA1 
is elevated above a value.   

The regulatory relationship indicates that SERPINA1 will be highly expressed, 
ELA2 expression will be depressed.  We can hypothesize that the activity of the pro-
tein product of ELA2, which is inhibited by binding with the protein product of 
SERPINA1, will be low as a condition for a high risk tumor. In a 1992 study of ade-
nocarcinomas, high levels of alpha-1-antitrypsin, the protein product of SERPINA1 
were found to be associated with higher stage disease [18].  However, high levels of 
elastase, the protein product of ELA2, in lung tumor tissue has also been correlated 
with higher stage tumors and poor survival in patients with lung cancer ([19],[20]).   

Fig. 2. Pathway Assist™ diagram illustrating FXN and EIF2S1 relationships of Example 2 
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Table 4. Details of Example 2 relationships given by Pathway Assist™ 

Type                    Nodes  Effect
Regulation heme ---| EIF2S1            negative  
MolSynthesis FXN ---> heme            unknown  

We learn from BCRI in combination with existing knowledge that we may need to 
study the interaction of elastase and alpha-1-antitrypsin, and not either of these in 
isolation, to understand their role in lung cancer survival. 

Example 2: As a second example, consider Rule 5./3,  

5. /3   (FXN > 37.8)  (EIF2S1 >52)   [acc: 97.6% cov: 57/61]      

Pathway Assist™ shows that FXN has an “unknown” effect on the molecular synthe-
sis of heme, the interaction represented as a solid line with a square in Figure 2, and 
that heme, a small molecule depicted by the small, central oval, inhibits the gene 
expression of EIFS2. Relational details are listed in Table 4. 

Fig. 3. Pathway Assist™ diagram of KRT13 and DDX5 relationships of  Example 3

From our C45-BCRI rule, if we accept that elevated gene expression of FXN leads 
to elevated levels of its protein product frataxin, then we can infer that frataxin blocks
the molecular synthesis of heme to results in elevated expression of EIFS2. Thus, the 
inductively derived rule, which might be tentatively abstracted as (FXN  EIF2S1, 
effect positive), together with (heme--|EIF2S1, effect negative) from prior knowledge, 
suggests that (FXN  heme, effect negative, in place of unknown). This example 
illustrates where induction can suggest fillers for gaps in background knowledge.

Example 3: In Rule 19./3, 23 have from C45-BCRI 

19./3   (KRT13 < 262.9)  (DDX5 < 2804.7)   [acc: 97.6% cov: 57/61]    
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Table 5. Details of relationships of Example 3 given by Pathway Assist™ 

Type  Nodes   Effect
Regulation KRT13 ---> assemble unknown 
Regulation DDX5   ---> assemble unknown 

and from Pathway Assist™ we have the diagram of Figure 3 and description of inter-
actions in Table 5. The square labeled “assemble” represents a cell function of assem-
bly, for example assembling a scaffold of filamentous proteins either into a structure 
for cell shape, or a scaffold upon which catalyzed reactions can take place. 

From GeneCards and Locus Link, we learn that the protein product for KRT13 is 
keratin 13, a cytoskeletal protein that functions in maintaining the integrity of the cell 
shape and may also function as a support structure in cell reactions. p68 RNA helicase 
is the protein product for DDX5 and functions as an RNA-dependent ATPase (pro-
vides energy by breaking down ATP). Its presence in the nucleus is an indicator of 
proliferation, which is an important process in cancer.  

The gene for KRT13 is located at chromosome position 17q12 to 17q21.2, while 
DDX5 is located at 17q21. This suggests that the transcription of DDX5 is associated 
with transcription of KRT13. Interestingly, Massion and Carbone [21] describe ampli-
fications (increased numbers of copies of genes) in the 17q region of the genome 
(chromosome 17) that are associated with lung cancer.  

From Pathway Assist™, we see that both the protein product of KRT13 and of 
DDX5 have an unknown role in assembly. Given the proximity of their locations on 
chromosome 17q, their common, though with unknown effect, role in assembly, and 
the correlation of amplification of 17q with lung cancer, we infer that 1) the genes on 
17q that have a role in lung cancer include KRT13 and DDX5, 2) KRT13 and DDX5 
are regulated by a common factor which controls transcription of the two together, 3) 
the effect of KRT13 and DDX5 on assembly is the same (either both positive or both 
negative), and 4) that the assembly process promotes proliferation. 

4   Concluding Remarks 

BCRI has been suggested as a means of biasing the search for gene interactions, and 
feature interactions generally. In particular, our contributions are (1) the definition of 
the BCRI task abstraction, (2) the implementation of an initial prototype of BCRI, 
which we call C45-BCRI, (3) an illustration of BCRI in the domain of cancer progno-
sis, and (4) an illustration of how (C45-)BCRI generated rules (e.g., gene interac-
tions), coupled with prior knowledge, suggest hypotheses about the ways that genes 
interact that is not yet established in the literature. 

Example 2 (Figure 2, Table 4), in particular, is a good example of a domain-
independent hypothesis generation strategy. In this example, constraints from back-
ground knowledge and a C45-BCRI rule were sufficient to suggest, through qualita-
tive reasoning, the value of an unknown effect. Of course, this reasoning only sug-
gests hypotheses, but at least one other example of this possibility is found in our 
data. One direction of future research into iterative exploration is (semi-)automate the 
process of (1) examining a BCRI rule, (2) bolstering confidence in a suggested ef-
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fect/correlation (positive, negative) through additional inductive means, (3) matching 
this rule against prior knowledge, (4) qualitatively reasoning about what can be in-
ferred from the prior and inductive knowledge. This direction of research is related to 
work in scientific discovery (e.g., [22]) and theory revision (e.g., [23]). 

A second direction is to use what is learned by what is found in prior knowledge to 
bias subsequent induction through feature selection with theory-derived features (e.g., 
[24]). We are pursuing theory driven feature selection strategies elsewhere ([25],[26]). 

Finally, our only implementation of BCRI uses C4.5 as the core rule induction en-
gine. C4.5 is biased to greedily find a minimal number of rules. A better choice as the 
base rule-induction engine may be a method such as Brute [27], which more exten-
sively searches the space of rules, and generally returns many more rules. This latter 
characteristic will further motivate and necessitate work into using background 
knowledge to filter/rank hypothesized interactions for expert commentary. 
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Abstract. Rule systems have failed to attract much interest in large
data analysis problems because they tend to be too simplistic to be
useful or consist of too many rules for human interpretation. We recently
presented a method that constructs a hierarchical rule system, with only
a small number of rules at each level of the hierarchy. Lower levels in
this hierarchy focus on outliers or areas of the feature space where only
weak evidence for a rule was found in the data. Rules further up, at
higher levels of the hierarchy, describe increasingly general and strongly
supported aspects of the data. In this paper we show how a connected
set of parallel coordinate displays can be used to visually explore this
hierarchy of rule systems and allows an intuitive mechanism to zoom in
and out of the underlying model.

1 Introduction

Extracting rule models from data is not a new area of research. In [1] and [2], to
name just two examples, algorithms were described that construct hyperrectan-
gles in feature space. The resulting set of rules encapsulates regions in feature
space that contain patterns of the same class. Other approaches, which construct
fuzzy rules instead of crisp rules, were presented, for example, in [3,4,5] and [6].
What all of these approaches have in common is that they tend to build very
complex rule systems for large data sets originating from a complicated underly-
ing system. In addition, high-dimensional feature spaces result in complex rules
relying on many attributes and increase the number of required rules to cover
the solution space even further. An approach that aims to reduce the number
of constraints on each rule individually was recently presented in [7]. The gener-
ated fuzzy rules only constrain few of the available attributes and hence remain
readable even in the case of high-dimensional spaces. However, this algorithm
also tends to produce many rules for large, complicated data sets.

In [8] we described a method that attempts to tackle this inherent prob-
lem of interpretability in large rule models. We achieve this by constructing a
hierarchy of rules with varying degrees of complexity. The method builds a rule
hierarchy for a given data set. The rules are arranged in a hierarchy of different
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levels of precision; each rule only depends on few, relevant attributes thus mak-
ing this approach also feasible for high-dimensional feature spaces. Lower levels
of the hierarchy describe regions in input space with low evidence in the given
data, whereas rules at higher levels describe more strongly supported concepts
of the underlying data. The method is based on the fuzzy rule learning algo-
rithm mentioned above [7,9], which builds a single layer of rules autonomously.
We recursively use the resulting rule system to determine rules of low relevance,
which are then used as a filter for the next training phase. The result is a hierar-
chy of rule systems with the desired properties of simplicity and interpretability
on each level of the resulting rule hierarchy. Experimental results demonstrated
that fuzzy models at higher hierarchical levels indeed show a dramatic decrease
in number of rules while still achieving better or similar generalization perfor-
mance than the fuzzy rule system generated by the original, non-hierarchical
algorithm.

In this paper we show how an accompanying system of inter-connected rule
visualizations in parallel coordinates can be used to intuitively explore the rule
systems at each level of granularity while at the same time enabling the user
to easily zoom in and out of the model, effectively changing to other levels of
the hierarchy while maintaining the focus of analysis. The approach is based
on recent work on visualization of fuzzy rules in parallel coordinates [10] and
extends it using ideas from the information visualization community, so-called
structure-based brushing techniques [11]. This method, however, cannot be used
intuitively and hence is only useful for an expert user. Here we go beyond solely
tying points in each view together, by allowing elements that are connected across
different levels of abstraction to be highlighted, i. e. hierarchy layers in the case
discussed here. The ability to highlight rule(s) in one layer of the hierarchy and
immediately see related rules is a powerful way to quickly increase or reduce the
level of detail in an inuitive manner.

The paper is organized as follows: In the next section we briefly describe
the used hierarchical rule learning method, followed by an introduction to par-
allel coordinates, and how normal rule systems can be visualized in the section
thereafter. We then describe how hierarchies of rules can be explored in parallel
coordinates and illustrate the proposed method using the Iris data set, before
we show how larger hierarchical rule sets can be visualized and explored for a
number of real world data sets.

2 Hierarchical Rule System Formation

The rule induction algorithm used here is based on a method described in [7],
which builds on an iterative algorithm. During each learning epoch, i. e. presen-
tation of all training patterns, new fuzzy rules are introduced when necessary
and existing ones are adjusted whenever a conflict occurs. For each pattern three
main steps are executed. Firstly, if a new training pattern lies inside the support-
region of an existing fuzzy rule of the correct class, its core-region is extended in
order to cover the new pattern. Secondly, if the new pattern is not yet covered,
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a new fuzzy rule of the correct class is introduced. The new example is assigned
to its core, whereas the support-region is initialized “infinite”, that is, the new
fuzzy rule covers the entire domain. Lastly, if a new pattern is incorrectly covered
by an existing fuzzy rule, the fuzzy points’ support-region is reduced so that the
conflict is avoided. This heuristic for conflict avoidance aims to minimize the
loss in volume. In [9], three different heuristics to determine the loss in volume
were compared in more detail. As discussed in [7], the algorithm terminates af-
ter only a few iterations over the set of example patterns. The resulting set of
fuzzy rules can then be used to classify new patterns by computing the overall
degree of membership for each class. The accumulated membership degrees over
all input dimensions and across multiple rules are calculated using fuzzy t-norm
and t-conorm respectively. For the purpose of this paper, we concentrate on the
rules’ core only, that is, we consider only the part of each rule where the degree
of membership is equal to 1 – resulting in crisp rules 1.

In [8], an extension of this algorithm was proposed that allows the generation
of an entire hierarchy of such rules. The rule layers are arranged in a hierarchy
of different levels of precision. Lower levels of the hierarchy describe regions in
input space with low evidence in the given data, whereas rules at higher levels
describe more strongly supported concepts of the underlying data. We recursively
use the above-mentioned classical fuzzy rule induction algorithm to determine
rules of low relevance, which are then used as a filter for the next training
phase. Training examples that resulted in creation of small, less important rules
are therefore excluded from the training phase of the next layer, resulting in a
more general rule system, ignoring the withheld, small details in the training
data. The result is the desired hierarchy of rule systems with an increasing
generality towards higher levels. In [9] it was shown that the accuracy of these
hierarchies is comparable to the non-hierarchical algorithm. Additionally, it was
shown that the general rule system towards the top of the hierarchy alone often
also show comparable performance, sometimes even outperforming the classical
non-hierarchical system.

3 Rule Systems in Parallel Coordinates

Parallel coordinates [12,13] allow n-dimensional data to be visualized in 2D by
transforming multi-dimensional problems into 2D patterns without loss of in-
formation. Visualization is facilitated by viewing the 2D representation of the
n-dimensional data. Each of the n coordinate axes is taken and lined up in par-
allel, resulting in the basis for parallel coordinates. The distance between each
adjacent axis is assumed to be equal to 1. A point in n-dimensional space be-
comes a series of n−1 connected lines in parallel coordinates that intersect each
axis at the appropriate value for that dimension. A parallel coordinates example

1 Obviously, the extensions for visulizations of fuzzy rules described in [10] can also be
used but as this is not the central focus of this paper, it has therefore been omitted
for reasons of space.
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Fig. 1. Left: A parallel coordinate depiction of 3 points on a line in 3D. Right: A rule
in parallel coordinates, expressing a disjunctive constraint on all three features.

of 3 points in 3D, a = (1, 3, 1), b = (4, 0, 2), and c = (2.5, 1.5, 1.5), from a line
is shown in Figure 1.

The dual of an n-dimensional line in Cartesian coordinates is a set of n−1
points in parallel coordinates [14,15]. For the example in Figure 1 (left), these
are indicated by l̄0,1 = (0.5, 2) and l̄1,2 = (0.75, 1.5), which uniquely describe a
line in 3 dimensions.

The n-dimensional line in Cartesian coordinates can be represented by (n−1)
linearly-independent equations each of which results from equating a different
pair of the following fractions [12]:

x0 − a0

u0
=

x1 − a1

u1
= . . . =

xn−1 − an−1

un−1
. (1)

Now it may be assumed that the n−1 linearly independent equations are obtained
from pairing the n−1 adjacent fractions, with no loss in generality. This yields

xi+1 = mixi + bi, i = 0, 1, . . . , n− 2, (2)

where mi = ui+1/ui represents the slope and bi = (ai+1 −miai) the intercept
of the xi+1-axis of the projected line on the xi/xi+1-plane. The dual point of
the n-dimensional line in parallel coordinates therefore corresponds to the set of
n−1 indexed points:(

i

1−mi
,

bi

1−mi

)
, for i = 0, 1, . . . , n− 2. (3)

In [16], an extension of parallel coordinates was presented that allows not only
points to be visualized but also crisp and fuzzy rules. Crisp rules result in “bands”
going through the parallel coordinates, visualizing the intervals representing the
constraints on each axes. In Figure 1 (right) an example in 3D is shown, depicting
the rule:

IF x0 ∈ [2, 3] ∧ x1 ∈ [0.5, 1.5] ∧ x2 ∈ [1, 3.5] . . .

The inherent imprecision of fuzzy rules was depicted using degrees of shading
to visualize the degree of membership at each level, however, for the purpose
of this paper we concentrate on crisp rules. The extension to the fuzzy case is
straightforward. We will see examples of such visualizations in the next section.
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4 Exploring Hierarchical Rule Systems: An Example

To illustrate the proposed hierarchical rule visualization scheme, the well-known
Iris data [17] was used. The Iris data consists of 150 four-dimensional patterns de-
scribing three classes of Iris plants: Iris-setosa, Iris-versicolor, and Iris-virginica.
The four dimensions consist of measurements for the petal and sepal, length and
width.

Fig. 2. The flat rule set for the Iris data

Figure 2 shows the flat non-hierarchical rule system as it would be gener-
ated by the original rule induction algorithm described in [7]. In Figure 3, the
hierarchical rule learner produced three levels of rule systems. The top level has
three rules, one for each class, which nicely describe the general trend in the
data. At subsequent, lower levels, the granularity increases and finer details of
the data are visually depicted. One can clearly see, how four isolated patterns
of two classes were filtered out during the first stage of the hierarchy induction.

Obviously, such an easy example is only suitable to demonstrate the algo-
rithm’s operation. In the following section, we show how it also works on two
real world data sets, discovering interesting structures in the data.

5 Application to a Real World Problem

5.1 Ocean Satellite Images

The first data set stems from a satellite used primarily to examine the ocean.
The images are from the Coastal Zone Color Scanner (CZCS) and are of the
West Florida shelf [18,19]. The CZCS was a scanning radiometer aboard the
Nimbus-7 satellite, which viewed the ocean in six co-registered spectral bands
443, 520, 550, 670, 750 nm, and a thermal IR band. It operated from 1979-1986.

The features used were the 443, 520, 550, 670 nm bands; the pigment concen-
tration value was derived from the lowest 3 bands. Atmospheric correction was
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Fig. 3. The 3-level hierarchy for the Iris data. Bottom: the lowest level, showing rules
for four isolated patterns which are in conflict with some of the rules of the higher
levels. Middle: the next level, here only containing one rule for class Iris-virginica. Top:
the top level, showing the three most general rules, one for each class.

applied to each image [20] before the features were extracted. A fast fuzzy clus-
tering algorithm, mrFCM [21], was applied to obtain 12 clusters per image. There
were five regions of interest in each image. These consist of red tide, green river,
other phytoplankton blooms, case I (deep) water and case II (shallow) water.
Twenty-five images were ground-truthed by oceanographers [22] and eighteen of
these were used for training. The eighteen training images were clustered into
12 classes. Each class or cluster was labeled by the ground truth image as its
majority class.
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Fig. 4. Top left shows the flat rule system for the ocean satellite image data followed
by the 3-level hierarchical rule system. Top right: the highest layer of the hierarchy
showing four rules for three of the 5 classes. Bottom left: the middle layer, modeling
less important classes and trends. Bottom right: the bottom layer of the hierarchy,
modeling outliers, and rare cases.

The labeled cluster centers from the training images were then given to the
rule induction tool used also with the Iris data. It generated a set of fuzzy rules,
which are shown in Figure 4 (top left). Note how the parallel coordinate display
is completely overloaded and essentially useless.

The hierarchical rule induction method generates three layers of hierarchy,
which are shown again in Figure 4. Note how the top layer displays only the four
most important rules, and even skips rules for two less frequent classes. Those
classes are modeled by two extra rules on the middle layer of the hierarchy, which
again only displays a few rules (five in this case), hence allowing interpretability
even at this level. The bottom layer finally shows rules modeling outliers in the
data, indicated by lines. Even this layer of the rule hierarchy still provides an
interpretable overview of the structure of the remaining data. It is interesting to
note that the complete hierarchy contains less rules than the original flat model
itself. Therefore, not only does the hierarchical representation allow better inter-
pretation of the resulting rule models, it is also a more compact representation
of the data itself.
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Fig. 5. The bottom layer of the rule hierarchy for NCI’s HIV dataset using VolSurf
features

5.2 NCI’s HIV Data

The proposed hierarchical visualization method was also applied to a well-known
data set from the National Cancer Institute, the DTP AIDS Antiviral Screen
data set [23]. The class assignment, provided with the data, lists compounds
that provided at least 50% protection against HIV on retest as moderately ac-
tive (CM), compounds that reproducibly provided 100% protection were listed
as confirmed active (CA), and compounds not meeting these criteria were listed
as confirmed inactive (CI). Available online 2 are screening results and chem-
ical structural data on compounds that are not covered by a confidentiality
agreement. We have generated VolSurf descriptors for these compounds [24],
resulting in

– 325 compounds of class CA,
– 877 compounds of class CM, and
– 34, 881 compounds of class CI.

VolSurf computes 2D molecular descriptors based on grid maps modeling in-
teraction energies at a molecular level. The used distance metric was the usual
Euclidean distance, computed on a subset of 15 of the available descriptors.
Patterns of class CM were not used in the following experiments.

Figure 5 shows the bottom level of the resulting hierarchy of rule models. Due
to heavy overlap of many rules (210 in this case), not much useful information
can be derived from this picture.

Figure 6 shows the top level of the model consisting of 30 rules (7 for class
CA). Note how, especially for class CA, which is the class of interest in this
application, a number of interesting observations can be made 3. For instance,
two main clusters can be distinguished that are clearly divided along dimensions
G, D1, ID7, ID8, and POL. Also, a correlation across several attributes for rules of
class CA is visible: ID7, ID8, and D1. In addition, it is interesting to note that
2 http://dtp.nci.nih.gov/docs/aids/aids data.html
3 Naturally, the results can be seen more clearly on the screen.
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Fig. 6. The top layer of the rule hierarchy for NCI’s HIV dataset, containing 30 rules
of which only 7 belong to class CA, the class of interest

along attribute Iw2 only rules of class CA occupy a middle area, where no rules
of class CI interfere.

Since these were early experiments, extensive evaluation with expert feedback
was not able to be conducted. It would be interesting to find out if any of
the above observations are correlated to information contained in the VolSurf
descriptors.

6 Interactive Rule Exploration and Zooming

To demonstrate the power of interactive, visual brushing across different views
in the parallel coordinate hierarchy, we trained a three-level fuzzy rule hierarchy
on the vehicle silhouette dataset from the European StatLog–Project [25]. This
18-dimensional dataset consists of 846 samples belonging to 4 classes. The three
levels of the fuzzy rule hierarchy contain 21 rules in the top, 47 in the middle,
and 256 at the bottom-most level. Figure 7, 8, and 9 show two of three hierarchy
models in parallel coordinates demonstrating the highlighting property of the
views. The first picture displays all 256 rules of the bottom level — clearly no
exploration is possible. Selecting one of the rules in the top level is shown in Fig-
ure 8, here all other non-selected rules are faded and moved to the background.
This selection is automatically propagated to the other layers and highlights re-
lated rules in these views. As can be seen in Figure 9, in the bottom layer only
16 rules are related and hence highlighted. The user can easily identify these
small rules, which explain outliers or artifacts in the data that are related to the
rules selected in the top layer.

7 Conclusions

We have presented an approach to visualize hierarchical rule systems using a
series of parallel coordinate displays. Experiments on three real world data sets
show how complicated rule systems, which would otherwise be uninterpretable
in a visual display, show interesting insights when displayed at different levels of
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Fig. 7. Bottom level of the three-level hierarchy, which shows 256 rules for 4 classes

Fig. 8. Top level of the hierarchy, where one rule has been selected and the other
20 rules are faded

Fig. 9. Again the bottom level, showing 16 of the 256 rules that are related with the
rule selected in the top level
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abstraction. The ability to interact with the hierarchical rule system at different
levels of detail shows promise for the analysis of large, complicated data sets. We
are currently working on extending this tool to allow real visual zooming opera-
tions within the same view, which will make this type of hierarchical rule system
visualization even more powerful for truly exploratory information mining.
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Abstract. DNA arrays yield a global view of gene expression and can
be used to build genetic networks models, in order to study relations
between genes. Literature proposes Bayesian network as an appropriate
tool for develop similar models. In this paper, we exploit the contribute of
two Bayesian network learning algorithms to generate genetic networks
from microarray datasets of experiments performed on Acute Myeloid
Leukemia (AML).

In the results, we present an analysis protocol used to synthesize
knowledge about the most interesting gene interactions and compare
the networks learned by the two algorithms. We also evaluated relations
found in these models with the ones found by biological studies performed
on AML.

1 Introduction

From DNA microarray experiments, we can obtain a huge amount of data about
gene expression of different cell populations. An intelligent analysis of these
results can be very useful and important for cancer research.

An important field of interest in this area is the discovering of genetic net-
works, intended as a synthetic representation of genetic interactions. Similar
problems are often studied in other fields, and several techniques were devel-
oped in order to learn interaction networks from examples. One of the most
used approach for this type of problems is the Bayesian Network one.

Bayesian networks are suitable for working with the uncertainty that is typi-
cal of real-life applications. These are robust models and usually maintain good
performance also with missing or wrong values.

A Bayesian network is a directed, acyclic graph (DAG) whose nodes represent
random variables. In Bayesian networks, each node is conditionally independent
of any subset of the nodes that are not its descendants, given its parent nodes.

By means of Bayesian networks, we can use information about the values of
some variables to obtain probabilities for the values of others. A probabilistic
inference takes place once the probability of the values of each node conditioned
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to just its parents are given. These are usually represented in a tabled form,
called Conditional Probability Tables (CPTs).

Applying this theory to the Bioinformatic field, we aim to build a network
in which nodes represent different genes or attributes of a biological sample.
Studying several samples related to a particular pathology, we build up a network
that represents the probabilistic relations between genes and attributes. This
model may be useful for biologists, because it highlights these interactions in a
synthetic representation.

Techniques for learning Bayesian networks have been extensively investigated
(see, for instance [12]). Given a training set of examples, learning such a network
is the problem of finding the structure of the direct acyclic graph and the CPTs
associated with each node in the DAG that best match (according to some
scoring metric) the dataset. Optimality is evaluated with respect to a given
scoring metric (for example, description length or posterior probability [6,12,20]).
A procedure for searching among possible structures is needed. However, the
search space is so vast that any kind of exhaustive search cannot be considered,
and a greedy approach is followed.

In the literature, we find two different approaches for learning Bayesian net-
works: the first one is based on information theory [5], while the second one is
based on the search and score methodology [6,12,20].

In this paper we use the K2 and the K2-lift algorithm. The K2 algorithm
[6] is one of the best known algorithms among those that follows the search
and score methodology. K2-lift algorithm is a modified version of K2 algorithm
that uses the lift parameter (defined in association rules theory [1]), in order
to improve the quality of learned networks and to reduce the computational
resources needed .

The paper is structured as follows. Section 2 provides an introduction to
Bayesian networks and to algorithms for learning them. In Section 3 we present
the experimental domain of the dataset used, presenting the Leukemia dataset
used for testing and validation. In Section 3.3 we present the results, comparing
K2 algorithm with the K2-lift one; then we report some considerations on the
results, from the biological point of view. Related work is mentioned in Section
4. Finally, in Section 5, we conclude and present future work.

2 Bayesian Networks Theory and Learning

A Bayesian network B is defined as a pair B = (G, T ), where G is a directed,
acyclic graph and T is a set of conditional probability tables. G is defined as a
couple G = (V ,A), where V is a set of nodes V = {V1, . . . , Vn}, representing a set
of stochastic variables, and A is a set of arcs A ⊆ V×V representing conditional
and unconditional stochastic independences among the variables [14,16]. In the
following, variables will be denoted by upper-case letters, for example V , whereas
a variable V which takes on a value v , that is V = v, will be abbreviated to V .

The basic property of a Bayesian network is that any variable corresponding
to a node in the graph G is conditionally independent of its non-descendants
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given its parents; this is called the local Markov property. A joint probability
distribution Pr(V1, . . . , Vn) is defined on the variables. As a consequence of the
local Markov property, the following decomposition property holds:

Pr (V1, ..., Vn) =
n∏

i=1

Pr (Vi|π (Vi)) (1)

where π(Vi) denotes the set of variables corresponding to the parents of Vi, for
i = 1, . . . , n.

Once the network is built, probabilistic statements can be derived from it
by probabilistic inference, using one of the inference algorithms described in the
literature (for example [14,16]).

Given a training set of examples, learning a Bayesian network is the problem
of finding the structure of the direct acyclic graph and the Conditional Proba-
bility Tables (CPTs) associated with each node that best match (according to
some scoring metrics) the dataset.

2.1 Learning Algorithms Used

A frequently used procedure for Bayesian network structure construction from
data is the K2 algorithm [6]. Given a database D, this algorithm searches for
the Bayesian network structure G with maximal Pr(G, D), where Pr(G, D) is
determined as described below. Let D be a database of m cases, where each case
contains a value assignment for each variable in V . Let T be the associated set of
conditional probability distributions. Each node Vi ∈ V has a set of parents π(Vi).

The K2 algorithm assumes that an ordering on the variables is available, and
that all structures are a priori equally likely. For every node Vi, it searches for
the set of parent nodes π(Vi) that maximizes a function g(Vi, π(Vi)).

K2 adopts a greedy heuristic method. It starts by assuming that a node
lacks parents, and then, at every step, it adds the parent whose addition mostly
increases the function g(Vi, π(Vi)). K2 stops adding parents to the nodes when
the addition of a single parent does no longer increase g(Vi, π(Vi))).

K2 is characterized by the insertion of a large number of extra arcs. The extra
arc problem of K2 arises especially when the network is characterized by a lot of
root nodes (nodes without parents). During network learning, the algorithm tries
to add parents to each of these nodes until it maximizes function g(Vi, π(Vi)).
The algorithm will add at least one arc to root nodes because the value of the
heuristic for this new structure is always better than the value of the previous
structure.

K2-lift [13] is an extension of the K2 algorithm. It uses parameters normally
defined in relation to association rules [1].

Association rules represent co-occurrence between events ant ⇒ cons in
which an event is defined as the association of a value to an attribute, while
ant and cons are set of events.

The support of a set of events is the fraction of records that contain all the
events in the set.
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In K2-lift we focused our attention on rules with one item in the antecedent
and one item in the consequent (called one-to-one rules) and on the lift parameter
[4] of a rule, a measure of rule interest, computed as follows: lift = support(ant∪
cons)/(support(ant)×support(cons)). The knowledge represented by one-to-one
association rules parameters is used to reduce the set of nodes from which the
K2 algorithm tries to identify the best set of parents. This reduces the problem
of extra arcs.

3 Experiments

In this section we present the experimental dataset (in section 3.1), then, in sec-
tion 3.2 we decribe the analysis protocol used. Finally, in section 3.3 we present
and evaluate the results of the performed experiments.

3.1 Dataset

Recent technical and analytical advances make it practical to evaluate quanti-
tatively the expression of thousands of genes in parallel using microarrays (as
described extensively in [2,11,7]). A microarray experiment consists of measure-
ments of the relative representation of a large number of mRNA species in a
set of biological samples. This mode of analysis has been used to observe gene
expression variation in a variety of human tumors.

The analyzed dataset, available on-line in the ArrayExpress repository of
the European Bioinformatics Institute3, regroups the results of 20 microarray
experiments, divided as follows:

10 Acute Myeloid Leukemia (AML) samples;
10 MyeloDysplastic Syndrome (MDS) samples.

Acute Myeloid leukemia (AML) may develop de novo or secondarily to Myelo-
Dysplastic Syndrome (MDS). Although the clinical outcome of MDS-related
AML is worse than that of de novo AML, it is not easy to differentiate between
these two clinical courses without a record of prior MDS. Large-scale profiling
of gene expression by DNA microarray analysis is a promising approach with
which to identify molecular markers specific to de novo or MDS-related AML.

The experiments were performed using Affymetrix4 Genechip Human
Genome U95Av2 arrays. The Detection algorithm (included in the Affymetrix
Microarray Suite Version 5.0) uses probe pair intensities to assign a Present,
Marginal, or Absent call. This is a very reliable discretization method that re-
veal if a probe is expressed or not in the sample. Notice that Bayesian Networks
can handle only discrete attributes, so we absolutely need such a discretized
expression level.

The data from M experiments considering N probes, may be represented as
a M ×N detection matrix, in which each of the M rows consists of a N -element
detection vector for a single sample.
3 http://www.ebi.ac.uk/arrayexpress/, access code E-MEXP-25
4 http://www.affymetrix.com
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In order to obtain a more readable Bayesian Network, we need to reduce the
number of attributes. So we conducted the experiments focusing the attention
on specific aspects of the illnesses described in the dataset and, in particular,
on the probes of our dataset related to each one of these aspects. Filtering the
dataset probes in such way we created new smaller datasets to be analyzed.

In these dataset we kept only the probes related to an aspect. In order to
get their names, we used the NetAffx Analysis Center5, searching for a term and
specifying the GeneChip Array name.

Following the indications of our biologist, we considered two different aspects
and subsequently worked on two different datasets.

The first interesting aspect of the pathology under evaluation is the Nega-
tive Regulation of Cell Proliferation (GO:0008285): this GO term refers to any
process that stops, prevents or reduces the rate or extent of cell proliferation.
The initial dataset contains 32 probes related to this GO term so we create a
new smaller dataset (named NRCP dataset) composed by 20 rows (cases) and
33 columns (32 probes expression levels and the class attribute).

The second interesting aspect of the pathology under evaluation is the study
of the biological process related to Hepatocyte Growth Factor or Substrate
(HGF, HGS). The initial dataset contains 9 probes related to this aspect so
we create a new smaller dataset (named HGS/HGF dataset) composed by 20
rows (cases) and 10 columns (9 probes expression levels and the class attribute);

3.2 Analysis Protocol

Given a dataset, the analysis protocol followed in our experiments consists of 3
steps :

1. Generate a set of 20 random attribute orderings named SAOi, with i =
1, .., 20. The attribute ordering is required by the Bayesian network learning
algorithms described in Section 2.1. The generation of the set of SAOi is
necessary because the optimal attribute ordering is unknown in our experi-
ments.

2. For each learning algorithm La ∈ {K2, K2− lift}:
(a) For i=1,..,20

i. Learn the Bayesian network BNLa,i by using La on SAOi

ii. Compute the Bayes score BSLa,i of BNLa,i

(b) Rank the learned network BNLa,i according to their score BSLa,i

(c) Analyze the first five learned networks BNLa,i and identify:
– frequent parent probes
– probes with frequently the same subset of parent probes (found on

more than 3 networks over 5)
3. Compare the results achieved by using K2 and K2− lift

The analysis performed on the learned networks BNLa,i is preliminary and
the definition of a more complete methodology is required. For example, the
5 https://www.affymetrix.com/analysis/netaffx/index.affx
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probabilistic relations represented by a Bayesian network consist of both qualita-
tive and quantitative probabilistic meanings, but in our preliminary analysis for
each Bayesian probabilistic relation found we consider only the qualitative one.

3.3 Results and Discussion

Results of application of the analysis protocol on the HGS/HGF dataset by
using K2-lift are presented in Table 1. In each cell you can find the number of
occurrence of a relation between a parent node (on the column) and a child node
(in the row), frequent relations are in bold.

A graphical representation of the results is presented in Figure 1, notice that
the width of the arcs are proportional to the number of relations found (we
omitted relations found only once, in order to keep the graph simple).

The most frequent parents in the obtained networks are the probes 829 s at
(GSTP1) with frequency 19.5%, 1095 s at (HGF) with frequency 29.3% and the
class attribute with frequency 26.8%.

Results of application of the analysis protocol on the HGS/HGF dataset by
using K2 are presented in Table 2. In each cell you find the number of occurrence
of a relation between a parent node (on the column) and a child node (in the
row), frequent relations are in bold.

The most frequent parents are the probes 742 at (HABP2) with frequency
25%, 1095 s at (HGF) with frequency 18.9% and the class attribute with fre-
quency 20.8%.

Applying the analysis protocol on the NRCP dataset (complete tables are
omitted, due to lack of space) by using K2-lift algorithm, we observed that:

Table 1. HGS/HGF K2-lift results

class 742 at 829 s at 1095 s at 1340 s at 33396 at 33887 at 35063 at 36231 at 40508 at
HABP2 GSTP1 HGF HGF GSTP1 HGS HGFAC MGC17330 GSTA4

class 3 1
742 at

829 s at 2 4 1 1 1
1095 s at 3 1 1
1340 s at
33396 at 1 2 2
33887 at 2 3 1 1 1
35063 at
36231 at 5
40508 at 3 2

35063_at

742_at

1340_s_at

829_s_at1095_s_at

Class

36231_at

33396_at33887_at40508_at

Fig. 1. K2-lift network
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Table 2. HGS/HGF K2 results

class 742 at 829 s at 1095 s at 1340 s at 33396 at 33887 at 35063 at 36231 at 40508 at
HABP2 GSTP1 HGF HGF GSTP1 HGS HGFAC MGC17330 GSTA4

class 3 1
742 at 2 1 1

829 s at 2 4 1 1 1
1095 s at 3 1
1340 s at 2 1 1 1
33396 at 1 1 2
33887 at 2 3 1 1 1
35063 at 2 1 1 1
36231 at 4 1
40508 at 3 1 1

– the most frequent parent probes are 1880 at (MDM2) with frequency 16.9%,
37107 at (PPM1D) with frequency 11.3% and 40631 at (TOB1) with fre-
quency 10.5%;

– there are five frequent probabilistic probe relations composed by:
• 36136 at (TP53I11) with parents 1880 at (MDM2) and 38379 at (GP-

NMB);
• 36479 at (GAS8) with parent 1880 at (MDM2);
• 38379 at (GPNMB) with parent 1880 at (MDM2);
• 38682 at (BAP1) with parent 38379 at (GPNMB);
• 41141 (PRKRIR) with parent 37218 at (BTG3).

Applying the analysis protocol on the NRCP dataset by using K2 algorithm
we observed that:

– the most frequent parent probes are 1880 at (MDM2) with frequency 27.1%,
34629 at (TP53I11) with frequency 10%, 32568 at (BTG3) with frequency
9.0% and the class attribute with frequency 10.5%;

– there are six frequent probabilistic probe relations composed by:
• 36136 at (TP53I11) with parent 1880 at (MDM2);
• 36479 at (GAS8) with parent 1880 at (MDM2);
• 38379 at (GPNMB) with parent 1880 at (MDM2);
• 38639 at (MXD4) with parent 1880 at (MDM2);
• 38682 at (BAP1) with parent 38379 at (GPNMB);
• 41141 at (PRKRIR) with parents 37218 at(BTG3)and 38682 at (BAP1).

These results may be evaluated both regards the applied methods and the
biological significance.

About the methods, some considerations arise about the difference between
the results produced by K2 and K2-lift, and about the adopted analysis protocol.

Analyzing the Bayesian networks learned by K2, we can see that the first
probe in the ordering is usually overrepresented as parent of the other probes. So
it creates a more connected network that is difficult to evaluate by a biologist. K2-
lift learns a more synthetic network which highlights the most interesting probes
interactions. About the Bayes score of the learned networks, the score average
of the best ones proposed by K2 and K2-lift are similar (-170.14 against -170.97
for the NRCP dataset and -61.37 against -62.38 for the HGS/HGF dataset).



116 G. Gamberoni et al.

About the adopted analysis protocol, the probabilistic relations found in the
datasets consider only the qualitative meaning of such relations. The conditional
probability table associated to each frequent relation found can be computed by
standard statistic methodologies.

The results propose also some biological considerations. Acute myelogenous
leukemia is a heterogeneous disease that appears to evade the normal regulatory
controls of tumor suppressor genes (Stirewalt et al, 2000 [19]). Studies in AML
have documented mutations in p53 (strictly related to TP53I11 probe), but these
mutations are relatively uncommon, especially compared to their mutational
frequency in solid tumors. In addition, expression abnormalities have now been
documented in several tumor suppressor genes or related genes including MDM2,
p73, Rb, p14(ARF), p15(INK4B), and p16(INK4A). ERBB2 (strictly related
to TOB1 probe, found by K2-lift as a frequent parent) is a receptor protein
tyrosine kinase frequently mutated in human cancer. The protein-kinase family
is the most frequently mutated gene family found in human cancer and faulty
kinase enzymes are being investigated as promising targets for the design of
anti-tumour therapies.

Stephens et al (2004) [18] have sequenced the gene encoding the transmem-
brane protein tyrosine kinase ERBB2 from 120 primary lung tumours and iden-
tified 4% that have mutations within the kinase domain; in the adenocarcinoma
subtype of lung cancer, 10% of cases had mutations. ERBB2 inhibitors, which
have so far proved to be ineffective in treating lung cancer, should now be clin-
ically re-evaluated in the specific subset of patients with lung cancer whose tu-
mours carry ERBB2 mutations. MDM2 (found by K2-lift as a frequent parent)
is a target gene of the transcription factor tumor protein p53. Overexpression of
this gene can result in excessive inactivation of tumor protein p53, diminishing
its tumor suppressor function.

Faderl et al (2000) [8] showed that overexpression of MDM-2 is common in
AML and is associated with shorter complete remission duration and event free
survival rate. It is striking to note that MDM2 and a TP53 induced protein are so
tightly connected in the networks, since MDM2 is probably the most important
protein for regulation of TP53 activity. The ERBB2 and MDM2 interaction is
also very revealing and it should be noted that ERBB2 amplification or overex-
pression can make cancer cells resistant to apoptosis and promotes their growth.

Zhou et al (2001) [22] showed that ERBB2-mediated resistance to DNA-
damaging agents requires the activation of Akt, which enhances MDM2-mediated
ubiquitination and degradation of TP53.

We then compared our results to the original conclusions from the paper by
Oshima and colleagues [15] who generated the datasets we used for analysis.
They identified a set of genes associated to the course of the disease and to
clinical classification. Furthermore they identified genes which are related to
clinical outcome after induction chemotherapy. When compared to their gene
lists, we identified novel gene interactions in our analysis, which might be very
important for the clinical outcome. TP53 implications are outlined above while
HGF has been widely implicated in tumor scattering and invasive growth and
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is of prognostic importance in AML (Verstovsek et al 2001 [21]). Our findings
therefore represented novel potentially informative results related to the AML
datasets. Thus it seems that by using the proposed method it is possible to mine
useful data from microarray experiments in a previously undescribed way.

4 Related Works

A work related to ours is [9]. In it the authors learn causal networks from DNA
microarray data with the aim of discovering causal relations between the different
genes. A causal network is a network where the parent of a variable are its
immediate causes. A causal network can be interpreted as a Bayesian network
if we make the Causal Markov Assumption: given the values of a variable’s
immediate causes, it is independent of its earlier causes.

In order to learn causal networks, the authors make two assumptions: the first
is that the unknown causal structure of the domain satisfies the Causal Markov
Assumption, the second is that there are no latent or hidden variables. However,
from these assumptions it is not possible to distinguish from observations alone
between causal networks that specify the same independence properties. There-
fore, what is learned is a partially directed acyclic graph (PDAG), where some
of the edges can be undirected.

When data is sparse, a single PDAG can not be identified, rather a prob-
ability distribution over causal statements is induced. Moreover, the posterior
probability is not dominated by a single model. In order to solve this problem,
the authors try to identify features, i.e., relations between couples of variables.
There are two types of features. The first is Markov relations: X is in a Markov
relation with Y if Y is in the Markov blanket of X . The second is order relations:
X is in an order relation with Y in a PDAG if there is a path between X and Y
where all the edges are directed. The aim of the authors is to estimate the pos-
terior probability of the features given the data. Ideally this should be done by
sampling networks from the posterior to estimate this quantity. However, this is
a hard problem. Therefore, they resort to a simpler analysis that consists of the
bootstrap method: they generate perturbed versions of the data set and learn
from them. In this way, they collect many networks that are reasonable models
of the data. Then they compute the confidence of a feature as the fraction of
networks containing the feature

In order to learn a PDAG from data they use the Sparse Candidate algorithm:
a relatively small number of candidate parents for a variable can be identified
by means of local statistics (such as correlation). Then the search is performed
by picking parents for a variable only from the identified set.

They apply these techniques to DNA microarrays for S. cerevisiae. In partic-
ular they consider 800 genes whose expression varies over the different cell-cycle
stages and 76 gene expression measurements. The learning experiment was con-
ducted using 200-fold bootstrap. The results show that they were able to recover
intricate structures even from such small data set. A biological analysis show that
the results are well supported by current biological knowledge.
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Our approach differs from the one of [9] because we learn a number of net-
works starting from different orders of the variables rather than from perturbed
datasets. Moreover, we compute the confidence of the features only taking into
account the best scoring networks according to a Bayesian metric.

Another work very related to ours is [10]. In it the author describe the state
of the art in the use of probabilistic graphical models for inferring regulatory
networks in cells. Besides the bootstrap approach of [9], the author describe two
other studies that are relevant to ours. In the first, the authors examines only
the networks in which a small number of regulators explain the expression of all
other genes. This simplifies the learning procedure thus leading to statistical and
computational advantages. They performed a systematic validation comparing
the process and function annotation of the target set of each regulator with the
known literature about the regulator. In most cases, they found a match between
the annotation and the literature.

In the second study, the genes are divided into module that share a regula-
tory program. The learning procedure simultaneously identifies the composition
of the modules and the regulators for each module. The module approach is
in accordance with biological principles that suggest that a regulatory process
usually involves many genes at the same time. Moreover, shared regulatory pro-
cesses require less parameters thus leading to an improvement of the robustness
of the model. Finally, the learned networks are easier to interpret, thanks to the
module partition. The authors of this study confirmed the obtained results both
by comparing the results with the literature and by examining gene expression
of knockout strains.

These two studies are alternative to ours and exploit prior biological knowl-
edge in order to target more effectively the gene expression domain, while we
used general purpose techniques without exploiting other knowledge besides that
contained in the microarray dataset.

5 Conclusions and Future Works

In this paper we describe the results of experiments conducted applying Bayesian
network learning algorithm on microarray datasets. These preliminary results
shows that in most of the cases, K2-lift creates a more synthetic network with
respect to K2. It is also noteworthy that many relations found confirmation in
biological literature.

The analysis protocol used for the result evaluation is very simple and need
some enhancements both in complexity and in statistical significance. For these
reasons, a bootstrap-based approach will be the subject of further studies. In
a more complex protocol, we also need to consider the conditional probability
tables and other information associated to the learned networks

In the future we also plan to empirically compare our approach to that of [9]
in order to better compare the performances of the two methods. Moreover, we
plan to improve our learning process by means of prior biological knowledge, as
done in the studies described in [10].
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Abstract. We present a prototype system, code-named Pulse, for min-
ing topics and sentiment orientation jointly from free text customer feed-
back. We describe the application of the prototype system to a database
of car reviews. Pulse enables the exploration of large quantities of cus-
tomer free text. The user can examine customer opinion “at a glance” or
explore the data at a finer level of detail. We describe a simple but effec-
tive technique for clustering sentences, the application of a bootstrapping
approach to sentiment classification, and a novel user-interface.

1 Introduction

The goal of customer satisfaction studies in business intelligence is to discover
opinions about a company’s products, features, services, and businesses. Cus-
tomer satisfaction information is often elicited in a structured form: surveys
and focus group studies present customers with carefully constructed questions
designed to gather particular pieces of information a company is interested in.
The resulting set of structured, controlled data can easily be analyzed statisti-
cally and can be conveniently aggregated according to the specific dimensions of
the survey questions or focus group setup. The drawbacks of structured studies
are the expense associated with the design and administration of the survey, the
limit that is necessarily imposed on the free expression of opinions by customers,
and the corresponding risk of missing trends and opinions that are not expressed
in the controlled situation. Additionally there is the risk of missing whole seg-
ments of the customer population that do not like to respond to a guided and
structured set of questions.

Another potential source of information for business intelligence, which is
becoming more and more pervasive and voluminous, is spontaneous customer
feedback. This feedback can be gathered from blogs, newsgroups, feedback email
from customers, and web sites that collect free-form product reviews. These can
be rich sources of information, but these sources are much less structured than
traditional surveys. The information is contained in free text, not in a set of
answers elicited for a specific set of questions.

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 121–132, 2005.
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Paying people to mine this free-form information can be extremely expen-
sive, and given the high volume of such free text is only feasible by careful
sampling.1

With the advent of automatic techniques for text mining such as clustering
and key term extraction, free-form customer opinions can be processed efficiently
and distilled down to essential topics and recurring patterns of content. When
trying to assess customer opinions, however, topic is only one of the dimensions
that are of interest. As well as identifying what topics customers are talking
about, it would be useful to characterize the opinions that they express about
those topics.

Researchers have begun to focus on the analysis of opinion (‘sentiment classi-
fication’) typically using supervised machine learning techniques. 2 The project
that we describe in this paper, code-named Pulse, combines the two dimen-
sions of topic and sentiment and presents the results in an intuitive visual-
ization. Pulse combines a clustering technique with a machine-learned senti-
ment classifier, allowing for a visualization of topic and associated customer
sentiment. Pulse provides both a high-level overview of customer feedback and
the ability to explore the data at a finer granularity. Pulse requires that only
a small amount of data be annotated to train a domain-specific sentiment
classifier.

Both sentiment detection and topic detection in Pulse are performed at the
sentence level rather than at the document level. Document-level assessment,
which is the focus of most sentiment classification studies, is too coarse for our
purposes. In a review document, for example, we often find mixed positive and
negative assessments such as: “OVERALL THE CAR IS A GOOD CAR. VERY
FAST, THE ENGINE IS GREAT BUT FORD TRANSMISSIONS SUCK.” Of
course, even sentence-level granularity is too coarse in some instances, for exam-
ple: “Its [sic] quick enough to get you and a few other people where you need to
go although it isn’t too flashy as far as looks go.”3 As we will discuss in further
detail below, sentence-level granularity of analysis allows the discovery of new
information even in those scenarios where an overall product rating is already
provided at the document level.

We first describe the data to which Pulse has been applied (Section 2). We
then describe the prototype system, consisting of a visualization component
(Section 3.1), a simple but effective clustering algorithm (Section 3.2), and a
machine-learned classifier that can be rapidly trained for a new domain (Section
3.3) by bootstrapping from a relatively small set of labeled data.

1 It is worth noting that business intelligence is not the only scenario where customer
satisfaction is of interest: individual customers often use resources on the web to find
other people’s reviews of products and companies to help them reach a decision on
a purchase.

2 Two notable exceptions are [1,2].
3 In future work we intend to investigate sentences with mixed sentiment, analyzing

them at the level of the clause or phrase.
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2 Data

We applied Pulse to a sample of the car reviews database[3]. This sample contains
406,818 customer car reviews written over a four year period, with no editing
beyond simple filtering for profanity. The comments range in length from a single
sentence (56% of all comments) to 50 sentences (a single comment). Less than
1% of reviews contain ten or more sentences. There are almost 900,000 sentences
in total.

When customers submitted reviews to the website, they were asked for a
recommendation on a scale of 1 (negative) to 10 (positive). The average score
was 8.3 suggesting that people are enamored of their cars, or that there is a
self-selection in the reviewers. Even reviews with positive scores contain useful
negative opinions: after all a less-than-perfect score often indicates that the car
may have a few shortcomings, despite a relatively high score.

For this reason we ignore the document-level scores and annotated a ran-
domly selected sample of 3,000 sentences for sentiment. Each sentence was viewed
in isolation and classified as “positive”, “negative” or “other”. The “other” cat-
egory was applied to sentences with no discernible sentiment, as well as to sen-
tences that expressed both positive and negative sentiment and sentences with
sentiment that cannot be deduced without taking context and/or world knowl-
edge into account.

The annotated data was split: 2,500 sentences were used for the initial phase
of training the sentiment classifier (Section 3.3); 500 sentences were used as a
gold standard for evaluation. We measured pair-wise inter-annotator agreement
on a separate randomly selected sample of 100 sentences using Cohen’s Kappa
score.[4] The three annotators had pair-wise agreement scores of 70.10%, 71.78%
and 79.93%.This suggests that the task of sentiment classification is feasible but
difficult even for people.

3 System Description

Pulse first extracts a taxonomy of major categories (makes) and minor categories
(models) of cars by simply querying the car reviews database. The sentences
are then extracted from the reviews of each make and model and processed
according to the two dimensions of information we want to expose in the final
visualization stage: sentiment and topic. To train the sentiment classifier, a small
random selection of sentences is labeled by hand as expressing positive, “other”,
or negative sentiment. This small labeled set of data is used with the entirety of
the unlabeled data to bootstrap a classifier (Section 3.3).

The clustering component forms clusters from the set of sentences that corre-
sponds to a leaf node in the taxonomy (i.e. a specific model of car). The clusters
are labeled with the most prominent key term. For our prototype we imple-
mented a simple key-word-based soft clustering algorithm with tf·idf weighting
and phrase identification (Section 3.2). Once the sentences for a make and model
of car have been assigned to clusters and have received a sentiment score from
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Fig. 1. Overview of the Pulse System Architecture

the sentiment classifier, the visualization component (Section 3.1) displays the
clusters and the keyword labels that were produced for the sentences associated
with that car. The sentences in a cluster can be displayed in a separate view.
For each sentence in that view, the context (the original review text from which
the sentence originated) can also be displayed. Figure 1 gives an overview of the
system.

3.1 The Visualization Component

The visualization component needs to display the two dimensions of informa-
tion, i.e. topic and sentiment, simultaneously. Another requirement is that it
allow the user to easily access the specifics of a given topic. Pulse uses a Tree
Map visualization [5] to display clusters and their associated sentiment. Each
cluster is rendered as one box in the Tree Map. The size of the box indicates the
number of sentences in the cluster, and the color indicates the average sentiment
of the sentences in the box. The color ranges from red to green, with red indicat-
ing negative clusters and green indicating positive ones. Clusters containing an
equal mixture of positive and negative sentiment or containing mostly sentences
classified as belonging to the “other” category are colored white. Each box is
also labeled with the key word for that particular cluster.
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Fig. 2. Screenshot of the Pulse user interface showing the taxonomy of makes and
models, the Tree Map with labeled clusters and sentiment coloring, and individual
sentences from one cluster

The Tree Map visualization allows the identification of the following infor-
mation about the sentences associated with a given make/model at a glance:

– the overall sentiment associated with the make/model (indicated by the rel-
ative area in the entire Tree Map colored red or green)

– the most common topics that customers mention in the reviews for the
make/model as indicated by the larger boxes

– the most positive and the most negative topics, indicated by the darkest
shades of green and red in the cluster boxes.

Figure 2 shows a screenshot of the visualization in the cluster view. The
taxonomy of makes and models (i.e. major and minor category) is displayed in
the left pane, the Tree Map to the right of it, and the sentences in the tabbed
display at the bottom.

The user has selected the Volkswagen Golf. The two biggest clusters appear
in the boxes at the left of the Tree Map: “drive”, and “vw, service”. The user
has chosen to inspect the “vw, service” cluster by clicking on it and viewing
the negative sentences in the tabbed display at the bottom of the screen. The
threshold slider has been set approximately three quarters of the way along,
restricting the display to only sentences with high class probability. This has the
effect of increasing precision at the expense of recall. Clicking on a sentence in the
tabbed display brings up a window (not shown) that displays the entire review
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in which the selected sentence occurred, with each sentence colored according to
sentiment.

By choosing a menu option, the user can view a summary of the clusters in
the form of simple “Top five” lists, where for a given make/model the top five
terms overall, the top five positive terms and the top five negative terms are
displayed. The top five display is very simple, and is not shown in the interests
of brevity.

3.2 Clustering Algorithm

We experimented with several different clustering algorithms for finding salient
patterns in the sentences:

– a k-means clustering algorithm using tf·idf vectors, as described in [6],
– an EM implementation of soft, non-hierarchical clustering[7],
– a hierarchical, entropy-based clustering algorithm[8], and
– an algorithm that used character n-gram feature vectors.

None of the approaches we tried produced clusters that we found satisfactory.
Each algorithm was designed for a different task. The first two were designed
for clustering documents which are much larger units of text than sentences.
The third and fourth approaches were designed for clustering units of text that
are much smaller than sentences, namely words and Internet search queries. We
therefore formulated the following simple algorithm, which performs well.

The input to the clustering algorithm is the set of sentences S for which
clusters are to be extracted, a stop-list WStop of words around which clusters
ought not to be created, and (optionally) a “go list” WGo of words known to be
salient in the domain.

1. The sentences, as well as the stop and go lists, are stemmed using the Porter
stemmer. [9]

2. Occurence counts CW are collected for each stem not appearing in WStop.
3. The total count for stems occuring in WGo is multiplied by a configurable

parameter λ1.
4. The total count for stems with a high tf·idf (calculated over the whole data

set) is multiplied by a configurable parameter λ2.
5. The total count for stems with a high tf·idf (calculated over the data in the

given leaf node of the taxonomy) is multiplied by a configurable parameter
λ3.

6. The list of counts is sorted by size.
7. To create a set of N clusters, one cluster is created for each of the most

frequent N stems, with all of the sentences containing the stem forming the
cluster. The clusters are labeled with the corresponding stem St 4 An op-
tional additional constraint is to require a minimum number M of sentences
in each cluster.

4 We experimented with N in the range 30–50. For larger values of N , the visualization
became too cluttered to be useful.
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Fig. 3. Diagram of the clustering algorithm

8. Two clusters C1 and C2 are merged if the overlap of sentences SC1C2 con-
tained in both C1 and C2 exceeds 50% of the set of sentences in C1 or C2.
If the labels of C1 and C2 form a phrase in the sentences in SC1C2, the new
cluster C12 is labeled with that phrase, otherwise it is labeled with both
labels, separated by a comma.

An overview of the clustering approach is presented in Figure 3. The initial
set of clusters is determined by term frequency alone. Go words and the two tf·idf
weighting schemes each re-rank the clusters, and finally some of the clusters are
merged and a fixed number of clusters is selected off the top of the ranked list
for display.

The stop word list consists of two components. The first is a manually speci-
fied set of function words and high frequency, semantically empty content words
such as “put”. The more interesting and essential part of the stop list, however,
is the set of the top N features from the sentiment classifier, according to log
likelihood ratio (LLR) with the target feature [10]. By disallowing words known
to be highly correlated with positive or negative sentiment we ensure that the
topics represented in the clusters are orthogonal to the sentiment of the feedback.
Term frequency (tf)/inverse document frequency (idf) weighting is a common
technique in clustering. Terms with high tf·idf scores are terms that have a high
degree of semantic focus, i.e. that tend to occur frequently in specific subsets of
documents. The tf·idf weighting scheme that we employed is formulated as

weight(i, j) =
{

(1 + log(tfi,j)log N
dfi

if tfi,j ≥ 1
0 otherwise

}
(1)

where tfi,j is the term frequency of a word wi, and dfi is the document frequency
of wi, i.e. the number of documents containing wi and N is the number of leaf
nodes in the taxonomy ([6]).

Since we cluster sentences, i.e. sub-document units, we are not interested in
using tf·idf for weight assignment in the sentence vectors themselves. We rather
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want to find out which of all the terms in all the reviews for one make/model
leaf node should be given increased importance when clustering sentences in that
leaf node. In order to assign a per-word weight that we can use in clustering, we
calculate two different per-word scores:

1. We can take dfi to be the number of reviews under a given leaf node which
contain wi. tfi,j is taken to be the term frequency in the reviews in that leaf
node. A high score in this scenario indicates high semantic focus within the
specific leaf node.

2. If dfi is defined to be the number of reviews in the whole collection which
contain wi, and tfi,j is the term frequency in the whole collection, a high
tf·idf score indicates a term with high semantic focus in the whole domain.

These two scores allow the customization of the weighting of terms according
to their leaf-node specific salience or their domain-specific salience. The more
uniform a collection of data is, the more the two measures will coincide. In
addition to weighting the terms for clustering according to these two scores,
Pulse also allows for the use of a go word list (i.e. a domain dictionary) where
such a resource is available.5 The go word list allows us to steer the clustering
toward terms that we know to be salient in the domain, while at the same time
still allowing us to discover new clusters automatically that do not appear in our
domain dictionary. For example, for many makes and models of car, terms like
“family” and “snow”, which were not in the domain-specific go list, emerged as
labels for clusters.

Finally, it must be noted that not all sentences are assigned to a cluster.
Unassigned sentences are assigned to a nonce cluster, which is not displayed
unless the user explicitly chooses to see it. Also, because more than one cluster
keyword can appear in a given sentence, that sentence may correspondingly
belong to more than one cluster (soft clustering).

3.3 Sentiment Analysis

As mentioned in the introduction, machine-learned approaches to sentiment
analysis are a topic that has received considerable attention from researchers
over the past few years. A number of different approaches have been applied
to the problem. The annotated movie review data set made publicly available
by Pang and Lee [11,12] has become a benchmark for many studies. The data
consists of 2000 movie reviews, evenly split between positive and negative in-
stances. The task is to determine which are positive and which are negative.
Classification accuracies approaching 90% for this binary classification task are
cited [11,12,13]. Features for sentiment classification typically consist of simple
unigram (term) presence. However, the following characteristics of the car re-
views data set rendered techniques previously cited in the literature unsuited to
our task:
5 For the autos domain, WGo was created by extracting entry keywords from a freely-

available online automotive dictionary.
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1. Since we are aiming at sentence-level classification, we are dealing with much
shorter textual units than the full movie reviews, which range from a few
sentences to several paragraphs.

2. The car reviews are not annotated at the sentence level. Since one of the main
purposes of Pulse is to avoid the cost associated with manual examination
of data, we would like to be able make do with as little annotated data as
possible.

3. The Movie Review data set is carefully selected to be balanced, and to con-
tain only extremes, i.e. only very strong recommendations/disrecommenda-
tions. The car review data, on the other hand, are strongly imbalanced, with
positive reviews predominating.

4. While the movie reviews are generally well-written, the car review sentences
are frequently ungrammatical, fragmentary and idiosyncratic. They contain
numerous misspellings, acronyms, and a more telegraphic style.

We ignored the recommendation scores at the review (document) level for
two reasons. First, since we focus our classification on individual sentences, we
cannot make the assumption that in a review all sentences express the same
sentiment. If a reviewer decides to give 8 out of 10 stars, for example, the review
is likely to contain a number of positive remarks about the car, with a few
negative remarks–after all the reviewer had a reason to not assign a 10-out-of-10
score. Secondly, we wanted to investigate the feasibility of our approach in the
absence of labeled data, which makes Pulse a much more generally applicable
tool in other domains where customer feedback without any recommendations
is common.

Because the sentences in the car reviews database are not annotated, we de-
cided to implement a classification strategy that requires as little labeled data
as possible. We implemented a modified version of Nigam et al.’s algorithm
for training a Naive Bayes classifier using Expectation Maximization (EM) and
bootstrapping from a small set of labeled data to a large set of unlabeled data
[14]. The classification task in our domain is a three-way distinction between
positive, negative, and “other”. The latter category includes sentences with no
discernible sentiment (a sentiment-neutral description of a model, for example),
sentences with balanced sentiment (where both a positive and a negative opinion
are expressed within the same sentence), and sentences with a sentiment that
can only be detected by taking the review context and/or world knowledge into
account. This bootstrapping allowed us to make use of the large amount of unla-
beled data in the car reviews database, almost 900,000 sentences. The algorithm
requires two data sets as input, one labeled (DL), the other unlabeled (DU ).

1. An initial naive Bayes classifier with parameters θ is trained on the docu-
ments in DL.

2. This initial classifier is used to estimate a probability distribution over all
classes for each of the documents in DU . (E-Step)

3. The labeled and unlabeled data are then used to estimate parameters for a
new classifier. (M-Step)
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Fig. 4. Precision vs. Recall for Negative and OtherClass

Steps 2 and 3 are repeated until convergence is achieved when the difference
in the joint probability of the data and the parameters falls below the con-
figurable threshhold ε between iterations. We also implemented two additional
modifications described by [14]:

1. A free parameter, δ, was used to vary the weight given to the unlabeled
documents.

2. Mixtures were used to model each class.

In order to prepare the data for classification, we normalized each sentence
using some simple filters. All words were converted to lower-case, and numbers
were collapsed to a single token6. For each sentence, we produced a sparse binary
feature vector, with one feature for each word or punctuation mark. Our labeled
data were the hand-annotated sentences described in section 2. 2500 of these were
used to train the classifier DL, and the remaining 500 were reserved as a test set.
The classifier was trained and then evaluated on the test set. The data set shows a
clear skew towards positive reviews: in the annotated data set, positive sentences
comprise 62.33% of the data, sentences of type “other” comprise 23.27%, and
negative sentences 14.4%. Because of this skew toward a positive label in the
data set, overall accuracy numbers are not very illuminating–naively classifying
every sentence as positive will result in a 62.33% accuracy. Instead we evaluate

6 We leave it for future research to also employ automatic spelling correction. We
expect this to be useful in the car review domain, where misspellings are rather
abundant (the word “transmission”, for example, is spelled in 29 different ways in
this data set).
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the classifier by considering the precision vs. recall graph for the negative and
“other” classes, which are the classes with the fewest occurrences in the training
data. We achieved some of the best results on the negative and “other” classes
by using a δ of 1.0.

Figure 4 shows that the classifier is able to achieve reasonable precision on
the negative and “other” classes at the expense of recall. In domains with very
large amounts of free-form customer feedback (typically so large that complete
human analysis would not even be attempted) low recall is acceptable. The “
other” category is clearly the hardest to identify, which is not surprising given its
very heterogeneous nature. Recall on the positive class is nearly constant across
precision values, ranging from 0.95 to 0.97.

4 Conclusion

Much has been written about the individual fields of clustering and sentiment
analysis on their own. Combined, however, and paired with an appropriate visu-
alization they provide a powerful tool for exploring customer feedback. In future
work we intend to apply this combination of techniques to the analysis of a range
of data, including blogs, newsgroups, email and different customer feedback sites.
We are currently working with various end-users who are interested in using a
practical tool for performing data analysis. The end-user feedback that we have
received to date suggests the need for improved text normalization to handle to-
kenization issues, and the use of a speller tool to identify and normalize spelling
variants and misspellings. Finally, our research will continue to focus on the
identification of sentiment vocabulary and sentiment orientation with minimal
customization cost for a new domain. We have begun experimenting with a vari-
ation of a technique for bootstrapping from seed words with known orientation
[1,2] with promising initial results [15]. As opposed to the approach described
here, the new approach only requires the user to identify a small (about ten
item) seed word list with known strong and frequent sentiment terms and their
orientation. The only additional task for the user would be to verify and edit
an extended seed word list that the tool will automatically produce. Once this
extended list has been verified, a sentiment classifier can be produced without
further labeling of data.
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Abstract. Typing rhythms are one of the rawest form of data stemming from
the interaction between humans and computers. When properly analyzed, they
may allow to ascertain personal identity. In this paper we provide experimental
evidence that the typing dynamics of free text can be used for user identification
and authentication even when typing samples are written in different languages.
As a consequence, we argue that keystroke analysis can be useful even when
people may use different languages, in those areas where ascertaining personal
identity is important or crucial, such as within Computer Security.

1 Introduction to Keystroke Analysis

Keystroke Analysis is the biometric area concerned with the problem of ascertaining
users’ identity through the way they type on a computer keyboard [1]. As such, it is es-
sentially a form of Pattern Recognition, as it involves representation of input data mea-
sures, extraction of characteristic features and classification or identification of patterns
data so as to decide to which pattern class these data belong [9].

In the case of typing rhythms, input data is usually represented by a sequence of
typed keys, together with appropriate timing information so that it is possible to com-
pute the elapsed time between the release of the first key and the depression of the
second (the so-called digraph latency) and the amount of time each key is held down
(the keystroke duration). The extraction of such features turns a sequence of keystrokes
into a typing sample. Appropriate algorithms are then used to classify a typing sample
among a set of pattern classes, each one containing information about the typing habits
of an individual. Pattern classes are often called profiles or models, and they are built
using earlier typing information gathered from the involved individuals.

Within computer science, a biometric such as keystroke dynamics is particularly ap-
pealing, since it can be sampled without the aid of special tools, just the keyboard of the
computer where the biometric analysis has to be performed. Keystroke analysis is how-
ever a difficult task, for several reasons: (1) keystrokes, unlike other biometric features,
convey an unstructured and very small amount of information. Keystroke duration and
digraph latency are in fact a pretty shallow kind of information. (2) Keystroke dynamics
are a behavioral biometric, like voiceprints and handwritten signatures. As such, they
are intrinsically unstable, and show a certain degree of variability even without any evi-
dent reason. After all, it is pretty difficult to control the number of milliseconds we hold
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down a key when typing. (3) The variability of typing rhythms may be magnified by
the fact that, of course, during the normal use of a computer, different texts are entered,
possibly in different languages.

To deal with the instability of typing dynamics, most experiments within keystroke
analysis have been limited to samples produced from a unique pre-defined text (e.g.
[13,12,5,6,17,3]) or from a small number of different, but still pre-defined texts, (e.g.
[14,10,4]). and we refer to [3] and [4] for a thorough descriptions of the various methods
found in the literature. However, a large part of the interest in keystroke analysis lies
in the possibility to use what stems from the normal use of a computer: the typing
rhythms of free text. For example, Intrusion Detection techniques would benefit from
such ability, as we discuss at the end of the paper. Unfortunately, when analyzing the
typing dynamics of free text the variability of keystroke dynamics is akin to get worse,
since the timings of a sequence of keystrokes may be influenced in different ways by
the keystrokes occurring before and after the one currently issued. This is even more
true if different languages are involved.

Analysis of “true” free text is attempted in [16], where the authors test different
methods based on the Euclidean distance and on the mean typing speed and standard
deviation of digraphs to measure similarities and differences among typing samples of
31 users, reaching a 23% of correct classification of the typing samples.

In [8] four users are monitored for some weeks during their normal activity on
computers, so that thousands of digraphs latencies can be collected. Authors use both
statistical analysis and different data mining algorithms on the users’ data sets, and are
able to reach an almost 60% of correct classification. Authors’ approach is improved
in [7], both in the outcomes and in the number of users (35) involved, collecting over
three months of continuous monitoring more than 5 millions keystrokes.

In [4] we showed experimentally that, on the average, typing samples of different
texts provided by the same individual are more similar than typing samples of the same
text provided by different individuals. Thus, it was shown that keystroke analysis of free
text, though more difficult than keystroke analysis of fixed text, can still be achieved.

In this paper we perform a further step, and show that it is possible to identify a
user through the way he types on a keyboard, even when the user is entering free text
in a language different from the one used to form his profile. Such ability is important
since, for example, more and more people writing text with a computer may use their
own language when communicating with others understanding the same language, but
use English as the “Lingua Franca” to communicate with the rest of the world.

As we showed in [11], typing dynamics may provide meaningful information to
improve the accuracy of an Intrusion Detection System, and may help to limit the num-
ber of false alarms. Thus, being able to deal with typing dynamics regardless of the
language in use provides a double advantage. On the one hand, a legal user is free of
entering text in the language she prefers, without particular risks of raising more alarms:
the ability of the system to acknowledge her as the legal owner of the account under ob-
servation will not be affected by the use of a different language. On the other hand,
intruders would not find any benefit by trying to disguise themselves using a language
different from the one normally used by the intruded user: the system will not be fooled
by the typing rhythms of a language different from the one of the user’s profile.
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As far as we know, this is the first work showing that keystroke analysis can be used
to ascertain personal identity even when different languages are involved.

2 Computing the Distance Between Two Typing Samples

We will use the combination of two measures to evaluate the similarities and differences
between the typing rhythms “recorded” in two samples we want to compare. We intro-
duced the first measure, d1, in [3]. The second measure, d2, is described here for the
first time. The only timing information we use in our experiments is the time elapsed
between the depression of the first key and the depression of the second key of each di-
graph. We call such interval the duration of the digraph. If the typed text is sufficiently
long, the same digraph may occur more than once. In such case, we report the digraph
only once, and we use the mean of the duration of its occurrences.

Given any two typing samples S1 and S2, each one turned into digraphs and sorted
with respect to duration of such digraphs, we define the distance between S1 and S2,
d1(S1,S2), as the sum of the absolute values of the distances of each digraph of S2 w.r.t.
the position of the same digraph in S1. When computing d1(S1,S2), digraphs that are
not shared between the two samples are simply removed. It is clear that, from the defi-
nition of d1, we may compute the distance between any two typing samples, provided
they have some digraphs in common, even if written in different languages. As an exam-
ple, in the left part of the Table 1 we report typing samples E1 and E2 obtained typing,
respectively the texts mathematics and sympathetic. Only digraphs shared between E1
and E2 are actually shown. Numbers beside digraphs are their typing speed in millisec-
onds. The right part of the table illustrates pictorially the computation of the distance
between E1 and E2. From the figure it is easy to see that: d1(E1,E2) = 3+0+0+1+4 = 8.

Given any two typing samples, the maximum distance they may have is when the
shared digraphs, sorted by their typing speed, appear in reverse order in one sample
w.r.t. the other sample. Hence, if two samples share N digraphs, the maximum distance
they can have is given by: N2/2 (if N is even); (N2-1)/2 (if N is odd).

The above value can be used as a normalization factor of the distance between two
typing samples sharing N digraphs, dividing their distance by the value of the maximum
distance they may have. In this way it is possible to compare the distances of pairs
of samples sharing a different number of digraphs: the normalized distance d1(S1,S2)
between any two samples S1 and S2 is a real number between 0 and 1. Measure d1
returns 0 when the digraphs shared by the two samples are exactly in the same order
w.r.t. their duration, and returns 1 when the digraphs appear in reverse order (d1(S1,S2)
is also set to 1 if S1 and S2 do not share any digraph). In our example, E1 and E2 share
5 digraphs. Thus, their normalized distance is 8/[(52-1)/2] = 0.66666. From now on, in
the paper we will always use the normalized version of d1.

Distance d1 performed very well to identify users through their typing rhythms
on fixed text, and we refer to [3] for a thorough description of the measure and its
properties. Readers may have noticed that d1 completely overlooks any absolute value
of the timings associated to the samples. Only the relative positions (which is a con-
sequence of the typing speed) of the digraphs in the two samples are taken into
consideration.
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Table 1. Computation of the distance for typing samples E1 and E2

E1 E2
156 ti 270
184 ic 136
195 he 201
197 at 128
207 th 250 d = 4

d = 1

d = 0

d = 3

d = 0

ti 156

ic 184

he 195

th 207

at 197

at 128

ic 136

he 201

ti 270

th 250

E1 E2

However, even the actual typing speed at which digraphs are entered can be useful
to discriminate between different individuals. For example, users A and B may both
type the word on more slowly than the word of, but if the average typing speed of the
two words are, for user A, say: on = 127 millisec.; of = 115 millisec.; and for B: on =
239 millisec.; of = 231 millisec., than A and B can hardly be the same individual.

To take care of such situations, we introduce a second distance measure, d2, based
on the actual typing speeds of digraphs. We could just consider the average typing speed
of samples entered by the user, but since we want to combine this new distance with d1,
we prefer to use a measure that considers the average typing speed of single digraphs,
and that is normalized in the interval [0..1]. We define d2(S1,S2) be the number of
digraphs shared by S1 and S2 whose typing speeds do not differ for more than 30%,1

divided by the total number of digraphs shared by S1 and S2. For example, in the case
of samples E1 and E2, it is easy to check that d2(E1,E2) = 2/5 = 0.4.

Finally, to combine together distances d1 and d2 we simply define d(S1,S2), the
distance between any two samples S1 and S2 that will be used in all the experiments
described in this paper, as: d(S1,S2) = d1(S1,S2) + d2(S1,S2).

3 Experiments in User Identification and User Authentication

To perform the experiments described in this paper, we asked 31 volunteers to provide
two typing samples written in Italian and two typing samples written in English. All
the people participating to the experiments are native speakers of Italian, and, though
with varying typing skills, all of them are well used to type on normal computer key-
boards. Moreover, all volunteers are more or less used to write in English, since they
are colleagues and PhD students.

People provided the samples from their computer, through an HTML form with
a text area of 780 characters to be filled by the users and submitted to the collecting
server. A client side Javascript was used to record the time (in milliseconds) when a key
was depressed, together with the ascii value of the key.

1 In order to chose this “30% rule”, at the same time trying to limit overfitting, we did the
following. When the first five volunteers of our experiments had provided their samples, we
performed the identification task described in Section 3, in order to test different percentages:
10%, 20%, 30% and 40%. The best outcomes were reached using a 30% rule, and thus this
value is used in all the experiments of this paper. It is of course possible that better outcomes
could be reached for some other values (say, 15% or 33%), but we did not bother to find such
particular values, that would hardly perform in a similar way on a different set of users.
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Volunteers were instructed to enter the samples in the most natural way, more or less
as if they were writing an e-mail to someone. They were completely free to choose what
to write, and the only limitations were of not typing the same word or phrase repeatedly
in order to fill the form, and not to enter the same text in two different samples. People
were free to make typos, and to correct them or not, using the backspace key or the
mouse, as preferred. People were free to pause in every moment when producing a
sample, for whatever reason and as long as they wanted. No sample provided by the
volunteers was rejected, for any reason.

In our approach, a user’s profile is simply made of a set of typing samples provided
by that user. Hence, suppose we are given a set of users’ profiles and a new typing
sample from one of the users, so that we want to identify who actually provided the
sample. If the measure d defined in Section 2 works well, we may expect the computed
distance between two samples of the same user to be smaller than the distance between
two samples coming from different users. As a consequence, we may expect the mean
distance of a new sample X from (the samples in) the profile of user U to be smaller if
X has been provided by U than if X has been entered by someone else.

Hence, suppose we have three users A, B and C, with, say, 3 typing samples each
one in their profiles (so that, for example, A’s profile contains typing samples A1, A2
and A3). A new typing sample X has been provided by one of the users, and we have
to decide who entered the sample. We may compute the mean distance (md for short)
of X from each user’s profile as the mean of the distances of X from each sample in the
profile:

md(A,X) = (d(A1,X) + d(A2,X) + d(A3,X))/3;
md(B,X) = (d(B1,X) + d(B2,X) + d(B3,X))/3;
md(C,X) = (d(C1,X) + d(C2,X) + d(C3,X))/3.

Then, we decide that X belongs to the user with the smallest mean distance among the
three. This rule has been tested using all possible combinations of Italian and English
samples in the profiles of the 31 volunteers, while one of the remaining samples is the
one that must be identified. The outcomes of this experiment are reported in the “Identif.
errors” columns of Table 2. Outcomes are grouped w.r.t. the number of samples in
users’ profiles, and are detailed w.r.t. the actual composition of the profiles. Right below
each group we report the whole outcomes obtained for the corresponding group. Within
brackets we indicate the numerical values that provide the corresponding percentages.
For example, suppose there are 3 samples in users’ profiles, two Italian samples and one
English sample. In this case the system can be tested using the other English sample, for
a total of 62 attempted classifications (since both English samples play, in turn, the role
of testing sample). In this case all samples are correctly classified, with an identification
error of 0.0%. When profiles contain one Italian sample and two English samples, the
system makes 2 errors out of 62 attempts, for an identification error of 3.23%. On the
whole, when there are 3 samples in users’ profile, the system can be tested with 124
samples, and shows an error of 1.61%.

From the outcomes we see that the accuracy of the system increases with the number
of samples in users’ profiles. When profiles are made of just on sample, almost one
out of three testing samples are not correctly classified, with an identification error



138 D. Gunetti, C. Picardi, and G. Ruffo

of 29.57%. But such value quickly shrinks to 6.18% when users’ profiles contain 2
samples, and to 1.61% with 3 samples in the profiles.

Quite obviously, when profiles contain exactly one sample in a given language, test-
ing samples are more easily classified correctly if they are written in the same language.
We detail more in depth this in the left part of the table. For example, when profiles con-
tain only one Italian sample, we have 12 identification errors out of 62 attempts when
trying to classify the other Italian sample, but 49 errors out of 124 attempts when trying
to classify the two English samples.

When users’ profiles contain two Italian samples, testing samples are all written in
English, but less than one out of 15 are not correctly classified, for an identification er-
ror of 6.45%. The identification error is larger when users’ profiles contain two English
samples, and the Italian ones must be classified. Presumably, this is due to the fact that
when users are writing in a language different from their own, their particular typing
traits tend to remain more hidden. By putting together outcomes of these two identifi-
cation tasks, we get 12 identification errors out of 124 attempts, that is, less than 10%
of mistakes when attempting to identify a typing sample written in a language different
from the one used for the two typing samples in the profiles. We get the best outcomes
when profiles contains samples written in both languages. In this case it is easier to
correctly identify the testing samples, regardless of the language used to write them.

Table 2. Results in user identification and authentication for different compositions of profiles

samples in Identif.
profiles errors

(Ita.)
19.35%

1 Italian (12/62)
sample

(Eng.)
39.51%
(49/124)

- - - - - -
(Ita.)

32.26%
1 English (40/124)

sample
(Eng.)

14.52%
(9/62)

1 sample 29.57%

samples in Identif. k = 0.9 k = 0.8
profiles errors IPR FAR IPR FAR
2 Italian 6.45% 2.07% 12.9% 1.24% 16.13%
samples (4/62) (77/3720) (8/62) (46/3720) (10/62)

2 English 12.9% 2.07% 14.51% 1.24% 17.74%
samples (8/62) (77/3720) (9/62) (46/3720) (11/62)

1 Ita. + 1 Eng. 4.44% 2.17% 5.65% 1.44% 8.47%
sample (11/248) (323/14880) (14/248) (214/14880) (21/248)

2 samples 6.18% 2.14% 8.33% 1.37% 11.29%

2 Ita.+1 Eng. 0.0% 1.98% 0.0% 1.07% 0.0%
samples (0/62) (147/7440) (0/62) (80/7440) (0/62)

1 Ita.+2 Eng. 3.23% 2.02% 4.83% 1.09% 6.45%
samples 2/62 (150/7440) (3/62) (81/7440) (4/62)

3 samples 1.61% 1.99% 2.42% 1.08% 3.23%

The identification rule just described can be used to authenticate users simply by
marking the samples with an identity: a new sample X claimed to come from user A is
authenticated as belonging to A if md(A,X) is the smallest among all known users. Now,
the system can be evaluated w.r.t. two kinds of mistakes it can make: 1) the Impostor
Pass Rate (IPR), which is the percentage of cases in which a sample X from an unknown
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individual is erroneously attributed to one of the users of the system; 2) the False Alarm
Rate (FAR), which is the percentage of cases in which a sample belonging to some user
is not identified correctly.

From the “Identif. errors” column of Table 2 it is easy to see that our system shows,
e.g., an average FAR of 1.61% when users have in their profiles three samples: 2 sam-
ples out of 124 authentication attempts produce false alarms. But what about the IPR?
If there are 31 users in the system, it is simply (100/31)% = 3.23%. In fact, an impostor
unknown to the system, pretending to be a legal user U, has a chance out of 31 that
the sample she provides is closer to U’s profile than to any other profile known to the
system. We may improve such basic performance by observing the following. Suppose
again that we have 3 users A, B and C, with 3 samples in their profiles and a new sam-
ple X to be classified, so that we compute: md(A,X)=0.419025; md(B,X)=0.420123;
md(C,X)=0.423223. As a consequence, X is classified as belonging to user A. How-
ever, suppose that the mean of the distances of the samples forming the model of A
(denoted by m(A)) is:

d(A1,A2) = 0.312378; d(A1,A3) = 0.304381; d(A2,A3) = 0.326024.
m(A) = ( 0.312378 + 0.304381 + 0.326024 )/3 = 0.314261.

Then, we may expect another sample of A to have a mean distance from the model of
A similar to m(A), which is not the case for X in the example above. Even if X is closer
to A than to any other user’s profile in the system, it should be rejected.

To deal with such situations, we restate the classification rule as follow: a new sam-
ple X claimed to belong to user A is classified as belonging to A if and only if:

1. md(A,X) is the smallest w.r.t. any other user B and

2. md(A,X) is sufficiently closer to m(A) than to any other md(B,X) computed by the
system. Formally: md(A,X) < m(A) + |k(md(B,X) - m(A))| for any user B, and
for some k such that 0 < k ≤ 1.

If a user A meeting the above rules does not exist, X is rejected. Clearly, different values
for k provide different trade-offs between IPR and FAR. Smaller values of k will allow
to reject more samples from impostors, but could cause more false alarms. For k = 1,
we fall back to the plain classification rule.

The IPR and FAR columns of Table 2 reports the outcomes of the experiments in
user authentication for two different values for k. Again, in brackets are the numeri-
cal values from which we computed the corresponding percentage. For example, when
profiles contain two samples, the system can be tested 22320 times for attacks from
impostors: the profile of each user, in turn, is removed from the system,2 and the Ital-
ian and English samples of that (now unknown) individual are used to attack all users
in the systems.3 Hopefully, the system should reject the attacking samples. Moreover,

2 Otherwise, the attacking sample will be very likely attributed to the attacking user.
3 Thus, we have (31 attacking users)·(4 attacking samples)·(30 attacked users)·(6 different pair

of samples in a user’s profile) = 22320 impostors’ attacks.
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the system is tested 372 times with legal samples claimed to belong to the users who
actually provided them.4

The outcomes clearly show the effect of the authentication rule in use. For k = 0.8
and three samples in users’ profiles, the system shows an IPR of 1.08%, that is, about
one third of the IPR of the basic classification rule with 31 legal users. The cost is
in the worsening of the ability to identify legal users, since the FAR = 3.23%, is now
twice that of the basic classification method. Note also that, from the FAR columns we
see that English samples appear easier to authenticate correctly using Italian samples
in the profiles than vice versa. A result that we already noted in the experiments on
identification. On the contrary, the corresponding IPRs do not change in both cases.

4 Discussion and Applications

Beside the outcomes of the previous section, an additional evidence of the fact that
personal identity can be ascertained through the analysis of typing rhythms even when
different languages are involved can be obtained by considering the mean distances (md
for short in the table) reported in the last but one row of Table 3 for the samples gathered
in our experiments.5

Table 3. Mean distances between different groups of samples

md between md between md between md between md between md between
the Ita. the Eng. Ita. and any two Ita. any two Eng. any Ita. and
samples samples Eng. samples samples samples Eng. samples
provided provided provided provided by provided by provided by

by the same by the same by the same different different different
individual individual individual individuals individuals individuals

md=1.11131 md=1.12666 md=1.15948 md=1.36223 md=1.37821 md=1.38149
(31) [141] (31) [150] (124) [123] (1860) [140] (1860) [139] (3720) [122]

From the values in the table we see that typing samples of different text and lan-
guage provided by the same individual (column 3) are, on the average, more similar
than typing samples of different text but same language provided by different indi-
viduals (columns 4 and 5). Of course, even samples of different text and languages,
coming from different individuals, have a larger distance between each other (column
6). Quite obviously, typing samples provided by the same individual in a certain lan-
guage (columns 1 and 2), are more similar than typing samples provided by the same
individual in different languages (column 3). But the mean of column 3 is only about

4 In fact, we have (31 users)·(6 different pair of samples in a user’s profile)·(2 testing samples)
= 372 legal connections’ attempts.

5 Again, within round brackets we report the number of distances between samples used to
compute the corresponding mean distance. For example, 62 English samples from different
individuals allows to compute in (62·61)/2 - 31 = 1860 distances, where 31 is the number of
comparisons between the two English samples provided by each volunteer.
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4.24% greater than the mean value of column 1. On the contrary, the mean distance of
typing samples written in the same language by different individuals (e.g., column 4)
is about 16% greater that the mean distance between typing samples provided by the
same individual in different languages (column 3). Thus, keystroke analysis involving
different languages, though more difficult than when samples are all written in the same
language, can still be achieved.

We also note that it is the combination of distances d1 and d2 that provides the
good outcomes illustrated in the previous section. For example, when d1 is used alone
in the experiments in user identification, we get an identification error of 9.67% with
3 samples in users’ profiles, and an error of 15.67% with 2 samples in users’ profiles.
When d2 is used alone, the identification error is, respectively, 16.32% and 25.27%.
The outcomes in user authentication worsen similarly when using only d1 or d2.

The accuracy of our method is related to the number of digraphs shared by the sam-
ples under comparison, as we showed in [3]. Samples written in different languages can
be compared only if the two languages share some legal digraphs (That is, digraphs that
occur in words belonging to the language). Within square brackets in Table 3 we report
the average number of digraphs shared between any two samples of the corresponding
columns. Samples of different languages (columns 3 and 6) share an average number of
digraphs smaller than samples written in the same language. Note that English samples
from the same user share a greater number of digraphs than Italian samples from the
same user, probably because people tend to use a more restricted set of words when
using a language different from their own. For a given length of the samples, the more
similar the two languages, the larger the number of digraphs shared by the samples on
the average, and the more accurate the distance between them returned by the distance
measure used in this paper. Clearly, our method stops being useful when the languages
involved (or just the samples under comparison) share a very small number of legal
digraphs.

The outcomes of our experiments are among the best found in the literature about
keystroke analysis of both free and fixed text, but one may wonder which is their sta-
tistical significance. A large amount of research on this issue, explicitly related to bio-
metrics, is available, and we refer to [20] for a comprehensive treatment of the subject
(or see [4] for a review of different available techniques). However, J. L. Wayman, Di-
rector of the U.S. National Biometric Test Center notes in [20] our inability to predict
even approximately how many tests will be required to have ‘statistical confidence’ in
our results. We currently have no way of accurately estimating how large a test will be
necessary to adequately characterize any biometric device in any application, even if
error rates are known in advance. In practice, the number of individuals and samples
collected to test a system are not determined by pre-defined confidence intervals, but
by the amount of time, budget and resources available [19]. Once test data has been
collected and used on the system, it is then possible to estimate the uncertainty of the
observed error rates with different methods, but such estimates will have to be taken
with a grain of salt, due to the many sources of variability that affect biometric features
[15]. We agree with the above view: especially in the case of an unstable biometric such
as keystroke dynamics, the only way to evaluate a system is to test it in real conditions,
with as many individuals as possible. The number of parameters that may influence
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keystroke rhythms is so high that any statistical evaluation of the system outcomes will
very likely be of limited use.

We conclude this section by proposing possible applications of keystroke analysis
of free text.
Intrusion detection. The generation of false alarms is an endemic problem within in-
trusion detection [2]. In principle, keystroke analysis can be used to notice possible
anomalies in the typing dynamics of individuals connected to the system, that may be
intruders. However, the inaccuracy of the analysis may itself be the source of false
alarms or undetected intrusions. On the contrary, if keystroke analysis is used conjunc-
tion with other techniques, it may be useful to mitigate the problem of false alarms, by
providing an additional evidence of identity, as we showed in [11]. A scenario where
keystroke analysis can be useful even used alone is when it is performed off-line, on
accounts monitored in the recent past, to look for possible anomalies that could be sim-
ply reported to the system administrator. At the very least, the legal user of the account
could be suggested (possibly by an automatic procedure) to change his/her password. In
such case, even a relatively high FAR of, say, 2% or 3% would not be a serious problem:
false alarms will simply make users changing their passwords a bit more frequently than
usual.

Intrusions are often successful because no monitoring procedure is active, and be-
cause different form of intrusions are used. Hence, it is important to “attack the attack-
ers” with different and complementary techniques, in order to improve the chances to
detect them reliably and quickly. Experiments in this paper show that keystroke analysis
can be a valid aid to intrusion detection even when individuals under analysis are using
different languages.
User identification over the Internet. The ability to identify users through their typ-
ing habits can be used to achieve some form of User and Usage Modeling, in order to
be able to offer personalized graphical interfaces, services and advertising to users on
their return on a Web site visited previously [18]. Keystroke analysis would in partic-
ular be of great help to identify returning users of web sites that provide mailing lists,
forums, chat lines and newsgroups access. The use of such services produces a large
amount of typed text, whose typing rhythms can be stored and used to identify people
on their return to the site, especially when no form of registration is required to visit
the site and use its services. User identification over the Internet through the analysis
of typing rhythms would find an interesting application also within the investigation of
illegal activities that use the web (e.g., newsgroups and anonymous mailing services)
to exchange information. For example, the analysis of the typing rhythms coming from
different anonymous accounts and web connections could be useful to restrict and direct
investigations on a subset of the individuals under observation.

It is worth to note that the above use of keystroke analysis may raise some concern
about user’s privacy. As a consequence, users should at the very least be informed that
some form of monitoring is going on. One may observe that if a typing sample is stored
only in term of the digraphs it is made, it would in general be pretty difficult to recover
the original text. However, various kind of digit sequences entered, such as phone num-
bers, numerical passwords and pins, could be easy to recover, thus undermining users’
privacy.
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5 Conclusion

In this paper we have shown that keystroke analysis of free text can be a useful tool
for user identification and authentication even when the typing dynamics stem from the
use of different languages. As far as we know, such a situation has never been investi-
gated before in the literature. Our outcomes have been obtained without any particular
form of overfitting or tailoring of the system on the given data set, and our technique
does not rely on the classical training-testing approach that may require the system to
be tuned anew when a different set of users’ profiles is involved. We used in our ex-
periments typing samples relatively long, but we believe that, at the current state of the
art, keystroke analysis of free text cannot be performed with very short samples: timing
analysis on such texts does not provide a sufficient amount of information to discrim-
inate accurately among legal users. On the contrary, if relatively long sample texts are
accepted, keystroke analysis can become a valid tool to ascertain personal identity.

The ability to deal with typing samples of different texts and languages improves the
possibility of making computers safer and more able to fit personal needs and prefer-
ences. We believe keystroke analysis can be a practical tool to help implementing better
systems able to ascertain personal identity, and our study represents a contribution to
this aim.

Acknowledgements: We want to thank all the volunteers in our Department who con-
tributed to our research.
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Abstract. This paper introduces Higher-Order Bayesian Networks, a probabilis-
tic reasoning formalism which combines the efficient reasoning mechanisms of
Bayesian Networks with the expressive power of higher-order logics. We discuss
how the proposed graphical model is used in order to define a probability distribu-
tion semantics over particular families of higher-order terms. We give an example
of the application of our method on the Mutagenesis domain, a popular dataset
from the Inductive Logic Programming community, showing how we employ
probabilistic inference and model learning for the construction of a probabilistic
classifier based on Higher-Order Bayesian Networks.

1 Introduction

In the past years there has been increasing interest in methods for learning and reason-
ing for structured data. Real-world problem domains often cannot be expressed with
propositional, “single-table” relational representations. Probabilistic models, popular
in propositional domains, have started being proposed for structured domains, giving
rise to a new area of research referred to as probabilistic inductive logic programming
or probabilistic/statistical relational learning [13,3]. At an earlier stage of our research
[5,6] we have introduced Hierarchical Bayesian Networks, which define probability
distributions over structured types consisting of nested tuples, lists and sets. In this pa-
per we introduce Higher-Order Bayesian Networks (HOBNs), a probabilistic graphical
model formalism which applies methods inspired by Bayesian Networks to complex
data structures represented as terms in higher-order logics. We substantially expand our
previous research, presenting a detailed formalism for dealing with a much broader
family of higher-order terms. The novelty of our approach with respect to existing re-
search on the field consists in the explicit handling of higher-order structures such as
sets, rather than emulating these using first-order constructs.

The outline of the paper is as follows. The next section gives a brief overview of the
higher-order logic we use for data representation. Section 3 contains the formal defini-
tions of the proposed model, and section 4 defines the derived probability distribution
over higher-order terms. Section 5 presents experimental results on a popular real-world
benchmark dataset, briefly explaining how inference, model learning and classification
is performed under the proposed framework. Section 6 gives a brief overview of exist-
ing related approaches. Finally, we summarise our main conclusions and discuss our
perspective for further research.
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2 Representation of Individuals

Basic terms[10] are a family of typed higher-order terms that can be used for the intu-
itive representation of structured individuals. Constructs described by basic terms fall
into three categories: The first is called basic tuples and includes individuals of the
form (t1, ...,tn), where each of the ti is also a basic term. The second, basic structures,
describes first-order structures such as lists or trees. A basic structure is a term of the
form (C t1 . . . tn), where C is a data constructor (functor) of arity n and the ti are ba-
sic terms. E.g. in order to define lists as in the LISP programming language, we need
two data constructors, “cons” and “nil” of arity two and zero respectively; then the list
with elements 1, 2, and 3 is written as (cons 1 (cons 2 (cons 3 nil))). Note that the
enclosing parentheses are often dropped in the previous notation. The third category,
basic abstractions, is suitable for the description of higher-order structures such as sets
and multisets. A set of elements from a domain D can be viewed as a function of type
f : D→ {⊥,�} where f (x) = � if and only if x is a member of the set. In general, a
basic abstraction defines the characteristic function of an individual, and is a term t of
the form

λx.(i f x = t1 then s1 else . . .else i f x = tn then sn else s0)

where the ti and si are basic terms and s0 is a default term, i.e. a special term that is the
default value of the characteristic function for each particular kind of basic abstractions
(zero for multisets, ⊥ for sets, etc). The set supp(t) = {s1, . . . ,sn} is called the support
set of t. The cardinality of supp(t) will be called the size of the abstraction. The formal
definition of basic terms also contains a definition of the class of default terms, as well
as the definition of a total order on basic terms, so that a basic abstraction can be written
in a unique manner with t1 < · · ·< tn.

Types are used to describe domains of basic terms. A basic tuple type is a Cartesian
product τ1× ·· ·× τn of simpler types to which the elements of a tuple belong. A type
of basic structures is defined by a type constructor, to which are associated a set of data
constructors that define terms of that type. A type constructor takes some arguments,
which are also types, and typically relate to the types of the components of the basic
structures. E.g. we can define the type L τ of lists of elements from a type τ, with two
associated data constructors cons and nil. Data constructors are also typed; for instance
cons has a function type, accepting two arguments of types τ,L τ respectively, and its
value is of type L τ. This is noted as cons : τ→ L τ→ L τ. The type of a basic abstraction
is a function type α→ β, where α is the type of the argument and β is the type of the
value domain of the abstraction. The formal definitions of higher-order types and basic
terms can be sought at [10].

Additionally to standard basic terms, in the present paper we will refer to atomic
terms and types. An atomic type is a domain of constants. It can be seen as a special
case of a type constructor, to which all the associated data constructors have arity zero.
An example of an atomic type is the type of booleans. An atomic term is a member of
an atomic type. We also refer to a canonical form of types of basic structures: A type
τ of basic structures, associated to a set of data constructors Ci : βi,1 → ··· → βi,k → τ,
with i = 1, . . . ,m, has a canonical form T α1 . . .αn where T is a type constructor of arity
n and

⋃
i, j{bi, j}\{τ}= {α1, . . . ,αn}. The reason for such a renaming is that we wish to
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be able to infer which are the types of the arguments of the basic structures in that type,
simply by looking at the name of the type.

We will now define a type tree, which is a tree describing a higher-order type.

Definition 1 (Type tree). The type tree corresponding to a type τ is a tree t such that:
(a) If τ is an atomic type, t is a single leaf labelled τ. (b) If τ is a basic tuple type
(τ1× ·· · × τn), then t has root τ and as children the type trees that correspond to all
the τi. (c) If τ is a basic structure type with a canonical form T α1 . . .αn then t has
root τ and as children the type trees that correspond to all the αi. (d) If τ is a basic
abstraction type β→ γ, then t has root τ and as children the type trees corresponding
to β and γ′ = γ\{s0}, where s0 is the default term associated to the particular type of
basic abstractions.

3 Higher-Order Bayesian Networks: Preliminaries

A standard Bayesian Network is a graphical model that encodes some conditional in-
dependence statements on a set of variables. It consists of two parts: the structural part,
a directed acyclic graph in which nodes stand for random variables and edges for di-
rect conditional dependence between them; and the probabilistic part that quantifies the
conditional dependence. Higher-Order Bayesian Networks (HOBNs) are a generalisa-
tion of standard Bayesian Networks for basic terms. The structural part of an HOBN
is a type tree over the domain, and a set of edges between nodes of the type tree that
model correlations between them. The probabilistic part contains the parameters that
quantify those correlations. We work under the assumption that domains are discrete.
We will use a running example in order to explain the definitions and methodology
as we proceed. The example domain concerns individuals corresponding to students.
Each student has an “intelligence” property and is registered to a set of courses. Each
course has a property “difficulty”; each registration has a property “grade”; finally, each
student is associated to a property signifying an expected graduation mark. The struc-
tural part of the related HOBN is displayed in figure 1(a). The type of the basic terms
which correspond to students is (Int,Exp,((Di f f ),Grade)→Ω) where Int = {i1, i2},
Exp = {1,2i,2ii,3}, Di f f = {d1,d2,d3}, Grade = {A,B,C} and Ω = {�,⊥}. The
type tree on which the HOBN structure of figure 1 is based represents exactly this type,
where the names Student, Regs, Reg and Course are introduced for the types which lie
in the internal nodes of the tree. We use {τ} as notational sugar for a type of sets over
a domain τ. The type RegMap = {�} is introduced as a child of Reg in the type tree.
Note that since Regs is a type of sets, RegMap is a trivial case of a domain with only
one possible value and could easily be omitted, but it is used in order to demonstrate
how general basic abstractions are handled.

We will refer to two distinct types of relationships between nodes of an HOBN.
Firstly, relationships in the type tree called t-relationships. Secondly, relationships that
are formed by the probabilistic dependence links (p-relationships). We will make use
of everyday terminology for both kinds of relationships, and refer to parents, ancestors,
siblings, nephews etc. with the obvious meaning. The t-parent and the p-parents of a
node are subsequently used for defining the sets of higher-level parents (h-parents) and
leaf parents (l-parents) for each node, which in turn are used for the definition of the
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        T        d1   i1      A    1/95  1/95  1/95  1/95
        T        d1   i1      B    2/95  1/95  1/95  1/95
        T        d1   i1      C    1/95  2/95  1/95  1/95
        T        d1   i2      A    1/95  1/95  1/95  1/95
        T        d1   i2      B    1/95  2/95  1/95  1/95
        T        d1   i2      C    1/95  1/95  2/95  2/95
        T        d2   i1      A    4/95  1/95  1/95  1/95
        T        d2   i1      B    2/95  1/95  2/95  1/95
        T        d2   i1      C    1/95  1/95  1/95  1/95
        T        d2   i2      A    1/95  2/95  1/95  1/95
        T        d2   i2      B    1/95  1/95  2/95  3/95
        T        d2   i2      C    1/95  1/95  3/95  1/95
        T        d3   i1      A    2/95  2/95  1/95  1/95
        T        d3   i1      B    2/95  1/95  2/95  1/95
        T        d3   i1      C    1/95  1/95  1/95  1/95
        T        d3   i2      A    1/95  2/95  1/95  1/95
        T        d3   i2      B    1/95  1/95  2/95  1/95

RegMap Diff Int Grade  1       2i     2ii       3
                                         Exp

(a) (b)

Regs
={Reg}

Reg RegMap
=(Course,Grade)

Course Grade
=(Diff)

Diff

ExpInt

=(Int,Exp,Regs)
Student

Fig. 1. HOBN structure (a) and part of the parameters (b) for the “student-course” domain

probabilistic part of the model. E.g., in figure 1 node Student has three t-children (Int,
Exp, Regs); node Grade has two p-parents (Course, Int).

We now define the structural part of an HOBN. Essentially this means adding the
probabilistic dependence links between nodes of a type tree. Links are not allowed
between every possible pair of nodes in the type tree. Intuitively, a p-relationship A→ B
is only allowed if B is either a “sibling” or a “nephew” node of A. This relates to some
acyclicity condition which must be preserved (as in standard Bayesian Networks) and
which will be clarified later.

Definition 2 (HOBN node and HOBN leaf). An HOBN node associated to a type τ
corresponds to a random variable of that type. We will occasionally use the HOBN node
to refer to the corresponding variable or its domain; the meaning will always be clear
from the context. If τ is atomic, the associated HOBN node is called an HOBN leaf.

Definition 3 (HOBN structure). Let τ be a type, and t its corresponding type tree.
An HOBN structure T over the type tree t, is a triplet 〈R,V ,E〉 where: (a) R is the
root of the structure, and corresponds to a random variable of type τ. (b) V is a set of
HOBN structures called the t-children of R. If τ is an atomic type then this set is empty,
otherwise it is the set of HOBN structures over the children of τ in t. R is also called the
t-parent of each element of V . (c) Let V ′ be the set of t-descendants of R. E ⊂ V ×V ′

is a set of directed edges between nodes of the HOBN structure. For (v,v′) ∈ E we say
that v is a p-parent of v′.

There are two additional constraints that a legal HOBN structure must satisfy. One
is that if τ is a type β → γ corresponding to a basic abstraction, then the set of p-
relationships E for the subtree under τ always contains the p-relationship (γ′,β). The
second constraint is that the structure needs to be acyclic. This is similar to the acyclicity
property in Bayesian Networks, taking into account the propagation of the probabilistic
dependence through the type tree. The formal definition of this property follows after
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the definition of the the notions of higher-level parents and leaf parents, which explain
the propagation of the probabilistic dependence introduced by p-relationships down to
the leaves of the HOBN structure.

Definition 4 (Higher-level parents and leaf parents). The higher-level parents (h-
parents) of a node t whose t-parent is t ′, are (i) its p-parents and (ii) the h-parents of
t ′. The leaf parents (l-parents) of a node are the HOBN leaves that are either (i) its
h-parents or (ii) t-descendants of its h-parents.

In our example, the h-parents of Grade are Int, Course and RegMap; the h-parents of
Exp are Int and Regs, and its l-parents are Int, RegMap, Grade and Diff.

It is now possible to define the acyclicity property that was mentioned above:

Definition 5 (Acyclic HOBN structure). An HOBN structure is acyclic if no HOBN
leaf in the structure is an l-ancestor of itself.

This explains why a node may be the p-parent of its t-siblings and t-nephews, but not of
itself or its t-children; in such a case some HOBN leaves under that node would become
their own l-parents.

The intended probabilistic semantics in an HOBN structure is that the value of a
term corresponding to an HOBN node is independent of the nodes that are neither its
t-descendants nor its p-descendants, given its p-parents. The probabilistic part of an
HOBN contains the parameters that quantify the respective joint probabilities.

Definition 6. The probabilistic part related to an HOBN structure T consists of a set
of joint probability distributions, defined for some HOBN nodes in T , joint with the
respective l-parents of each node. The following probability distributions are contained
in the probabilistic part:

1. A joint probability distribution over each HOBN leaf X of type α, and its l-parents
X1, . . . ,Xn, of types α1, . . . ,αn respectively. For every type ξ = αi1×·· ·×αim , where
all i j are distinct, the conditional probability over the type α given the type ξ is
derived by this joint probability and is denoted by Pα|ξ.

2. For each node X associated to a type of basic abstractions τ, a joint probability
distribution over the sizes of the basic abstractions that belong to τ , and the l-
parents of X, namely X1, . . . ,Xn, of types α1, . . . ,αn respectively. For every type
ξ = αi1 × ·· · ×αim , where all i j are distinct, the conditional probability over the
size of the abstractions of type τ given the type ξ is derived by this joint probability
and is denoted by Psizeτ|ξ.

3. For each node X associated to a type of basic structures τ, a joint probability dis-
tribution over the domain consτ which contains the data constructors associated to
that type, and the l-parents of X, namely X1, . . . ,Xn, of types α1, . . . ,αn respectively.
For every type ξ = αi1 ×·· ·×αim , where all i j are distinct, the conditional proba-
bility over the size of the abstractions of type τ given the type ξ is derived by this
joint probability and is denoted by Pconsτ|ξ.

As a trivial case when a node has no l-parents the Cartesian product ξ corresponds
to the nullary tuple type, and the conditional probability distribution reduces to an
unconditional probability distribution.
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An additional constraint in the probabilistic part is that the joint probabilities have
to be consistent with each other, i.e. yielding the same marginals for the same groups
of variables. In practise this happens naturally when the parameters are estimated from
data observations, but particular attention is needed when the parameters are manually
specified. Figure 1(b) shows the model parameters in our example which are associated
to the HOBN node Exp. We can now give the definition of an HOBN:

Definition 7. A Higher Order Bayesian Network is a triplet 〈T,Θ, t〉 where t is a type
tree, T = 〈R,V ,E〉 is an HOBN structure over t and Θ is the probabilistic part related
to T .

4 Probability Distributions over Basic Terms

In this section a probability function over basic terms belonging to a type α is defined,
using an HOBN over that type and exploiting the conditional independence assump-
tions that it introduces. As with standard Bayesian Networks, the joint probability is
decomposed to a product of conditional probabilities using the chain rule, and the in-
dependent variables are eliminated from each posterior. In HOBNs the probability is
defined recursively from the root to the leaves of the type tree, and the probability of a
type in each node is expressed using the probabilities of its t-children. Before the for-
mal definition, a short intuitive explanation of the distribution is given, describing how
different cases of basic terms are treated.

We are using the notation Pα|ξ(t|c) as the probability of a term t of type α, condi-
tional on some context c of type ξ. The definition has two parts: In the first part it is
shown how to decompose the probability of t as a product of probabilities of simpler
terms Pαi|ξ′(ti|c′), which have types that correspond to the children of α in the type
tree. At this stage the conditional part is augmented with additional knowledge on the
p-parents of ti. In the second part of the definition it is shown how in a similar way the
probability under the conditional context c is expressed as a product of probabilities
under simpler contexts whose types correspond to the t-descendants of ξ.

The first part of the definition has three different cases, according to t being a ba-
sic tuple, basic structure or basic abstraction. In the first case where t = (t1, . . . ,tn), the
probability of the term t is defined as the product of the probabilities of the terms ti of
type αi, i = 1, . . . ,n. The conditional independence statements that are derived from the
HOBN structure are employed in order to simplify each posterior. In the second case
where t =C t1 . . .tn, a similar decomposition as with the tuple case is taking place. Each
ti is of a type αi, i = 1, . . . ,n, which is either one of the t-children of α or is α itself,
for recursive data types. The probability of t is defined as the product of the probabili-
ties of the ti conditional on the values of the respective p-parents Pαi|ξ′(ti|c,π(ti)), also
multiplied by the probability of the constructor C,Pconsα|ξ(C|c). In the third case, where
t = λx.(i f x = t1 then v1 . . . else i f x = tn then vn else v0) the result is based on the
product of the probabilities of each ti conditional on the respective vi.

The second part of the definition assumes that α is an atomic type. The conditional
probability is recursively decomposed to a product where the context is replaced by its
t-children, until the leaves of the type tree are reached. At each point when deriving
the probability Pα|ξ(t|u,c), the context is a tuple of terms. The definition introduces a
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rotation of the tuple elements, by selecting the first element u in the tuple, and creating a
new context which is the rest of the tuple with the t-children of the first element attached
to the end. This gives a systematic way of reaching the point where the context is a tuple
of atomic types. As in the first part of the definition, there are separate cases according
to the type of the term in the context that is being decomposed, i.e. the element that
is in the first position of the context tuple. If this term is a tuple u = (u1, . . . ,un), then
the probability Pα|ξ(t|u,c) is simplified to Pα|ξ′(t|c,u1, . . . ,un), where α,ξ,ξ′ are the
appropriate types. If the term is a basic structure u = C u1 . . .un, then the probability
is defined using the probabilities Pα|ξi

(t|c,ui). If the term is a basic abstraction u =
λx.(i f x = u1 then v1 . . . else i f x = u� then v� else v0), then the probability is defined
using the probabilities Pα|ξ′(t|c,ui,vi). In the course of applying the first part of the
definition, a conditional context is introduced for the variable t. This conditional context
contains the p-parents of the node corresponding to t. Subsequently t is decomposed to
its t-descendants that lie on the leaves of the type tree. The p-parents of t are h-parents
of those leaves. Finally, each of those h-parents is replaced by its t-descendants down
to the leaves of the type tree. Therefore, after all the decomposition steps, the context
is a tuple of atomic types which are the l-parents of τ, so the respective conditional
probability is contained in the probabilistic part of the model, least a permutation of the
l-parents in the context.

Definition 8. Let t be a basic term whose type α is associated to a node A of the HOBN.
By π(t) we denote a basic tuple that contains the values of the p-parents of A. The
conditional probability function Pα|ξ(t|c), where c is a term of type ξ (initially a nullary
tuple, then determined by earlier recursive steps), is defined as follows:

1 If α is a non-atomic type, corresponding to either a basic tuple, basic structure or
basic abstraction domain, then:

1.a If α = α1×·· ·×αn and t = (t1, . . . ,tn), then

Pα|ξ(t|c) =
n

∏
i=1

Pαi|ξ′(ti|c,π(ti))

where ξ′ is the type of the tuple (c,π(ti)).
1.b If t is a basic structure, t = C t1 . . . tn, then

Pα|ξ(t|c) = Pconsα|ξ(C|c)
n

∏
i=1

Pαi|ξ′(ti|c,π(ti))

where ξ′ is the type of the tuple (c,π(ti)) and αi is the type associated to either the
t-child of A corresponding to the type of the term ti, or to A itself if ti is of type α.

1.c If t is a basic abstraction of type α = β→ γ with t = λx.(i f x = t1 then v1 . . . else i f
x = t� then v� else v0), then

Pα|ξ(t|c) =
+∞

∑
�′=�

∑
∗

�′!Psizeα|ξ(�
′|c)

�

∏
i=1

(Pβ|ξ′(ti|c,vi)Pγ′|ξ(vi|c))xi

xi!
(1)

where γ′ = γ\{v0}, ξ′ is the type of the tuples (c,vi) and the summation marked with
(∗) is over all different integer solutions of the equation x1 + · · ·+x� = �′ under the
constraints xi > 0, i = 1, . . . , �.
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2 If α is either atomic, abstraction size, or the domain of associated data constructors
of a type, then Pα|ξ(t|c) is defined as follows (the type υ is associated to an HOBN
node Y , and c′ may trivially be a nullary tuple):

2.a If c is a tuple of atomic types or a nullary tuple, then Pα|ξ(t|c) is given in the HOBN
probabilistic part associated to the HOBN node A.

2.b If c = (u,c′),ξ = υ× ξ′, where u is atomic but c′ contains non-atomic terms, then

Pα|υ×ξ′(t|u,c′) = Pα|ξ′×υ(t|c′,u)

2.c If c = (u,c′),ξ = υ×ξ′, where u is a basic tuple (u1, . . . ,un) of type υ = υ1×·· ·×
υn, then

Pα|υ×ξ′(t|u,c′) = Pα|ξ′×υ1×···×υn(t|c
′,u1, . . . ,un)

2.d If c = (u,c′),ξ = υ× ξ′, where u is a basic structure Cu1 . . .un, then

Pα|υ×ξ′(t|u,c′) = Pα|ξ′(t|c′)
n

∏
i=1

Pα|ξ′×υi×υ′i(t|c
′,ui,π(ui))

Pα|ξ′×υ′i
(t|c′,π(ui))

where υ′i is the type of π(ui) and υi is associated to either the t-child of Y which
corresponds to the type of the term ui, or to Y itself if ui is of type υ.

2.e If c = (u,c′),ξ = υ× ξ′, where u is a basic abstraction of type υ = β → γ with
u = λx.(i f x = u1 then v1 . . . else i f x = u� then v� else v0), then

Pα|υ×ξ′(t|u,c′) = Pα|ξ′(t|c′)
+∞

∑
�′=�

∑
∗

�

∏
i=1

(
Pα|ξ′×β×γ′(t|c′,ui,vi)

Pα|ξ′(t|c′)

)xi

(2)

where γ′ = γ\{v0}, and the summation marked with (∗) is over all different integer
solutions of the Diophantine equation x1 + · · ·+ x� = �′ under the constraints xi >
0, i = 1, . . . , �.

This completes the definition for distributions over basic terms based on an HOBN.

The above definition is introducing some “naive” independence assumptions, which
may not hold in the general case, in order to perform the decomposition of the probabil-
ity into a product. E.g., the elements of a set are assumed to occur independently from
each other. Such assumptions are needed for a tractable decomposition, and will render
the computed function an approximation of the actual probability. Whether this approx-
imation is meaningful will depend on the domain at hand. Under those assumptions, we
can prove the following:

Proposition 1. The function Pα|ξ given in definition 8 is a well-defined probability over
basic terms of type α, under the assumption that the conditional independence state-
ments employed hold given the relevant context.

The proof of the above proposition cannot be presented here due to space con-
straints. It is derived in a straightforward way by applying in each case the chain rule
of conditional probability and Bayes’ theorem, and using standard combinatorics. Two
additional results which facilitate in practise the computation of the probability in case
of basic abstractions are given below:
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Proposition 2. When Pβ×γ|ξ(ti,vi|c)� 1, then the expression (1) is approximated by

Pα|ξ(t|c) = �!Psizeα|ξ(�|c)
�

∏
i=1

Pβ|ξ×γ(ti|c,vi)Pγ|ξ(vi|c)

Proposition 3. The expression (2) is approximated by:

Pα|υ×ξ(t|u,c) = Pα|ξ(t|c)
�

∏
i=1

Pα|ξ×β×γ(t|c,ui,vi)
Pα|ξ(t|c)

Looking back to our example, assume that we wish to calculate the probability for a
student to have an expected final mark equal to 1, given that the value of the intelligence
attribute is i1 and that the set of registrations is {((d3),A),((d2),B),((d1),C)}. We
have (abbreviating the node names to their initials):

PE|R,I(1|{((d3),A),((d2),B),((d1),C)}, i1) =

= PE|I(1|i1)
PE|I,R,RM(1|i1,((d3),A),�)

PE|I(1|i1)
·

·
PE|I,R,RM(1|i1,((d2),B),�)

PE|I(1|i1)
·

PE|I,R,RM(1|i1,((d1),C),�)
PE|I(1|i1)

= . . . =

=
PE|RM,D,I,G(1|�,d3, i1,A)PE|RM,D,I,G(1|�,d2, i1,B)PE|RM,D,I,G(1|�,d1, i1,C)

PE|I(1|i1)2 =

=
2/6 ·2/6 ·1/5

(16/47)2 = 0.1918

5 Experimental Evaluation

We present here the results of the application of our method on a real-world dataset, the
Mutagenesis domain [15], consisting of a total of 188 instances. Instances in this do-
main are molecular structures classified as “mutagenic” or “non-mutagenic”, and each
one is described by four propositional attributes and a set of atoms. The atoms them-
selves are characterised by three propositional attributes and two sets of “incoming” and
“outgoing” chemical bonds. Figure 2 shows an HOBN over that domain. Here Atom-
Map, FBM, and TBM are associated to the singleton domain {�}. The task is to predict
whether particular molecules are mutagenic or not.

The first important issue concerning the application of HOBNs on data analysis
is probabilistic inference, i.e. the calculation of a probability P(Q|E) where Q and E
(“query” and “evidence”, respectively), are instantiated subsets of the problem domain.
The method we are using in HOBNs is a straightforward extension of an approximate
inference method for standard BNs: The graphical model is used as a generator of ran-
dom instances on the domain. If we generate a sufficiently large number of such in-
stantiations, the relative frequency of the cases where both Q and E hold divided by the
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relative frequency of the cases where E holds will converge to P(Q|E). Probabilistic
classification is a direct application of inference, where for each possible class Ci for
a test instance T , the value of P(Ci|T ) is computed and the Ci which maximises that
expression is the respective predicted value of the class. The second area of interest
concerns the construction of an appropriate model given a set of training observations
on the domain. In our analysis, we assume that the type tree is an inherent characteristic
of the data and therefore is known. What we are learning is the p-relationships between
the HOBN nodes, and the parameters of the model. When the HOBN structure is known
(i.e. both the type tree and the p-relationships), training the parameters of the model is
straightforward when there are no missing values in the data, using the relative fre-
quencies of events in the database in order to estimate the values of the respective joint
probabilities. Our approach for structure learning is based on a scoring function for can-
didate structures. Given such a function we employ a greedy best-first search method,
starting from an initial structure (either empty or containing some p-links which are a
priori known to be useful) and adding at a time the p-link which optimises the most
the scoring function, until no further improvement occurs. The scoring function used in
the present experiment was the accuracy of the model on the training data, using cross-
validation to avoid over-fitting. The initial structure corresponds to a “naive Bayes”
assumption, i.e. that all attributes are mutually independent given the class. This is
established by the p-link Class → Molecule in the HOBN structure. Figure 2 shows
the structure constructed by the learning algorithm for one of the training folds. Table 5
summarises the accuracies obtained in this dataset. The default performance is achieved
by always predicting the majority class, and the best reported accuracy comes from [1].
We conclude that HOBNs approach the performance of state-of-the-art algorithms in
the domain. It is also important that the learning algorithm employed gives a significant
improvement compared to a naive Bayes approach.

Element AtomType Charge FromBonds ToBonds

Class Molecule
=(Atoms,IndA,Ind1,Lumo,LogP)

LogPAtoms
={Atom}

Ind1 LumoIndA

Atom
=(Element,AtomType,Charge,FromBonds,ToBonds)

={FromBond} ={ToBond}

=(Class,Molecule)
Instance

AtomMap

ToBond TBMFromBond FBM

Fig. 2. HOBN structure for the mutagenesis domain
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Table 1. Accuracy on the Mutagenesis dataset

Classifier Accuracy

Default 66.5%
Best 89.9%

Naive HOBN 77.7%
Extended HOBN 88.8%

6 Related Research

Logic-based probabilistic models have been proposed in the past. Stochastic Logic Pro-
grams [2,11] use clausal logic, where clauses of a Prolog program are annotated with
probabilities in order to define a distribution over the results of Prolog queries. Bayesian
Logic Programs [7] are also based on clausal logic, and associate predicates to condi-
tional probability distributions. Probabilistic Relational Models (PRMs) [8], which are
a combination of Bayesian Networks and relational models, are also closely related to
HOBNs. PRMs are based on an instantiation of a relational schema in order to cre-
ate a multi-layered Bayesian Network, where layers are derived from different entries
in a relational database, and use aggregation functions in order to model conditional
probabilities between elements of different tables. Other related first-order probabilistic
approaches include Independent Choice Logig (ICL) [12] and the probabilistic logic
language PRISM (PRogramming In Statistical Modeling) [14]. Ceci et al. [1] have pro-
posed a naive Bayes classification method for structured data in relational representa-
tions. Flach and Lachiche [4,9] have proposed the systems 1BC and 1BC2 which im-
plement naive Bayes classification for first-order domains. To our knowledge, Higher-
Order Bayesian Networks is the first attempt to build a general probabilistic reasoning
model over higher-order logic-based representations.

7 Conclusions and Further Work

In this paper we have introduced Higher Order Bayesian Networks, a framework for in-
ference and learning from structured data. We demonstrated how inference and learning
methods can be employed for probabilistic classification under this framework.

Current results are encouraging for further development of HOBNs. More efficient
methods for inference, inspired from methods applied to standard Bayesian Networks
need to be researched, since these may boost the computational efficiency of the ap-
proach. Gradient methods for model training, generalising on the EM method that we
are currently investigating, are likely to improve the performance of the model under
the presence of missing values.
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Inductive Logic Programming, 9th International Workshop (ILP-99). Springer Verlag, 1999.

9. Nicolas Lachiche and Peter A. Flach. 1BC2: a true first-order Bayesian classifier. In
S. Matwin and C. Sammut, editors, Proceedings of the 12th International Conference on
Inductive Logic Programming, pages 133–148. Springer-Verlag, 2002.

10. John W. Lloyd. Logic for Learning: Learning Comprehensible theories from Structured
Data. Springer, 2003.

11. Stephen Muggleton. Stochastic logic programs. In Luc de Raedt, editor, Advances in induc-
tive logic programming, pages 254–264. IOS press, 1996.

12. David Poole. Logic, knowledge representation, and bayesian decision theory. In
John W. Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia
Palamidessi, Luı́s Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors, Computa-
tional Logic, First International Conference (CL-2000), Proceedings. Springer, 2000.

13. Luc De Raedt and Kristian Kersting. Probabilistic inductive logic programming. In Shai
Ben-David, John Case, and Akira Maruoka, editors, Proceedings of the 15th International
Conference in Algorithmic Learning Theory (ALT 2004), pages 19–36. Springer, 2004.

14. Taisuke Sato and Yoshitaka Kameya. Prism: A language for symbolic-statistical modeling.
In Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI
97), pages 1330–1339. Morgan Kaufmann, 1997.

15. A. Srinivasan, S. H. Muggleton, M. J. E. Sternberg, and R. D. King. Theories for mutagenic-
ity: a study in first-order and feature-based induction. Artificial Intelligence, 85(1-2):277–
299, August 1996.



Removing Statistical Biases in
Unsupervised Sequence Learning

Yoav Horman and Gal A. Kaminka

The MAVERICK Group,
Department of Computer Science, Bar-Ilan University, Israel

{hormany, galk}@cs.biu.ac.il

Abstract. Unsupervised sequence learning is important to many applications. A
learner is presented with unlabeled sequential data, and must discover sequential
patterns that characterize the data. Popular approaches to such learning include
statistical analysis and frequency based methods. We empirically compare these
approaches and find that both approaches suffer from biases toward shorter se-
quences, and from inability to group together multiple instances of the same pat-
tern. We provide methods to address these deficiencies, and evaluate them exten-
sively on several synthetic and real-world data sets. The results show significant
improvements in all learning methods used.

1 Introduction

Unsupervised sequence learning is an important task in which a learner is presented
with unlabeled sequential training data, and must discover sequential patterns that char-
acterize the data. Applications include user modeling [1], anomaly detection [2], data-
mining [3] and game analysis [4].

Two popular approaches to this task are frequency-based (support) methods (e.g.,
[3]), and statistical dependence methods (e.g., [5]—see Section 2 for background). We
empirically compare these methods on several synthetic and real-world data sets, such
as human-computer command-line interactions. The results show that statistical depen-
dence methods typically fare significantly better than frequency-based ones in high-
noise settings, but frequency-based methods do better in low-noise settings.

However, more importantly, the comparison uncovers several common deficiencies
in the methods we tested. In particular, we show that they are (i) biased in preferring
sequences based on their length; and (ii) are unable to differentiate between similar
sequences that reflect the same general pattern.

We address these deficiencies. First, we show a length normalization method that
leads to significant improvements in all sequence learning methods tested (up to 42%
improvement in accuracy). We then show how to use clustering to group together sim-
ilar sequences. We show that previously distinguished sub-patterns are now correctly
identified as instances of the same general pattern, leading to additional significant ac-
curacy improvements. The experiments show that the techniques are generic, in that
they significantly improve all of the methods initially tested.

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 157–167, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Background and Related Work

In unsupervised learning of sequences, the learner is given example streams, each a se-
quence α1, α2, . . . , αm of some atomic events (e.g., observed actions). The learner must
extract sequential segments (also called patterns), consecutive subsequences with no in-
tervening events, which characterize the example streams. Of course, not every segment
is characteristic of the streams, as some of the segments reflect no more than a random
co-occurrence of events. Moreover, each observation stream can contain multiple seg-
ments of varying length, possibly interrupted in some fashion. Thus it is important to
only extract segments that signify invariants, made up of events that are predictive of
each other. We provide the learner with as little assistance as possible.

The literature reports on several unsupervised sequence learning techniques. One
major approach learns segments whose frequency (support) within the training data
is sufficiently high [3]. To filter frequent segments that are due to chance—segments
that emerge from the likely frequent co-occurrence of a frequent suffix and a frequent
prefix—support-based techniques are usually combined with confidence, which mea-
sures the likelihood of a segment suffix given its prefix. In such combinations, the ex-
tracted segments are those that are more frequent than a user-specified minimal support
threshold, and more predictive than a user-specified minimal confidence.

Another principal approach is statistical dependency detection (DD) [5]. DD meth-
ods test the statistical dependence of a sequence suffix on its prefix, taking into account
the frequency of other prefixes and suffixes. To calculate the rank of a given segment S
of size k, a 2×2 contingency table is built for its (k−1)-prefix pr and suffix αk (Table 2).
In the top row, n1 reflects the count of the segment S. n2 is the number of times we saw
a different event following the same prefix, i.e.,

∑
i	=k count(prαi). In the second row,

n3 is the number of segments of length k in which αk followed a prefix different than
pr (
∑

S 	=pr ,|S|=|pr| count(Sαk)). n4 is the number of segments of length k in which a
different prefix was followed by a different suffix (

∑
S 	=pr ,|S|=|pr|

∑
i	=k count(Sαi)).

The table margins are the sums of their respective rows or columns. A chi-square or G
test [6] is then run on the contingency table to calculate how significant is the depen-
dency of αk on pr. This is done by comparing the observed frequencies to the expected
frequencies under the assumption of independence. DD methods have been utilized in
several data analysis applications, including analysis of execution traces [5], time-series
analysis [7], and RoboCup soccer coaching [4].

We focus in this paper on support/confidence and DD. However, other technique
exist (see [8] for a survey), including statistical methods such as interest ([9]) and con-

Table 1. A statistical contingency table for segment S, composed of a prefix pr =
α1, α2, . . . , αk−1 and a suffix αk. In all cases, |S| = |pr|.

αk ¬αk

pr n1 n2
∑

i count(prαi)
¬pr n3 n4

∑
S �=pr,i count(Sαi)∑

S count(Sαk)
∑

S,i�=k count(Sαi)
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viction ([10]) that are often combined with support. We have successfully applied our
methods to these, but do not discuss them here for lack of space. In addition, Likewise,
we ignore here methods requiring human expert guidance or other pre-processing.

Also related to our work are [1] and [2], which use clustering techniques to learn
the sequential behavior of users. A common theme is that clustering is done based on
similarity between sequential pattern instances in the training data. Bauer then uses the
resulting clusters as classes for a supervised learning algorithm. Lane and Brodley use
the clusters to detect anomalous user behavior. Neither investigates possible statistical
biases as we do.

3 A Comparison of Unsupervised Techniques

We conducted extensive experiments using synthetic data, comparing support, confi-
dence, support/confidence and dependency-detection using a G-test. In each run, the
techniques above were to discover five different re-occurring true segments, uniformly
distributed within a file of 5000 streams. We refer to the percentage of the streams
that contain true segments as pattern rate; thus low pattern rates indicate high levels
of noise. The example streams might include additional random events before, after,
or within a segment. We controlled intra-pattern noise rate: the probability of having
noise inserted within a pattern.

In each experiment, each technique reported its best 10 segment candidates, and
those were compared to the five true segments. The results were measured as the per-
centage of true segments that were correctly detected (the recall of the technique, here-
inafter denoted accuracy). The support/confidence technique requires setting manual
thresholds. To allow this method to compete, we set its thresholds such that no true pat-
tern would be pruned prematurely. We refer to this technique as “Support/Confidence
Optimal”. We have also tested a more realistic version of the algorithm, using fixed min-
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imal confidence of 20% (“Support/Confidence”). While the support/confidence method
is meant to return all segments satisfying the thresholds, with no ordering, we approxi-
mated ranking of resulting segments by their support (after thresholding).

We varied several key parameters in order to verify the consistency of the results.
For three different values of alphabet size, denoted T (5, 10 and 26) and three ranges
of true-pattern sizes (2–3, 3–5 and 4–7) we have generated data sets of sequences with
incrementing values of pattern rate. Intra-pattern-noise was fixed at 0%. For each pattern
rate we have conducted 50 different tests. Overall, we ran a total of 4500 tests, each
using different 5000 sequences and different sets of 5 true patterns.

The results are depicted in Figure 1. The X-axis measures the pattern rate from
0.2% to 100%. The Y-axis measures the average accuracy of the different techniques
over the various combinations of T and pattern size. Each point in the figure reflects the
average of 450 different tests. The “Optimal Support/Confidence” technique is denoted
"Sup/Conf Optimal", where the standard method, using a fixed minimal confidence
value, is denoted "Sup/Conf". The dependency-detection is denoted “DD”.

The figure shows that dependency-detection (DD) outperforms all other methods
for low and medium values of pattern rate. However, the results cross over and support/
confidence optimal outperforms DD at high pattern rates. The standard support/
confidence, as well as the simple support technique, provide relatively poor results.
Finally, confidence essentially fails for most pattern rate values.

Figure 2 shows the results for the same experiment, focusing on pattern rates up to
5%. As can be clearly seen, DD quickly achieves relatively high accuracy, at least twice
as accurate as the next best technique, support/confidence optimal. A paired one-tailed
t-test comparing DD and support/confidence optimal for pattern rates of up to 5% shows
that the difference is significant at the 0.05 significance level (p < 1× 10−10).

For lack of space, we only briefly discuss the effect of the alphabet size T on the
accuracy of the different algorithms. All methods achieve better results with greater
alphabet sizes. However, when the alphabet is small (T = 5), the results of DD are up
to 25 times more accurate than other methods, in high noise settings.
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4 Statistical Biases

We analyzed the results of the different techniques and found that all methods suffer
from common limitations: (i) Bias with respect to the length of the segments (Section
4.1); and (ii) inability to group together multiple instances of the same pattern (4.2).

4.1 Removing the Length Bias

The first common limitation of the approaches described above is their bias with re-
spect to the length of the segments. Figure 3 shows the average length of the segments
returned by the learning algorithms, in a subset of the tests shown in Figure 1, for two
different values of pattern rate (0.5% and 75%), where the length of the true patterns
was set to 3–5 (average ≈ 4) and alphabet size was fixed at 10. The figure shows that
the support algorithm prefers short segments. The optimal support/confidence algorithm
behaves similarly, though it improves when pattern rate increases (75%). DD is slightly
better, but also prefers shorter sequences at low noise (high pattern rate) settings. In
contrast to all of these, Confidence prefers longer sequences.

Different methods have different reasons for these biases. Support-based methods
have a bias towards shorter patterns, because there are more of them: Given a target pat-
tern ABCD, the pattern AB will have all the support of ABCD with additional support
from (random) appearances of ABE,ABC,ABG,.... Confidence has a bias towards longer
sequences, because their suffix can be easily predicted based on their prefix simply be-
cause both are very rare. Finally, DD methods prefer shorter segments at higher pattern
rate settings. We found that this is due to DD favoring subsequences of true patterns
to the patterns themselves. When pattern rate is high, significant patterns also have sig-
nificant sub-patterns. Even more: The sub-patterns may have higher significance score
because they are based on counts of shorter sequences—which are more frequent as we
have seen. This explains the degradation in DD accuracy at higher pattern rates.

In order to overcome the length bias obstacle, we normalize candidate pattern ranks
based on their length. The key to this method is to normalize all ranking based on units
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of standard deviation, which can be computed for all lengths. Given the rank distribu-
tion for all candidates of length k, let R̄k be the average rank, and Ŝk be the standard
deviation of ranks. Then given a sequence of length k, with rank r, the normalized
rank will be r−R̄k

Ŝk
. This translates the rank r into units of standard deviation, where

positive values are above average. Using the normalized rank, one can compare pat-
tern candidates of different lengths, since all normalized ranks are in units of standard
deviation. This method was used in [7] for unsupervised segmentation of observation
streams based on statistical dependence tests.

4.2 Generalizing from Similar Patterns

A second limitation we have found in existing methods is inability to generalize pat-
terns, in the sense that sub-segments of frequent or significant patterns are often them-
selves frequent (or significant). Thus both segment and its subsegment receive high
normalized ranks, yet are treated as completely different patterns by the learning meth-
ods. For instance, if a pattern ABCD is ranked high, the algorithm is likely to also rank
high the shadow sub-patterns ABC, BC, etc. Normalizing for length helps in estab-
lishing longer patterns as preferable to their shadows, but the shadows might still rank
sufficiently high to take the place of other true patterns in the final pattern list.

We focus on a clustering approach, in which we group together pattern variations.
We cluster candidates that are within a user-specified threshold of edit distance from
each other. The procedure goes through the list of candidates top-down. The first candi-
date is selected as the representative of the first cluster. Each of the following candidates
is compared against the representatives of each of the existing groups. If the candidate
is within a user-provided edit-distance from a representative of a cluster, it is inserted
into the representative’s group. Otherwise, a new group is created, and the candidate is
chosen as its representative. The result set is composed of all group representatives.

Generally, the edit-distance between two sequences is the minimal number of edit-
ing operations (insertion, deletion or replacement of a single event) that should be ap-
plied on one sequence in order to turn it into the other. For example, the editing distance
between ABC and ACC is 1, as is the editing distance between AC and ABC. A well
known method for calculating the edit distance between sequences is global alignment
[11]. However, our task requires some modifications to the general method. For exam-
ple, the sequence pairs {ABCDE, BCDEF} and {ABCD, AEFD} have an edit-
distance of 2, though the former pair has a large overlapping subsequence (BCDE),
and the latter pair has much smaller (fragmented) overlap A??D.

We use a combination of a modified (weighted) distance calculation, and heuristics
which come to bear after the distance is computed. Our alignment method classifies
each event (belonging to one sequence and/or the other) as one of three types: appearing
before an overlap between the patterns, appearing within the overlap, or appearing after
the overlap. It then assigns a weighted edit-distance for the selected alignment, where
the edit operations have weights that differ by the class of the events they operate on.
Edit operations within the overlap are given a high weight (called mismatch weight).
Edit operations on events appearing before or after the overlap are given a low weight
(edge weight). In our experiments we have used an infinite mismatch weight, meaning
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we did not allow any mismatch within the overlapping segment. However, both weight
values are clearly domain-dependent.

In order to avoid false alignments where the overlapping segment is not a signifi-
cant part of the overall unification, we set a minimal threshold upon the length of the
overlapping segment. This threshold is set both as an absolute value and as a portion of
the overall unification’s length.

5 Experiments

To evaluate the techniques we presented, we conducted extensive experiments on syn-
thetic (Section 5.1) and real data (5.2).

5.1 Synthetic Data Experiments

We repeated our experiments from Section 3, this time with the modified techniques.
Figure 4 and Table 2 show the accuracy achieved at different pattern rates, paralleling
Figures 1 and 2, respectively. Figure 4 shows all results, while Table 2 focuses on low
pattern rates (high noise). Every point (table entry) is the average of 450 different tests,
contrasting standard, normalized (marked N) and normalized-clustered (NC) versions
of DD, Support, and Optimal Support/Confidence (marked simply as Sup/Conf).

The results show that length normalization improves all tested algorithms. For in-
stance, the support technique has completely failed to detect true segments for a pattern
rate of 1%, while its normalized version has achieved accuracy of 39% at this rate.
Clustering the normalized results improved the results further, by notable margins.

The improvements derived from normalizing and clustering the results both proved
to be statistically significant for all learning techniques. For instance, a paired one-tailed
t-test shows that the normalized version of DD is significantly better than the standard
version (p < 1× 10−10) and that the clustered-normalized version of DD significantly
outperforms the normalized version (p < 1× 10−10).

Table 2. Accuracy at low pattern rates

Pattern Rate (%) 0.2 0.5 1 2 5 10

DD 2.7 26.8 41.1 45.9 51.9 54.4
N. DD 13.6 28.1 42.3 48.2 52.8 56.0
NC. DD 13.4 28.3 45.6 53.0 60.8 66.5

Sup/ Conf 1.3 10.2 20.3 19.6 33.0 34.9
N. Sup/ Conf 16.6 30.8 44.7 49.8 59.8 63.7
NC. Sup/ Conf 16.4 32.6 51.0 54.9 70.4 73.0

Sup 0.0 0.0 0.0 0.0 8.2 7.5
N. Sup 16.6 29.9 39.3 41.2 48.2 50
NC. Sup 16.4 29.7 47.0 47.1 58.4 66.0

Conf 0.0 0.0 0.0 0.0 0.0 0.0
N. Conf 0.0 1.0 13.4 21.3 31.0 37.1
NC. Conf 0.0 1.2 14.4 22 34 42.0
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The improvements are such that after normalization and clustering, the simple sup-
port technique outperforms the standard DD method for all pattern rate values, includ-
ing 0.2%-0.5%. This is where standard DD performs significantly better than the other
standard techniques. Indeed, after length-based standardization and clustering, DD may
no longer be superior over the support/confidence approach.

Figure 5 shows the results from one specific setting, where both normalizing and
normalizing-clustering proved particularly effective. Each point in the figure represents
the average of 50 different tests, with an alphabet size 26, and true patterns composed of
3–5 events. In the figure, the normalized version of the support technique has achieved
accuracy of 78% for a pattern rate of 1%, comparing to 0% accuracy of the standard ver-
sion. The normalized clustered versions of all algorithms have achieved more than 95%
accuracy for a pattern rate as low as 1%, where the accuracy of the standard techniques
was 0% for support, 66% for support/confidence and 82% for DD.
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We have also evaluated the effects of intra-pattern noise on the quality of results.
In general, for all alphabet and pattern sizes, we have found that the Normalized Clus-
tered versions offer consistent improvements to accuracy of Normalized methods, in
the presence of up to 25% intra-pattern noise.

We evaluated our techniques with an additional dataset. We used the text of George
Orwell’s 1984 to test our modified techniques on data that was both more realistic, yet
still allowed for controlled experiments. In one experiment, we changed the original
text by introducing noise within the words and between them. For instance, the first
sentence in the book - "It was a bright cold day in April" was replaced by "ItoH7l4H
XywOct8M (. . . 9 more noisy words) 6jOwas2x imfG8e1x (. . . 2 more noisy words)
nBaor1oL iWtHhTEq brightcT xcoldVuv vfday1Ap BsQG9pyK 8NxfinXR 8TGmx-
cXO E1IenU2Q ApriulxL". We inserted only fixed 8-character sequences, such that
each actual word that is shorter than 8 characters was padded with noise, and words
longer than 8 characters were cut. We set pattern rate to 40% by inserting 6 noisy
streams, for each 4 containing actual words. Intra pattern noise was set at 10%. We
then counted how many of the top 100 candidates returned by each technique are ac-
tual words appearing in the book. We hoped to find as many actual words in the results
set as possible. The results, reflecting the average accuracy over the first 8 chapters of
the book, are shown in Figure 6. Similar improvement results were achieved for other
settings of pattern rate and intra pattern noise.

The results show that for each of the presented techniques the clustered normalized
versions have significantly outperformed the standard versions, increasing accuracy by
up to 41% for the support algorithm. The normalized versions have typically outper-
formed the standard versions, except for the case of DD, where the normalized results
contained various sequences that reflected the same words (see Section 4.2), and were
then significantly improved by our clustering approach. Note also that among the stan-
dard techniques, DD has once again outperformed the other methods.

5.2 Real World Experiments

We conducted real-world experiments on UNIX command line sequences. We utilized
9 data sets of UNIX command line histories, collected for 8 different users at Purdue
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university over the course of 2 years [12]. In this case, we do not know in advance what
true patterns were included in the data, thus quantitative evaluation of accuracy is not
possible. However, we hoped to qualitatively contrast the pattern candidates generated
by the different methods.

The results suggest again that among non-normalized techniques, DD is superior.
While the results of support and confidence methods consisted mainly of different vari-
ations of ls, cd and vi, DD was the only algorithm to discover obviously-sequential
patterns (that were not necessarily frequent) such as “g++ -g <file>;a.out”, “| more”,
“ls -al”, “ps -ef ”, “xlock -mode”, “pgp -kvw”, etc.

The clustered-normalized versions of both DD and support/confidence detected
more complex user patterns, which were not detected by the standard techniques. The
results clearly show the ability of the improved techniques to discover valuable sequen-
tial patterns, which characterize interesting user behavior, and are overlooked by the
standard methods. Among these sequential patterns are:

1. ps -aux | grep <process>; kill -9—a user looking for a certain process id to kill.
2. tar <3 args>; cd; uuencode <2 args> > <file>; mailx—a user packaging a direc-

tory tree, encoding it to a file, and sending it by mail.
3. compress <arg>;quota;compress <arg>; quota—a user trying to overcome quota

problems by compressing files.
4. latex <arg>; dvips <arg>; ghostview—a latex write → compile→ view cycle.
5. vi <arg>; gcc <arg>; a.out; vi <arg>; gcc—an edit→ compile→ run cycle.

6 Conclusions and Future Work

This paper tackles the problem of unsupervised sequence learning. The challenge is ad-
dressed by improving sequence learning algorithms, which extract meaningful patterns
of sequential behavior from example streams. We empirically compared these algo-
rithms, to determine their relative strengths. Based on the comparison, we noted several
common deficiencies in all tested algorithms: All are susceptible to a bias in preferring
pattern candidates based on length; and all fail to generalize patterns, often taking a
high-ranked pattern candidate as distinct from its shorter sub-patterns.

We use a normalization method to effectively neutralize the length bias in all learn-
ing methods tested, by normalizing the frequency/significance rankings produced by
the learning methods. Use of this method had improved accuracy by up to 42% in test-
ing on synthetic data. We then use a clustering approach, based on a modified weighted
edit-distance measure, to group together all patterns that are closely related. The use
of clustering in addition to normalization had further improved accuracy by up to 22%
in some cases. We also show that the techniques are robust to noise in and out of the
patterns. Finally, the improved methods were run on two additional sets of data: se-
quences from Orwell’s 1984, and UNIX real-world command-line data. The methods
successfully detected many interesting patterns in both.

A weakness with the methods that we presented is their use with very large data-
bases. For instance, normalization requires repeatedly counting all the patterns in the
database, and would therefore be inefficient for large data-mining applications. How-
ever, the techniques we presented are well suited for typical agent-observation data
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(such as RoboCup soccer logs or UNIX command-line data). We plan to consider large
data-mining applications in our future work.
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Abstract. Inducing a classification function from a set of examples in
the form of labeled instances is a standard problem in supervised machine
learning. In this paper, we are concerned with ambiguous label classifica-
tion (ALC), an extension of this setting in which several candidate labels
may be assigned to a single example. By extending three concrete clas-
sification methods to the ALC setting and evaluating their performance
on benchmark data sets, we show that appropriately designed learning
algorithms can successfully exploit the information contained in ambigu-
ously labeled examples. Our results indicate that the fundamental idea
of the extended methods, namely to disambiguate the label information
by means of the inductive bias underlying (heuristic) machine learning
methods, works well in practice.

1 Introduction

One of the standard problems in (supervised) machine learning is inducing a
classification function from a set of training data. The latter usually consists of
a set of labeled examples, i.e., a set of objects (instances) whose correct classifi-
cation is known. Over the last years, however, several variants of the standard
classification setting have been considered. For example, in multi-label classifi-
cation a single object can have several labels (belong to several classes), that is,
the labels (classes) are not mutually exclusive [14]. In semi-supervised learning,
only a part of the objects in the training set is labeled [1]. In multiple-instance
learning, a positive or negative label is assigned to a so-called bag rather than to
an object directly [7]. A bag, which is a collection of several instances, is labeled
positive iff if contains at least one positive example. Given a set of labeled bags,
the task is to induce a model that will label unseen bags and instances correctly.

In this paper, we are concerned with another extension of the standard clas-
sification setting that has recently been introduced in [11,13], and that we shall
subsequently refer to as ambiguous label classification (ALC). In this setting, an
example might be labeled in a non-unique way by a subset of classes, just like in
multi-label classification. In ALC, however, the existence of a (unique) correct
classification is assumed, and the labels are simply considered as candidates.

In [11,13], the authors rely on probabilistic methods in order to learn a clas-
sifier in the ALC setting. The approach presented in this paper can be seen as
an alternative strategy which is more in line with standard (heuristic) machine
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learning methods. Our idea is to exploit the inductive bias underlying these
methods in order to disambiguate label information. This idea, as well as the
relation between the two approaches, is discussed in more detail in Section 3.
Before, the problem of ALC is introduced in a more formal way (Section 2). In
Section 4, three concrete methods for ALC are proposed, namely extensions of
nearest neighbor classification, decision tree learning, and rule induction. Exper-
imental results are finally presented in Section 5.

2 Ambiguous Label Classification

Let X denote an instance space, where an instance corresponds to the attribute–
value description x of an object: X = X1×X2× . . .×X�, with Xı the domain of
the ı-th attribute. Thus, an instance is represented as a vector x = (x1 . . . x�) ∈
X . Moreover, let L = {λ1 . . . λm} be a set of labels (classes). Training data
shall be given in the form of a set D of examples (xı, Lxı), ı = 1 . . . n, where
xı = (x1

ı . . . x�
ı ) ∈ X and Lxı ⊆ L is a set of candidate labels associated with

instance xı. Lxı is assumed to contain the true label λxı , and xı is called an
ambiguous example if |Lxı | > 1. Note that this includes the special case of a
completely unknown label (Lx = L), as considered in semi-supervised learning.
Here, however, we usually have the case in mind where 1 ≤ |Lx| < |L|. For
example, in molecular biology the functional category of a protein is often not
exactly known, even though some alternatives can definitely be excluded [2].

The learning task is to select, on the basis of D, an optimal model (hypoth-
esis) h : X → L from a hypothesis space H. Such a model assigns a (unique)
label λ = h(x) to any instance x ∈ X . Optimality usually refers to predictive
accuracy, i.e., an optimal model is one that minimizes the expected loss (risk)
with respect to a given loss function L× L → R.

3 Learning from Ambiguous Examples

Ambiguous data may comprise important information. In fact, the benefit of this
information might be especially high if it is considered, not as an isolated piece
of knowledge, but in conjunction with the other data and the model assumptions
underlying the hypothesis space H. To illustrate this important point, consider
a simple example in which the true label λxı of an instance xı is known to be
either λ1 or λ2. Moreover, we seek to fit a classification tree to the data, which
basically amounts to assuming that X can be partitioned by axis-parallel decision
boundaries. Now, by setting λxı = λ2 we might find a very simple classification
tree for the complete data, while λxı = λ1 requires a comparatively complex
model (see Fig.1). Relying on the simplicity heuristic underlying most machine
learning methods [8], this finding clearly suggests that λxı = λ2. Thus, looking at
the original information λxı ∈ {λ1, λ2} with a view that is “biased” by the model
assumptions, the benefit of this information has highly increased. As can be seen,
the inductive bias underlying the learning process can help to disambiguate the
label information given. This suggests that ambiguous label information might
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?

Fig. 1. Classification problem with three
labels: black (λ1), grey (λ2), light (λ3).
The instance with a question mark is ei-
ther black or grey. Assigning label grey al-
lows one to fit a very simple decision tree
(as represented by the axis-parallel deci-
sion boundaries). Note that this hypothet-
ical labeling also provides important infor-
mation on the decision boundary between
the grey and light class.

indeed be useful and, in particular, that it might be easier for learning methods
with a strong inductive bias to exploit such information than for methods with a
weak bias. Both these conjectures will be supported by our experimental results
in Section 5.

The above example has shown that candidate labels can appear more or less
likely against the background of the underlying model assumptions. In fact, the
insight that fitting a model to the data might change the likelihood of candidate
labels can be formalized more rigorously in a probabilistic context. Assuming a
parameterized model Mθ, the goal can roughly be stated as finding the parameter

θ∗ = arg max
θ

n∏
ı=1

Pr(λxı ∈ Lxı |xı, θ).

This approach gives rise to an EM (expectation-maximization) approach in
which model adaptation and modification of label information are performed
alternately: Starting with a uniform distribution over each label set Lxı , an
optimal parameter θ∗ is determined. Using this parameter resp. the associated
model Mθ∗ , the probabilities of the labels λ ∈ Lxı are then re-estimated. This
process of estimating parameters and adjusting probabilities is iterated until
convergence is eventually achieved [11,13].

On the one hand, this approach is rather elegant and first empirical evidence
has been gathered for its practical effectiveness [11,13]. On the other hand, the
assumption of a parameterized model basically restricts its applicability to sta-
tistical classification methods. Moreover, model optimization by means of EM
can of course become quite costly from a computational point of view. Our idea
of disambiguating label information by implementing a simplicity bias can be
seen as an alternative strategy. As heuristic machine learning in general, this
approach is of course theoretically not as well-founded as probabilistic methods.
Still, heuristic methods have been shown to be often more effective and efficient
in practical applications.

Unfortunately, standard classification methods generally cannot exploit the
information provided by ambiguous data, simply because they cannot handle
such data. This is one motivation underlying the development of methods for
ALC (as will be done in Section 4). Note that a straightforward strategy for
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realizing ALC is a reduction to standard classification: Let the class of selections,
F(D), of a set D of ambiguous data be given by the class of standard samples

S = {(x1, αx1), (x2, αx2), . . . , (xn, αxn)} (1)

such that αxı ∈ Lxı for all 1 ≤ ı ≤ n. In principle, a standard learning method
could be applied to all samples S ∈ F(D), and an apparently most favorable
model could be selected among the models thus obtained. However, since the
number of selections, |F(D)| =

∏n
ı=1 |Lxı|, will usually be huge, this strategy is

of course not practicable.

4 Methods for ALC

In this section, we present three relatively simple extensions of standard learning
algorithms to the ALC setting, namely k-nearest neighbor classification, decision
tree learning, and rule induction.

4.1 Nearest Neighbor Classification

In k-nearest neighbor (k-NN) classification [6], the label λest
x0

hypothetically as-
signed to a query x0 is given by the label that is most frequent among x0’s k
nearest neighbors, where nearness is measured in terms of a similarity or dis-
tance function. In weighted k-NN, the neighbors are moreover weighted by their
distance:

λest
x0

df= argmax
λ∈L

k∑
ı=1

ωı I(λ = λxı), (2)

where xı is the ı-th nearest neighbor; λxı and ωı are, respectively, the label
and the weight of xı, and I(·) is the standard {true, false} → {0, 1} mapping. A
simple definition of the weights is ωı = 1− dı · (

∑k
j=1 dj)−1, where the dı are the

corresponding distances.
Now, a relatively straightforward generalization of (2) to the ALC setting is

to replace I(λ = λxı) by I(λ ∈ Lxı):

λest
x0

df= arg max
λ∈L

k∑
ı=1

ωı I(λ ∈ Lxı). (3)

Thus, a neighbor xı is allowed not one single vote only, but rather one vote for
each its associated labels. If the maximum in (3) is not unique, one among the
labels with highest score is simply chosen at random.1

1 A reasonable alternative is to choose the prevalent class in the complete training set.
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4.2 Decision Tree Induction

Another standard learning method whose extension to the ALC setting might
be of interest, is decision tree induction [15]. Its basic strategy of partitioning
the data in a recursive manner can of course be maintained for ALC. The main
modification rather concerns the splitting measure. In fact, standard measures of
the (im)purity of a set of examples, such as entropy, cannot be used, since these
measures are well-defined only for a probability distribution over the label set.

As an extended measure of (im)purity, we propose the potential entropy of a
set of examples D, defined by

E∗(D) df= min
S∈F(D)

E(S), (4)

where F(D) is the set of selections (1) and E(S) denotes the standard entropy:
E(S) df= −

∑m
ı=1 pı log2(pı), with pı the proportion of elements in S labeled by

λı. As can be seen, (4) is the standard entropy obtained for the most favorable
instantiation of the ALC-examples (xı, Lxı). It corresponds to the “true” en-
tropy that would have been derived if this instantiation was compatible with the
ultimate decision tree. Taking this optimistic attitude is justified since the tree
is indeed hopefully constructed in an optimal manner.

Of course, computing the potential entropy comes down to solving a combi-
natorial optimization problem and becomes intractable for large samples. There-
fore, we suggest the following heuristic approximation of (4):

E+(D) df= E(S∗), (5)

where the selection S∗ is defined as follows: Let qı be the frequency of the label
λı in the set of examples D, i.e. the number of examples (xj, Lxj) such that
λı ∈ Lxj . The labels λı are first put in a (total) “preference” order according to
their frequency: λı is preferred to λj if qı > qj (ties are broken by coin flipping).
Then, the most preferred label λı ∈ Lxı is chosen for each example xı. Clearly,
the idea underlying this selection is to make the distribution of labels as skewed
(non-uniform) as possible, as distributions of this type are favored by the entropy
measure. We found that the measure (5) yields very good results in practice and
compares favorably with alternative extensions of splitting measures [12].

With regard to the stopping condition of the recursive partitioning scheme,
note that a further splitting of a (sub)set of examples D is not necessary if
L(D) df=

⋂
xı∈D Lxı �= ∅. The corresponding node in the decision tree then be-

comes a leaf, and any label λ ∈ L(D) can be chosen as the prescribed label
associated with that node.

Pruning a fully grown tree can principally be done in the same way as pruning
standard trees. We implemented the pruning technique that is used in C4.5 [15].

4.3 Rule Induction

An alternative to the divide-and-conquer strategy followed by decision tree learn-
ers is to induce rules in a more direct way, using a separate-and-conquer or cover-
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ing strategy [10]. Concrete implementations of this approach include algorithms
such as, e.g., CN2 [4,3] and Ripper [5].

In order to learn a concept, i.e., to separate positive from negative examples,
covering algorithms learn one rule after another. Each rule covers a subset of
(positive) examples, namely those that satisfy the condition part of the rule. The
covered examples are then removed from the training set. This process is iterated
until no positive examples remain. Covering algorithms can be extended to the
m-class case (m > 2) in several ways. For example, following a one-versus-all
strategy, CN2 learns rules for each class in turn, starting with the least frequent
one. Since in the m-class case the order in which rules have been induced is
important, the rules thus obtained have to be treated as a decision list.

A key component of all covering algorithms is a “find-best-rule” procedure for
finding a good or even optimal rule that partly covers the current training data.
Starting with a maximally general rule, CN2 follows a top-down approach in
which the candidate rules are successively specialized (e.g. by adding conditions).
The search procedure is implemented as a beam search, guided by the Laplace-
estimate as a heuristic evaluation:

L(r) df= (p + 1)(n + p + 2)−1, (6)

where r is the rule to be evaluated, p is the number of positive examples covered
by r, and n the number of negative examples. As a stopping criterion, CN2
employs a statistical significance test (likelihood ratio) that decides whether or
not the distribution of positive and negative examples covered by the rule is
significantly different from the overall distribution in the complete training set.

In order to adapt CN2 to the ALC setting, we have made the following
modifications: Similarly to the generalization of the entropy measure, we have
turned the Laplace-estimate into a “potential” Laplace-estimate: Considering
label λj as the positive class, p = pj is given by the number of all examples xı

covered by the rule r and such that λj ∈ Lxı. This way, (6) can be derived for
each label, and the maximal value is adopted as an evaluation of the rule:

L(r) = max
1≤j≤m

(pj + 1)(|r| + 2)−1,

where |r| is the number of examples covered by the rule. The consequent of r is
then given by the label λj for which the maximum is attained.

As noted before, CN2 learns classes in succession, starting with the smallest
(least frequent) one. As opposed to this, we learn rules without specifying a
class in advance. Rather, the most suitable class is chosen depending on the
condition part of a rule. In fact, the label predicted by a rule can even change
during the search process. This modification is in agreement with our goal of
to disambiguate by implementing a simplicity bias. Moreover, the focusing on
one particular label is less useful in the ALC setting. In fact, in the presence of
ambiguously labeled examples, it may easily happen that a rule r is dominated
by a class λj while all of its direct specializations are dominated by other classes.
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5 Experimental Results

The main purpose of our experimental study was to provide evidence for the con-
jecture that exploiting ambiguous data for model induction by using a suitable
ALC-method is usually better than the obvious alternative, namely to ignore
such data and learn with a standard algorithm from the remaining (exactly
labeled) examples. We used the latter approach as a baseline method.

Note that this conjecture is by far not trivial. In fact, whether or not am-
biguous data can be useful will strongly depend on the performance of the ALC-
method. If this method is not able to exploit the information contained in that
data, ambiguous examples might be misleading rather than helpful. In this con-
nection, recall our supposition that the weaker the inductive bias of a learning
method, the more likely that method might be misled by ambiguous examples.

5.1 Experimental Setup

We have worked with “contaminated” versions of standard benchmark data sets
(in which each instance is assigned a unique label), which allowed us to conduct
experiments in a controlled way. In order to contaminate a given data set, we
have devised two different strategies:

Random model: For each example in the training set, a biased coin is flipped in
order to decide whether or not this example will be contaminated; the probability
of contamination is p. In case an example xı is contaminated, the set Lxı of
candidate labels is initialized with the original label λxı , and all other labels
λ ∈ L \ {λxı} are added with probability q, independently of each other. Thus,
the contamination procedure is parameterized by the probabilities p and q, where
p corresponds to the expected fraction of ambiguous examples in a data set.
Moreover, q reflects the “average benefit” of a contaminated example xı: The
smaller q is, the smaller the (average) number of candidate labels becomes and,
hence, the more informative such an example will be. In fact, note that the
expected cardinality of Lxı , in the case of contamination, is given by 1+(m−1)q.

Bayes model: The random model assumes that labels are added independently
of each other. In practice, this idealized assumption will rarely be valid. For
example, the probability that a label is added will usually depend on the true
label. In order to take this type of dependency into account, our second approach
to contamination works as follows: First, a Naive Bayes classifier is trained using
the original data, and a probabilistic prediction is derived for each input xı. Let
Pr(λ |xı) denote the probability of label λ as predicted by the classifier. Whether
or not an example is contaminated is decided by flipping a biased coin as before.
In the case of contamination, the true label λxı is again retained. Moreover, the
other m−1 labels λ ∈ L\{λxı} are arranged in an increasing order according to
their probability Pr(λ |xı). The k-th label, λ(k), is then added with probability
(2 · k · q)/m. Thus, the expected cardinality of Lxı is again 1 + (m− 1)q, but the
probabilities of the individual labels are now biased in favor of the labels found
to be likely by the Bayes classifier. Intuitively, the Bayes model should come
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along with a decrease in performance for the ALC approach because, roughly
speaking, disambiguating the data might become more difficult in the case of a
“systematic” contamination.

The experimental results have been obtained in the following way: In a single
experiment, the data is randomly divided into a training set and a test set of
the same size. The training set is contaminated as outlined above. From the con-
taminated data, a model is induced using an ALC-extension of a classification
method (kNN, decision trees, rule induction). Moreover, using the classification
method in its standard form, a model is learned from the reduced training set
that consists of the non-contaminated examples. Then, the classification accu-
racy of the two models is determined by classifying the instances in the test set.
The expected classification accuracy of a method – for the underlying data set
and fixed parameters p, q – is approximated by averaging over 1,000 experiments.

For decision tree learning and rule induction, all numeric attributes have been
discretized in advance using hierarchical entropy-based discretization [9]. We
didn’t try to optimize the performance of the three learning methods themselves,
because this was not the goal of the experiments. Rather, the purpose of the
study was to compare – under equal conditions – ALC learning with the baseline
method.

5.2 Results

Due to reasons of space, results are presented for only five data sets from the
UCI repository: (1) dermatology (385 instances, 34 attributes, 6 classes), (2)
ecoli (336, 7, 8), (3) housing (506,13,10), (4) glass (214, 9, 6), (5) zoo (101, 16,
7) and a few combinations of (p, q)-parameters (more results can be found in an
extended version, available as a technical report from the authors).

The results for k-NN classification with k = 5 are summarized in Table 1,
where (r) stands for the random model and (b) for the Bayes model. As can be
seen, the ALC version is generally superior to the standard 5-NN classifier. Ex-
ceptions (marked with a *) only occur in cases where both p and q are large, that
is, where the data is strongly contaminated. Roughly speaking, the superiority
of the ALC version shows that relying on a nearby ambiguous neighbor is usu-
ally better than looking at an exact example that is faraway (because the close,
ambiguous ones have been removed). We obtained similar results for k = 7, 9, 11.

The results do not convincingly confirm the supposition that the ALC ver-
sion will perform better for the random model than for the Bayes model. Even
though it is true that the results for the former are better than for the latter in
most cases, the corresponding difference in performance is only slight and much
smaller than expected. In general, it can be said that the contamination model
does hardly influence the performance of the classifier most of the time. In fact,
there is only one noticeable exception: For the Zoo data, the performance for
the random model is much better than for the Bayes model in the case of highly
contaminated data.

For decision tree induction, the ALC-version consistently outperforms the
standard version. As the results in Table 2 show, the gain in performance is
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Table 1. Results for 5-NN classification (classification rate and standard deviation)

data method q p = .1 p = .5 p = .9
derma ALC (r) .3 .959 (.013) .955 (.014) .943 (.017)

ALC (b) .3 .959 (.013) .955 (.015) .940 (.018)
standard .3 .958 (.014) .948 (.018) .910 (.039)
ALC (r) .5 .958 (.014) .949 (.015) .890 (.028)
ALB (b) .5 .958 (.014) .946 (.016) .874 (.031)
standard .5 .957 (.014) .945 (.019) .851 (.067)
ALC (r) .7 .959 (.014) .938 (.019) .746 (.050)
ALC (b) .7 .958 (.014) .936 (.018) .745 (.046)
standard .7 .958 (.014) .945 (.020)∗ .833 (.072)∗

ecoli ALC (r) .3 .845 (.025) .832 (.025) .798 (.024)
ALC (b) .3 .846 (.025) .830 (.028) .798 (.029)
standard .3 .845 (.026) .827 (.028) .743 (.059)
ALC (r) .5 .844 (.027) .815 (.023) .715 (.039)
ALC (b) .5 .843 (.022) .814 (.028) .709 (.045)
standard .5 .843 (.027) .815 (.030) .691 (.099)
ALC (r) .7 .844 (.022) .801 (.029) .582 (.050)
ALC (b) .7 .841 (.024) .802 (.032) .593 (.052)
standard .7 .842 (.024) .820 (.034)∗ .699 (.087)∗

glass ALC (r) .3 .634 (.041) .620 (.043) .592 (.045)
ALC (b) .3 .638 (.040) .622 (.041) .592 (.044)
standard .3 .630 (.041) .604 (.048) .510 (.070)
ALC (r) .5 .636 (.042) .611 (.042) .542 (.052)
ALC (b) .5 .635 (.042) .607 (.043) .529 (.051)
standard .5 .633 (.042) .599 (.045) .438 (.077)
ALC (r) .7 .633 (.042) .602 (.045) .463 (.061)
ALC (b) .7 .631 (.042) .604 (.045) .453 (.060)
standard .7 .631 (.041) .595 (.051) .408 (.077)

housing ALC (r) .3 .488 (.027) .461 (.029) .423 (.017)
ALC (b) .3 .476 (.026) .457 (.029) .412 (.032)
standard .3 .486 (.028) .455 (.030) .403 (.032)
ALC (r) .5 .476 (.028) .431 (.030) .320 (.034)
ALC (b) .5 .477 (.027) .445 (.031) .367 (.032)
standard .5 .474 (.028) .444 (.030) .362 (.046)∗

ALC (r) .7 .486 (.027) .440 (.033) .271 (.035)
ALC (b) .7 .478 (.029) .443 (.030) .324 (.032)
standard .7 .484 (.027) .454 (.031)∗ .369 (.048)∗

zoo ALC (r) .3 .926 (.038) .912 (.041) .887 (.054)
ALC (b) .3 .925 (.038) .911 (.042) .886 (.055)
standard .3 .925 (.039) .896 (.053) .782 (.104)
ALC (r) .5 .924 (.037) .901 (.048) .824 (.072)
ALC (b) .5 .925 (.039) .895 (.048) .777 (.091)
standard .5 .923 (.038) .889 (.059) .667 (.155)
ALC (r) .7 .922 (.038) .885 (.058) .673 (.110)
ALC (b) .7 .924 (.039) .881 (.060) .609 (.111)
standard .7 .921 (.038) .884 (.061) .655 (.162)
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Table 2. Results for decision tree induction

data method q p = .1 p = .5 p = .9
derma ALC (r) .3 .860 (.046) .841 (.051) .809 (.069)

ALC (b) .3 .861 (.047) .839 (.055) .802 (.069)
standard .3 .858 (.049) .814 (.063) .654 (.129)
ALC (r) .5 .858 (.047) .818 (.057) .742 (.098)
ALB (b) .5 .854 (.047) .816 (.058) .736 (.082)
standard .5 .858 (.049) .807 (.069) .488 (.155)
ALC (r) .7 .855 (.048) .802 (.059) .618 (.125)
ALC (b) .7 .854 (.048) .801 (.063) .659 (.092)
standard .7 .855 (.048) .799 (.075) .446 (.154)

ecoli ALC (r) .3 .705 (.039) .676 (.041) .645 (.043)
ALC (b) .3 .707 (.038) .682 (.038) .663 (.039)
standard .3 .704 (.043) .655 (.058) .543 (.115)
ALC (r) .5 .703 (.039) .658 (.042) .611 (.051)
ALC (b) .5 .703 (.038) .669 (.039) .639 (.045)
standard .5 .700 (.041) .646 (.059) .517 (.139)
ALC (r) .7 .700 (.039) .648 (.043) .567 (.065)
ALC (b) .7 .701 (.039) .661 (.040) .635 (.051)
standard .7 .699 (.041) .643 (.064) .509 (.149)

housing ALC (r) .3 .348 (.038) .321 (.043) .282 (.045)
ALC (b) .3 .348 (.038) .333 (.042) .311 (.044)
standard .3 .353 (.039)∗ .334 (.051)∗ .313 (.088)∗

ALC (r) .5 .346 (.038) .308 (.043) .246 (.047)
ALC (b) .5 .348 (.038) .331 (.044) .294 (.043)
standard .5 .353 (.039)∗ .336 (.051)∗ .306 (.099)∗

ALC (r) .7 .348 (.038) .301 (.046) .261 (.062)
ALC (b) .7 .352 (.036) .321 (.044) .286 (.078)
standard .7 .350 (.042)∗ .337 (.052)∗ .302 (.104)∗

glass ALC (r) .3 .557 (.059) .533 (.065) .507 (.072)
ALC (b) .3 .559 (.059) .534 (.069) .496 (.080)
standard .3 .553 (.063) .514 (.086) .437 (.120)
ALC (r) .5 .556 (.055) .525 (.066) .460 (.085)
ALC (b) .5 .555 (.054) .513 (.078) .434 (.082)
standard .5 .551 (.064) .497 (.091) .395 (.152)
ALC (r) .7 .554 (.056) .507 (.075) .410 (.092)
ALC (b) .7 .557 (.057) .504 (.079) .382 (.065)
standard .7 .554 (.064) .493 (.093) .389 (.172)

zoo ALC (r) .3 .876 (.057) .841 (.063) .806 (.066)
ALC (b) .3 .876 (.058) .843 (.060) .807 (.063)
standard .3 .876 (.059) .814 (.084) .654 (.171)
ALC (r) .5 .877 (.057) .827 (.067) .765 (.079)
ALC (b) .5 .876 (.057) .830 (.063) .753 (.103)
standard .5 .873 (.060) .811 (.091) .552 (.245)
ALC (r) .7 .873 (.055) .820 (.069) .696 (.102)
ALC (b) .7 .874 (.054) .825 (.066) .553 (.206)
standard .7 .873 (.061) .807 (.092) .500 (.272)
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even higher than for NN classification. Again, the results show that a systematic
contamination of the data, using the Bayes instead of the random model, does
hardly affect the performance of ALC. It is true that the classification perfor-
mance deteriorates on average, but again only slightly and not in every case.

An interesting exception to the above findings is the Housing data (not only
for decision tree learning but also for NN classification). First, for this data
the standard version is down the line better than the ALC-version. Second, the
ALC-version is visibly better in the case of the Bayesian model than in the
case of the random model. A plausible explanation for this is the fact that for
the Housing data the classes are price categories and hence do have a natural
order. That is, we actually face a problem of ordinal classification rather than
standard classification. (Consequently, ordinal classification methods should be
applied, and the results for this data set should not be overrated in our context.)
Moreover, the Bayesian model tends to add classes that are, in the sense of this
ordering, neighbored to the true price category, thereby distorting the original
class information but slightly. Compared to this, ambiguous information will be
much more conflicting in the case of the random model.

Since the experimental results for rule induction are rather similar to those
for decision tree learning, they are omitted here for reasons of space.

In summary, the experiments show that our ALC extensions of standard
learning methods can successfully deal with ambiguous label information. In fact,
except for some rare cases, these extensions yield better results than the base-
line method (which ignores ambiguous examples and applies standard learning
methods). A closer examination reveals two interesting points: Firstly, it seems
that the gain in classification accuracy (of ALC compared with the baseline
method) is a monotone increasing function of the parameter p (probability of
contamination). With regard to the parameter q, however, the dependency ap-
pears to be non-monotone: The gain first increases but then decreases for large
enough q-values. Intuitively, these findings can be explained as follows: Since q
represents a kind of “expected benefit” of an ambiguous example, the utility of
such an example is likely to become negative for large q-values. Consequently,
it might then be better to simply ignore such examples, at least if enough other
data is available. Secondly, the performance gain for decision tree learning seems
to be slightly higher than the one for rule induction, at least on average, and
considerably higher than the gain for NN classification. This ranking is in perfect
agreement with our conjecture that the stronger the inductive bias of a learning
method, the more useful ALC will be.

6 Concluding Remarks

In order to successfully learn a classification function in the ALC setting, where
examples can be labeled in an ambiguous way, we proposed several extensions
of standard machine learning methods. The idea is to exploit the inductive bias
underlying these (heuristic) methods in order to disambiguate the label infor-
mation. In fact, we argued that looking at the label information with a “biased
view” may remove the ambiguity of that information to some extent. This idea
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gives rise to the conjecture that ALC learning methods with a strong (and of
course approximately correct) bias can exploit the information provided by am-
biguous examples better than methods with a weak bias. This conjecture has
been supported empirically by experiments that have been carried out for three
concrete learning techniques, namely ALC extensions of nearest neighbor classi-
fication, decision tree learning, and rule induction. The experiments also showed
that applying our ALC methods to the complete data will usually yield better
results than learning with a standard method from the subset of exactly labeled
examples, at least if the expected benefit of the ambiguous examples is not too
low. In any case, our approach can be seen as a simple yet effective alternative
that complements the probabilistic approaches proposed in [11,13] in a reason-
able way.
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Abstract. We consider the problem of learning a ranking function, that
is a mapping from instances to rankings over a finite number of la-
bels. Our learning method, referred to as ranking by pairwise comparison
(RPC), first induces pairwise order relations from suitable training data,
using a natural extension of so-called pairwise classification. A ranking
is then derived from a set of such relations by means of a ranking proce-
dure. This paper elaborates on a key advantage of such a decomposition,
namely the fact that our learner can be adapted to different loss func-
tions by using different ranking procedures on the same underlying order
relations. In particular, the Spearman rank correlation is minimized by
using a simple weighted voting procedure. Moreover, we discuss a loss
function suitable for settings where candidate labels must be tested suc-
cessively until a target label is found, and propose a ranking procedure
for minimizing the corresponding risk.

1 Introduction

Prediction problems involving complex outputs and structured output spaces
have recently received a great deal of attention within the machine learning
literature (e.g., [11]). Problems of that kind are particularly challenging, since the
prediction of complex structures such as, say, graphs or trees, is more demanding
than the prediction of single values as in classification and regression.

A common problem of this type is preference learning, the learning with or
from preferences.1 In the literature, we can identify two different learning sce-
narios for preference learning [8]: (i) learning from object preferences, where the
task is to order a set of objects according to training information that specifies
the preference relations between a set of training objects (see, e.g., [2]), and
(ii) learning from label preferences, where the task is to learn a mapping from
instances to rankings (total orders) over a finite number of class labels [7]. A

1 Space restrictions prevent a thorough review of related work in this paper, but we
refer to [6] and recent workshops in this area, e.g., those at NIPS-02, KI-03, SIGIR-
03, NIPS-04, and GfKl-05 (the second and fifth organized by the authors).

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 180–191, 2005.
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corresponding ranking function can be seen as an extension of a standard clas-
sification function that maps instances to single class labels. In this paper, we
focus on the second scenario, but our results can be carried over to the first
scenario as well.

In [7], we have introduced a method for learning label preferences that
we shall subsequently refer to as ranking by pairwise comparison (RPC). This
method works in two phases. First, pairwise order relations (preferences) are
learned from suitable training data, using a natural extension of so-called pair-
wise classification. Then, a ranking is derived from a set of such orders (prefer-
ences) by means of a ranking procedure.

The goal of this paper is to show that by using suitable ranking functions,
our approach can easily be customized to different performance tasks, that is,
to different loss functions for rankings. In fact, the need for a ranking of class
labels may arise in different learning scenarios. In this work, we are particularly
interested in two types of practically motivated learning problems, one in which
the complete ranking is relevant and one in which the predicted ranking has the
purpose of reducing the search effort for finding the single target label.

The remainder of the paper is organized as follows: The problem of preference
learning is formally introduced in Section 2, and our pairwise approach is pre-
sented in Section 3. In Section 4, the aforementioned types of learning problems
are discussed and compared in more detail. The ranking procedures suitable for
the two types of problems are then discussed in Sections 5 and 6, respectively.

2 Learning from Label Preferences

We consider the following learning problem [8]:

Given:
– a set of labels L = {λı | ı = 1 . . .m }
– a set of examples S = { xk | k = 1 . . . n }
– for each training example (instance) xk:

• a set of preferences Pk ⊆ L × L, where (λı, λj) ∈ Pk indicates that
label λı is preferred over label λj for instance xk.

Find: a function that orders the labels λ ∈ L for any given example.

We will abbreviate (λı, λj) ∈ Pk with λı  xk
λj or simply λı  λj if the

particular example xk doesn’t matter or is clear from the context.
The above setting has recently been introduced as constraint classification

in [9]. As shown in that paper, it is a generalization of several common learning
settings, in particular

– ranking: Each training example is associated with a total order of the labels.
– classification: A single class label λx is assigned to each example x; implicitly,

this defines the set of preferences {λx  λ |λ ∈ L \ {λx} }.
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– multi-label classification: Each example x is associated with a subset Lx ⊆ L
of labels; implicitly, this defines the preferences {λ  λ′ |λ ∈ Lx, λ′ ∈ L\Lx}.

As mentioned above, we are mostly interested in the first problem, that is in
predicting a ranking (complete, transitive, asymmetric relation) of the labels.
The ranking  x of an instance x can be expressed in terms of a permutation τx

of {1 . . .m} such that

λτx(1)  x λτx(2)  x . . .  x λτx(m). (1)

Note that we make the simplifying assumption that all preferences are strict,
i.e., we do not consider the case of indifference between labels.

An appealing property of this learning framework is that its input, consisting
of comparative preference information of the form λı  x λj (x prefers λı to λj),
is often easier to obtain than absolute ratings of single alternatives in terms
of utility degrees. In this connection, note that knowledge about the complete
ranking (1) can be expanded into m(m− 1)/2 comparative preferences λτx(ı)  
λτx(j), 1 ≤ ı < j ≤ m.

3 Learning Pairwise Preferences

The idea of pairwise learning is well-known in the context of classification [5],
where it allows one to transform a multi-class classification problem, i.e., a prob-
lem involving m > 2 classes L = {λ1 . . . λm}, into a number of binary problems.
To this end, a separate model (base learner) Mıj is trained for each pair of
labels (λı, λj) ∈ L, 1 ≤ ı < j ≤ m; thus, a total number of m(m−1)/2 models is
needed. Mıj is intended to separate the objects with label λı from those having
label λj.

At classification time, a query x is submitted to all learners, and each predic-
tion Mıj(x) is interpreted as a vote for a label. If classifier Mıj predicts λı, this
is counted as a vote for λı. Conversely, the prediction λj would be considered as
a vote for λj. The label with the highest number of votes is then proposed as a
prediction.

The above procedure can be extended to the case of preference learning in
a natural way [7]. A preference information of the form λı  x λj is turned
into a training example (x, y) for the learner Mab, where a = min(ı, j) and
b = max(ı, j). Moreover, y = 1 if ı < j and y = 0 otherwise. Thus, Mab is
intended to learn the mapping that outputs 1 if λa  x λb and 0 if λb  x λa:

x �→
{

1 if λa  x λb

0 if λb  x λa
. (2)

The mapping (2) can be realized by any binary classifier. Alternatively, one
might of course employ a classifier that maps into the unit interval [0, 1] instead
of {0, 1}. The output of such a “soft” binary classifier can usually be interpreted
as a probability or, more generally, a kind of confidence in the classification.
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Thus, the closer the output of Mab to 1, the stronger the preference λa  x λb

is supported.
A preference learner composed of an ensemble of soft binary classifiers (which

can be constructed on the basis of training data in the form of instances with
associated partial preferences) assigns a valued preference relation Rx to any
(query) instance x ∈ X :

Rx(λı, λj) =
{

Mıj(x) if ı < j
1−Mıj(x) if ı > j

for all λı �= λj ∈ L.
Given a preference relation Rx for an instance x, the next question is how

to derive an associated ranking τx. This question is non-trivial, since a relation
Rx does not always suggest a unique ranking in an unequivocal way. In fact, the
problem of inducing a ranking from a (valued) preference relation has received a
lot of attention in several research fields, e.g., in fuzzy preference modeling and
(multi-attribute) decision making [4]. Besides, in the context of our application,
it turned out that the ranking procedure used to transform a relation Rx into a
ranking τx is closely related to the definition of the quality of a prediction and,
hence, to the intended purpose of a ranking. In other words, risk minimization
with respect to different loss functions might call for different ranking procedures.

4 Ranking Error Versus Position Error

In Section 2, we introduced the problem of predicting a ranking of class labels in
a formal way, but did not discuss the semantics of a predicted ranking. In fact,
one should realize that such a ranking can serve different purposes. Needless to
say, this point is of major importance for the evaluation of a predicted ranking.

In this paper, we are especially interested in two types of practically moti-
vated performance tasks. In the first setting, which is probably the most obvious
one, the complete ranking is relevant, i.e., the positions assigned to all of the
labels. As an example, consider the problem to order the questions in a ques-
tionnaire. Here, the goal is to maximize a particular respondents’ motivation
to complete the questionnaire. Another example is learning to predict the best
order in which to supply a certain set of stores (route of a truck), depending on
external conditions like traffic, weather, purchase order quantities, etc.

In case the complete ranking is relevant, the quality of a prediction should
be quantified in terms of a distance measure between the predicted and the true
ranking. We shall refer to any deviation of the predicted ranking from the true
one as a ranking error.

To motivate the second setting, consider a fault detection problem which
consists of identifying the cause for the malfunctioning of a technical system.
If it turned out that a predicted cause is not correct, an alternative candidate
must be tried. A ranking then suggests a simple (trial and error) search process,
which successively tests the candidates, one by one, until the correct cause is
found [1]. In this scenario, where labels correspond to causes, the existence of a
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single target label (instead of a target ranking) is assumed. Hence, an obvious
measure of the quality of a predicted ranking is the number of futile trials made
before that label is found. A deviation of the predicted target label’s position
from the top-rank will subsequently be called a position error.

The main difference between the two types of error is that an evaluation of
a full ranking (ranking error) attends to all positions. For example, if the two
highest ranks of the true ranking are swapped in the predicted ranking, this is
as bad as the swapping of the two lowest ranks.

Note that the position error is closely related to the conventional (classifica-
tion) error, i.e., the incorrect prediction of the top label. In both cases, we are
eventually concerned with predictions for the top rank. In our setting, however,
we not only try to maximize the number of correct predictions. Instead, in the
case of a misclassification, we also look at the position of the target label. The
higher this position, the better the prediction. In other words, we differentiate
between “bad” predictions in a more subtle way.

Even though we shall not deepen this point in the current paper, we note
that the idea of a position error can of course be generalized to multi-label
(classification) problems which assume several instead of a single target label for
each instance. There are different options for such a generalization. For example,
it makes a great difference whether one is interested in having at least one of
the targets on a top rank (e.g., since one solution is enough), or whether all of
them should have high positions (resp. none of them should be ranked low). An
application of the latter type has recently been studied in [3].

5 Minimizing the Ranking Error

The quality of a model M (induced by a learning algorithm) is commonly ex-
pressed in terms of its expected loss or risk

E (D(y,M(x))) , (3)

where D(·) is a loss or distance function, M(x) denotes the prediction made
by the learning algorithm for the instance x, and y is the true outcome. The
expectation E is taken over X ×Y, where Y is the output space (e.g., the set L
of classes in classification).2

The simplest loss function, commonly employed in classification, is the 0/1–
loss: D(y, ŷ) = 0 for y = ŷ and = 1 otherwise. Given this loss function, the
optimal (Bayes) prediction for a specific instance x is simply the most probable
outcome y. In the classification setting, for example, where Y = L, this estimate
is the class with maximum posterior probability P(λı |x).

A straightforward generalization of this principle to the ranking setting,
where Y is the class of rankings over L, leads to the prediction

τ̂x = arg max
τ∈Sm

P(τ |x),

2 The existence of a probability measure over X × Y must of course be assumed.



Learning Label Preferences: Ranking Error Versus Position Error 185

where P(τ |x) is the conditional probability of a ranking (permutation) given an
instance x, and Sm denotes the class of all permutations of {1 . . .m}.

Obviously, the simple 0/1–distance function is a rather crude evaluation mea-
sure for rankings, because it assigns the same loss to all rankings that differ from
the correct ranking, and does not take into account that different rankings can
have different degrees of similarity. For this reason, a number of more sophisti-
cated distance measures for rankings have been proposed in literature.

In general, if D(τ, τ ′) is a measure of the distance between two rankings τ
and τ ′, the risk minimizing prediction is

τ̂x = arg min
τ∈Sk

∑
τ∈Sm

D(τ, τ ′) · P(τ ′ |x). (4)

A frequently used distance measure is the sum of squared rank distances

D(τ ′, τ) df=
m∑

ı=1

( τ ′(ı)− τ(ı) )2 (5)

which is equivalent to the Spearman rank correlation3

1− 6D(τ, τ ′)
m(m2 − 1)

∈ [−1, 1].

RPC can yield a risk minimizing prediction for this loss function, if the predic-
tions of the binary classifiers are combined by weighted voting, i.e., the alterna-
tives λı are evaluated by means of the sum of weighted votes

S(λı) =
∑

λj 	=λı

Rx(λı, λj) (6)

and ranked according to these evaluations:

λτx(1)  x λτx(2)  x . . .  x λτx(m) (7)

with τx satisfying S(λτx(ı)) ≥ S(λτx(ı+1)), ı = 1 . . .m − 1.4 This is a particular
type of “ranking by scoring” strategy; here, the scoring function is given by (6).

Formally, we can show the following result, which provides a theoretical jus-
tification for the voting procedure (6). The proof of this theorem can be found
in Appendix A.

Theorem 1. Using the “ranking by scoring” procedure outlined above, RPC is
a risk minimizer with respect to (5) as a loss function. More precisely, with

Mıj(x) = P(λı  x λj) =
∑

τ : τ(j)<τ(ı)

P(τ |x),

the expected distance
3 This is, of course, a similarity rather than a distance measure.
4 Ties can be broken arbitrarily.
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E(τ ′) =
∑

τ

p(τ) ·D(τ ′, τ) =
∑

τ

p(τ)
m∑

ı=1

(τ ′(ı)− τ(ı))2

becomes minimal by choosing τ ′ such that τ ′(ı) ≤ τ ′(j) whenever S(λı) ≥ S(λj),
where S(λı) is given by (6).

6 Minimizing the Position Error

Despite the fact that (5) is a reasonable loss function for rankings, it is not always
appropriate. In particular, it assumes that the complete ranking is relevant for
the quality of a prediction, which is not the case in connection with the fault
detection scenario outlined in the introduction. Here, only the prefix of a ranking
τx is considered, up to the position of the target label λx, while the rest of the
prediction is of no importance (since the search procedure stops if λx has been
found). In this case, the loss function only depends on the rank of λx.

More specifically, we define the position error as τ−1
x (λx), i.e., by the position

of the target label λx in the ranking τx. To compare the quality of rankings of
different problems, it is useful to normalize the position error for the number of
labels. This normalized position error is defined as

τ−1
x (λx)− 1

m− 1
∈ {0, 1/(m− 1) . . . 1}, (8)

What kind of ranking procedure should be used in order to minimize the
risk of a predicted ranking with respect to the position error as a loss function?
Intuitively, the candidate labels λ should now be ordered according to their
probability P(λ = λx) of being the target label. Especially, the top-rank (first
position) should be given to the label λ� for which this probability is maximal.
Regarding the second rank, recall the fault detection metaphor, where the second
hypothesis for the cause of the fault is only tested in case the first one turned
out to be wrong. In this setting, the second rank should not simply be given to
the label with the second highest probability according to the measure P1(·) =
P(·). Instead, it must be assigned to the label that maximizes the conditional
probability P2(·) = P(· |λx �= λ�), i.e., the probability of being the target label
given that the first proposal was incorrect.

At first sight, passing from P1(·) to P2(·) might appear meaningless from
a ranking point of view, since standard probabilistic conditioning (dividing all
probabilities by 1− P(λ�) and setting P(λ�) = 0) does not change the order of
the remaining labels. One should realize, however, that standard conditioning
is not an incontestable updating procedure in our context, simply because P1(·)
is not a “true” measure over the class labels. Rather, it is only an estimated
measure coming from a learning algorithm. Thus, it seems sensible to perform
“conditioning” not on the measure itself, but rather on the learner that pro-
duced the measure. By this we mean retraining the learner on the original data
without the λ�-examples, something that could be paraphrased as “empirical
conditioning”. To emphasize that this type of conditioning depends on the data
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D and the model assumptions (hypothesis space) H and, moreover, that it con-
cerns an estimated (“hat”) probability, the conditional measure P2(·) could be
written more explicitly as

P2(·) = P̂(· |λx �= λ�,D,M).

To motivate the idea of empirical conditioning, suppose that the estimated prob-
abilities come from a classification tree. Of course, the original tree trained with
the complete data will be highly influenced by λ�-examples, and the proba-
bilities assigned by that tree to the alternatives λ �= λ� might be inaccurate.
Retraining a classification tree on a reduced set of data might then lead to more
accurate probabilities for the remaining labels, especially since the multi-class
problem to be solved has now become simpler (as it involves fewer classes).

A problem of the above “ranking through iterated choice” procedure, that
is, the successive selection of alternatives by estimating top-labels from (con-
ditional) probability measures P1(·), P2(·) . . . Pm(·), concerns its computational
complexity. In fact, realizing empirical conditioning by retraining a standard
multi-class classifier comes down to training such a classifier for (potentially)
each subset of the label set L. Fortunately, empirical conditioning can be imple-
mented much more efficiently by our pairwise approach, as will now be shown.

6.1 Implementing “Ranking Through Iterated Choice” by RPC

What kind of aggregation procedure is suitable for deriving an estimated proba-
bility distribution from pairwise classifications resp. valued preference R(λı, λj)?
Let Eı denote the event that λı = λx, i.e., that λı is the target label, and let
Eıj = Eı ∨ Ej (either λı or λj is the target). Then,

(m− 1)P(Eı) =
∑
j 	=ı

P(Eı) =
∑
j 	=ı

P(Eı |Eıj)P(Eıj), (9)

where m is the number of labels. Considering the (pairwise) estimates R(λı, λj)
as conditional probabilities P(Eı |Eıj), we obtain a system of linear equations
for the (unconditional) probabilities P(Eı):

P(Eı) =
1

m− 1

∑
j 	=ı

R(λı, λj)P(Eıj)

=
1

m− 1

∑
j 	=ı

R(λı, λj)(P(Eı) + P(Ej)) (10)

In conjunction with the constraint
∑m

ı=1 P(Eı) = 1, this system has a unique
solution provided that R(λı, λj) > 0 for all 1 ≤ ı, j ≤ m [12].

Based on this result, the “ranking through iterated choice” procedure sug-
gested above can be realized as follows: First, the system of linear equations
(10) is solved and the label λı with maximal probability P(Eı) is chosen as the
top-label λ�. This label is then removed, i.e., the corresponding row and column
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of the relation R is deleted. To find the second best label, the same procedure
is then applied to the reduced relation, i.e., by solving a system of m− 1 linear
equations. This process is iterated until a full ranking has been constructed.

Lemma 1. In each iteration of the above “ranking through iterated choice” pro-
cedure, the correct conditional probabilities are derived.

Proof. Without loss of generality, assume that λm has obtained the highest rank
in the first iteration. The information that this label is incorrect, λm �= λx, is
equivalent to P(Em) = 0, P(Em |Ejm) = 0, and P(Ej |Ejm) = 1 for all j �= m.
Incorporating these probabilities in (10) yields, for all ı < m,

(m− 1)P(Eı) =
∑

j=1...m,j 	=ı

P(Eı |Eıj)P(Eıj)

=
∑

j=1..m−1,j 	=ı

P(Eı |Eıj)P(Eıj) + 1P(Eım)

and as P(Eım) = P(Eı) + P(Em) = P(Eı),

(m− 2)P(Eı) =
∑

j=1..m−1,j 	=ı

P(Eı |Eıj)P(Eıj).

Obviously, the last equation is equivalent to (10) for a system with m−1 labels,
namely the system obtained by removing the m-th row and column of R. �

As can be seen, the pairwise approach is particularly well-suited for the “rank-
ing through iterated choice” procedure, as it allows for an easy incorporation of
the information coming from futile trials. One just has to solve the system of
linear equations (10) once more, with some of the pairwise probabilities set to 0
resp. 1 (or, equivalently, solve a smaller system of equations). No retraining of
any classifier is required!

Theorem 2. By ranking the alternative labels according to their (conditional)
probabilities of being the top-label, RPC becomes a risk minimizer with respect
to the position error (8) as a loss function. That is, the expected loss

E(τ) =
1

m− 1

m∑
ı=1

(ı− 1) · P
(
λτ(ı) = λx

)
becomes minimal for the ranking predicted by RPC.

Proof. This result follows almost by definition. In fact, note that we have

E(τ) ∝
m∑

ı=1

P
(
λx �∈ {λτ(1) . . . λτ(ı)}

)
,

and that, for each position ı, the probability to excess this position when search-
ing for the target λx is obviously minimized when ordering the labels according
to their (conditional) probabilities. �
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7 Concluding Remarks

By showing that RPC is a risk minimizer with respect to particular loss func-
tions for rankings, this paper provides a sound theoretical foundation for our
method of ranking by pairwise comparison. The interesting point is that RPC
can easily be customized to different performance tasks, simply by changing the
ranking procedure employed in the second step of the method. By modifying
this procedure, the goal of RPC can be changed from minimizing the expected
distance between the predicted and the true ranking to minimizing the expected
number of futile trials in searching a target label. This can be done without
retraining of the classifier ensemble.

Apart from these theoretical results, the practical validation of our method is
of course an important issue. Regarding the ranking error, RPC has already been
investigated empirically in [7,10], whereas empirical studies concerning the posi-
tion error constitute a topic of still ongoing work. In this context, it is particularly
interesting to compare the results obtained by the “ranking through iterated
choice” procedure with predictions from standard (“non-iterated”) probabilistic
classification.

References
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10. E. Hüllermeier and J. Fürnkranz. Comparison of ranking procedures in pairwise
preference learning. In Proc. 10th Int. Conf. Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems (IPMU-04), Perugia, 2004.

11. I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine
learning for interdependent and structured output spaces. In Proc. 21st Int. Conf.
on Machine Learning (ICML–2004), pp. 823–830, Banff, Alberta, Canada, 2004.

12. T.F. Wu, C.J. Lin, and R.C. Weng. Probability estimates for multi-class classifi-
cation by pairwise coupling. J. of Machine Learning Research, 5:975–1005, 2004.
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A Proof of Theorem 1

Lemma 1: Let sı, ı = 1 . . .m, be real numbers such that 0 ≤ s1 ≤ s2 . . . ≤ sm.
Then, for all permutations τ ∈ Sm,

m∑
ı=1

(ı− sı)2 ≤
m∑

ı=1

(ı− sτ(ı))2 (11)

Proof. We have
m∑

ı=1

(ı− sτ(ı))2 =
m∑

ı=1

(ı− sı + sı − sτ(ı))2

=
m∑

ı=1

(ı− sı)2 + 2
m∑

ı=1

(ı− sı)(sı − sτ(ı)) +
m∑

ı=1

(sı − sτ(ı))2.

Expanding the last equation and exploiting that
∑m

ı=1 s2
ı =

∑m
ı=1 s2

τ(ı) yields

m∑
ı=1

(ı− sτ(ı))2 =
m∑

ı=1

(ı− sı)2 + 2
m∑

ı=1

ı sı − 2
m∑

ı=1

ı sτ(ı).

On the right-hand side of the last equation, only the last term
∑m

ı=1 ı sτ(ı) de-
pends on τ . Since sı ≤ sj for ı < j, this term becomes maximal for τ(ı) = ı.
Therefore, the right-hand side is larger than or equal to

∑m
ı=1(ı − sı)2, which

proves the lemma. �

Lemma 2. Let P(· |x) be a probability distribution over Sm and let p(τ) df=
P(τ |x). Moreover, let

sı
df= m−

∑
j 	=ı

P(λı  x λj) (12)

with
P(λı  x λj) =

∑
τ : τ(j)<τ(ı)

P(τ |x). (13)

Then, sı =
∑

j 	=ı p(τ) τ(ı).

Proof. We have

sı = m−
∑
j 	=ı

P(λı  x λj) = 1 +
∑
j 	=ı

(1 − P(λı  x λj))

= 1 +
∑
j 	=ı

P(λj  x λı) = 1 +
∑
j 	=ı

∑
τ : τ(j)<τ(ı)

p(τ)

= 1 +
∑

τ

p(τ)
∑
j 	=ı

{
1 if τ(ı) > τ(j)
0 if τ(ı) < τ(j)

= 1 +
∑

τ

p(τ)(τ(ı) − 1) =
∑

τ

p(τ) τ(ı)
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Under the assumption that the base learners’ estimates correspond exactly
to the probabilities of pairwise preference, i.e.,

Rx(λı, λj) = Mıj(x) = P(λı  x λj), (14)

sı ≤ sj is equivalent to S(λı) ≥ S(λj). Thus, ranking the alternatives according
to S(λı) (in decreasing order) is equivalent to ranking them according to sı (in
increasing order).

Theorem 1. The expected distance

E(τ ′) =
∑

τ

p(τ) ·D(τ ′, τ) =
∑

τ

p(τ)
m∑

ı=1

(τ ′(ı)− τ(ı))2

becomes minimal by choosing τ ′ such that τ ′(ı) ≤ τ ′(j) whenever sı ≤ sj, with
sı given by (12).

Proof. We have

E(τ ′
x) =

∑
τ

p(τ)
m∑

ı=1

(τ ′
x(ı)− τ(ı))2

=
m∑

ı=1

∑
τ

p(τ)(τ ′
x(ı)− τ(ı))2

=
m∑

ı=1

∑
τ

p(τ)(τ ′
x(ı)− sı + sı − τ(ı))2

=
m∑

ı=1

∑
τ

p(τ)
[
(τ(ı) − sı)2 − 2(τ(ı)− sı)(sı − τ ′(ı))

+(sı − τ ′(ı))2
]

=
m∑

ı=1

[∑
τ

p(τ)(τ(ı) − sı)2 − 2(sı − τ ′(ı)) ·

·
∑

τ

p(τ)(τ(ı) − sı) +
∑

τ

p(τ)(sı − τ ′(ı))2
]

In the last equation, the mid-term on the right-hand side becomes 0 according
to Lemma 2. Moreover, the last term obviously simplifies to (sı − τ ′(ı)), and
the first term is a constant c =

∑
τ p(τ)(τ(ı) − sı)2 that does not depend on τ ′.

Thus, we obtain E(τ ′
x) = c +

∑m
ı=1(sı − τ ′(ı))2 and the theorem follows from

Lemma 1. �
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Abstract. In this paper we describe a data analysis toolkit constructed
to meet the needs of data discovery in large scale spatio-temporal data.
The toolkit is a C library of building blocks that can be assembled into
data analyses. Our goals were to build a toolkit which is easy to use, is
applicable to a wide variety of science domains, supports feature-based
analysis, and minimizes low-level processing. The discussion centers on
the design of a data model and interface that best supports these goals
and we present three usage examples.

1 Introduction

In the past decade we have witnessed a mad race to create really big machines to
run really big simulations [5]. Unfortunately, the creation of data analysis tools
to handle really big data has lagged behind, particularly tools that support data
discovery.

Data discovery is the iterative process of exploring data to extract informa-
tion. It is by nature a human driven process, where an analyst uses a combination
of data analysis, visualization, and other post-processing tools. Data analysis is
an especially important tool when quantitative information is desired. As data
increases in size and complexity, current methods (which depend on analysts
examining all of the data and moving data between tools) become more cumber-
some, slow, and error-prone. Better tools need to be developed that automate
as much low-leveling processing as possible, yet still allow the analyst the free-
dom to flexibly compose their own chains of analysis. Further, a key feature of
data analysis in large data lacking in most tools is the native ability to identify,
manipulate and analyze small regions of interest (ROIs).

Our proposed solution is to provide the analyst with a toolkit of data analysis
building blocks which can be used to assemble analyses for data discovery. In-
stead of worrying about low-level details, the analyst can compose data analyses
at a higher level. We were not satisfied with existing tools (see Sec. 2) and so
built our own as a library of C routines. Our focus was on developing an inter-
face that better supports data analysis and discovery in large data, rather than
performance, which can be improved later. We present here the basic structure
of the library and evaluate whether we met our goals:
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1. Minimize low-level processing.
2. Support feature-based analysis (where a feature is a region of interest).
3. Provide a variety of building blocks and make them easy to couple together.
4. Provide an ‘elegant’ interface – simple and easy to use, but still powerful.
5. Be general – applicable to a variety of science domains.

2 Background

The type of data that we address represents physically based phenomena, usu-
ally varying with time (i.e. spatio-temporal data). This type of data can be
experimentally measured or created by simulation, and is generally represented
as meshes with associated variable fields. A common mode of analysis in such
data is to focus on regions of interest or features. Features are coherent struc-
tures that persist over some period of time. Some examples include vertex tubes
in fluid dynamical systems, failure zones in mechanical systems, and hot spots
in chemical systems. Although feature-based analysis is a common process for
analysis, it is usually not supported by data analysis tools. Analysts typically
hand-select regions of interest and export them for further analysis.

Our original plan was to build support for feature-based analysis into an ex-
isting data analysis system, but we could not find a satisfactory candidate and
so ended up building our own: the Feature Characterization Library (FCLib).
During evaluation we concluded that data access methods optimized for simula-
tion are not optimized for post-processing [1]. For example, during a simulation
it is necessary to write all variable fields at a single time step, but during analysis
one usually wants access to a single variable field over all time steps.

We evaluated three potential systems in detail and found them unsatisfactory
for the following reasons: TeraScale’s Parallel Mesh Object (PMO) [4] because
the data interface was focused on simulation; Sandia’s internal Data Object
Library (DOL) because its interface was too complicated; and Kitware’s visu-
alization toolkit (VTK) [3] because it does not inherently support time-varying
data. In addition we felt that in all cases there was ample room to improve the
interfaces for data discovery.

3 The Data Model

Because all data analyses must interact with the data, the data model and its
interface strongly influence our usability goals for the toolkit. Our data model
was evolved rather than designed; we started with a very simple model and
adapted it as we built in the desired analysis capabilities. The data model design
was also influenced by our experience with many systems including the Sets and
Fields data model (SAF) [2] and those mentioned in Sec. 2. In this section we
will first summarize the basic structure of the data model and then discuss how
and why our model differs from the norm.
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3.1 The Primary Data Objects

The data model consists of five core data objects, which are hierarchically orga-
nized as shown in Fig. 1.

Dataset

MeshSequence

Subset Variable

Fig. 1. The five primary data objects in the data model. The arrows indicate ownership
relations (i.e. datasets own meshes and meshes own subsets).

1. Datasets. A dataset is a container for all data that correspond to a single
simulation or experiment. A dataset can own multiple sequences and meshes.

2. Sequences. The data fields in a dataset often vary over some parameter
space, most commonly time. A sequence describes the extent of such a pa-
rameter space (e.g. how many time steps and the time values at each step).
A dataset can have multiple sequences but typically has only one.

3. Meshes. Meshes represent the spatial organization of the data. Each mesh is
described by a set of vertices and a set of elements, which describe the mesh’s
geometry (spatial location) and topology, respectively. The topology of the
edges and faces of the mesh are also available to the interface. Vertices, edges,
faces and elements are all different types of mesh entities. The interface also
has a special mesh entity type called whole which is used to represent the
entire mesh.

4. Subsets. A subset describes an arbitrary collection of mesh entities in its
parent mesh (e.g. the set of faces that describes the outside skin of the mesh).

5. Variables.
(a) A variable contains a single data field associated with its parent mesh.

The data field will be over all of one of the mesh entity types, e.g. tem-
perature on the elements, or a velocity vector on the vertices.

(b) Data fields that vary over the sequence parameter space are represented
by an ordered array of variable objects, one for each step (e.g. a temper-
ature variable for each time step of a time-varying temperature field).
This ordered array of variables is called a sequence variable.

3.2 Design Discussion

Some of our most important design decisions were:
1. Have a minimal set of abstract data objects.
2. Subsets are full-fledged data objects.
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3. Time-varying data is available per variable instead of per step.
4. Meshes have ownership of data (instead of global ownership).
5. Data objects have parent and child pointers.

The first design decision keeps the data model interface general yet small. The
second provides support for feature-based analysis. The third and fourth design
decisions support post-processing data access methods. And the last helps to
keep the interface simple.

The break down of unstructured data into meshes and variables is nothing
new (although it is not as common to support sequences and subsets as sepa-
rate, full-fledged data objects). What we have done differently is to have a very
small set of general data objects, and to move the handling of differences in the
specifics of these data objects deeper into the interface. For example, many data
models have separate types of variables depending on what mesh entity they
are associated with, e.g. nodal variables and element variables. Instead, FCLib
has a single variable object which you query for its type only when you need
to know it. This allows us to design a smaller and simpler interface for data
analysis.

We introduced the subset data object to represent regions of interest and
features. It also turns out that being able to manipulate arbitrary subsets is
extremely handy for supporting various characterization building blocks and
creating data analyses. It is common for simulation codes to have specialized
subsets for boundary conditions and other specifications, but neither simulation
nor data analysis codes usually support arbitrary subsets.

One very difficult decision we faced was how to represent variable fields with
a minimal number of data objects and still support both time-varying and non-
time-varying variables. We choose to have the variable object encapsulate a
single time step of variable data so that non-time-varying variables were a single
variable and time-varying variables were a sequence of variables. An alternative
would be to have a variable object encapsulate all time steps. This second option
aligns better with our design goal of a single data object; but it ends up cluttering
the interface for most variable routines because many operate per time step and
the user would have to pass additional information about which time step is of
interest. With the first choice we have some duplication of a few routines that
need to handle time-varying and non-time-varying variables slightly differently,
but overall the data model and data analysis interfaces are simpler.

As mentioned in Sec. 2, post-processing data access differs in a number of
ways from simulation data access. For example, the analyst may only need to
examine a few of the meshes in the dataset, or will examine the meshes one at
a time in different ways. FCLib supports this by not having global subsets and
variables. Instead, we choose to have subsets and variables be owned by meshes.
This means, for example, that what one usually thinks of a single variable is
split across meshes, e.g. there can be a temperature variable on each mesh and
the temperature of the entire dataset is the collection of all of these variables.
This design choice does make global operations over all meshes slightly more
complicated, especially for datasets that have meshes that share vertices — a
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Table 1. Partial listing of FCLib building blocks

Mesh Topology
Get mesh entity children E.g. get vertices that make up an element
Get mesh entity parents E.g. get elements that contain a vertex
Get mesh entity neighbors Get adjacent entities within a mesh
Segment Separate mesh or subset into connected components
Get skin Get the outside edges or faces of a mesh or subset

Mesh Geometry (Spatial)
Find entities Get mesh entities within bounding box or sphere
Get sizes Determine edge lengths, surface areas, region volumes
Bounding box routines Determine axis-aligned boundary of meshes and sub-

set, can also combine and test for overlap of BBs
Centroid routines Find center of mass of meshes and subsets

Variable
Variable math Create new variables as mathematic combinations of

current variables (+, *, sqrt(), pow(), etc.)
Statistics routines Determine min/max/mean/st.dev./sum
Decompose vectors Decompose into normal and tangent components

against an arbitrary vector
Kernel smooth variables Replace variable field values with local averages
Threshold Find subset of entities that meet threshold criteria

Subsets
Set operations Create new subsets using AND, OR, or XOR
Feature tracking Track subsets over time (see Sec. 5.1)

naive global operation may double count those vertices. Another way that post-
processing data access differs from simulation is that the analyst will access all
time steps of a single variable while simulations access all variables at a single
time step. Our data model favors the post-processing data access method, but
does not preclude other access methods.

Another key design in our data objects is that they can be queried for their
parent and child data objects. This helps to keep the interface simple because
we can pass just one type of data object to a routine, but the routine can still
access the object’s parents or children if more information is needed.

4 Analysis Building Blocks

The bulk of the library that is not the data model is the routines for constructing
data analyses. The data model and the analysis building blocks were co-evolved
to allow easy chaining of building blocks into analyses, and much of the previous
data model discussion applies here as well. The same philosophy of hiding details
about the data objects applies and routines generally “do the right thing” for
different types of an object.

A listing of some of the available building blocks and analyses is shown in
Table 1. Building blocks range from simple helper routines like “get the Euclidean
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distance between two points” (not shown in table) to complete analyses like
“determine spot weld breakage factors” (see Sec. 5.2). Because the library already
supports a wide variety of building blocks, we are confident that new building
blocks can be easily incorporated.

5 Data Analysis Examples

In this section we present three examples of using FCLib. The first is a simple
feature-based analysis example intended to demonstrate the ‘elegance’ of the
interface. The other two are real life examples and demonstrate using FCLib as
an analysis development environment.

5.1 Feature Tracking and Feature-Based Analysis

This example is intended to show how easy it is to do feature-based analysis
using FCLib. The problem is to find hot spots in a dataset and to report the
maximum temperature of each hot spot. The complete code to accomplish this is
shown in Fig. 2. For clarity, error checking and cleaning up of allocated memory
has been left out. The procedure can be divided into three major steps: 1) setup
(get handles to the appropriate data objects); 2) identify and track features; and
3) analyze features. Steps 2 and 3 are highlighted with boxes in the figure.

In FCLib, feature tracking consists of identifying regions of interest (ROIs) in
each time step and then matching these regions up across time steps to create the
features. In this example, ROIs are found by first finding all mesh entities that
have a temperature greater than 30 using the library’s thresholding routine,
and then dividing these entities up into separate regions using the library’s
segmentation routine. Both the intermediate threshold subset and the final ROIs
can be stored as subset data objects. As ROIs are found in each time step,
they are passed to a feature tracking routine which decides how the ROIs are
assembled into features. The default tracking algorithm decides this entirely on
spatial overlap (i.e. if an ROI from the current time step occurs in the same
spatial location as an ROI in a previous time step, they are the same feature).
There are a variety of tracking algorithms and the interface permits the user to
provide their own.

After feature tracking is performed, information about the system of features
is available from the feature group object. The group knows which ROIs make
up the features, and how features may split and merge to form new features.
The feature graph shown in Fig. 3(a) (produced at line 26 in Fig. 2) represents
how the hot spots interact. At t0 there are two features. At t1, Feature 0 splits
into Features 2 and 3. At the next time step, Features 1 and 2 merge into Fea-
ture 4. Feature 3 ceases to exist at t4. Etc. Images of the features are provided
in Fig. 4.

The feature group is also used to get the information needed to do feature-
based analysis. The last part of the code in Fig. 3(b) iterates over each feature
and uses a subset aware statistics routine to find the maximum temperature of
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// This programs finds features--defined as regions where the variable
// is greater than 30--and then writes out the feature graph and prints
// the maximum value of the variable within the features.
01 #include <fc.h>
02
03 int main() {
04 int i, j, numStep, numROI, numFeature, *stepIDs;
06 FC_Dataset dataset;
07 FC_Mesh mesh;
08 FC_Variable *seqVar;
09 FC_Subset subset, *ROIs;
10 FC_FeatureGroup *featureGroup; // feature container
11 double min, max;
12
13 // initialize library and get data object handles
14 fc_initLibrary();
15 fc_loadDataset("gaussians.saf", &dataset);
16 fc_getMeshByName(datatset, "grid", &mesh);
17 fc_getSeqVariableByName(mesh, "temperature", &numStep, &seqVar);
18
19 // find and track features
20 fc_createFeatureGroup(&featureGroup);
21 for (i = 0; i < numStep; i++) {
22 fc_createThresholdSubset(seqVar[i], ">", 30, &subset);
23 fc_segment(subset, 0, &numROI, &ROIs);
24 fc_trackStep(i, numROI, ROIs, featureGroup);
25 }
26 fc_writeFeatureGraph(featureGroup, "graph.dot");

27
28 // report statistics of features

29 fc_featureGroup_getNumFeature(featureGroup, &numFeature);
30 for (i = 0; i < numFeature; i++) {
31 printf("Feature %d:\n", i);
32 fc_getFeatureROIs(featureGroup, i, &numROI, &stepIDs, &ROIs);
33 for (j = 0; j < numROI; j++) {
34 fc_getVariableSubsetMinMax(seqVar[stepIDs[j]], ROIs[i],
35 &min, &max);
36 printf(" time = %2d: max = %5.1f\n", stepIDs[j], max);
37 }
38 }
39
40 // clean up and exit
41 fc_finalLibrary();
42 exit(0);
43 }

Fig. 2. A complete program for performing feature tracking and report feature statis-
tics. The first box highlights the core code for feature tracking and the second box the
core code for feature analysis.
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(a) Feature graph

Feature 0:
t = 0 : maxT = 80.2

Feature 1:
t = 0 : maxT = 50.2
t = 1 : maxT = 58.3

Feature 2:
t = 1 : maxT = 54.5

Feature 3:
t = 1 : maxT = 65.3
t = 2 : maxT = 50.3
t = 3 : maxT = 35.3

Feature 4:
t = 2 : maxT = 66.3
t = 3 : maxT = 74.3
t = 4 : maxT = 82.4
t = 5 : maxT = 90.4

Feature 5:
t = 4 : maxT = 34.4
t = 5 : maxT = 40.4

Feature 6:
t = 6 : maxT = 98.5
t = 7 : maxT = 106.5
t = 8 : maxT = 114.5
t = 9 : maxT = 122.6
t = 10 : maxT = 130.6

(b) Feature statistics

Fig. 3. Results of the feature tracking program in Fig. 2. Note that raw feature graph
code was produced at line 26 and was post-processed with Graphviz’s dot program
to produce the graphic shown in (a). In (a), time runs from top to bottom; a labeled
circle indicates the start of a feature (gray means no parents); and a thick black line
indicates continuation of a feature.

the feature for each time step it exists. The results are shown in Fig. 3. After
examining the results, feature tracking can let us conclude that most hot spots
increased in temperature with time, except for Feature 3. The program can easily
be expended to further analyze features by adding other functions, like getting
the size of the ROI or statistics of other variables, into the analysis loop.

5.2 Evaluating Spot Weld Breakage

One of our first designs was to analyze spot weld breakage in mechanics simula-
tions. The analyst’s original method was to plot the force variable on each spot
weld, and then to determine by visual inspection if and when the force dropped
to zero, indicating that the spot weld had failed.



200 W.S. Koegler and W.P. Kegelmeyer

Fig. 4. Selected time steps of the dataset used in the feature tracking program in Fig. 2.
The temperature variable was modeled with four Gaussians growing and shrinking at
different rates. A contour line is drawn at 30 to visually identify the features corre-
sponding to the results in Fig. 3.

In our first iteration of tool development we made two major improvements
to this method. First, we completely automated the identification of failed spot
welds and the collection and reporting of the results. We created a command
line tool that took the input file used to run the simulation in addition to the
resulting dataset, and used the input file to determine which subsets were spot
welds and how to group spot welds by their specified parameters. The second
improvement we made was to resolve the force vector into normal and tangential
components relative to the instantaneous plane of the spot weld surface and to
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use the normal force for the calculation. This just consists of a library call to
find the surface normal of the spot weld subset and then another library call to
decompose the force vector into components relative to the surface normal. In
the original analysis, the analysts used whichever axis-aligned component of the
force vector was closest to normal to the starting orientation of the spot weld
surface. The FCLib analysis was more correct and could handle situations where
the spot weld surface changed orientation during the run.

In the second iteration of the tool, the analysts took advantage of our ability
to easily access and use geometry, and asked for a more correct analysis of
the spot welds. Instead of watching the force, which was a result of spot weld
breakage, we reimplemented the same spot weld breakage calculation that the
simulation code used to decide whether spot welds failed. This factor was based
on the displacement of a spot weld’s two attachment points and depends on
resolving the displacement into normal and tangential components with reference
to the plane of the spot weld. Besides giving more correct results for when spot
welds failed, the spot weld failure factor can be used to judge how close spot
welds are to failing. The analysts were extremely pleased with this additional
measure that allowed them to more quantitatively assess their results.

2614 total lines of code were written for this analysis, including comments,
a parser for the simulation input file which can be reused for other analyses,
command-line argument handling, and error handling. The number of lines
of core code for the subroutine that does each spot weld calculation was less
than 100.

5.3 Developing a Gap Analysis

Often analysts don’t know exactly how to analyze what they looking for and they
need an environment where they can assemble and tweak analyses. For example,
one of our analysts is doing mechanics simulations where a complex assembly
of parts is exposed to shocks and stresses. He wants to know where gaps form
between parts that should abut and he wants to be able to characterize these
gaps (how big, etc).

Our initial iteration for this analysis is to create lines that join surfaces that
started out near each other. Our next step will be to use these lines to quantify
the gapping process. To create these gap lines, we first find surfaces that start
out adjacent to each other. This is done by skinning each part to get a subset of
all faces that are on the outside of it. Next we check the faces in pairs of skins
to see if any are adjacent and collect those into a subset of shared faces. A line
mesh is then created joining the shared surfaces. The lines are initially of zero
length; as time progress, if any of these lines gets a non-zero length, then we
know we have a gap forming. Fig. 5 shows this analysis applied to a gasket-like
ring that falls out of the lip of a can.

When we take this initial result to the analysts they are very excited and
have all sorts of ideas about what to do next. The analysts have lots of ideas
about potential analyses, but lack the tools that will let them easily play with
those ideas.
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(a) At time zero (left), the white gasket-like ring rests inside the lip of the can.
As time progresses (right), the ring falls out of the can (the orientation is upside
down for better viewing).

(b) The gap analysis creates line elements that join faces and vertices that were
adjacent at time zero.

Fig. 5. Visualization of the gap analysis results

6 Conclusions and Future Directions

In this paper we have presented and discussed the design of an interface for a
library for building data analysis and data discovery tools. We believe that the
key components of design for a toolkit that will be useful for analysts are that the
interface is easy to use but still generally applicable to a wide variety of science
domains. Also, the interface must support post-processing data access methods,
the most important of which are features. The toolkit itself should minimize
low-level processing and provide a variety of building blocks for creating new
data analyses.

For future work, we plan to expand the set of building blocks and to build
more specialized analyses for analysts. Most of our recent analyses have been
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for mechanics simulations but there are many interesting analysis to be done
for flow and chemical systems. We are also working on a GUI for the library to
do all prebuilt analyses and allow some chaining of building blocks into simple
analyses. Other interesting avenues of work include integration of visualization
with the library and performance issues.
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Abstract. In this paper, a method to analyze GSM network perfor-
mance on the basis of massive data records and application domain
knowledge is presented. The available measurements are divided into
variable sets describing the performance of the different subsystems of
the GSM network. Simple mathematical models for the subsystems are
proposed. The model parameters are estimated from the available data
record using quadratic programming. The parameter estimates are used
to find the input-output variable pairs involved in the most severe perfor-
mance degradations. Finally, the resulting variable pairs are visualized
as a tree-shaped cause-effect chain in order to allow user friendly analysis
of the network performance.

1 Introduction

The radio resource management in current mobile communication networks con-
centrates on maximizing the number of users for which the services can be pro-
vided with required quality, while using only limited amount of resources [7].
Once the network is designed and implemented, the goal is to find a network
configuration parameters that use the existing resources as efficiently as possible
from the user point of view. In practice, this means that a reasonable tradeoff
between the coverage and capacity of the network must be found. Good coverage
allows users to initiate services at any location with acceptable service quality,
while high capacity allows many network subscribers to use services simultane-
ously. However, improving the coverage tends to diminish the capacity and vice
versa. A good tradeoff between coverage and capacity is obtained when the num-
ber of service denials (blocking) and abnormal service interruptions (dropping)
are at the minimum, i.e the performance of the network is well optimized.

In this paper, the performance of a GSM network is analyzed based on mas-
sive data records and application domain knowledge. Next, the GSM network
infrastructure is shortly outlined. In Section 3, a hierarchical model for describing
the network performance is proposed. Then, the usage of the proposed model as
a part of an analysis process is presented. In Section 5, results of the experiments
are presented.

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 204–215, 2005.
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2 The GSM Network

A GSM network consists of high number of sites, each usually having three
base station transceivers (BTS) positioned to cover separate sectors around the
site (see Figure 1). Each BTS has one or more transceiver/receiver pairs (TRX),
each allocated on a single physical radio frequency. Base station controller (BSC)
manages the operation of several BTSs connected to it through the Abis inter-
face. A single mobile services switching center (MSC) is connected to several
BSCs through the A interface.
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Fig. 1. GSM network architecture

The performance of the mobile network is measured based on thousands of
counters, describing the numbers of the most important events over a measure-
ment period (typically one hour). In order to allow more efficient performance
monitoring, a set of high-level key performance indicators (KPIs) are derived from
the counter data. Typically, the KPIs describe the success/failure rates of the most
important events such as service blocking, service dropping and handovers.

Such indicators are traditionally used in resource management [2] and they
are well suited for performance monitoring [3,5,6], but there are several draw-
backs when they are used in fault diagnosis [4]. For example, most KPIs compute
the sum of attempts failed due to different causes and divide the result by the
number of all attempts (failed and succeeded). Therefore, the information about
the actual causes of the failures is lost. Also, the most widely used performance
indicators describe the operation of the network at the BTS level. As a result,
the performance degradations originating from interaction between several BTSs
become very difficult to observe. In many cases, however, the operation of the
close-by BTSs are highly dependent on each other. Examples of operation in
which several BTSs interact are handovers between close-by BTSs and interfer-
ence between BTSs having TRXs on the same physical frequency.

In this work, we aim to avoid the above mentioned KPI-related problems by
using a novel performance analysis approach based on counter data. Due to the
significant increase in number of variables, a knowledge-based model is used to
divide the analysis process into a set of small system identification problems in
order to keep the overall analysis process tractable.
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3 A Model for GSM Network Performance

The basic idea in the developed model is to measure performance in terms of the
number of failed operations in the network. Examples of such operations are an
attempt to allocate a signaling channel, an attempt to allocate a traffic channel
for a call, or to perform a handover between two neighboring BTSs. In order to
obtain good performance, the number of failing operations within the network
must be minimized.

3.1 Model Structure Selection

In order to make the analysis process more tractable, the set of available measure-
ments were divided into counter groups. Within a counter group, the counters are
clearly connected while the counters from different groups are independent on
each other. Therefore, the modeling problem is more easily solved by identifying
a subsystem model for each counter group separately. This phase of the model
construction process consisted of extensive literature research and repeated data
visualization, until a realistic grouping for the counters were obtained.

In Figure 2, the memberships of the variables in different counter groups
(subsystems) are shown. The subsystems tend to form a hierarchical structure
(see Figure 3), i.e the outputs of a subsystem describing some low-level phenom-
ena can be an input to a higher-level subsystem. Next, the principles used to
divide the data generating system into subsystems is described.
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Fig. 2. The data set contains 101 variables (x-axis) and 33 subsystems (y-axis). This
plot shows the set of input variables (gray) and output variables (black) that belong
to each of the subsystems.
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S 1,1

S 2,3S 2,2S 2,1 S 2,4

S 3,3S 3,2S 3,1

S 4,1S 4,2S 4,3
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S 7,2

S 5,8S 5,7 S 5,9 S 5,10
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Fig. 3. The subsystem hierarchy. The solid lines indicate that the input of the upper
level system contains outputs of the lower level system from the same BTS only. The
dashed line indicates, that the input of the upper level system contains input signals
from lower level systems of the other BTSs also.

User Perceived Quality. The main purpose of the analysis is to locate bottle-
necks in the network performance that have direct impact on the user perceived
quality. The system S1,1 describes the number of user perceived quality problems
by summing the problems from four different categories, each focusing on differ-
ent part of the transaction. This model is of type I (see Table 1), in which the
number of user perceived quality problems in the whole network is the output
variable y(t) and the set of input variables xi(t) consist of number of blocked
channel requests, the number of call setup failures, the number of calls dropped
during transaction, and the number of failed handovers, each computed over
the whole analyzed network. The contribution of each problem type into the
overall user perceived quality is described by the parameter ai, describing the
percentage of the failures of type xi to the total number of failures y.

Blocking. The number of blocked channel requests (rejects) measure the net-
works ability to satisfy the demand generated by the network users. System S2,1
with a model of type I describes how many blocked requests y(t) in the network
originate from BTS i of the network (the variable xi(t) is the number of blocked
requests in BTS i at time t). The contribution of BTS i to the number of all
blocked requests in the analyzed network is described by the parameter ai.

The system S3,1 is described by a model of type I, in which the proportions
of stand-alone dedicated control channel (SDCCH) rejects x1(t), full rate traffic
channel (FR-TCH) rejects x2(t) and half rate traffic channel (HR-TCH) rejects
x3(t) to the total number of rejected channel requests y(t) is computed. This
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Table 1. The different types of models for the subsystems

Type Systems Model Parameter estimation
S1,1, S2,1, S2,2,

I S2,3, S2,4, S3,1, y(t) =
∑

i xi(t) ai =
∑

t xi(t)/
∑

t y(t)
S3,2, S3,3

S5,7, y(t) = ax(t) + b minã
1
2 ãT X̃T X̃ã − yT X̃ã

II S5,8, = [ a b ]
[

x(t)
1

]
ã1 ∈ [0, 1]

S5,9 = ãT x̃(t) ã2 ≥ 0
S5,10, S5,11, y(t) = aT x(t) + b minã

1
2 ãT X̃T X̃ã − yT X̃ã

III S5,12, S6,9, = [ a b ]
[
x(t)
1

] ∑
i�=N ãi = 1,

S6,10, = ãT x̃(t), ãi�=N ∈ [0, 1]
S7,1 ãN ≥ 0

IV S7,2, S7,3 y(t) = aT x(t) mina
1
2aT XT Xa − yT Xa

ai ≥ 0
S4,1, S4,2, S4,3, S5,2 minA

∑
i

1
2AT

i XT XAi − yT
i XAi

V S5,3, S6,1, S6,2, S6,3 y(t) = x(t)A,
∑

i aij = 1,
S6,4, S6,5, S6,6 aij ∈ [0, 1]

y(t) = a1(c1(t) + c2(t) + c3(t))x1(t) mina
1
2aT XT Xa − yT Xa

VI S5,4, S5,5, S6,8 +a2(c1(t) + c2(t) + c3(t))x2(t)
∑

i ai = 1,
+a3(c1(t) + c2(t) + c3(t))x3(t), ai ∈ [0, 1]

model is estimated for each BTS separately. That is, the parameter ai describes
the contribution of the channel type i to the total number of blocked channel
requests.

Finally, the systems S5,7, S5,8 and S5,9 describe the above mentioned channel
type rejects due to congestion vs. other possible reasons for blocking. These sub-
systems are described by a model of type II, in which the output variable y(t) de-
scribes the number of blocked requests and the input variable x(t) = C(t)Rtot(t)
describes the proportion of channel requests assumed to have occurred during
congestion (C(t) denotes the percentage of time in congestion in time period t
and Rtot(t) is the total number of channel requests). These models include a bias
b since it is not expected that all request rejects are due to congestion, but also
other causes may exist (but measurements are not available). The minimization
of the mean square prediction error 1

T

∑
t e2(t) = 1

T

∑
t(y(t) − ŷ(t))2 with the

corresponding constraints (see Table 1) leads to a standard quadratic program-
ming problem. For more information about algorithms to solve such problems,
see [1].

Call Setup Failures. It is possible, that the user request is not served due to
problems in the resource allocation phase (call setup) of the transaction. As in
the case of service blocking, a model describing the contributions of each BTS
to the total number of call setup failures in the network is defined (model S2,2).
Basically, the call setup phase includes allocation of a signaling channel in which
the negotiation for the actual traffic channel is performed. Model S3,2 of type
II divides the call setup failures in a single BTS into SDCCH and TCH setup
failures separately.
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Both the SDCCH and TCH signaling may fail due to problems in different
network elements (or interfaces between them) being involved in the signaling
procedure. The number of SDCCH and TCH signaling failures due to problems
in different network elements are described by the models S5,10 and S5,11, re-
spectively. These models are of type III and include a bias since it is possible,
that call setup failures are caused by other reasons for which measurements are
not available. Also, an equality constraint is introduced since it is necessary to
require that a single failure in a network element causes the failure of the call
setup phase of exactly one transaction.

The most common reasons for failures during the call setup phase or actual
service are the inadequate radio signal propagation conditions (problems in radio
channel in the air interface). The failures in radio channel are usually due to bad
signal quality, i.e the transmitted data includes too many bit errors. The models
S6,9 and S6,10 of type III describe the number of SDCCH and TCH radio
channel failures due to bad signal quality vs. other reasons.

The radio signal quality is mostly affected by two components. Firstly, the
propagation environment causes attenuation to the transmitted radio signal due
to path loss, shadow fading and multipath fading. Secondly, the radio signal may
be attenuated by the other radio signals originating from other BTSs having a
TRX on the same physical frequency (interference). The purpose of the models
S7,2 and S7,3 of type IV is to compute how many bit errors in uplink (from MS
to BTS) and downlink (from BTS to MS) traffic are due to difficult propagation
conditions in the BTS’s coverage area and how many are likely the result of
interference.

Call Dropping. When the call setup phase is successfully completed, the actual
service (usually speech in GSM networks) is started. However, the service may
be abnormally interrupted (dropped) due to several reasons. The purpose of the
model S2,3 is to describe how many calls are dropped in BTS i w.r.t the number
of dropped calls in the whole analyzed network. The model is of type I and the
contributions of each BTSs to the total number of dropped calls is described by
the parameter ai (similarly to the blocking and call setup failures).

The call may be dropped due to internal failures in the network elements
or interfaces between network elements. The purpose of the model S5,12 is to
describe the contributions of the possible causes (very similar to the causes of
call setup failures). This model is of type III, having a bias since a call may
be dropped due to reasons for which measurements are not available. As in the
case of call setup failures, most of the dropped calls are expected to result from
radio channel (air interface) problems. Therefore, the same models explaining
the number of call setup failures due to bad signal quality also describe the
number of dropped calls due to radio channel problems.

Handover Failures. As in the previous cases, also the (outgoing) handover
failures (HO) are divided into network level variable and BTS level variables.
The model S2,4 is used to compute the value for parameters ai describing the
percentage of handover failures originating from BTS i. The model S3,3 divides
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the handover failures according to the handover type (within BTS HO, BSC
controlled HO and MSC controlled HO), and a model of type I is used to ob-
tain the contributions of the different handover types into the total number of
handover failures.

Both the BSC and MSC controlled outgoing handovers may fail due to prob-
lems in the source (serving) BTS or the target BTS. The serving BTS problems
can be various BSS problems (very rare in practice) and the target BTS prob-
lems may be due to lack of resources, BSS level problems (rare) or problems with
the connection (radio link) to the target BTS. Models S4,2 and S4,3 explicitly
describe the dependencies between these failures in different BTSs, i.e the cause
for failed outgoing handover may be in lack of resources or connection in any of
the BTSs around the same operation area. Model S4,1 describes the handover
failures within one BTS due to BSS problems or lack of resources. These three
models are of type V in which both the equality constraint and box constraints
for the parameters are used.

Model S5,2 describes the causes for the target BTS radio channel failures and
the model S5,3 describes the reasons for BSS problems in the target BTS that
caused the failed outgoing handover from the serving BTS. Models S5,4 and S5,5
describe the causes for the failing BSC and MSC controlled outgoing handovers
due to lack of resources in the target BTS, respectively. Similarly, model S6,8
describes the causes of the lack of resources in within BTS HO attempts. The
purpose of these three latter models is to analyze the number of HO failures
per HO type (SDCCH-SDCCH, SDCCH-TCH, TCH-TCH) due to SDCCH, HR-
TCH and FR-TCH congestion vs. other unmeasured causes. These models are of
type V I, and contain signals c1(t), c2(t) and c3(t) that describe the percentages of
SDCCH, FR-TCH and HR-TCH congestion w.r.t the length of the measurement
period (one hour in our case) and xi(t) denotes the number of HO attempts.

Since both the BSC and MSC controlled handovers may be of one of the
three above mentioned types, there are six different kinds of handovers involving
distinct target and source BTS. Models at the level six all describe the percentage
of incoming handovers originating from different source BTSs, one model per
each HO type. These models can be used to find out which close-by BTSs are
generating the major portion of the handover load to the target BTS during
handovers. Finally, the model S7,1 describes the causes for BSC controlled TCH-
TCH handovers (most typical type of handover).

4 Model Based Analysis Process

4.1 Preprocessing

In order to estimate all subsystem models, the data must be carefully prepro-
cessed. In this work, the preprocessing phase includes outlier removing, data seg-
mentation and constant variable pruning. The number of outliers (points clearly
differing from other measurements) is quite high in this type of application. Such
samples are generated during network reconfigurations or hardware breakdowns,
typically lasting only few hours. Such time points should be removed since they
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do not help in finding the major bottlenecks in network performance. In TRX
level model construction, it is also necessary to segment the data into subseg-
ments (time periods) during which the number of TRXs on a certain physical
frequency do not change.

After outlier detection and data segmentation, the model parameters can be
estimated from the data. However, in some network elements rarely suffering
from any types of failures, some or most of the signals in the model are nearly
constant. In such a case, the data is not rich enough for estimating a model.
Instead, the (nearly) constant input signals are pruned before the model is esti-
mated. In case of a constant signal being an output variable, the model is not
estimated at all.

4.2 Visualization of the Dependencies

After the data is cleaned, the models can be estimated using standard quadratic
programming techniques. After the parameters of the subsystem models have
been estimated, an item to a dependency list is generated per each input-output
variable pair. Each item in the dependency list include the strength of the de-
pendency between the input and output variable (the value of the parameter
a), a measure of model accuracy (root mean square prediction error (RMSE)
of the model), and a measure of models importance in overall network perfor-
mance analysis (the average number of failures stored in the output variable of
the input-output variable pair).

After all the models have been estimated and the properties of each input-
output variable pairs are stored in the dependency list, a tree-shaped graph
is constructed in order to analyze the cause-effect chains generating the major
performance degradations of the network. Since the number of theoretically pos-
sible dependencies is extremely large, only the most important dependencies are
included to the dependency tree.

Three criteria are used to prune uninteresting dependencies from the tree.
Firstly, the model accuracy from which the dependency originates must be at
a reasonable level. Otherwise, the analysis might be mislead by very inaccurate
models having large values for parameter a (which is forced in several models due
to the equality constraints for the parameter vector). Secondly, the output vari-
able of the dependency must be interesting enough (i.e relatively large number of
failures must be observed in the output variable). Finally, only the dependencies
that belong to the cause-effect chains contributing most to the overall network
performance degradations are included into the dependency tree. For each sub-
system, different minimum and maximum values for strength of dependency,
model accuracy and model interestingness are defined.

5 Experiments

The analyzed GSM network data contained 120 BTSs, in which 101 most im-
portant variables (counters) were measured during a two-month time period.
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Fig. 4. (a) The prediction errors (RMSE) of the subsystems. (b) The interestingness
(cost) of the subsystems.

Since the variables were divided into 33 subsystems consisting of 5 network level
systems, 24 BTS level systems, 4 TRX level systems and 143 frequency related
segments with non-changing frequency plan, we have 5 + (120× 24) + (143× 4)
models with a corresponding parameter vector a estimated using quadratic pro-
gramming.

Figure 4(a) shows the root mean square errors (RMSE) of the models. Note,
that the RMSE of the models can be interpreted as the number of user perceived
quality problems that could not be explained by the model. Models in which the
RMSE is below ∼ 50 failures can be regarded as accurate enough in order to
make useful inferences about the data. Clearly, there are lots of models that are
accurate enough, but also many models are not accurate enough to allow any
justified conclusions to be made. Also, three models seem to be very inaccurate.

Figure 4(b) shows the means of the output variables of the models. These
values measure the number of user perceived failures of the subsystems. There-
fore, it can be regarded as a measure of interestingness or importance of the
subsystem in the performance analysis.

Figures 5(a)-(d) show the pruned dependency trees in four separate cases. In
Figure 5(a), the cause-effect chains of the most significant blocking problems are
shown. Clearly, there are 4 BTSs (6,11,18,85) that suffer from lack of resources.
BTSs (6,11,18) suffer from lack of half rate traffic channels and BTS 85 suffers
from lack of full rate traffic channels. Only in BTS 6, the causes for blocking can
be said to result regularly from congestion.

In Figure 5(b), the results of the corresponding analysis for the call setup
failures are shown. Here, four BTSs (17,52,66,74) seem to suffer from call setup
failures regularly. In all these four BTSs, the failures tend originate during SD-
CCH signaling and fail due to radio link problems. In BTSs 17 and 74 the radio
link failures can be said to result from bad downlink signal quality and in BTSs
52 and 66 they are due to bad uplink signal quality.



A Knowledge-Based Model for Analyzing GSM Network Performance 213

blocking 85                   

blocking 6                    

blocking 11                    

blocking 18                    

tch rej req due lack fr 85    
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(a)
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call setup failure 52 

call setup failure 66 

call setup failure 74 
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sdcch fails 52        

sdcch fails 66        

sdcch fails 74        

sdcch fails 17         

sdcch radio fail 52   

sdcch radio fail 66   

sdcch radio fail 74   

sdcch radio fail 17    

(b)

ave busy tch 56      
ave busy tch 69      

ave busy tch 83      

ave busy tch 1       
ave busy tch 6       
ave ul sig qual 1 6  

ave ul sig qual 10 69
ave ul sig qual 11 69

ave ul sig qual 4 6  
ave ul sig qual 5 6  

ave ul sig qual 7 69 
ave ul sig qual 8 69 

ave ul sig qual 9 7  

dropped calls 69     

dropped calls 74     

dropped calls 6      

dropped calls 7      

tch radio fail 69    

tch radio fail 74    

tch radio fail 6     

tch radio fail 7     

(c)
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bsc i fail lack 6             
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bsc o handover failures 90    
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handover failures 7           

handover failures 9           

(d)

Fig. 5. The analysis of the four main components of the user perceived quality. (a)
Cause-effect chains for blocking of services, (b) call setup failures, (c) call dropping
and (d) handover failures.

Figure 5(c) shows the corresponding results for call dropping problems.
Again, the cause-effect chains for describing the reasons for dropped calls in
four BTSs (6,7,69,74) are shown. The reasons for call dropping seem to be radio
link failures. In BTSs 6, 7 and 69 the radio failures are likely to result from bad
signal quality in uplink. In two TRXs of BTS 6 and in one TRX of BTS 69 the
number of bit errors seem to correlate with the amount of traffic in both the
own BTS as well as in interfering TRXs on the same radio frequency.

Finally, in Figure 5(d) the analysis of the handover problem sources are
shown. The results for three BTSs (7,9,90) having the worst handover perfor-
mance are shown, indicating that the problems are in BSC controlled outgoing
handovers. In BTSs 7 and 9, the problems seem to be in lack of resources in the
target BTSs (6,11,85). In target BTS 6 suffering from lack of resources, there
seems to be high amount of incoming TCH-TCH handover attempts from BTS
7. This same BTS tend to cause problems also for target BTS 11 suffering from
lack of resources during handover attempts. For target BTS 11, two additional
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BTSs (12,18) are found that can be said to generate high number of handover
attempts. The handover attempts of these two BTSs are due to very similar
reasons: the quality of the uplink and downlink radio connection and the uplink
and downlink signal strength are not reasonable in these two BTSs, and some of
the users are switched into more appropriate BTSs. Also, significant number of
users are switched to another BTS in order to minimize the energy consumption
of the MSs (power budget).

6 Conclusions

In this paper, a knowledge-based model for analyzing the performance of the
GSM network is presented. The presented model is based on application domain
knowledge, allowing a logical division of the system into a set of subsystems
with appropriate input and output variables. Also, the type of the model per
subsystem required a priori knowledge about the semantics of the subsystem
variables.

Due to the novelty of the counter data based GSM network performance
analysis approach and relatively limited amount of application domain knowl-
edge, the emphasis of our research has been in simple subsystem models and
parameter estimation techniques.

In the experiments, a data record from an operational GSM network was
used to estimate the parameters of the subsystems. The estimated parameters
were interpreted to describe the strength of dependency between input-output
variable pairs. After parameter estimation, the most important input-output
variable pairs were analyzed further by constructing a hierarchical dependency
tree. The dependency tree was constructed for four major problem types in
order to analyze the cause-effect chains generating the user perceived quality
problems. The provided information can be used to enhance the current radio
resource usage in the network.
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Abstract. This paper explores the sentiment classification with Information Ex-
traction (IE) approach. The IE approach here is required to detect the sentiment
expressions on specific subject (person, product, company and so on) and then to
evaluate the sentiment strength and/or the validation of them. Our method can be
illustrated logically as: (1) From a given text, extract the sentiment expressions
on the specific subjects and attach certain sentiment tag and weight to each of
them; (2) Calculate the sentiment indicator for each sentiment genre by accumu-
lating the weights of all the expression with the corresponding tag; (3) Given the
indicators on different sentiment genres, use a classifier to predict the sentiment
label of the given text. To extract expression robustly when encounter some com-
plex linguistic phenomena (such as ellipsis, anaphora), a new parsing idea named
super parsing is proposed. It enables some non-adjacent linguistic constituents
to be merged to deduce a new one. As an incremental implementation of super
parsing, a system named Approximate Text Analysis (ATA) is described in this
paper. As for the classification task, two different classifiers are used: simple lin-
ear classifier (called SLC here) and SVM. The experiments show the reasonable
performance of our approach.

1 Introduction

Today, with the rapid expansion of Internet and e-commerce, increasing documents, in
the form of news, report, BBS post and so on, appear on the web. As part of the effort to
better organize this information for users, researchers have been actively investigating
the problem of automatic text categorization.

Traditional work has focused on topical categorization, attempting to sort docu-
ments according to their subject matter (e.g., sports vs. politics). However, another im-
portant area of text categorization, i.e. Sentiment Classification, has become a hotspot.
Attributing to the rapid growth of online forum, discussion groups and review sites, an
increasing number of posted articles are written by people to express their sentiments or
overall opinions towards the subject matters – for example, whether supporting a pres-
ident candidate. Labeling these articles with their sentiments would provide an overall
image of public opinions on certain issues. Sentiment classification would be helpful in
recommender systems (e.g. Terveen et al.[1], Tatemura[2]). There are also potential ap-
plications to message filtering (e.g. Spertus[3]). One might be able to use the sentiment
information to recognize or discard some offensive utterance.[4]

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 216–227, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(a) Whole process (b) The framework of an IE system – ATA

Fig. 1. Sentiment Classification with IE approach

This paper explores to employ Information Extraction (IE) approach in Sentiment
Classification. The IE method is required to detect the sentiment expressions on specific
subject and to evaluate the sentiment strength and/or the validation of each expression.
As shown in Figure 1(a), the whole process can be illustrated logically as the following
steps:

1. Quantification: from a given text, extract the sentiment expressions on the specific
subjects and attach certain sentiment tag and weight to each expression;

2. Accumulation: calculate the sentiment indicator for each sentiment genre by accu-
mulating the weights of all the expression with the corresponding tag;

3. Classification: given the indicators on different sentiment genres, use a classifier to
predict the sentiment label of the given text.

The rest of this paper is organized as following: Section 2 reviews the previous
work related to our research, such as Sentiment Classification and Information Extrac-
tion. Section 3 introduces the idea of super parsing, which enables some non-adjacent
linguistic constituents to be merged to deduce a new one. In section 4, an incremental
Super-Parsing-based IE approach, named Approximate Text Analysis (ATA) (see Figure
1(b)) is revealed in detail. It enforces the Quantification task in Figure 1(a). Section 5
briefly introduces the component for sentiment accumulation. And section 6 illustrates
the classifiers used in this work. The experiments on web articles are illustrated and
remarked in section 7. Finally, some conclusions are given in section 8.

2 Previous Work

This section gives a brief survey about previous work on Sentiment Classification and
Information Extraction.
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2.1 Sentiment Classification

Hearst [5] and Sack [6] use models inspired by cognitive linguistics on sentiment-
based classification of the entire documents. Das and Chen [7] use a manually crafted
lexicon in conjunction with several scoring methods to classify stock postings on an
investor bulletin. Tong [8] generates sentiment timelines. It tracks online discussions
about movies and displays a plot of the number of positive and negative sentiment mes-
sages over time. Messages are classified by looking for specific phrases that indicate
the author’s sentiment towards the movie (e.g. ‘great acting’,‘wonderful visuals’, ‘un-
even editing’). Each phrase must be manually added to a special lexicon and manually
tagged as indicating positive or negative sentiment. The lexicon is domain dependent
(e.g. movies) and must be rebuilt for each new domain. Pang et al.[4] examine sev-
eral supervised machine learning methods for sentiment classification of movie views
and conclude that machine learning techniques outperform the method that is based on
human-tagged features, although none of existing methods could handle the sentiment
classification with a reasonable accuracy.

Some researchers use semantic orientation (SO) to evaluate the sentiment strength
of a text or a word, and apply it in Sentiment Classification. Turney calculates the SO of
each word with the mutual information of each word between document phrases and the
words ‘excellent’ and ‘poor’, where the mutual information is computed using statistics
gathered by a search engine. The SO of the whole text is obtained by summing up the
SO of all the words[9]. The semantic orientation methods suppose that all the sentiment
words are semantically related with one subject or one subject class in the text. Such
simplified hypothesis may lead to a wrong conclusion when one subject is blamed and
another is eulogized in same text. So this work tries to employ IE method to find the
relation between sentiment words and topical subjects.

2.2 Information Extraction

The goal of Information Extraction (IE) is to transform text into a structured format and
thereby reduce the information in a document to a tabular structure. Unseen texts are
taken as input to produce fixed-format, unambiguous data as output. Specified infor-
mation can then be extracted from different documents with a heterogeneous represen-
tation and be summarized and presented in a uniform way. IE systems do not attempt
to understand the whole text in the input documents, but they analyze those portions
of each document that contain relevant information. Relevance is determined by prede-
fined domain guidelines which specify what types of information the system is expected
to find.[10]

Recently, many extraction systems are developed [11], such as AutoSlog, LIEP,
PALKA, WHISK, RAPIER, SRV, etc. The extracted information is domain-specific
events varied from the house renting, job hunting to the terrorist activities. Most ex-
tracting systems use templates to detect the relevant events. The templates are designed
to detect some event description in a fixed form, so some indirect expressions caused
by ellipsis or anaphora are easily neglected. This work uses super parsing to search
the potential relations among existing linguistic elements, so the indirect relations (e.g.
inter-sentential semantic relations) can be recognized by our approach.
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On the other hand, some researchers have explored to extract evaluation-related ex-
pressions. Such expressions can be sentimental review or neutral description on some
subjects. Yi and Nasukawa manually construct the tag patterns for the sentiment expres-
sion extraction on specific subject. Their method extracts the expression in the form of
ternary tuples and binary tuples[12,13]. Kobayashi and Inui [14] explore the sentiment
expression extraction at a finer granularity in which the expressions about the specific
features and products can be identified with some co-occurrence patterns. Hu and Liu
[15,16] use Semantic Orientation to pick up evaluative sentences on various features of
pre-determined product, and classify these sentences on the polarity, feature to gener-
ate sentimental summary. Different from the above research, this work does not only
detect the sentiment expressions, but also evaluates the validation and/or strength of
expressions with weights. Then the quantified sentiment strength will be generated for
prediction of sentiment label in the later process.

3 Super Parsing

Due to some linguistic phenomena, such as anaphora and ellipsis, the syntactically ex-
tracting approaches can hardly discover some inter-sentential semantic relations. Ignor-
ing these relations will always lose some valuable expressions, and eventually leads to
a partial evaluation on author’s attitude.

Taking the following sentence as an example,

The new government consists of many elites. It has achieved greatly in the
recent years.

where the word ‘government’ is a specific subject which the readers are interested in,
and each underlined word is a sentiment word. From the view of human reader, the
words ‘achieve’ and ‘greatly’ semantically depend on ‘government’. But many extract-
ing apparatus, which analyze the text with syntactical knowledge, easily neglect these
relations. Some extraction methods such as [12] use moving window to seek the rele-
vant expressions. They can detect inter-sentential linguistic relations in some extent, but
how to adjust the length of window is still challenging for the extraction performance.

Motivated by the problem, this work proposes super parsing to search the potential
association among the linguistic constituents.

3.1 Formalism

The super parsing takes a loose policy in deduction, so it enables non-adjacent con-
stituents to be merged to create a new one. If the operator x � y denotes ‘x matches y’,
a loose deduction can be described as following:

Definition 1. Given a rule r
X1 · · ·Xn → C

and constituents yi = 〈xi, [li, ri]〉 (i = 1, · · · , n), if (1) xi � Xi (2) li < ri (3)
ri � li+1, then a constituent z = 〈c, [l1, rn]〉 is generated by loose deduction, where
c � C. Such generation is denoted as

〈y1, · · · , yn〉 r⇒ z
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S-PARSE(S, R)
1 while F (S, R) = false
2 do
3 for r ∈ R
4 do
5 S ← S ∪ G(S, r)

(a) Pseudo code of Super Parsing (b) Super Parsing can be viewed as con-
structing DAG of constituents

Fig. 2. Super parsing

In the definition, each of X1 · · ·Xn is a daughter of rule r, while C is the mother. A
constituent can be a word, a phrase, a grammar structure or a semantic concept. The
assignment y = 〈x, [l, r]〉 means the constituent y takes the text region from l to r and
its linguistic information is stored as x. The storage form of x can be varied from a
single symbol to a complex data structure. This work uses ‘linguistic unit’ to store the
text region and the said linguistic information (details in section 4.2).

Definition 2. G(S, r) = {∃y1, · · · , yn ∈ S; �z ∈ S|〈y1, · · · , yn〉 r⇒ z • z}

Given a constituent set S, the Generating Set G(S, r) is the constituents that can
be generated by rule r via loose deduction.

Definition 3. F (S, R) ⇐⇒ (∀r ∈ R|G(S, r) = ∅)

A boolean function F (S, R) is constructed to decide whether the parsing process
should be ceased. It is true if and only if no more new constituents can be generated by
rule set R on constituent set S.

Figure 2(a) describes the whole process of Super Parsing. Given the initial con-
stituent set S and the rule set R, a super parser iteratively casts different rules on ex-
isting constituents to generate new ones and add them back into S, until no more new
creation. The procedure can be viewed as the construction of a Directed Acyclic Graph
(DAG), whose nodes are constituents and arcs are deducing relations. Figure 2(b) gives
a straightforward view. The gray boxes are the initial constituents (for example, all
the words in a given text), while the white boxes are the deduced constituents during
parsing. And the numeric subscripts are the text location. As shown in the figure, the
constituent G is loosely deduced by merging A, B and C and it covers the text region
〈0, 3〉. However, according to Definition 1, the constituent K is possible to be deduced
from non-adjacent constituents A and D and its text region of K is 〈0, 4〉.

Different from the known parsing ideas, Super Parsing enables merging non-
adjacent constituents for the creation of new one. Moreover, a whole text, not only a
sentence, is processed in one parsing. So it is possible and reasonable to find some
inter-sentential relations among constituents.
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3.2 Combinational Explosion

The Super Parsing visits each rule circularly in the given rule set. And for a specific rule,
it searches the existing constituents to find the qualified ones to match the different
daughters of the rule. If no restrictions are set when seeking, it definitely leads to a
combinational explosion. So, it is vital to limit the searching scale in Super Parsing.

To overcome the obstacle, a threshold-based solution is given. First, the variable
‘weight’ is attached to each constituent to evaluate its validation. If a constituent y is
produced by constituents x1, · · · , xn with a certain rule, the weight of y is less when
x1, · · · , xn are more sparsely distributed and/or they are less weighted. In this work, the
weight of initial constituent is 1. While the weight of a deduced constituent is calculated
as:

w(y) = W (x1, · · · , xn) =
n∏

i=1

w(xi) •
n−1∏
i=1

log2(Dist(xi, xi+1) + 2) (1)

where w(x) denotes the weight of x, and the function Dist(x, y) means the distance
between constituents x and y. If x and y take the region 〈lx, rx〉 and 〈ly, ry〉 respectively,
the distance between x and y can be calculated by

Dist(x, y) = min(ly − rx, lx − ry) (2)

Then, with the weight on each constituent, a threshold can be set to eliminate the newly-
born constituent that has poor reliability. Meanwhile, another threshold can be set to
eliminate a combination member when it is distant from its neighbors in a combination.
Hence, the scale of constituent combination can be restricted effectively.

4 Approximate Text Analysis (ATA)

In this work, the IE approach is required to extract the sentimental expressions on spe-
cific subjects and to evaluate the strength of different sentiments. We adopt an incre-
mental Super-Parsing-based IE approach, named Approximate Text Analysis (ATA), to
obtain the goal. For the readers who are interested in ATA, a more general embodiment
can be found in [17].

Figure 1(b) shows the process of sentiment review extraction with ATA. The ap-
proach receives a raw text as input, and outputs the linguistic units which represent the
sentiment reviews. A raw text can be pure text, or tagged document such as HTML and
XML. While each outputted unit has at least one sentiment tag to denote the sentiment
genre of the corresponding review.

The Scanner is a component to provide initial linguistic units for ATA. When the
Queue is empty, the scanner will be informed to offer a unit. It scans the raw text by
moving the reading pointer forward until finding a word. Then it creates a new unit for
the word, sends it into the Queue and waits for the next request. For instance, when
a word ‘congress’ is found between location 1 and 2, the component creates a unit
〈〈1, 2〉, WRD, ∅, ‘congress’〉. The detail about linguistic unit is in section 4.2.

The Queue provides a temporary storage for linguistic units which are waiting to
be accessed by Deducing Unit. Its source includes the initial units from Scanner and the
deduced units from Deduction Unit.
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The Peeker monitors any units sent from Deduction Unit into the queue. If the
Peeker finds a linguistic unit containing at least one sentiment tag (‘POS’ or ‘NEG’ in
this work), it means the unit is a sentiment expression and will be outputted.

The rest part of this section will reveal the details of tag, Linguistic Unit, Deduction
Rule and Deducing Unit.

4.1 Tag Lexicon

To make the rule matching more powerful and flexible, ATA uses a hierarchical tag
system called Tag Lexicon. This work designs it as a tree structure. However, it can be
also implemented as a simple tag set, a directed acyclic graph (DAG), and so on.

ATA uses tags to describe the different linguistic meaning of a constituent. In this
work, a tag ‘SBJ’ denotes that the attached constituent is a subject, probably a product,
a service or something else. A tag ‘COM’ denotes that the attached constituent is a
commendation to something, while a tag ‘DER’ is derogatory. More specifically, tags
‘COM S’ and ‘COM O’ is commendatory to subject constituent and object constituent
respectively. And the tags ‘DER S’ and ‘DER O’ can be understood in a similar way.
There are two sentiment tags ‘POS’ and ‘NEG’ in our work, representing positive and
negative evaluation respectively.

4.2 Linguistic Unit

This work uses the term Linguistic Unit to denote the data structure corresponding
to a constituent. A Linguistic Unit contains three components: (1) text region, (2) key
feature, (3) additional feature set. Text Region is the text area occupied by the given
constituent. Key Feature stores the tag denoting the essence of a linguistic unit. For ex-
ample, a unit attached with a ‘WRD’ as key feature, means that it is a word. Additional
Feature Set is a tag set storing the secondary descriptive information for the unit.

In the following sentence,

0 The 1 congress 2 , 3 I 4 think 5 , 6 is 7 wise 8

the ‘congress is wise’ is a constituent about expression. Its text region can be described
in different forms. For example, a set of continuous location {〈1, 2〉, 〈6, 8〉}, or a bit-
pattern 〈0100011〉 where a ‘1’ indicates that constituent occupies this position [18].
More roughly, it can be depicted as a pair 〈1, 8〉. For convenience, this work uses the
location pair to represent the region. And the Key Feature of the unit is set as ‘EXP’
to denote a sentiment expression. The Additional Feature Set can contain several tags
to describe a constituent in different meanings. To mark the constituent as a positive
expression, we can add tag ‘POS’ into the Additional Feature Set.

4.3 Deducing Rules

The Deduction Rules are used in the Deduction Unit to generate new linguistic units
with the given unit combination. They contribute to the detection of the words, phrases,
grammar structures and semantic relations relevant to the sentiment expression.
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1. 〈WRD : congress〉{} ⇒ 〈ENT〉{〈SBJ〉}
2. 〈WRD : wise〉{} ⇒ 〈ADJ〉{〈COM〉}
3. 〈WRD : defeat〉{} ⇒ 〈VER〉{〈COM S〉〈DER O〉}
4. 〈WRD : attack〉{} ⇒ 〈VER〉{〈DER S〉}
5. 〈ADJ〉{〈DER〉} + 〈ENT〉{〈SBJ+〉} ⇒ 〈ENT〉{〈NEG〉}
6. 〈ADJ〉{〈COM〉} + 〈ENT〉{〈SBJ+〉} ⇒ 〈ENT〉{〈POS〉}
7. 〈ENT〉{〈SBJ〉} + 〈ADJ〉{〈DER〉} ⇒ 〈EXP〉{〈NEG〉}
8. 〈ENT〉{〈SBJ〉} + 〈ADJ〉{〈COM〉} ⇒ 〈EXP〉{〈POS〉}
9. 〈ENT〉{〈SBJ〉} + 〈VER〉{〈COM S〉} ⇒ 〈VER〉{〈POS〉}

10. 〈ENT〉{〈SBJ〉} + 〈VER〉{〈DER S〉} ⇒ 〈VER〉{〈NEG〉}
11. 〈VER〉{〈COM O〉} + 〈ENT〉{〈SBJ〉} ⇒ 〈EXP〉{〈POS〉}
12. 〈VER〉{〈DER O〉} + 〈ENT〉{〈SBJ〉} ⇒ 〈EXP〉{〈NEG〉}

Fig. 3. Some toy rules for ATA

Figure 3 shows some sample rules for ATA. For example, the rule 1 means that the
word ‘congress’ is a subject for analyzing. The word ‘wise’ is a positive evaluation,
written as rule 2. The word ‘defeat’ always implies the desirable affect to the subject
constituent while the undesirable affect to the object constituent, so the tags ‘COM S’
and ‘DER O’ are used to denote respectively in rule 3. Similarly, the word ‘attack’
expresses negative feeling to the subject constituent, so the tag ‘DER S’ is marked, as
defined in rule 4.

As shown in rule 8, a sentence like ‘the congress is wise’ can be recognized as a
positive expression on the specific subject ‘congress’. Because of the super parsing, the
word ‘is’ is ignored, but it affects little to the recognition of the expression. In the case
of ‘the congress attacks the new policy’, a human reader can feel the author’s negative
sentiment to the ‘congress’, it can be interpreted by the rule 10.

In some cases, a postfix ‘+’ is attached to a specific tag. It means that both the unit
matched and the new unit generated by the rule should contain the tag. For example,
the constituent matches the second daughter of rule 5 should have the tag ‘SBJ’, and
the new unit generated by this rule should also have the tag ‘SBJ’. However, if a tag is
presented without any postfix, it should be contained only by the matched unit, not the
new unit. And all the other additional features of matched units not mentioned in the
rule will be add to the new unit.

4.4 Deduction Unit

The Deduction Unit is the core of ATA to enforce the super parsing. It maintains can-
didate list for each daughter of each rule (see Figure 4). When a new unit is obtained
from Queue, the Deduction Unit traverses all the daughters of all the Deduction Rules,
and appends the unit into the candidate list of each matched daughter.

For a specific n-daughter rule r, if the new unit u matched the last daughter Dn, a
deduction process will be activated. The Deduction Unit searches the valid unit combi-
nation among the candidate lists of r. For each combination, the i-th member is chosen
from list CLr,i and the last member should constantly be u, the tail of CLr,n. Following
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Fig. 4. Candidate Lists of a given rule r

the definition of loose deduction, the units in combination should satisfy the constraints
on text region: daughter order and no overlap. As shown in Figure 4, C3,1 for D3 and
Cn,L(n) for Dn are in a fault order, because the daughter ID implies the precedence of
text region. However, the text regions of C1,L(1) and C2,2 are overlapped. Once a unit
combination is found, Deduction Unit will create a new unit according to the mother of
rule r and output it via Peeker back into Queue.

5 Sentiment Accumulator

The Sentiment Accumulator accepts the review-related linguistic units from the IE
system, and accordingly update the different sentiment indicators, whose value are ini-
tially 0. As shown in Figure 1(a), a unit to the accumulator has weight and one or more
sentiment tags. The accumulator adds the weight up to the sentiment indicator of each
tag. Take a unit as example. If it is weighted as 0.8 and has sentiment tag ‘POS’, the
accumulator will add the value 0.8 into the sentiment indicator of ‘POS’. However, if a
same-weighted unit has two sentiment tags ‘POS’ and ‘NEG’, the value 0.8 will be add
into the indicators of both ‘POS’ and ‘NEG’.

The accumulator processes each inputted unit until the whole text has passed
through the IE system. Then the eventual value of each sentiment indicator is the
strength evaluation of different sentiment genre on the text.

6 Classifier

As illustrated in Figure 1(a), the classifier accepts the sentiment indicators as input from
Sentiment Accumulator, and outputs a class label as the overall author attitude in the
given text. In this work, two classifiers are used: a simple linear classifier (SLC for
short) and Support Vector Machine (SVM).
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Corpus Accuracy
Sentiment Quantification
VSM + SO ATA

Religion
Positive 0.6120 0.8398
Negative 0.5196 0.9920

Politics
Positive 0.7071 0.8571
Negative 0.3458 0.8235

(a) Classified with SLC

Corpus Accuracy
Sentiment Quantification
VSM + SO ATA

Religion
Positive 0.8085 0.8609
Negative 0.9486 0.9888

Politics
Positive 0.8786 0.9598
Negative 0.8966 0.9863

(b) Classified with SVM

Fig. 5. Experimental results

The classifier SLC is defined as following:

SLC(P, N ; c) =

{
positive N � P ∨N � c

negative otherwise
(3)

It accepts indicators on two tags ‘POS’ and ‘NEG’, and returns a label ‘positive’ or
‘negative’. The threshold c is a parameter learned by training process, where it can
discriminate positive and negative instances to the maximum extent.

Support vector machines (SVMs) [19] are a set of related supervised learning meth-
ods, applicable to both classification and regression. Basically, a SVM algorithm creates
a maximum-margin hyper plane, to which the distance from the closest examples (the
margin) is maximized. The SVM software package used in this work is SVMTorch 1. It
is developed by Collobert[20,21].

7 Experiments

This section uses some on-line documents to evaluate the performance of ATA ap-
proach. The experimental documents cover two domains: politics and religion. All the
documents are collected from www.google.com and groups-beta.google.com. The lat-
ter is a news-group search engine. For each domain, two subject classes are formed by
manually selected keywords for subjects such as political organizations, politicians, re-
ligious concepts or religious leaders. These words are used to retrieve web pages from
the search engines. Each web page is reviewed by human reader to ensure an overall
attitude (‘positive’ for supporting Class A and ‘negative’ for supporting Class B). The
corpus politics contains 826 articles, 672 of them are positive and 154 are negative. The
corpus religion contains 2856 articles, 620 are positive and 2236 are negative.

Turney’s semantic orientation (SO) approach [9] is implemented as a contrast ap-
proach against ATA. Since a text in this work may involve plural subject classes and
it cannot be processed well by Turney’s method, a topical classification approach, i.e.
Vector Space Model (VSM) [22], is used to determine the major subject class of the
text. Both the major subject class ID and the sentiment orientation will be sent to a
classifier to predict the sentiment label of the text. Two classifiers are used in the exper-
iments: SLC and SVM. The classification takes 5-flod cross validation for the corpus
politics, while 10-flod for the corpus religion.

1 http://www.idiap.ch/machine learning.php?content=Torch/en SVMTorch.txt
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As for the sentiment words, some English sentiment words are collected from Gen-
eral Inquirer (GI) 2 at first. And then, from WordNet (or HowNet for Chinese text), the
synonyms of known sentiment words are extracted. Since their Part-Of-Speech tags and
sentiment labels are given, it is easy to provide keywords for VSM+SO and to generate
rule for ATA.

Figure 5(a) shows the accuracy of two sentiment analyzing approaches when tak-
ing different classifiers. The accuracy of ATA is above 80%, while the VSM+SO get
poor performance. However, when the classifier is changed to SVM (see Figure 5(b)),
the performances of both VSM+SO and ATA are promoted. The accuracy of former
approach is up to 80%, but is still inferior to our approach.

8 Conclusions

This paper explores the sentiment classification with Information Extraction approach.
The IE approach should detect the expressions with different attitudes toward specific
subjects and evaluate the validation of each expression with weight. We propose the
super parsing, which enables some non-adjacent linguistic constituents to be merged to
deduce a new one. As an incremental implementation of super parsing, a system named
Approximate Text Analysis (ATA) is revealed. The experiments show the reasonable
performance of our approach against the Semantic Orientation approach.

Acknowledgments

The authors deeply thank Xuanjin Huang, Jin Min, and Xiaochun Wu in Fudan Univer-
sity for their valuable corpora and the implementation of semantic orientation approach
in the experiments. Zhongchao Fei in Shanghai University and the anonymous review-
ers of IDA2005 are also greatly thanked for their informative advice. Meanwhile, the
gratefulness is given to Science and Technology Commission of Shanghai Municipal
Government for their financial support (Project NO: 035115028).

References

1. Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J.: Phoaks: a system for sharing
recommendations. Communications of ACM 40 (1997) 59–62

2. Tatemura, J.: Virtual reviewers for collaborative exploration of movie reviews. In: Proceed-
ings of the 5th international conference on Intelligent user interfaces. (2000) 272–275

3. Spertus, E.: Smokey: Automatic recognition of hostile messages. In: Proceedings of Inno-
vative Application of Artificial Intelligence (IAAI). (1997) 1058–1065

4. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine
learning techniques. In: Proceedings of the 2002 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). (2002) 79–86

5. Hearst, M.A.: Direction-based text interpretation as an information access refinement. In Ja-
cobs, P.S., ed.: Text-Based Intelligent Systems: Current Research and Practice in Information
Extraction and Retrieval. Erlbaum, Hillsdale (1992) 257–274

2 http://www.wjh.harvard.edu/∼inquirer



Sentiment Classification Using Information Extraction Technique 227

6. Sack, W.: On the computation of point of view. In: Proc. of AAAI-94, Seattle, WA (1995)
1488

7. Das, S., Chen, M.: Yahoo! for amazon:extracting market sentiment from stock message
boards. In: Asia Pacic Finance Association Annual Conference (APFA). (2001)

8. Tong, R.M.: An operational system for detecting and tracking opinions in on-line discussion.
In: SIGIR Workshop on Operational Text Classifiation. (2001)

9. Turney, P.D.: Thumbs up or thumbs down? semantic orientation applied to unsupervised
classification of reviews. In: Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL). (2002) 417–424

10. Eikvil, L.: Information extraction from world wide web - a survey. Technical Report 945,
Norweigan Computing Center (1999)

11. Muslea, I.: Extraction patterns for information extraction tasks: A survey. In: The AAAI
Workshop on Machine Learning for Information Extraction. (1999)

12. Nasukawa, T., Yi, J.: Sentiment analysis: Capturing favorability using natural language pro-
cessing. In: The Second International Conferences on Knowledge Capture (K-CAP 2003),
Sanibel Island, FL, USA. (2003) pp 70 – 77

13. Yi, J., Nasukawa, T., Bunescu, R., Niblack, W.: Sentiment analyzer: Extracting sentiments
about a given topic using natural language processing techniques. In: The Third IEEE Inter-
national Conference on Data Mining. (2003)

14. Kobayashi, N., Inui, K., Matsumoto, Y., Tateishi, K., Fukushima, T.: Collecting evaluative
expressions for opinion extraction. In: Proceedings of the 1st International Joint Conference
on Natural Language Processing,Hainan,China. (2004) pp. 584–589

15. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD-2004),
Seattle, Washington, USA. (2004)

16. Hu, M., Liu, B.: Mining opinion features in customer reviews. In: Proceedings of Nineteeth
National Conference on Artificial Intellgience (AAAI-2004), San Jose, USA. (2004)

17. Liu, J., Wu, G.: Apparatus and method for approximate text analysis (2005) Application NO:
200510023589.8, Chinese Patent.

18. Johnson, M.: Parsing with discontinuous constituents. In: Proceedings of the 23rd conference
on Association for Computational Linguistics,Chicago, Illinois. (1985) 127 – 132

19. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers.
In: Proceedings of the 5th annual ACM workshop on Computational Learning Theory, ACM
Press (1992) 144–152

20. Collobert, R., Bengio, S.: SVMTorch: Support vector machines for large-scale regression
problems. Journal of Machine Learning Research 1 (2001) 143–160

21. Collobert, R., Bengio, S.: SVMTorch: A support vector machine for large-scale regression
and classification problems. Journal of Machine Learning Research 1 (2001) 143–160

22. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communi-
cations of the ACM 18 (1975) 613–620



Extending the SOM Algorithm to
Visualize Word Relationships

Manuel Mart́ın-Merino1 and Alberto Muñoz2
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Abstract. Self Organizing Maps (SOM) are useful tools to discover the
underlying structure of high dimensional data. However the algorithms
proposed in the literature rely on the use of symmetric measures such
as the Euclidean. Therefore when asymmetry arises they fail to reflect
accurately the object proximities and the resulting maps become often
meaningless. This is a serious drawback for several applications such as
text mining in which the object relations are strongly asymmetric.

In this paper, we propose two variants of the original SOM algorithm
that are able to deal successfully with asymmetric relations. The algo-
rithms are tested using real document collections, and the performance
is reported using appropriate measures. The asymmetric algorithms im-
prove significantly the maps generated by their symmetric counterpart.

1 Introduction

Self Organizing Maps (SOM) [10] have been widely used to visualize multidi-
mensional object relationships. In particular, they have been successfully applied
to discover semantic relations between words or documents in textual databases
[11,16]. However, as far as we know, all the variants presented in the literature
rely on the use of symmetric dissimilarities (usually the Euclidean distance).
Therefore, they are not able to handle asymmetric relations in an appropriate
fashion.

Let (δij) be the dissimilarity matrix between the objects. Asymmetry arises
when (δij �= δji). The Multidimensional Scaling (MDS) community has pro-
posed several models to deal with asymmetric dissimilarities (see for instance
[6,22,19,9]). They usually adjust independently the symmetric and skew sym-
metric component of the similarity matrix. However, as we have mentioned in
[14,18] when the asymmetry is strong the symmetric component gives frequently
smaller values than expected. This fact degrades the quality of the term relations
suggested by any mapping algorithm.

Term relations in textual databases are strongly asymmetric. Consider for
instance a broad term such as ‘mathematics’ and a specific term like ‘statistics’.

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 228–238, 2005.
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It is obvious that ‘mathematics’ subsumes the semantic meaning of ‘statistics’,
but the reverse relation is much weaker. In this case, a symmetric similarity
would indicate that ‘mathematics’ is hardly related to ‘statistics’ [18] and the
terms would be located too far in the map. So symmetric dissimilarities such
as the Euclidean distance should be modified to reflect accurately the object
proximities when relations are asymmetric. However notice that the asymmetry
is not the only factor by which textual distances become meaningless [1] but it
stands as a problem that deserves more attention.

In this paper we first study the influence of the asymmetry over the qual-
ity of the textual maps and present new dissimilarities that are less sensitive
to this problem. Next new versions of the SOM algorithm [10] are proposed
that incorporate the new dissimilarities keeping the simplicity of the symmetric
counterpart. The derivation of the algorithms from an energy function provides
a strong theoretical foundation for the models. Finally, the algorithms proposed
are tested on the interesting problem of word relations visualization.

This paper is organized as follows. In section 2 we study the problem of
asymmetry. Section 3 proposes new versions of the SOM algorithm that are able
to deal with asymmetric relations. In section 4 the new algorithms are tested
using two real textual collections. Finally section 5 gets conclusions and outlines
future research trends.

2 Asymmetry

Symmetric measures have been widely used in the context of information re-
trieval [20,5]. In this section we study the impact that the asymmetry has on
a number of commonly used symmetric similarity measures. Next a coefficient
of asymmetry is defined that allow us to model the information conveyed by
the asymmetry. Finally the meaning and relevance of asymmetry in the field of
textual data analysis is discussed.

Consider a set of n objects and let D = (δij) be the dissimilarity matrix
made up of object proximities. If a similarity matrix (sij) is given instead it
can be transformed easily into a dissimilarity using any of the transformations
provided in [6] (δij = 1− sij). Asymmetry arises when δij �= δji. In this case the
dissimilarity matrix can be decomposed into a symmetric and skew-symmetric
component (D = S + A) [22] where sij = (δij + δji)/2 and aij = (δij − δji)/2.
The first term represents the object proximities and the second one the deviation
from symmetry (it equals 0 if D is symmetric).

When asymmetry arises symmetric similarities usually considered in the li-
terature produce often too small values and fail to reflect the object proximities
[18,15]. To get a deeper understanding of this problem we are going to study a
text mining example.

Consider a collection of abstracts from scientific journals where, the broad
term ‘mathematics’ appears for instance in 500 documents while the more spe-
cific term ‘regularization’ appears only in a subset of 10 documents. Obviously,
the relation between ‘mathematics’ and ‘regularization’ is highly asymmetric in
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the sense that ‘mathematics’ subsumes the semantic meaning of ‘regularization’
while the reverse relation is much weaker. Let xm and xr be the binary vector
space representation [2] of both terms.

Consider a similarity such as the cosine that has been widely used in the in-
formation retrieval literature [20,5]. This measure is equivalent to the Euclidean
distance (commonly used by SOM algorithms) if the objects are normalized
previously by the L2 norm. Besides that, this similarity is strongly correlated
with several popular measures inside the field such as Dice, Kulczynski or Jac-
card (ρ = 0.99 for the textual collection considered in the experimental section).
Therefore, the cosine similarity represents somewhat the behavior of a broad
range of symmetric similarities over textual data. Now, if the cosine similarity
is computed for the example considered above we get:

cos(xm, xr) =
∑

k xmkxrk

‖xm‖ ‖xr‖
=

10√
500
√

10
= 0.14 , (1)

that would suggest that ‘mathematics’ is hardly related to ‘regularization’, which
is not true. Notice that other distances such as the χ2 [13] seem to be more robust
to this problem but the empirical results [5] suggest that the performance is only
slightly better. Therefore they suffer from the same drawback.

The previous example suggests that the symmetric similarities become mean-
ingless (too small) when the asymmetry grows large. Moreover, this bias toward
small values tends to reduce the variance of the similarity histogram. In particu-
lar, the cosine similarity has a standard deviation as low as 0.03 for the datasets
considered in this paper (see figure 2). Consequently, usual similarities become
almost constants over textual data and thus any algorithm based on distances
will be highly distorted [4].

Next, we are going to study the relation between the asymmetry and the L1
norm. This will allow us to derive an asymmetry coefficient suitable to model
the skew-symmetric component of a given similarity measure.

Consider the fuzzy logic similarity measure [12] defined as

sij =| xi ∧ xj | / | xi | , (2)

where ∧ denotes the standard fuzzy intersection and | | the L1 norm. Obviously
this similarity is asymmetric (sij �= sji) and the skew-symmetric component can
be written as follows:

aij =
1
2
(sij − sji) ∝| xj | − | xi | . (3)

This equation suggests that the asymmetry is a property associated to individual
objects and may be modeled by the following coefficient of asymmetry: ωi =

|xi|
maxk|xk| . In the context of text mining this coefficient will become large for
broad terms.

According to equation (3), aij will become large for relations between broad
terms (large L1 norm) and specific terms (small L1 norm). Therefore, the asym-
metry will be an important factor in many applications such as text mining in
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which the object L1 norm obeys a Zipf’s law [2] (see figure 1). In this case the
L1 norm histogram is very skew and aij will become large quite often.

Finally it has been pointed out in [1] that for sparse databases such as textual
datasets, the relations between specific (low norm) terms should be established
through their associations with broader terms. Therefore if this kind of asym-
metric relations are underestimated, the position of specific terms in the map
will become meaningless. To avoid this problem the proximities corresponding
to asymmetric relations should be compensated proportionally to the degree of
asymmetry as we will see in the next section.

3 Asymmetric Variants of Self Organizing Maps

In this section we first introduce shortly the SOM algorithm proposed originally
by [10] and interpreted as a principal curve by [17]. Next we propose two asym-
metric variants of the SOM algorithm that take advantage of the asymmetry
coefficients to reflect accurately the object proximities. The new models keep
the simplicity of original SOM algorithm.

The SOM [10] is a nonlinear visualization technique for high dimensional
data. Input vectors are represented by neurons arranged according to a regular
grid (usually 1D-2D) in such a way that similar vectors in input space become
spatially close in the grid.

The experimental results obtained by the SOM are equivalent to that ob-
tained by optimizing the following energy function [7]:

E(W) =
∑

r

∑
xμ∈Vr

∑
s

hrsD(xμ, ws) , (4)

where D denotes the square Euclidean distance and Vr is the Voronoi region
corresponding to prototype wr. hrs is a neighborhood function (for instance a
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Gaussian kernel) that transforms nonlinearly the neuron distances (see [10] for
other possible choices). The SOM energy function (4) is minimized when objects
that are close together in input space (according to the Euclidean distance) are
mapped to neighboring neurons in the grid.

The SOM energy function may be optimized by an iterative algorithm made
up of two steps [7]. First a quantization algorithm is run that represents each
pattern by the nearest neighbor prototype. Next, the prototypes are organized
along the grid of neurons by minimizing the error function (4). The optimization
problem can be solved explicitly resulting in a simple iterative adaptation rule
for each prototype [10].

The kernel width is adapted in each iteration using the rule proposed by
[17] (σ(t) = σi(σf/σi)t/Niter ), where σi ≈ M/2 is usually considered in the
literature [10] and σf is a parameter that determines the degree of smoothing of
the principal curve generated by SOM [17].

Next, two asymmetric variants of the original SOM are proposed. The new
models improve the position of the more specific terms (low L1 norm) incorpora-
ting similarities that reflect accurately their (asymmetric) relations with broader
terms (large L1 norm). To this aim, a new asymmetric similarity based on the
Euclidean distance is first defined. Next an energy function which incorporates
the asymmetric similarity is introduced. Finally the error function is optimized
keeping the simplicity of the original algorithm.

Let d(xi, xj) = ‖xi − xj‖2 be the square Euclidean distance usually consi-
dered in the Self Organizing Maps. This dissimilarity can be easily transformed
into a similarity [22,6] using for instance the following transformation:

sij = K − ‖xi − xj‖2 , (5)

where the constant K is an upper bound for the square Euclidean distances.
Now an asymmetric index is defined as follows:

sij = (K − ‖xi − xj‖2)ωi , (6)

where ωi denotes the asymmetry coefficient introduced in section 2. The object
proximities induced by the symmetric component of sij have now the following
form:

s
(s)
ij = (K − ‖xi − xj‖2)

ωi + ωj

2
(7)

If the object relations are highly asymmetric then ωi $ ωj or conversely. In
this case the similarity (7) compensates the value of the Euclidean proximity
proportionally to the degree of asymmetry given by |ωi − ωj| ≈ max(ωi, ωj).

Notice that a number of asymmetric measures may be defined just substitut-
ing the Euclidean distance in (6) by other possible choices such as for instance
the χ2. However, this would increase significantly the complexity of the resulting
optimization problem losing the simplicity of the original SOM. Therefore, the
measure proposed in (6) achieves a balance between accuracy and simplicity of
the optimization problem.
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Substituting the similarity (7) into equation (4) the error function for the
asymmetric SOM can be written as

E(W) =
∑

r

∑
xμ∈Vr

∑
s

hrsωμ(K − ‖xμ −ws‖2) . (8)

As we have mentioned earlier, this asymmetric error decomposes into a sym-
metric component that represents the object proximities and a skew-symmetric
component that equals 0 in this case. From equation (8) it can be easily seen that
when the object relations are asymmetric (ωμ large) the similarities are compen-
sated proportionally to the degree of asymmetry. Therefore the corresponding
distances along the grid of neurons will shrink reflecting more accurately the
object proximities.

The error function (8) can be optimized in two steps as in the symmetric
case. First a quantization algorithm is run that generates the SOM prototypes
ws. Next the function error is maximized with respect to the weights ws. This
yields a simple adaptation rule for the network prototypes:

ws =

∑M
r=1

∑
xμ∈Vr

ωμhrsxμ∑M
r=1

∑
xμ∈Vr

ωμhrs

(9)

where hrs is a Gaussian kernel of parameter σ(t) which is adapted using the
same rules considered for the symmetric version. Notice that the simplicity of
the original SOM algorithm is maintained.

The SOM algorithm proposed earlier improves the relative position of the
objects in the map when their relations are asymmetric. However, the similarity
(7) reduces also the Euclidean distance between objects of similar and large
L1 norm (broad terms). This behavior may eventually increase the overlapping
among the main topics of the database which is an undesirable effect. To avoid
this problem we introduce an alternative similarity defined as:

sij = (K − ‖xi − xj‖2)[1 + (ωi − ωj)2] , (10)

where ωi, ωj denote the asymmetry coefficients defined in section 2. This simila-
rity becomes larger than the Euclidean proximity measure just when (ωi �= ωj).
In this case, the similarity is compensated proportionally to the degree of asym-
metry |ωi − ωj |. Substituting this similarity into equation (4) we get the error
function to be optimized:

E(W) =
∑

r

∑
xμ∈Vr

∑
s

hrs(K − ‖xμ −ws‖2)[1 + (| xμ | − | ws |)2] . (11)

The optimization of this error is quite complex, because the parameter | ws |
depends on the prototype coordinates. To overcome this problem, the original
space is enlarged with a new coordinate, the L1 norm. In this space, the error
function (11) can be easily derived with respect to the last coordinate. Using
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this trick and solving the set of linear equations ∂E(W)
∂|ws| = 0, we get the following

updating rule for the last prototype coordinate:

| ws |=
∑

r

∑
xμ∈Vr

hrsα
′
μs | xμ |∑

r

∑
xμ∈Vr

hrsα′
μs

, (12)

where α′
μs = (K − ‖xμ −ws‖2) and hrs is a Gaussian kernel defined as usual.

The updating rule for ws can be derived in the same way and is given by the
following expression:

ωs =

∑
r

∑
xμ∈Vr

hrsxμ[1 + (| xμ | − | ws |)2]∑
r

∑
xμ∈Vr

hrs[1 + (| xμ | − | ws |)2]
(13)

We finish this section with a brief comment about the related work.
As far as we know, no asymmetric version of the SOM has been proposed

earlier in the literature. However, the multidimensional scaling (MDS) commu-
nity [6,19,22,9] has proposed several models to deal with asymmetric measures
in the context of psychometric or sociometric data. Those algorithms optimize
a quadratic error measure of the form

∑
ij(δij − dij)2, where δij and dij denote

the asymmetric dissimilarities in input and output spaces. However, it has been
pointed out in the literature [22,15] that the optimization of this error function is
equivalent to build two maps that approximate independently the symmetric and
skew symmetric components of the dissimilarity matrix (δij). Therefore the map
that visualizes the object proximities is exclusively derived from the symmetric
component of δij and is degraded by asymmetry as well. Thus, the contribu-
tion of the work presented here is to improve the map that visualizes the object
proximities taking advantage of the information conveyed by the asymmetry.

4 Experimental Results

In this section we apply the proposed algorithms to the construction of word
maps that visualize term semantic relations. First we describe briefly the textual
collections used in the experiments.

The first collection, is made up of 2000 scientific abstracts retrieved from
three commercial databases ‘LISA’, ‘INSPEC’ and ‘Sociological Abstracts’. For
each database a thesaurus created by human experts is available. Therefore, the
thesaurus induces a classification of terms according to their semantic meaning.
This will allow us to exhaustively check the term associations created by the
map.

The second collection is made up of 6702 abstracts corresponding to the
journals of the ACM digital library. The collection was retrieved by means of a
robot developed by our research team. In this case, no thesaurus is available for
the collection and therefore the evaluation must rely on unsupervised measures.
This is a real and interesting problem not previously considered in the literature.

Assessing the performance of algorithms that generate word maps is not
an easy task. In this paper the maps are evaluated from different viewpoints
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through several objective functions. This methodology guaranty the objectivity
and validity of the experimental results.

The first measure considered is the Spearman rank correlation coefficient
[3] (Sp.). This coefficient checks if the neighbor’s ordering in input space is
preserved in the map. A complementary measure is the Sp. coefficient taking into
account only the 10% of the first nearest neighbors. Notice that the first nearest
neighbors of specific terms are frequently broad terms [18,14]. Therefore, this
index provides more specific information about the preservation of dissimilarities
corresponding to asymmetric relations.

The second group of measures quantifies the agreement between the semantic
word classes induced by the map and the thesaurus. Therefore, once the objects
have been mapped, they are grouped into topics with a clustering algorithm (for
instance PAM [8]). Next the partition induced by the map is evaluated through
the following objective measures:

The F measure [2] has been widely used by the Information Retrieval com-
munity and evaluates if words from the same class according to the thesaurus
are clustered together. The entropy measure [18] evaluates the uncertainty for
the classification of words from the same cluster. Small values suggest little over-
lapping among different topics in the map and are preferred. Finally the Mutual
Information [21] is a nonlinear correlation measure between the word classifica-
tion induced by the thesaurus and the word classification given by the clustering
algorithm. This measure gives more weight to specific words and therefore pro-
vides valuable information about changes in the position of specific terms.

Table 1 shows the experimental results for the two problems considered:
The abstracts of scientific journals and the ACM digital library. The symmetric
SOM algorithm (row 1) has been taken as reference because it has been widely
applied in text mining (see for instance the WEBSOM [11]). Term vectors have
been codified using the vector space model [2] and normalized by the L2 norm.
The primary conclusions are the following:

The first asymmetric version of SOM proposed in section 3 (row 2) outper-
forms the symmetric counterpart. In particular the Mutual Information (I) is
improved a 17% which suggests that the position of specific terms in the map
is significantly better in the asymmetric model. This fact helps to avoid that

Table 1. Empirical evaluation of the asymmetric SOM algorithms for a collection of
scientific abstracts and the journals of the ACM digital library

Scientific abstracts ACM corpus
Sp. Sp. 10% F E I Sp. Sp. 10%

1 Symmetric SOM 0.43 0.64 0.70 0.38 0.23 0.43 0.74
2 Asymmetric SOM 0.57 0.76 0.78 0.35 0.27 0.51 0.76
Improvement in % 33 16 11 8 17 19 3
3 Asymmetric SOM (L1 norm difference) 0.37 0.78 0.74 0.31 0.22 0.48 0.79
Improvement in % -14 22 6 18 -4 12 7

Parameters: Nneur = 88, niter = 30; σ1
i = σ2

i = 30, σ3
i = 33; σ1

f = σ2
f = 3, σ3

f = 2.
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Fig. 3. Word map generated by the asymmetric SOM for a collection of scientific
abstracts

the more specific terms (low norm) concentrate in some specific area of the map
regardless of their semantic meaning (see [4] for a detailed analysis of this pro-
blem). Consequently the overlapping among terms belonging to different topics
in the map is reduced (ΔE = 8%). Finally the overall word map quality (F) is
a 10% better than in the symmetric version.

The unsupervised measures (Sp.) and (Sp. 10) show that the organization
of the network is even better than for the classic algorithm. Therefore it is
easier to preserve the asymmetric similarity probably because the histogram is
smoother.

The second asymmetric version of SOM (row 3) improves also the map gen-
erated by the symmetric counterpart. Notice that as it was suggested in section
3 the overlapping in the map is reduced more than in the previous algorithm
(ΔE = 18%). However, the (Sp.) and I measures suggest that the network orga-
nization is more problematic particularly for terms of medium L1 norm. Finally
we point out that the overall word map quality (F) is improved a 6%.

The experimental results for the journals of the ACM digital library collection
corroborate the superiority of the asymmetric algorithms proposed in this paper.

Finally figure 3 shows a visual map generated by our asymmetric SOM for
the first textual collection considered in this paper. This figure illustrates the
performance of the asymmetric SOM algorithm and allow us to check a number
of asymmetric associations induced by the map.

For the sake of clarity only a small subset of terms that belong to two different
topics have been drawn. The SOM prototypes have been projected using the
Sammon algorithm [10] and those one corresponding to the neighboring neurons
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have been joined together by continuous trace. Terms with L1 norm > 30 and
≤ 30 are visualized in different colors.

The figure 3 shows that the terms spread along the map regardless of their
frequency (L1 norm). The term associations induced are consistent with the
thesaurus even for words of disparate degree of generality (L1 norm). Notice
that, as we have mentioned in section 2, the symmetric algorithms fail to reflect
frequently this kind of asymmetric relations. Finally figure 3 suggests that the
ordering of the network prototypes is good for the datasets and parameters
considered in this paper.

5 Conclusions and Future Research Trends

In this paper we have proposed two asymmetric variants of the SOM algorithm
that improve the visualization of the object proximities when relations are asym-
metric. The algorithms have been tested in the challenging problem of word
relation visualization using real problems such as the ACM digital library. The
algorithms have been exhaustively evaluated through several objective functions.

The experimental results show that the asymmetric algorithms improve sig-
nificantly the map generated by a SOM algorithm that relies solely on the use of
a symmetric distance. In particular, our asymmetric models achieve a remark-
able improvement of the position of specific terms in the map. Besides the new
models keep the simplicity of the original SOM algorithm.

Future research will focus on the development of new asymmetric techniques
for classification purposes.
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9. H. A. L. Kiers and Y. Takane. A generalization of GIPSCAL for the analysis of
nonsymmetric data. Journal of Classification, 11:79-99, 1994.

10. T. Kohonen. Self-organizing maps. Springer Verlag, Berlin, Second edition, 1995.
11. T. Kohonen, S. Kaski, K. Lagus, J. Salojarvi, J. Honkela, V. Paatero and A.

Saarela. Organization of a massive document collection, IEEE Transactions on
Neural Networks, 11(3):574-585, 2000.

12. B. Kosko. Neural networks and fuzzy systems: A dynamical approach to machine
intelligence. Prentice Hall, Englewood Cliffs, New Jersey, 1991.

13. L. Lebart, A. Morineau and J. F. Warwick. Multivariate descriptive statistical
analysis. John Wiley, New York, 1984.
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Abstract. Text Categorization (TC) is an important issue within In-
formation Retrieval (IR). Feature Selection (FS) becomes a crucial task,
because of the presence of irrelevant features causing a loss in the per-
formance. FS is usually performed selecting the features with highest
score according to certain measures. However, the disadvantage of these
approaches is that they need to determine in advance the number of
features that are selected, commonly defined by the percentage of words
removed, which is called Filtering Level (FL). In view of that, it is usual
to carry out a set of experiments manually taking several FLs represent-
ing all possible ones. This process does not guarantee that any of the FLs
chosen are the optimal ones, even not an approximation. This paper deals
with overcoming this difficulty proposing a method that automatically
determines optimal FLs by means of solving a univariate maximization
problem.

1 Introduction

Text Categorization (TC) [1] consists of assigning the documents of a corpus to
a set of prefixed categories. Since the documents in TC are normally represented
by a great number of features and most of them could be irrelevant [2], a previous
Feature Selection (FS) usually improves the performance of the classifiers, also
reducing the computational time and the storage requirements.

A common way of tackling FS in TC consists in scoring the features using a
certain measure, ordering them according to this measure and keeping or remov-
ing a predefined number or percentage of them [3,4]. Let consider what is called
Filtering Level (FL), that is, the percentage of features removed. Then, a swap-
ping of FLs are commonly taken to approximate all possible ones. This could
lead to run the risk of not choosing either the optimal ones nor an approximation
of them.

This paper proposes an approach to automatically determine optimal FLs
by means of solving a univariate maximization problem. Several non-linear op-
timization methods are adapted for this purpose.
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The rest of the paper is organized as follows: In Section 2 some related
work is briefly exposed. Section 3 deals with the main stages of FS in TC
using scoring measures. The description of the method is exhaustively detailed
in Section 4. The description of the corpus and the experiments are presented in
Section 5. Finally, in Section 6 some conclusions and ideas for further research
are described.

2 Related Work

FS is one of the approaches commonly adopted in TC. FS could be performed
by filtering or by wrappering. In the former, a feature subset is selected inde-
pendently of the classifier. In the latter, a feature subset is selected using an
evaluation function based on the classifier. A widely adopted approach in TC
is the filtering one based on selecting the features with higher score granted by
a certain measure [3,5,4]. The reason of choosing filtering approaches for TC is
because wrapper ones can result in a rather time consuming process.

However, only in [6] it is automatically selected an adequate FL based on the
typical deviation of the values reached by the measure. By contrast, most of the
works choose a set of FLs representing all possible ones to perform experiments
[3,5,4]. This paper proposes an method based on an univariate maximization to
obtain optimal FLs, allowing the method to be automatic.

3 Using Scoring Measures for Feature Selection

The process of TC involves the stages described in this section.

3.1 Document Representation and Previous Feature Reduction

The most common way of representing the documents is the so called bag of
words [2]. In this paper, we adopted the absolute frequency (tf) of the word,
used in [7,4], to weight the importance of a word in a document.

Previous to FS, other kinds of feature reduction are typically carried out.
They consist of removing stop words (words without meaning) and of performing
stemming (reducing each word to its root or stem). We have conducted this last
task according to Porter [8]. Also, following [1], we have only considered local
sets of features, that is, words occurring in documents of the category (local
approach), rather than a global set.

3.2 Feature Selection Using Scoring Measures

This section deals with the measures adopted for FS in TC.

i) Information Retrieval Measures. In the IR field, several measures [2]
have been used to determine the relevance of a word. The absolute frequency
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(tf), the document frequency (df) or the combination of them tfidf , which
considers the dispersion of the word, are measures of this kind.

ii) Information Theory Measures. One of main properties of IT measures
is that they consider the distribution of the words over the categories. One
of the most widely adopted [5] is the information gain (IG), which takes
into account either the presence of the word in a category or its absence. A
similar measure is the expected cross entropy for text (CET ) [3], which only
takes into account the presence of the word in a category.

iii) ML Measures. In [5], some measures of this kind are proposed for FS in
TC. They quantify the importance of a word w in a category c by means of
evaluating the quality of the rule w → c, assuming that it has been induced
by a Machine Learning (ML) algorithm. Some of these measures are based
on the percentage of successes and failures of its application, for instance the
Laplace measure (L), which adds a little modification to the percentage of
success and the difference (D). Besides, other measures also take into account
the number of documents of the category in which the word occurs and the
distribution of the documents over the categories, for instance the impurity
level (IL). Some variants of these measures which also take into account
the absence of the term in the rest of the categories were also adopted [5],
leading respectively to Lir, Dir and ILir measures.

3.3 Classification and Evaluation of the Performance

The classification in TC is usually performed adopting the one-against-the-
rest [9] approach. It involves converting the original problem into a set of bi-
nary problems, each one determining whether a document belongs to a certain
category or not.

Here, the classification is performed using SVM, since they have shown to
perform fast and well in TC [10]. They satisfactorily deal with many features
and with sparse examples. They are binary classifiers which find out threshold
functions to separate the documents of a certain category from the rest. We
adopt a linear threshold since most TC problems are linearly separable [7].

The effectiveness of the classification is usually quantified with the F1 mea-
sure [1], defined by

F1 =
1

0.5 1
P + 0.5 1

R

P quantifies the percentage of documents that are correctly classified as be-
longing to the category while R quantifies the percentage of documents of the
category that are correctly classified. Two different approaches are typically
adopted [1] to evaluate the global performance. The first one is macroaverage
(averaging giving the same importance to each category) and the second one
is microaverage (averaging proportionally to the size of each category). It is
said that macroaverage gives information about the smaller categories, mean
microaverage does about the biggest ones.
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4 Finding Optimal Filtering Levels

This section deals with the raising and the solution of the problem.

4.1 Raising the Problem

The problem of finding an optimal FL o∗ for a scoring measure mw(w) could be
converted into a univariate maximization problem with F1 as target function.
Formally,

Find o∗ ∈ [o1, o2) such that F1(o∗) ≥ F1(o) ∀o ∈ [o1, o2)

Notice that o1 = 0, since keeping all the words could improve the classifi-
cation. Analogously, o2 = 100 with open interval, since it makes no sense to
consider 100 as FL because this means not to keep any word.

The main disadvantage of this approximation is that choosing an arbitrary
point o ∈ [o1, o2) could cause that a word w1 is taken, mean another one w2
such that mw(w2) = mw(w1) is not. A solution to solve this handicap could be
to define a function g in the interval [m1, m2] such that:

i) m1 = minw∈V mw(w) with V the set of features.
ii) m2 = maxw∈V mw(w) with V the set of features.
iii) g(m) is the FL that considers the words w such that mw(w) ≤ m

Hence, the original problem is converted into this new one:

Find m∗ ∈ [m1, m2] such that F1 ◦ g(m∗) ≥ F1 ◦ g(m) ∀m ∈ [m1, m2]

Notice that g is not an injective function, since there could exist different
values of the interval [m1, m2] that grant the same FL. But, in fact, the domain
of g is mw(V/ ∼), that is, the image of mw defined over the quotient set V/ ∼
induced by the following equivalence relation:

w1 ∼ w2 if and only if mw(w1) = mw(w2)

Indeed, ∼ is an equivalence relation, since it is obvious that it satisfies re-
flexivity, symmetry and transitivity properties.

Therefore, defining g over mw(V/ ∼), g becomes injective. Finally, making
effective these transformations yields to the following univariate maximization
problem:

Find m∗ ∈ mw(V/ ∼) such that F1 ◦ g(m∗) ≥ F1 ◦ g(m) ∀m ∈ mw(V/ ∼)

4.2 Approaches to Solve the Problem

Let consider the following univariate maximization problem:

Find u∗ ∈ [a, b] such that f(u∗) ≥ f(u) ∀u ∈ [a, b]

There exist several methods to tackle univariate maximization [11]. All of
them start in an interval [a, b], called uncertainty interval, containing a local
maximum u∗. These methods could be classified into:
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i) Methods based on nonlinear equations resolution. They obtain the
roots of the first derivative of f , which are candidates for being local maxi-
mum and minimum points of f , like Secant and Newton-Raphson methods
[11]. As seen, they require that f is derivable.

ii) Comparison methods. The comparison methods, like Fibonacci, Golden
Section and Uniform Search methods, evaluate the objective function at
points over the interval and iteratively obtain smaller intervals of uncertainty.
They use the property that evaluating four points in the uncertainty interval,
there always exists at least a subinterval that does no contain the optimal,
and hence it could be removed, obtaining a smaller interval [11]. In general,
these methods do not demand that f is derivable or continuous, otherwise
they assume that f is unimodal1. If f is multimodal, they only guarantee
that a local maximum is found, but there could exist other local maximums
whose value of f are greater.

iii) Polynomial interpolation methods. These methods iteratively approxi-
mate the target function in an interval by a quadratic or cubic polynomial
that has the same function and/or gradient values at a number of points
over the interval. The maximum of the polynomial is then used to predict
the maximum of the target function [11]. Quadratic interpolation requires
that f is continuous, mean cubic interpolation requires that f is derivable.

iv) Hybrid methods. These methods combine the best features of the compar-
ison methods and the polynomial interpolation, like Brent’s and the Modified
Brent’s methods [11].

4.3 Solving the Problem

Unfortunately, not all of the approaches cited above could be applied to our
problem, since the target function that take up us (F1 ◦ g) has not enough
regularity. The assumption of being continuous could not be even made, since it
is a step function. Hence, only some comparison methods could be applied, like
Fibonacci, Uniform and Golden Search methods. Also they are adequate since
they have first order rate of convergence.

i) Uniform Search. This method consists in evaluating a predefined number
of points uniformly distributed in each interval [ak, bk] selecting that with
higher value of the evaluation function. The interval of the next iteration is
[ak+1, bk+1] = [λ−δ, λ+δ] with δ = b−a

n+1 where [a, b] is the uncertainty initial
interval, n is the predefined number of points to evaluate in each interval
and λ is the point in the interval [ak, bk] with higher value of the evaluation
function among those in which the function is evaluated.

ii) Fibonacci and Golden Search. These methods will require two function
evaluations per iteration (the two internal points ck < dk in the interval

1 f is an unimodal function in [a, b] if it admits an unique maximum u∗ in [a, b] and if
∀u1, u2 ∈ [a, b] such that u1 < u2 it satisfies that u1 ≤ u∗ ≤ u2, f(u1) < f(u∗) and
f(u∗) > f(u2).
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[ak, bk] of the k-iteration). This can be halved if one of the points is used
again as an internal point for the following iteration. It is also desirable
that the two possible subintervals [ak, dk] and [ck, bk] at each iteration be
equal in size, since the theoretical interval reduction properties of the method
are independent of the objective function and the rate of convergence can
be analyzed much more conveniently. An interesting property is that the
relationship Ik = Ik+1 + Ik+2 holds between the interval size at successive
iterations. Particular methods will differ in the way in which the last two
intervals are selected:

ii.1) Fibonacci. After m − 2 iterations, the length Im−1 is obtained. This
method imposes that Im−1 = 2Im, that is, that cm−1 = dm−1, which is
the most that could be imposed. Hence, the general term of the sequence
of interval lengths that has been built is Ik = Fm−k+1Im where Fm−k+1
is obtained from the Fibonacci sequence, whose general term Fn satisfies
the following difference equation

Fn = Fn−1 + Fn−2

F0 = F1 = 1

Then, the explicit expression of Fn is

Fn =
1√
5

⎡⎣(1 +
√

5
2

)n+1

−
(

1−
√

5
2

)n+1
⎤⎦

The reduction rate of the interval is variable in each iteration and it
equals

Ik+1

Ik
=

Fn−k

Fn−k+1

ii.2) Golden Search. Imposing that the reduction rate of the interval be
constant, the Golden Search method arises.

Ik+1

Ik
= τ

Dividing the following equation by Ik+1

Ik = Ik+1 + Ik+2

it is obtained that τ satisfies τ2 + τ − 1 = 0 whose positive root is√
5−1
2 ≈ 0, 618 and it is called the golden number.

The stop criterium for Fibonacci method could be either the number of iter-
ations or a threshold for the final uncertainty interval, mean for Uniform and
Golden Search methods it could only be the second one. This paper proposes to
automatically define for all them a threshold as the minimum difference between
the score of two words granted by the measure in question. In this way, the
target of automatically defining an optimal FL is maintained.
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Additionally, just the Uniform Search method need to defined the number
of evaluation points in each iteration, which makes it a non strictly automatic
method. We made the common election of 3 evaluations per iteration.

Another method, proposed by us and called Absolute method, consists in
arbitrarily choosing a sequence of FLs, obtaining a sample of all possible FLs,
and selecting that with higher value of the target function.

5 Experiments

The Absolute, Fibonacci, Uniform and Golden Search methods are compared
among them. Also, they are compared with reference values which are obtained
by selecting the maximum and the average of F1 in test. The Maximum Reference
is the one to which we can aspire at most and the Average Reference is a good
reference to compare with. The FLs chosen for the Absolute method are the
ones reported in [5], which are 20%, 40%, 60%, 80%, 85%, 90%, 95%, 98%. The
methods are applied to the best measures obtained for each corpus in [5] (tf , IG,
Lir, Dir and ILir for Reuters and tfidf , CET , L, Dir and IL for Ohsumed).
The evaluation function is chosen to be F1 of a Cross Validation (CV) with 2
folds and 5 repetitions over SVM in the training phase. Then, the FL obtained
is applied to the test phase.

5.1 The Corpus

This section describes the corpora used in the experiments.

i) Reuters-21578 Collection. The Reuters-21578 corpus is a set of economic
news published by Reuters in 19872. They are distributed over 135 categories.
Each document belongs to one or more of them. The distribution of the doc-
uments is quite unbalanced and the words in the corpus are little scattered.
The split into train and test documents chosen is that of Apté [9]. Removing
some documents without body or topics, 7063 train and 2742 test documents
assigned to 90 categories are obtained.

ii) Ohsumed Collection. Ohsumed is a MEDLINE subset of references from
270 medical journals over 1987-19913. They are classified into the 15 fixed
categories of MeSH 4: A, B, C ... Each category is in turn split into sub-
categories. We have taken the first 20000 documents of 1991 with abstract,
labelling the first 10000 documents as training and the rest as test ones. We
split them into the 23 subcategories of category C of MeSH. The distribution
of documents over the categories is much more balanced and the words are
quite more scattered.

2 It is publicly available at http://www.research.attp.com/lewis/reuters21578.html
3 It can be found at http://trec.nist.gov/data/t9-filtering
4 Available at www.nlm.nih.gov/mesh/2002/index.html
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Table 1. Macroaverage and Microaverage of F1 for Reuters-21578 and Ohsumed

Reuters
Macroaverage Microaverage

Absolute Fibonacci Golden Uniform Absolute Fibonacci Golden Uniform
tf 47.34% 37.73% 36.53% 47.80% 86.12% 83.12% 82.92% 85.59%
IG 46.99% 47.19% 47.59% 48.07% 85.96% 83.70% 83.83% 85.51%
Lir 50.35% 50.36% 50.50% 50.97% 86.16% 85.66% 85.87% 86.02%
Dir 46.43% 49.85% 50.34% 50.10% 85.16% 85.67% 85.95% 85.75%
ILir 40.20% 18.20% 18.20% 16.49% 84.80% 32.66% 32.66% 74.53%

Ohsumed
Macroaverage Microaverage

Absolute Fibonacci Golden Uniform Absolute Fibonacci Golden Uniform
tfidf 40.68% 16.64% 16.61% 41.98% 50.00% 27.32% 27.29% 50.69%
CET 41.22% 20.44% 20.62% 38.77% 50.38% 32.24% 32.32% 49.41%
L 46.18% 46.06% 45.39% 51.49% 51.54% 51.25% 50.73% 57.25%
Dir 52.08% 51.27% 51.78% 51.76% 57.56% 57.36% 57.49% 57.47%
IL 41.17% 17.42% 17.42% 19.34% 51.10% 32.42% 32.42% 33.70%

Table 2. Maximum and Average Reference

Reuters Ohsumed
Maximum Average Maximun Average

Macrova. Microav. Macroav. Microav. Macroav. Microav. Macroav. Microav.
tf 46.13% 85.28% 44.56% 84.74% tfidf 42.43% 51.42% 41.31% 50.51%
IG 49.19% 85.53% 47.58% 85.14% CET 48.91% 55.69% 46.99% 54.23%
Lir 49.01% 85.26% 47.41% 84.81% L 51.32% 56.92% 47.59% 53.55%
Dir 46.71% 84.87% 43.60% 80.76% Dir 52.37% 58.04% 50.19% 56.61%
ILir 49.01% 85.07% 47.51% 84.66% IL 45.76% 52.21% 49.79% 56.11%

5.2 Results

Table 1 shows the macroaverage and microaverage of F1. Table 2 shows the
Maximum Reference and the Average Reference and Table 3 does the results of
a one-tail paired t-test over F1 at a significance level of 95% among all methods.

With regard to Reuters-21578, the results reveal that for tf , IG and Lir the
Uniform Search method performs better in the macroaverage, mean the Abso-
lute method does in the microaverage. Golden Search improves the rest of the
methods for Dir and Absolute method does for ILir. Also, Maximum Reference
and Average Reference are improved by most of the measures and methods. The
hypothesis contrasts show that, in general, there not exist appreciable differences
among the methods for IG, Lir and Dir, that the Absolute method is signifi-
cantly better than the rest for ILir and that both Absolute and Uniform Search
methods do for tf . By contrast, for Ohsumed, Uniform Search improves the rest
of the methods for tfidf and L, being the results almost the same for all the
methods for Dir and being the Absolute method better for CET and IL, either
for the macroaverage and the microaverage. Here, only L and Uniform method
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Table 3. t-test of F1 between Absolute, Fibonacci, Golden and Uniform Search meth-
ods (”+” means that the method in the left is significantly better than the method in
the right , ”=” means that there are not appreciable differences between both methods
and ”-” means that the method in the right is significantly better that method in the
left)

Reuters Ohsumed
tf IG Lir Dir ILir tfidf CET L Dir IL

Uni-Abs = = = + - = = = = -
Fib-Abs - = = = - - - = = -
Gol-Abs - = = = - - - = = -
Fib-Uni - = = = = - - - = =
Gol-Uni - = = = = - - - = =
Gol-Fib = = = + = = = = = =

improve both references, although Dir for all methods and tfidf for Uniform
Search method do with regard to the Average Reference. The t-test reveals that,
in general, the Absolute and Uniform methods are significantly better than the
rest for tfidf and CET , only the Absolute method does for IL and only the
Uniform Search method does for L, being all the methods statistically similar
for Dir.

The differences in the behaviour of the macroaverage and microaverage for
Reuters-21578 is due to its unbalanced distribution of the documents over the
categories, being for Ohsumed quite similar. Also, the little scattered distribution
of words the best the performance is, since there exists a higher probability of
selecting specific words and hence an adequate FL.

Those methods assume that the target function is unimodal, and we are not
able to assure it. Hence, the risk of finding a local maximum is latent. This could
be reduced locating first a smaller uncertainty interval and then applying the
methods over it. But the methods available for this purpose require the values of
the gradient or in the case of the comparison methods, they require the manually
setting of some parameters.

Among the methods proposed, only Fibonacci and Golden Search methods
are strictly automatic methods, since Absolute method needs to fix the FLs and
Uniform Search method requires to define the number of evaluations in each
iteration.

6 Conclusions and Future Work

This paper proposes an automatic method based on an univariate maximization
to obtain optimal FLs when FS is performed in TC using scoring measures.

Among the methods available, only comparison methods could be applied,
since our target function is not even continuous. Four methods were selected,
called Absolute, Fibonacci, Golden and Uniform Search methods.

The results reveal that, in general, Absolute and Uniform Search methods are
better. For Reuters-21578 the results reached, for most measures and methods,
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the Maximum Reference and the Average Reference values, mean Ohsumed only
does it for some.

Among the methods, only Fibonacci and Golden Search ones are strictly
automatic methods.

As future work, we plan to study some alternatives to automatically avoid the
local maximums. We are also interested in applied other maximization methods
like genetic algorithms or simulated annealing.
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Abstract. Block clustering or simultaneous clustering has become an
important challenge in data mining context. It has practical importance
in a wide of variety of applications such as text, web-log and market
basket data analysis. Typically, the data that arises in these applications
is arranged as a two-way contingency or co-occurrence table. In this pa-
per, we embed the block clustering problem in the mixture approach. We
propose a Poisson block mixture model and adopting the classification
maximum likelihood principle we perform a new algorithm. Simplicity,
fast convergence and scalability are the major advantages of the proposed
approach.

1 Introduction

Cluster analysis is an important tool in a variety of scientific areas such as pat-
tern recognition, information retrieval, microarray, data mining, and so forth.
Although many clustering procedures such as hierarchical clustering, k-means or
self-organizing maps, aim to construct an optimal partition of objects or, some-
times, of variables, there are other methods, called block clustering methods,
which consider simultaneously the two sets and organize the data into homoge-
neous blocks. If x denotes a data matrix defined by x = {(xj

i ); i ∈ I and j ∈ J},
where I is a set of objects (rows, observations, cases) and J is a set of variables
(columns, attributes), the basic idea of these methods consists in making per-
mutations of objects and variables in order to draw a correspondence structure
on I × J .

These last years, block clustering (also called biclustering) has become an
important challenge in data mining context. In the text mining field, Dhillon
[3] has proposed a spectral block clustering method by exploiting the duality
between rows (documents) and columns (words). In the analysis of microarray
data where data are often presented as matrices of expression levels of genes
under different conditions, block clustering of genes and conditions has permitted
to overcome the problem of the choice of similarity on the two sets found in
conventional clustering methods [2]. Also, these kinds of methods have practical
importance in a wide variety of applications such as text, web-log and market
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basket data analysis. Typically, the data that arises in these applications is
arranged as a two-way contingency or co-occurrence table.

In this paper, we will focus on these kinds of data. In exploiting the clear
duality between rows and columns, we will study the block clustering problem
in embedding it in the mixture approach. We will propose a block mixture model
which takes into account the block clustering situation and perform an innova-
tive co-clustering algorithm. This one is based on the alternated application of
Classification EM [1] on intermediate data matrices. To propose this algorithm,
we set this problem in the classification maximum likelihood (CML) approach
[9]. Results on simulated data are given, confirming that this algorithm works
well in practice.

This paper is organized as follows. Section 2 begins with a description of the
Croki2 algorithm proposed by Govaert [5] to partitioning simultaneously the
rows and columns of a contingency table. As we are interested in the modeling
of our problem, we review briefly the block mixture model in Section 3. In Section
4, we propose a Poisson block mixture model adapted to our situation and a new
algorithm based on the Classification EM algorithm. And to achieve our aim we
study the behavior of our algorithm and compare it with the Croki2 algorithm
in Section 5. Finally, the last section summarizes the main points of this paper.

Notation: we now define the notation that is used consistently throughout this
paper. The two-way contingency table will be denoted x ; it is a r × s data
matrix defined by x = {(xij); i ∈ I, j ∈ J}, where I is a categorical variable with
r categories and J a categorical variable with s categories. We shall denote the
row and columns total of x by xi. =

∑
j xij and x.j =

∑
i xij and the overall total

simply by n =
∑

ij xj
i . We will also use the frequency table {(fij = xij/n); i ∈

I, j ∈ J}, the marginal frequencies fi. =
∑

j fij and f.j =
∑

i fij , the row
profiles f i

J = (fi1/fi., . . . , fis/fi.) and the average row profile fJ = (f.1, . . . , f.s).
We represent a partition of I into g clusters by z = (z1, . . . , zr) where zi, which
indicates the component of the row i, is represented by zi = (zi1, . . . , zig) with
zik = 1 if row i is in cluster k and 0 otherwise. Then, the kth cluster corresponds
to the set of rows i such that zik = 1. We will use similar notation for a partition
w into m clusters of the set J . In the following, to simplify the notation, the
sums and the products relating to rows, columns or clusters will be subscripted
respectively by letters i, j or k without indicating the limits of variation, which
will be thus implicit. Thus, for example, the sum

∑
i stands for

∑r
i=1 or

∑
i,j,k,�

stands for
∑r

i=1
∑s

j=1
∑g

k=1
∑m

�=1.

2 The Croki2 Algorithm

2.1 Aim of Croki2

To measure the information brought by a table of contingency, one seeks to eval-
uate the links existing between the two sets I and J . There are several measures
of association and the most employed is the chi-square χ2. This criterion, used
for example in the correspondence analysis, is defined as follows
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χ2(I, J) =
∑
i,j

(xij − xi.x.j

n )2
xi.x.j

n

= n
∑
i,j

(fij − fi.f.j)2

fi.f.j
.

This measure usually provides statistical evidence of a significant association, or
dependence, between rows and columns of the table. This quantity represents
the deviation between the theoretical frequencies fi.f.j, that we would have if
I and J were independent, and the observed frequencies fij . If I and J are
independent, the χ2 will be zero and if there is a strong relationship between
I and J , the χ2 will be high. So, a significant chi-square indicates a departure
from row or column homogeneity and can be used as a measure of heterogeneity.
Then, the chi-square can be used to evaluate the quality of a partitions z of I
and w of J : for this, we will associate to these partitions z and w the chi-square
χ2(z,w) of the contingency table with g rows and m columns obtained from
the initial table in making the sum of rows and columns of each cluster. It is
straightforward that we have

χ2(I, J) ≥ χ2(z,w) (1)

which shows that the proposed regrouping necessarily leads to a loss of infor-
mation. The objective of classification is to find the partitions z and w which
minimize this loss, i.e. which maximizes χ2(z,w). Let us notice that when for
each cluster the row profiles and the column profiles are equal, the inequality (1)
becomes χ2(z,w) = χ2(I, J) and in this particular case there is no loss of infor-
mation. In addition, the problem we define has a sense only when the number of
clusters is fixed. In the opposite case, the optimal partition is just the partition
where each element of I form a cluster.

To maximize χ2(z,w), Govaert [5] has proposed the Croki2 algorithm. The
author has shown that the maximization of χ2(z,w) can be carried out by the
alternated maximization of χ2(z, J) and χ2(w, J) which guarantees the con-
vergence. The Mndki2 algorithm that we describe hereafter can perform these
maximizations.

2.2 The Mndki2 Algorithm

The Mndki2 algorithm is based on the same geometrical representation of a con-
tingency table as that which is used by correspondence analysis. This represen-
tation is justified for several reasons, in particular for the similar roles reserved
for each of the two dimensions of the analyzed table and the property of distribu-
tional equivalence allowing for a great stability of the results when agglomerating
elements with similar profiles. In this representation, each row i is associated to a
point vector Rs defined by the profile f i

J weighted by the marginal frequency fi..
The distances between profiles is not defined by the usual Euclidean metric but
rather by the weighted Euclidean metric, called the chi-squared metric, defined
by the diagonal matrix diag( 1

f.1
, . . . , 1

f.s
).

If z is a partition of the rows, we can define the frequencies fkj =
∑

i/zik=1 fij

and the average row profile of the kth cluster fk
J = (fk1/fk., . . . , fks/fk.) where
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fk. =
∑

j fkj . With this representation, we can show after some calculus that
the total of squared distances T , the between cluster sums of squares B(z) and
the within cluster sums of squares W (z) can be written

T =
∑

i

fi.d
2(f i

J , fJ) =
1
n

χ2(I, J),

B(z) =
∑

k

fk.d
2(fk

J , fJ) =
1
n

χ2(z, J) and W (z) =
∑

k

∑
i|zik=1

fi.d
2(f i

J , fk
J ).

Then, the traditional relation between the total of squared distances, the
within cluster sums of squares and the between cluster sums of squares T =
W (z) + B(z) leads to the following relation

χ2(I, J) = n.W (z) + χ2(z, J).

Thus, nW (z) represents the information lost in regrouping the elements ac-
cording the partition z, and χ2(z, J) corresponds to the preserved information.
Consequently, since the quantity χ2(I, J) does not depend on the partition z, the
research of the partition maximizing the criterion χ2(z, J) is equivalent to the
research of the partition minimizing criterion W (z). To minimize this criterion,
it is then possible to apply k-means to the set of profiles with the χ2 metric. One
thus obtains an iterative algorithm, called Mndki2, maximizing locally χ2(z, J).

2.3 Description of Croki2

Finally the different steps of the Croki2 algorithm are the following.

1. Start from an initial position (z(0),w(0)).
2. Computation of (z(c+1),w(c+1)) starting from (zc,wc):

(a) Computation of z(c+1). From z(c), we use Mndki2 on the contingency
table (I,w) obtained by making the column sums of each cluster of w.

(b) Computation of w(c+1). From w(c), we use Mndki2 on the contingency
table (z, J) by making the row sums of each cluster of z.

3. Iterate the steps 2 until the convergence.

3 Block Mixture Model

The mixture model is undoubtedly one of the greatest contributions to clustering
[8]. It offers a great flexibility and solutions to the problem of the number of
clusters. Its associated estimators of posterior probabilities allow one to obtain
a fuzzy or hard clustering by using the maximum a posterior principle.

For the classical mixture model, we have shown [6] that the probability den-
sity function of a mixture sample x defined by f(x; θ) =

∏
i

∑
k πkϕ(xi; αk)

where the πk’s are the mixing proportions, the ϕ(xi; αk) are the densities of each
component k, and θ is defined by (π1, . . . , πg, α1, . . . ,αg), can be written as

f(x; θ) =
∑
z∈Z

p(z; θ)f(x|z; θ), (2)
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where Z denotes the set of all possible partitions of I in g clusters, p(z; θ) =∏
i πzi and f(x|z; θ) =

∏
i ϕ(xi; αzi). With this formulation, the data matrix x

is assumed to be a sample of size 1 from a random (r, s) matrix.
To study the block clustering problem, we have extended the formulation (2)

to propose a block mixture model defined by the following probability density
function f(x; θ) =

∑
u∈U p(u; θ)f(x|u; θ) where U denotes the set of all possible

partitions of I × J and θ is the parameter of this mixture model. In restricting
this model to a set of partitions of I × J defined by a product of partitions of
I and J , which will be supposed to be independent, we obtain the following
decomposition

f(x; θ) =
∑

(z,w)∈Z×W
p(z; θ)p(w; θ)f(x|z,w; θ)

where Z and W denote the sets of all possible partitions z of I and w of J .
Now, extending the latent class principle of local independence to our block

model, the xj
i will be supposed to be independent once zi and wj are fixed;

then, we have f(x|z,w; θ) =
∏

i,j ϕ(xij ; αziwj ) where ϕ(x, αk�) is a probability
density function defined on the real set R. Denoting θ = (π, ρ, α11, . . . ,αgm)
where π = (π1, . . . , πg) and ρ = (ρ1, . . . , ρm) are the vectors of probabilities
πk and ρ� that a row and a column belong to the kth component and to the
�th component respectively, we obtain a block mixture model with the following
probability density function

f(x; θ) =
∑

(z,w)∈Z×W

∏
i

πzi

∏
j

ρwj

∏
i

∏
j

ϕ(xij ; αziwj ).

To tackle the simultaneous partitioning problem, we will use the CML approach,
which aims to maximize the classification log-likelihood called complete data log-
likelihood associated to the block mixture model. With our model, the complete
data are (z,w,x) and the classification log-likelihood is given by

L(θ;x, z,w) = log(p(z; θ)p(w; θ)f(x|z,w; θ)).

4 Block Mixture Model for Contingency Table

4.1 The Model

Counts in the r×s cells of a contingency table are typically modelled as random
variables. In our situation, we assume that for each block k� the values xij are
distributed according the Poisson distribution P(αiβiδk�) and the probability
mass function is

e−αiβjδk�(αiβjδk�)xij

xij !
.

The Poisson parameter is split into αi, βj the effects of the row i and the col-
umn j and δk� the effect of the block k�. Because the aim is to maximize the
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complete data log-likelihood not only depending on θ but on z,w, an adapted
re-parametrization of the Poisson distribution becomes necessary. To this end,
we impose some constraints and we assume that∑

�

β�δk� = 1 and
∑

k

αkδk� = 1 with αk =
∑
i,k

zikαi, β� =
∑
j,�

wj�βj .(3)

The classification log-likelihood L(θ;x, z,w) takes the following form∑
i,k

zik log πk +
∑
j,�

wj� log ρ�

+
∑
k,�

(xk� log δk� − αkβ�δk�) +
∑

i

xi. log αi +
∑

j

x.j log βj + cste. (4)

From (4), it is straightforward that for (z,w) fixed, a solution for the maximiza-
tion of L(θ;x, z,w) is given by

αk = xk. β� = x.� and δk� =
xk�

xk.x.�
with xk� =

∑
i,j,k,�

zikwj�xij , (5)

and therefore αi = xi. and βj = x.j which do not depend on the blocks. Finally,
the maximization of L(θ;x, z,w) reduces to minimizing the following criterion

Lc(z,w, θ) =
∑
i,k

zik log πk +
∑
j,�

wj� log ρ� +
∑
k,�

xk� log δk�

=
∑
i,k

zik log πk +
∑
j,�

wj� log ρ� +
∑

i,j,k,�

zikwj�xij log δk�

where θ = (π, ρ, δ11, . . . , δgm) with
∑

� x.�δk� = 1 and
∑

k xk.δk� = 1.

4.2 Cemcroki2 Algorithm

To maximize Lc(z,w, θ), we propose to maximize alternatively the classification
log-likelihood with w and ρ fixed and then with z and π fixed. By noting ui� =∑

j wj�xij , the classification log-likelihood can be written as

Lc(z,w, θ) =
∑
i,k

zik log πk +
∑
j,�

wj� log ρ� +
∑
i,k

zik

∑
�

ui� log δk�.

Let γk� denote u.�δk�, since u.� = x.� we have
∑

� γk� = 1 and Lc(z,w, θ) breaks
into two terms

Lc(z,w, θ) = Lc(z, θ/w) + g(x,w, ρ)

where the first one corresponds to classification data log-likelihood of classical
mixture model

Lc(z, θ/w) =
∑
i,k

zik log(πkΦ(ui, γk))
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where Φ(ui, γk) is the multinomial for ui1, . . . , uim with the probabilities γk1, . . . ,
γkm and the second one which does not depend on z

g(x,w, ρ) =
∑
j,�

wj� log ρ� −
∑

�

u.� log u.�.

Hence, the conditional classification log-likelihood Lc(z, θ/w) corresponds to
the complete log-likelihood associated to multinomial mixture applied on the
samples u1, . . . ,ur where ui = (ui1, . . . , uim). Maximizing Lc(z,w, θ) for w fixed
is equivalent to maximize the conditional classification log-likelihood Lc(z, θ/w),
which can be done by the CEM algorithm applied to the multinomial mixture
model. The different steps of CEM are

– E-step: compute the posterior probabilities t
(c)
ik ;

– C-step: the kth cluster of z(c+1) is defined with

z
(c+1)
ik = 1 if k = argmaxk=1,...,g t

(c)
ik and z

(c+1)
ik = 0 otherwise

– M-step: by standard calculations, one arrives at the following re-estimations
parameters.

π
(c+1)
k =

#z
(c+1)
k

r
and γ

(c+1)
k� =

uk�

xk.
=⇒ δ

(c+1)
k� =

uk�

xk.x.�
=

xk�

xk.x.�

where # denotes the cardinality.

In the same way, taking the sufficient statistic vkj =
∑

i,k zikxij , we can easily
show that Lc(z,w, θ) = Lc(w, θ/z)+ g(x, z, π) and therefore develop the differ-
ents steps of the CEM algorithm applied on vj = (vj1, . . . , vjg). Finally, we can
describe easily the different steps of the algorithm called Cemcroki2.

1. Start from an initial position (z(0),w(0), θ(0)).
2. Computation of (z(c+1),w(c+1), θ(c+1)) starting from (z(c),w(c), θ(c)):

(a) Computation of z(c+1), π(c+1), δ(c+ 1
2 ) using the CEM algorithm on the

data (u1, . . . ,ur) starting from z(c), π(c), δ(c).
(b) Computation of w(c+1), ρ(c+1), δ(c+1) using the CEM algorithm on the

data (v1, . . . ,vs) starting from w(c), ρ(c), δ(c+ 1
2 ).

3. Iterate the steps 2 until the convergence.

If we substitute γk� by their M-step re-estimation formula, the criterion takes
the following form

Lc(z,w, θ) =
∑

k

#zk log πk +
∑

�

#w� log ρ� +
∑
k,�

xk� log
xk�

xk.x.�
.

Having found the estimate of the parameters and noting fk� = xk�

x..
, the criterion

is expressed as

Lc(z,w, θ) =
∑

k

#zk log πk +
∑

�

#w� log ρ� + x..

∑
k,�

fk� log
fk�

fk.f.�
+ cste (6)
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Note that the term
∑

k,� fk� log fk�

fk.f.�
is the mutual information I(z,w) quanti-

fying the information shared between z and w. It is easy to show it from the
definition in terms of entropies I(z, z) = H(z) + H(w) − H(z,w) where H(.)
is the entropy. Furthermore, using the approximation 2x log x ≈ x2 − 1, the
expression of L(θ;x, z,w) can be approximated by

Lc(z,w, θ) =
∑

k

#zk log πk +
∑

�

#w� log ρ� +
x..

2
χ2(z,w) + cste. (7)

Then, from (6) and (7), when the proportions are fixed the maximization of
L(θ;x, z,w) is equivalent to the maximization of the mutual information I(z,w)
and approximately equivalent to the maximization of the chi-square criterion
χ2(z,w): the use of the both criteria χ2(z,w) and I(z,w) assumes implicitly
that the data arise from a mixture of Poisson distributions.

5 Numerical Experiments

5.1 Synthetic Data

To illustrate the behavior of our algorithms Croki2 and Cemcroki2, we studied
their performances on simulated data. We selected thirty kind of data arising
from 3 × 2-component Poisson block mixture in considering two situations :
equal proportions (p1 = p2 = p3 and q1 = q2), and not equal (p1 = 0.70, p2 =
0.20, p3 = 0.10). These data are obtained by varying the following parameters:
the degree of overlap depending on θ = (π, ρ, δ) and the size. The overlap
can be measured by the Bayes error corresponding to our model. Its compu-
tation being theoretically difficult we used Monte Carlo simulations and evalu-
ated this error by comparing the simulated partitions and those we obtained by
applying a C-step. Six overlap have been considered and are approximatively
equal to 5%, 11%, 16%, 20%, 27%, 34%. Concerning the size, we took r × s =
(30× 20), (50× 20), (100× 20), (500× 20) and (1000× 20).

For each of these 30 data structures, we generated 30 samples and for each
sample, we ran Cemcroki2 and Croki2 30 times starting from random situations
and selected the best solution for each method. In order to summarize the be-
havior of these algorithms, we used the proportion of misclassified points ”error
rate” occurring for each sample.

The results obtained are displayed in Tables 1,2. For each data set and each
algorithm, we summarize the 30 trials with the means and standard deviations of
error rates obtained by comparing the partitions obtained by the both methods
and the simulated partitions.

From these first experiments, the main points arising are the following. When
the proportions are equal (see Table 1), the both algorithms are equivalent. In
contrary when the proportions are dramatically different (see Table2), in all
situations Cemcroki2 outperforms clearly Croki2 which does not hold account of
the proportions.
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Table 1. Cemcroki2 vs. Croki2 for 30 kinds of data when p1 = p2 = p3 and q1 = q2:
means and standard deviations of error rates

Overlap
Size 1 2 3 4 5 6

Cemcroki2 .070(.049) .131(.079) .221(.094) .269(.124) .349(.152) .413(.167)
30 Croki2 .071(.052) .133(.079) .222(.092) .269(.129) .348(.136) .430(.161)

Cemcroki2 .063(.029) .112(.050) .170(.063) .223(.078) .261(.105) .334(.167)
50 Croki2 .064(.029) .112(.050) .166(.052) .222(.073) .246(.096) .328(.158)

Cemcroki2 .058(.019) .109(.026) .153(.045) .184(.059) .210(.062) .253(.089)
100 Croki2 .059(.019) .108(.025) .156(.044) .193(.099) .206(.056) .261(.094)

Cemcroki2 .055(.011) .094(.013) .143(.020) .169(.040) .195(.023) .247(.115)
500 Croki2 .055(.012) .094(.013) .150(.060) .165(.020) .204(.062) .244(.107)

Cemcroki2 .054(.008) .094(.013) .138(.013) .174(.046) .188(.044) .267(.151)
1000 Croki2 .054(.008) .094(.013) .138(.013) .169(.016) .183(.014) .281(.167)

Table 2. Cemcroki2 vs. Croki2 for 30 kinds of data when p = (.70, .20, .10) and q1 = q2:
means and standard deviations of error rates

Overlap
Size 1 2 3 4 5 6

Cemcroki2 .075(.074) .167(.148) .407(.199) .429(.233) .474(.146) .511(.158)
30 Croki2 .145(.077) .245(.145) .432(.208) .463(.189) .519(.147) .570(.193)

Cemcroki2 .054(.041) .112(.077) .318(.194) .353(.177) .376(.150) .521(.137)
50 Croki2 .141(.067) .203(.068) .333(.168) .406(.159) .453(.170) .541(.158)

Cemcroki2 .044(.023) .109(.081) .200(.128) .266(.144) .373(.171) .415(.172)
100 Croki2 .144(.061) .192(.043) .258(.120) .305(.074) .422(.140) .520(.163)

Cemcroki2 .045(.010) .099(.092) .173(.129) .196(.101) .273(.129) .287(.110)
500 Croki2 .131(.028) .194(.080) .245(.106) .407(.150) .513(.144) .507(.115)

Cemcroki2 .043(.008) .072(.010) .177(.150) .215(.124) .299(.119) .301(.122)
1000 Croki2 .133(.016) .180(.020) .266(.122) .405(.160) .490(.137) .622(.164)

5.2 Real Data

To illustrate the Cemcroki2 algorithm on real data, we choose the SMART col-
lection from Cornell (ftp.cs.cornell.edu/pub/smart). The SMART collection con-
sists of Medline, a set of 1033 abstracts from medical journals, CISI, a set of 1460
abstracts from information retrieval papers and CRANFIELD sub-collection, a
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Table 3. Cemcroki2 vs BSGP and IT algorithms

Med. Cis. Cra.
z1 1008 23 2
z2 2 1453 6
z3 4 12 1383

Med. Cis. Cra.
965 0 0

65 1458 0
3 2 1390

Med. Cis. Cra.
977 22 34

1 1444 16
0 15 1384

set of 1400 abstracts from aerodynamic systems. After removing stop words and
numeric characters, Dhillon et al. [3] selected the top 2000 words by mutual
information as part of their pre-processing. The authors refer to this data as
Classic3. Note that for this example, Dhillon [3] and Dhillon et al. [4] have pro-
posed two block clustering algorithms. The first one (BSGP) deals to cluster
documents and words by using biparte spectral graph partioning and the sec-
ond one (IT) is based on the theory of information. In our experiment, since
we know the number of document clusters, we can give that as input of Cem-
croki2, BSGP and IT, g = 3 and we have taken m = 3. Table 3 shows the
three confusion matrices matrices obtained on the Classic3 data using these al-
gorithms. It appears clearly that Cemcroki2 outperforms BSGP and IT. The
number of documents misclassified are 49 for Cemcroki2, 70 for BSGP and 64
for IT.

6 Conclusion

Most of methods of statistical analysis are concerned with understanding re-
lationships among variables. With categorical variables, these relationships are
usually studied from data that has been summarized by a contingency table,
giving the frequencies of observations cross-classified by two variables. To clas-
sify the rows and the columns simultaneously of this contingency table, we
can use Croki2 which can be employed jointly with the correspondence
analysis.

In this paper, using a Poisson block mixture model, we have proposed the
Cemcroki2 algorithm which can be viewed as an extension of Croki2. In this set-
ting, the probabilistic interpretation of Croki2 constitutes an interesting support
to consider various situations and avoids the development of ad hoc methods: for
example, it allows one to take into account situations in which the clusters are
ill-separated or situations in which the proportions of clusters are different by
applying Cemcroki2 whereas the χ2 and the mutual information criteria assume
equal proportions implicitly. From our experiments, the new algorithm appears
clearly better than Croki2 in real situations when the proportions are not nec-
essary equal. In addition it has several advantages such as the simplicity, the
fast convergence and the scalability. Now, it would be interesting to consider
the block clustering problem under the ML approach and develop an adapted
version block EM [7].
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Abstract. This paper addresses a novel method of classifier combination for 
efficient object recognition using data context-awareness called "Adaptable 
Classifier Combination (ACC)". The proposed method tries to distinguish the 
context category of input image data and decides the classifier combination 
structure accordingly by Genetic algorithm. It stores its experiences in terms of 
the data context category and the evolved artificial chromosome so that the 
evolutionary knowledge can be used later. The proposed method has been 
evaluated in the area of face recognition. Most previous face recognition 
schemes define their system structures at the design phases, and the structures 
are not adaptive during operation. Such approaches usually show vulnerability 
under varying illumination environment. Data context-awareness, modeling and 
identification of input data as data context categories, is carried out 
using SOM(Self Organized Map). The face data context are described based on 
the image attributes of light direction and brightness. The proposed scheme can 
adapt itself to an input data in real-time by identifying the data context category 
and previously derived chromosome. The superiority of the proposed system is 
shown using four data sets: Inha, FERET and Yale DB.  

1   Introduction 

Much research has been devoted on this problem. However, most object recognition 
methods today can only operate successfully only under strongly constrained images 
captured in controlled environments. In this paper, we discuss about evolvable 
classifier combination that can behave in a robust manner under such variations of 
input image data. It employs the concept of context-awareness and Genetic algorithm, 
and determines a most effective structure of classifier combination for an input data.  

The context-awareness consists of context modeling and identification. 
Context  modeling can is be performed by an unsupervised learning method such as 
SOM. Context identification can be implemented by a normal classification method 
such as NN, k-nn, etc. Classifier structure is encoded in terms of artificial 
chromosome, and Genetic algorithm is used to explore a most effective classifier 
combination structure for each identified data context category. The knowledge of an 
individual context category and its associated chromosomes of effective classifiers is 
stored in the context knowledge base in order to preventing repetitive search.  
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Classifier combination scheme is expected to produce a superior performance to a 
single classifier in terms of accuracy and reliability [1]. Even though some research 
reported that classifier combination methods might not be a primary factor for 
improving accuracy [2], they might be at least a secondary factor for that [3]. The 
classifier combination approaches can be found in the literature of classifier fusion 
[4,5,6], classifier ensemble [7], etc.  Several researchers have studied theoretically the 
area of classifier combination, however, they treated only some special cases [3, 8]. 
Kuncheva studied the limited type of classifier combination where only the 
aggregation  of individual classifier outputs [1] is discussed.  

In classifier fusion, individual classifiers are activated in parallel, and group 
decision is used to combine the output of the classifiers. In classifier selection, the 
selection of a proper classifier that is most likely to produce an accurate output for a 
given environment (sample data) is attempted.  Most classifier fusion approaches 
assume that all classifiers employ the same feature space. Some classifier selection 
approaches need prior knowledge which classifier is specialized in which region of 
the feature space. Contrary to the previous approaches, the proposed method is 
relatively general in a sense that it can combine classifiers with the strategy of static 
classifier selection, dynamic classifier selection, classifier fusion, hybrid, etc.  

We will deal with image objects the spacial boundaries of which can be well 
estimated in prior, called "spacially well-defined object classes" without loss of 
generality. Face images are in the class of well-defined image objects, the spacial 
boundaries of which can be well estimated in prior. Recently, face recognition 
becomes a popular task in visual information processing research. It is one of the most 
promising application areas of computer vision. Face recognition technology has been 
motivated from the application areas of physical access control, face image 
surveillance, visual communication for human computer interaction, and humanized 
robot vision. Many face recognition methods are proposed such as PCA [9], FLD [10, 
11], ICA(Independent Component Analysis) [12], and Gabor based approaches [13]. 
Even though many algorithms and techniques are invented, face recognition still 
remains a difficult problem yet, and existing technologies are not sufficiently reliable, 
especially under diversity of input image quality. Recently, several researchers have 
tried to attack on this problem [14, 15]. Liu and Wechsler [15] have introduced 
EP(Evolutionary Persuit) for face image encoding, and have shown its successful 
application. However, EP needs too large search space, i.e. time-consuming, to be 
employed in real world applications. The illumination cone approach [14] has 
proposed a generative model that can be used to render face images under novel 
illumination conditions. The proposed method has been tested using four data sets and 
their virtual data sets: Inha, FERET and Yale database where face images are exposed 
to different lighting condition (see Fig. 1). We achieve encouraging experimental 
results showing that the performance of the proposed method is superior to those of 
most popular methods. 

The major contributions of this paper are: 1) it achieves highly robust and real time 
classifier scheme under varying lighting condition by providing the capability of 
adaption/evolution and 2) it solves the time-consuming problem of the multiple 
classifier based on a conventional GA by introducing the context-aware multiple 
classifier method. The paper is organized as follows. In the section 2, we present the 
proposed architecture for context-aware evolutionary computation and the overview 
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of the proposed face recognition scheme. In the section 3, we discuss about the 
illumination modeling and illumination identification using Kohonen's Self 
Organization Map. In the section 4, we present the adaptive classifier combination for 
face recognition. Finally, we give the experimental results and the concluding remarks 
in the section 5 and 6, respectively. 

(a) Yale database                                          (b) FERET database 

Fig. 1. Various face database 

2   Adaptive Classifier Combination Scheme  

The proposed ACC (Adaptable Classifier Combination) scheme consists of the 
context identification module (CIM), the evolution control module (ECM), the Action 
module (AM), the evolutionary module (EM), and the context knowledge base (CKB) 
(see Fig.2). 

 

Fig. 2. The block diagram of the proposed ECC scheme 

The CIM identifies a current context using context input data. Context can be 
various configurations, computing resource availability, dynamic task requirement, 
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application condition, environmental condition, etc.. Context describes a trigger of the 
scheme action using the previously accumulated knowledge of context-action relation 
in the CKB. The CKB over a period of time and-or the variation of a set of context 
informations of the system over a period of time. Context data is defined as any 
observable and relevant attributes, and its interaction with other entities and/or 
surrounding environment at an instance of time. 

The AM consists of one or more action primitives. The action primitives can 
be heterogeneous, homogeneous, or hybrid operational entities. For example, the 
action primitives of a pattern classifier are divided into preprocessing, feature 
representation, class decision, post processing primitives. The ECM searches for a 
best combining structure of action primitives for an identified context. Initially, the 
scheme accumulates the knowledge in the CKB that guarantees optimal performance 
for individual identified context. The CKB stores the expressions of identifiable 
contexts and their matched actions that will be performed by the AM. The matched 
action can be decided by either experimental trial-and-error or some automating 
procedures. In the operation time, the context expression is determined from the 
derived context representation, where the derived context is decided from the context 
data. The ECM searches the matched action in the CKB, and the AM performs the 
action. 

3   Context Identification Modeling (CIM) 

The CIM identifies context or context category from context input data in order to 
determine the structure of the AM. The CIM is implemented by the hybrid of 
Kohnen's self-organizing map (SOM) [7] and decides the category of current context. 
The ECM searches for the best chromosome from the CKB. The CIM is trained to 
distinguish input image quality in term of data context such as brightness and light 
direction. SOM is selected to be the most promising algorithm for constructing the 
model of face images under changing lighting condition. SOM can be used to create 
an intuitive model of the important concepts contained in information [21, 22].  

Continuous-valued vectors of face image features which are presented sequentially 
without specifying the desired output. After a sufficient number of input vectors have 
been presented, network connection weights specify clusters, the point density 
function of which tends to approximate the probability density function of the input 
vectors. In addition, the connection weights will be organized such that topologically 
close nodes are sensitive to inputs that are similar. SOM is used to model image-based 
visual thesaurus identifying changing lighting condition. An example of training data 
for the SOM is shown Fig.3. 
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100
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100
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Fig. 3.  Face data vectorization is 1x100 dimensions 
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Next figure shows images of three clusters various illuminant face dataset(Yale 
database ), we define 3 step illuminant environment.  

Cluster3  

Fig. 4. Discriminant result for illumination conditions in Yale databse 

4   The Adaptive Classifier Combination for Face Recognition  

The proposed ECC method has been tested in the area of object recognition. We deal 
with image objects the spacial boundaries of which can be well estimated in prior, 
called spacially well-defined object classes. Face images are in the class of well-
defined image objects, the spacial boundaries of which can be well estimated in prior.  

 

Fig. 5.  An example of situation-aware classifier fusion 
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4.1   ACC Implementation for Face Recognition  

In general, it is almost impossible or very difficult to decide an optimal classifier or 
classifier structure at the design step considering all possible factors of operational 
time variations. We employ the strategy that the classifier structure, is allowed to 
evolve or adapt itself dynamically during operation in accordance with changing 
quality of input image data, i.e.data context. Changes in image data can include 
lighting direction, brightness, contrast, and spectral composition. The architecture of 
face recognition using the ECC is given in Fig. 5. 

4.2   Chromosome Encoding and Fitness Function  

The GA is employed to search among the different combinations of feature 
representations (if any) and combining structure of classifiers. The optimality of the 
chromosome is defined by classification accuracy and generalization capability. Fig. 6 
shows a possible encoding of chromosome description.  

Fig. 6.  A possible chromosome description of the proposed scheme 

As the GA searches the genospace, the GA makes its choices via genetic operators 
as a function of probability distribution driven by fitness function. The genetic 
operators used here are selection, crossover, and mutation [7]. The GA needs a salient 
fitness function to evaluate current population and chooses offspring for the next 
generation. Evolution or adaption will be guided by a fitness function defined in terms 
of the system accuracy and the class scattering criterion.  

The evolutionary module derives the classifier being balanced between successful 
recognition and generalization capability. The fitness function adopted here is defined 
as follows:  

)()()( 21 VVV gs ηληλη +=  (1) 

where  ηk
(V) is the term for the system correctness, i.e., successful recognition rate and  

ηk
(V) is the term for class generalization. λ1 and λ2 are positive parameters that indicate 

the weight of each term, respectively. 
Let  ω1,ω2, .., ωk be the classes and N1, N2, …, Nk be the number of images in each 

class, respectively. Let  M1, M2, .., Mk be the means of corresponding classes, and Mωk 
be the total mean in the Gabor feature space. Then, Mi can be calculated,  
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4.3   The Face Recognition Scheme Using ACC  

The recognition system learns an optimal structure of multi-classifier and Gabor 
representation by restructuring its structure and parameters. Preprocessing is 
performed for providing nice quality images as much as possible using conventional 
image filtering techniques. The image filters employed here is the lighting 
compensation, histogram equalization, opening operation, boost-filtering. We use 5 
classifiers, Eigenface, Gabor3, Gabor13, Gabor 28, and Gabor30, for the AM. The 
details of classifiers are given in the followings. 

Classifier Gabor3, Gabor13, Gabor 28, Gabor30  
The Gabor wavelet transform guided by an evolutionary approach has been employed 
to adapt the system for variations in illumination. The proposed approach employs 
Gabor feature vector, which is generated from the Gabor wavelet transform. The 
kernels of the Gabor wavelets show biological relevance to 2-D receptive field 
profiles of mammalian cortical cells. The receptive fields of the neurons in the 
primary visual cortex of mammals are oriented and have characteristic frequencies. 
Gabor wavelet is known to be efficient in reducing redundancy and noise in 
images.Face gabor vector is generated as shown Fig.8. We adopt 4 Gabor based 
classifiers: Gabor3, Gabor13, Gabor28, Gabor30 and weighted Gabor32. They are 
different only in the number of feature points. 

 

Fig. 7.  An example of feature points for face recognition 

Classifier Eigenface Based Face Classifier 
The eigenface is constructed registration images of FERET, Yale, our Lab database. 
first step : We made in covariance matrix of registration data. Next figure is shown 
eigenface of each person. The eigenface is belong to global recognition. registration 
data computed covariance matrix.  

 

Fig. 8. Face recognition architecture using PCA 

Face 
Images 

Convariance
Matrix 

Eigenvalue  
Egenface 

Face 
Database 
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The details of the face recognition scheme constructing the CKB is given in the 
following:  

Step 1. Cluster input images into the illumination categories using the SOM in the 
CAM (Data context analysis). 

Step 2. Start to search for an optimization of classifier structure for each illumination 
category until a criterion is met, where the criterion is the fitness does not 
improve anymore or the predefined maximum trial limitation is encountered as 
follows.  
1)  Generate initial population of classifier structures. 
2) Evaluate the fitness function of the scheme using the newly derived 

population of the classifier structures. If the criterion is met, Go to Step 3. 
3) Search for the population of the classifier structures that maximize the 

fitness function and keep those as the best chromosomes. 
4) Applying GA's genetic operators to generate new population from the 

current classifier structures. Go to Step 2.2). 
Step 3. Update the CKB (Context Knowledge Base) for the identified illumination 

category and the derived classifier structure. 

The recognition task is carried out using the knowledge of the CKB evolved from 
the evolutionary mode as follows:  

Step  1. Identify the illumination situation in the CAM. 
Step  2. Search for the chromosome from the CKB representing the optimal classifier 

structure corresponding to the identified illumination category. 
Step  3. Perform the task of recognition using the restructured feature vector. 
Step 4. If the system performance is measured to fall down below the predefined 

criterion, the system activates the evolution mode, and/or evolves the system 
periodically or when it is needed. 

5   Experimental Results  

The feasibility of the proposed method has been tested in the area of face recognition 
using Inha, FERET[16], Yale [17]. Experiments have been carried out to compare the 
performance of the proposed evolvable classifier combination, that the best among 
individual classifiers. We used 1000 images of 100 persons from our lab data set, 330 
images of 33 persons excluding 99 images of wearing sunglasses from AR face data 
set, 60 images of 15 persons from Yale Face DB [17], and 2418 images of 1209 
persons from FERET data set. The above data sets are merged for  training and testing 
the CAM (see session 3). The data context of the merged data is analyzed by the 
SOM. Fig. 10 shows the examples of six data context clusters.   

The data clustering process: 

1. Design the individual classifiers D1..DL using the labeled data set Z  
2. Disregrading the class labels, cluster Z into C clusters, using, e.g., the SOM 
clustering procedure. Find the cluster centroids V1, ..., Vk as the arithmatic means of 
the points in the respective clusters.  
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Fig. 9.  The examples of face image clustered into six categories using SOM 

The first experiment was performed using the data set accumulated by our lab 
InhaDB. The data set has 1000 face images from 100 people. We used 5 images for 
registration of each person. The remaining 500 images are used as the test images. For 
the Yale data set, we used 15 registration face images and 45 test images. The FERET 
gallery images of 1196 people were used for registration and 1196 
probe_fafb_expression images were used for test. Table 1 shows the recognition 
performance of individual classifiers for each cluster. One can note that single 
classifier cannot be the winner of all clusters. For example, Gabpr13 and Gabor30 
show the highest performance in cluster0. PCA shows the highest performance in 
Cluster2. The Fig. 11. is shown the recognition rate of individual classifiers for 
individual clusters. Thus, the proposed adaptive method should be useful under 
uneven illumination environments. 

PCA

Gabor3

Gabor13

Gabor28

Gabor32

 

Fig. 10. The recognition rate of individual classifiers for individual clusters 
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Table 1.  The context-based face recognition using classifier fusion by GA in six cluster  

Database 
CF 

(Proposed Method) 
Majority 
voting 

PCA Ganor3 Gabor13 Gabor28 Gabor32 

FERET(1196) 95% 91% 90% 25% 50.25% 90.25% 94% 

Yale(10) 98.5% 92.30% 85% 10% 30% 85.25% 96.5% 

Our Lab(100) 99% 94% 92% 30% 65% 93% 97% 

 

Fig. 11. The recognition rate for the each database 

Fig 11 shows a recognition rate of proposed method and comparison with other 
methods. It is 99% for our Lab DB, 98.5% for Yale dataset and 95 % for FERET 
dataset.  

Table 2.  Comparative Testing Performance: FERET database 

Method Rank1 correct acceptance 

Eigenface[18] 83.4% 

Eigenface by Bayesian[19] 94.8% 

Evolutionary Pursuit[20] 92.14% 

Proposed method  95% 

Table 2 shows the comparative test performance by Eigenface using Bayesian 
theory, linear discriminant, elastic graph matching, and evolutionary pursuit. The 
recognition rate of Eigenface is 83.4 % and Evolutionary Pursuit is 92.14 %. In own 
experimental results, the proposed method shows recognition rate of over 95 % for 
FERET dataset, which exceeds the performance of the other popular methods. The 
context-based classifier fusion method performs better than single classifier method 
because the image feature is different according context information. From Table 2, it 
becomes apparent that the proposed method shows good recognition performance. 
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6   Conclusion  

In this paper, adaptive classifier combination (ACC), a novel method of classifier 
combination using data context-awareness is proposed and applied to object 
recognition problem. The research generated clustering and classifier fusion by GA. 
The proposed method tries to distinguish its input data context and evolves the 
classifier combination structure accordingly by Genetic algorithm. This included the 
use of the clustering by SOM for data context-awareness modeling and identification 
of input data as data context categories. The proposed scheme can optimize itself to a 
given data in real-time by using the identified data context and previously derived 
chromosome in varying illumination. We tested using three datasets: Inha DB, 
FERET DB, Yale DB. Its performance is evaluated through extensive experiments to 
be superior to those of most popular methods, especially in each cluster.   
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Abstract. This paper proposes a new approach to train ensembles of
learning machines in a regression context. At each iteration a new learner
is added to compensate the error made by the previous learner in the
prediction of its training patterns. The algorithm operates directly over
values to be predicted by the next machine to retain the ensemble in
the target hypothesis and to ensure diversity. We expose a theoretical
explanation which clarifies what the method is doing algorithmically and
allows to show its stochastic convergence. Finally, experimental results
are presented to compare the performance of this algorithm with boosting
and bagging in two well-known data sets.

1 Introduction

As long as problems modern data analysis has to tackle on become harder, ma-
chine learning tools reveal more important abilities for the process of extracting
useful information from data [7].

Intuitively, learning systems are such that they can modify their actual be-
havior using information about their past behavior and their performance in the
environment to achieve a given goal [9]. Mathematically speaking, the supervised
learning problem can be put in the following terms: given a sample of the form
T = {(x1, y1) . . . (xn, yn)}, xi ∈ X , yi ∈ Y obtained sampling independently a
probability measure P over X × Y , we are asked to recover a function f0(x),
such that it minimizes the risk functional

R(f) = EX×Y [Q(f(x), y)] =
∫

X×Y

Q(f(x), y)dP (x, y) (1)

where Q is a problem specific loss function, integrable in the measure P . The
space X is usually named “the input space” and Y “the output space” of the
problem, when the function f0 -to be recovered- is thought as a mapping from
X to Y , underlying the particular sample pairs (xi, yi). Since in realistic scenar-
ios, the measure P is not known, the risk functional cannot be computed and
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neither its minimum f0. So, it is necessary to develop some induction criterion
to be minimized in order to get an approximation to this, which is typically the
empirical risk

R(f) = ÊX×Y [Q(f(x), y)] =
∑

i

Q(f(xi), yi) (2)

Machine learning deals with the problem of proposing and analyzing such in-
ductive criteria. One of the most successful approaches introduced recently in
this field, relies on the idea of using a set of simple learners to solve a problem
instead of using a complex single one. The term used to describe this set of
learning machines is “an ensemble” or “a committee machine”.

The practice and some theoretical results [5] [6] have revealed that diversity
is a desirable property in the set of learners to get real advantages of combining
predictors. Ensemble learning algorithms can then be analyzed describing the
measure of diversity they are - implicitly or explicitly- using and the way in which
they are looking for the maximization of this quantity. Boosting and bagging,
for example, introduce diversity perturbing the distribution of examples each
machine uses to learn. In [14] an algorithm to introduce diversity in neural
networks ensembles for regression was described. In this approach we encourage
decorrelation between networks adding a penalty term to the loss function. [17]
and [5] are examples where negative correlation between learners of the ensemble
is looked for.

In the present paper, an algorithm to generate ensembles for regression is
examined. It is shown that this algorithm introduces a strictly non-positive cor-
relation between the bias of learner at time t and the average bias of previous
learners. This approach allows to introduce diversity without damaging the per-
formance of the machine on the training set. Theory shows that this approach
stochastically converges, while experimental results show that this works well in
practice. The structure of this paper is as follows: in the next section we present
the ensemble model for learning from examples discussing the notion of diversity
in a regression context. We also introduce for comparing purposes, boosting and
bagging. Following with this idea, we present in the third section the proposed
algorithm and discuss the theoretical aspects of the same. Finally we show a
set of experiments on two difficult benchmarks, to test the final algorithm and
compare the results with boosting and bagging. The fifth section is devoted to
some concluding remarks and future work.

2 Ensemble Learning and Diversity

To solve the problem of learning from examples -formalized in the latter section-
one needs to choose an hypothesis space H for searching the desired f0 or an
approximation to this. Statistical learning theory establishes that the particular
structure of this space is fundamental for guaranteeing the well-behavior of the
inductive criterion selected for the learning machine.
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The strategy chosen in ensemble learning is to set a base space H and get a
hypothesis from the convex hull co(H) of this space, defined as

co(H) =

{
n∑

i=1

aihi(x) :
n∑

i=1

ai = 1, hi ∈ H, n ∈ N

}
(3)

When modular versions of ensemble learning are wanted it is enough to mod-
ify the latter definition to allow ai’s to be functions in some space A. We are
interested, however, in non-modular versions of ensemble learning.

The problem in designing ensemble learning algorithms is how to navigate
through this space to look for the desired function. In other words, What set
of functions must one choose and combine in the ensemble?. Studies tend to
show that diversity in errors is a key characteristic to get better generalization
performance, although the way they define this concept is highly heterogeneous.

In [1] the following property for an ensemble fens =
∑

i wifi and the quadratic
loss function was proved, ∀y

(fens − y)2 =
∑

i

wi(fi − y)2 −
∑

i

wi(fi − fens)2 (4)

The last result is very clarifying about the benefits of error decorrelation be-
tween learners in an ensemble. It states that the quadratic loss of the ensemble
is the weighted average of individual errors minus the weighted average of in-
dividual deviations with respect to the ensemble. The latter term, also called
“ambiguity” guarantees that the ensemble error is always less than the average
error of members. Although, in general there may always be a learner better
than the ensemble in a particular point y, we cannot know a priori which is, and
then the ensemble is a reasonable gamble. If we define as measure of “diversity”
the second term of the decomposition we have a concrete explanation of the
phrase “diversity is good for ensembles”, at least in the case of regression with
quadratic loss.

The intuitive search for diversity can be seen clearly in the classical algo-
rithms for ensemble learning: boosting and bagging [8]. In Bagging [3], one per-
turbs data distribution each machine uses to learn by resampling uniformly with
replacement the original empirical distribution of the training set. This proce-
dure is particulary effective to generate diversity when the predictors to be joined
are unstable. In boosting [15] [16], machines are trained sequentially passing all
the training patterns through the last machine and noting which ones are most
in error. For these patterns, their sampling probabilities are adjusted so that
they are more likely to be picked as members of the training set of the next
machine. Empirical results in classification [13] and regression [4] tend to show
that boosting, although more sensitive to outliers, is better than bagging. Some
researchers however, have informed problems with overfitting in boosting for
regression.
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3 The Proposed Algorithm

3.1 Motivation

Let us consider an ensemble that is a uniformly weighted convex combination of
t hypotheses, that is

f̄t = (1/t)
t∑

i=1

fi(x) (5)

If we are learning with the quadratic loss function, the bias-variance decompo-
sition states that the generalization error of the estimator can be decomposed
in two terms: bias and variance. The bias can be characterized as a measure
of how close, on average over different training sets T , the estimator is to the
target. The variance is a measure of how stable the estimator is with respect to
the random training set T . Formally, for any fixed realization y of the output
random variable Y we have1

E
[
(f − y)2

]
= E

[
((f − E[f ]) + (E[f ]− y))2

]
= E

[
(f − E[f ])2

]
+ 2E [(f − E[f ])(E[f ]− y)] + E

[
(E[f ]− y)2

]
= E

[
(f − E[f ])2

]
+ (E[f ]− y)2

= var(f) + bias(f)2

For our ensemble (5) we can break down the variance term and get the Bias-
Variance-Covariance decomposition described in [10]. This is

E
[
(f̄t − y)2

]
= bias2(f̄t) + 1

t var(f̄t) + t−1
t covar(f̄t) (6)

where ensemble bias, variance and covariance are defined as

bias(f̄t) =
1
t

t∑
i=1

E[fi − y] (7)

var(f̄t) =
1
t

t∑
i=1

E
[
(fi − E[fi])2

]
(8)

covar(f̄t) =
1

t(t− 1)

t∑
i=1

∑
j 	=i

E [(fi − E[fi])(fj − E[fj ])] (9)

The connection of (6) with the ambiguity decomposition can be obtained after
a bit of algebra making wi = 1/t in (4)

E

[∑
i

1
t
(fi − f̄t)2

]
=

1
t

t∑
i=1

E[fi − f̄t]2 −
(

1− 1
t

)(
var(f̄t) + covar(f̄t)

)
(10)

1 Expectations are taken with respect to T .
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E

[∑
i

1
t
(fi − y)2

]
=

1
t

t∑
i=1

E[fi − f̄t]2 + bias(f̄t)2 + var(f̄t) (11)

So, it seems clear that a negative covariance term is desirable to get diversity in
the sense introduced in section 2.

Now, using the symmetry of the covariance function we can write the last
term as

2
t(t− 1)

t∑
i=2

∑
j<i

E [(fi − E[fi])(fj − E[fj ])] (12)

Let be ei = fi − E(fi) and ēi =
∑i−1

j=1 ej Then we can rearrange (9) to get

2
t(t− 1)

E

⎡⎣ t∑
i=2

ei

∑
j<i

ej

⎤⎦ =
2

t(t− 1)

t∑
i=2

E [eiēi] (13)

If we think the process of building an ensemble as a sequential process indexed
by the time i = 1, 2, . . ., the term

E [eiēi] (14)

is the expected correlation between the bias of the actual machine i and the
cumulated bias of the previous machines. Since (9) contributes positively to the
generalization error of the ensemble, it seems natural to encourage a decorre-
lation between these biases, forcing that the new machine makes errors in the
opposite direction to the ensemble error. Based on this idea, it is possible to build
an ensemble with a non-positive term (14) and (9), assuring diversity of their
members. A detailed exposition of this idea is the matter of the next section.

3.2 Formal Setting

Now, we will formalize the mathematical structure of the proposed algorithm. Let
be (Ω,F ,P) a probability space and X : Ω → R1, Y : Ω → R2, Wi : Ω → R2,
i = 1, . . . random variables, where R1 = Rd, R2 = Rq, d, q ∈ N, equipped with
the standard Borel σ-field; Wi, Wj mutually uncorrelated for i �= j. (X, Y ) will
represent the random sample from which a function is estimated to minimize
the risk functional (1); and Wi a random noise whose meaning will be soon
clarified. The process of sequentially learning an ensemble can be viewed as the
selection, from some hypothesis space H , of a set of random variables f1, f2, . . .,
fi : R1 → R2 to be aggregated in some way that we select to be the uniform
convex combination. Each function fi is obtained from a particular realization
of a random variable (Xi, Yi) which in general is a transformation of the original
(X, Y ). For example, in bagging, (Xi, Yi) are obtained resampling (X, Y ). In a
regression problem, the functions fi are asked to satisfy

Yi = fi(Xi) + Wi (15)
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where fi ∈ H minimizes

EXi×Yi {Q (Yi − gi(Xi))} =
∫

Xi×Yi

Q (Yi − gi(Xi)) dP (Xi, Yi) (16)

such that Wi models the error of the approximation given by fi over (Xi, Yi).
Our final purpose is to minimize at time t the ensemble error. If |g| is the

number of machines in the ensemble g it is stated as

f̄ t = arg min
g∈co(H),|g|=t

EX×Y {Q (Y − g(X))}

= argmin
fi∈H

EX×Y

{
Q
(
Y − 1

t

∑t
i=1 fi(X)

)} (17)

In our algorithm we choose to start by building a function ft=1 using (X,Y),
that is we make X1 = X, Y1 = Y and we wonder what (X2, Y2) must be, to
get the minimum of (17) at time t = 2 given that f1 was already chosen and
knowing that f2 satisfies (16). More generally, what (Xt+1, Yt+1) must be after
time t such that the ensemble at time t + 1 pursues to be the optimal ensemble.
If we choose Q to be the quadratic loss and derive the ensemble error at a given
point (x, y) with respect to the free variable after time t we get

δ

δft+1

(
y − f̄t(x)

)2 = 2

(
y − 1

t + 1

t+1∑
i=1

fi(x)

)
−1

t + 1
(18)

If f∗
t+1 is optimal it has to satisfy

y =
1

t + 1

t+1∑
i

f∗
i (x) =⇒ f∗

t+1(x) = y + ty − tf̄t (19)

If we name y − f̄t = ε̄t we have

f∗
t+1(x) = y + tε̄t (20)

that is, except by modelling noise Wt+1, the machine in time t + 1 has to ap-
proximate Y perturbed as in (20). If we define

εt = f∗
t (x) − f̄t, t > 1

ε1 = y − f1
(21)

that is, εt is the estimation error in time t, we obtain applying some steps of
algebra that

tε̄t = εt (22)

In summary, the ensemble learning algorithm works with the following recursive
structure of data sets:

Y1 = Y, X1 = X
Yt+1 = Y + Wt, Xt = X

(23)
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where random variables Xi, Yi, fi, Wi satisfy (15). Equivalently, the stochastic
process (Xt, Yt, Wt)t can be made explicitly Markovian with respect to the natu-
ral filtration writing Yt+1 as Yt−Wt−1+Wt. We now make the following remarks
with respect to the learning process built using this scheme.

Proposition 1. The ensemble process (f̄t)t, t = 1, 2, . . . defined by

f̄t = (1/t)
t∑

i=1

fi (24)

where fi satisfies (15) and Xi, Yi are defined by (23) satisfies

|f̄t − Y | = |Wt|
t

(25)

Then, if the errors Wi are almost surely bounded by C ∈ R2 or by a non-
increasing process (Ci)i, (f̄t)t converges in probability to Y. Moreover, the process
of ensemble errors (Y − f̄t)2 is almost surely O(1/t2) .

Proposition 2. Consider an ensemble (f̄t)t, t = 2, . . . built as in proposition
(1). If ∀t E(ft) = Y , term (14) is equal to −E(W 2

t−1) and so the covariance in
(9) is strictly non-positive.

The proof of both propositions is omitted for space limitations, but can be
obtained in [12].

3.3 The Algorithm

We now expose the final algorithm for ensemble regression with self-poised learn-
ing. As we have remarked previously we are interested in training a uniformly
weighted ensemble (5).

Algorithm 1 Self-Poised Learning
1: Let be M the required number of learners and z1 = {(x1, y1), . . . , (xn, yn)} a train-

ing set.
2: Generate an initial predictor f1 training a learner with z1 and the quadratic loss.
3: for t = 1 to M − 1
4: Set the ensemble at time t to be f̄t = 1/t

∑t
i=1 fi(x)

5: Compute the difference between the prediction and the target at time t, for each
point j = 1, . . . , n of the training set zt as:

εt
j = yt

j − ft(xj) (26)

6: Generate a new sample zt+1 = {(x1, y
t+1
1 ), . . . , (xn, yt+1

n )} by modifying the
targets to be predicted in time t + 1 as

yt+1
j = yj + εt

j (27)

7: Generate a new predictor ft+1 training a learner with zt+1 and the quadratic
loss.

8: end for
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If we examine algorithm 1 we will note that the key step is the generation of
a new data set to train the next machine added to the ensemble (step number 7).
This is based in the perturbation of the original data set with an innovation εt

j

which corrects the error of the ensemble at time t− 1. It should be noticed how-
ever, that in some cases the perturbation introduced generates a data too much
complicated for being approximated by the following machine, such that the er-
ror of the ensemble becomes worse when adding the former to this. To alleviate
this problem it is possible to consider a smoothing strategy which moderates
the innovation in some way, for example we can replace this by γ(t)εt

j where
γ(t) is a polynomial in t. The linear function γ(t) = t/M , where M is the final
number of machines in the ensemble, seems to be a good selection in practice,
although a formal study is required based on the smoothness of the final data
and the capacity of the trained learner. Another option to alleviate the effect of
a “bad” machine is to consider a rejection criterion like the used by boosting. A
possibility is to reject a machine when the sample probability of improving the
performance of the ensemble is lower than 1/2.

As we report in the following section, the presented algorithm exhibits a com-
petitive performance compared with classical algorithms in complicated data
sets, yet without a smoothing strategy and a rejection criterion. It was also
noted that self-poised learning shows to be very stable. It is important to re-
mark that our algorithm does not optimize the aggregation procedure like
boosting.

4 Experimental Results

Our experimental analysis will be made with respect to two well-known data
sets, Boston and Building2 which are reported as problematic by the presence
of outliers in the first case and by the time-series structure in the second. A
detailed description of both data sets can be obtained from the UCI Machine
Learning Repository [2]. The proposed algorithm is compared with bagging and
boosting as defined in [3] and [4] respectively.

Each reported experiment, that is, the algorithm and parameters combina-
tion, was repeated a minimum of 50 times, randomly reordering data each time,
to compute performance statistics with the quadratic loss. As learning machines
we select neural networks with one hidden layer trained using standard gradient
descent with learning parameter α = 0.2. We follow [11] to select a training
set equivalent to 75% of the total number of examples in the data and 25% for
testing, when validation was omitted. In the opposite case, the sizes was 50% for
learning, 25% for testing and 25% for validation. Validation was implemented
as proposed in [11], that is, when in two successive sample points the validation
error became worse, the learning was stopped. For training purposes, the data
was scaled to the unitary hypercube centered in the origin. We get a better per-
formance of the gradient descent algorithm with this transformation. Reported
errors were however computed in the original scale. Table 1 shows the results
for the proposed approach with different number of epochs to show the effect of
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Table 1. Comparing the proposed approach with a smoothing strategy (S) or without
one, and with different number of epochs (E) over data Boston (D1) and Building2
(D2). We computed over 50 trials: the average training mse (TR.Mean) and testing mse
(TS.Mean), the standard deviation of testing mse (TS.Std) and the minimum testing
mse (TS.Min). The ensemble was trained with 5 hidden neurons and 10 machines.

S E TR.Mean TS.Mean TS.Min TS.Std
D1 D2 D1 D2 D1 D2 D1 D2

no 100 9,8157 0,002930 16,8259 0,002998 7,3392 0,002827 5,2733 7,444E-5
no 200 7,7295 0,002701 16,4226 0,002874 8,5854 0,002843 5,7670 2,620E-5
no 500 5,8755 0,002538 15,6913 0,002730 7,9909 0,002679 6,8561 3,754E-5
no val 10,9654 0,002986 17,6639 0,003180 7,8914 0,002974 6,0502 7,861E-5
yes 100 9,5444 0,003126 14,8049 0,003203 8,1670 0,003116 4,3724 4,420E-5
yes 200 7,6429 0,002968 16,3222 0,003145 8,6203 0,002953 5,7258 6,897E-5
yes 500 6,1399 0,002380 14,4320 0,002450 8,0227 0,002410 4,1232 2,890E-5
yes val 8,6377 0,002934 16,6239 0,003002 7,3950 0,002827 5,7187 8,388E-5

smoothing. Table 2 compare the proposed algorithm with boosting and bagging,
using different structural parameters. For comparing, we select the strategy with
the best generalization rate (TS.Mean/TR.Mean).

5 Future Work

In this paper an algorithm to build an ensemble for regression was proposed.
The method is based on the idea of adding an artificial innovation to the map
to be predicted by each machine such that it compensate the error incurred by
the previous one. It was shown that this approach ensures diversity, furthermore
stochastic convergence was also proved. Future work has to consider a more
sound study of how to bound these innovations in order to avoid possible un-
stabilities. The convergence of the method is guaranteed only if the local errors
incurred by each individual learner are bounded by the same constant or are
non-increasing in time. If, on the other hand, the capacity of each learner is kept
fix but the map to be estimated is increasedly complex or irregular, the ensemble
could become worse with time because each machine must compensate the devi-
ations of the previous one with respect to its data. A possibility is to analytically
characterize the appropriate smoothing functions to compute the innovations. In
this work only a linear function was tested with moderate results. An alternative
approach could incorporate the smoothing function in the learning process itself,
estimating the amount of innovation to be applied in the next learner, similar
for example to the lateral feedbacks in cascade learning for neural networks.

It is also required to study a rejection criteria to reduce the influence of bad
machines or an optimization of the aggregation procedure to take in account the
quality of each machine, like boosting for regression.

Another issue to analyze is the generalization behavior of the method and
possible overfitting phenomena although the generalization rates exhibited by



Self-poised Ensemble Learning 281

Table 2. Performance results for ensemble learning algorithms with different number
of neurons (N) and ensemble sizes (M) over data Boston (D1) and Building2 (D2). We
computed over 50 trials the statistics in table 1 and the computation time in seconds
incurred by each algorithm (Time).

Statistic M N Self-Poised Bagging Boosting
D1 D2 D1 D2 D1 D2

TR.Mean 5 5 9,5324 0,002504 11,0582 0,002657 10,6459 0,002743
5 10 8,8845 0,002327 10,8725 0,002336 9,8158 0,002394
10 5 9,5444 0,002968 11,5588 0,002562 8,9136 0,002828
10 10 7,9763 0,002395 9,7304 0,002264 7,2538 0,002480
20 5 9,8657 0,002423 10,5024 0,002529 8,4366 0,002735
20 10 8,7424 0,002596 9,8524 0,002235 6,7876 0,002360

TS.Mean 5 5 17,1740 0,002588 17,5992 0,002762 18,0869 0,002918
5 10 15,7029 0,002593 17,2186 0,002539 17,0666 0,002698
10 5 14,8049 0,003145 16,0329 0,002687 16,9364 0,002970
10 10 15,6729 0,002817 15,9964 0,002467 16,6778 0,002751
20 5 17,2894 0,002767 16,2457 0,002629 16,0660 0,002952
20 10 15,9519 0,002654 14,2401 0,002431 14,7379 0,002690

TS.Min 5 5 9,7550 0,002516 9,5704 0,002473 9,0966 0,002673
5 10 7,1433 0,002544 8,1380 0,002539 8,7070 0,002494
10 5 8,1670 0,002953 10,0320 0,002318 10,1059 0,002683
10 10 6,9258 0,002759 6,3937 0,002254 9,8874 0,002476
20 5 9,2342 0,002676 9,4113 0,002354 8,6129 0,002606
20 10 8,1676 0,002583 6,4513 0,002152 8,3938 0,002528

TS.Std 5 5 5,0867 4,211E-5 5,3182 1,586E-4 6,0985 1,162E-4
5 10 4,9682 2,516E-5 6,0785 2,539E-4 4,4294 1,112E-4
10 5 4,3724 6,897E-5 4,1598 1,381E-4 5,0401 1,693E-4
10 10 5,1772 3,585E-5 5,6799 1,111E-4 4,4665 1,303E-4
20 5 6,4968 4,244E-5 4,2255 1,284E-4 3,7182 1,006E-4
20 10 5,4697 3,377E-5 4,3362 1,365E-4 3,7456 0,851E-4

Time 5 5 28,7810 715,6410 27,6090 704,8280 32,9180 701,1560
5 10 30,2570 741,7350 28,2190 727,2190 39,5270 733,1880
10 5 58,3940 1454,1250 54,4800 1409,2660 65,4850 1408,8750
10 10 61,2650 1506,2650 56,4140 1461,5160 73,3480 1466,2500
20 5 120,0470 2990,5470 110,2970 2822,9840 161,3320 2823,5780
20 10 127,8050 3103,3750 119,7420 2934,7500 164,7190 2935,4850

the algorithm in the reported experiments is comparable with those exhibited
by boosting and bagging.
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Abstract. We define a new pairwise sequence comparison scheme for distantly 
related proteins and report its performance on remote homology detection task. 
The new scheme compares two protein sequences by using the maximal unique 
matches (MUM) between them. Once identified, the length of all non-
overlapping MUMs is used to define the similarity between two sequences. To 
detect the homology of a protein to a protein family, we utilize the feature 
vectors containing all pairwise similarity scores between the test protein and the 
proteins in the training set. Support vector machines are employed for the binary 
classification in the same way that the recent works have done. The new method 
is shown to be more accurate than the recent methods including SVM-Fisher and 
SVM-BLAST, and competitive with SVM-Pairwise. In terms of computational 
efficiency, the new method performs much better than SVM-Pairwise. 

1   Introduction 

Automated categorization of proteins into their structural or functional classes is an 
important challenge for computational biology. Most current protein classification 
methods rely on computational solution for homology modeling via sequence 
similarity. The main assumption used here is that the primary sequence of proteins 
determines the structure and the structure determines the functional properties. Using 
this assumption, a new protein sequence is searched in large databases containing 
previously annotated proteins. If similar proteins are found, the new protein is 
assigned to same structural or functional classes with the associated ones. There are 
two main problems with this assumption. First, the target protein may be entirely new 
and its structure is different from all of the proteins available in the databases. 
Second, in spite of the weak similarity between two protein sequences they may still 
have evolutionary relationships. The first problem is a bottleneck of computational 
biology and there is no method that works well at the moment. The second problem is 
known as remote homology detection problem, and various methods have been 
proposed in recent years. In spite of several successful attempts, they are either 
computationally inefficient or insufficient to work for all cases. 

Since the introduction of dynamic programming based sequence alignment 
algorithm [12], many methods have been proposed for the comparison of protein 
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sequences. While the dynamic programming approach finds the optimal alignment 
between the sequences, it suffers from a long computation time for relatively long 
sequences. To speed up the alignment, some heuristic methods such as BLAST [1], 
have been defined to find a near-optimal alignment in a reasonable time. Although 
these methods are very successful in the search of homolog proteins, they do not 
perform well for the detection of remote homologies since the alignment scores fall 
into a twilight zone when the sequence similarity is below 40% [11]. The later 
methods have incorporated the family information to detect the more distant 
homologies and achieved approximately three times as accurate results as simple 
pairwise comparison methods [10]. These methods are based on the similarity 
statistics derived upon more than one homolog examples, that is, all statistical 
information is generated from a set of sequences that are known or posited to be 
evolutionary related to another. These probabilistic methods are often called as 
generative because they induce a probability distribution over the protein family and 
try to generate the unknown protein as a new member of the family from this 
stochastic model. Further improvements have also achieved by iteratively collecting 
homolog proteins from a large database and incorporating the resulting statistics into 
a central model [2,7]. The main problem with generative approaches is the fact that 
they produce so much false positives, that is, they report a number of homologs 
though they are not homolog.  

The recent works on remote homology detection have begun to use a 
discriminative framework to make separation between homolog (positive) and non-
homolog (negative) classes. In contrast to generative methods, the discriminative 
methods focus on learning the combination of features that discriminate between the 
classes. These methods try to establish a model that differentiates between positive 
and negative examples. In other words, non-homologs are also taken into account.  

In discriminative homology detection methods, there are two main phases: 
training and testing. The training phase constructs a machine learning classifier for the 
specified family, and the testing phase uses this classifier to decide whether the test 
protein is belonging to this family or not. In general, a machine learning classifier is 
constructed for each family in the database and the protein is checked if it is 
belonging to any of those known protein classes. Both phases require the extraction of 
some informative features from the protein sequence and the representation of these 
features in a suitable way. Fig. 1 gives an overview of the discriminative homology 
detection approach.  

The current methods using the discriminative approach differ in the feature 
extraction methods, the feature representation forms and the type of the machine 
learning classifiers they have used. Among k-Nearest Neighbor Method, Neural 
Networks and Support Vector Machine, the last one has been reported as 
outperforming to the others for homology detection purposes [8].  

Discriminative methods are more successful than generative methods in terms of 
separation accuracy between true positives and false positives. However, the training 
phase requires so much time with conventional workstations, which makes them 
inappropriate to use in practice. Thus, more efficient methods are required while 
preserving the classification accuracy. 
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Fig. 1. Discriminative homology detection model 

The first discriminative approach (SVM-Fisher) represents each protein by a 
vector of Fisher scores extracted from a profile Hidden Markov model constructed for 
a protein family and utilizes Support Vector Machines to classify the protein with 
those feature vectors [6]. A recent and more successful work, called SVM-Pairwise 
[8], combines the sequence similarity with the Support Vector Machines to 
discriminate between positive and negative examples. In SVM-Pairwise, both the 
training and test sets include positive and negative examples. Each protein, Px, in the 
data set is vectorized by ϕ(Px) with the following equation: 

ϕ(Px) = S(Px,P1),  S(Px,P2),…,S(Px,Pn) (1) 

where Pi is ith protein sequence in the training set, n is the total number of proteins in 
the training set, including both positives and negatives, and S(Px,Pi) is the alignment 
score between any protein sequences Px and Pi. This method has been tested for 
dynamic programming based alignment scores [12] and BLAST scores [1]. Note that 
the latter one is referred as SVM-BLAST in the following sections. SVM-Pairwise 
approach is among the best methods in terms of accuracy, but it suffers from 
computational inefficiency since the alignment takes too much time for long 
sequences. Another drawback of this approach is that the alignment may force some 
residues to match even if they are evolutionary not related. 

In this work, we try a more conservative approach to compare the protein 
sequences. Instead of using alignments, we define a new similarity scoring scheme 
based on more conserved sequence patterns, called maximal unique matches. This 
scheme does not require the alignment of the sequences but it quickly finds the 
matches between them. By combining the similarity scores obtained using the 
maximal unique matches with a binary classifier, Support Vector Machine, we 
perform protein family classification tests on a subset of SCOP families [9] and 
compare our results with those given by recent methods; SVM-Fisher, SVM-BLAST 
and SVM-Pairwise. The new method is better than SVM-Fisher and SVM-BLAST 
and competitive with SVM-Pairwise. In terms of computational efficiency, the new 
method performs much better than SVM-Pairwise. 
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2   Methods 

A maximal unique match (MUM) is defined as the substring which appears only 
once in both sequences and not contained in a larger such substring. With this 
definition, a maximal unique match can be considered as one of the core part in an 
alignment and yields an important evidence for the homology between the 
sequences. The definition is stricter than the alignment since it does not allow any 
substitution and repetition in the sequences when evaluating the similarity between 
them. However, since we deal with remote homolog proteins, the allowance of any 
mutation may lead to by-chance matches between the sequences. Therefore, this 
strict definition is expected to show more evidently the local relationships between 
the proteins. The definition of MUM has been originally introduced by Delcher et al. 
[3] to accelerate the alignment of long DNA strands. In this study, we adopt their 
definition for the protein sequences to represent the conservative relationships 
between them. 

Once identified, the length of all non-overlapping maximal unique matches can be 
used to compare two protein sequences; S(Px,Pi) score in Eq.2 is replaced by the total 
length of all MUMs, M(Px,Pi), in protein vectorization step; 

ϕ(Px) = M(Px,P1),  M(Px,P2),…, M(Px,Pn) (2) 

The simple sum of all MUM lengths leads to a serious problem when two or more 
MUMs overlap since the overlapping residues would be counted more than once. To 
overcome this problem, we modify the definition of M(Px,Pi) as the number of the 
residues contained in a maximal unique match between Px and Pi.

2.1   Finding MUMs  

To find the maximal unique matches, we used a special data structure called suffix 
tree. A suffix tree is a compacted tree that stores all suffixes of a given text string. (An 
example suffix tree is shown in Fig. 2.). It is a powerful and versatile data structure 
which finds application in many string processing algorithms [5]. 

Let A be string of n characters, A=s1s2…sn, from an ordered alphabet Σ except sn.
Let $ be a special character, matching no character in Σ, and sn be $. The suffix tree T
of A is a tree with n leaves such that; 

− Each path from the root to a leaf of T represents a different suffix of A.
− Each edge of T represents a non-empty string of A.
− Each non-leaf node of T, except the root, must have at least two children. 
− Substrings represented by two sibling edges must begin with different 
characters. 

The definition of a suffix tree can be easily extended to represent the suffixes of a 
set {A1,A2,…,An} of strings. This kind of suffix tree is called as a generalized suffix 
tree.
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Fig. 2. Suffix tree of  “abab$”.

To find maximal unique matches between any two sequences, first, a generalized 
suffix tree is constructed for the sequences. This is simply done by concatenating two 
sequences with a dummy character (not contained in the alphabet) between them and 
constructing a suffix tree for the newly created sequence. More formally, the 
generalized suffix tree GT of {A,B}, where A and B are the sequences being 
compared, is a suffix tree Tg of the sequence “a1a2…an#b1b2…bn$”.

In our representation, a maximal unique match is a maximal pair in the 
concatenated sequence one of which appears before the dummy character and the 
other appears after that. The algorithm to find maximal pairs is given by Gusfield [5]. 
We used a variation of this algorithm considering the fact that each of the pair should 
appear in different sequences. To satisfy this property, the following fact is used; in 
Tg, any internal node v which has exactly two childs both of which are leaves and 
represent the suffixes from different sequences is a matching node, and the path from 
root to a matching  node gives a unique match. 

The leaves of the suffix tree are numbered according to the position of the suffix 
which they represent. The node number of the leaf which represents the suffix 
“#b1b2…bn” is separating-point. Thus, we can find easily which sequence is 
represented by a leaf just looking whether its node number is smaller or grater than 
separating-point. Therefore, a bottom to up traversal of tree to find matching nodes 
gives us the unique matches in linear time. Since the construction of a suffix tree can 
also be completed in linear time [13], the algorithm for finding maximal unique 
matches would have a linear time complexity. The maximality of unique matches can 
be determined simply by mismatches at their left and right ends.  

2.2   The Classification 

To discriminate between positive and negative examples Support Vector Machines 
are used. SVMs are binary classifiers that work based on the structural risk 
minimization principle. An SVM non-linearly maps its n-dimensional input space into 
a high dimensional feature space. In this high dimensional feature space a linear 
classifier is constructed. To train the Support Vector Machines, SVM-Gist software, 
available at www.cs.columbia.edu/compbio/svm, is used. In SVM-Gist software, a 
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kernel function acts as the similarity score between pairs of input vectors. The base 
kernel is normalized in order to make that each vector has a length of 1 in the feature 
space, that is, 
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where X and Y are the input vectors, K(.,.) is the kernel function, and “.” denotes the 
dot product. This kernel is then transformed into a radial basis kernel K’(X,Y), as 
follows: 
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where the width σ is the median Euclidean distance from any positive training example 
to the nearest negative example. Since the separating hyperplane of SVM is required to 
pass from the origin, the constant 1 is added to the kernel so that the data goes away 
from the origin. An asymmetric soft margin is implemented by adding to the diagonal 
of the kernel matrix a value 0.02*ρ, where ρ is the fraction of training set proteins that 
have the same label with the current protein, as done in the previous SVM 
classification methods (SVM-Pairwise, SVM-BLAST, SVM-Fisher). The SVM output 
is a list of discriminant score values corresponding to each protein in the test set.   

3   Results 

There are two issues to be considered in remote homology detection task: accuracy 
and efficiency. The recent remote homology detection methods have been tested to 
see their ability to classify proteins into families in a subset of SCOP family database 
[9]. The accuracies of the methods are evaluated using sensitivity and specificity
measures. Sensitivity is defined as the ability to detect true positives (homolog 
proteins which are also reported as homolog). On the other hand, specificity is 
described as the ability to reject false positives. As all classification tasks do, the 
homology detection methods have to deal with the trade-off between specificity and 
sensitivity. 

For the cases in which the positive and negative examples are not evenly 
distributed, the best way to evaluate the trade-off between the specificity and 
sensitivity is to use a Receiver Operating Characteristics (ROC) curve [4]. A ROC 
score may be defined as the area under the ROC curve, where the ROC curve is 
plotted as the number of true positives as a function of false positives for varying 
classification thresholds. A score of 1 indicates that the positives are perfectly 
separated from negatives whereas the score of 0 yields that no positives are reported.  

All the tests are performed on a subset of the SCOP1.53 database including no 
protein pair with a pairwise similarity higher than an E-value of 10-25. The training 
and test sets are separated as done in the previous works [8] resulting with 54 families 
to test. The ROC scores obtained for the SCOP families, using four different methods 
including our method (SVM-MUM), are given in the Table 1.  
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Table 1. ROC scores for 54 SCOP families 

family SVM-Pairwise SVM-Fisher SVM-BLAST SVM-MUM 
1.27.1.1 0,971 0,511 0,890 0,950
1.27.1.2 0,918 0,629 0,779 0,889
1.36.1.2 0,935 0,845 0,870 0,955
1.36.1.5 0,976 0,641 0,708 0,913
1.4.1.1 0,968 0,708 0,878 0,980
1.4.1.2 0,814 0,795 0,810 0,834
1.4.1.3 0,944 0,635 0,999 0,970
1.41.1.2 0,999 0,956 1,000 0,954
1.41.1.5 0,998 0,935 0,996 0,927
1.45.1.2 0,971 0,547 0,729 0,921
2.1.1.1 0,978 0,840 0,949 0,883
2.1.1.2 0,994 0,756 0,972 0,970
2.1.1.3 0,985 0,844 0,907 0,966
2.1.1.4 0,974 0,876 0,947 0,886
2.1.1.5 0,832 0,647 0,790 0,799
2.28.1.1 0,815 0,490 0,389 0,559
2.28.1.3 0,829 0,596 0,412 0,543
2.38.4.1 0,697 0,501 0,702 0,780
2.38.4.3 0,707 0,419 0,764 0,681
2.38.4.5 0,877 0,539 0,668 0,786
2.44.1.2 0,146 0,533 0,925 0,403
2.5.1.1 0,925 0,680 0,899 0,840
2.5.1.3 0,896 0,669 0,826 0,782
2.52.1.2 0,643 0,472 0,641 0,793
2.56.1.2 0,844 0,612 0,878 0,839
2.9.1.2 0,874 0,485 0,543 0,887
2.9.1.3 0,970 0,655 0,909 0,989
2.9.1.4 0,918 0,431 0,645 0,926
3.1.8.1 0,963 0,323 0,406 0,990
3.1.8.3 0,931 0,445 0,345 0,986
3.2.1.2 0,838 0,371 0,842 0,806
3.2.1.3 0,898 0,611 0,746 0,807
3.2.1.4 0,964 0,847 0,969 0,850
3.2.1.5 0,932 0,597 0,854 0,879
3.2.1.6 0,912 0,624 0,776 0,822
3.2.1.7 0,909 0,536 0,812 0,922
3.3.1.2 0,937 0,733 0,847 0,836
3.3.1.5 0,917 0,448 0,709 0,828
3.32.1.1 0,946 0,777 0,866 0,826
3.32.1.11 0,880 0,899 0,888 0,947
3.32.1.13 0,836 0,727 0,646 0,901
3.32.1.8 0,901 0,759 0,776 0,781
3.42.1.1 0,886 0,687 0,923 0,795
3.42.1.5 0,811 0,586 0,580 0,665
3.42.1.8 0,760 0,425 0,930 0,710
7.3.10.1 0,986 0,898 0,997 0,978
7.3.5.2 0,996 0,850 0,992 0,919
7.3.6.1 0,998 0,985 0,999 0,945
7.3.6.2 0,994 0,955 0,997 0,969
7.3.6.4 0,992 0,864 1,000 0,993
7.39.1.2 0,928 0,713 0,877 0,898
7.39.1.3 0,990 0,820 0,985 0,922
7.41.5.1 0,791 0,798 0,916 0,505
7.41.5.2 0,943 0,979 0,999 0,605
Average 0,893 0,676 0,817 0,846
Std. Dev. 0,133 0,174 0,171 0,133
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According to the table, our method achieves the best accuracy in 13 of the 54 
families among the four methods compared. Both average ROC scores and pairwise 
comparison plots (Fig. 3) show that the new method performs better than SVM-
BLAST and SVM-Fisher and it is comparable with SVM-Pairwise. It should also be 
noted that the standard deviation on the ROC scores is the same as SVM-Pairwise.  
Since it has been already shown that the discriminative methods outperform the 
generative methods [6], we do not need to include them in the results. 

SVM-MUM vs. SVM-Fisher 
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Fig. 3. Pairwise comparison of  SVM-MUM with (a) SVM-Fisher (b) SVM-BLAST and (c) 
SVM-Pairwise 

Computational efficiency is another important aspect in the evaluation of methods. 
In this respect, SVM-MUM method is much more efficient than SVM-Pairwise. 
Considering that all other parts of the methods except the extraction of similarity 
scores are the same, the only factor to be compared is the calculation time for 
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pairwise similarities. In SVM-Pairwise, dynamic programming algorithm for two 
sequences with the lengths of n and m takes O(nm) time. On the other hand, all 
maximal unique matches can be identified in O(n+m) time, as described in Methods 
section. According to our experiments, calculation of all pairwise MUM scores for a 
protein is completed in 2 minutes on average, whereas the SVM prediction takes only 
a few seconds with a workstation having 2.0GHz CPU and 1GB RAM. Therefore, the 
stage for similarity calculations is the crucial part of the prediction system. 
Meanwhile, a straightforward ANSI C implementation for dynamic programming can 
complete the vectorization of a protein in between 7 and 9 minutes, i.e. approximately 
four times larger than MUM scoring. The same difference can also be observed in 
training stage. While SVM-MUM completes all training stage in 4 days, it takes up to 
20 days with SVM-Pairwise. This clearly shows the superiority of our method to 
SVM-Pairwise in terms of computational efficiency. 

4   Conclusion 

We define a new scheme based on the maximal unique sequence matches for the 
pairwise comparison of remote homolog proteins. As a result of protein family 
classification tests on a subset of SCOP database, it is observed that the maximal 
unique matches are very simple and efficient way of detecting remote homologies. 
When it is compared with the similar methods which utilize the dynamic 
programming based alignment and BLAST comparison, we have found that the new 
scheme is more accurate than BLAST and as successful as dynamic programming 
based alignment. In terms of computational efficiency, we have shown that the new 
method is much better than the dynamic programming algorithm.  
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Abstract. Clustering or bi-clustering techniques have been proved quite
useful in many application domains. A weakness of these techniques re-
mains the poor support for grouping characterization. We consider even-
tually large Boolean data sets which record properties of objects and we
assume that a bi-partition is available. We introduce a generic cluster
characterization technique which is based on collections of bi-sets (i.e.,
sets of objects associated to sets of properties) which satisfy some user-
defined constraints, and a measure of the accuracy of a given bi-set as
a bi-cluster characterization pattern. The method is illustrated on both
formal concepts (i.e., “maximal rectangles of true values”) and the new
type of δ-bi-sets (i.e., “rectangles of true values with a bounded number
of exceptions per column”). The added-value is illustrated on benchmark
data and two real data sets which are intrinsically noisy: a medical data
about meningitis and Plasmodium falciparum gene expression data.

1 Introduction

Clustering has been proved extremely useful for exploratory data analysis. Its
main goal is to identify a partition of objects and/or properties such that an
objective function which specifies its quality is optimized (e.g., maximizing intra-
cluster similarity and inter-cluster dissimilarity). Looking for optimal solutions
is intractable such that heuristic local search optimizations are performed [1].
Many efficient algorithms can provide good partitions but suffer from the lack of
explicit cluster characterization. For example, considering gene expression data
analysis, clustering is used to look for sets of co-expressed genes and/or sets
of biological situations or experiments which seem to trigger this co-expression
(see, e.g., [2]). In this context, an explicit characterization would be a symbolic
statement which “explains” why genes and/or situations are within the same
groups. Once such characterizations are available, it supports the understanding
of gene regulation mechanisms. Our running example r (see Table 1) concerns a
toy Boolean data set. For instance, it encodes gene expression properties (e.g.,
over-expression) in various biological situations and, genes denoted by p1, p3, p4
are considered over-expressed in situation o1.

The crucial need for characterization has motivated the research on con-
ceptual clustering [3]. Among others, it has been studied in the context of co-
clustering or bi-clustering [4,5,6,7], including for the special case of categorial
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Table 1. A Boolean context r

p1 p2 p3 p4 p5

o1 1 0 1 1 0
o2 0 1 0 0 1
o3 1 0 1 1 0
o4 0 0 1 1 0
o5 1 1 0 0 1
o6 0 1 0 0 1
o7 0 0 0 0 1

or Boolean data. The goal is to identify bi-clusters or bi-partitions in the data,
i.e., a mapping between a partition of situations (more generally objects) and
a partition of gene expression properties (more generally, Boolean properties of
objects). For instance, an algorithm like Cocluster [6] can compute the inter-
esting bi-partition {{{o1, o3, o4}, {p1, p3, p4}}, {{o2, o5, o6, o7}, {p2, p5}}} from r.
The first bi-cluster indicates that the characterization of objects from {o1, o3, o4}
is that they almost always share properties from {p1, p3, p4}. Also, properties in
{p2, p5} are characteristics for objects in {o2, o5, o6, o7}. Unfortunately, this first
step towards characterization is not sufficient to support the needed interac-
tivity with the end-users who have to interpret the resulting (bi-)partitions.
Our thesis is that it is useful to look for bi-sets, i.e., sets of objects associ-
ated to sets of properties, that exhibit strong and characteristic relations be-
tween bi-cluster elements. For instance, once a bi-partition of a Boolean gene
expression data set has been found, one can be interested in studying all the
interactions between genes involved in a “cancer” bi-cluster, and these inter-
actions might imply genes which are involved in “non cancerous” processes
as well.

Given a bi-partition on a Boolean data set, our goal is to provide character-
izing patterns for each bi-cluster and our contribution is twofold. First, we intro-
duce an original and generic cluster characterization technique which is based on
constraint-based bi-set mining, i.e., mining bi-sets whose set components satisfy
some constraints, and a measure of the accuracy of a given extracted bi-set as
a characterization pattern for a given bi-cluster (see Section 2). We also discuss
the opportunity to shift from the characterization by bi-sets towards a char-
acterization based on association rules. The method is then illustrated on two
kinds of bi-sets, the well-known formal concepts (i.e., associated closed sets [8]
or, intuitively, “maximal rectangle of true values”) and a new class, the so-called
δ-bi-sets. This later pattern type is new and it is based on a previous work about
approximate condensed representations for frequent patterns [9]. Intuitively, a
δ-bi-set is a “rectangle of true values with a bounded number of exceptions per
column” (see Section 3). We illustrate the added-value of our characterizing
method not only on a benchmark data set but also on two real-life data sets.
The obtained characterizations are consistent with the available knowledge (see
Section 4).
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2 Bi-cluster Characterization Using Bi-sets

Let us consider a set of objects O = {o1, . . . , om} and a set of Boolean properties
P = {p1, . . . , pn}. The Boolean context to be mined is r ⊆ O × P , where rij =
1 if the property pj is true for object oi. Formally, a bi-set is an element of
2O×2P . We assume that a bi-clustering algorithm, e.g., [6], provides a mapping
between k clusters of objects (say {Co

1 . . . Co
k}) and k clusters of properties (say

{Cp
1 . . . Cp

k}). A first characterization comes from this mapping.
Our goal is to support each bi-cluster interpretation by collections of bi-sets

which are locally pointing out interesting associations between groups of objects
and groups of properties. Therefore, we assume that a collection of N bi-sets
C = c1, . . . , cN has been extracted from the data. First, we associate each of them
to one the k bi-clusters to obtain a collection of k groups of bi-sets {C1, . . . , Ck},
where Ci ⊆ C. Each bi-set ∈ Ci characterizes the bi-cluster (Co

i , Cp
i ) with some

degree of accuracy.
Let us first define the signature in r of each bi-cluster (Co, Cp) denoted

μ(Co, Cp) = (τ , γ) where τ = {oi ∈ Co} and γ = {pi ∈ Cp}. We can now define
a similarity measure between a bi-set c = (T, G) and a bi-cluster signature:

sim(c, μ(Co, Cp)) =
|(T, G) ∩ (τ , γ)|
|(T, G) ∪ (τ , γ)| =

|T ∩ τ | · |G ∩ γ|
|T | · |G|+ |τ | · |γ| − |T ∩ τ | · |G ∩ γ|

Intuitively, bi-sets (T, G) and (τ , γ) denote rectangles in the matrix (modulo
permutations over the lines and the columns) and we measure the area of the
intersection of the two rectangles normalized by the area of their union.

Each bi-set c which is a candidate characterization pattern can now be as-
signed to the bi-cluster (Co, Cp) for which sim(c, μ(Co, Cp)) is maximal. Doing
so, we get k groups of potentially characterizing bi-sets. Finally, we can use an
accuracy measure to select the most relevant ones. For that purpose, we propose
to measure the exception ratios for the two set components of the bi-sets.

Given a bi-set (T, G) and a bi-cluster (Co, Cp), it can be computed as follows:

εo =
|{oi ∈ T | oi �∈ Co}|

|T | , εp =
|{pi ∈ G| pi �∈ Cp}|

|G|
It is then possible to consider thresholds to select only the bi-sets that have little
exception ratios, i.e., εo < εo and εp < εp where εo, εp ∈ [0, 1]. There are several
possible interpretations for these measures. If we are interested in characterizing
a cluster of objects (resp. properties), we can look for all the sets of properties
(resp. objects) for which the εo (resp. εp) values of the related bi-sets are less
than a threshold εo (resp. εp). Alternatively, we can consider the whole bi-cluster
and characterize it with all the bi-sets for which the two exception ratios εo and
εp are less than two threshold εo and εp.

3 Looking for Candidate Characterizing Bi-sets

We now discuss the type of bi-sets which will be post-processed for bi-cluster
characterization. It is clear that bi-clusters are, by construction, interesting char-
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acterizing bi-sets but they only support a global interpretation. We are interested
in strong associations between sets of objects and sets of properties that can lo-
cally explain the global behavior. Clearly, formal concepts can be used [8].

Definition 1 (formal concept). If T ⊆ O and G ⊆ P, assume φ(T, r) = {g ∈
P | ∀t ∈ T, (t, g) ∈ r} and ψ(G, r) = {t ∈ O | ∀g ∈ G, (t, g) ∈ r}. A bi-set (T, G)
is a formal concept in r when T = ψ(G, r) and G = φ(T, r). By construction,
G and T are closed sets, i.e., G = φ ◦ ψ(G, r) and T = ψ ◦ φ(T, r). Intuitively,
(T, G) is a maximal rectangle of true values.

({o1, o3}, {p1, p3, p4}), ({o1, o3, o4}, {p3, p4}), and ({o5, o6}, {p2, p5}) are exam-
ples of formal concepts among the 8 ones which hold in r (see Table 1). Efficient
algorithms have been developed to extract complete collections of formal con-
cepts which satisfy also user-defined constraints, e.g., [10,11]. A fundamental
problem with formal concepts is that the Galois connection (φ, ψ) is, in some
sense, a too strong one: we have to capture every maximal set of objects and its
maximal set of associated properties. As a result, the number of formal concepts
even in small matrices can be huge. A solution is to look for “dense” rectangles in
the matrix, i.e., bi-sets with mainly true values but also a bounded (and small)
number of false values or exceptions. Well-defined collections of dense bi-sets can
be obtained by merging formal concepts [12], i.e., a post-processing over collec-
tions of formal concepts. This turns to be intractable when the number of formal
concepts is too large. We propose a new type of bi-set which can be efficiently
extracted, including in noisy data in which it is common to have several millions
of formal concepts.

3.1 Mining δ-Bi-sets

We want to compute efficiently smaller collections of bi-sets which still capture
strong associations. We recall some definitions about the association rule mining
task [13] since it is used for both the definition of the δ-bi-set pattern type and
for bi-cluster characterization.

Definition 2 (association rule, frequency, confidence). An association
rule R in r is an expression of the form X ⇒ Y , where X, Y ⊆ P, Y �= ∅
and X ∩ Y = ∅. Its absolute frequency is |ψ(X ∪ Y, r)| and its confidence is
|ψ(X ∪ Y, r)|/|ψ(X, r)|.

In an association rule X ⇒ Y with high confidence, the properties in Y are
almost always true for an object when the properties in X are true. Intuitively,
X ∪ Y associated to ψ(X, r) is then a dense bi-set: it contains a few false val-
ues. We now consider our technique for computing association rules with high
confidence, the so-called δ-strong rules [14,9].

Definition 3 (δ-strong rule). Given an integer δ, a δ-strong rule in r is an
association rule X ⇒ Y (X, Y ⊂ P) s.t. |ψ(X, r)| − |ψ(X ∪ Y, r)| ≤ δ, i.e., the
rule is violated in no more than δ objects.
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Interesting collections of δ-strong rules with minimal left-hand side can be com-
puted efficiently from the so-called δ-free-sets [14,9,15] and their δ-closures.

Definition 4 (δ-free set, δ-closure). Let δ be an integer and X ⊂ P, X is
a δ-free-set in r iff there is no δ-strong rule which holds between two of its own
and proper subsets. The δ-closure of X in r, hδ(X, r), is the maximal superset Y
of X s.t. ∀p ∈ Y \X, |ψ(X ∪{p})| ≥ |ψ(X, r)|− δ. In other terms, the frequency
of the δ-closure of X in r is almost the same than the frequency of X when
δ << |O|. Moreover, ∀p ∈ hδ(X) \X, X ⇒ p is a δ-strong rule.

For example, in Table 1, the 1-free itemsets are {p1}, {p2}, {p3}, {p4}, {p5},
{p1, p2}, and {p1, p5}. An example of 1-closure for {p1} is {p3, p4}. The associa-
tion rules {p1} ⇒ {p3} and {p1} ⇒ {p4} have only one exception.

δ-freeness is an anti-monotonic property such that it is possible to compute
δ-free sets (eventually combined with a minimal frequency constraint) in very
large data sets. Notice that h0 ≡ φ◦ψ, i.e., the classical closure operator. Looking
for a 0-free-set, say X , and its 0-closure, say Y , provides the closed set X ∪ Y
and thus the formal concept (ψ(X ∪ Y, r), X ∪ Y ).

Definition 5 (δ-bi-set). A δ-bi-set (T, G) in r is built on each δ-free-set X ⊂ P
with T = ψ(X, r) and G = hδ(X, r).

In Table 1, the 1-bi-sets derived from the 1-free-sets {p3} and {p5} are
({o1, o3, o4}, {p1, p3, p4}) and ({o2, o5, o6, o7}, {p2, p5}). When δ << |T |, δ-bi-
sets are dense bi-sets with a small number of exceptions per column. In order to
experiment, we implemented a straightforward extension of AcMiner [9] which
provides the supporting set for each extracted δ-free-set.

3.2 Concepts vs. δ-Bi-sets

To study the relevancy of δ-bi-sets w.r.t. formal concepts, we have considered
the addition of noise to a synthetical data set. Hereafter, r denotes a reference
data set from which we generate noisy data sets by adding a given quantity
of uniform random noise. Then, we compare the collection of formal concepts
which are “built-in” within r with various collections of formal concepts and
δ-bi-sets extracted from the noised matrices. To measure the relevancy of each
extracted collection w.r.t the reference one, we look for subsets of the reference
collection in each of them. Since both set components of each formal concept
can be changed when adding noise, we identify those having the largest area in
common with the reference ones, and we compute the σ measure which takes
into account the common area:

σ(Cr, Ca) =
1

Nr

Nr∑
i=1

maxj

(
|(Ti, Gi)r ∩ (Tj , Gj)a|
|(Ti, Gi)r ∪ (Tj , Gj)a|

)
where Cr is the collection of formal concepts in reference r, Nr = |Cr|, Ca is a
noised collection of bi-sets, (Ti, Gi)r ∈ Cr and (Tj , Gj)a∈Ca. When σ(Cr, Ca) = 1,
all the bi-sets ∈ Cr have identical instances in Ca.



298 R.G. Pensa and J.-F. Boulicaut

Fig. 1. Size of different collections of bi-sets (left) and related values of σ (right) de-
pending on noise level

In the experiment, r has 30 objects and 15 properties and it contains 3 formal
concepts of the same size which are pair-wise disjoints. In other terms, the for-
mal concepts are ({o1, . . . , o10}, {p1, . . . , p5}), ({o11, . . . , o20}, {p6, . . . , p10}), and
({o21, . . . , o30}, {p11, . . . , p15}). We generated 40 different data sets by adding to
r increasing quantities of noise (from 1% to 40% of the matrix). Then, for each
data set, we have extracted a collection of formal concepts and different collec-
tions of δ-bi-sets with increasing values of δ (from 1 to 6). Finally, we looked for
the occurrence of the 3 formal concepts in each of these extracted collections by
using our σ measure. Results are in Fig. 1.

The σ measure decreases when the noise level increases. Interestingly, its
values for δ-bi-set collections are always greater or similar to the values for the
collection of formal concepts. The collections of δ-bi-sets contain always less
patterns than the collection of formal concepts (for a noise level greater than
7%). For δ = 2, the size is halved. For greater values of δ, noise does not influence
the size of the collections of δ-bi-sets. This experiment confirms that δ-bi-sets
are more robust to noise than formal concepts. Furthermore, it enables to reduce
significantly the size of the extracted collections and this is important to support
the interpretation process.

3.3 Using Association Rules

Association rules can be derived from extracted bi-sets and used for bi-cluster
characterization. For characterization but also classification, heuristics have been
studied which select relevant association rules based on their frequency and
confidence values [16,17,18]. In our case, we propose to use exception ratios
on the extracted bi-sets to provide characterization rules. They have the form
X ⇒ v where X is a set of properties (resp. objects if the transposed matrix
is used) and v is a variable denoting a cluster of objects (resp. properties).
When considering formal concepts, deriving characterization rules from them is
straightforward.
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Property 1. Given a bi-cluster (Co, Cp), if (T, G) is a formal concept, then G ⇒
Co (resp. T ⇒ Cp) is a rule with frequency equal to |T |·(1−εo) (resp. |G|·(1−εp))
and confidence equal to 1− εo (resp. 1− εp).

When we use δ-bi-sets instead of formal concepts, Property 1 does not hold
because |ψ(G, r)| < |T |. However, if we are interested in characterizing a cluster
of objects, we can use the following property:

Property 2. Given a cluster Co, if (T, G) is a δ-bi-set, and X ⊆ G is a δ-free-set
then X ⇒ Co is a rule with frequency equal to |T | · (1− εo) and confidence equal
to 1− εo.

Such rules are interesting in practice because X is often a rather small set
such that its interpretation is easier. However, this approach can not be applied
to data sets with large numbers of properties (e.g., for gene expression data sets
where thousands of properties are common). In such cases, we propose to use
the εo and εp measures.

3.4 Examples of Characterizing Queries

So far, we have a methodology for characterizing (bi-)clusters by using different
kinds of bi-sets or association rules which can be derived from them. Proposed
accuracy measures can be used for a direct selection of characterizing patterns
by means of queries:

– Select all the bi-sets which characterize bi-cluster (Co, Cp) with a maximum
exception ratio of ε for both objects and properties;

– Select all the rules with minimal body characterizing bi-cluster (Co, Cp) with
a minimal frequency f , a minimal confidence c, and a maximal exception
ratio ε for the set of properties;

– Select all the rules with minimal body characterizing bi-cluster (Co, Cp) with
a minimal frequency f , a minimal confidence c, and a minimal exception ratio
ε for the set of properties.

The last example is interesting since it returns bi-sets (or rules) that are ex-
ceptions, i.e., they concern objects belonging to bi-cluster (Co, Cp) that are
characterized by some properties from other bi-clusters.

4 Experimental Validation

First, we applied our characterization method to the well-known benchmark
voting-records [19]. It contains 435 objects and 48 Boolean attributes (removing
class variables). We used Cocluster [6] to get 2 bi-clusters:

bi-cluster |τ | rep. dem. |γ|
bi-cluster1 193 153 40 16
bi-cluster2 242 15 227 32
total 435 168 267 48
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Fig. 2. Characterizing patterns for bi-cluster1 in voting-records w.r.t. different values
of minimal frequency and confidence

To characterize each bi-cluster, we used D-Miner [11] to extract all formal
concepts, and our slight extension of AcMiner to extract two collections δ-
bi-sets (δ=1,2). We obtained 227 031 formal concepts, 130 313 1-bi-sets and
66 908 2-bi-sets. The collections have been post-processed by looking for rules
with increasing values of the relative minimal frequency (15% up to 40%) and
confidence (90% up to 100%). Results for the first bi-cluster are in Fig. 2. Results
for the second one look similar. The number of characterizing rules decreases
when we increase the frequency and confidence thresholds. When we use δ-
bi-sets, we have to process significantly smaller collections. Two examples of
characterizing rules which are consistent with the domain knowledge associated
to voting-records are now given. The first one (resp. the second) has a 42% relative
frequency (resp. 31%) and both have a 100% confidence, i.e., we have εo = 0.

el-salvador-aid = yes ∧ anti-satellite-test-ban = yes
∧ aid-to-nicaraguan-contras = yes ⇒ bi-cluster2

handicapped-infants = no ∧ physician-fee-freeze = yes
∧ el-salvador-aid = yes ⇒ bi-cluster1

Then, we applied the method to the real world medical data set meningitis
already used in [18]. It has been gathered from children hospitalized for acute
meningitis. The pre-processed Boolean data set is composed of 329 examples
described by 60 Boolean attributes encoding clinical signs (hemodynamic trou-
bles, consciousness troubles, . . . ), cytochemical analysis of the cerebrospinal fluid
(C.S.F proteins, C.S.F glucose, . . . ), and blood analysis (sedimentation rate,
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Fig. 3. Characterizing patterns for the bi-cluster2 in meningitis w.r.t. different values
of minimal frequency and confidence

white blood cell count, . . . ). In meningitis, the majority of the cases are known
to be viral infections whereas about one quarter are are known to be caused
by bacteria. Furthermore, medical knowledge is available which can be used to
assess characterization relevancy. Using Cocluster, we got two bi-clusters:

bi-cluster |τ | bact. vir. |γ|
bi-cluster1 100 81 19 21
bi-cluster2 229 3 226 39
total 329 84 245 60

The first bi-cluster contains a majority of bacterial cases while the second one
contains almost only viral cases. We selected characterization rules based on a
collection of formal concepts and 2 collections of δ-bi-sets (δ=1,2). We obtained
the results in Fig. 3. Here again, using δ-bi-sets leads to smaller collections of
candidate characterization patterns. The number of characterization rules for
the first bi-cluster is always very low and it does not significantly change when
using δ-bi-sets instead of formal concepts. If we select the rules with a minimal
body, a 10% frequency threshold, a 98% confidence threshold, and for which the
property exception ratio εp is zero, we obtain only 9 rules which are consistent
with the medical knowledge (see [18] for details). Examples of rules are:

presence of bacteria in C.S.F. analysis = yes ⇒ bi-cluster1
polynuclear percent > 80 ∧ C.S.F. proteins > 0.8 ⇒ bi-cluster1
C.S.F. proteins > 0.8 ∧ C.S.F. glucose < 1.5 ⇒ bi-cluster1
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Fig. 4. Characterizing bi-sets for bi-cluster1 in plasmodium w.r.t. different values of
minimal size and maximal exception ratio

Finally, our last experiment concerns the analysis of plasmodium, a public
gene expression data set concerning Plamodium falciparum (i.e., a causative
agent of human malaria) described in [20]. It records the expression profile of
3 719 genes in 46 biological samples. Each sample corresponds to a time point
of the developmental cycle. It is divided into 3 phases: the ring, the trophozoite
and the schizont stages. The numerical expression data have been preprocessed
by using one of the property encoding methods described in [21]. We used Co-
cluster to get the following bi-clusters.

bi-cluster |τ | ring troph schiz. |γ|
bi-cluster1 20 15 5 0 558
bi-cluster2 16 0 5 11 1699
bi-cluster3 10 6 0 4 1462
total 46 21 10 15 3719

We extracted collections of bi-sets to characterize clusters of samples by means
of sets of genes. In this case however, the number of properties (columns) was
too large to be processed and we extracted the collections of δ-bi-sets on the
transposed matrix. Obviously, the frequency and confidence measure do not
make sense any more because they are computed on sets of samples and we
are looking for sets of genes. Therefore, we have used the size of the bi-sets |T |
and |G|, and their exception ratios εo and εp. Results for a minimal size from
10% up to 25% of O and for maximal values of εo from 0% up to 10% are in
Fig. 4.
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Considering bi-cluster1, we analyzed the characterizing 2-bi-sets whose the
minimal size for their sets of objects was 25% of O and for a maximal exception
ratio εo = 0. Among the 442 bi-sets characterizing bi-cluster1, only 4 of them
concern genes that belong to the same bi-cluster. In each of them, we found at
least one gene belonging to the cytoplasmic translation machinery group which
is known to be active in the ring stage (see [20] for details), i.e., the majority
developmental stage within bi-cluster1.

5 Conclusion

We presented a new (bi-)cluster characterization method based on extracted
local patterns, more precisely formal concepts and δ-bi-sets. One motivation is
that it is now possible to use quite efficient constraint-based mining techniques
for various local patterns and it makes sense to consider their multiple uses.
While a bi-partition provides a global and generally expected characterization,
selected collections of characterizing bi-sets point out local association which
might lead to unexpected but relevant information. We strongly believe in the
complementarity between global pattern and local pattern mining techniques
when considering the whole knowledge discovery process. Our perspective is
now to consider the somehow convergent techniques developed for (conceptual)
clustering, subgroup discovery [22], summarization by association rules in order
to support real-life knowledge discovery processes in functional genomics.
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Abstract. As the possibility of combining different classifiers into Multiple 
Classifier System (MCS) becomes an important direction in machine-learning, 
difficulties arise in choosing the appropriate classifiers to combine and choos-
ing the way for combining their decisions. Therefore in this paper we present a 
novel approach – Classificational Cellular Automata (CCA). The basic idea of 
CCA is to combine different classifiers induced on the basis of various ma-
chine-learning methods into MCS in a non-predefined way. After several itera-
tions of applying adequate transaction rules only a set of the most appropriate 
classifiers for solving a specific problem is preserved. 

We empirically showed that the superior results compared to AdaBoost ID3 
are a direct consequence of self-organization abilities of CCA. The presented 
results also pointed out important advantages of CCA, such as: problem inde-
pendency, robustness to noise and no need for user input. 

1   Introduction 

In recent decades researchers have developed several machine-learning approaches 
and many of them were successfully moved from research laboratories into practice. 
The number of applications in different fields is still rising proving the growing ne-
cessity for the development and use of machine-learning tools. However, the majority 
of the most successful applications of machine-learning are made specifically to solve 
a fixed problem and thus the result from experienced usage of expert knowledge. The 
most likely reason for that is a vast and still growing availability of machine-learning 
models, their complexity and the lack of methods to compare them. For example: 
several data-mining tools already implement different machine-learning methods but 
the choice of the appropriate method or combination methods to solve a specific prob-
lem is still left to the user. Therefore the user must possess a lot of knowledge and 
experience to choose a method which would produce the best results for a specific 
problem. On the other hand, the user also has to possess knowledge for using the 
methods available and to interpret the obtained results. Obviously, the practical appli-
cation of such necessary technology is rather demanding and expensive for experi-
enced and for inexperienced users alike.  

For the purpose of diminishing the problem described above, we present our novel 
idea of Classificational Cellular Automata (CCA). CCA takes advantage of the bene-
fits of Multiple Classifier Systems (MCS) and the self-organizing abilities of cellular 
automata with the aim to improve its performance.  
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In CCA, multiple machine-learning approaches (such as: decision rules, neural 
networks, decision trees, Support Vector Machines (SVM), etc.) are implemented to 
obtain a diversity of induced classifiers combined in MCS.  

This paper is organized as follows. In the next section different methods for com-
bining classifiers into MSC are discussed. The basics of cellular automata (CA) are 
shortly presented in section 3. The new Classificational Cellular Automata approach 
is presented in section 4. Empirical evaluation of different CCA methods and com-
parison to Quinlan’s ID3 and AdaBoost ID3 using data from UCI repository is pre-
sented in section 5. The paper concludes with some final remarks and directions for 
future work. 

2   Multiple Classifier Systems 

In recent years there has been a growing interest in the area of combining classifiers 
into MCS (also known as ensembles or committees). An important characteristic of 
MCS is that using the classification capabilities of multiple classifiers (experts), 
where each classifier may make different and perhaps complementary errors, tends to 
yield an improved performance over single experts. Therefore many researchers have 
focused on developing various approaches for combining classifiers by selection 
and/or fusion. However, the diversity of combined classifiers is emphatically a key 
factor for the success of the combination approach.  

Some MSC approaches actively try to perturb some aspects of the training set, 
such as training samples, attributes or classes, in order to force classifier diversity. 
One of the most popular perturbation approaches are Bootstrap Aggregation – Bag-
ging and Boosting. Bagging, first introduced by Breiman [1] in 1996, works by ma-
nipulating the training samples and forming replicate training sets. The final classifi-
cation is based on a majority vote.   

Boosting was introduced by Freund and Schapire in 1996 [2]. Boosting combines 
classifiers with weighted voting and is more complex since the distribution of training 
samples in the training set is adaptively changed according to the performance of 
sequentially constructed classifiers.  

3   Cellular Automata 

The concept of cellular automata was firstly proposed in early 1960’s by J. Von Neu-
mann [3] and Stan Ulam. From those early years to the recent Wolfram’s book “A 
New Kind of Science” [4], the CA have attracted researchers from all science 
branches – physical and social. The reasons for the popularity of CA are their simplic-
ity and the enormous potential for modeling complex systems.  

CA can be viewed as a simple model of a spatially extended decentralized system 
made up of a number of individual components (cells) [5]. Each individual cell is in a 
specific state which changes through the time depending on the state of neighborhood 
cells and according to the transaction rules. In spite of their simplicity, when iterated 
several times, the dynamics of CA are potentially very rich, and range from attracting 
stable configurations to spatio-temporal chaotic features and pseudo-random genera-
tion abilities. Those abilities enable a diversity that can possibly overcome local op-



 Machine-Learning with Cellular Automata 307 

tima when solving engineering problems. Moreover, from the computational view-
point, they are universal, and as powerful as Turing machines and, thus, classical Von 
Neumann architectures. These structural and dynamical features make them very 
powerful: fast CA-based algorithms are developed to solve engineering problems in 
cryptography and microelectronics for instance, and theoretical CA-based models are 
built in ecology, biology, physics and image-processing. On the other hand, these 
powerful features make CA difficult to analyze. Almost all long-term behavioral 
properties of dynamical systems, and cellular automata in particular, are unpredict-
able. However, in this paper the aim is not to analyze the process of CA rather to use 
it for superior classification tasks.  

3.1   Cellular Automata as a MSC Model  

In general MCS approaches can be divided into two groups: (1) MCS approaches that 
combine different independent classifiers (such as: Bayesian Voting, Majority Voting, 
etc.) and (2) MCS approaches which construct a set of classifiers on the basis of one 
base classifier with perturbation of training set (such as: Bagging, Boosting, Window-
ing, etc.). A detailed empirical study is presented in [6].  

When studying both groups we came across some drawbacks. The most essential 
deficiency in group 1) is their restriction of a predefined way of combining classifiers 
induced on the basis of different predefined methods of machine-learning. On the 
contrary, the MCS approaches that are based on improving one base classifier group 
(2), use only one method for constructing all classifiers in MCS. Therefore the prob-
lem of choosing the appropriate method for solving a specific task arises. 

Therefore our idea was to combine different classifiers induced on the basis of 
various methods of machine-learning into MCS in a non-predefined way. After sev-
eral iterations of applying adequate transaction rules only the set of the most appro-
priate classifiers will be preserved. Consequently the problem of choosing the right 
machine learning method or a combination of them would be solved automatically.   

4   Classificational Cellular Automata  

CCA is presented as a classifier. Generally, learning a classifier is based on samples 
from a learning set. Every learning sample is completely described by a set of attrib-
utes (sample properties) and class (decision).  

CCA is initially defined as a 2D lattice of cells. Each cell can contain a classifier 
and according to it’s classification of an input sample the cell can be in one of the k
states, where k is the number of possible classes and the state “can not classify”. The 
last state has an especially important role when such a classifier is used, which is not 
defined on a whole learning set, i. e. when using the if-then rule. Therefore, from the 
classification point of view in the learning process the outcome of each cell can be: 
(1) the same as the learning sample’s class, (2) different from the learning sample’s 
class or (3) “cannot be classified”. However, a cell with an unknown classification for 
the current learning sample should be treated differently as a misclassification.  

In addition to the cell’s classification ability, the neighborhood plays a very impor-
tant role in the self-organization ability of a CCA. Transaction rules depend on the 
specific neighborhood state to calculate a new cell’s state and must be defined in such 
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a way that enforces self-organization of CCA, which consequently should lead to 
generalization process.  

In general we want to group classifiers that support similar hypotheses and conse-
quently have similar classification on learning samples. Therefore even if a sample is 
wrongly classified, the neighborhood can support a cell by preventing the elimination 
of its classifier from the automata. With that transaction rule we encourage a creation 
of decision centers for a specific class and thus we can overcome the problem of noisy 
learning samples.  

As for all MCS approaches it is clear that if all classifiers are identical or even 
similar, there can be no advantage in combining their decisions, therefore some dif-
ference among base classifiers is a necessary condition for improvement. The diver-
sity of classifiers in CCA cells is ensured by using different machine-learning meth-
ods for classifier induction. However, there is only a limited number of machine-
learning methods, which can be a problem for a large CCA. But most methods have 
some tuning parameters that affect classification and therefore, by changing those 
parameters, many different classifiers can be obtained. Another possibility for obtain-
ing several different classifiers is by changing the expected probability distributions 
of the input samples, which may also result in different classifiers, even by using the 
same machine learning method with the same parameters.  

4.1   Learning Algorithm 

Once the diversity of induced classifiers is ensured by the methods discussed above, 
the classifiers are placed into a pool. For each classifier the basics statistical informa-
tion such as confidence and support is preserved. In the process of filling CCA for 
each cell a classifier is randomly chosen from the pool. After filling a CCA the fol-
lowing learning algorithm is applied:  

Input: learning set with N learning samples 
Number of iterations: t=1,2,…T 
For t=1,2…T: 

-choose a learning sample I 
-each cell in automaton classifies the learning sam-
ple I 

-change cells energy according to the transaction 
rules

-a cell with energy bellow zero does not survive 
-probabilistically fill the empty cells with classi-
fiers from the pool

Beside its classifier information, each cell also contains statistical information 
about its successfulness in a form of cell’s energy. Transaction rules can increase or 
decrease the energy level depending on the success of classification and on the state 
of the cell’s neighbors. Each neighborhood cell influences the energy of the current 
cell dependent on its score (Eq. 1). 

distanceconficencesupportscore ••= ;   (1) 

where distance is an Euclidian distance from the neighborhood cell to the current cell. 
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The sum of scores of all neighborhood cells that equally classified the learning 
sample as the current cell (eqScore) is used in transaction rules to calculate the cells 
new energy (e). Similarly, the sum of scores of all the neighborhood cells which can 
not classify the learning sample (noClassScore) is calculated and used in the follow-
ing transaction rules: 

• If a cell has the same classification as the sample class:  

(a) if noClassScore>0 than increase the energy of the cell using the equation 
(Eq. 2). 

•−+=
renoClassSco

eqScore
ee

100
100      (2) 

(b) if all neighbourhood cells classified the learning sample (noClassScore=0)
than increase cell‘s energy according to (Eq. 3). 

400+= ee         (3) 

• If a cell classification differs from the learning sample class: 

(a) if noClassScore>0 than decrease energy of the cell using (Eq. 4). 

•−−=
renoClassSco

eqScore
ee

100
100      (4) 

(b) if noClassScore=0 than decrease cell‘s energy using (Eq. 5). 

100−= ee        (5) 

• If a cell cannot classify the learning sample then slightly decrease the energy state 
of the cell (Eq. 6).  

10−= ee        (6) 

Through all iterations all cells use one point of energy (to live). If energy drops be-
low zero the cell is terminated (blank cell). A new cell can be created dependent on 
learning algorithm parameters with its initial energy state and a classifier used from 
the pool of classifiers or from a newly generated classifier. Of course if a cell is too 
different from the neighborhood it will ultimately die out and the classifier will be 
returned to the pool.  

The learning of a CCA is done incrementally by supplying samples from the learn-
ing set. Transaction rules are executed first on the whole CCA with a single sample 
and then continued with the next until the whole problem is learned by using all sam-
ples - that is a technique similar to that used in neural networks [7].  

Transaction rules do not directly imply learning, but the iteration of those rules 
creates the self-organizing ability. However, this ability depends on classifiers used in 
CCAs cells, and its geometry. Stopping criteria can be determined by defining fixed 
number of iterations or by monitoring accuracy. 

4.2   Inference Algorithm 

An Inference algorithm differs from a learning algorithm, because it does not use self-
organization.  
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Input: a sample for classification 
Number of iterations: t=1,2,…V 
For t=1,2…V 

-each cell in automaton classifies the sample
-change cells energy according to the transac-
tion rules 

-each cell with energy bellow zero does not sur-
vive

Classify the sample according to the weighted vot-
ing of the survived cells 
Output: class of the input sample 

The simplest way to produce single classification would be to use the majority vot-
ing of cells in CCA. However some votes can be very weak from the transaction rule 
point of view. Therefore transaction rules which consider only the neighborhood 
majority vote as a sample class are used in order to eliminate all weak cells. After 
several iterations of the transaction rules only cells with strong structural support 
survive. The final class of an input sample is determined by a weighted voting where 
the energy state of each survived cell is considered as a weight. 

5   Empirical Evaluations 

The CCA model was evaluated on a collection of 9 randomly chosen datasets from 
the UCI Machine Learning Repository [8]. 

CCA was initialized with the following parameters, which experimentally had 
proved to produce best results:  

• Size: 10x10 matrix (bounded into torus) 
• Neighborhood radius r=5
• Initial energy of each cell e=100
• Ending criteria: number of iterations T=V=1000

Through all iterations all cells use one point of energy (to live). If the energy level 
of a cell drops below zero the cell is terminated. 

In the experiments presented in this section we used the following evaluation crite-
ria: accuracy (Eq. 7) and average class accuracy (Eq. 8). 

objectsallofnum

objectsclassifiedcorrectlyofnum
accuracy

.
= (7)

classesofnum

accuracy
accuracyclassaverage c

c

.
= (8)

where accuracyc is defined in (Eq. 9).

cclassinobjectsallofnum

cclassinobjectsclassifiedcorrectlyofnum
accuracy c .

= (9)
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5.1   Simple CCA 

In our first experiment we followed the basic concept of CA – simplicity can produce 
complex behavior. Therefore we introduced simple rule classifiers in the following 
form:   

if  (attribute  value) then decision ; 

where decision is a class of a current sample.  
A CCA which combines simple classifiers in the form of rules is therefore named 

Simple CCA. The rule classifiers are randomly created and saved in the pool. In the 
process of filling the CCA’s cells classifiers are randomly selected from the pool. 
After filling the CCA the learning algorithm followed by the inference algorithm is 
applied. 

The classification accuracy of Simple CCA on testing sets can be seen in Table 1 
and Table 2. When compared to Quinlan’s ID3, Simple CCA performed better on 5 
databases and in one case it achieved equal results. 

5.2   Complex CCA  

The next experiment involved implementing more complex CCA where different 
classifiers induced on the basis of various machine-learning methods are included. 
The demand for classifier diversity forced an implementation of several different 
machine-learning methods.  

At this point we implemented the following methods: 

• Greedy decision tree induction methods based on different purity measures 
(for detailed information please see [9]): Information gain ratio (ID3), Gini, 
Chi-square, J-measure, sum of pairs, linear combination of purity measures 
and voting of purity measures. 

• AdaBoost method for boosting decision trees induced on the basis of purity 
measures listed above 

• Support Vector Machine (SVM) 
• Neural Network  

Al together 65 different classifiers are induced and placed in the pool of classifiers 
before initializing CCA. In the process of filling CCA each classifier is randomly 
chosen from the pool and placed into the selected cell.  

The results on 9 databases are showed in Table 1 and Table 2 where they can be 
compared to other methods presented in the paper.   

Closer comparison implies that in one third of databases the benefits from complex 
classifiers can be observed (see Graph 1). However, when an average accuracy 
through all databases is considered a small, but not significant benefit compared to 
Simple CCA is noticed. Since inducing Complex CCA is much more time and source 
consuming the legitimate question can be posed whether such a little difference is 
worth the additional computational time. 

At this point, we demonstrate that simplicity is really a key concept in using cellu-
lar automata. 
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Fig. 1. Comparison between Simple and Complex CCA according to the testing accuracies

5.3   Comparison to Boosting  

Since Boosting is one of the most successful methods for combining classifiers, a 
comparison to CCA approach was made. Therefore the AdaBoost algorithm [2] based 
on ID3 decision tree induction with 10 individual classifiers was used on all databases 
(see Table 1 and Table 2).  

Table 1. Comparison of different methods in the terms of accuracy on the test set 

Data  ID3 Ada Boost 
ID3 

Simple 
CCA 

Boosted ID3 
CCA 

Complex 
CCA 

australian 77,39 84,78 86,52 83,91 83,04 
cleve 92,70 96,14 85,14 76,24 77,23 
breast 71,29 74,26 98,48 95,71 97,43 
diabetes 68,75 66,41 60,55 73,44 75,00 
glass 58,33 69,44 78,18 78,18 72,22 
golf 100,00 100,00 85,71 100,00 100,00 
heart 68,89 72,22 91,11 85,56 81,11 
iris 96,00 92,00 96,00 94,00 96,00 
pima 68,36 72,66 75,00 74,60 80,08 
Average 77,97 80,88 84,08 84,63 84,68 

Table 2. Comparison of different methods in the terms of average class accuracy on the test set 

Data  ID3 Ada Boost 
ID3 

Simple 
CCA 

Boosted ID3 
CCA 

Complex 
CCA 

australian 76,99 84,78 87,86 84,42 83,33 
cleve 88,94 95,58 83,91 77,30 77,05 
breast 72,81 72,58 97,85 96,95 97,75 
diabetes 65,57 61,22 50,00 70,82 71,77 
glass 43,67 60,93 76,97 76,97 56,93 
golf 100,00 100,00 80,00 100,00 100,00 
heart 68,83 72,42 90,54 86,08 80,82 
iris 96,08 92,38 96,08 94,22 96,08 
pima 64,05 67,23 68,96 71,18 76,49 
Average 75,22 78,57 81,35 84,22 82,25 
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Table 1 presents the test accuracy of induced classifiers on 9 databases. When 
compared to AdaBoost ID3, Simple CCA was more accurate in 5 cases. However, 
Complex CCA was even more successful, since it outperformed AdaBoost ID3 in 6 
cases and in one case it obtained the same result. When the average class accuracy is 
considered the results are similar (see Table 2).  

On average through all 9 databases both Simple CCA and Complex CCA per-
formed better than AdaBoost ID3. However, we wanted to prove that better perform-
ance is a direct consequence of CCA’s self-organization abilities. Therefore in the 
next experiment we included only classifiers from the AdaBoost MCS into the pool 
and used them as a source of diverse classifiers for CCA (Boosted ID3 CCA). The 
results are also presented in the Table 1 and Table 2. A closer look shows that 
AdaBoost ID3 outperformed Boosted ID3 CCA only on the first two databases. Graph 
1 shows a more direct comparison of both methods in terms of the average class accu-
racy. Since in both methods the same individual classifiers were used as a base, we 
can conclude, that improvement of classification accuracy results only from organiza-
tion and transaction rules of cellular automata.    
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Boosted ID3 CCA
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1   australian
2   cleve
3   breast
4   diabetes
5   glass
6   golf 
7   heart
8   iris
9   pima

Fig. 2. Comparison between AdaBoost ID3 and Boosted ID3 CCA according to accuracy on 
test set 

5   Discussion and Conclusion 

In this paper we presented a new approach for combining diverse classifiers induced 
on the basis of various machine-learning methods into MCS using the model of cellu-
lar automata. The CCA approach was empirically evaluated on 9 randomly chosen 
datasets from UCI Repository.  

The key observation from the experiments with the presented CCA approach is 
that the self-organization ability of CCA is very promising.  

In Graph 3 the average classification accuracy on the test sets is presented for all 
CCA methods and additionally for ID3 and AdaBoost ID3. We can see that on aver-
age all CCA methods performed better compared to ID3 and AdaBoost ID3. Boosted 
ID3 CCA method performed best according to average class accuracy and it also has  
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negligible difference between average accuracy and class accuracy. The direct com-
parison to AdaBoost ID3 showed that improvement of classification accuracy results 
only from organization and transaction rules of cellular automata. 
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Accuracy

Average class accuracy

Methods 
1   ID3
2   Ada Boost ID3
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4   Boosted ID3 CCA 
5   Complex CCA

Fig. 3. Comparison of average accuracy and class accuracy through all 9 databases among all 
methods 

However, CCA also inherits some drawbacks of MCS. The produced result al-
though in symbolic form is complex and usually involves more attributes than the 
simpler but less accurate classifiers. On the other hand classification with CCA can be 
even cheaper, as shown in our experiment, because not all classifiers are required in 
the final CCA. From the computational point of view the CCA approach uses addi-
tional power to apply the transaction rules, which can be expensive in the learning 
process, but its self-organizing feature can result in better classification, and that can 
also mean less cost. The additional advantages of the resulting self-organizing struc-
ture of cells in CCA is problem independency, robustness to noise and no need for 
user input. A comparison to other approaches is presented in Table 3.  

Important research directions in the future are to analyze the resulting self-
organized structure, the impact of transaction rules on classification accuracy, the 
introduction of other social aspects for cell survival and enlarging the classifier diver-
sity by implementing even more machine-learning methods. 

Table 3. Advantages of CCA compared to other approaches

Method 

automatically 
chosen ma-

chine-learning 
method 

non-
prede-

fined way 
of com-
bining 

classifiers 

deterministic
global 
opti-
mum 

re-
quired 
user 
input 

Single method approach -   + o o 
MSC with independent classifiers O - + + o 
MSC with basic classifier - - + + o 
CCA + + - + + 
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Abstract. Many applications in science and business such as signal
analysis or costumer segmentation deal with large amounts of data which
are usually high dimensional in the feature space. As a part of prepro-
cessing and exploratory data analysis, visualization of the data helps to
decide which kind of method probably leads to good results. Since the
visual assessment of a feature space that has more than three dimensions
is not possible, it becomes necessary to find an appropriate visualization
scheme for such datasets. In this paper we present a new approach for
dimension reduction to visualize high dimensional data. Our algorithm
transforms high dimensional feature vectors into two-dimensional feature
vectors under the constraints that the length of each vector is preserved
and that the angles between vectors approximate the corresponding an-
gles in the high dimensional space as good as possible, enabling us to
come up with an efficient computing scheme.

1 Introduction

Many applications in science and business such as signal analysis or costumer
segmentation deal with large amounts of data which are usually high dimensional
in the feature space.

Before further analysis or processing of data is carried out with more so-
phisticated data mining techniques, data preprocessing and exploratory data
analysis is an important step. As a part of this process, visualization of the data
helps to decide which kind of method probably leads to good results. Since the
visual assessment of a feature space that has more than three dimensions is not
possible, it becomes necessary to find an appropriate visualization scheme for
such datasets.

The general data visualization problem we consider here is to map high di-
mensional data to a two-dimensional plane – usually a computer screen – trying
to preserve as many properties or as much information of the high dimensional
data as possible. In other words, we have to face a dimension reduction problem.
A very simple approach is to look at scatter plots obtained from projections to two
selected features. However, each scatter plot will only contain the information of
the two chosen features and with a high number of features it is infeasible to in-
spect the scatter plots resulting from all possible combinations of two features.

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 316–327, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Before finding a mapping of the high dimensional data to the two-dimensional
plane, an error or quality measure must be defined in order to evaluate the suit-
ability of such a mapping. Principal component analysis is one possible choice,
producing an affine transform that preserves as much of the variance in the data as
possible. However, instead of the variance, other criteria like the distance between
the single data vectors might be of higher interest. Multidimensional scaling (see
for instance [1,4]) is a technique that aims at preserving the distances between
the data, when mapping them to lower dimensions. Although multidimensional
scaling and related approaches yield promising and interesting results, they suffer
from high computational needs concerning memory as well as computation time.
In recent years some research has been done in this regard [2,6,7].

In this paper we present a new approach for dimension reduction to visualize
high dimensional data. Instead of trying to preserve the distances between fea-
ture vectors directly, our algorithm transforms high dimensional feature vectors
into two-dimensional feature vectors under the constraints that the length of
each vector is preserved and that the angles between vectors approximate the
corresponding angles in the high dimensional space as good as possible, enabling
us to come up with an efficient computing scheme. After a brief review of the
concept of multidimensional scaling and related approaches, we explain the the-
oretical background of our approach and discuss some illustrative examples in
the end of the paper.

2 Multidimensional Scaling

Multidimensional scaling (MDS) is a method that estimates the coordinates of a
set of objects Y = {y1, . . . , yn} in a feature space of specified (low) dimensionality
that come from data X = {x1, . . . , xn} ⊂ �p trying to preserve the distances
between pairs of objects. Different ways of computing distances and various
functions relating the distances to the actual data are commonly used. These
distances are usually stored in a distance matrix

Dx =
(
dx

ij

)
, dx

ij = ‖xi − xj‖ , i, j = 1, . . . , n.

The estimation of the coordinates will be carried out under the constraint, that
the error between the distance matrix Dx of the dataset and the distance matrix
Dy =

(
dy

ij

)
, dy

ij = ‖yi − yj‖ , i, j = 1, . . . , n of the corresponding transformed
dataset will be minimized.

Thus, different error measures to be minimized were proposed, i.e. the abso-
lute error, the relative error or a combination of both. A commonly used error
measure, the so called Sammon’s mapping

E =
1

n∑
i=1

n∑
j=i+1

dx
ij

n∑
i=1

n∑
j=i+1

(
dy

ij − dx
ij

)2
dx

ij

describes the absolute and the relative quadratic error. To determine the trans-
formed dataset Y by means of minimizing error E a gradient descent method
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can be used. By means of this iterative method, the searched parameter yk, will
be updated during each step proportional to the gradient of the error function
E. Calculating the gradient of the error function leads to

∂E

∂yk
=

2
n∑

i=1

n∑
j=i+1

dx
ij

∑
j 	=k

dy
kj − dx

kj

dx
kj

yk − yj

dy
kj

.

After random initialization, for each projected feature vector yk a gradient de-
scent is carried out and the distances dy

ij as well as the gradients
∂dy

ij

∂yk
will be

recalculated again. The algorithm terminates when E becomes smaller than a
certain threshold.

The complexity of MDS is O(c · n2), where c is the (unknown) number of
iterations needed for convergence of the gradient descent scheme. Thus MDS is
usually not applicable to larger datasets. Another problem of MDS is that it
does not construct an explicit mapping from the high dimensional space to the
lower dimensional space, but just tries to position the lower dimensional feature
vectors in a suitable way. Therefore, when new data have to be considered, they
cannot be mapped directly into the lower dimensional space, but the whole MDS
procedure has to be repeated. NeuroScale [5] is a scheme that tries to construct
an explicit mapping for MDS in the form of a neural network. However, it does
not reduce the complexity of MDS. In [3] a more efficient, but still iterative
approach was proposed making use of a step-by-step reduction by one dimension
based on determining the best projection in each step.

In this paper, we propose a different algorithm, not needing any iterative
scheme and whose complexity can be reduced to O(n · log n).

3 Multidimensional Scaling with Polar Coordinates

Multidimensional scaling suffers from several problems. Besides the quadratic
need of memory, MDS, as described above is solved by an iterative method,
expensive with respect to computation time. Furthermore, a completely new
solution must be calculated, if a new object is added to the dataset.

With MDSpolar we present a new approach to find a two-dimensional pro-
jection of a p-dimensional dataset X . MDSpolar tries to find a representation in
polar coordinates Y = {(l1, ϕ1), . . . , (ln, ϕn)}, where the length lk of the original
vector xk is preserved and only the angle ϕk has to be optimized. Thus, our
solution is defined to be optimal if all angles between pairs of data objects in the
projected dataset Y coincide as good as possible with the angles in the original
feature space X .

A straight forward definition of an objective function to be minimized for
this problem would be

E =
n∑

k=2

k−1∑
i=1

(|ϕi − ϕk| − ψik)2 (1)
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where ϕk is the angle of yk, ψik is the positive angle between xi and xk, 0 ≤ ψik ≤
π. E is minimal, if the difference of the angle of all pairs of vectors of dataset X
and the corresponding two vectors in dataset Y are zero. The absolute value is
chosen in equation (1) because the order of the minuends can have an influence
on the sign of the resulting angle. The problem with this notation is that the
functional E is not differentiable, exactly in those points we are interested in,
namely, where the difference between angles ϕi and ϕk becomes zero. Another
intuitive approach would be

E =
n∑

k=2

k−1∑
i=1

((ϕi − ϕk)2 − ψ2
ik)2. (2)

In this case the derivative can be determined easily, however, resulting in a
system of nonlinear equations for which no analytical solution can be provided.

In order to overcome these difficulties, we propose an efficient method that
enables us to compute an approximate solution for a minimum of the objective
function (1) and related ones. In a first step we ignore the absolute value in (1)
and consider

E =
n∑

k=2

k−1∑
i=1

(ϕi − ϕk − ψik)2 (3)

instead. When we simply minimize (3), the results will not be acceptable. Al-
though the angle between yi and yk might perfectly match the angle ψik, ϕi−ϕk

can either be ψik or −ψik. Since we assume that 0 ≤ ψik holds, we always have
(|ϕi−ϕk|−ψik)2 ≤ (ϕi−ϕk−ψik)2. Therefore, finding a minimum of (3) means
that this is an upper bound for the minimum of (1). Therefore, when we min-
imize (3) in order to actually minimize (1), we can take the freedom to choose
whether we want the term ϕi − ϕk or the term ϕk − ϕi to appear in (3). Before
we discuss techniques to minimize (3) with the freedom of reordering, we have
to preprocess the data in order to fit them best to our approach.

3.1 Data Preprocessing

The following figure illustrates an important problem by means of a simple
dataset. The table next to the graphics contains the values of the angles between
all three feature vectors.

ψ x1 x2 x3

x1 0 135 135
x2 135 0 90
x3 135 90 0
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Even though, this feature space has only two dimensions and therefore an
exact reproduction of the dataset should be possible, this cannot be achieved
without additional preprocessing. Since we only want to preserve the angles
between data vectors, it is obvious that any solution will be invariant with respect
to rotation of the dataset. Thus, assuming without loss of generality ϕ1 = 0
enforcing ϕ2 = 135, then according to our objective function (1) ϕ3 = 180
leads to the optimal solution, which is obviously not what we are looking for.
This problem is caused by the fact that ψik is defined as a positive angle which
satisfies ψik ≤ 180◦. This problem can be solved easily by translating all feature
vectors into the first quadrant. More generally, for a higher dimensional dataset
we apply a translation that makes all components of data vectors non-negative.
For this we only have to determine for each component the largest negative value
occurring in the dataset and using this as a positive value of the corresponding
component of the translation vector. Note that, when the dataset is normalized,
i.e. all components are between 0 and 1, no further preprocessing is required.

Thus, doing this kind of preprocessing, we actually do not preserve the orig-
inal data properties but those after the transformation. Of course, rotation and
translation is not changing any inter-data properties. The translation vector has
to be stored so that for incremental adding of new objects the transformation
can be performed accordingly. For most of the new objects the transformation
will be as requested. It may occur that for new objects which have one or more
extreme components the translation will not be sufficient to eliminate the neg-
ative components. In such a case, which is rather rare if the previous data is
representative, the mapping of the respective object is still working, but not
that exact sometimes.

3.2 Approximation of MDSpolar

When we are free to choose between ϕi − ϕk and ϕk − ϕi in (3), we take the
following into account

(ϕk − ϕi − ψik)2 = (−(ϕk − ϕi − ψik))2 = (ϕi − ϕk + ψik)2.

Therefore, instead of exchanging the order of ϕi and ϕk, we can choose the sign
of ψik, leading to

E =
n∑

k=2

k−1∑
i=1

(ϕi − ϕk − aikψik)2 (4)

with aik = {−1, 1}. In order to solve this modified optimization problem of
equation (4) we take the partial derivatives of E, yielding

∂E

∂ϕk
= −2

k−1∑
i=1

(ϕi − ϕk − aikψik). (5)

Thus, on the one hand, neglecting that we still have to choose aik, our solution
is described by a system of linear equations which means its solution can be
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calculated directly without the need of any iteration procedure. On the other
hand, as described above, we have to handle the problem of determining the sign
of the ψik in the form of the aik-values.

To fulfil the necessary condition for a minimum we set equation (5) equal to
zero and solve for the ϕk-values, which leads to

ϕk =
∑k−1

i=1 ϕi −
∑k−1

i=1 aikψik

k − 1
. (6)

Different optimization strategies are conceivable. Of course, an important condi-
tion is the computational complexity of the respective approximation algorithm.
In this paper we present a number of different strategies, starting with a greedy
algorithm which is quadratic with the number of data objects in time, but is
linear in space. Later on, we propose an algorithm that can even reduce the
complexity to O(n · log n).

3.3 A Greedy Algorithm for the Approximation of MDSpolar

As mentioned above, this solution describes a system of linear equations. Since
the desired transformation is rotation invariant ϕ1 can be set to any value, i.e.
ϕ1 = 0. By means of a greedy algorithm we choose aik ∈ {−1, 1} such that
for the resulting ϕk the error E of the objective function (4) is minimal. For
ϕ2 the exact solution can always be found, since a12 is the only parameter to
optimize. For the remaining ϕk the greedy algorithm sets aik in turn either −1
or 1, verifying the validity of the result, setting aik the better value immediately
and continuing with the next aik until all k − 1 values for aik are set.

Algorithm 1 Greedy MDSpolar

X = {x1, x2, . . . , xn}
Let Ψn×n be a matrix with the pairwise angles ψij between all (xi, xj)
ϕ1 = 0
for k = 2 to n do

aik = 1 for all i = 1 . . . k − 1
for i = 1 to k − 1 do

ϕk =
∑k−1

j=1 ϕj−∑k−1
j=1 ajkψjk

k−1 ek =
∑k−1

j=1 (ϕj − ϕk − ajkψjk)2

t = ϕk

aik = −1

ϕk =
∑k−1

j=1 ϕj−∑k−1
j=1 ajkψjk

k−1 fk =
∑k−1

j=1 (ϕj − ϕk − ajkψjk)2

if ek < fk then
aik = 1
ϕk = t

end if
end for

end for
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Algorithm 1 describes in a simplified way the greedy method. When imple-
menting the method, it can be optimized in that way, that the first ϕk in the
for-loop has not always to be recalculated if in step i− 1 the parameter aik has
not been changed to −1. In such cases ϕk holds the value from the previous step.

As mentioned above, ϕ1 can be set to any value and ϕ2 can always be chosen
in such a way that the angle ψ12 is preserved exactly. For the remaining angles ϕk

no guaranty can be given that the greedy algorithm finds the optimal solution.
Incremental adding of feature vectors can be achieved by simply extending the
outer for-loop for another iteration for each new object. The angle ϕk will be
computed analogously as for previous feature vectors.

3.4 Relative MDSpolar

As for conventional MDS, also for MDSpolar different approaches regarding the
objective function are feasible. The solution described above minimizes the ab-
solute difference of pairwise angles of the original dataset and the transformed
dataset. Large angles, which cause in tendency a large E may effect the solution
in that way, that the transformation will represent vectors with small angles to
others less correctly. Considering the relative error leads to

E =
n∑

k=2

k−1∑
i=1

(
ϕi − ϕk − aikψik

ψik

)2

(7)

∂E

∂ϕk
= −2

k−1∑
i=1

(
ϕi − ϕk − aikψik

ψik

)
1

ψik
. (8)

The greedy algorithm (1) can be applied only modifying the calculation specifi-
cation for ϕk

ϕk =

∑k−1
i=1

ϕi

ψ2
ik
−
∑k−1

i=1 aik
1

ψik∑k−1
i=1

1
ψ2

ik

. (9)

Because of the different objective functions the validity of solutions with the ab-
solute MDSpolar and the relative MDSpolar can not be compared by means of E.

4 Weighted MDSpolar

In certain cases the objective when transforming data is to preserve relations of
feature vectors of the original feature space in the target feature space. Thus,
feature vectors that form a cluster should be represented as exact as possible in
the target feature space, too. The transformation of feature vectors with a large
distance to the respective feature vector can have a lower accuracy. An approach
to achieve this goal is the introduction of weights wik to our objective function

E =
n∑

k=2

k−1∑
i=1

wik(ϕi − ϕk − aikψik)2. (10)
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Determine the derivative leads to

∂E

∂ϕk
= −2

k−1∑
i=1

wik(ϕi − ϕk − ψik) (11)

and solving for ϕk

ϕk =
∑k−1

i=1 wik(ϕi − aikψik)∑k−1
i=1 wik

. (12)

Note that this is a generalization of relative MDSpolar . For relative MDSpolar ,
we simply choose the weights as wik = 1/ψ2

ik.
Since our transformation preserves the length of each data vector, it is guar-

anteed that vectors with a large difference in length will not be mapped to close
points in the plane, even though their angle might not be matched at all. There-
fore, we propose to use a small or even zero-weight for pairs of data vectors that
differ significantly in their length. The weight could be defined as a function of
the difference between the length values li and lj of two data vectors:

wik = w(li, lk) = w(z). (13)

We can use the absolute difference for z, i.e.

z = za = |li − lk| .

This might be useful if certain information about the structure of the data is
known in advance. The argument zr for relative weighting functions

z = zr = min
{

li
lk

,
lk
li

}
might be useful if a certain threshold can be determined, beyond which difference
in the relative distance between two feature vectors, the angle between them
need not have any effect on the calculation of the respecting ϕk. To decrease
the computational complexity, weights should be chosen in such a way, that for
feature vectors with a certain (large) distance the respecting weights become
zero. The following function describes a simple weighting function, which is the
second function shown in Figure 1:

w(zr) =

⎧⎨⎩
√(

zr−ϑ
1−ϑ

)
, if zr ≥ ϑ

0 , otherwise
(14)

where ϑ ∈ [0, 1].

With the threshold ϑ one can control indirectly the fraction of the data, that will
be used to determine the respective angle ϕk. Thus, small values for ϑ lead to lots
of weights w �= 0 which comes along with high computational complexity. Values
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Fig. 1. Different Weighting Functions

(a) Cube Dataset (b) Coil Dataset

(c) Sammon Mapping (d) relative MDSpolar (e) weighted MDSpolar

(f) Sammon Mapping (g) relative MDSpolar (h) weighted MDSpolar

Fig. 2. Different Transformations with MDSpolar
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near 1 for ϑ lead to a quickly decreasing weighting function and to low compu-
tational complexity, respectively. Any other function can be used as weighting
function. For reasons of an easy implementation and low computational com-
plexity a decreasing function which leads to a more or less large fraction of zero
weights should be used.

For an efficient implementation it is useful to sort the feature vectors by
means of their length. Note that this can be achieved with O(n · log n) time
complexity. When determining the weights for the calculation of ϕk it is sufficient
to consider the feature vectors starting from index k. Weights will be calculated
stepwise. With every step the weights become smaller until a weight becomes
zero. Since the weighting function is decreasing, a further iteration would lead
to zero, too. Thus, the calculation of weights stops at this point. In cases where
clusters with a large amount of data are expected in a dataset, it might be
rather useful to limit the maximum number of iterations for the calculation of
the weights than setting a larger threshold. In this case, the projected vectors
will be forced to a proper position already by a significantly large fraction of
other feature vectors in the dataset. It might also be useful to reduce ϑ locally,
when only few vectors satisfy the condition in equation (14).

With a limitation of the number of weights w > 0 and a moderate ϑ at the
same time, it can be achieved that the number of weights considered for the
calculation of ϕk does not differ too much for different ϕk and limited compu-
tation time can be guarantied. Instead of considering the angles of all feature
vectors with the greedy algorithm (1) it might be useful to consider only few
feature vectors and calculating the exact solution of the sign problem. Using a
weighting function enables the user of MDSpolar to set a certain bin size which
indicates the number of feature vectors that will be considered when calculat-
ing the desired ϕk. By means of this one can reduce the computation time and
reinvest it in finding the exact solution of the sign problem. Thus, the upper
bound for the complexity of our algorithm is due to sorting the data which is
O(n · log n). Solving the sign problem for a given maximum bin size b with the
greedy strategy and using a certain number c of iterations, this accounts with
O(n · b · c) plus the costs for sorting to the entire algorithm.

Evaluation of the transformation can be done by determining the average
deviation from the original angles. In general this can be obtained by dividing E
by the number of terms summed up. For the error function (4) one has to divide
by n2+n

2 . With this measured value one can compare different mappings even if
they vary in the number of objects.

5 Results

Figure 2 shows some results of MDSpolar in comparison with the Sammon Map-
ping. In favour of an easy verification of the results we applied MDSpolar to
some 3-dimensional datasets. The validity of the solution can be evaluated by
visual inspection. The cube dataset (a) is about a synthetic dataset, where data
points scatter around the corners of a 3-dimensional cube. Thus, the cube dataset
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contains eight well separated clusters. The dataset in (b) is comparable to a
serpentine. As the figures (d) and (g) show, the transformations of MDSpolar

are similar to these of conventional MDS. Whereas MDS needs some thousand
iterations until convergence, MDSpolar finds an explicit solution after solving
the system of equations. The transformations in figure (e) and (h) result from
weighted MDSpolar with weighting functions where at most twelve weights got
values greater than zero. Thus, the transformation is based only on a relatively
small number of angle comparisons. Therefore, locally these transformations are
very accurate, but generally the loss of information is sometimes higher.

Since the value of ϕk is calculated from all preceding ϕ1 . . . ϕk−1 according
to equation (6) or equation (9) respectively, a solution with MDSpolar , either ab-
solute or relative, depends to some degree on the order of the dataset. Our tests
have shown that in such cases only few feature vectors lead to higher errors, while
others will not. Thus, not the complete transformation will be wrong, but only
some feature vectors. Initialization is also a matter of fact of conventional MDS.

6 Conclusion

We presented a new approach for dimension reduction. MDSpolar bases on the
reduction of the error of the pairwise angle between feature vectors comparing
angles of the original feature space with the angles in the transformed feature
space. With MDSpolar it is possible to add new feature vectors to the dataset
and find a transformation for this feature vector without re-calculating the whole
transformation. Our solution is explicit, which leads here to short computation
time. Furthermore, we presented a greedy algorithm to get an approximation of
the exact solution.

With weighted MDSpolar we have introduced a weighting function with the
objective to differentiate ones feature vector’s importance to the approximation
of the respecting ϕk. Non-similar feature vectors contribute less to the accuracy
of the result than similar feature vectors. If such weighting functions are designed
in such a way that a (large) fraction of the angles ϕi gets zero weight, then an
exact solution of the sign problem can be found within moderate computation
time. Our tests have shown that good solutions can be already found with 10 non-
zero weights. Our examples approve that this approach is promising. Developing
appropriate approximation schemes will be subject of future work. Furthermore,
we plan to modify this technique to learn a function that maps feature vectors
to the 2-dimensional feature space. New objects could be mapped even simpler
to the plane.
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Abstract. In this paper we introduce a simple ant-based algorithm for
solving a copper mine planning problem. In the last 10 years this real-
world problem has been tackled using linear integer programming and
constraint programming. However, because it is a large scale problem,
the model must be simplified by relaxing many constraints in order to
obtain a near-optimal solution in a reasonable time. We now present an
algorithm which takes into account most of the problem constraints and
it is able to find better feasible solutions than the approach that has been
used until now.

1 Introduction

Chile is the world’s largest copper producer and the profit obtained by the
copper extraction has an important role in the country economy. There are
some approaches published in the literature related to mine problems, but they
are usually applied to open pit mines, [9], [13]. Our particular problem is about
an underground copper mine. In the last 10 years, the copper mine planning
problem has been tackled using linear and mixed integer programming, and we
have recently applied constraint programming techniques to it, [6], [17]. However,
none of these techniques has been able to enterely solve our problem; thus it must
be simplified by relaxing some geological and physical constraints. This problem
belongs to large scale combinatorial optimization problems.
On the other hand, metaheuristics have solved complex problems succesfully
like timetabling problems, [3], [11], scheduling [1], vehicle routing problems [16],
travel salesman problems [4], constraint satisfaction problems [15], [5], [14], short-
term electrical generation scheduling problems [12], and real-world applications
[10], [7], [8], [2]. Our problem is similar to both, the scheduling problem and
the travel salesman problem, but it has many other constraints that must be
considered by the algorithm, in order to give better feasible solutions.

The purpose of this work goes in two directions: The first one is related to the
problem; in this context our goal is not to obtain the optimal solution but a good
one, which can be better than the solution found by the traditional approach.
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The second one is related to the ant colony technique; our aim here is to show
that it can be successfully applied to solve this real-world hard problem, using
a simple version.

The paper is organized as follows: In the next section we define our real-world
problem. In section three we present the linear integer programming model. The
algorithm is introduced in section four. Section five presents the results obtained
using random generated mine planning problems. Finally, in the last section we
present the conclusions and the future issues that might come out of our work.

2 Problem Definition

For the purpose of resource modelling and mine planning, our mine has been
divided into S sections. Each section is also subdivided into m blocks and each
block is composed of 10 cells. The goal is to find the sequence of cells extraction
that maximizes the profit. Our real-world problem is one section of an under-
ground copper mine. The exploitation technique for this kind of mines requires
the following two steps: To construct access tunnels, and to implement other
facilities for extracting the cells of a block by using a bottom up procedure.
The problem has many types of constraints, namely accessibility, geological, and
capacity constraints.

Accessibility constraint: To have access to any cell within a block, its first cell
must be previously extracted. We suppose that the access cost of a block is
charged only once, when its first cell is extracted.

Geological constraint: The major set of constraints is called “subsidence con-
straints”. Mine subsidence is the movement of the ground surface as a result
of the collapse or failure of underground mine work, [18]. These constraints
determine a physical relation among blocks.
The action of extracting a block implies the constraints: “the blocks that
belong to its upper cone can not be exploited in a future time”.

Fig. 1. Subsidence constraint
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Figure 1 is a simplified 2D picture that shows the upper cone of block k.
When the first cell of block k is extracted the blocks belonging to its upper
cone become definitively inaccesible blocks, these blocks are painted in black.
The white blocks could be exploited in a future time.

Capacity: The maximum number of cells extraction allowed is Ky cells by year.

The maximal profit value relates to both cell extraction and block access costs
and to the cell copper concentration. The extraction of the first cell of block k
implies the following actions:

1. To pay the access cost to block k
2. To avoid in the future the exploitation of the blocks belonging to the block

k upper cone
3. To allow the extraction of the other cells of block k
4. To pay the extraction cost of each cell
5. To obtain the copper profit given by the cell copper concentration

We consider that the extraction of jth cell of a block, j > 1 implies only the
points 4 and 5 listed above. The optimization is for a 20-year planning.

Remark 1. We use the Net Present Value as a way of comparing the value of
money now with the value of money in the future. Thus, we apply a discount
rate which refers to a percentage used to reflect the time value of money. Because
of discounting the idea is to exploit particularly attractive blocks early but this
makes the blocks in the cone inaccessible.

3 Problem Model

In this section we present the linear programming model. The idea is to find the
sequence of cells extractions that maximizes the profit. It is evaluated computing
the Net Present Value of the planning.

Variables:

zi,t =
{

1 if block i is exploited at time t
0 otherwise (1)

hj,t =
{

1 if blocks group j is accessible at time t
0 otherwise (2)

considering that a section is composed by m blocks, the horizon planning
time equal to H , and where t represents the time.

Goal : Maximize NPV (Net Present Value)
Objective Function

NPV =
∑
i,t

rtUizi,t −
∑
j,t

rtCjhj,t (3)

where r is the discount rate, Ui is the benefit of the block i, Cj is the
accessibility cost of the block j.
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Constraints

– Consistency ∑
t

zi,t ≤ 1, ∀i (4)

The block i could be extracted at most once∑
t

hj,t ≤ 1, ∀j (5)

The access to the block is constructed only once
– Accessibility

zi,t ≤
∑
s≤t

hj,s, ∀i ∈ j, ∀t (6)

The access to the block must be done before its exploitation
– Subsidence

zi,t + zi′,s ≤ 1, ∀i,∀t, ∀i′ ∈ I(i), ∀s ≥ t (7)

where I(i) is the set of blocks belonging to the upper cone of block i.
The blocks in the upper cone of block i cannot be exploited after the
extraction of the block i.

– Capacity ∑
i

∑
t

zi,t ≤
∑

y

Ky (8)

There is a maximum number of blocks to be extracted.

Looking at the model we can observe that the problem has a lot of constraints.
The model becomes very complex to be solved in its complete version. We tried
to apply constraint programming techniques, [17], [6] in order to filter the domain
of variables during the instantiations, but the problem is still hard to be solved
with these techniques.

In the following sections we present our approach. This uses heuristics and
is inspired by ant colonies. We have selected this metaheuristic for this work
given the success of some reported real applications [2], [7], [8], using ants based
approaches.

4 Miner Ants Colony

In the following sections we introduce the components of the algorithm based
on Ant Colonies for Mine Planning.
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4.1 Representation

In our approach the representation is a list where each element represents a
block number. The same block number could appear more than once on the
list. The number of a block appears as many times as the number of its cells
have been extracted. For instance a list (3 6 7 4 7 5 5 ..) means that the first
cell extracted is from block three, the third one is from block 7 and the fifth
one is also from block 7. This representation is useful to manage the constraints
that we named consistency constraints, equation 4 in the problem model section.
With this representation we do not need to worry about the sequence of cells
extraction inside a block, because it is directly deduced of the order of the list.
Thus, by using this representation, all possible solutions satisfy the consistency
constraints. Moreover, we can easily identify the scheduling of cell extractions of
each block.

4.2 Evaluation Function

The hardest group of constraints is the subsidence constraints. The evaluation
function has the two components of the equation 3 of the objective function
described in the problem model:

– The profit obtained by cell extractions
– The cost of blocks accesibility

We need to point out that we also include in the evaluation function an
opportunity cost, that takes into account the following issues: “when a block is
exploited all the blocks belonging to its upper cone become inaccesible for ever”.
Thus, we consider a cost related to the physical impossibility of obtaining the
copper concentration of these blocks in the future time. In each instantiation the
algorithm is looking for the cell of a block k whose gain financially justifies the
prohibition of extraction of the blocks in its k upper cone in the future. This
cost is included as a penalization in the evaluation function. It is calculated by
the addition of the profit expected from the blocks which belong to the upper
cone of the blocks exploited before.

4.3 Algorithm

Miner Ants is an ant-based optimization approach. Generally speaking, each
ant is looking for a complete block-cell extraction scheduling. Our method is
inspired in the Ants-Solver approach proposed by Solnon in [15] to solve Con-
straint Satisfaction Problems. In her approach the ants look for a solution with a
minimum number of constraints violations. After that, a local search procedure
is applied to repair the solution found by the ants, in order to satisfy most of
the constraints.

The ants in Miner Ants do not worry about the subsidence constraints. How-
ever, the solutions found by the ants must satisfy all the other constraints. That
means that the ants solve the sub-problem respecting both the consistency and
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Begin
For each block i do

MAA[i] = profit[i] − cost extraction[i] − opportunity cost[i]
Identify the block l with the lower MAA
For each block i do

MAA[i] = MAA[i] − MAA[l]
Identify the block b with the bigger MAA
For each block i do

MAA[i] = MAA[i]
MAA[b]

End

Fig. 2. Maximum Adjusted Average

the capacity constraints. A local search algorithm is in charge of repairing the
solutions found by the miner ants, in case that these solutions violate the subsi-
dence constraints. This local search procedure is especially designed for solving
this kind of constraint violation. In contrast to the Solnon algorithm the solution
found by our approach must satisfy all the constraints. The ant-based algorithm
uses a local function named Maximum Adjusted Average (MAA). It is shown in
figure 2. The values of MAA belong to the interval [0,1].

In the same way, the function MAA helps the algorithm to identify the largest
profitable number of cells of a block to be extracted, taken into account the costs
and the profit of the copper extraction of the cells still belonging to the block.
This means that the profit must be greater than the addition of both the cost
associated to the cells extraction and the opportunity cost. Given both a block
and its MAA value the algorithm determines the number of cells to be extracted
to obtain a net profit.

The algorithm is shown in figure 3. Each point is analyzed as follows:

(1) The blocks are ordered according to their MAA values.
(2) The Current feasible blocks queue is composed by all the feasible blocks

which could be extracted. At the begining of the algorithm this queue is
equal to the global blocks priority queue. It is modified at each step of the
algorithm according to the last extraction carried out.

(3) Lc blocks with a MAA value within [γbestMAA, bestMAA] are selected
by the algorithm, where bestMAA is the MAA value of the best block in
the list. These Lc blocks form the list of the best candidate blocks to be
extracted. We have determined the best value of γ = 0.75 by tuning.

(4) As shown in Ant Colony System [4] to improve exploration, the block to be
extracted is selected depending on q0:
If q0 ≥ U [0, 1] then the block with the best P k

ij is selected. This value for the
ant k which extracts the cell j inmediatly after cell i is determined by:

P k
ij(t) =

⎧⎨⎩
τij(t)[ηij ]β∑

h∈J
k(t)
i

τih(t)[ηih]β if j ∈ Jk
i

0 else
(9)
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Begin
Parameters setting
Global Pheromone Initialization to τ0

Construct a global blocks priority queue using MAA (1)
For each iteration do

For each ant
Repeat

Update the Current feasible blocks queue (2)
Determine Lc, the length of the candidates blocks list (3)
Using q0, select the next block k to extract from the Lc candidates blocks (4)
Compute the number of cells of block k to be extracted using MAA (5)
Local pheromone update (6)

until a candidate a solution is completed
Candidate solution subsidence reparation (7)
End For
Global Pheromone update (8)
Elitist Ant Pheromone update (9)

End For
End

Fig. 3. Miner Ants Algorithm

Where β is a parameter to control the pheromone intensity with the ant
visibility. τij(t) is the pheromone intensity, ηij(t) is the ant visibility (here
MAA) and Jk

i the cells allowed to be extracted after the cell i. Otherwise it
is randomly selected, with identical probability, from the candidate blocks
list.

(5) MAA helps the algorithm to identify the most profitable number of cells
of block k to be extracted, taken into account the costs (extraction and
opportunity) and the copper concentration of the cells belonging to the block.

(6) The pheromone level is locally modified by τij(t) = (1− ρ)τij(t− 1) + ρτ0,
where ρ is the evaporation parameter.

(7) The reparation procedure will be explained in details in section 4.4.
(8) For each ant and for each block extracted:

Evaporation: pheromone = pheromone× (1 − ρ)

Update Pheromone: pheromone = pheromone + (Q× ρ× p)
where p is the rate between the evaluation function of the current ant
and the evaluation function of the best ant, because we are maximizing
the fitness value, and pheromone is the pheromone (τij) between two
consecutive visited blocks (i, j) by an ant, and Q is a parameter.

(9) Similar to (8) but only considering the best found solution from the ants.

4.4 Local Search Subsidence Reparation

Generally speaking, the procedure changes the list position of a block only if it
belongs to the subsidence cone of a block extracted before it. Figure 4 shows
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Begin
For each block b1:

For each block b2 after b1 in the extraction sequence:
if (b2 ∈ I(b1)):
insert b2 before b1.

end if
end for

end for
End

Fig. 4. Reparation Procedure

x y z � ... � x y z � x y z � ... � x y z � ... � x y z
b1 b2

� �

�

Fig. 5. Solution Repair

the algorithm, where b2 ∈ I(b1) means that b2 belongs to the subsidence cone of
block b1.

Figure 5 shows how the algorithm repairs this situation.

5 Tests

Because the information of our real mine is a confidential issue we are not able to
report real results here. However, we have built a database of benchmarks1, with
50 mines which have similar characteristics of a real one. The dimensions are
in number of blocks in the three coordinates. The artificial mines have various
kinds of copper concentration: at random, at the bottom, at the middle, at the
borders, at the higher layers, both at bottom and in the middle. They have
also different dimensions. Furthermore, some of these artificial mines are more
complex than a real one. We report here the ten hardest mine configurations.
The common parameters of these virtual mines are:

H = 20 Time in years.
Ky = 5 the maximum number of blocks to be extracted by year
Ck = US$8.0M Access cost of block k
r = 10% Annual discount rate.

In order to find the best parameters values for our ant algorithm we considered
in the begining the most common values reported in the literature related to
real-world applications and we have modified them by tuning. Tuning was a
hard task. We modified a subset of the parameters in a systematic way using
dichotomy. The parameters values of our ant algorithm are: α = 1, β = 5, ρ =
1 available in http://www.inf.utfsm.cl/∼bonnaire/Mines-Benchmarks
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Table 1. Tests with randomly generated mines

Mine Characteristics Dimensions GLB Miner Ants PUB Relaxed
M2 Random 18 × 4 × 10 7400.00 8346.97 8593.71 11200.43
M5 Random 9 × 8 × 10 7532.00 8498.24 8705.02 11230.42
M18 Random 18 × 8 × 5 7714.65 8491.14 8645.87 11245.85
M22 Bottom 18 × 8 × 5 7800.98 8583.90 8769.32 11199.63
M30 Middle 6 × 6 × 20 7500.38 8258.26 8392.87 11582.02
M35 Bottom 6 × 6 × 20 6010.30 10198.24 10302.73 11384.63
M40 Borders 4 × 18 × 10 11408.05 11419.85 11429.50 11649.08
M42 Middle 8 × 9 × 10 10606.80 10851.41 10890.21 11585.76
M45 Higher layers 9 × 40 × 2 10150.30 11162.50 11163.03 11563.72
M50 Bottom and Middle 9 × 8 × 10 9002.23 10090.08 10189.98 11229.53

0.5, ρ0 = 1E − 6, Q = 1, q0 = 0.7, n = 5000, m = 20. Where n is the number
of iterations and m is the number of ants. Our tests were made on an Athlon
XP 1.6 GHz computer with 256MB of RAM, running Linux RedHat 7.2 and the
GNU G++ compiler and optimizer.
In order to evaluate the quality of the solutions found by the algorithm we define
some metrics, one lower bound and one upper bound.

– Greedy Lower Bound (GLB): It is obtained using a greedy procedure to
construct a feasible solution. This procedure considers that all blocks must
be completely extracted, which means it does not work with the cell concept.

– Practical Upper Bound (PUB): We define a greedy procedure where the
move uses the local heuristic MAA. It gives unfeasible solutions, but it is a
realistic upper bound.

From table 1 we can observe that the traditional method working with a
relaxed model found greater profit values than our algorithm. However, these
values correspond to infeasible solutions and they must be repaired by an expert.
In this context, Miner Ants gives more realistic solutions. For instance, if we
consider the M22 mine we can observe that the basic greedy procedure gives a
solution with a value of 7800.98. The Relaxed Model gives a better value equal
to 11199.63. Considering the PUB value we know that the optimal value must
be lower than 8769.32 when we take into account all the problem constraints.
Finally, our algorithm find a solution with a NPV = 8583.90. Moreover, for the
real mine the results obtained by Miner Ants are closer to the expert repaired
solution. We have obtained solutions whose values are, in the worst cases, a
25% lower than the current solution given to the expert to be modified. Our
real mine is similar to problem M50 with a copper concentration in both, at
the bottom and in the middle. The problem with this kind of configurations is
that we must be extremely careful about subsidence constraints, because if the
algorithm begins extracting at the bottom levels, some blocks in the middle that
can give a profit will be not accesible in the future. Thus, our algorithm is able
to control factors such as: costs, opportunity costs and profits. In general, the
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algorithm is able to find solutions closer to the PUB in some seconds. It takes
around 500 seconds for 1000 iterations.

6 Conclusion

We have obtained good results for a mine problem using an Ant colony based
algorithm. In this work we have considered the mine divided into homogeneous
blocks composed by the same number of cells. However, it is interesting to work
with non-homogenous structures, because it is closer to reality. Obviously non
homogenous blocks increase the complexity related to the subsidence constraints.
Our research allows us to conclude that using an ant-based algorithm we are able
to find better feasible solutions for different types of mine configurations. The
algorithm takes into account all kinds of problem constraints. The tests showed
that metaheuristic based techniques are very useful to solve complex real world
problems in a reasonable computing time. Our future research intends to include
some seismics conditions as hard constraints in order to tackle mines ground
movements.
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Abstract. Hybrid metaheuristics have received considerable interest in recent
years. Since several years ago, a wide variety of hybrid approaches have been
proposed in the literature including the new GA-EDA approach. We have design
and implemented an extension to this GA-EDA approach, based on statistical
significance tests. This approach had allowed us to make an study of the bal-
ance of diversification (exploration) and intensification (exploitation) in Genetic
Algorithms and Estimation of Distribution Algorithms.

1 Introduction

Over the last years, interest in hybrid metaheuristics has risen considerably among re-
searchers. The best results found for many practical or academic optimization problems
are obtained by hybrid algorithms. Combination of algorithms such as descent local
search [15], simulated annealing [10], tabu search [6] and evolutionary algorithms have
provided very powerful search algorithms.

Two competing goals govern the design of a metaheuristic [19]: exploration and
exploitation. Exploration is needed to ensure every part of the search space is searched
thoroughly in order to provide a reliable estimate of the global optimum. Exploitation
is important since the refinement of the current solution will often produce a better
solution. Population-based heuristics (where genetic algorithms [9] and estimation of
distribution algorithms [12] are found) are powerful in the exploration of the search
space, and weak in the exploitation of the solutions found.

With the development of our new approach, GA-EDA, a hybrid algorithm based on
genetic algorithms (GAs) and estimation of distribution algorithms (EDAs), we aim to
improve the explorations power of both techniques.

This hybrid algorithm has been tested on combinatorial optimization problems (with
discrete variables) as well as real-valued variable problems. Results of several experi-
ments show that the combination of these algorithms is extremely promising and com-
petitive.

This paper is organized in the following way: First, we will focus on different tax-
onomies of hybrid algorithms found in the literature; in section 3, the GA-EDA ap-
proach is reviewed with a complete performance study presented in section 4. Finally
we close with our conclusions and further future work.

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 339–350, 2005.
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2 Taxonomy of Hybrid Algorithms

General taxonomies provides a mechanism to allow comparison of hybrid algorithms in
a qualitative way and classifying new hybrid approaches. This section highlights some
of the most important hybrid taxonomies.

[2] describes three different forms of hybridization:

– Component Exchange Among Metaheuristics.
One of the most popular hybridization methods is the use of trajectory methods
such as Local Search, Tabu Search, in population-based algorithms. These solu-
tions combine the advantages of population based methods, which are better on
diversification, and trajectory methods, which are better on intensification. For ex-
ample [7] incorporates local search in a genetic framework.

– Cooperative Search [1,4,21].
The second hybridization approach consists of a search performed with various al-
gorithms that, typically, execute in parallel and exchange information about states,
solutions, sub-problems or other characteristics.

– Integrating Metaheuristics and Systematic Methods .
This approach has produced very effective algorithms. For instance [5] integrates
metaheuristics and Constraint Programming.

A complementary taxonomy can be found in [19] which defines a hierarchical clas-
sification.

– LRH (Low-level Relay Hybrid).
A given metaheuristic is embedded into a single-solution metaheuristic. For in-
stance in [14] a LRH hybrid combines simulated annealing with local search.

– LCH (Low-level Co-evolutionary Hybrid).
Algorithms consist in population based heuristics coupled with local search heuris-
tics. The population based algorithms will try to optimize globally and the local
search will try to optimize locally.

– HRH (High-level Relay Hybrid).
The metaheuristics are executed in a sequence, one after another, each using the
output of the previous as its input. In [13] annealing is used to improve the popula-
tion obtained by a GA.

– HCH (High-level Co-evolutionary Hybrid).
Several algorithm perform a search in parallel and cooperate in order to find the
optimum. This approach is similar to the previous cooperative search. The use of
parallel EDAs in a island model [18] is an of this.

The hybrid algorithm GA-EDA, can be classified as cooperative search in Blum and
Roli’s taxonomy. In Talbi’s classification GA-EDA is heterogeneous; global because the
algorithm search the whole state space, and general because both algorithms solve the
same problem.
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Fig. 1. Hybrid Evolutionary Algorithm Schema

3 Hybrid GA-EDA Algorithm

Hybrid GA-EDA are new algorithms based on both techniques [16,17]. The original
objective is to get benefits from both approaches. The main difference from these two
evolutionary strategies is how new individuals are generated. These new individuals
generated on each generation are called offspring. Our new approach generates two
groups of offspring individuals, one generated by the GA mechanism and the other by
EDA one. On one hand, GAs use crossover and mutation operators as a mechanism to
create new individuals from the best individuals of the previous generation. On the other
hand, EDAs builds a probabilistic model with the best individuals and then sample the
model to generate new ones.

Populationp+1 is composed by the best overall individuals from (i) the past popula-
tion (Populationp), (ii) the GA-evolved offspring, and (iii) EDA-evolved offspring.

The individuals are selected based on their fitness function. This evolutionary
schema is quite similar to Steady State GA in which individuals from one population,
with better fitness than new individual from the offspring, survive in the next one. In
this case we have two offspring pools. Figure 1 shows how this model works.

3.1 Participation Functions

On this approach an additional parameter appears, this parameter has been called Par-
ticipation Function(PF). PF provides a ratio of how many individuals are generated by



342 V. Robles et al.

each mechanism. In other words, the size of GA and EDA offspring sets. The size of
these sets also represents how each of these mechanisms participates on the evolution
of the population. These ratios are only a proportion for the number of new individu-
als each method generates, it is not a proportion of individuals in the next population,
which is defined by the quality of each particular individual. If a method were better that
the other in terms of how it combines the individuals there would be more individuals
from this offspring set than the other.

Several alternatives to these Participation Functions were taken into account in pre-
vious experiments, being some of them: the Constant Ratio (x% EDA / y% GA),the
Alternative Ratio (ALT), the Incremental Ratio (EDA++ and GA++) or the Dynamic
Ratio (DYNAMIC). More information about them could be found in [16,17] From all of
these alternatives, maybe could be useful to highlight the last one (DYNAMIC), which
has a mechanism that increases the participation ratio for the method that happens to
generate best individuals. This function evaluates each generation considering the pos-
sibility to change the participation criterion as defined by the ratio array.

The DYNAMIC algorithm starts with 50%/50% ratio distribution between the two
methods. On each generation the best offspring individuals from each method are com-
pared and the wining method gets a 5% of the ratio of the opposite method (scaled
by the amount of relative difference between the methods, dif variable). This mecha-
nism provides a contest-based dynamic function in which methods are competing to get
higher ratios as they generate better individuals.

4 The New Range Based Participation Function

In this section we present a new participation function that is based on the first steps of
the Mann-Whitney non-parametric test. In this test there is no hypothesis that the initial
samples should follow a normal distribution, which is important in this environment.

The new Range Based Participation Function begins by assembling the fitness from
GA and EDA populations into a single set of size N = nGA + nEDA. These mea-
sures are then rank-ordered from lowest (rank1) to highest (rankN ), with tied ranks
included where appropriate.

Once they have been sorted out in this fashion, the rankings are then returned to the
population, GA or EDA, to which they belong and substituted for the fitness measures
that gave rise to them.

The effect of replacing raw measures with ranks is two-fold. The first is that it brings
us to focus only on the ordinal relationships among the raw measures (“greater than”,
“less than” and “equal to”) with no illusion or pretense that these raw measures derive
from an equal-interval scale. The second is that it transforms the data array into a kind
of closed system, many of whose properties can then be known by dint of sheer logic.

Let be,
TGA = the sum of the nGA ranks in group GA
TEDA = the sum of the nEDA ranks in group EDA

Now, we would like to know if GA and EDA do not differ with respect to their
effectiveness. If this were true, then the raw measures within fitness in GA and EDA
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would be about the same, on balance, and the rankings that derive from them would be
evenly mixed within fitness in GA and EDA, like cards in a well shuffled deck.

So if this were true, we would expect the separate averages of the GA ranks and
the EDA ranks each to approximate the same overall mean value. This entails that the
rank-sums of the two groups, TGA and TEDA, would approximate the values,
MeanGA = nGA(N + 1)/2
MeanEDA = nEDA(N + 1)/2

Thus we know that:

– The observed value of TGA belongs to a sampling distribution whose mean is equal
to MeanGA.

– The observed value of TEDA belongs to a sampling distribution whose mean is
equal to MeanEDA.

Finishing, the effectiveness of GA and EDA will be,
EffectGA = TGA/MeanGA

EffectEDA = TGA/MeanEDA

Thus, the percentages for the next generation will be,
PercGA = EffectGA/EffectGA + EffectEDA

PercEDA = EffectEDA/EffectGA + EffectEDA

5 Behavior Analysis of DYNAMIC vs. RANGE Participation
Functions

The experiments to compare the behavior of DYNAMIC and RANGE Participation
Functions have been performed considering five continuous problems:

➀ Branin RCOS function
➁ Griewank function
➂ Rastrigin function
➃ Schwefel’s problem [8,20]
➄ A continuous version of the MaxBit problem

The hybrid algorithm is composed of the simplest versions of both GA and EDA
components. In this sense a real string (real-coded vector) has been used to code all
the problems. GA uses Roulette Wheel selector, one-point crossover, flip mutation (in
this case selecting a random gene, with probability 0.01 and generating a new value
using an uniform random distribution) and uniform initializer. EDA uses the continuous
version of the Univariate Marginal Distribution Algorithm (UMDAc) [11]. The overall
algorithms generate an offspring twice the size of the population. Depending on the
ratios provided by the Participation Function, this offspring is then distributed between
the two methods. The composition of the new population is defined by a deterministic
method, selecting the best fitness scores from the previous population and both offspring
sets. The stopping criteria is quite straightforward, we stop when the difference of the
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Table 1. Branin

GA EDA DYNAMIC RANGE
Average fitness 0.4016 0.3987 0.4000 0.3990
Average generation number 19 19 19 19

sum of the fitness values of all individuals in two successive generations is smaller than
a predefined value.

After having executed ten consecutive times the experiments, the average of the
best fitness values and the average of the number of generations are calculated. Sev-
eral population sizes have been tested, but in this paper we only present the most rep-
resentative size. All these experiments have been performed in an 8-nodes cluster of
bi-processors with Intel Xeon 2.4GHz with 1GB of RAM and Gigabit network running
Linux 2.4.

With the aim of making a good comparison among the results achieved by all
the presented algorithms, we have done the Mann-Whitney statistical test to compare
them. The fitness values of the best solutions found in the search are used for this
purpose.

It is important to highlight that the results presented in this paper depend on the
individual representation used for each of the problems.

5.1 Branin RCOS Function

Definition. This problem is a two-variable continuous problem with three global min-
imum and no local minimum. The problem is defined as follows [3]:

fB(x1, x2) =
(

x2 −
5

4π2 x2
1 +

5
π

x1 − 6
)2

+ 10
(

1− 1
8π

)
cos(x1) + 10

−5 < x1 < 10
0 < x2 < 15

The global optimum for this problem is 0.397887 with the following values (x1, x2)
= (−π, 12.275), (π, 2.275), (9.42478, 2.475).

This problem is considered easy not only because of the number of variables, but the
small chance to miss the basin of the global minimum in a global optimization proce-
dure. This is due to the probability to reach the global optimum using local optimization
methods, started with a small number of random points is quite high.

Results. Branin is a very simple problem where in few generations (approx 19) all
the algorithms converge. This problem was solved using a population size of 300
individuals.

As it is possible to appreciate in the table 2, EDA gets better results than GA. How-
ever, the hybrid algorithm with the RANGE Participation Function obtains significant
better results than GA, EDA and the DYNAMIC Participation Function.
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Table 2. Statistical Significance Tests for Branin

Mann-Whitney Test p-value
EDA better GA 0.1126
RANGE better DYNAMIC 0.2315
RANGE better EDA 0.2697
RANGE better GA 0.0790

5.2 Rastrigin Function

Definition. It is a scalable, continuous, and multimodal function that must be mini-
mized. It’s the result of modulating n-dimensional sphere function with a · cos(ωxi).

fRa5(x) = a · n +
n∑

i=1

(
x2

i − a · cos(ω · xi)
)

a = 10; ω = 2π; n = 5
−5.12 < xi < 5.12

The global minimum for this problem can be found in the solution xi = 0, i =
1, . . . , n with a fitness value of 0.

Results. This problem was solved using a population size of 1000 individuals.

Table 3. Rastrigin

GA EDA DYNAMIC RANGE
Average fitness 0.11656 4.10471 0.00013 0.00005
Average generation number 27 28 28 28

Although Rastrigin function has no lineal dependency among the variables, the per-
formance of EDAs (with the UMDA approach) is very poor. Nearby the optimum value
there are many local optima and EDAs seems to be very sensitive to this characteristic.

Table 4. Statistical Significance Tests for Rastrigin

Mann-Whitney Test p-value
EDA better GA 0.1126
RANGE better DYNAMIC 0.1601
RANGE better EDA 0
RANGE better GA 0

The table 4 presents the Mann Whitney significance tests for this problem. In this
case, EDA is better than GA with a p-value of 0.1126 and the RANGE Participa-
tion Function is significantly better than the DYNAMIC Participation Function with
a p-value of 0.1601. Moreover, RANGE is better than GAs and EDAs with p-values
equal to 0.
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Table 5. Schwefel

GA EDA DYNAMIC RANGE
Average fitness 3.129 1852.836 0.120 0.037
Average generation number 31 26 34 33

5.3 Schwefel’s Problem

Definition. Schwefel’s function is a continuous multimodal function. It is interesting
because it is a separable problem, it means that searching along the coordinate axes
gives optimal values for each of the components because function gradient is oriented
along the axes. As in the previous case global optimum is surrounded by several local
optimum in the neighborhood.

fS10(x) =
n∑

i=1

xi · sin(
√
|xi|)

n = 10
−500 < xi < 500

fS10(x∗) = min(fS10(x))

The global minimum for this problem can be found in the solution xi = 420.9687,
i = 1, . . . , n with a fitness value of 0.

Results. This problem has been solved with a population of 2000 individuals.
GAs perform very good in this problem because of the separability of the com-

ponent optimal values. Genetic combination tries to preserve good gene values when
generating new individuals. Although (see Table 6) GA is much better than EDA and,
one more time, RANGE outperforms DYNAMIC, GAs and EDAs.

Table 6. Statistical Significance Tests for Schwefel

Mann-Whitney Test p-value
EDA better GA 1
GA better EDA 0
RANGE better DYNAMIC 0.0001
RANGE better EDA 0
RANGE better GA 0

5.4 The MaxBit Continuous Problem

Definition. This problem is a redefinition of the binary MaxBit problem previously
presented. The aim is to maximize:
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fM12(x) =
∑n

i=1 xi

n
xi ∈ {0, 1}; n = 12

In the continuous domain this problem is more complex, as the optimum value of
the function is located on the boundary of the search space.

Results. This problem has been solved with a population of 250 individuals.
In this experiment (see Table 6), GA is much better than EDA and, one more time,

RANGE outperforms DYNAMIC, GAs and EDAs.
In the MaxBit Continuous problem EDA is slightly better than GA (with p-value

equal to 0). However, DYNAMIC and RANGE have the same behavior getting the
maximum value for all the problem executions.

6 Intensification and Diversification in GAs and EDAs

One interesting issue is to survey the evolution of the DYNAMIC and RANGE Partic-
ipation Functions in the series of different experiments. These functions, as we have
seen, adjust the participation ratio depending on the quality of the individuals each of
the method is providing. This measure has been indirectly used to evaluate the quality
of each of the methods across the continuous generations of one algorithm.

In Figure 2 the evolution of the two different participation functions is shown. Being
the first one associated to the DYNAMIC participation function and the second one to
the RANGE participation function. Moreover we have introduced an additional section
at the bottom of the figure with the aim of clarifying the progress of diversification and
intensification in the optimization process.

DYNAMIC participation function (Figure 2.a) behaves with smooth variation in the
rations for each of the evolutionary methods. As diversification features are required in

Table 7. MaxBitCont

GA EDA DYNAMIC RANGE
Average fitness 0.9940 0,9998 1 1
Average generation number 36 40 33 34

Table 8. Statistical Significance Tests for MaxBitCont

Mann-Whitney Test p-value
EDA better GA 0
RANGE better DYNAMIC 1
DYNAMIC better RANGE 1
RANGE better EDA 0
RANGE better GA 0
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early steps of the process ,during the first generations, genetic algorithms perform better,
and therefore their participation ration increases. However, in a second stage, EDAs get
profit from their better intensification performance and this characteristic causes that
the ration of participation is inverted. The shape of this participation function is similar
in all the experiments, and the variations are based on the specific nature of the problem
itself.

RANGE participation function (Figure 2.b) presents a similar behavior in general,
although (i) there is an abrupt transition between the region in which GAs exploit di-
versification and the moment in which EDAs are necessary to converge to the optimum
value via intensification. (ii) in MaxBitCont problem there are similar proportions of
both methods during all the evolution.

7 Conclusions and Future Work

In this contribution a new Participation Function for the hybrid GA-EDA algorithm has
been presented. The new function provides a direct adaptability to the results achieved
by each of the participating algorithms. This performance seems to fit better at the
switching point in which the importance of the diversification decreases and intensifi-
cation is more required to obtain the optimum value.

Besides, diversification and intensification of both GA and EDA algorithms have
been analyzed. This study requires a deeper research to evaluate the theoretical benefits
and the quantitative results of these two algorithms according to these concepts.
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cooperative search evolutionary algorithm. In J.A. Lozano, P. Larrañaga, I. Inza, and E. Ben-
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Abstract. Spatial dimension reduction methods called Two Dimen-
sional PCA and Two Dimensional LDA have recently been presented.
These variations of traditional PCA and LDA consider images as 2D ma-
trices instead of 1D vectors. The robustness to pose variations of these
advances at verification tasks, using SVM as classification algorithm, is
here shown.

The new methods endowed with a classification strategy of SVMs,
seriously improve, specially for pose variations, the results achieved by
the traditional classification of PCA and SVM.

1 Introduction

Some of the fields where biometrics play a relevant role are not only the im-
provement of security but also the development of smart environments where
individuals are able to interact with computers in a human related way [1].
Dimensionality reduction is an important and necessary preprocessing of multi-
dimensional data, as face images. Recent tests to measure the progress recently
made towards face recognition show that accuracy on frontal face with indoor
lighting goes beyond 90%, which is promising for early stages of recognition tasks
[2]. On the other hand, face recognition among different pose or illumination is
far from acceptable. Robustness to this changes in facial images is searched in
many ways.

Analysis of the effects of pose [3] and illumination [4,5] variations over each
face have been studied, searching for invariant characteristics or analyzing the
perturbations introduced in the data. A normalization task is aimed by detecting
characteristic points and measuring distances [6]. Three dimensional models of
facial images are obtained through laser scanners [7], increasing the cost and the
complexity of the problem. From our point of view, these methods improve the
performance of the classification but traditional methods avoid dealing with an
important problem, the spatial structure of the images.

Face recognition is different from classical pattern recognition, since there are
many individual classes and only a few images per class. Dimension reduction
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methods commonly used, like Principal Component Analysis (PCA) or Linear
Discriminant Analysis (LDA), and Gabor Filters [8], as well as other improved
variations, like Independent Component Analysis (ICA) [9] and Kernel Principal
Component Analysis (KPCA) [10], obtain a feature set for each image. Classi-
cal methods use vectorized representations of the images containing the faces
instead of working with data in matrix representation. The main drawbacks of
the classical vectorized projection methods is that it is easy to be subjected to
gross variations and thus, high sensitive to any changes in pose, illumination etc.

New advances on feature extraction methods called Two-Dimensional Prin-
cipal Component Analysis [11,12] and Two-Dimensional Linear Discriminant
Analysis [13,14] have shortly been presented, and preliminar experiments and
junctions of these new methods with SVM are the focus of this work. Experi-
ments are performed over a wide set of subjects, joined in a facial database of
images which allow the measurement of the advances of the recognition task to
pose variations, specially to rotated faces.

2 Feature Extraction

Traditional feature extraction techniques require that 2D face images are vector-
ized into a 1D row vector to then perform the dimension reduction [8,9,10]. The
resulting image vectors belong to a high-dimensional image vector space where
covariance matrices are evaluated with a high associated computational cost.

Recently, a Two-Dimensional PCA method (2DPCA) and Two-Dimensional
LDA (2DLDA) have been developed for bidimensional data feature extraction.
Both methods are based on 2D matrices rather than 1D vectors, preserving
spatial information.

2.1 Principal Component Analysis

Given a set of images I1, I2, . . . , IN of height h and width w, PCA considers
the images as 1D vectors in a h · w dimensional space. The facial images are
projected onto the eigenspace spanned by the leading ortonormal eigenvectors,
those of higher eigenvalue, from the sample covariance matrix of the training
images. Once the set of vectors has been centered, the sample covariance matrix
is calculated, resulting a matrix of dimension h · w × h · w. It is widely known
that if N � h ·w, there is no need to obtain the eigenvalue decomposition of this
matrix, because only N eigenvectors will have a non zero associated eigenvalue
[15]. The obtention of these eigenvectors only requires the decomposition of an
N × N matrix, considering as variables the images, instead of the pixels, and
therefore considering pixels as individuals.

Once the first d eigenvectors are selected and the proportion of the retained
variance fixed (Fig. 1),

∑d
1 λi/

∑N
1 λi, being λ1 > λ2 > · · · > λN the eigenvalues,

a projection matrix A is formed with h · w rows and d columns, one for each
eigenvector. Then a feature vector Yd×1 is obtained as a projection of each image
Ih·w×1, considered as a 1D vector, onto the new eigenspace.
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2.2 Linear Discriminant Analysis

The previous method maximizes the total scatter retained by the fixed dimen-
sion. Information provided by the labels of the set of images, I1, I2, . . . , IN , is
not used. Linear Discriminant Analysis shapes the scatter in order to make it
more reliable for classification. Traditional Linear Discriminant Analysis uses
this information to maximize between-class scatter whereas within-class scatter
is minimized simplifying the classification process and focusing the problem in
a more reliable way.

As images are transformed into a 1D vector, the method faces the difficulty
that the within-class scatter matrix, of dimension h·w×h·w, is always singular as
the number of images N of the set is usually much lower than the number of pixels
in an image. An initial projection using PCA is done to a lower dimensional space
so that the within-scatter matrix is non singular. Then applying the standard
Fisher Linear Discriminant Analysis, the dimension is finally reduced [16].

2.3 Two-Dimensional Principal Component Analysis

The consideration of images Ih×w as 1D vectors instead as 2D structures is not
the right approach to retain spatial information. Pixels are correlated to their
neighbours and the transformation of images into vectors produces a loss of
information preserving the dimensionality. On the contrary, the main objective of
these methods is the reduction of dimensionality and the least loss of information
as possible.

The idea recently presented as a variation of traditional PCA, is to project
an image Ih×w onto XPCA by the following transformation [11,12],

Yh×1 = Ih×w ·XPCA
w×1 . (1)

As result, a h dimensional projected vector Y , known as projected feature vector
of image I, is obtained. The total covariance matrix SX over the set of projected
feature vectors of training images I1, I2, . . . , IN is considered. The mean of all
the projected vectors, Y = I · XPCA, being I the mean image of the training
set, is taken into account.

SX = 1
N

∑N
i=1(Yi − Y )(Yi − Y )T

= 1
N

∑N
i=1[(Ii − I)X ][(Ii − I)X ]T

(2)

The maximization of the total scatter of projections is chosen as the criterion
to select the vector XPCA. The total scatter of the projected samples is char-
acterized by the trace of the covariance matrix of the projected feature vectors.
Applying the criterion to (2) the following expression is obtained,

J(X) = tr(SX) = XT [
1
N

N∑
i=1

(Ii − I)T (Ii − I)]X. (3)
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What is known as image covariance matrix S defined as a w × w nonnegative
matrix can be directly evaluated using the training samples,

S =
1
N

N∑
i=1

(Ii − I)T (Ii − I)]. (4)

The optimal projection axis XPCA is the unitary vector that maximizes (3),
which corresponds to the eigenvector of S of largest associated eigenvalue.

2.4 Two-Dimensional Linear Discriminant Analysis

The idea presented as 2DPCA, has been upgraded to consider the class infor-
mation [13,14]. Suppose there are L known pattern clases having M samples for
each class, N = L ·M . The idea is to project each image as in (1), but to obtain
XLDA with the information provided by the classes. The covariance over the set
of images can be decomposed into between-class and within-class. The mean of
projected vectors as in 2DPCA as well as the mean of projected vectors of the
same class Y j = Ij ·XLDA, being Ij the mean image of the class j = 1, . . . , L,
are taken into account.

SXB =
∑L

j=1 M(Y j − Y )(Y j − Y )T

=
∑L

j=1 M [(Ij − I)X ][(Ij − I)X ]T
(5)

SXW =
∑L

j=1
∑M

i=1(Y
j
i − Y j)(Y j

i − Y j)T

=
∑L

j=1
∑M

i=1[(I
j
i − Ij)X ][(Ij

i − Ij)X ]T
(6)

The objective function maximized in this case to select XLDA is considered a
class specific linear projection criterion, and can be expressed as

J(X) =
tr(SXB)
tr(SXW )

. (7)

The total between and within covariances are defined as w × w nonnegative
matrices and can be directly evaluated.

SB =
L∑

j=1

M [(Ij − I)][(Ij − I)]T ; SW =
L∑

j=1

M∑
i=1

[(Ij
i − Ij)][(Ij

i − Ij)]T (8)

Both matrices are formally identical to the corresponding traditional LDA, and
by maximizing (7) the within-class scatter is minimized whereas the between-
class scatter is maximized, giving as result the maximization of discriminating
information. The optimal projection axis XLDA is the unitary vector that maxi-
mizes (7), which corresponds to the eigenvector of SB ·S−1

W , of largest associated
eigenvalue.
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Fig. 1. Evolution of the retained variance percentage for the dimension reduction meth-
ods. Left, PCA, for N = 800 possible dimensions. Right, 2DPCA in solid line and
2DLDA in dashed line, for w = 130 possible dimensions.

3 Projection and Reconstruction

As in traditional PCA, a proportion of retained variance is fixed in 2DPCA
and 2DLDA (Fig. 1),

∑d
1 λi/

∑w
1 λi, where λ1 > λ2 > · · · > λw are the eigen-

values and X1, X2, . . . , Xd are the eigenvectors corresponding to the d largest
eigenvalues.

Once d is fixed, X1, X2, . . . , Xd are the ortonormal axes used to perform the
feature extraction. Let V = [Y1, Y2, . . . , Yd] and U = [X1, X2, . . . , Xd], then

Vh×d = Ih×w · Uw×d. (9)

A set of projected vectors, Y1, Y2, . . . , Yd, are obtained for both methods. Each
projection over an optimal projection vector is a vector, instead of a scalar as in
traditional PCA. A feature matrix Vh×d for each considered dimension reduction
method is produced, containing either the most amount of variance, or the most
discriminating features of image I.

3.1 Image Reconstruction

In this dimension reduction methods, a reconstruction of the images from the
features is possible. An approximation of the original image with the retained
information determined by d is obtained.

Ĩh·w×1 = Ah·w×d · Yd×1 PCA image reconstruction.
Ĩh×w = Vh×d · UT

d×w 2DPCA or 2DLDA image reconstruction.
(10)

4 Classification with SVM

SVM is a method of learning and separating binary classes [17], it is superior in
classification performance and is a widely used technique in pattern recognition
and especially in face verification tasks [18].
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Given a set of features y1, y2, . . . , yN where yi ∈ Rn, and each feature vector
associated to a corresponding label l1, l2, . . . , lN where li ∈ {−1, +1}, the aim
of a SVM is to separate the class label of each feature vector by forming a
hyperplane

(ω · y) + b = 0, ω ∈ Rn, b ∈ R. (11)

The optimal separating hyperplane is determined by giving the largest margin
of separation between different classes. This hyperplane is obtained through
a minimization process subjected to certain constrains. Theoretical work has
solved the existing difficulties of using SVM in practical application [19].

As SVM is a binary classifier, a one vs. all scheme is used. For each class,
each subject, a binary classifier is generated with positive label associated to
feature vectors that correspond to the class, and negative label associated to all
the other classes.

4.1 Facial Verification Using SVM

In our experiments a group of images from every subject is selected as the train-
ing set and a disjoint group of images is selected as the test set. The training set is
used in the feature extraction process through PCA, 2DPCA and 2DLDA. Then,
the training images are projected onto the new ortonormal axes and the feature
vector (PCA), or vectors (2DPCA,2DLDA), are obtained. For each subject the
required SVMs are trained.

Several strategies have been used to train and combine the SVMs. When
training and classifying PCA features, each image generates one feature vector
Yd×1 and one SVM is trained for each subject, with its feature vectors labelled
as +1 and all the other feature vectors as −1.

On the other hand, for feature vectors obtained from 2DPCA and 2DLDA,
each image generates a set of projected vectors, Vh×d = [Y1, Y2, . . . , Yd], and
three different strategies have been considered. First strategy generates a unique
feature vector through a concatenation of the d projected vectors, then one SMV
is trained for each subject as in PCA. The second and third approaches consider
the d projected vectors and consequently for each subject d SVMs are trained,
one for each feature vector. These d outputs are then combined to produce a
final classification output, first through an arithmetic mean and secondly trough
a weighted mean.

Once the SVMs are trained, images from the test set are projected onto
the eigenspace obtained from the training set. The features of the test set are
classified through the SVMs to measure the performance of the generated system.

For the SVM obtained from the PCA and from the concatenation strategy
of 2DPCA and 2DLDA feature vectors, the output is compared with the known
label of every test image. However, for the ensemble of SVMs obtained from
the 2DPCA and 2DLDA feature vectors, the d outputs are combined whether
through an arithmetic or a weighted mean. Arithmetic approach combines the
d outputs through an arithmetic mean. At weighted approach, every output is
weighted with the amount of variance explained by its dimension, that means
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that each output will be taken in account proportionally to the value of the
eigenvalue associated to the corresponding eigenvector: λi/

∑d
j=1 λj is the weight

for the i−SVM, i = 1, 2, . . . , d.
To measure the system performance a cross validation procedure is carried

out. Results are then described by using Receiver Operating Curve, ROC curve,
as there are four possible experiment outcomes: true positive (TP), true negative
(TN), false positive (FP) and false negative (FN). The system threshold can then
be adjusted to more or less sensitiveness, but in order to achieve fewer errors
new and better methods, like 2DPCA and 2DLDA, are required.

5 Design of Experiment

The Face Recognition and Artificial Vision1 group (FRAV) at the Universidad
Rey Juan Carlos, has collected a quite complete set of facial images for 109

Fig. 2. a) One of the original frontal images in the FRAV2D database. b) Automatically
selected window containing the facial expression of the subject in equalized gray scale.
c) Sample of a pose variation face, rotated 15◦, used to evaluate the performance of the
verification. d) From left to right, reconstructed images (10), for d = 10, 50, 90, 150, 170,
from PCA projection. e) and f) From left to right, reconstructed images (10), for
d = 1, 2, 3, 4, 5, from 2DPCA and 2DLDA projections respectively.

1 http://frav.escet.urjc.es
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subjects. All the images have been taken under controlled conditions of pose
and illumination. A partial group of this database is freely available for research
purposes.

The images are colored and of size 240× 320 pixels with homogeneous back-
ground color. A window of size 140× 130 pixels containing the most meaningful
part of the face, has been automatically selected in every image and stored in
equalized gray scale. That is the information that will be analyzed through the
dimension reduction and classification methods (Fig. 2).

The purpose of the following experiments is to confront the robustness to pose
variations of the traditional PCA method and classifying strategies to the new
proposed 2DPCA and 2DLDA methods in the task of face verification through
SVM. Each experiment has been performed for 100 randomly chosen subjects
from the whole FRAV2D. In all the experiments, the train set for the extraction
of the feature vectors and for the classifiers training is formed by eight frontal
images of each subject. Then, the classifiers have been tested over four 15◦

rotated images to measure the performance of the system at pose variations.
Different tests for the reduced dimension of the projections with different

values have been carried out. Results for the best performance of each method
are presented as ROC curves (Fig. 3), showing the compared performance of the
verification process using PCA, 2DPCA and 2DLDA. True positive rate (TP),
that is the proportion of correct classifications to positive verification problems,
and true negative rate (TN), that is the proportion of correct classifications to
negative verification problems, are plotted. Besides, the equal error rate (EER),
that is the value for which false positive rate (FP) is equal to false negative rate
(FN), is presented for each experiment that has been undertaken (Fig. 4).

Fig. 3. ROC curves for the best performance of each dimension reduction method,
with TP rate in abscises and TN rate in ordinates. The performance of PCA with
d = 170 in dotted line, 2DLDA with d = 2 under concatenated strategy in dashed line
and 2DPCA with d = 1 in solid line.
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Fig. 4. Top, Equal Error Rate for PCA dimension reduction method for different values
of d. Best performance is done for d = 170, EER = 21.33%. Center, Equal Error Rate
for 2DPCA dimension reduction method for different values of d and the three SVM
strategies, concatenated in solid line, arithmetic mean in dotted line and weighted mean
in dashed line. Best performance is done for d = 1, EER = 12.89%. Bottom, Equal
Error Rate for 2DLDA dimension reduction method for different values of d, as in the
previous figure the three strategies have been considered. Best performance is done for
d = 2, EER = 15.19% with concatenated strategy.
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6 Conclusions

Best results are achieved for the spatial reduction method 2DPCA, as presented
at the the ROC curves and the EER values for each method (Fig. 3, 4). Im-
provements are over 8% with respect to PCA.

Both spatial methods improve the performance of traditional PCA but seri-
ous differences appear. 2DPCA reaches its maximum accuracy at d = 1, while
2DLDA needs d = 2 to reach its best performance, both being quite low from
w = 130 possible dimensions. PCA reaches its best performance at d = 170
from N = 800 possible dimension. None of the three classifying strategies are
able to improve the results while increasing the dimension at 2DPCA. 2DLDA
best performance is reached with concatenation strategy, though weighted mean
strategy, as in 2DPCA, seems more robust to the increase of dimension. Spatial
methods lead to an eigenvector decomposition of matrices with sizes, w × w,
much smaller than PCA, N ×N .

It is clear that the spatial dimension reduction methods are more reliable
for the purpose of face verification, specially for pose variations (Fig. 2), but
deeper work has to be done to use all the information provided by the dimension
reduction methods in order to achieve a more accurate verification.
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Abstract. Different ways of contrast generated rankings by feature se-
lection algorithms are presented in this paper, showing several possible
interpretations, depending on the given approach to each study. We begin
from the premise of no existence of only one ideal subset for all cases.
The purpose of these kinds of algorithms is to reduce the data set to
each first attributes without losing prediction against the original data
set. In this paper we propose a method, feature–ranking performance,
to compare different feature–ranking methods, based on the Area Under
Feature Ranking Classification Performance Curve (AURC). Conclusions
and trends taken from this paper propose support for the performance
of learning tasks, where some ranking algorithms studied here operate.

1 Introduction

It is a fact that the performance of most practical classifiers improve when
correlated or irrelevant features are removed. Feature selection attempts to select
the minimally sized subset of features according to two criteria: classification
accuracy does not significantly decrease; and resulting class distribution given
only the values for the selected features, is as close as possible to the original class
distribution, given all features. In general, the application of feature selection
helps all phases of the data mining process for successful knowledge discovery.

Feature selection algorithms can be grouped into two categories from the
point of view of a method’s output: subset of features or ranking of features.
One category is about choosing a minimum set of features that satisfies an
evaluation criterion; the other is about ranking features according to same eval-
uation measure. Ideally, feature selection methods search through the subsets
of features and try to find the best one among the competing 2m candidate
subsets (m: number of whole features), according to some evaluation function.
However, this exhaustive process may be costly and practically prohibitive, even
for a medium–sized feature set size. Other methods based on heuristic or random
search methods attempt to reduce computational complexity by compromising
performance.

When feature selection algorithms are applied as a pre–processing technique
for classification, we are interested in those attributes that better classify new
unseen data. If the feature selection algorithm provides a subset of attributes,
this subset is used to generate the knowledge model that will classify the new
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data. However, when the algorithm provides a ranking it is not easy to determine
how many attributes are necessary to obtain a good classification result.

In this work, we present different ways to compare feature rankings and show
the variety of possible interpretations depending on the study approach made.
Our intent is to learn if any dependence between classifier and ranking methods
exist as well as trying to answer two essential enquiries: What is a good feature
ranking? And, how do we value/measure a ranking? To this end, we practise
different comparisons using four feature ranking methods: χ2, Information Gain,
ReliefF and SOAP, which are commented on later. We will check the results by
calculating the success rate using three classifiers: C4.5, Näıve Bayes and nearest
neighbour.

The paper is organized as follows. In Section 2, concepts used throughout
the paper are defined. Section 3 reviews related work and the motivation of our
approach is presented, feature ranking methods and classification techniques to
be used in the experiments are described. The AURC is shown in Section 4,
experimental results in Section 5 and finally, in Section 6, the most interesting
conclusions are summarized.

2 Definitions

In this section some definitions are given to formally describe the concepts
used throughout the paper: feature ranking, classifier, classification accuracy
and ranking–based classification accuracy.

Definition 1 (Data). Let D be a set of N examples ei = (xi, yi), where xi =
(a1, . . . , am) is a set of input attributes and yi is the output attribute. Each input
attribute belongs to the set of attributes (ai ∈ A, continuous or discrete) and each
example belongs to the data (ei ∈ D). Let C be the decision attribute (yi ∈ C),
named class, which will be used to classify the data. For simplicity in the paper,
yi means “the class label of the example ei”.

Definition 2 (Feature Ranking). Let A = {a1, a2, . . . , am} be the set of m
attributes. Let r be a function r : AD → R that assigns a value of merit to each
attribute a ∈ A from D. A feature ranking is a function F that assigns a value
of merit (relevance) to each attribute (ai ∈ A) and returns a list of attributes
(a∗

i ∈ A) ordered by its relevance, with i ∈ {1, . . . , m}:
F ({a1, a2 . . . , am}) =< a∗

1, a
∗
2, . . . , a

∗
m > where r(a∗

1) ≥ r(a∗
2) ≥ . . . ≥ r(a∗

m).

By convention, we assume that a high score is indicative of a relevant attribute
and that attributes are sorted in decreasing order of r(a∗). We consider ranking
criteria defined for individual features, independently of the context of others,
and we also limit ourselves to supervised learning criteria.

Definition 3 (Classification). A classifier is a function H that assigns a class
label to a new example: H : Ap → C, where p is the number of attributes to
be used by the classifier, 1 ≤ p ≤ m. The classification accuracy (CA) is the
average success rate provided by the classifier H given a set of test examples,
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i.e., the averaged number of times that H was able to predict the class of the test
examples. Let x be a function that extracts the input attributes from the example
e, x : Am × C → Am. For a test example e∗i = (xi, yi), if H(x(e∗i )) = yi then e∗i
is correctly classified; otherwise misclassified.

In this paper, to measure the performance of the classifiers only the leaving–
one–out method will be used, because it is not dependent on randomness, like
k–fold cross–validation or hold out. In the next expression, if H(x(ei)) = yi then
1 is counted, otherwise 0. CA = 1

N

∑N
i=1 (H(x(ei)) = yi). As we are interested

in rankings, the classification accuracy will be measured with respect to many
different subsets of the ranking provided by some feature ranking methods.

Definition 4 (Ranking–based Classification). Let SF
k be a function that

returns the subset of the first k attributes provided by the feature ranking method
F (SF

k : Am → Ak). The ranking–based classification accuracy of H will be as
follows:

CAk(F, H) =
1
N

N∑
i=1

(
H(SF

k (x(ei))) = yi

)
Note that SF

1 is the first (best) attribute of the ranking provided by F; SF
2 are

the first two attributes, and thus up to m.

3 Preliminary Study

3.1 Related Work

There are few specific bibliographies where feature ranking comparison is defined.
Liu and Motoda [1] comments on the use of learning curves to demonstrate
the effect of adding attributes when a list of ordered attributes is provided.
There is a paper [2], in which attribute ranking by means of only one subgroup
are compared, that one receiving the best classification from all the subgroups
needed to obtain the learning curve. But, picking features whose importance
is greater than a threshold value [3,4], is more simple and divulged. Irrelevant
features (whose values are random) that are used as a threshold in the application
of algorithm ranking are inserted in [5].

All the ranking comparison is based on calculate the rankings performance.
Two measures currently exist to analyze this; by means of its accuracy or by the
area under ROC (Receiver Operating Characteristics) curve [6]. A ROC curve
A is said to dominate another ROC curve B if A is always above and to the
left of B. In the cases where two ROC curves do not dominate each other in
the whole range, or when the class distribution and error costs are unknown,
the area under ROC curve (AUC) is a good ”summary” for comparing these.
So, a curve A dominates to another curve B if AUC(A) > AUC(B), where
AUC(A) and AUC(B) denotes the area under ROC curve A or B, respectively,
in the ROC space. The main limitation of this measure lies in that it is only
easily applicable to problems with two classes. For a problem with c classes,
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ROC space is composed of c ∗ (c− 1) dimensions. This fact makes the use of this
techniques in problems with a considerable number of classes practically inviable
and so, although this measure is better than the previous (based on accuracy),
we will not use it. Remember that in this paper we intend to show how the user
can choose the best possible method according to what the user is looking for,
independently of type of the data set.

In all works of ranking comparison previously mentioned, the measure used
to calculate the ranking performance is the exactness obtained by a classifier,
with k first features list being different in how the threshold is fixed. This posed
the following questions: What exactly is being evaluated, the ranking, or the
method to select features? Is this correct? The value which is used in comparison
depends on three agents: generated ranking, method of fixing the threshold and
learning algorithm. The fact is that the classification model´s exactness can
change substantially depending on the features taking part; therefore the way
of choosing features seems more important than the order in which they are
chosen. Consequentially, we can say that comparisons will be right, but not
complete. Our suggestion is to directly value the ranking, without depending on
the selection method.

3.2 Description of Methods

We have chosen four criteria to rank attributes (see [7] for review), all of them
very different from each other. These feature–ranking methods are briefly de-
scribed next: χ2 (CH) was first introduced by Liu an Setiono [8] as a discretiza-
tion method and later shown to be able to remove redundant and/or irrele-
vant continuous features; Information Gain (IG) is based on the information–
theoretical concept of entropy, a measure of the uncertainty of a random vari-
able; Relief (RL) algorithm uses an approach based on the nearest-neighbour
algorithm to assign a relevance weight to each feature. Relief was originally in-
troduced by Kira and Rendell [9] and later enhanced by Kononenko [10]. Each
feature’s weight reflects its ability to distinguish among the class values; Soap
(Selection of Attributes by Projections) evaluation criterion [3] (SP) is based on
a unique value called NLC (Number of Label Changes). It relates each attribute
with the label used for classification. This value is calculated by projecting data
set elements onto the respective axis of the attribute (ordering the examples
by this attribute), then crossing the axis from the beginning to the greatest
attribute value, and counting the NLC produced.

Once feature rankings are obtained, we check the results calculating the suc-
cess rate using three classifiers. They are chosen as representatives of different
types of classifiers: c4.5 [11] (c4) is a tool that summarizes training data in the
form of a decision tree. Along with systems that induce logical rules, decision
tree algorithms have proved popular in practice. This is due in part to their ro-
bustness and execution speed, and to the fact that explicit concept descriptions
are produced, which users can interpret; The naive Bayes [12] (nb) algorithm
represents knowledge in the form of probabilistic summaries. It employs a sim-
plified version of Bayes formula to decide which class a novel instances belongs
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to; Nearest-Neighbour [13] (nn) simply finds the stored instance closest (accord-
ing to a Euclidean distance metric) to the instance to be classified (we will use
only one neighbour, 1NN).

3.3 Motivation

Firstly, we observe the quality of the four feature-ranking methods in respect to
the tree classifiers, we will use the Glass2 data set (214 examples, 9 attributes,
2 classes), since it is a representative case to discuss our motivation. Table 1
shows the rankings for χ2, Information Gain, Relief and SOAP. For each feature–
ranking method, the row rk presents the ranking of attributes and, under this
row, the classification performance for C4.5, Näıve Bayes and the Nearest Neigh-
bour technique (using only one neighbour), by using the number of attributes
from the ranking indicated in the first row, under “Subset”. Classification ac-
curacies (using the 9 attributes) from C4.5, Näıve Bayes and 1–NN are very
different: 75.5%, 62.0% and 77.3%, respectively. For example, the most relevant
attribute for χ2 and IG was 7, for Relief 3 and SOAP 1. Using only the at-
tribute 7 (CH and IG), C4.5 produced a classification success of 73.6. However,
the classification success with attribute 3 was 57.7 (RL) and 77.3 with attribute
1 (SP). The second attribute selected by χ2 and IG was 1, Relief selected 6
and SOAP, 7. The first three attributes for χ2, IG and SOAP were the same,
so these three classification results are equal. The fourth attribute breaks the
tie. Several interesting conclusions can be drawn from the analysis of Table 1:
(a) The four feature–ranking methods provide different rankings, what obvi-

Table 1. Feature–rankings for Glass2. FR: Feature–Ranking method (CH: χ2; IG:
Information Gain; RL: Relief; SP: Soap); Cl: Classifier (c4: C4.5; nb: Näıve Bayes; nn:
1–Nearest Neighbour); and rk: ranking of attributes.

Subset
FR Cl 1 2 3 4 5 6 7 8 9
CH rk 7 1 4 6 3 2 9 8 5

c4 73.6 77.9 82.2 78.5 75.5 74.8 73.6 76.1 75.5
nb 57.1 57.1 66.9 69.9 63.8 63.8 63.2 62.0 62.0
nn 66.9 79.7 75.5 82.8 88.3 81.0 77.9 77.9 77.3

IG rk 7 1 4 3 6 2 9 8 5
c4 73.6 77.9 82.2 82.2 75.5 74.8 73.6 76.1 75.5
nb 57.1 57.1 66.9 63.8 63.8 63.8 63.2 62.0 62.0
nn 66.9 79.7 75.5 84.7 88.3 81.0 77.9 77.9 77.3

RL rk 3 6 4 7 1 5 2 8 9
c4 57.7 67.5 80.4 76.7 75.5 75.5 74.8 77.9 75.5
nb 62.0 62.6 65.0 64.4 63.8 63.8 63.8 62.6 62.0
nn 58.9 75.5 81.0 83.4 88.3 83.4 81.6 81.6 77.3

SP rk 1 7 4 5 2 3 6 9 8
c4 77.3 77.9 82.8 81.6 81.6 84.1 74.9 73.0 75.5
nb 52.2 57.1 66.9 65.6 62.6 63.2 63.8 62.0 62.0
nn 72.4 79.7 75.5 79.8 80.4 82.2 81.6 77.3 77.3
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Fig. 1. Accuracy obtained by C4.5 for data set Glass2 (data from Table 1). The number
of attributes used to classify are in the abscissa and the success rate in the ordinate.

ously leads to different classification performance. (b) The pair Soap+C4.5 is
the only one that provides a classification performance (77.3) using only one at-
tribute (attribute 1) better than using the whole set of attributes (75.5). (c) The
sequence of best classification performance is, in principle, arbitrary: (SP+C4,
77.3), (SP+NN, 79.8), (SP+C4, 82.8), (IG+NN, 84.7), ({CH,IG,RL}+NN, 88.3),
(SP+NN, 84.1), ({RL+SP}+NN,81.6), (RL+NN,81.6) and the last best value
77.3, with NN. (d) It seems that NN performs very well when the number of
attributes is greater than m/2. A significant fact is that the best five attributes
with 1NN are {1,3,4,6,7}, but the best six attributes are {1,2,3,4,5,7}. Attribute
6 is not that relevant when attributes 2 and 5 are taken into account. In general, a
variable that is completely useless by itself can provide a significant performance
improvement when it is taken with others.

Figure 1 shows the classification accuracy for C4.5 by using the four feature–
ranking methods with the data set Glass2. Although the best subset exactness
is similar, SOAP performance is excellent for any feature number and is the
only method that in almost all subsets appears above average. In conclusion, we
could assert that it is the best ranking of all. The analysis based on the best
subset does not exactly show the kindness of features ranking because before
or after that subset, the results could be terrible. Taking into account these
conclusions, we want to consider the possibility of finding some insight about
when one feature–ranking is better than others for a given classifier. Therefore,
it would be interesting to explore the ranking method performance along the
learning curve described, and extracting conclusions according to the feature
proportion used.

Figure 2 shows the possible situations when we compare different rankings
for a data subsets. The question posed is: Which ranking is better to classify?
The answer would be conditioned by what the user is looking for. This means,
if the interest is the ranking identification method that gets the best classified
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Fig. 2. Fictitious example of three different kind of learning curves

subset for a learning algorithm given, we should choose Method1, remaining
conscious of what we need for that eighty percent of features. However, it has
been observed that the rest of the curve classification results are almost always
under two other methods. If we choose a features number lower than seventy
percent, Method1 results will be the worst of the three. If what we are looking
for is a best performance method along the whole curve, we must compare the
evolution of the three curves point to point. Method2 loses at the beginning
(until thirty percent of all features). With Method3, the former is always better
than the previous ones, except in the previously commented case (with eighty
percent of features). Finally, Method3 is the best, if we want to choose less than
thirty percent of the features.

4 Area Under Learning Curve

Comparing subset to subset would be a more complete comparison between two
features ranking. Comparing classification results obtained by the first feature
of the two lists (the best one), with the two best, and so on successively until
m ranked features. We could use this comparison, calculating the average of the
obtained results with each list, to compare rankings. The calculation of the area
under curve described by previous results would be a very similar study.

Area Under the Curve (AUC) is calculated applying the trapezium formula.
In our case, the curve (learning curve) is obtained adding features according to
the order assigned by ranking method.

m−1∑
i=1

(xi+1 − xi) ∗
(yi+1 + yi)

2

Definition 5 (AURC). Given a feature ranking method F and a classifier H,
we can obtain the performance of the classification method regarding the ranking
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provided by the feature ranking by measuring the area under the curve. The
curve is drawn by joining every two points (CAk(F, H), CAk+1(F, H)), where
k ∈ {1, . . . , m− 1} and m is the number of attributes. The Area Under Ranking
Classification Performance Curve AURC(F, H) will be calculated as:

AURC(F, H) =
1

2(m− 1)

m−1∑
i=1

(CAi(F, H) + CAi+1(F, H))

With this expression, for any pair (F, H), AURC(F, H) ∈ [0, 1] (in Table 3, it
appears multiplied by one hundred for a better understanding), which provides
us an excellent method to compare the quality of feature rankings with respect
to each classification method. Take into account that the best AURC correspond
to the best Ranking method.

An interesting property of this curve is that it is not monotone increasing,
i.e., for some i, it would be possible that CAi(F, H) > CAi+1(F, H).

Definition 6 (Feature–Ranking Performance). The feature–ranking per-
formance is measured as the evolution of the AURC along the ranking of features,
with step δ%. The curve is plotted, for every δ% of the attributes as follows:

AURCδ(F, H) =
1

2δ(m− 1)

δ(m−1)∑
i=1

(CAi(F, H) + CAi+1(F, H))

We must consider that the idea concerning every feature selection method (one
of them is ranking method) is that it must take the smallest number of features
as possible. If we contemplate the possibility that in each learning curve, high
and short exactnesses are compensated to the AURC calculation, we must make
a study about methods performance using first features and fixed percentages.

5 Experiments

The implementation of induction algorithms and other selectors was done using
Weka library [14] and comparison was performed with sixteen data sets from the
University of California at Irvine [15] summarized in Table 2. All the experiments
were run using leaving one out. The four methods of feature rankings are applied
to each data set, and each ranking learning curve is calculated with the three
classifiers.

Table 3 shows, for each data set, the Area Under Classification Performance
Curve. Boldprint values are the best for the three classifiers, and those underlined
are the best for corresponding classifiers. A clear conclusion can not be made,
but specific trends can: (a) Results are very similar under each classifier (last
line). There are some differences between each one of them. 1–NN is the classifier
that offers a better performance with the four feature ranking methods; C4.5 is
very close and NB is the last one. (b) If we take into account the best AURC
for each data set, 1–NN obtains better results. (c) Most of the RL cases win, so
that we could conclude that it is the best ranking method.
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Table 2. Data sets used in the experiments

Data set Id Instances Attributes Classes
anneal AN 898 38 6
balance BA 625 4 3
g credit GC 1000 20 2
diabetes DI 768 8 2
glass GL 214 9 7
glass2 G2 163 9 2
heart–s HS 270 13 2
ionosphere IO 351 34 2
iris IR 150 4 3
kr–vs–kp KR 3196 36 6
lymphography LY 148 18 4
segment SE 2310 19 7
sonar SO 208 60 2
vehicle VE 846 18 4
vowel VW 990 13 11
zoo ZO 101 16 7

Table 3. AURC value for each ranking–classifier combination

C4.5 NB 1NN
DS CHI2 IG RLF SOAP CHI2 IG RLF SOAP CHI2 IG RLF SOAP
an 97.30 97.12 96.90 97.11 85.82 86.30 86.50 86.47 98.20 98.09 97.54 97.71
bs 68.61 68.61 68.83 68.61 75.55 75.55 72.56 75.55 72.77 72.77 69.79 72.77
gc 72.39 72.39 71.71 72.31 74.74 74.74 73.89 74.22 70.16 70.16 70.38 66.83
di 72.85 72.89 73.30 72.52 75.36 75.73 75.68 75.15 68.87 69.52 68.09 67.87
gl 64.57 66.09 67.09 67.32 49.15 49.85 47.34 51.37 63.49 67.67 68.17 71.12
g2 76.65 77.11 74.35 79.03 63.27 62.50 63.50 62.27 79.41 79.64 80.37 78.91
hs 78.23 78.23 77.04 76.54 83.09 83.09 81.53 80.80 78.43 78.43 75.94 74.34
io 88.69 89.18 90.03 86.94 84.52 85.11 85..66 80.23 88.57 88.36 88.57 86.92
ir 95.11 95.11 95.22 95.22 95.56 95.56 95.56 95.56 95.00 95.00 95.56 95.56
kr 95.22 95.13 96.48 95.56 87.47 87.47 89..81 86.99 93.97 93.89 95.79 94.63
ly 74.84 75.97 75.66 75.42 78.76 80.25 80.37 80.09 76.61 81.28 82.31 80.56
se 92.23 92.15 93.37 92.96 74.63 73.79 78.26 76.77 92.78 93.11 93.87 93.26
so 73.92 73.71 76.06 75.15 67.62 67.44 69.57 68.83 84.15 83.94 84.41 83.87
ve 64.59 65.79 68.10 67.43 41.65 41.54 41.72 41.04 66.09 65.83 65.79 65.69
vw 73.98 74.20 73.96 74.59 61.96 62.46 61.65 62.17 90.67 90.66 89.63 90.52
zo 88.18 87.56 86.88 88.27 88.95 88.21 86.42 89.36 91.34 90.84 87.69 90.87
Av 79.83 80.08 80.31 80.31 74.25 74.35 74.37 74.18 81.91 82.45 82.12 81.96

In order to facilitate the comparison of diverse ranking methods from different
points of view, and to extract some conclusions, table 4 is presented. In this table
we show a summary of each time a ranking method holds the first position.
Different groups of comparisons are set: results obtained by the first features
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Table 4. Summary of times each ranking method holds first position. Results assoc-
ciated by: first features, percentages and classifiers

Results for CH IG RL SP
Exactness-1at: 26 28 20 30
AURC-2at: 18 22 16 24
AURC-3at: 15 17 15 21
AURC-4at: 14 15 16 20
AURC-5at: 15 20 18 17
AURC-25%: 17 22 21 17
AURC-50%at: 13 12 21 13
AURC-all at: 14 12 25 12
C4.5: 39 46 50 51
NB: 41 59 58 46
NN: 50 43 44 55
Total: 130 148 152 152

are situated in the first block (success rate with the first feature and the AURC
with two, three, four and five features are contrasted); the second block shows
the comparisons by percentage results (25, 50 with the whole results); and last
group is broken down by classifiers.

If we contemplate the tests done by the first features, SOAP ranking method
stands out, especially in relation with C4.5 and 1–NN classifiers, the one that
offers the best result with NB is IG, using only the first ranking features. IG
and RL obtain better results at 25% of ranking (IG: 22, rl: 21 y CH, SP: 17).
Partly through a classifier, this position is kept with C4.5 and NB, but not with
a NN in first position at 25% for Relief. From here through the whole features
set, RL is the one that most frequently holds first position. At a 100% ranking,
relief wins with a difference 25 times in comparison to CH, 12 to IG, and 10 to
SP, and wins equally at 50% of ranking features. Results are kept with these
percentages (50 and 100) for the three classifiers.

If we do the study regarding the entire eight tested by classifiers, there are
no large differences. For C4.5 classifier, SP and RL methods stand out with very
few differences regarding to IG. IG and RL are those that hold first positions
with NB, while with 1NN it is SP. SOAP and Relief, with 152, are the ones
which stayed in first position most of the time in all the tests (480); with IG
148, and with chi2 130, following.

We can adhere to the next recommendations due to the results obtained
through the last three tests (AURC, AURC´s percentage and AURC with the
first features of the arrange list): (I) AURC gives a more complete ranking good-
ness idea than the exactness obtained by a feature subset. (II) The complete best
valued list is generated by the RL algorithm. However, if we are going to work
with the first features, or with less than 25% of the features, SP and IG methods
offer better results in less time. (III) In general, the best classification results are
obtained by 1NN, although when the selected features number is smaller (less
than the 25%), the performance of C4.5 was better in the four cases than in the
rest of the classifiers.



372 R. Ruiz et al.

6 Conclusions

Traditional work, where comparisons of feature ranking algorithms are made,
mainly evaluate and compare the way of features selection instead of ranking
methods. In this paper we present a methodology for evaluating ranking, begin-
ning from the premise of no existence of any singular unique subgroup ideal for
every case, and that the best ranking will depend on what the user is looking for.

We can conclude that the Area Under Ranking Classification Performance
Curve (AURC ) shows the complete performance of the orderly features list,
globally indicating its predictive power. Based on the analysis of the evolution
of AURC, we propose the use of algorithms SP and IG for C4.5 classifier with
few features, and the use of RL with classifier 1NN in the rest of cases.

From here, our work aims to confirm if these results can be applied to other
larger data sets as well as to study in depth if any relation exists between ranking
method and selected classifier. Furthermore, we plan to increase our study with
other measures of feature evaluation.
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Abstract. An original on-line mixture model-based clustering
algorithm is presented in this paper. The proposed algorithm is a stochas-
tic gradient ascent derived from the Classification EM (CEM) algorithm.
It generalizes the on-line k-means algorithm. Using synthetic data sets,
the proposed algorithm is compared to CEM and another on-line clus-
tering algorithm. The results show that the proposed method provides
a fast and accurate estimation when mixture components are relatively
well separated.

1 Introduction

The Classification EM algorithm (CEM) [3], applied using mixture models is
a very useful clustering algorithm which generalizes the well known k-means
algorithm when assuming specific Gaussian clusters. In a practical point of view,
this algorithm is faster that EM algorithm [5] and converges in a few iterations
[3]. Many actual applications require massive data sets to be classified in a
real-time. In that context, we have applied CEM algorithm in an application
dealing with a real-time flaw diagnosis for pressurized containers using acoustic
emissions. However, CEM algorithm has not been able to react in real-time
when more than 10000 acoustic emissions had to be clustered. Our aim was to
develop a faster clustering algorithm without losing the accuracy of the CEM
algorithm. For this purpose, we propose in this work an on-line mixture model-
based clustering algorithm.

We suppose that data are independent observations x1, . . . ,xn, . . . which are
sequentially received and distributed following a mixture density of K compo-
nents, defined on IRp by

f(x; Φ) =
K∑

k=1

πkfk(x; θk),

with Φ = (π1, . . . , πK , θ1, . . . ,θK) where π1, . . . , πK denote the proportions of
the mixture and θ1, . . . ,θK the parameters of each density component. We de-
note by z1, . . . , zn, . . . the classes associated to the observations, where zn ∈
{1, . . . , K} corresponds to the class of xn.

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 373–384, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In the second section we describe the stochastic gradient algorithms in a con-
text of parameter estimation; the third section shows how Titterington derived
an on-line clustering algorithm from the EM algorithm [9]; the fourth section
expresses the k-means algorithm as a stochastic gradient algorithm; in the fifth
section, we propose an on-line clustering algorithm derived from the CEM algo-
rithm; an experimental study is summarized in the sixth section.

2 Stochastic Gradient Algorithms

To estimate the parameter Φ, we choose to use a stochastic gradient algorithm.
Generally, stochastic gradient algorithms are used for on-line parameter estima-
tion in signal processing, automatic and pattern recognition for their algorith-
mic simplicity. They have been shown to be faster than standard algorithms.
Using current parameters and new observations, stochastic gradient algorithms
update recursively parameters. They allow to maximize the expectation of a
criterion [1,2],

C(Φ) = E [J(x, Φ)] .

where the criterion J(x, Φ) measures the quality of the parameter Φ given the
observation x. The stochastic gradient algorithm aiming to maximize the crite-
rion C is then written

Φ(n+1) = Φ(n) + αn∇ΦJ(xn+1, Φ
(n)) (1)

where the learning rate αn is a positive scalar or a positive definite matrix such
that

∑
|αn| = ∞ and

∑
|αn|2 < ∞. Under some regularity conditions on J ,

Bottou [1,2] shows that this algorithm converges toward a local maximum of
C(Φ). In practice, the samples sizes are very large but not infinite. In that case,
criterion C(Φ) can be replaced with the empirical mean 1

n

∑n
i=1 J(xi; Φ) whose

maximization is equivalent to the maximization of
∑n

i=1 J(xi; Φ).

3 On-line EM Algorithm

This section shows how Titterington [9] has derived a stochastic gradient algo-
rithm from the EM algorithm.

Given the observed data xn = (x1, . . . ,xn) and some initial parameter Φ(0),
the standard EM algorithm maximizes the log-likelihood log p(xn; Φ) by alter-
nating the two following steps until convergence:

E step (Expectation): computation of the expectation of the complete data
conditionally to the available data:

Q(Φ, Φ(q)) = E[log p(xn, zn; Φ)|xn, Φ(q)]

=
n∑

i=1

K∑
k=1

t
(q)
ik log[πkf(xi; θk)],
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where zn = (z1, . . . , zn) and t
(q)
ik = πkf(xi;θk)∑

K
�=1 π�f(xi;θ�)

is the posterior probability
that xi arises from the kth component of the mixture. This step simply requires
the computation of posterior probabilities t

(q)
ik .

M step (Maximization): maximisation of Q(Φ, Φ(q)) with respect to Φ.
To derive a stochastic algorithm from this formulation, Titterington [9] de-

fined recursively, in the same way as for the EM algorithm, the quantity{
Q1(Φ, Φ(0)) = E[log p(x1, z1; Φ|x1; Φ(0))]
Qn+1(Φ, Φ(n)) = Qn(Φ, Φ(n−1)) + E[log p(xn+1, zn+1; Φ)|xn+1; Φ(n)],

(2)

where Φ(n) is the parameter maximizing Qn(Φ, Φ(n−1)). The indice n added to
letter Q is used to specify that, contrary to the standard EM algorithm, quantity
Qn(Φ, Φ(n−1)) depends on observations xn = (x1, . . . ,xn) acquired until the mo-
ment n and quantity Qn+1(Φ, Φ(n)) depends on observations
xn+1 = (x1, . . . ,xn+1) acquired until the moment n + 1. The maximization
of 1

n+1Qn+1( · , Φ(n)) using Newton method after approximating the hessian
matrix term by its expectation which is the Fisher information matrix

Ic(Φ(n)) = −E[
∂2 log p(x, z; Φ)

∂Φ∂ΦT
]|Φ=Φ(n)

associated to one complete observation (x, z) results in the algorithm proposed
by Titterington:

Φ(n+1) = Φ(n) +
1

n + 1
[Ic(Φ(n))]−1∇Φ log f(xn+1; Φ(n))· (3)

Fisher information matrix Ic(Φ(n)) is positive definite for some density fami-
lies like the exponential family. In that case, Titterington algorithm has the gen-
eral form (1) of the stochastic gradient algorithms, which guarantees, under some
conditions [1,2], that the criterion maximized by equation (3) is E[log f(x; Φ)].

4 On-line k-Means Algorithm

This section expresses the well known on-line k-means clustering algorithm [6] as
a stochastic gradient algorithm. This algorithm will be generalized by a model-
based approach in the next section. It consists in estimating recursively K means
μ1, . . . ,μK using the algorithm

μ
(n+1)
k = μ

(n)
k +

1

n
(n)
k + 1

z
(n)
n+1,k(xn+1 − μ

(n)
k ), (4)

where z
(n)
n+1,k equal 1 if k minimizes (xn+1−μ

(n)
k )T (xn+1−μ

(n)
k ) and 0 otherwise;

n
(n)
k is the number of observations assigned to component k at the moment n.
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This algorithm can also be expressed as a stochastic gradient algorithm with the
matrix

αn =

⎛⎜⎜⎜⎜⎜⎝
1

n
(n)
1 +1

I 0 . . . 0

0 1
n

(n)
2 +1

I . . . 0
...

...
...

0 0 . . . 1
n

(n)
K +1

I

⎞⎟⎟⎟⎟⎟⎠
as a learning rate, where I is the identity matrix in dimension p. The criterion
maximized by this algorithm is the expectation

E

[
min

1≤k≤K

1
2
(x− μk)T (x− μk)

]
= E[J(x, Φ))] = C(Φ),

where Φ = (μ1, . . . ,μK).

5 An on Line Clustering Algorithm Derived from CEM
Algorithm

This section begins with a recall of the Classification EM (CEM) [3] algorithm
in the context of mixture models and then derives a stochastic algorithm from
CEM algorithm.

5.1 CEM Algorithm

The Classification EM(CEM) algorithm is an iterative clustering algorithm max-
imizing, with respect to the components membership vector zn = (z1, . . . , zn)
and the parameter vector Φ, the classification likelihood criterion

C(zn, Φ) = log p(xn, zn; Φ) =
n∑

i=1

K∑
k=1

zik log πkfk(xi; θk) (5)

where zik equal 1 if zi equal k and 0 otherwise. The classification likelihood
criterion is inspired by the criterion

C1(zn, Φ) =
n∑

i=1

K∑
k=1

zik log fk(xi; θk)

proposed by Scott an Symons [8] where the sample xn = (x1, . . . ,xn) is supposed
to be formed by separately taking observations of each component of the mixture.
The CEM algorithm starts from an initial parameter Φ(0) and alternates, at qth
iteration, the following steps until convergence:

E step (Expectation): computation of the posterior probabilities t
(q)
ik ;

C step (Classification): assignation of each observation xi to the cluster z
(q)
i

which maximizes t
(q)
ik , 1 ≤ k ≤ K;
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M step (Maximization): maximization of C(z(q)
n , Φ) with respect to Φ.

Thus, in the mixture model context, the CEM algorithm can be regarded
as a classification version of the EM algorithm which incorporates a classifica-
tion step between the E step and the M step of the EM algorithm. Celeux and
Govaert [3] show that each iteration of the CEM algorithm increases the classi-
fication likelihood criterion and that convergence is reached in a finite number
of iterations.

In order to introduce the on-line CEM algorithm, we should point out that
the maximization of the classification likelihood criterion defined by equation
(5) is equivalent to the maximization of the criterion

LC(Φ) = max
zn

[log p(xn, zn; Φ)]

=
n∑

i=1

max
zi

[πzifzi(xi; θzi)].

Each iteration q of the CEM algorithm also consists in maximizing with respect
to Φ, the quantity

R(Φ, Φ(q)) = log p(xn, z(q)
n ; Φ),

where z(q)
n maximizes p(xn, zn; Φ(q)).

5.2 On-line CEM Algorithm

To derive from this formulation a stochastic gradient algorithm, we define the
quantity Rn as follows:{

R1(Φ, Φ(0)) = log p(x1, z
(0)
1 ; Φ)

Rn+1(Φ, Φ(n)) = Rn(Φ, Φ(n−1)) + log p(xn+1, z
(n)
n+1; Φ),

(6)

where Φ(n) maximizes Rn(Φ, Φ(n−1)) and z
(n)
n+1 maximizes log p(xn+1, zn+1; Φ(n)).

The indice n added to letter R is used to specify, like Titterington approach, that
quantity Rn(Φ, Φ(n−1)) depends on observations xn = (x1, . . . ,xn) and quantity
Rn+1(Φ, Φ(n)) depends on observations xn+1 = (x1, . . . ,xn+1). By maximizing

1
n+1Rn+1( · , Φ(n)) using Newton method and approximating the hessian matrix
term by the Fisher information matrix

Ic(Φ(n)) = −E[
∂2 log p(x, z; Φ)

∂Φ∂ΦT
]|Φ=Φ(n)

associated to one complete observation (x, z), we get our new algorithm given
by the recursive formula
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Φ(n+1) = Φ(n) +
1

n + 1
[Ic(Φ(n))]−1∇Φ

[
max
zn+1

log p(xn+1, zn+1; Φ(n))
]

(7)

which is recognizable as a stochastic gradient algorithm with the matrix learning
rate 1

n+1 [Ic(Φ(n))]−1. This stochastic gradient algorithm maximizes the expected
classification likelihood criterion

E[ max
1≤z≤K

log p(x, z; Φ)] = E[J(x, Φ)] = C(Φ).

Referring to the definition of stochastic gradient algorithms, this criterion can
also be maximized using algorithm (7) where 1

n+1 [Ic(Φ(n))]−1 is replaced with
a scalar learning rate αn verifying conditions

∑
|αn| = ∞ and

∑
|αn|2 <∞ [7].

Usual scalar learning rates in stochastic approximation take the form αn = 1
an

(a > 0). In the proposed algorithm, the inverse of the Fisher information matrix
may contribute to fast convergence.

Many commonly used mixture models like Gaussian mixtures has their com-
plete data distribution from the exponential family. The next subsection shows
that algorithm (7) can be simplified in that situation.

5.3 Exponential Family Model

This part shows how recursion (7) can be simplified if complete data have their
distribution from the exponential family.

The complete data (x, z) has its distribution from the exponential family
with natural parameter η and sufficient statistic T(x, z) if its distribution can
be written

p(x, z; η) = exp
(
ηT T(x, z)− a(η) + b(x, z)

)
.

If we re-parameterize the mixture distribution with the expectation parameter
Ψ = E(T(x, z)|η), the complete data log-likelihood can be derived as followed

∂ log p(x, z; η(Ψ ))
∂Ψ

=
∂η

∂Ψ

(
T(x, z)− ∂a

∂η

)
Using the following relations verified by the exponential family:

∂η

∂Ψ
, = Ic(Ψ )

Ψ =
∂a

∂η
,

we obtain
∂ log p(x, z; η(Ψ ))

∂Ψ
= Ic(Ψ )(T(x, z)− Ψ ). (8)

The derivative of Rn+1(Ψ , Ψ (n)) with respect to Ψ is then written



A Mixture Model-Based On-line CEM Algorithm 379

∂Rn+1(Ψ , Ψ (n))
∂Ψ

=
n+1∑
i=1

∂ log p(xi, z
(i−1)
i ; η(Ψ ))

∂Ψ

=
n+1∑
i=1

Ic(Ψ )
(
T(xi, z

(i−1)
i )− Ψ

)
= Ic(Ψ )

( n+1∑
i=1

T(xi, z
(i−1)
i )− (n + 1)Ψ

)
.

The parameter Ψ (n+1) maximizing Rn+1(Ψ , Ψ (n)) can thus be written

Ψ (n+1) =
∑n+1

i=1 T(xi, z
(i−1)
i )

n + 1

=
∑n

i=1 T(xi, z
(i−1)
i ) + T(xn+1, z

(n)
n+1)

n + 1

=
nΨ (n) + T(xn+1, z

(n)
n+1)

n + 1
·

This parameter is finally written

Ψ (n+1) = Ψ (n) +
1

n + 1
[
T(xn+1, z

(n)
n+1)− Ψ (n)]. (9)

Writing recursive formula (9) as followed:

Ψ (n+1) = Ψ (n) +
1

n + 1
Ic(Ψ (n))−1Ic(Ψ (n))

[
T(xn+1, z

(n)
n+1)− Ψ (n))]

and using relation (8), it can then be deduced that equation (9) is equivalent to
equation (7).

Consequently, in the situation where complete data have their distribution
from the exponential family, recursion (7) is obtained exactly (not approxima-
tively) and is written under the simplified form of recursion (9).

Using recursive formula (9), our on-line CEM algorithm for Gaussian mix-
tures starts with initial proportions π

(0)
k , means vectors μ

(0)
k , covariance matrices

Σ
(0)
k and initial number of observations n

(0)
k = 0 of each cluster k, 1 ≤ k ≤ K.

The two following steps are then alternated while new observations are received.

Step 1 (iteration n + 1) assignation of the new observation xn+1 to the class

k∗ which maximizes the posterior probability t
(n)
n+1k = π

(n)
k f(xn+1;θ

(n)
k )∑K

�=1 π
(n)
�

f(xn+1;θ
(n)
�

)
:

k∗ = argmax
1≤k≤K

(
log π

(n)
k − 1

2
log det(Σ(n)

k )−

1
2
(xn+1 − μ

(n)
k )T Σ

(n)
k

−1
(xn+1 − μ

(n)
k )
)
;

set z
(n)
n+1,k equals 1 if k = k∗ and 0 otherwise.
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Step 2 (iteration n + 1) updating of the parameters:

n
(n+1)
k = n

(n)
k + z

(n)
n+1,k

π
(n+1)
k =

n
(n+1)
k

n + 1

μ
(n+1)
k = μ

(n)
k +

z
(n)
n+1,k

n
(n+1)
k

· (xn+1 − μ
(n)
k )

Σ
(n+1)
k = Σ

(n)
k +

z
(n)
n+1,k

n
(n+1)
k

·

((
1−

z
(n)
n+1,k

n
(n+1)
k

)
(xn+1 − μ

(n)
k )(xn+1 − μ

(n)
k )T −Σ

(n)
k

)
.

Since each new observation xn+1 is used only on time, this algorithm does not
require a stop condition.

By considering a Gaussian mixture with identical proportions and spherical
covariance matrices (equal to the identity matrix), the on-line k-means algo-
rithm is recovered. Thus, this algorithm is a generalization of on-line k-means
algorithm.

6 Experiments

This section is designed to evaluate the proposed algorithm in term of precision
and computing time. Simulations are restricted to two-dimensional data sets
corresponding to a Gaussian mixture with diagonal covariance matrices and
equal proportions. We focus on model-based algorithms designed to directly find
a partition by optimizing a criterion. An on-line CEM algorithm with a classical
scalar learning rate αn = 1

an has been chosen for comparisons. By varying values
of a, we observed that the algorithm performs better for values of a between
0.1 and 0.6. Thus, the learning rate αn = 1

0.3n has been used in the current
simulations. The three algorithms compared are:

– the CEM algorithm which is our reference algorithm,
– the proposed on-line CEM algorithm with a matrix learning rate,
– the on-line CEM algorithm with the scalar learning rate αn = 1

0.3n ·

6.1 Evaluation Criteria

The precision of partitions estimated by each algorithm is measured by the
misclassification rate between estimated partitions and the true simulated par-
tition. The misclassification rate between two partitions is measured by crossing
the classes vectors of the two partitions and then counting the number of mis-
classified observations. The computing time is given by the CPU running time.
We should point out that the processor used for all the simulations is a 2 Ghz
Pentium 4 processor.
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6.2 Simulation Protocol

The adopted strategy for simulations consists in initially drawing n observations
according to a mixture of two bi-dimensional Gaussian distributions, to apply
the standard CEM algorithm on a few points (n0 points) and finally to apply
the on-line CEM algorithms on the rest of the points. The standard CEM al-
gorithm is directly applied to the n observations. For each data set, the CEM
algorithm starts with 30 different initializations and the solution which provides
the greatest likelihood is selected. For each mixture model, 25 random data sets
are generated and both misclassification rates and CPU times are averaged.

6.3 Simulation Parameters

We consider mixture parameters corresponding to two kinds of models: a model
A with two spherical clusters and a model B with two elliptical clusters. For
each model, three overlapping rates were considered, corresponding to 5%, 15%
and 25% of Bayes error rate and depending on the distance between Gaussian
densities means. The proportions for all models are π1 = π2 = 1/2. The covari-
ance matrices are Σ1 = Σ2 = diag(1, 1) for model A and Σ1 = diag(1; 1/8),
Σ2 = diag(1/8; 1) for model B, where diag(a, b) is the diagonal matrix whose
diagonal components vector is (a, b). The Gaussian density means for model A
are: (−2; 0), (1.2; 0) for 5% of Bayes error rate, (−2; 0), (0; 0) for 15% of Bayes
error rate and (−2; 0), (−0.7; 0) for 25% of Bayes error rate. The Gaussian den-
sity centers for model B are: (3.3; 0), (0; 0) for 5% of Bayes error rate, (1.6; 0),
(0; 0) for 15% of Bayes error rate and (0; 0), (0; 0) for 25% of Bayes error rate.
The sample sizes n varied from 1000 to 20000 by step of 1000 and the number n0
of observations initially processed with the CEM algorithm is n0 = 80. Figure
1 shows examples of simulation of mixture models A and B for n = 3000 with
15% of Bayes error rate.
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Fig. 1. Example of simulation of Mixtures A and B for n = 3000 with 15% of Bayes
error rate



382 A. Samé, G. Govaert, and C. Ambroise

80 5000 10000 15000 20000
0

5

10

15

20

25

30

35

40

45

50
CEM
on−line CEM
on−line CEM (scalar learning rate)

80 5000 10000 15000 20000
0

5

10

15

20

25

30

35

40

45

50
CEM
on−line CEM
on−line CEM (scalar learning rate)

(a) (b)

Fig. 2. Misclassification rate as a function of the sample size obtained with the three
algorithms, for model A (a) and model B (b), for 15% of Bayes error rate
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Fig. 3. Misclassification rate as a function of the sample size obtained with the three
algorithms, for model A (a) and model B (b), for 25% of Bayes error rate

6.4 Results

Figures 2 and 3 report, as a function of the sample size, the misclassification
rates obtained for mixtures A and B, for 15% and 25% of Bayes error rate. For
a Bayes error rate leading to 15%, we observe that the two on-line algorithms
have the same performances for model A (see figure 2-a) and that our new
algorithm (on-line CEM with a matrix learning rate) performs better than his
concurrent (on-line CEM using a scalar learning rate) for model B (see figure
2-b). The two algorithms stabilize very quickly and misclassification percentages
given by our new algorithm is nearly the same as that of the standard (off-
line) CEM algorithm. The same behavior has been observed for 5% of Bayes
error rate. Therefore, when the clusters are relatively well separated, our on-
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Fig. 4. CPU time (in seconds) as a function of the sample size obtained with the three
algorithms, for model A (a) and model B (b), for 15% of Bayes error rate

line CEM algorithm provides a faster and better fitting to the data shape and
performs better than the on-line CEM algorithm using a scalar learning rate.
These performances can be attributed to the matrix learning rate.

When the class overlap is relatively high (25% of Bayes error rate), the two
on-line CEM algorithms give poor results for mixture A (see figure 3-a) and
miture B (see figure 3-b) but, again, the on-line CEM algorithm with a matrix
learning rate performs better than his concurrent for mixture B. This can be
attributed to the notoriously poor performances [3] of CEM-type algorithms
when clusters are not well separated. This phenomenon seems to be even more
pronounced when using on-line algorithms.

Figure 4 reports, as a function of the sample size, the CPU time (in seconds)
obtained for mixtures A and B, for 15% of Bayes error rate. It can be observed
that CPU times given by the on-line algorithms vary very slowly with sample
size. The CPU time for the standard CEM algorithm in fact grows considerably
with the sample size. In particular, for 20000 observations, CEM is about six time
slower than the two on-line algorithms for mixture B. The same behavior has
been observed for the others Bayes error rates (5% and 25%). These experiments
clearly show that our proposed on-line CEM algorithm is more efficient than the
CEM algorithm in terms of speed.

7 Conclusion

In this paper an on-line clustering algorithm based on mixture models was pro-
posed. This algorithm is a stochastic gradient algorithm with a matrix learning
rate. When complete data distribution is from the exponential family, the algo-
rithm is simplified. It provides a generalization of the on-line k-means algorithm
introduced by MacQueen [6] when a Gaussian mixture with spherical covariance
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matrices is considered. It may be also applied using the 28 Gaussian parsimo-
nious models proposed by Celeux and Govaert [4].

Although the proposed method provides reasonably good results, the con-
vergence analysis of the on-line CEM algorithm toward a local maxima of the
expected classification likelihood E[max1≤z≤K log p(x, z; Φ)] is met only under
some conditions [1,2] which are often difficult to prove. The verification of these
conditions, at least for some particular models, remains a prospect of this work.
The evaluation of the algorithm on real data is in progress.
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Abstract. Clustering problems arise in various domains of science and
engineering. A large number of methods have been developed to date.
Kohonen self-organizing map (SOM) is a popular tool that maps a high-
dimensional space onto a small number of dimensions by placing similar
elements close together, forming clusters. Cluster analysis is often left
to the user. In this paper we present a method and a set of tools to
perform unsupervised SOM cluster analysis, determine cluster confidence
and visualize the result as a tree facilitating comparison with existing
hierarchical classifiers. We also introduce a distance measure for cluster
trees that allows to select a SOM with the most confident clusters.

1 Introduction

Problems of ordering high-dimensional data in a small number of dimensions are
frequently encountered. Such data are often noisy or incomplete, but classical
clustering methods such as linkage or multidimensional scaling, assume the data
to be well defined. Noise may lead to incorrect clusterings, and missing com-
ponents are often unacceptable. Iterative learning of the data may neutralize
these shortcomings, and Kohonen self-organizing map (SOM) [1] is a clustering
method that addresses these issues. It is an artificial neural network capable of
mapping high-dimensional data onto a low-dimensional grid such that similar
data elements are placed close together. Groups of nodes with short distances to
each other represent clusters. However, different map initializations and topolo-
gies, as well as input order of data elements, may result in different clusterings
[2]. Ideally, a large number of SOMs with varying random seed needs to be cre-
ated, their clusterings analyzed, and only those clusters occurring in a majority
of cases should be chosen. This is a lengthy and laborious task, so far not au-
tomated. For large data sets it becomes intractable for manual analysis forcing
the user to select a single “good” SOM and accept it as the final result omitting
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tests of confidence. Needless to say that such unverified clusterings may contain
faulty conjectures leading to incorrect conclusions.

In this paper we present an unsupervised method for cluster analysis and
confidence testing for SOMs. When used for clustering, SOM can be represented
as a tree [3] allowing for easy comparisons with the outcomes of hierarchical clas-
sifiers widely used in various domains. Moreover, a tree representation allows to
solve the problem of cluster confidence testing taking advantage of consensus
tree building methods, developed and implemented independently of SOM (e.g.
[4], [5]). A consensus tree represents an “average” of a set of trees with frequen-
cies of occurrence of its branches compared to the set of all trees representing
reliable clusters as subtrees. The exact way of constructing such a tree, as well
as the way of measuring the frequencies, depends on the particular method se-
lected. We propose to make one further step in selecting one of the SOMs as
the best representative of the consensus. Such combination of a consensus tree
providing a cluster hierarchy, and a cluster map revealing spatial ordering of
clusters, allows to view the clustering from different perspectives supported by
the data.

Other neural network variants allow to overcome sensitivity to topology and
initialization by dynamically growing the network, e.g., growing neural gas [6],
growing hierarchical self-organizing map [7]. Compared to a standard rectangular
SOM, such methods may yield a topology better matching the data, and a more
complex final map that is highly data-dependent. This may require complex
methods for standardized analysis of such results, especially when comparing
with other classification methods. A rectangular SOM, on the other hand, al-
lows for systematic analysis independent of the data. Another approach is to
build a tree directly, e.g., with a growing neural tree [8]. This allows for an
immediate comparison with other tree-based classification methods but lacks a
spatial ordering of data inherent to a map.

We also offer to the scientific community an open source C++ implementation
TreeSOM of the algorithms described in this paper, including the core SOM al-
gorithm. Our implementation is approximately 5.5 times faster than the original
version by Kohonen’s group [2] due to a number of optimizations. They include
replacing linked lists by arrays, computing full distances only if necessary and
changing types of numerical values and are fully described in the documentation
provided with the source.

The remainder of the paper is organized as follows. First, in section 2 we
present the data, models and classification methods used in the running example
illustrating TreeSOM. Then we outline various aspects of the method: section 3
describes the cluster discovery algorithm, section 4 determines data clustering
based on node clustering, section 5 represents SOM clustering as a tree, section
6 examines cluster confidence constructing a consensus cluster tree based on
a series of SOMs, and finally section 7 presents an algorithm for finding the
most representative SOM for the consensus cluster tree of the series. Section 8
concludes the paper.
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2 Protein Data

To illustrate the methods discussed in this paper, we use a running example
from protein bioinformatics: clustering of serotonin receptors of several species.

Proteins are composed of amino acids, and primary protein structure is deter-
mined by their sequence. The task is to cluster a set of proteins into families not
known in advance. By far the most common approach to this problem is to infer
phylogeny from a homology model of the protein set resulting in a phylogenetic
tree where families are represented as subtrees.

When only the amino acid sequence of a protein is available, homology mod-
eling is usually reduced to finding a gaped alignment of the sequences in the data
set such that only similar amino acids are aligned with each other [9], [10]. This
in itself is already a very complex problem as amino acid similarity as used by
the alignment algorithms, appears to depend not only on the chemical properties
of the molecules, but on their context as well as on protein class [11].

Inferring phylogeny from an alignment is the process of determining pairwise
distances between the proteins in the alignment that are mutually consistent.
This step can be performed with a variety of methods resulting in different
phylogenies [12]. The choice of the method often depends on the protein class
and the data set homogeneity.

The proteins we use in this paper belong to the class of G protein-coupled
receptors (GPCRs), cell transmembrane proteins that typically bind hormones
and neurotransmitters and convey signals into the cells. Such a mediatory role
ensures their importance for medicine, and indeed almost a half of all drugs
currently on the market, act through GPCRs. The small set we used to illustrate
our method, contains 62 serotonin GPCRs from different species taken from the
public GPCR database GPCRDB (www.gpcr.org, [13]).

The phylogenetic trees are based on a multiple alignment made with ClustalW
[14] with increased gap penalties (pwgapopen=60, pwgapext=2, gapopen=70,
gapext=2). Phylogenies were inferred according to the probabilities of amino
acid change [15] with PHYLIP [16]. The trees are constructed with the Neighbor-
Joining method [17], their confidence determined with bootstrapping [18] and
consensus tree construction [4].

The SOMs are based on the same set of proteins but use a different model.
Considering a protein as a string of amino acids, we can analyze its amino acid
content, and specifically examine amino acid pairs. Frequencies of occurrence (in
percent) of each possible pair comprise a protein model. For GPCRs we looked
at third-neighbor pairs rather than at adjacent amino acids, as prompted by the
specifics of GPCR structure. GPCRs are believed to have most of the sequence
coiled in spiral structures (α-helices) with 3.6 amino acids per turn, such that
most amino acids are spatially roughly above their third neighbor suggesting
influence or interaction (see also [19]).

With such frequency-based vectors composing the data set, we use a Eu-
clidean SOM, trained in two phases with the following parameters: map size
5x4, Gaussian neighborhood, linear decrease of learning rate and radius; phase
1: starting learning rate 0.2, starting radius 6, 1000 iterations; phase 2: starting
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learning rate 0.02, starting radius 3, 100,000 iterations. Such training length en-
sured that cluster tree topology remained unchanged with any additional train-
ing. Map size of 20 neurons was selected based on several trials such that con-
fident clusters as well as alternative distributions of data on the map could be
achieved. We show in a separate study [20] that smaller SOMs tend to yield
more confident clusters, whereas larger SOMs reveal alternative data mappings.
To determine confidence, 100 SOMs with different random seeds were produced
and their consensus tree constructed with the same method as used for the
phylogenetic trees in PHYLIP implementation.

Thus, the examples present not only two different classification methods —
Euclidean SOM versus phylogeny inference, — but also two different data models
— frequencies of third pairs of amino acids in protein sequences versus homology
modeling with protein sequence alignment. In our previous work we also used
Euclidean SOMs with protein alignment scores [19], and various other combina-
tions are possible such as alignment-based SOMs [21], [22], [23] that are more
natural for handling general protein data making use of the standard phylogeny
inference models. The tools we present here can be employed for the uniform
analysis and visualization of the results, allowing for an easy comparison of var-
ious approaches.

3 Cluster Discovery

When self-organizing maps are used for clustering, finding clusters on the SOM
becomes a crucial task. Several fairly complex approaches have been developed,
e.g. [3], [24]. A node is iteratively updated during training based on the learning
vectors such that a well-trained SOM represents a distribution of the input
data over a two-dimensional surface preserving topology. In this context we can
define a cluster as a group of nodes with short distances between them and long
distances to the other nodes.

The representation in Figure 1 is similar to the popular umat visualization
[25]. Using this representation, we can define a cluster as a group of nodes sur-
rounded by an uninterrupted border of a given shade or darker representing
distances equal or greater than a given distance threshold. Note that distances
between nodes within a cluster may not necessarily be all shorter than the dis-

Fig. 1. SOM as a grid of nodes separated by borders with gray shades representing
distances between the corresponding nodes. White stands for a zero distance and black
for the largest distance between two adjacent nodes found on the map.
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Algorithm 1 Cluster discovery algorithm for a given distance threshold
Procedure Cluster-Discovery (for distance threshold T ):

– mark all nodes as unvisited
– while there are unvisited nodes, repeat:

• locate an arbitrary unvisited node N
• start a new cluster C
• call procedure Cluster for N , C and T

Procedure Cluster (for node N , cluster C and distance threshold T ):

– assign N to C
– mark N as visited
– for each unvisited node A adjacent to N such that the distance |NA| < T call

procedure Cluster for A and C

tance threshold, however every node must be connected to every other node
within the cluster along a path consisting exclusively of edges shorter than the
distance threshold. Effectively it means that each node within a cluster must be
connected to at least one other node within the same cluster with an edge that
is shorter than the distance threshold. Based on this observation, we define the
cluster discovery algorithm as shown in the algorithm box 1. It may be applied
either onto a fully trained SOM to discover the “final” clustering, or to any in-
termediate SOM snapshot as a monitor of the training progress or even as a part
of the termination test. The distance measure is not defined by this algorithm,
and is generally the same as the distance measure used during training. How-
ever, a different measure may be used if appropriate. Also, since algorithm 1 is
independent of the SOM training algorithm as well as of the definition of node
neighborhood and adjacency, it is in principle applicable to any SOM variant.

Scaling all distances such that the largest distance between two adjacent
nodes equals 1, we can express distance thresholds as values between 0 and

(a) 0.63 (b) 0.58 (c) 0.47 (d) 0.44 (e) 0.28

Fig. 2. A series of clusterings of the map in figure 1 with the scaled distance thresholds
given in the subscripts. The cluster areas are shaded according to the average distance
between the nodes in the corresponding cluster.
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1 regardless of the actual distances. For each threshold we can find a unique
clustering using algorithm 1. Figure 2 shows a series of clusterings of the SOM
in figure 1. Here, the cluster borders are always displayed in black, and the cluster
areas are shaded according to the same convention as used for the borders in
figure 11. However in this case the shade represents the average distance between
the nodes within the cluster rather than the distance between the neighboring
nodes. Thus, cluster maps bring forward the clusters by hiding the borders that
fall within them, yet provide information on cluster density by shading cluster
areas.

A series of cluster maps generated for successive thresholds as shown in figure
2, may be converted into an animated graphical format such as GIF or MPEG
using widely available graphical tools. Such a movie gives an insight into cluster
formation on a SOM.

4 Calibration

When SOM is used for clustering, it is not the node clustering that is of ultimate
interest, but the data clustering, the distribution of training data over the SOM
clusters. Mapping of data on a trained SOM is called calibration. Each data item
is assigned to the node that is most similar to it, so that some nodes may get
many data elements, and others none at all.

1

2 3

(a) 0.63

1 2

3 4 5

(b) 0.58

1

2

3 4

5 6 7

(c) 0.47

1 2 3 4

5

6 7 8

(d) 0.44

1 2 3 4

5 6

7 8 9

10 11

(e) 0.28

Fig. 3. A series of calibrated clusterings of the map in figure 1 with the (scaled) distance
thresholds given in the subscripts. The cluster areas are shaded according to the average
distance between the data elements in the corresponding cluster. The cluster frames are
colored according to the family assigned to the majority of the data elements in it, as
described in section 5. As the frames overlap, the upper or left-side border of a cluster
may cover the lower or right-side border of its upper or left neighbor respectively. On
large SOMs such overlapping yields a clearer picture than complete frames.

Figure 3 shows the same series of clusterings as figure 2, but now “filled”
with the data. The nodes that contain no data elements are crossed out and are
not used in cluster analysis. Here, in contrast to figure 2, the clusters are shaded

1 Shading cluster borders as well as cluster areas yields poorly readable maps. Instead,
borders may be colored to display additional information as shown in section 4.



Reliable Hierarchical Clustering with the Self-Organizing Map 391

according to the average distance between the data elements rather than nodes
within the corresponding cluster, with white indicating zero distance (identical
elements) and black the largest distance between any two elements in the data
set. Each cluster receives a unique identifier used in the corresponding data
clustering list (a file listing each cluster and the elements belonging to it). Since
clusters containing a single element represent a special case, they are marked
with a circle. Note that box area in such clusters is always white, since the
distance of any data element to itself is zero.

Such a visualization allows to immediately distinguish “tight” and “loose”
clusters by their shades. Data elements in “tight” clusters have short distances
to one another, resulting in a light shade of the cluster area. On the other
hand, “loose” clusters contain data elements with large distances between them,
resulting in a dark shade of the cluster area. For example, in figure 3b cluster
5 is “looser” than cluster 2, and in figure 3e clusters 1 and 7 are the “tightest”
and cluster 11 is the “loosest” on the map.

5 SOM as a Tree

Clustering problems arise in many branches of science and engineering and many
areas traditionally use hierarchical clusterings visualizing the result as a tree.
Thus when a SOM is used in such a domain, the result needs to be compared
with a tree in order to determine how the new attempt differs from the previous
ones. In our previous work we addressed the problem of comparing alternative
SOM clusterings of protein sequences with phylogenetic trees [19]. Although the
method of placing a phylogenetic tree orthogonally to the SOM surface yields a
clear graphical representation, it is largely manual and requires tree aggregation.
The comparison becomes easier if the SOM itself is represented as a tree, leaving
the phylogenetic tree unmodified and reducing the task to comparison of two
trees.

The SOM cluster analysis yields a series of nested clusterings that allow to
represent cluster development as a tree (see figure 4a). At each threshold in the
clusterings series one or more clusters are split into several subclusters that is
represented as a node in the tree. The lowest level shows the individual elements
found in the corresponding clusters.

In clustering problems it is often required to determine whether some novel
data belongs to any of the established families, or whether a novel clustering
criterion yields a better result than a previously used one. In such cases some or
even all of the data in the training set can be annotated with family information
known beforehand. Different families are then represented in color on a SOM
cluster map and tree giving an instant overview as in figures 3 and 4a respectively.
Each branch on the tree and each cluster frame on the map is assigned the family
to which the majority of data elements in the corresponding cluster belong, and
colored accordingly. If no majority can be found, the branch is left black.

Phylogenetic trees can be displayed in the same manner allowing for an easy
visual comparison (see figure 4b).
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Serotonin type 7
Serotonin type 6
Serotonin type 5
Serotonin type 4
Serotonin type 2
Serotonin type 1

Families

(a)

threshold

1 0.75 0.5 0.25 (b)

Fig. 4. Tree representations of two different clusterings of serotonin receptors. (a) Clus-
ter tree of a calibrated SOM in figure 3. (b) The corresponding phylogenetic tree.

6 Clustering Confidence

A self-organizing map is initialized randomly and trained with data elements
presented in random order, resulting in different SOMs for different random
seeds. More specifically, clusterings may be different, both in terms of grouping
on the lowest level, as in cluster hierarchies. To determine the “true” clustering
a large number of such SOMs has to be analyzed and only the clusters found
in the majority of cases, may be included in the final clustering. If each SOM
is represented as a tree, this task can be tackled with methods constructing a
consensus tree from a set of trees. There are many such methods, so that the most
appropriate one may be selected for each particular problem. We used method
[4] because it is also used in determining confidence of phylogenetic trees.

Serotonin type 7
Serotonin type 6
Serotonin type 5
Serotonin type 4
Serotonin type 2
Serotonin type 1

Families

(a)

81%

55%

55%
58%

55%

74%
0.4

(b)

0.1

Fig. 5. Consensus trees of two different clusterings of serotonin receptors. (a) Consensus
SOM cluster tree. (b) Consensus phylogenetic tree.
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Figure 5 shows consensus trees of the SOM clusters and the phylogeny corre-
sponding to the individual trees in figure 4. Confidence of each cluster is shown on
the branch leading to the corresponding node. The confidence values in the phy-
logenetic tree are omitted for the sake of readability. Branch lengths reflect the
distances between the corresponding nodes (clusters) and their siblings (nodes
with the same parent): assume set A is split into B1, . . . , Bn, then the branch
ABj has length |ABj | = 1

n−1

∑
i	=j |BiBj |. The distance between two sets P and

Q equals the average distance between each element from P and from Q.
Consensus trees in figure 5 allow to compare two different clusterings of the

same data set. Here, not only the clustering methods differ, but also the under-
lying distances. Thus, the results are not expected to be alike. The difference is
reflected in the relative branch lengths in the trees. In this example, the phylo-
genetic model shows much higher similarity between the proteins grouped in one
cluster, than does the statistical model used with the SOM. However, the general
clustering on the family level is similar. The difference in clustering methods is
visible in the tree topologies: although both the individual SOM cluster trees
and the phylogenetic trees are almost fully binary, the consensus phylogenetic
tree retained much more of its binary hierarchy with higher confidence than the
SOM consensus tree did, suggesting a greater consistency among the phyloge-
netic trees than among the SOMs.

In spite of using different methods and models for the clusterings in figure
5, the results are notably similar. However, it is the differences that may open
up new insights, such as the SOM grouping together receptors of type 4 and
7, whereas the phylogenetic tree clearly separates the two families. Remarkably,
these are the only serotonin receptors that exhibit alternative splicing. This
result suggests that amino acid composition may contain clues to underlying
gene expression. A study of a larger set of proteins is needed to verify this
suggestion.

7 The Most Representative SOM

Cluster confidence analysis presented in the previous sections, leads to a final
tree converting a spatial ordering of clusters inherent to a SOM, into a hierarchy.
Although in many cases it is desirable, in many other cases it is not, as it lacks
the information on proximity of clusters to one another. To solve this problem,
we propose a distance measure for cluster trees allowing to select an individual
tree, and hence a SOM, as the best representative of the consensus. Such a
distance measure is defined algorithmically in box 2. Note that this measure is
not symmetrical as it is based on the clusters of the reference tree.

In our example, the best SOM is represented by the cluster tree and map in
figure 6, and the distance from the consensus tree to it is 0.43. Here clusters of
the same family are grouped close together, except serotonin type 2 (clusters 11,
13 and 14) which is split by an empty node. The distance from the consensus
tree to the SOM in figures 3 and 4a is 0.7, and here not only type 2 cluster is
split, but also type 1 cluster.
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Algorithm 2 Distance measure for cluster trees
Procedure Distance-Measure (from reference tree R to tree T )

– initialize score to 0
– for each node N of R repeat:

• search T for a node NT equivalent to NR (use Node-Equivalence-Test for nodes
NT and NR)

• if found, increment the score
– define similarity of T with respect to R: S = score

|R| where |R| is the number of
nodes in R, S ∈ [0, 1]

– define distance from R to T : D = 1 − S, D ∈ [0, 1]

Procedure Node-Equivalence-Test (for nodes A and B)

– define a set of leaves of a node N to contain all the leaves directly connected to N
and all the leaves connected to any of its descendants

– nodes A and B are equivalent if their sets of leaves are identical

Serotonin type 7
Serotonin type 6
Serotonin type 5
Serotonin type 4
Serotonin type 2
Serotonin type 1

Families

(a)

threshold

1 0.75 0.5 0.25 (b)

1 2 3 4

5 6 7

8 9 10 11

12 13 14

Fig. 6. Cluster tree (a) and map (b) of the best SOM with respect to the consensus
tree in figure 5a

8 Conclusions

In this paper we presented a new look at self-organizing maps improving their
applicability to clustering problems and facilitating comparisons of clustering
results with those of hierarchical classifiers. We propose an unsupervised cluster
analysis method TreeSOM dividing up a SOM into nested clusters at differ-
ent distance thresholds, determining cluster confidence based on many indepen-
dently trained SOMs, visualizing the resulting clustering as a tree, and indicating
a single SOM as the best representative of the final clustering. This method not
only reveals the segregation of data, but also a cluster hierarchy. We also make
available to the scientific community open source tools implementing all aspects
of this method, along with a new, efficient and modular implementation of the
core SOM algorithm. Moreover, the visualization tools we present here, may be
used with any trees to achieve clear uniform representations aggregating data
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on different levels, permitting to create detailed diagrams as well as general
overviews.

In short, the method and tools that we propose, not only bridge the gap
between a map-like SOM structure and well-established tree clusterings, but
also analyze and quantify SOM results in a well-defined and uniform manner
making it an even more valuable tool for data analysis.

Tools and supplementary material are available from:
http://web.inter.nl.net/users/Elena.Samsonova/resources.shtml#TreeSOM.
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Abstract. This paper presents a new model for flexible noun phrase
detection, which is able to recognize noun phrases similar enough to the
ones given by the inferred noun phrase grammar. To allow this flexibility,
we use a very accurate set of probabilities for the transitions between the
part-of-speech tag sequence which defines a noun phrase. These accurate
probabilities are obtained by means of an evolutionary algorithm, which
works with both, positive and negative examples of the language, thus
improving the system coverage, while maintaining its precision. We have
tested the system on different corpora and compare the results with other
systems, what has revealed a clear improvement of the performance.

1 Introduction

There are many Natural Language Processing (NLP) applications for which noun
phrase (NP) detection is useful. For instance, NPs can be used in the identifica-
tion of multiword terms, which are mainly noun phrases, or as a preprocessing
step for a subsequent complete syntactic analysis. However, probably the most
direct and relevant application nowadays is in information recovering. NPs re-
cover most of the information content of a document, helping to detect the topics
it is about. In fact, document indexing by NPs has been shown to improve on
other kinds of indexing when retrieval is carried out over a very large corpus
[1]. Thus, the distribution of noun phrases can guide search engines in collect-
ing relevant documents according to user queries, or they can be used in text
summarizing, in machine translation, etc.

Different approaches have been proposed for the NP identification problem.
Some of them rely on linguistic knowledge and use a hand-coded language model.
Bourigault [2] uses a handcrafted NP grammar along with some heuristics for
identifying NPs of maximal length, and Voutilainen [3] uses a constraint gram-
mar formalism. Other proposals follow a learning approach based on the use
of corpora. Church [4] uses a probabilistic model automatically trained on the
Brown corpus to detect NPs as well as to assign parts of speech. Ramshaw &
� Supported by projects TIC2003-09481-C04 and FIT150500-2003-373.
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Marcus [5] uses the supervised learning methods proposed by Brill[6] to learn
a set transformation rules for the problem. Pla and Prieto [7] use grammatical
inference to obtain a FSA which recognizes NPs, what has inspired this work.

This paper presents a new model for a flexible identification of basic (non-
recursive) NPs in an arbitrary text. The system generates a probabilistic finite-
state automaton (FSA) able to recognize the sequences of lexical tags which form
an NP. The FSA is generated with the Error Correcting Grammatical Inference
(ECGI) algorithm of grammatical inference and initial probabilities are assigned
using the collected bigram probabilities. The FSA probabilities provide a method
for a flexible recognition of input chains, which are considered to be NPs even
if they are not accepted by the FSA but are similar enough to an accepted one.
Thus, the system is able to recognize NPs not present in the training exam-
ples, what has proven very advantageous for the performance of the system.
The FSA probabilities, which are crucial for the flexibility in recognition, are
optimized by applying an evolutionary algorithm (EA), what produces a highly
robust recognizer. The EA uses both, positive and negative training examples,
what contributes to improve the coverage of the system while maintaining a high
precision.

Though it is difficult to compare different approaches because they differ in
multiple elements, some attempts have been made. Pla [8] gathers results of a
number of parses trained on the data set used by Ramshaw [5]: the one proposed
by Cardie & Pierce [9], whose technique consists in matching part-of-speech
(POS) tag sequences from an initial NP grammar extracted from an annotated
corpus and then ranking and pruning the rules according to their achieved pre-
cision; the memory-based approach presented in [10], which introduces cascaded
chunking, a process in two stages in which the classification of the first stage
is used to improve the performance of the second one; the Memory-Based Se-
quence Learning (MBSL) algorithm [11], which learns sequences of POS tags
and brackets, and the hybrid approach of Tjong-Kim-Sang [12], which uses a
weighted voting to combine the output of different models. We have also applied
our model to the same test set in order to compare the results.

The rest of the paper proceeds as follows: section 2 describes the general
scheme of the system, presenting their main elements and its relationships; sec-
tion 3 is devoted to describe the evolutionary algorithm used to training the
FSA; section 4 presents and discusses the experimental results, and section 5
draws the main conclusions of this work.

2 General Scheme of the System

This work presents the design and implementation of a flexible recognizer of
basic NPs given as chains of POS tags. Because the system is constructed from
examples of objective syntagmas, an algorithm of grammar inference will be used
(ECGI). This algorithm extracts from these examples a FSA, which represents
the grammar defined by them. In its turn, this algorithm uses the Viterbi al-
gorithm, a dynamic programming one, so that the FSA has an optimal number
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Training
examples

ECGI Alg.
     +
Viterbi Alg.

FSA
Evolutionary
 Algorithm

probabilities
Final

Negative
Examples

Positive
Examples

Initial
probabilities

Fig. 1. Scheme of the process to generate the NP flexible recognizer. The FSA is
constructed from a set of training examples by applying the ECGI algorithm and using
Viterbi to find the most similar chain of tags for a given input. Initial probabilities for
the FSA are also obtained from this set of training examples. Then, the probabilities are
tuned by applying an evolutionary algorithm which uses new examples, both positive
and negative.

of states and paths. In order to extend the recognition capabilities of the FSA
beyond the set of training examples, it is necessary to endow the system with
a mechanism to recognize also other NPs not appearing in the examples, but
very similar to the ones gathered in the grammar. This mechanism to introduce
flexibility amounts to allowing the FSA to recognize NPs with a percentage of
error. If the number of errors incurred in parsing an NP is below a threshold
value, then the new NP is also recognized. An error appears whenever the input
tag does not produce any transition from the actual state of the FSA. In order
to allow the FSA to find NPs similar to those of the input, their edges are la-
beled with the probability of each transition between tags within an NP. These
probabilities are initially extracted from the NPs examples, and afterwards an
evolutionary algorithm is applied to optimize the probabilities. This algorithm
uses NP examples different from those used in the FSA construction, as well as
negative examples, i.e. syntagmas which must not be recognized as NPs. Figure 1
shows a scheme of the relationships between the different components and phases
involved in the flexible recognizer. Let us now describe the different elements of
the system.

2.1 Building the FSA for NP Recognition

The technique used to obtain the FSA is an algorithm of Grammar Inference,
i.e. a process which, from a set of examples, obtains structural patterns of the
language and represents them by means of a grammar. Dupont [13] proposes a
general scheme for selecting the most appropriate algorithm of grammar infer-
ence under different conditions. According to these ideas, we have chosen the
Error Correcting Grammatical Inference (ECGI) algorithm [14] since we are in-
terested in a heuristic construction of a regular grammar such that the final
result allows for a flexible recognition. This technique involves a progressive con-
struction of the FSA from positive examples. The FSA is modified in order to
correct the errors appearing in the parsing of a new example, obtaining non
recursive grammars (a FSA without cycles).
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INI A A B END INI A A B END

INI A A B ENDINI A A B END

B

A

(a) (b)

(d)

A A B   (inital FSA)

(c) A A A B  (insertion error) A B _  (deletion error)

A B B    (substitution error)

Fig. 2. Examples of application of the ECGI algorithm

The algorithm constructs the grammar by adding in an incremental way the
training examples. In order to avoid introducing noise in the recognizer which
could drive it to increase the number of false positives (non-nominal syntag-
mas recognized as nominal), it is necessary to remove this noise by applying a
preprocessing step to the training examples. Thus, the typically non-nominal
syntagmas which behave as nominal in the training set (the nominalization of
a verb, for example) are handily detected and eliminated from the training list.
After the preprocessing, the algorithm proceeds as follows. First, a simple FSA
is generated which recognizes the first example of the training set. This FSA is
then extended with the other examples. To introduce a new example, the Viterbi
algorithm is used to find the sequence of states which recognizes the example
with less errors. Then, the FSA is extended by adding states and/or transitions
which correct the produced errors. In this way, when the process of parsing all
the examples finishes, the resulting FSA is able to recognize all of them and does
not present cycles.

The errors which can appear between an input chain and the recognized ones
are of three types: insertion, substitution and deletion. Figure 2 shows examples
of each of them. When the FSA of Figure 2(a) tries to recognize the input chain
(A B B) (Figure 2(b)), a substitution error is detected and solved by adding a
new state to the FSA with the label of the error. If the new chain is (A A A B)
(Figure 2(c)) an insertion error appears, which is solved by adding a new state
with the missing label. Finally, if the chain is (A B) (Figure 2(d)), the deletion
error is managed by adding a transition between the states neighbor to the
deleted one. The result of the algorithm is a regular grammar which generates
a finite language, because by construction it has no cycles.

We have introduced a simplification of this algorithm already proposed in
the literature [15]. It aims at reducing the complexity of the algorithm to find
in the FSA the closest path to the input chain. This simplification amounts to
ignoring the deletion errors. This can reduce the recognition complexity below
10%. However, this simplification also reduces the generality of the language,
since it discards chains with lengths different from the training examples. Thus,
these examples must be sufficiently varied and heterogenous.

The selection of the most similar chain to the input one is carried out by
applying the Viterbi algorithm. This algorithm was initially designed to find
the most probable path in a Markov chain which produces a given sequence of
tags [16]. This algorithm has also been applied to search the minimum path in
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a multi-stage graph. In our case, the goal is to minimize the number of errors in
the FSA for an input chain.

We have modified the Viterbi algorithm to process input chains with a length
different from the examples chains. Thus, if the input chain is longer than the
longest chain the FSA recognizes, an edge from each state to every other one,
including itself, is added and those edges are considered to produce transition
errors.

2.2 Flexible Recognition of NPs

The FSA built so far basically recognizes those NPs present in the training ex-
amples (some other sequences can also be recognized, though in general they
are not NPs). Because we are interested in a recognizer as general as possible
and because the training examples usually include only a small sample of the
language, it is necessary to endow the system with a mechanism of generaliza-
tion. This mechanism amounts to allowing the FSA to recognize a chain if it
is sufficiently similar to an accepted chain, i.e. if the number of differences is
below a certain threshold value. This procedure does not introduces too many
chains outside the language, as the experiments have shown. For example, the
FSA of Figure 3 does not recognize the chain (D C C). However, if the error
threshold value is 1, the chain will be recognized, since the chain (A C C) is
in fact recognized. Obviously, the error threshold value is a determining factor
for the generalization of the model, and it is object of a detailed study in the
experiments.

Now the question is how to parse a chain which presents errors. In this case,
the parse arrives at a situation in which no transition is possible, since the next
input tag does not matches any of the state for which there is a transition. At this
point, we use the statistics derived from the training examples. Each transition is
labeled with a real value, which represents its probability in the target language.
Then, to process an error tag, the parse follows the most probable transition.
The probabilities are relative to each state, in such a way that the values of all
the transitions leaving a same state add up to one. Each probability is initially
computed as the number of occurrences of a transition relative to the others of
the same state according to the training examples. For example, in the FSA of
Figure 3, if transition AC appears 7 times in the examples and transition AB

ENDCCAINI

B
1

1 10.46

0.31
0.3

0.7

0.23

Fig. 3. Probabilistic FSA for flexible NPs recognition
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appears 3 times, 10 transitions exist from A to C or B, and thus the probability
of the edges that leave state A are 0.7(C) and 0.3(B) (AC = 7/10; AB = 3/10).
With the probabilities of the edges so determined, if the chain (D C C) is parsed,
as there is not transition from the initial state to D, the parse will take the most
probable transition, which leads to A, and afterwards the process continues with
the other tags of the input, (C C), which are correct transitions. Thus, the chain
(A C C) is obtained with one error with respect to the input. In this way, the
parse produces a chain very similar to the input one and which occurs with high
probability in the language. Thus, we can expect that a chain which has been
only partially recognized, belongs to the language if the error is small.

3 Optimizing the Automata Probabilities: Evolutionary
Algorithm

Now the goal is to find a set of probabilities for the edges of the FSA described
in the previous section, which allow it to recognize as many NPs as possible,
avoiding at the same time recognizing false NPs. Accordingly, the search space
is composed of the different sets of probabilities for the edges of the FSA and
the algorithm looks for those which optimize the recognition of a set of training
examples. This complex search is performed with an evolutionary algorithm.

Systems based on evolutionary algorithms maintain a population of poten-
tial solutions and are provided with some selection process based on the fitness
of individuals, as natural selection does. The population is renewed by replac-
ing individuals with those obtained by applying “genetic” operators to selected
individuals. The most usual “genetic” operators are crossover and mutation.
Crossover obtains new individuals by mixing, in some problem dependent way,
two individuals, called parents. Mutation produces a new individual by per-
forming some kind of random change on an individual. The production of new
generations continues until resources are exhausted or until some individual in
the population is fit enough. Evolutionary algorithms have proven to be very
useful search and optimization methods, and have previously been applied to
different issues of natural language processing [17], such as text categorization
[18], tagging [19] and parsing [20].

In our case, individuals represent probabilistic FSAs, all of them with the
same structure but different probabilities. They are implemented as an adja-
cency matrix, what facilitates the application of the genetic operators. Thus,
the probability an edge going from state i to state j is the value which appears
in row i column j, Aij . Transitions which do no exist are assigned the value −1.
For example, the FSA of Figure 4(a) is implemented as the matrix of Figure
4(b).

The genetic operators applied to renew the population are crossover and
mutation. Two variants of crossover have been implemented. The first one is
the classic one point crossover, which combines two individuals by combining
the first part of one parent up to a crossover point with the second part of the
other parent and vice versa. The second variant uses two crossover points and
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Fig. 4. Individuals representation

exchanges the bit of the two parents between these points. In both variants, the
crossover points are randomly selected.

The mutation operator amounts to choosing an edge at random and varying
its probability. This variation may be positive or negative, what is decided at
random, and the amount is an input parameter to the algorithm, studied in the
experiments. Notice that when an edge is modified the remaining edges of the
same state must be updated in order to maintain the value of its addition equal
to 1. If the variation produces a value smaller than the zero or greater than
one, then the edge is assigned zero or one respectively, and the real variation is
computed according to this value.

3.1 The Fitness Function

The fitness function must be a measure of the capability of the FSA to recognize
NPs and only them. On the one hand, the fitness function must include a measure
of the coverage, or recall achieved by the individual, i. e. the number of NPs which
have been recognized from the set of proposed NPs:

recall =
number of recognized NPs
number of proposed NPs

On the other hand, the fitness function must also take into account the precision
achieved by the individual:

precision =
number of NPs recognized + number of non NPs discarded

number of proposed syntagmas

We have considered as fitness function two F-measures which combine these two
parameters in different ways:

F-measure =
2 · Precision ·Recall
Precision + Recall
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and F2-measure, which gives a higher weight to precision,

F2-measure =
5 · Precision · Recall
4 · Precision + Recall

In order to apply these measures to an individual, we must establish the cases in
which an NP is considered recognized. Obviously those input chains correspond-
ing to a path from the initial to the final state are recognized by any individual
in the population. But in the remaining cases, the path will depend on the prob-
abilities of the FSA, and only those chains with a number of errors below the
threshold will be recognized. This threshold value can be defined as an absolute
value or as a percentage of the length of the chain. Both alternatives have been
evaluated in the experiments.

3.2 Initial Population

Individuals for the initial population are randomly generated from a seed solu-
tion, which helps to guide the search. The seed, which is included in the popula-
tion as another individual, is the set of probabilities obtained from the training
examples used to construct the FSA. The individuals of the remaining popula-
tion are generated by applying the mutation operator several times to the seed.
The variation produced by each mutation in this phase is a parameter studied
in the experiments. Notice that a small variation would produce individuals too
similar to the seed, which in spite of having a high quality according to the fit-
ness function, do not help to explore other areas of the search space where better
solutions could be found, while a great variation can lead to lose the advantages
of the seed.

4 Experimental Results

The algorithm has been implemented using C++ language and run on a Pentium
III processor. The CPU time spent on generating an automaton from 45 exam-
ples, with a maximum length of 7, was 0.3 seconds, and from 156 examples, with
9 as maximum length, 1.6 seconds. The time spent on analyzing a text composed
of 1108 different syntagmas, being NPs 570 of them, was 1.1 seconds. For the
experiments we have used training and test sets from the Brown corpus portion
of the Penn Treebank [21], a database of English sentences manually annotated
with syntactic information. After a number of experiments, we have selected a
set of default criteria and parameters for the EA, which provide a high perfor-
mance for different settings of the problem, and which have been used in the
experiments described below. The EA uses a two point crossover, F1-measure as
fitness function, and elitism1. The parameter values are a population size of 100
individuals, a number of 150 generations, a crossover rate of 60%, a mutation

1 By elitism we refer to the technique of retaining in the population the best individ-
uals found so far.
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(a) (b)

Fig. 5. (a) Error thresholds and fitness function types comparison. (b) F-Measure
values for different combinations of number of files for building the recognizer-number
of files for EA fitness.

rate of 40%, a variation of FSA probabilities in mutation of 0.5, and a variation
of FSA probabilities in the generation of the initial population of 0.7. Each EA
has been run five times, and the average and maximum values of these executions
are presented for each experiment. Setting the EA parameters to these values,
the time spent on ten executions of the EA was over 3 hours and a half, using a
test set of 1569 different syntagmas, 543 NPs, for the fitness function calculation.

Before any other empirical trials, we have carried out a test in order to show
the benefits of the EA over the recognizer. We have found out that the higher
the error threshold the better the improvement. For relative error thresholds of
10%, 20% and 30% the F-Measure over the test increases 4%, 10% and 14%,
respectively. For absolute error threshold values of 1 and 2 the increase is about
5% and 12%, respectively.

We also have performed experiments to determine the most appropriate error
threshold allowed in the recognition. Figure 5 (a) shows the results obtained with
different performance measures. Two different ways of defining the threshold
value have been studied: as an absolute number of errors, and as a percentage
of the NP length. Best results are obtained with the threshold defined as a
percentage and for relative low values, such as 10%. This value has been used in
the following experiments.

Another question which has been investigated is the most appropriate size of
the training sets for both, the construction of the FSA (C), and for the evaluation
of fitness measure of the EA (F). Figure 5 (b) shows the results of the different
considered measures for different combination of these values (C-F). Best results
for all measures are obtained when using a small number of files for the FSA
construction, and a large number of files for the EA. Using a larger training set
in the construction of the FSA produces too large FSAs, which recognize too
much false NPs and deteriorate the system performance. We can in fact observe
that the recall measures are high when using a larger set in the construction of
the FSA, at the price of producing very low precision measures.

Since the system also uses training examples to establish the initial proba-
bilities from which the initial population of EA is generated, we have performed
a test in order to study the influence of the number of examples used this way
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(a) (b)

Fig. 6. (a) F-measures values from the GA using different number of files to obtain
the initial probabilities or seed. (b) Accuracy values for different categories of the file
used to build the recognizer.

in the EA performance. As observed in Figure 6 (a), there exists an improve-
ment the more examples are used, but it is not very significant. However, the
decrease in performance when using eight files indicates that it is not convenient
to use too many training examples, because the extracted probabilities become
overfitted.

We have also performed experiments to determine the impact of using differ-
ent categories of topics as training sets. Figure 6 (b) shows the results obtained
using training files of category B (press editorial), E (skills and hobbies) and F
(popular lore). We can observe that the results are quite different depending on
the used category, since the kind and frequency of NPs is different in each of
them.

In order to compare the overall performance with other related systems, we
have applied the system to a standard subset of the Wall Street Journal portion of
the Penn Treebank, also used in the other works. Table 1 compares the precision,
recall and F-measure values. We can observe that our results improve on those
of all the other systems, both in recall and F-measure, and only the Ramshaw95
and Tjong-Kim-Sang00 systems provide a slightly better precision. It proves the
usefulness of the mechanism of flexible recognition, since it achieves, as expected,
a significant improvement of the performance, maintaining at the same time a
high level of precision thanks to the accurate probabilities that the EA provides.

Table 1. Comparison of precision, recall and F-measure values with similar systems
over the Ramshaw standard corpus

Precision(%) Recall(%) F-Measure(%)
[Ramshaw95] 91,8 92,3 92,0
[Cardie98] 90,7 91,1 90,9
[Veenstra98] 89,0 94,3 91,6
[Argamon98] 91,6 91,6 91,6
[Tjong-Kim-Sang00] 93,6 92,9 93,3
[This work] 91,6 97,8 94,5
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5 Conclusions

This paper presents the design of a probabilistic FSA for the identification of
basic NPs, which can be used for document indexing in information retrieval
and other applications.

The FSA probabilities provide a method for a flexible recognition of input
chains, which are considered to be NPs if they are similar enough to an accepted
one. An evolutionary algorithm is used to optimize the FSA probabilities, and it
uses both, positive and negative training examples, what contributes to improve
the coverage of the system maintaining at the same time a high precision.

We have performed experiments to tune the system in several ways, such
as the EA parameters, the threshold value of the errors allowed in the recogni-
tion, and the size of the training sets used in different phases of the process. A
comparison with other systems tested on the same set of texts has shown that
the mechanism introduced for the flexible recognition of NP clearly improves
the coverage of the system, while the adjusted probabilities provided by the EA
yield a high level of precision, thus yielding a better overall performance.

A study of the most frequent errors has revealed that those affecting the
recall are mainly due to the presence of rare NPs, with a structure very different
from the others. However, as they are infrequent, the reduction of the recall is
low. The errors which deteriorate the precision are mainly due to some training
examples used in the construction of the FSA in which a sequence of tags, which
usually does not correspond to an NP, is working as an NP in that particular
case, and also to sequences in which many of their tags are not typical NPs
tags. According to this observation, we plan to perform a statistical study of the
different kinds of errors, in order to introduce mechanisms to filter the training
set in some appropriate and automatic manner. We also consider to investigate
other improvements, on different aspects of the system: on the application of
the EA, with the definition of other genetic operators and fitness functions,
on the recognition process, with the consideration of information from negative
examples, and on the construction of the FSA, with the possibility of introducing
cycles.
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15. Torró, F., Vidal, E., , Rulot, H.: Fast and accurate speaker independent speech
recognition using structurals models learnt by the ecgi. In: Signal Proccesing V:
Theories and Applications. Elsevier Science Publishers B.V. (1990)

16. Forney, G.D.: The viterbi algorithm. Proceedings of The IEEE 61 (1973) 268–278
17. Kool, A.: Literature survey. Technical report, Center for Dutch Language and

Speech. University of Antwerp (2000)
18. Serrano, J., Castillo, M.D., Sesmero, M.: Genetic learning of text patterns. In:

Proc. of CAEPIA03. (2003) 231–234
19. Araujo, L.: Part-of-speech tagging with evolutionary algorithms. In: Proc. of the

Int. Conf. on Intelligent Text Processing and Computational Linguistics (CICLing-
2002), Lecture Notes in Computer Science 2276, Springer-Verlag (2002) 230–239

20. Araujo, L.: A probabilistic chart parser implemented with an evolutionary algo-
rithm. In: Proc. of the Int. Conf. on Intelligent Text Processing and Computational
Linguistics (CICLing-2004), Lecture Notes in Computer Science 2276, Springer-
Verlag (2004) 81–92

21. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated
corpus of english: The penn treebank. Computational Linguistics 19 (1994)
313–330



Successive Restrictions Algorithm
in Bayesian Networks

Linda Smail and Jean Pierre Raoult

L.A.M.A. Laboratory, Marne-la-Vallée University,
77454 Champs sur Marne, Marne-la-Vallée, France

{linda.smail, jean-pierre.raoult}@univ-mlv.fr
http://www.univ-mlv.fr/lama

Abstract. Given a Bayesian network relative to a set I of discrete ran-
dom variables, we are interested in computing the probability distribu-
tion PA or the conditional probability distribution PA|B , where A and
B are two disjoint subsets of I . The general idea of the algorithm of
successive restrictions is to manage the succession of summations on all
random variables out of the target A in order to keep on it a structure
less constraining than the Bayesian network, but which allows saving in
memory ; that is the structure of Bayesian Network of Level Two.

1 Introduction

Given a Bayesian network [3] relative to a set XI = (Xi)i∈I of random variables
taking values in finite sets (Ωi)i∈I , we are interested in computing the joint
probability distribution of a subset of random variables XA = (Xj)j∈A condi-
tionally to another subset (possibly empty) of random variables XB = (Xk)k∈B ,
where A and B are two disjoint subsets of I. This conditional distribution will
be denoted PA/B (or PA if B = ∅).

According to Bayes theorem we have

PA/B(xA|xB) =
PA∪B(xA, xB)∑
xA

PA∪B(xA, xB)
.

Therefore, to compute this conditional probability, we need to calculate the
probability distribution of XA∪B, which requires marginalizing out the set of
variables Xi, for i ∈ I − (A ∪B) = A ∪B.

The algorithm we propose to solve this problem is called the “Successive
Restrictions Algorithm” (SRA) [9]. SRA is a goal-oriented algorithm that tries
to find an efficient marginalization (elimination) ordering for an arbitrary joint
distribution.

The aim of finding a marginalization (elimination) ordering for an arbitrary
target joint distribution is shared by other node elimination algorithms like
“variables elimination” [10], “bucket elimination” [2]. The main idea of this
goal-oriented approach, common to all these algorithms, is to sum over a set
of variables from a list of factors one by one. An ordering of these variables is

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 409–418, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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required as an input and is called an elimination ordering. The computation
depends on the ordering elimination: different elimination ordering produce dif-
ferent factors. However, the SRA has two additional objectives:

1. We construct a symbolic probability expression (evaluation tree) represent-
ing the elimination ordering regardless the numerical values to be used in
the effective numerical evaluation.

2. All intermediate computations are probability distributions instead of sim-
ple potentials. In other words, each node of the evaluation tree represents a
probability distribution on a subset of variables. This property is very im-
portant because each node of the tree may be replaced at runtime by another
distribution.

Before detailing the principle of SRA, we introduce the concepts of Bayesian
network of level two and close descendants (for more details see [8]).

2 Bayesian Network of Level Two

We consider the probability distribution PI of a finite family (Xi)i∈I of random
variables on a finite space ΩI =

∏
i∈I Ωi. Let I be a partition of I and let us

consider a directed acyclic graph G on I ; we say that there is a link from J ′ to
J ′′ (where J ′ and J ′′ are atoms of the partition I) if (J ′, J ′′) ∈ G. If J ∈ I, we
note p(J) the set of parents of J , that is the set of J ′ such that (J ′, J) ∈ G.

Definition 1: The probability PI is defined by the Bayesian Network of level
two (BN2), on I, (I, G, (PJ|p(J))J∈I), if for each J ∈ I, we have the conditional
probability PJ|p(J), in other words the probability of XJ conditioned by Xp(J)
(which, if p(J) = ∅, is the marginal probability PJ), so that :

1 2

3, 4, 5

6 7

Fig. 1. Example of a Bayesian network of level two
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1

 5

2

3,4

6

Fig. 2. Bayesian network of level two

PI(xI) =
∏
J∈I

PJ|p(J)(xJ |xp(J)).

An usual Bayesian network is a particular case of level 2, with the partition of
I into singletons.

In some cases, it can be useful to remark that PJ/p(J) actually depends only
on a subset K of ∪J′∈p(J)J

′ ; this is equivalent to the notion of bubble graphs
due to Shafer [7].

The probability distribution PI associated to the Bayesian network of level
2 in figure 1 can be written as

PI(x1, x2, x3, x4, x5, x6, x7) = P1(x1)P2(x2)P3,4,5/1,2(x3, x4, x5|x1, x2)

P6/3,4,5(x6|x3, x4, x5)P7/3,4,5(x7|x3, x4, x5).

2.1 Close Descendants

Definition 2: Let (I, G, (PJ|p(J))J∈I) be a Bayesian network of level two. For
each J ∈ J , we define the set of close descendants of J (denoted cd(J)) as the
set (possibly empty) of vertices containing the children of J and, if there are any
out of the children themselves, the vertices located on a path between J and one
of its children.

cd(1) = {2, {3, 4}, 6}, which we shall write also: cd(1) = {2, 3, 4, 6}.

3 Successive Restrictions Algorithm

Let (I, G, (Pi|p(i))i∈I) be a Bayesian network. Given a subset A of I, known as
“target”, we consider the problem of computing PA, the probability distribution
of (Xj)j∈A.
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To solve this problem, we suggest an algorithm called Successive Restrictions
algorithm (SRA). It is a goal-oriented algorithm that tries to find a marginaliza-
tion (elimination) ordering for an arbitrary target joint distribution.

The general idea of SRA is to manage the summations that we have to do
relative to the random variables X� for � ∈ A (A = I −A).

3.1 Principle of the Algorithm

Let be given a Bayesian network (I, G, (Pi|p(i))i∈I) and a subset A of I. For
any subset S, let a(S) denote the set of all nodes in S or having descendant
in S. For any S, a(S) is naturally embedded within the structure of Bayesian
network by restriction to S of the Bayesian network given on I. The main idea
of SRA for computation of PA is to build a sequence of subsets (I0, . . . , I�) with
� = Card(a(A)) − Card(A), and, for each 0 ≤ s ≤ �, a structure of BN2 on Is,
noted Rs = (Is, Gs, (PJ|p(J))J∈Is , which defines PIs , probability distribution
of XIs = (Xi)i∈Is , such that :

1. I0 is the restriction to a(A) of the initial Bayesian network (so I0 = a(A)).
2. Each element of Is which contains an element of A is a singleton.
3. Is+1 contains one element less than Is, this element is in A. The node cor-

responding to this element is called marginalization node. In addition Rs+1
contains fewer nodes than Rs and a new node, not included in Rs, resulting
from the marginalization

4. Once the algorithm is performed, I� = A and the probability distribution of
(Xj)j∈A can be computed simply as the product of the conditional proba-
bilities in the Bayesian network of level two obtained on I� .

Now let’s specify the general iteration of this algorithm.

We start with a BN2, on L ⊂ I, R = (I, G, (PJ|p(J))J∈I), defining PL,
where L = ∪J∈I J ; we will obtain at the exit a BN2, on L′ = L − {i}, R′ =
(I ′, G′, (PJ|p(J))J∈I′), defining PL′ , where i is the selecting marginalization node.

We choose a variable i of A ∩ L ; according to what precedes, the singleton
i belongs to I ; this choice is made in such a way that i has no descendant
in A. This constraint is a sufficient condition to ensure the coherence of the
constructed network of each step. However, when several choices are available
(several nodes are respecting this constraint) additional criteria in relation with
computational cost of the inference task may be applied [8].

Once the marginalization node i is selected, the output BN2 R′ admits as
vertices the atoms of the partition I′, which are:

1. the set of close descendants of i in R, which we denote Ei (Ei = cd(i)),
2. all the atoms of I other than i and those in Ei .

The graph G′ results from the graph G in the following way :

1. we delete the links (for G) relative to i and to the elements of Ei,
2. we keep all other links of G,
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3. we introduce to Ei a set of parents, p′(Ei), which includes:
(a) all parents of i in G ;
(b) all parents of vertices belonging to the close desendants of i, others than

i or those in Ei itself.
4. we introduce as children to Ei all children of vertices of R belonging to Ei,

others than those in Ei itself.

The probabilistic data associated to R′ can be computed from those associ-
ated to R in the following way :

1. we conserve the probability, conditionally to his parents, for each vertex such
that the passage from R to R′ changes neither itself nor his parents (in other
words, each vertex other than i, those in Ei and the children of those in Ei);

2. for each child J of Ei (in G), his probability, conditionally to his parents, is
preserved by substitution of Ei to the set of the parents of J (in G) which
belongs to Ei, and we conserve the information that only these variables are
involved in p′J|Ei

as shown in figure 3. Indeed, conditionally to his parents
in G, J is independent from the vertices of Ei which are not parents of J .
This results from the fact that none of those vertices is a descendant of J .

3. we create the probability of Ei conditionally to p′(Ei), which can be com-
puted using the following formula

1 2

3 5

14 12,1314

1 2

3 5

12,13

10,11

9

7, 8

6

4 4

7,8, 9, 10, 11

(10,11)

(E6)
+

H6

p′(E6)

E6

Fig. 3. (a) : Various subsets defining over the node 6. (b) : BN2 resulting after sum-
mation over 6 : E6 = {7, 8, 9, 10, 11}.
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P (xEi |xp′(Ei)) =
∑

xi∈Ωi

[( ∏
J∈Ei

P (xJ |xp(J))
)
P (xi|xp(i))

]
.

Proof :

To simplify the notation, we will note
∑

i for
∑

xi∈Ωi
and, for each subset B =

{b1, . . . , bm} of L,
∑

B for
∑

xb1∈Ωb1
. . .

∑
xbm∈Ωbm

; we will omit to write the
variables (for example we write PJ|p(J) for P (xJ |xp(J))).

The various objects intervening in this proof may be visualized on figure 3.

The computation of PEi|p′(Ei) can be done by using only vertices in a(Ei)
which includes p′(Ei) by construction.

We decompose a(Ei) according to the partition (Ei, {i}, p′(Ei), Gi), where
a
(
p′(Ei)

)
= p′(Ei) ∪Gi.

Then

PEi∪p′(Ei) =
∑

i

∑
Gi

[( ∏
J∈Ei

PJ|p(J)

)
Pi|p(i) ×

( ∏
k∈p′(Ei)

Pk|p(k)

)( ∏
h∈Gi

Ph|p(h)

)]
.

We notice that the index i is present only in
(∏

J∈Ei
PJ|p(J)

)
Pi|p(i), whereas all

the � in Gi may be present only in( ∏
k∈p′(Ei)

Pk|p(k)

)( ∏
h∈Gi

Ph|p(h)

)
;

so

PEi∪p′(Ei) =
{∑

i

[(∏
J∈Ei

PJ|p(J)

)
Pi|p(i)

]}
×
{∑

Gi

[( ∏
k∈p′(Ei)

Pk|p(k)

)(∏
h∈Gi

Ph|p(h)

)]}
.

Since
Pp′(Ei) =

∑
Gi

[( ∏
k∈p′(Ei)

Pk|p(k)

)( ∏
h∈Gi

Ph|p(h)

)]
we get

PEi|p′(Ei) =
∑

i

[( ∏
J∈Ei

PJ|p(J)

)
Pi|p(i)

]
.

3.2 Example

Consider the Bayesian network given in figure 4. The corresponding joint distri-
bution is given by the equation :

PI(xI) = P1(x1)P2(x2)P3(x3)P4/1(x4|x1)P5/2,4(x5|x2, x4)P6/5(x6|x5)

P7/3,5(x7|x3, x5)P8/1,6(x8|x1, x6)P9/2,6(x9|x2, x6)P10/2,7(x10|x2, x7)
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Fig. 4. Example of a Bayesian network

Suppose we are interested in computing the marginal distribution PA, where
A = {1, 3, 5, 7, 8, 9, 10}.

This computation requires marginalizing out the variables with indexes in
A = {2, 4, 6} (i.e X2, X4, and X6). For each step of the algorithm, we have to
choose a variable in A to marginalize out.

Step 1.
For the first step, note that only X6 has no descendants in A. By marginalizing
out X6 we get:∑

x6

P8/1,6(x8|x1, x6)P9/2,6(x9|x2, x6)P6/5(x6|x5) = P8,9/1,2,5(x8, x9|x1, x2, x5).

The resulting graph is given in figure 5. It has the structure of a Bayesian
network of level 2 and is constructed as follows :

1. The node 6 is suppressed.
2. A new node E6 = {8, 9} is created. Its parents are 1, 2, and 5 (i.e. the initial

parents of 6 and the parents of its close descendants 8 and 9).

The joint distribution corresponding to this new BN2 can be written as :

PI−{6}(xI−{6}) = P1(x1)P2(x2)P3(x3)P4/1(x4|x1)P5/2,4(x5|x2, x4)

PE6/1,2,5(xE6 |x1, x2, x5)P7/3,5(x7|x3, x5)P10/2,7(x10|x2, x7).

Step 2.
For the second step of the algorithm, note that both X2 and X4 have no de-
scendants in A. So, they are both candidates to be marginalized out. In order
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1 2 3

4

5

 7

10E6

(b) E6 = {8, 9}

Fig. 5. BN2 resulting after summation over 6

1 2 3

 7

10

E4

(c) E4 = {5}

E6

Fig. 6. BN2 resulting after summation over 4

to decide which variable is to be selected, additional criteria in relation with
the computational cost induced by each choice can be introduced. Suppose we
choose the node 4 (X4). By marginalizing out X4 we get:∑

x4

P4/1(x4|x1)P5/2,4(x5|x2, x4) = PE4/1,2(xE4 |x1, x2).

The resulting graph is given in figure 6 and is constructed as follows :

1. The node 4 is suppressed.
2. A new node E4 = {5} is created. Its parents are 1 and 2 (i.e. the initial

parents of 4 and the parents of its close descendants 5).
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3 1

E2

(d) E2 = {E4, E6, 7, 10}
= {5, 7, 8, 9, 10}

Fig. 7. BN2 resulting after summation over 2

The joint distribution corresponding to this new BN2 can be written as :

PI−{6,4}(xI−{6,4}) = P1(x1)P2(x2)P3(x3)PE4/1,2(xE4 |x1, x2)

P7/3,5(x7|x3, x5)P10/2,7(x10|x2, x7)PE6/1,2,5(xE6 |x1, x2, x5).

Step 3.
Finally, we have to marginalize out X2 and we get :[∑

x2
PE6/1,2,E4(xE6 |x1, x2, xE4)PE4/1,2(xE4 |x1, x2)P10/2,7(x10|x2, x7)

P2(x2)
]
× P7/3,5(x7|x3, x5) = PE6,E4,7,10/1,3(xE6 , xE4 , x7, x10|x1, x3),

The resulting graph is given in figure 7 and is constructed as follows :

1. The node 2 is suppressed.
2. A new node E2 = {E6, E4, 7, 10} is created. Its parents are 1 and 3.

The joint distribution corresponding to this new BN2 can be written as :

PI−{6,4,2}(xI−{6,4,2}) = P1(x1)P3(x3)PE2/1,3(xE2 |x1, x3).

This joint distribution corresponds to our target distribution P (xA). So

PA(xA) = P1(x1)P3(x3)PE2/1,3(xE2 |x1, x3).

4 Conclusion

We have introduced an algorithm which makes possible the computation of the
probability distribution over a subset of random variables (Xa)a∈A of the initial
graph. It would be possible to compute the probability distribution of a subset
of variables XA conditionally to another subset XB (PA|B) using SRA.

This algorithm aims to construct a symbolic representation of the target
distribution by finding a marginalization ordering that takes into account the
computational constraints of the application.
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It may happen that, in certain simple cases, the SRA would be less powerful
than the traditional methods [1], [4], [5], [6], [7], [10], but it has the advantages
of adapting to any subset on nodes of the initial graph, and also to present in
each stage interpretable result in terms of conditional probabilities, and thus
technically usable.
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Abstract. The relationship between streamflow q and electrical con-
ductivity k is explored in this paper, using data from Hollin Cave Spring
in New South Wales, Australia. A temporal rule extraction algorithm
is used to identify frequent patterns in each time series. The frequent
patterns are then refined using the concept of profile convexity, and
parametrised for compactness of representation, before the coupling be-
tween flow and conductivity is examined. Results show that two frequent
peak patterns occur in flow and two troughs in electrical conductivity,
and that the shapes of all these can be characterised with a single mag-
nitude parameter. The coupling between events in the two series is inves-
tigated, and reveals that the depth of k troughs depend heavily on the
initial state of k, and more weakly on the magnitude of the flow peak.

1 Introduction

Electrical conductivity k provides an estimate of dissolved solids in-stream, as
the relationship between salinity and electrical conductivity in water is well
established. Compared to most other water quality indicators such as suspended
sediment load, it is easy to measure. Where some contaminant concentrations
rise after rainfall due to increased input, k will fall as the salt load delivered by
groundwater is diluted by a greater volume of streamflow or discharge q.

Hollin Cave catchment studied here lies in the Snowy Mountains of South
Eastern Australia, entirely within the Yarrangobilly Limestone. The catchment
is small (less than 500 Ha) and very steep. More than 300 caves and numerous
hot and warm springs have been identified in the area [5]. Hollin Cave Creek
is connected to other streams underground in Eagle’s Nest Cave, one of the
deepest cave complexes on the Australian mainland. Data were collected from
this system in the hope of better understanding the karst hydrology regimes.

The Hollin Cave Spring dataset consists of 31341 paired data points for q in
litres/second, and k in micro-Siemens/cm at half-hour intervals with only a few
breaks over a three year record. Almost all of these breaks are short, of the order
of a few hours. The apparatus is discussed at length in [6]. Electrical conductivity

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 419–428, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. The k and q time series, and k vs q

and flow are plotted over time and then against one another in Figure 1, which
demonstrates that the behaviour of k is not solely controlled by volume of flow.
However, as a starting point we shall assume that it is and create a linear model
to use as a baseline for comparison with subsequent schemes. Linear regression
yields k = −0.4119q+230.2105. Using ten-fold cross-validation, we find that the
average mean absolute error in k is 30.8929 micro-Siemens per cm, or 81.3717%.

The obvious next choice of model is of the form ki = αki−1 + βqi + γqi−1 + δ
where α, β, γ, and δ are constant parameters. This format is common in hydrol-
ogy, and is used in many models involving flow, such as [4]. With a resolution of
half an hour, best fit is achieved with α = 1, β = 0, γ = 0, δ = 0, or in other
words ki = ki−1. Resampling to a resolution of 24 hours yields ki = 0.938ki−1 −
0.135qi + 0.120qi−1 + 13.757, but this model is still following the observed k with
a one-timestep lag. Consequently, error is highly correlated with gradient to the
left of ki and the model tells us little about the system we could not have found
by inspection of Figure 1. In the remainder of this paper we develop an alternative
to such classical time series modelling. We use data mining techniques to build a
model explaining the behaviour of k and q in Sections 3 and 4, and in Section 6
investigate the relationship between the two quantities.

2 Data Structure

Our first task is to build a compact representation of the data. The fine temporal
resolution of the record is an asset, but as the difference between adjacent points
is so small, there is redundancy in the 31341 point series. A simple discretisation
method was applied to both q and k series, breaking them into sections of near-
constant gradient, a process akin to piecewise linear approximation. The data
are now in the form of a record of points where slope changes significantly. The k
or q value of these points is compared to the original dataset in Figure 2 below.
The length of the k series is now 231 points and the length of the q series 248
points, a very significant reduction from the original 31341.

Clearly, some loss of information occurs in deriving this compact represen-
tation, but it captures the essential behaviour of both flow and electrical con-
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ductivity series very well. Now that we have a simplified but hopefully adequate
representation, we proceed to the investigatory stage.

3 Rule Extraction

Two factors that determine the value of any given point in the k series are
the antecedent electrical conductivity, and the current flow behaviour. For the
flow series, the only relationship available for scrutiny is that with antecedent
flow conditions, as the prior assumption that k does not affect q is sufficiently
fundamental to the above challenge. A rainfall record could be added to the
analysis at this point, but a complete record is unavailable.

Assuming that we know little else about the system, a simple way of stating
our aim is to say that if the flow behaves as Q, the behaviour K of the electrical
conductivity should become known. Here the capitalised letters indicate some
event in the flow or electrical conductivity series. This characterisation of the
problem leads naturally towards rule extraction methods. Recent applications
of temporal data mining techniques for a diverse range of problems include [3],
[8], [9]. A discussion of temporal rule extraction as a method can be found in
[2]. As noted there, the basic rule A ⇒ B will need to be extended to A⇒T B,
meaning if A happens in the flow series, B will follow within time T . B may
belong to either the q or k series. We shall apply a rule extraction algorithm to
each series, and use the output frequent subsequences as archetypes to describe
the events that make up the record. Then, the connection between q and k can
be investigated in a simple way.

Complications arise when considering real-valued series and rule extraction,
a technique usually applied to nominal or discrete data. Our sections of constant
gradient, however, are easily divisible into three groups: positive gradient, nega-
tive gradient, and zero or near-zero gradient. These categories shall be denoted
by the letters U for up, D for down, and 0 zero (flat). The magnitude of the
rise or fall and the length of the sections shall be quantified later. To create
instances for processing with a rule extraction routine, we use a sliding window
that selects a subsequence of the input series. All non-flat points are allowed to
act as the head of a subsequence (this follows from the assumption that flatness
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represents a ground state). The subsequence is cut off when one of the following
conditions is met: 1. time between points exceeds a threshold tlim, 2. the number
of points exceeds a threshold llim, or 3. the system returns to the ground (flat)
state. After some trial and error the threshold magnitude, below which gradient
is considered flat, was set to 0.05.

The classic Apriori algorithm [1], which is known to be fast and robust, was
modified to suit our purposes. Chief among the changes was the preservation
of order within the instances, so that [U D] is distinct from [D U]. Apriori
extracts frequent itemsets (or in this case subsequences) using the property that
no subgroup of a candidate set C can occur frequently if C itself is not frequent,
and therefore only the frequent candidates need to be searched for more complex
frequent patterns. Frequency can be defined as having a support s (or rate of
occurrence) greater than a chosen threshold. Support is most often simply the
fraction of the total data pool where the given pattern occurs.

For example, if we have a set of items [milk, cheese, tofu, coffee] from which
purchasesmay be made, and only milk, coffee, and cheese have a support greater
than the threshold, no combination that contains tofu can be frequent. From the
reduced pool [milk, cheese, coffee], we search the more complex patterns. Of
these, perhaps only milk and coffee will be frequent. Thus we could state that if a
person buys milk, it is likely that they will also buy coffee and vice-versa. We shall
ignore which item or items are the predicate (cause) and which the consequent
(effect) in the rule relationship and simply find the patterns that occur frequently.
Another relevant quantity is confidence c of a rule, here defined as the ratio of the
number of instances where the sequence of length l is complete to the total number
of joint occurrences of the first l − 1 parts of the sequence.

In addressing the issue of capturing gradient magnitudes it is evident that
a wide range of possible values exist. Rather than discretise the likely range of
gradients, we note that for shape characteristion purposes another distinction
exists. Where a string of rising or falling sections occur together, convexity or
concavity of subsequences can be established simply by enquiring whether each
gradient is larger or smaller than the last. Each instance with a run of U or
D can be treated by appending a marker to all but the first value that records
whether it is greater or lesser in magnitude than the previous value. Of course,
no pair of adjacent gradients will be the same. The notation shall take the form
of an appended minus if the magnitude of the gradient reduces, or a subscripted
plus otherwise. By the Apriori property [1], no convex, concave, or mixed profile
may be frequent unless the basic sequence of U, D, and 0 values is also frequent.
Therefore, the comparison between adjacent gradients need be made only rarely.

4 Frequent Subsequences

Initially, the time threshold tlim was set at 24 hours for both q and k. After
experimentation it was increased to three days for k, because only small numbers
of events with more than two elements were being discovered. There was little
difference in the generated dataset when tlim was increased to four days, and
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for the q series the same applied when tlim was increased to two days. The
upper limit on the number of elements llim was generously defined as 10. With
those settings, plenty of interesting candidate subsequences were generated. It
is possible that a characteristic length could have been extracted from the data
and used to generate an estimate for tlim, and in further work investigations will
be made in this direction. For the moment, however, the subjective trial and
error method is deemed to suffice.

The minimum support for the modified Apriori algorithm was set at smin =
0.10. Note that this was calculated as the proportion of the dataset accounted for
by the subsequence divided by the total number of elements, not as the number of
occurrences of the subsequence divided by the total number of points. In addition,
the frequent subsequences were treated as rules with the last value on the right
as consequent. Confidences were calculated for the rules and any rule with confi-
dence less than 0.3 (a rough and naive estimate of chance) deleted. The remaining
frequent patterns are listed below, along with support values listed as percentages.

For q: [U D] s = 28 [D D-] s = 15 [U D D-] s = 12
For k: [D U] s = 21 [U U-] s = 14 [D D-] s = 11 [D U U-] s = 10

In q, we can see that the first two frequent patterns are subpatterns of the
last, although the long pattern does not occur as frequently, either because [D
U] ends with a 0 value or is interrupted by another event. The distinction is
physically important, so minor changes were made to the algorithm so that
the confidences for sequences constructed by taking the frequent patterns and
appending a zero were also calculated. In this way, a measure of how often the
sequence terminates as opposed to being followed by another event was obtained.
The probability of [U D] being followed by a zero was only 0.35, which rose to
0.76 for [D D 0] and 0.75 for [U D D 0]. So most of the time [U D] was followed by
another action, which we would expect as [U D D] is also frequent. From this we
can conclude that while [U D] is a part of the longer [U D D], it also terminates
independently without being interrupted. In contrast, the support for [U D D]
is only three percent less than the support for [D D], and it is fair to conclude
that [D D] does not usually occur except where [U D D] occurs.

Convexity/concavity requirements are almost never violated. Therefore the
support values effectively remain the same between the raw output from the
rule learner and the post-processing convexity check. An exception occurs for
the sequence [D D] in the k dataset where profiles were divided almost evenly
between concave and convex. Apart from [D D], the frequent sequences are again
all subsequences of the longest frequent pattern. The pattern [D U] terminates
in a zero with probability 0.46, and [D U U] has c = 0.49, so the probability of
[D U] being an interrupted [D U D] is very low. Both [U U] and [D U U] have
greater than 0.5 probability of being followed by a zero. The level of support for
[U U] is quite close to that of [D U U], implying that most of the occurrences of
[U U] are a part of a [D U U] pattern.

While the two-part patterns are not necessarily interrupted three-part pat-
terns, the difference between the two may arise through the method used to
find sections of constant or near-constant gradient. It is possible that an addi-
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tional distinction exists within one section of a two-part sequence, but was too
fine to be captured. In summary, for the q series we see two characteristic peak
shapes: [U D] and [U D D-]. Similarly for k, [D U] and [D U U-] are characteristic
trough shapes.

Before moving onto consideration of the quantitative description of these
shapes, we shall consider how much of each series is covered by them. Support
values tell us the percentage of the time each sequence is active, but some fraction
of each series is settled in the ground state (zero gradient). Roughly two fifths for
k and one quarter for q are flat in terms of number of sections, and considerably
more in terms of time. With this data and s values for the characteristic shapes,
it can be calculated that the two peak shapes together cover just over 40% of the
non-zero q series, and the two trough shapes about 55% of the non-zero k series.

5 Quantifying Characteristic Shapes

Now that we have a preliminary idea of the shapes that typically occur in each
series, it is necessary to quantify them in some way. The left side of Figure 3 is a
three dimensional plot of flow peaks following the pattern [U D D-]. The axes are
the breakpoints i evenly spaced and normalised to begin at zero (a substitute for
a time axis), peak magnitude from initial point to maximum, and the flow value
again normalised to be initially zero. The magnitude axis is included to show
that while the peak shape does not remain the same over all scales (ie peaks of
different magnitude are not congruent) it can be parameterised by magnitude.
Therefore a single magnitude value uniquely, albeit approximately, defines peak
shape. Similar trends exist for the other frequent subsequences (frequent shapes),
but for brevity we shall confine discussion to the [U D D-] pattern.

Consider the height of the shape at each of the defining points as qi, i =
1, 2, 3, 4 where the index identifies the point on the time axis. Flow units are
Litres per second Ls−1. We shall assume that each shape has been normalised
so that q1 = 0. Similarly, let ti denote the normalised time at these points.
Modelling each of the other qi with the magnitude (mag) of the peak, which is
equal to q2, least squares fitting of degree one yields the following.
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q3 = 0.278mag + 0.912 with mean error = 16.94Ls−1

q4 = 0.125mag− 10.815 with mean error = 16.80Ls−1

The time scales of each shape on the left side of Figure 3 have been deformed,
as the component sections are defined by constant gradient rather than cut off
after a set time interval. When proper time scales are added, the plot becomes
far more complicated, and the neat parameterisation by magnitude is no longer
obvious. However, the length in time of each segment can be parameterised in
terms of one quantity. The right side of Figure 3 is a plot of break of gradient
times ti against the total time ttot. All times are normalised to begin at zero,
so t1 is uniformly zero and so is not shown. The times t2 where the first section
ends and t3 where the second section ends can be roughly modelled as a function
of the total time. In the case of [U D D-] total time ttot = t4. Least squares linear
models for each unknown ti are given below, along with the mean error in half-
hour time periods and hours.

t2 = 0.086ttot + 7.719 with mean error = 7.3 (3.7 hours)
t3 = 0.316ttot + 13.002 with mean error = 13.0 (6.5 hours)

Similar parameterisations can be found for all the other frequently occurring
peak and trough shapes. We now have all the necessary time and flow magnitude
information representing a [U D D-] peak encoded in two numbers, mag and ttot.
Of course, to recreate the time series we do still need to know the position of
the peak in time and the starting flow value.

6 Two-Dimensional Relationships

Now that characteristics of each series individually have been investigated, we
can return to the original problem of discovering the relationship between flow
and electrical conductivity. If a large number of different characteristic shapes
had been identified as frequent in either series, we could proceed by building new
instances for rule learning where each q event was followed by any k event that
occurred within a certain time. However, the behaviour of each series has been
decomposed into only two main patterns, and we shall simply test the hypothesis
that a peak in flow causes either a [D U] or [D U U-] event in k.

Setting the time limit between events at a generous two days between the
start of the flow peak and the start of the k trough, we find 22 occurrences of
a trough close to a peak. Recalling support values, we find that 34 troughs and
35 peaks were identified. Some of these were small in size, and examination of
the magnitude values of generating and generated shapes reveals that they are
mostly relatively large. Small peaks do not typically cause detectable changes in k
and, correspondingly, many small k events cannot be traced back to an event in q.

Curiously, in a handful of cases the trough actually appeared to begin before the
peak. These points were checked in detail, and there often appeared to be no other
possible generative peak in streamflow to the left. Therefore we allow the condition,
that the k response follow the q event, be relaxed to simple occurrence within an
interval around the start of the peak. This behaviour may seem unphysical, but it
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is in keeping with our policy of making as few assumptions as possible. Most of the
troughs, however, fall within 12 hours after the streamflow peak begins.

In the last few months of the record, several events are recorded in k, but
no matching q peaks were identified. This anomalous behaviour can be observed
in Figure 1 as well. The researchers originally responsible for collecting the data
revealed that the flow record in this region was in fact questionable, due to the
gradual degradation of the streamflow recording mechanism [5]. This resolves
the inconsistency in the hypothesis that a q event implies a k event.

Inspection reveals that while there is a mild tendency towards [U D] peaks that
are not subsequences of [U D D] producing troughs of the shorter form and [U D D-]
the longer form, it is not at all pronounced. Support information yielded the ob-
servation that while some of the two-part patterns are the beginnings of three-part
patterns, this is not always true. Some may be interrupted, but others terminate.
Ideally, all three cases would be treated separately along with the three-part pat-
tern, but analysis at this level of detail demands more data than we have available.

The problem of finding a relationship between magnitude of events in the
two variables remains. Simply plotting the two against one another yields very
little information. However, when the initial state of k is introduced into the
plot as an additional axis, useful order begins to appear. Figure 4 (left) below
shows one view of a plot with magnitude of flow peak qmag, initial k state
kstate, and the minimum point kmin to which k drops. When combined with
kstate, this last variable contains the same information as the magnitude of the
trough in k, but produces a clearer trend which suggests a surface on which kmin
is proportional to kstate with gradient decreasing with increasing qmag. This
relationship is quite surprising, especially the relatively weak coupling between
qmag and kmag. However, it is useful. In the dense region qmag < 200 or so,
the relationship between kstate and kmin is fairly well defined, but becomes a
matter of hypothesis in the sparser region where fewer events have been observed.

The simple hypothesis that the total time of the k event increases with the
total time of the q event can be proven false by a simple scatter plot (Figure 4,
right). Note from this plot that there appears to be a characteristic time scale
for q events, but a wide variation in total times for k events. Clearly, other
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factors are at work. Experiments with multivariate linear regression did not
reveal a sufficiently strong relationship with either the q time parameter (total
flow event time) or any other variable to determine time scale of the k event.

7 Conclusions

This exploration of the q and k series of record from Hollin Cave and the rela-
tionship between them revealed strong regularities in both series. Characteristic
peak and trough shapes, easily identifiable by cursory inspection of Figure 1,
were extracted by the modified Apriori algorithm. It also revealed that the two-
part patterns [U D] and [D U] existed independent from the subsequences [U D
D] and [D U U], although the difference between the short and long patterns
may be an artefact of the method used to break the series into lengths of near-
homogenous gradient. In both q and k, the three-part sequences proved to be of
almost uniform convexity and were thus refined to [U D D-] and [D U U-], thus
removing unusual and probably unhelpful data from the shape analysis. The ex-
amination of shape convexity is to the author’s knowledge novel, and is expected
to be useful in the future analysis of larger and more unwieldy datasets. Figure
3 illustrates the [U D D-] patterns, and shows that the peaks are not congruent
to one another, but can be parameterised by magnitude and total time. Similar
results were obtained for the other frequently occurring shapes.

The hypothesis that events were linked in time was then verified. A relation-
ship between flow peak size, initial k state and the point to which k falls was
established for the dense region q < 200Ls−1 and postulated for q ≥ 200Ls−1.
The initial state of the conductivity at the start of a trough, kstate, proved to
be far more important than the size of the precipitating flow event. The problem
of determining the time scale of k events remains, although we have established
that flow peak magnitude does not have a significant effect, and there is some
reliance on kmin, the minimum conductivity attained. When the nature of to-
tal event time ttot can be established for k, a complete model will have been
obtained and we will be able to reconstruct both time series. Given a starting
value of k, the series may be recoverable to a reasonable accuracy.

These two points form the main foci for work on this problem in the near
future. Other approaches to the time issue, such as uniform sampling, are also
under consideration. The methods developed will also be applied to other, longer
records, and datasets with a greater number of interconnected variables. Unfor-
tunately, the short length of record prevents us from testing on an independent
sample and so we cannot obtain real measures of how well the system dynamics
can be reproduced, but far larger water quality datasets have been obtained and
will be processed using the techniques discussed here, and independent testing
will certainly be possible with this new data.

Although we do not yet have a complete picture of the dynamics at work in
the flow/electrical conductivity system, our qualitative and quantitative knowl-
edge has been advanced considerably over that discussed in the Introduction.
Qualitatively, both series are made of characteristic peak and trough events.
The depth of the troughs in k is determined largely by the starting point but
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also by the magnitude of the corresponding q peak. Quantitatively, the relations
controlling event shapes have been extracted, and for most flow magnitudes the
relationship between peak and trough magnitudes can be determined. The na-
ture of this relationship is unexpected, with surprisingly weak dependence on
flow peak magnitude for most flows, and correspondingly strong dependence on
the initial state of k.

In terms of the dynamics of Hollin Creek system, the fact that electrical
conductivity on some occasions begins to fall before any increase in flow shows
that Hollin Creek is certainly connected to another system underground. Unlike
most surface streams, the Hollin Creek flows through restricted spaces, and some
passages may only be used at high flows. When presented with the above results,
speleological experts [5] suggested that as water levels in the cave begin to rise,
a branch of Hollin creek takes a different path through the cave, collecting less
salts or allowing more to be precipitated out as calcium carbonate (calcite).
This could result in a small quantity of very low conductivity water entering the
system before the main peak in flow, as we see.

It has also been suggested that the flow peaks are delayed in some way by
cave passages too small to accommodate the full flow. The system may contain
a bottleneck where water accumulates until the water level rises to a second
passage where it can overflow. Complex three dimensional structures of this
kind are common in many caves. Either or both of these dynamics may be at
work in Hollin Cave, and may also explain why a stable relationship between q
and k time scales remains so elusive.
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Abstract. With the invention of biotechnological high throughput
methods like DNA microarrays and the analysis of the resulting huge
amounts of biological data, clustering algorithms gain new popularity.
In practice the question arises, which clustering algorithm as well as
which parameter set generates the most promising results. Little work
is addressed to the question of evaluating and comparing the cluster-
ing results, especially according to their biological relevance, as well on
distinguishing biologically interesting clusters from less interesting ones.
This paper presents two cluster validity indices intended to evaluate clus-
terings of gene expression data in a biological manner.

1 Introduction

In an attempt to understand complex biological regulatory mechanisms of a
cell, biologists tend to use large scale techniques to collect huge amounts of gene
expression data. Thus, DNA microarrays became a popular tool in the past few
years. A problem inherent in the use of DNA arrays is the tremendous amount
of data produced, whose analysis itself constitutes a challenge. Data mining
techniques like cluster algorithms are utilized to extract gene expression patterns
inherent in the data and thus find potentially co-regulated genes [14]. Various
methods have been applied, such as Self-Organizing-Maps (SOMs) [22], K-Means
[23], Hierarchical Clustering [7] as well as Evolutionary Algorithms [13,20].

Since different cluster algorithms or different runs of the same algorithm
generate different solutions given the same data set, in practice, biologists are
faced with the problem of choosing an appropriate algorithm with appropriate
parameters for the data set. The evaluation of cluster results is a process known
as cluster validity and is an important task in cluster analysis.

Several cluster validity indices are known in literature, such as Dunn’s Index
[6], Rand Index [15], Figure of Merit [25], Silhouette Index [18] or Davies-Bouldin
Index [5] and many of them have already been used with gene expression data
[1,3,25]. All these indices evaluate the mathematical properties of a clustering,
but especially for gene expression data, the biological cluster quality plays an
important role, too [17,19]. Some attempts in this direction were based on text
mining methods for literature abstracts [16]. Others simply count Gene Ontology
annotations per cluster [2,17,19], but in contrast to our approach, none of them
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relies on biological distances between genes, an advantage that enables the use
of established cluster indices.

The paper is organized as follows: a brief introduction to the Gene Ontology
is given in section 2. Section 3 explains our method in detail. The performance
on real world data sets is shown in section 4. Finally, in section 5, we conclude.

2 The Gene Ontology

The Gene Ontology (GO) is one of the most important ontologies within the
bioinformatics community and is developed by the Gene Ontology Consortium
[24]. It is specifically intended for annotating gene products with a consistent,
controlled and structured vocabulary. Gene products are for instance sequences
in databases as well as measured expression profiles. The GO is independent
from any biological species and is rapidly growing. Additionally, new ontologies
covering other biological or medical aspects are being developed.

The GO represents terms in a Directed Acyclic Graph (DAG), covering three
orthogonal taxonomies or ”aspects”: molecular function, biological process and
cellular component. The GO-graph consists of over 18.000 terms, represented
as nodes within the DAG, connected by relationships, represented as edges.
Terms are allowed to have multiple parents as well as multiple children. Two
different kinds of relationship exist: the ”is-a” relationship (photoreceptor cell
differentiation is, for example, a child of cell differentiation) and the ”part-of”
relationship that describes, for instance, that regulation of cell differentiation is
part of cell differentiation.

By providing a standard vocabulary across any biological resources, the GO
enables researchers to use this information for automatic data analysis done by
computers and not by humans.
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Fig. 1. Relations in the Gene Ontology. Each node is annotated with a unique accession
number.
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3 Methods

3.1 Mapping Genes to the Gene Ontology

To properly evaluate a clustering result with GO information, a mapping M that
relates the clustered genes to the nodes in the GO graph is required. For eucary-
otic genes the common biological databases (e.g. TrEMBL or GenBank) provide
GO annotation for their entries and also biotech companies like Affymetrix pro-
vide GO mappings for their DNA microarrays. Such a mapping is not one-to-one,
which means that there are genes annotated with more than one GO term as
well as genes without a GO annotation. The first point will be discussed later in
this section, the latter reduces the number of genes that can take part in such
an analysis.

3.2 Distances Within the Gene Ontology

To calculate biological distances within the GO, we rely on a technique that was
originally developed for other taxonomies like WordNet to measure semantic
distances between words [11]. The distance measure is based on the informa-
tion content of a GO term. Following the notation in information theory, the
information content (IC) of a term t can be quantified as follows:

IC(t) = − lnP (t) (1)

where P (t) is the probability of encountering an instance of term t.
In the case of a hierarchical structure, such as the GO, where a term in the

hierarchy subsumes those lower in the hierarchy, this implies that P (t) is mono-
tonic as one moves towards the root node. As the node’s probability increases,
its information content or its informativeness decreases. The root node has a
probability of 1, hence its information content is 0. As the three aspects of the
GO are disconnected subgraphs, this is still true if we ignore the root node ”Gene
Ontology” and take, for example, ”biological process” as our root node instead.

To compute a similarity between two terms one can compute the IC of their
common ancestor. As the GO allows multiple parents for each term, two terms
can share ancestors by multiple paths. We take the minimum P (t), if there
is more than one ancestor. This is called Pms, for probability of the minimum
subsumer [12]:

Pms(ti, tj) = min
t∈S(ti,tj)

P (t) (2)

where S(ti, tj) is the set of parental terms shared by both ti and tj . Based on
Eq. 1 and 2, Jiang and Conrath developed the following distance measure [11]:

d(ti, tj) = 2 lnPms(ti, tj)− (lnP (ti) + lnP (tj)) (3)

Since genes can have more than one function and are therefore often annotated
with more than one GO term, multiple functional distances can be computed
between two genes. Since, we don’t know which of these functions play a role in
the underlying biological experiment, we assume the best and use the smallest
distance between two genes during the calculation of cluster validities.
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3.3 Cluster Validities

A good cluster validity index should be independent of the number of clusters,
thus allowing to compare two clusterings with different number of clusters. At
the same time, it is desirable that genes in one cluster have minimum possible
distance to each other and maximum distance to the genes in other clusters, in
other words, we seek clusters that are compact and well separated. Two cluster
validity measures that fulfill these criteria are the Silhouette and the Davies-
Bouldin index [18,5].

Given a set of genes G = {g1, g2, . . . , gn} and a clustering of G in C =
{C1, C2, . . . , Ck}, the Silhouette index is defined as follows [18]: for each gene gi

of cluster Cj , a confidence measure, the Silhouette width s(gi), is calculated that
indicates if gene gi belongs to cluster Cj . The Silhouette width s(gi) is defined
as follows:

s(gi) =
min(d̄B(gi)) − d̄W (gi)

max{d̄W (gi), min(d̄B(gi))}
(4)

where d̄W (gi) is the average distance from gi to all other genes of the cluster to
which gi is assigned and d̄B(gi) is the average distance between gi and all other
genes assigned to the clusters Cl with l = 1, · · · , k ∧ j �= l. Observations with
a large s(gi) (almost 1) are very well clustered, a small s(gi) (around 0) means
that the observation lies between two clusters, and observations with a negative
s(gi) are probably placed in the wrong cluster. Thus, for each cluster Cj , a mean
Silhouette index

Sj(Cj) =
1
|Cj |

|Cj |∑
i=1

s(gi) (5)

can be computed. |Cj | denotes the number of genes included in cluster Cj . The
index ranges between 1 (for a perfect cluster/clustering) and -1. Thus, the overall
quality of a clustering C can be measured using:

S(C) =
1
n

n∑
i=1

s(gi), (6)

Given the same notation as above, the Davies-Bouldin index has been defined
in [5] as:

DBj(Cj) = max
i	=j

{
Δ(Ci) + Δ(Cj)

δ(Ci, Cj)

}
(7)

where Δ(Ci) and Δ(Cj) represent the inner cluster distance of cluster Ci and
Cj and δ(Ci, Cj) denotes the distance between the clusters Ci and Cj . Usually
Δ(Ci) and δ(Ci, Cj) are calculated as the sum of distances to the respective
cluster center and the distance between the centers of two clusters. Since means
are not defined in a DAG, we use the average diameter of a cluster as Δ(Ci) and
the average linkage between two clusters as δ(Ci, Cj):

Δ(Ci) =
1

|Ci|(|Ci − 1|)
∑

gi,gj∈Ci,gi 	=gj

d(gi, gj) (8)
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δ(Ci, Cj) =
1

|Ci||Cj |
∑

gi∈Ci,gj∈Cj

d(gi, gj) (9)

where d(gi, gj) defines the distance between the genes gi and gj . It is clear from
the above definition, that DBj(Cj) is the average similarity between cluster Cj ,
and its most similar one. It is desirable for the clusters to have minimum possible
similarity to each other. Therefore, we seek clusterings that minimize DBj(Cj).
The index for the whole clustering can be computed as:

DB(C) =
1
k

k∑
j=1

DBj(Cj). (10)

4 Results

4.1 Data Sets

The performance of the cluster validity indices are discussed on two real world
data sets. For our work, we only use the taxonomy biological process, because we
are mostly interested in gene function. However, our method can be applied in
the same way for the other two taxonomies.

The authors of the first data set examined the response of human fibroblasts
to serum on cDNA microarrays in order to study growth control and cell cycle
progression. They found 517 genes whose expression levels varied significantly,
for details see [10]. We used these 517 genes for which the authors provide NCBI
accession numbers. The GO mapping was done using GeneLynx [8]. After map-
ping to the GO, 238 genes showed one or more mappings to biological process or
a child term of biological process. These 238 genes were used for the clustering.
We selected 14 clusters as indicated in our previous publication [21].

In order to study gene regulation during eukaryotic mitosis, the authors of
the second data set examined the transcriptional profiling of human fibroblasts
during cell cycle using microarrays [4]. Duplicate experiments were carried out
at 13 different time points ranging from 0 to 24 hours. Cho et al. found 388 genes
whose expression levels varied significantly [4]. In [9] Hvidsten et al. provide a
mapping of the data set to the GO. 233 of the 388 genes showed at least one
mapping to the biological process taxonomy and were thus used for clustering.
We selected 10 clusters as indicated in our previous publication [21].

4.2 Computational Experiments

If our proposed cluster indices are able to distinguish biologically meaningful
clusterings from less meaningful ones, a functional clustering according to the
GO annotations should show better validity index values than a clustering that
was produced according to the normalized expression vectors of the genes.

Therefore, in our experiments, we used a clustering algorithm based on an
Evolutionary Algorithm from earlier publications [20,21] to produce these two
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Fig. 2. Davies-Bouldin index (left, small values indicate good clusterings) and Silhou-
ette index (right, large values indicate good clusterings) averaged over 25 runs. Max-
imum and minimum values are indicated by a cross, the mean by the rectangle, the
standard deviation is indicated by the box, the error bars indicate the 5-95 confidence
intervals.

different clusterings for each data set: an expression based clustering and a func-
tional clustering. In principle, any cluster algorithm could be used in place that
does not rely on mean calculation (this is important for the functional clus-
tering, since we cannot compute means in the GO as mentioned earlier). The
only reason why we use this algorithm is that we got good results compared to
other non-mean based methods like Average Linkage clustering [20,21]. While
producing these two clusterings, all parameters of the algorithm were fixed (200
generations, population size of 40 and 40% mutation and recombination rate),
except the distance function used: for the functional clustering, we used the GO
distance (Eq. 3) and for the expression based clustering, we used the Euclidean
distance of the normalized expression vectors of each gene. The normalization
was performed as described in [23]. We also compared the clusterings to a ran-
dom partition. For the random partition, one result corresponds to the best
partition out of 8000 (200 generations ∗ 40 individuals) tries. All results are
averaged over 25 runs.

Fig. 2 shows the Davies-Bouldin index (left) and the Silhouette index (right)
of the expression based and functional clusterings and for the random partition
for both data sets. Maximum and minimum values are indicated by a cross, the
mean by the rectangle, the standard deviation is indicated by the box, the error
bars indicate the 5-95 confidence intervals. For both indices and both data sets,
the GO based clustering obtains significant better values than a gene expression
based clustering. These results were of course expected since we used a biological
clustering method to produce this clustering. But nevertheless, it indicates that
our validity measures are able to detect biological meaningful clusterings. Beside
that, it is notable that the expression based clustering is only slightly better
than random concerning its biological similarity, which emphasizes the need for
methods that can distinguish between biologically interesting and less interesting
clusterings.
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Table 1. Cluster validity values for the individual clusters for a GO based clustering.
A low value of the Davies-Bouldin and a high value for the Silhouette index indicate
good clusters. A good and a bad cluster are marked in bold.

Cluster Davies-Bouldin Index Silhouette Index
1 1.49 -0.67
2 1.76 -0.55
3 1.32 -0.09
4 1.29 0.24
5 1.55 0.16
6 1.73 -0.20
7 1.39 0.21
8 1.76 -0.40
9 1.57 -0.22
10 1.29 -0.21
11 1.32 -0.26
12 1.28 -0.16
13 1.07 0.49
14 1.29 0.05

Furthermore, the presented cluster validity measures can not only be used
to distinguish between whole clusterings but also to validate individual clus-
ters and thus find interesting clusters that contain genes that are biologically
closely related and already known to be involved in the same pathway. Such a
cluster would indicate that a whole biological process might be switched on or
off under the given experimental condition, e.g. that cells leave the GO- phase
and enter cell proliferation. Tab. 1 shows the individual cluster validity values
for the overall best clustering. As an example, we show two extreme clusters in
more detail.

For both cluster validity measures, cluster 13 has a good quality, whereas
cluster 8 is much more functionally diverse. The GO annotations of cluster 13
are displayed in Tab. 2 and those of cluster 8 are shown in Tab. 3. The genes
of the good cluster are mostly closely related to DNA replication and repair,
which is a defined and separated process in biology. So cluster 13 is a small
and functionally compact cluster that was also indicated by the validity val-
ues. Instead, the other example is larger and much more diverse. Genes in that
cluster are related to cell adhesion, cell motility, inter- and intra-cellular signal
transduction, metabolism, nervous system development and pregnancy. All the-
ses functions are quite different biological processes, which was already indicated
by the validity measures.

We showed that our two biological cluster indices are able to distinguish
biologically more homogeneous clusters from less homogeneous ones, a fact that
can be used to find those clusters in a clustering that contain genes that are not
only co-expressed, but also related to the same biological process. Additionally,
we showed that one can use these indices to measure the biological quality of
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Table 2. Example of the GO annotation of a good functional cluster (cluster 13)

Probeset Id GO Term Name
H63374 DNA repair

pyrimidine-dimer repair, DNA damage excision
N22858 chromosome organization and biogenesis (sensu Eukarya)

DNA methylation
DNA recombination
DNA repair

N68268 DNA replication
DNA replication, priming

W93122 DNA dependent DNA replication
DNA replication

N93479 DNA replication
H29274 DNA repair

DNA replication
double-strand break repair
UV protection

AA053076 DNA replication
AA031961 cell cycle

regulation of cell cycle
cell proliferation
DNA repair
regulation of CDK activity

a whole clustering and therefore find biologically meaningful clusterings out of
a bunch of given clusterings. Thus, our two presented biological cluster validity
indices can be used to evaluate clusterings and single clusters of genes in a
biological manner.

5 Conclusion

In this paper, we presented two biological cluster validity indices that are based
on the Gene Ontology. We showed that they can be utilized to detect clusters
of genes that share similar functions. This is especially important, because such
clusters indicate that a whole regulatory pathway might be affected under the
given conditions, which leads to an information gain about the underlying reg-
ulatory mechanisms of a cell. The fact that a clustering due to gene expression
profiles does not always implicate a biological clustering as shown by our results
even emphasizes the need of a tool like the presented biological cluster indices.

The advantage of our method compared to other approaches is, that it is
based on biological distances, which enable the usage of established cluster valid-
ity measures including the knowledge of their weaknesses and advantages. Beside
that, the utilized GO annotation is easy to obtain from biological databases.

One problem of our method is, of course, that for each gene at least one
Gene Ontology annotation is needed. In most of the cases the GO annotation
is available in public databases. Nevertheless, there are still some genes that do
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Table 3. Example of the GO annotation of a bad functional cluster (cluster 8)

Probeset Id GO Term Name
W89002 peroxidase reaction
H63779 central nervous system development

epidermal differentiation
lipid metabolism
peripheral nervous system development

N79778 cell-matrix adhesion
N67806 respiratory gaseous exchange
R37986 pregnancy
AA029995 pregnancy
W86618 DNA metabolism

intracellular protein transport
G2 phase of mitotic cell cycle
NLS-bearing substrate-nucleus import
regulation of DNA recombination
spindle pole body and microtubule cycle (sensu Saccharomyces)

T70079 chemotaxis
G-protein coupled receptor protein signaling pathway
inflammatory response

T62835 cell adhesion
N22383 cell adhesion

cell-matrix adhesion
cell-substrate junction assembly
integrin-mediated signaling pathway

AA056401 cellular morphogenesis
epidermal differentiation

N63308 cell adhesion
neuronal cell recognition

AA037351 cell adhesion
neuronal cell recognition

AA045473 cell adhesion
N93476 cell adhesion

G-protein coupled receptor protein signaling
W49619 cell adhesion
R80217 cell motility

inflammatory response
peroxidase reaction
physiological processes
prostaglandin metabolism

AA044993 cell adhesion
cell growth and/or maintenance
cell motility
DNA metabolism
epidermal differentiation
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not have that kind of annotation. One way to solve this problem might be to
use all genes for clustering, but calculate the validity index only with those that
can be annotated. In this case, one might additionally think of giving a score
to each cluster, indicating how many genes participate in the validity index. We
will address this point in future work.
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17. P.N Robinson, A. Wollstein, U. Böhme, and B. Beattie. Ontologizing gene-
expression microarray data: characterizing clusters with gene ontology. Bioin-
formatics, 20(6):979–981, 2003.

18. P.J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational Applications in Math, 20:53–65, 1987.

19. N.H. Shah and N.V. Fedoroff. CLENCH: a program for calculating Cluster EN-
riCHment using Gene Ontology. Bioinformatics, 20(7):1196–1197, 2004.

20. N. Speer, P. Merz, C. Spieth, and A. Zell. Clustering gene expression data with
memetic algorithms based on minimum spanning trees. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC 2003), volume 3, pages 1848–1855.
IEEE Press, 2003.

21. N. Speer, C. Spieth, and A. Zell. A memetic clustering algorithm for the functional
partition of genes based on the Gene Ontology. In Proceedings of the 2004 IEEE
Symposium on Computational Intelligence in Bioinformatics and Computational
Biology (CIBCB 2004), pages 252–259. IEEE Press, 2004.

22. P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E.S. Lan-
der, and T.R. Golub. Interpreting patterns of gene expression with self-organizing
maps: Methods and application to hematopoietic differentiation. In Proceedings of
the National Academy of Sciences, USA, volume 96, pages 2907–2912, 1999.

23. S. Tavazoie, J.D. Hughes, M.J. Campbell, R.J. Cho, and G.M. Church. Systematic
determination of genetic network architecture. Nature Genetics, 22:281–285, 1999.

24. The Gene Ontology Consortium. The gene ontology (GO) database and informatics
resource. Nucleic Acids Research, 32:D258–D261, 2004.

25. K.Y. Yeung, D.R. Haynor, and W.L. Ruzzo. Validating clustering for gene expres-
sion data. Bioinformatics, 17:309–318, 2001.



An Evaluation of Filter and Wrapper Methods
for Feature Selection in Categorical Clustering

Luis Talavera

Dept. Llenguatges i Sistemes Informàtics,
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Abstract. Feature selection for clustering is a problem rarely addressed
in the literature. Although recently there has been some work on the area,
there is a lack of extensive empirical evaluation to assess the potential
of each method. In this paper, we propose a new implementation of a
wrapper and adapt an existing filter method to perform experiments
over several data sets and compare both approaches. Results confirm the
utility of feature selection for clustering and the theoretical superiority
of wrapper methods. However, it raises some problems that arise from
using greedy search procedures and also suggest evidence that filters are
a reasonably alternative with limited computational cost.

1 Introduction

It is widely recognized that a large number of, possibly irrelevant, features can
adversely affect the performance of inductive learning algorithms, and clustering
is not an exception. However, while there exists a large body of literature devoted
to this problem for supervised learning tasks [9,1], feature selection for clustering
has been rarely addressed. The problem appears to be a difficult one given that
it inherits all the uncertainties that surround this type of inductive learning.
Particularly, that there is not a single performance measure widely accepted for
this task and the lack of supervision available (e.g. class labels).

Although recently there has been a growing interest in feature selection for
clustering, a number of questions still remain open. Wrappers for feature selec-
tion have been recently proposed with some success. However, they exhibit some
limitations. The first, and probably on of the most important deficits is the lack
of a more extensive empirical evaluation of the methods and, in particular, a
comparison between filters and wrappers. A second shortcoming is that many of
these approaches are focused on numerical clustering, and there is no theoretical
or experimental evidence related to their behavior on categorical data.

In this paper we present a first attempt to fill these gaps by comparing the
performance of wrapper and filter methods over several data sets. We propose
a new wrapper implementation and use a filter technique based upon previous
work for the experiments.

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 440–451, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



An Evaluation of Filter and Wrapper Methods for Feature Selection 441

2 Feature Selection for Clustering

In supervised learning, feature selection is often viewed as a search problem in
a space of feature subsets. To carry out this search we must specify a starting
point, a strategy to traverse the space of subsets, an evaluation function and
a stopping criterion. Although this formulation allows a variety of solutions to
be developed, usually two families of methods are considered, namely filter and
wrapper methods [9]. On one hand, filter methods use an evaluation function
that relies solely on properties of the data, thus is independent on any particular
algorithm. On the other hand, wrappers use the inductive algorithm to estimate
the value of a given subset.

Wrapper methods are widely recognized as a superior alternative in super-
vised learning problems, since by employing the inductive algorithm to evaluate
alternatives they have into account the particular biases of the algorithm. How-
ever, even for algorithms that exhibit a moderate complexity, the number of
executions required by the search process results in a high computational cost,
especially as more complex search strategies are used.

Implementing a wrapper is a straightforward task in supervised learning,
since there always some external validation measure available. Typically, one
executes a classifier and obtains an estimation of the accuracy in predicting a
class label that is known. Although class label prediction can be used as an
external measure to assess the validity of a clustering in rediscovering a known
structure, labels are not available during the learning process, so they cannot be
used in a wrapper implemention for clustering.

A solution is to assume that the goal of clustering is to optimize some ob-
jective function which helps to obtain ’good’ clusters and use this function to
estimate the quality of different feature subsets. Despite the unavailability of
class labels, this approach seems to be more reasonable that requiring clustering
algorithms to maximize accuracy over a piece of information which they do not
have access to. Actually, we can view the objective function as the “accuracy”
of clustering algorithms. When a given algorithm is used, there is an implicit
assumption that the higher (lower) the value of its objective function the better
are the properties that the groups discovered exhibit.

When an objective function is used to evaluate feature subsets in a search, it
must applied to clusterings obtained with subsets of different cardinality. Since
we need to compare these results, the function must be defined in a way that
is not biased with respect to the number of features, that is, it should not be
monotonically increasing or decreasing as a function of the dimensionality of the
data. For example, as reported in [5] the scatter separability and the maximum
likelihood criteria suffer this drawback.

Filter methods appear to be a, probably less optimal, but reasonable compro-
mise for feature selection problems. But then again, for clustering tasks this turns
out to be a hard problem since we need to decide what is going to be relevant
to discover a structure that we do not know in advance. Similarly to wrapper
methods, existing supervised approaches for filtering rely mainly in properties
and relationships between the data and a predefined class label.
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A particularly optimal implementation of filters are methods that employ
some criterion to score each feature and provide a ranking. From this ordering,
several feature subsets can be chosen, either manually of setting a threshold.
This special case of the filter approach, that will be refer to as rankers, can be
extremely efficient because is a one step process without any search involved. In
practice, the efficiency depends on the computational complexity of the scoring
procedure.

3 em Clustering with Feature Selection

In this work, we adopt a commonly used and simple probabilistic framework for
clustering assuming that the data comes from a multinomial mixture model with
k sources corresponding to the number of clusters ([11]). This model is closely
related to the Naive Bayes model for classification as it relies on the assumption
that all features are rendered mutually independent by the cluster variable.

We use the em algorithm to estimate the maximum likelihood (ML) param-
eters and the posterior cluster probabilities for each data point. Briefly, this
algorithm is an iterative procedure that alternates between two steps: the Ex-
pectation step (E) and the Maximization step (M). In the E step we use the
current parameters to compute the partial assignment (weights) to the k clus-
ters for each data point. In the M step, we reestimate the parameters as the ML
assignment given these weights.

There are not as many clustering algorithms for categorical data as for nu-
merical data, but still there are other possible approaches, notably Cobweb
[6]. However, we made the choice of em because it produces flat clusterings as
opposed to Cobweb, which builds cluster hierarchies. We think that for ade-
quately assessing feature selection methods, the representational bias is an im-
portant factor that should be fixed, and, currently, flat clustering algorithms are
more representative. Nevertheless, most categorical clustering algorithms rely on
counting and computing frequencies, so that our results within the em framework
have a good chance to generalize to other algorithms.

3.1 An em Wrapper

As previously noted, the ML criterion for cluster quality has a bias of increasing
as the number of features decreases, so that it cannot be used to define a wrap-
per. We propose a solution that assumes that the goal of feature selection is to
obtain a clustering with a reduced set of features of similar or better quality as
that obtained by using all the features. Intuitively, if we build a clustering with
a reduced feature set, then compute the objective function adding the rest of
features and find that the resulting score is as good as the one that is obtained
by using all the features, this is an indicator that the non-selected features were
not relevant. Therefore, the full set log-likehood can be used to both assess the
resulting clusterings and guide the search for the wrapper approach. Note that
this method of evaluation can be potentially applied to any objective function,
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not only likelihood-based approaches. An equivalent proposition has been made
in the context of feature selection for unsupervised learning of conditional Gaus-
sian networks [13].

In our probabilistic framework, we can run the em algorithm for a given
subset and estimate the model parameters, and then compute the log-likehood
that these parameters yield using the full feature set. We can estimate this score
in a simple manner by running an additional M step of the EM algorithm in
which the parameters for the removed features are estimated from the weights
obtained using only the selected subset. A subsequent E step would provide the
full feature set likelihood estimation.

Since using exhaustive search strategies is prohibitive, wrapper methods often
resort to heuristic methods and, particularly, greedy approaches. A commonly
used procedure is sequential stepwise selection that adds or removes a single
feature at each step of the search. We can start from the full set of features
and use a removal operator (backward elimination) or start from the empty set
and add one feature at a time (forward selection). Since repeatedly using the
clustering algorithm is already a costly solution, in this paper we resort to an
implementation that combines em with forward selection because is significantly
cheaper that backward elimination. We call this implementation em-wfs (em
wrapper with forward search).

With these assumptions we have defined an starting point, a search strategy
and an evaluation function, but we also need a stopping criterion. Usually we
would continue the process until no improvement on the evaluation function is
found. However, we have noted that, at certain points, the change of the function
scores is very small. Because of that, in our implementation we stop if the relative
change of the score is less than a fixed threshold.

3.2 A (Dependency-Based) em Ranker

One view about the relevance of features conjectures that features that are not
highly correlated with other features are not likely to play an important role in
the clustering process and can be deemed as irrelevant [15]. This conjecture can
be explained from two points of view.

The first view argues that a general principle common to most clustering
systems is to form clusters having most feature values common to their members
(cohesion) and few values common to members of other clusters (distinctiveness).
These properties can be expressed in the form of the conditional probabilities
P (Fi = Vij | Ck) and P (Ck | Fi = Vij), where Fi is a given feature, Vij is
some value of this feature and Ck is a cluster. By rewarding clusterings that
simultaneously maximize both probabilities for given values, at the same time,
clusters formed around feature correlations are favored (see [15] for examples).
Therefore, features that exhibit low dependencies with other features, are not
good candidates to obtain cohesive and distinct groups and, hence, irrelevant.

A second approach stems from considering the clustering problem as mixture
modeling in which the data is assumed as being generated from a mixture of
several distributions. This approach can be encoded as a Bayesian network which
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contains a hidden variable corresponding the clusters in the data. A commonly
used simplification assumes that all the features are conditionally independent of
every other feature given the cluster variable, so that the underlying dependency
model is a Naive Bayes model. The Bayesian interpretation of this approach is
that the hidden variable explains or captures the dependencies of the rest of
features. Thus, the resulting clusters will be most influenced by the strongest
feature dependencies in the data. Hence again, features that are least correlated
with other features are likely to be good candidates to eliminate.

Formulated in either way, the assumption that feature dependences are im-
portant to determine their importance for clustering tasks is independent of any
labeling of the data. Therefore, it can be employed as a foundation in designing
filters for feature selection for clustering. Still, this is a very general formula-
tion that does not indicate nor how to model these dependencies neither how to
employ this information in the feature selection process.

The previous assumption relating dependency and irrelevance of features
provides a guide to design filter methods in feature selection for clustering, We
can score each feature with a measure reflecting the degree in which this feature is
dependant of other features in the data. With such a measure, we can implement
a feature selection method by constructing a rank of features and selecting the
best k, where k is a user given parameter.

We will assume that we can capture feature dependencies via pairwise in-
teractions. For instance, using a mutual information measure, we can define the
score of a feature Fi to be:

score(Fi) =
n∑

j=1,j 	=i

I(Fi; Fj) (1)

where I(Fi; Fj) stands for the usual definition of the mutual information between
two variables x and y:

I(x; y) =
∑

x

∑
y

p(x, y)log
p(x, y)

p(x)p(y)
(2)

A simple method can be implemented by using this measure to order the
features and obtain a ranking with a O(nm2) cost, where n is the number of
instances and m is the number of features. We will refer to this method as
em-pwdr (em pairwise dependency ranker).

The straightforward implementation of a ranker lefts up to the user the task
of decide the number of features selected. To provide some help in this task, we
added an additional step that builds a clustering with each of the feature subsets
that result from the ordering (with one feature, two features, three features and
so on) and then perform a single iteration to obtain the log-likelihood over the
full feature set, as explained before. This figure can be used to conjecture the
behavior or different subsets, although being obtained from training data, can
be somewhat optimistic.



An Evaluation of Filter and Wrapper Methods for Feature Selection 445

4 Empirical Evaluation

In order to compare the performance of the em-wfs and em-pwdr methods,
we performed experiments on ten data sets from the UCI Repository. The data
sets and their characteristics are listed in Table 1. Data sets including numerical
features were previously discretized and missings were removed by substituting
those values by the mode.

As previously described, performance is estimated by computing the log-
likehood of the obtained clustering over the full feature set at the end of the
process. To avoid an optimistic estimation, we applied a ten-fold cross validation
procedure in order to apply the feature selection procedure over a training set
and compute the log-likelihood over a separate test set.The same folds were used
for each of the methods.

Since the em algorithm can be trapped in at a local maximum, both the
wrapper and the ranker used at each run of em the best of 5 runs starting
with different random weight assignments. Additionally, we made the algorithm
to stop when the relative difference between the likelihoods computed in two
consecutive iterations did not change by 0.0001. This constrain is justified by
the fact that this algorithm tends to converge asymptotically.

Figure 1 shows the log-likehood averaged over the training and testing sets
when a fixed number of features is selected for each fold. A first trend that can
be observed is that feature selection does not tend to decrease the quality of the
clusterings with respect to the original score using all the features. Obviously,
selecting the smaller subsets drops cluster quality, but the rest of combinations
consistently equal or improve the full feature set results. It appears that in
some data sets using the full set of features hinders the capability of the em
algorithm to converge to a good model. This result suggest that feature selection
might be even more important in clustering that in supervised learning, which
makes sense, since clustering algorithms must consider a large number of possible
relationships between the features.

A second, possibly surprising, trend that some data sets exhibit is that per-
formance on training data is a good predictor of performance on unseen test

Table 1. Characteristics of the data sets used in the experiments

Dataset Instances Attributes
vote 435 16
mushroom 8124 22
LED+17 5000 24
WDBC 569 30
ionosphere 351 34
spambase 4601 57
sonar 208 60
splice 3186 60
yeast 208 79
musk 6598 166
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Fig. 1. Average log-likelihood over training and testing sets of em-pwdr over different
number of features
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Table 2. Average test log-likelihood for different stopping criteria of em-wfs, em-pwdr
with heuristic selection of the number of features and the best result of em-pwdr

EM-WFS-0.001 EM-WFS-0.0001 EM-PWDR 1% EM-PWDR-best
Dataset Log-L Feat. Log-L Feat. Log-L Feat. Log-L Feat.

vote -330.12 4.1 -331.40 6.1 -332.52 2 -327.77 5.3
mushroom -15908.62 2.5 -14896.97 4.5 14907.50 8 -14750.90 15.3
LED+17 -8001.47 1 -8001.47 1 -7954.89 7 -7953.23 3

wdbc -1215.62 4.6 -1217.71 8.4 -1218.27 7.9 1209.70 11.10
ionosphere -1089.65 5.5 -1092.57 12.4 -1079.29 5 -1075.87 5.7
spambase -10619.14 3.8 -10138.22 15.8 -10233.10 9 -10143.42 29.8

sonar -1247.05 4.5 -1255.77 12.1 -1287.79 16 -1255.40 11.4
splice -26080.95 1 -26080.95 1 -25791.47 6 -25543.38 11.1
yeast -1437.85 9 -1437.40 14.3 -1473.25 25 -1440.11 13.9
musk -88381.39 1 -88185.38 1.9 -79399.90 151 -77563.88 92.6

data. Particularly on the vote, mushroom, LED+17, spambase and musk data
sets the overlapping is close to perfect. And in most of the rest, even differing to
some extend, training performance still can be used as a guide to select a rea-
sonably good subset. Note that if, instead of selecting the subset with maximum
training quality, we allow a deviation from the maximum, we still can obtain
impressive results even with those data sets.

Table 2 shows the results for the em-wfs method with two different stopping
thresholds, namely 0.001 and 0.0001. Additionally, results for a manual selection
method for em-pwdr that chooses a number of features based on the maximum
likelihood over training data is also shown. To avoid overfitting, we allow a 1%
deviation from the maximum quality observed in the curve. The final column lists
the best possible selection that could be made for the em-pwdr. As expected, the
wrapper performs well and somewhat better in general than the ranker. There
are times where em-pwdr could obtain a similar result but at the expense of
selecting more features. However, most of the times the quality decreases by a
relative factor under 1%. Moreover, in three data sets em-wfs gets trapped in a
local maximum, selecting too few features and producing unsatisfactory results.

As we could expect, wrapper methods are significantly more expensive than
filter ones. In order to develop a machine independent measure of complexity, we
will consider a more abstract measure than running times based upon the num-
ber of required feature comparisons. The em algorithm exhibits a complexity
O(mnk) in each iteration for n instances, m features and k clusters. There-
fore, we assume that a single execution of the algorithm performs mnkI feature
comparisons. On the other hand, the ranking method requires to compute the
mutual information (m(m−1)n)/2 times. Note than in order to simulate a man-
ual selection of the number of features by plotting the curve of the likelihood
on the full feature set additional runs of the em algorithm over each subset is
required with the added cost. Figure 2 shows the computational complexity for
each method on each data set. With the exception of the cases in which the
wrapper is trapped on local maxima, the computational cost is always more ex-
pensive than filter methods, especially as the number of features increases. Note
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Fig. 2. Relative computational cost of the FS methods as a function of the number of
feature comparisons

that the repeated execution of the clustering algorithm is likely to be always an
expensive procedure, since, unlike some lazy or semi-lazy supervised approaches
(e.g. Naive Bayes) most batch clustering methods rely on some form of iterative
optimization.

The most important advantage of using wrappers lies in the fact that, in
some cases, they are able to achieve the same performance than filters with a
more reduced subset. The most probable reason is that the dependency-based
ranker is sensitive to redundant features. Even though we aim to find correlated
features to be the core of the discovered clusters, there will be cases in which
some features will not provide any improvement over the selected subset.

Summing up, experimental evidence suggests that the ranker is able to per-
form a reasonably good job given the limited information that uses and its signif-
icant lower complexity respect to the wrapper. The wrapper has the potential to
make an accurate selection but experiments suggest evidence that it is too prone
to get trapped in local maxima, a well known problem for forward search strate-
gies. A more conservative backward search method or different search strategies,
such as best first search [9], could be used to overcome this problem but at the
price of increasing the already high complexity of the wrapper solution.

5 Related Work

Although recently several works studying the problem of feature selection for
clustering have appeared in the literature, filter based approaches are still un-
common. A notable exception is a proposal which develops an unsupervised
entropy measure for ranking features [2,3,4]. Although several data sets are used
in the evaluation, different assessment measures are employed in these works
making difficult a direct comparison.

The dependency-based ranker presented in this paper has been previously
used with success with hierarchical clusterings with alternative evaluation mea-
sures. In [15] the method is evaluated by comparing cluster predictions with
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ground truth labels, while in [14] the average predictive power over all the fea-
tures (flexible prediction) is employed. A variant of the dependency assumption
for continuous features has been presented in [13] for feature selection in learning
conditional Gaussian networks.

An alternative to filter methods is to embed the feature selection task into
the clustering process itself. The model based paradigm offers a natural way of
achieving this goal by modeling feature relevance as parameters of the model.
Examples of this approach are found in [10] and [17]. Results are, again, difficult
to compare since the former work makes a very limited empirical evaluation using
error rates and only numerical data, while the latter is focused on document
clustering.

Early work in embedding feature selection into the clustering process traces
back to work by Gennari [7] that implemented a wrapper over the Classit hier-
archical clustering system, although at that time there was a limited availability
of data for evaluation. The work is based upon selecting the features that most
contribute to the clustering objective function, an idea that is also used in a
filter proposed in [16] also for hierarchical clusterings.

Finally, wrapper approaches are found in [5] and [8]. The experimental evi-
dence in these papers tend to focus on investigating the particular issues of the
presented methods rather than on exploring the performance on a wide range of
data sets. As it is the general case, evaluation is performed basically on numer-
ical data.

6 Concluding Remarks

In this work we have presented, to our knowledge, the first extensive empirical
comparison between filter and wrapper methods of feature selection for clustering
for categorical data. As it is the case with supervised learning approaches, feature
selection can increase the quality of the results while reducing the complexity of
the learning task.

As widely reported in the literature, wrapper methods tend to be superior to
filters, and it appears that clustering is not an exception. However, the forward
selection mechanism used in this work has not proved to be reliable enough, being
too prone to stop in local maxima. This is an interesting result not mentioned
in other papers using wrappers in feature selection for clustering. Although this
could be a byproduct of our particular evaluation function, we think that the lack
of references in other works to this undesirable behavior is the limited variety of
data sets used.

Our results confirm previous work in that dependency based filters are a rea-
sonably feature selection alternative. Interestingly, most often than not training
quality has shown to be a good indicator of performance so that the resulting
curves could be used as a guide to select the appropriate number of features. Our
evaluation function appears to be intuitive and can be generalized to any objec-
tive function. However, future work could pursue a comparison with alternative
approaches, such as the one presented in [5].
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The computation of pairwise dependencies used in this work relies on the
implicit assumption that all the features are independent given each other. This
may not be the case, but supervised methods such as Naive Bayes that make
the same assumption have been successfully used in a variety of learning tasks.
Moreover, this is actually the same assumption that is made by the simple prob-
abilistic model used in our implementation of the em algorithm. It remains to
be seen whether performance can be improving by using methods that do not
assume that all features are independent of each other. More complex dependen-
cies involving several features might exist but not be correctly reflected by these
scores. In some cases, we could expect that by summing across all the features,
some spurious dependencies might amplify the score thus producing a less ac-
curate ranking. Future work could study more elaborated methods to score the
dependence between features.

The previous issue might be connected with a limitation of the ranker
method, its inadequacy to detect redundant features. The score computed can-
not differentiate between required correlations that lead to good clusters and
those that do not provide improvements on the light of the already selected
features. This might not be a trivial problem to solve using filters, since the
characterization of when a feature has to be considered redundant in clustering
problems remains still an open issue.

An additional problem that could hinder the capabilities of filter methods is
the existence of different good feature subsets that may lead to different cluster-
ings of equivalent quality. In such a case, the feature ranking could be mixing
features that are relevant in different contexts, thus yielding an suboptimal or-
dering. This assumption makes an interesting connection to a different area of
research, subspace clustering [12] that could be worth to pursue.

Finally, it would be interesting to perform additional comparisons employing
alternative filter approaches. Although there is almost no work on this area, the
method suggested in [2] appears to be a good candidate.
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Abstract. Remote sensing has resulted in repositories of data that grow
at a pace much faster than can be readily analyzed. One of the obstacles
in dealing with remotely sensed data and others is the variable quality
of the data. Instrument failures can result in entire missing observation
cycles, while cloud cover frequently results in missing or distorted val-
ues. We investigated the use of several methods that automatically deal
with corruptions in the data. These include robust measures which avoid
overfitting, filtering which discards the corrupted instances, and polish-
ing by which the corrupted elements are fitted with more appropriate
values. We applied such methods to a data set of vegetation indices and
land cover type assembled from NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS) data collection.

1 Introduction

Except for data from highly constrained environments, it is almost unavoidable
that data repositories and streaming data contain imperfections. Remote sensing
data products suffer various kinds of corruption during the process of acquisi-
tion, processing, analysis, and mapping of the data [9]. Sources of imperfections
include instrument failures, less than ideal observation conditions, recording and
formatting anomalies, and transmission errors. In the case of satellite observa-
tions, an obscuring cloud may result in missing data pixels, while the shadow of
this cloud may produce data points with distorted values.

These imperfections in many cases are difficult to avoid due to resource con-
straints, such as instrument capabilities, and external factors, such as weather
conditions. Repeated measurements to improve the data are sometimes not only
undesirable but practically impossible in tasks such as reanalyzing historical
data collected using different instruments and at a bygone time.

In this paper we examine several methods from the machine learning and
data mining communities for dealing with data corruption. We compare the
performance of these methods using a data set of vegetation indices and land
cover type assembled from the MODIS collection.
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2 Approaches to Handling Data Corruption

Broadly conceived the data corruption problem is pervasive, and different com-
munities focus on solving different parts of the problem. For instance, one of
the prime concerns in the database community is the reconciliation of incon-
sistent records and the pruning of duplicate ones [10]. In the signal processing
community there has been much work on identifying outliers and smoothing
modulating signals [15]. In earth science, geostatistical techniques are employed
for interpolating spatially correlated quantities [4].

Each of these methods tackles a characteristic kind of data problem. We
have identified three general approaches to handling imperfections that
are most relevant to the problem of rectifying corruptions in data with inde-
pendently derived or loosely coupled instances: We may leave the imperfec-
tions to individual applications that make use of the data, discard the cor-
rupted portions of the data by using a filter, or correct the values that are
in error.

In the machine learning and data mining communities, the standard approach
to coping with imperfections is to delegate the burden to the theory builder.
This is typically accomplished by avoiding overfitting, so that the theory does
not develop overly complicated substructures just to fit the noise [2,11]. The
corrupted instances are retained in the data set, and each algorithm has to
institute its own corruption handling routine to ensure robustness, duplicating
the effort required even when the same data set is used in each case. In addition,
this noise tolerance can interfere with the quality of the results obtained from
the theory builder. For instance, the predictive accuracy may suffer and the
representation of the theory thus built may be less compact.

Another approach is to eliminate from the data set instances that are sus-
pected of being corrupted according to certain evaluation mechanisms [1,6]. A
theory is then constructed using only the remaining instances. Similar ideas can
be found in robust regression and outlier detection techniques in statistics [12].
In filtering out the corrupted instances, there is an obvious tradeoff between
the amount of corruption removed and the amount of data retained; the more
corrupted instances we remove, the less data is available for meaningful analysis.
In the extreme case where every instance is in some way less than perfect, the
whole data set may get discarded and we are left with nothing to analyze. Thus,
filtering does not make efficient use of the data.

A third approach orrects the corrupted instances rather than eliminating
them [5,13]. Possibly incorrect elements in an instance are identified, but in-
stead of discarding the whole instance as in the case of filtering, the corrupted
elements are repaired and the repaired instances are reintroduced into the data
set. Ideally, the resulting data set would preserve and recover the maximal in-
formation available in the data and better approximate the noise-free situa-
tion. A theory built from this corrected data should have a higher predictive
power and a more streamlined representation. We have developed a method of
data correction, called polishing, which will be described in more detail in the
next section.
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3 Polishing

In polishing, the corrupted instances are not only identified but also corrected.
To accomplish this we exploit the interdependency between the components of
a data set. For example, in the context of classification, the task is to predict
the target concept by examining the feature values. The basic assumption here
is that the feature and target concept values are related. Rather than utilizing
the features only to predict the target concept, we can in addition turn the
process around and utilize the target together with selected features to predict
the value of another feature. This provides a means for identifying corrupted
elements together with their correct values. Note that except for totally irrelevant
elements, each feature would be at least related to some extent to the target
concept, even if not to any other features. The problem we need to address is how
to harness effectively this not always obvious relationship for data correction.

The basic algorithm of polishing consists of two phases: prediction and ad-
justment . In the prediction phase, elements in the data that are suspect are iden-
tified together with a nominated replacement value. In the adjustment phase,
we selectively incorporate the nominated changes into the data set.

3.1 Prediction

In the first phase, the predictions are carried out by systematically swapping
the target and particular features of the data set and performing a ten-fold cross
validation using a chosen classification algorithm for the prediction of the feature
values. The data set is partitioned in the ten-fold trials in a way to achieve a
balanced distribution of target values in each fold. In each trial nine parts of the
data are used for training a classifier which is then applied to predict the feature
values of the instances in the remaining one part.

An instance can be represented as a tuple consisting of the values of features
F1, . . . , Fn and a class variable C. The classification task then can be broadly
described as using the features values to predict the class value:

〈F1, F2, . . . , Fn〉� C.

In polishing, for each feature Fi a classifier is built to predict the value of
Fi in each instance using the remaining features together with the original class
variable:

〈F1, . . . , Fi−1, C, Fi+1, . . . , Fn〉� Fi.

The same learning algorithm used for classifying C can be applied to learn
to classify Fi. This procedure effectively exchanges the roles of the feature Fi

and the class C in the classification task.
If the predicted value of a feature in an instance is different from the stated

value in the data set, the location of the discrepancy is flagged and recorded
together with the predicted value. This information is passed on to the next
phase, where we institute the actual adjustments.
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3.2 Adjustment

Since the polishing process itself is based on imperfect data, the predictions
obtained in the first phase can contain errors as well. We should not indiscrimi-
nately incorporate all the nominated changes. Rather, in the second phase, the
adjustment phase, we selectively adopt appropriate changes from those predicted
in the first phase, using a number of strategies to identify the best combination
of changes that would improve the fitness of a datum. We perform a ten-fold
cross validation on the data, and the instances that are classified incorrectly are
selected for adjustment. A set of changes to a datum is deemed acceptable if
it leads to a correct prediction of the target concept by the classifiers obtained
from the cross validation process.

The number of possible replacement values and possible combinations of
changes we can make to a datum grows exponentially with the dimensionality
of the data, that is, the number of features and the number or range of feature
values. We have adopted a number of heuristics for selecting an appropriate set
of changes, as well as for keeping the search space manageable. For example, the
features are sorted according to their classification accuracy in the prediction
phase, and more reliable features are given higher priority in the adjustment
phase. This is based on the assumption that their nominated replacement values,
when available, are more reliable due to a higher predictive accuracy.

Another heuristic is to make as few changes as possible to the data. Thus,
we only make adjustments when a datum cannot be classified correctly, and
changes involving fewer features are preferred over changes involving many fea-
tures, when both sets of changes can result in a correct classification of a pre-
viously misclassified instance. In general the number of features alone may not
be a good indicator of the amount of change involved. A more sophisticated
measure will in addition consider factors such as the importance of the feature
and the type of change we are making to the feature. In addition, an estimated
corruption level can give an indication of the number of corrupted features we
can expect in an instance.

After making the suggested adjustments, we obtain a polished data set which
can be used for further analysis.

4 Remote Sensing Data from MODIS and Data
Preparation

4.1 Vegetation Indices and Land Cover

We assembled a data set compiled from the MODIS vegetation indices and land
cover products. Two vegetation indices were selected: the Normalized Differ-
ence Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). Both
indices are concerned with the proportion of photosynthetically absorbed and
reflected radiation, and have been extensively used as remotely sensed indicators
of the density of vegetation growth [14,8, for example]. NDVI is calculated as a
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function of red and infrared bands, while EVI in addition employs the blue band
to correct for background clutter and atmospheric influences.

Each instance in our data set consists of one year of NDVI and EVI values
at 16-day intervals, starting from October 2000. The class label to be predicted
is the land cover type of the instance according to the International Geosphere-
Biosphere Programme classification scheme. The data pixels are sampled uni-
formly and globally, and in order to minimize spatial dependencies, the pixels
selected are at least 100km apart.

Intuitively, the type of land cover represented in a pixel can be inferred from
its vegetation index signatures. For instance, an evergreen forest is green year
round, while a deciduous forest is greener in the summer than in the winter.
Similarly, cropland may have intervals of vegetation activities part of the year,
each followed by a period of bare soil after harvesting.

We excluded the easier to discriminate classes. For instance, barren land
(rock, sand, etc.) and ocean have no vegetation and can be readily identified by
their relatively constant and low vegetation index values throughout the year;
these pixels are not included in the experimental data set.

4.2 Seasonal Changes and Missing Observation Cycles

There was one more problem we needed to tackle before we fed the data to the
imperfection handling mechanisms we were going to compare.

In June 2001, the MODIS instrument experienced an “anomaly”, resulting in
two 16-day periods with no vegetation indices produced for any data pixel. This
translates to two completely uninstantiated attributes in our data set. These
empty attributes affect the three approaches we will consider in various ways:

– Robust algorithms (or any other classification method for that matter) have
effectively two fewer attributes.

– Filtering, in an idealized sense where all partially corrupted instances are
discarded, will remove all instances as they all have two missing attributes.

– Polishing, in the absence of any values for these attributes, cannot be used to
identify correct values for them since the prediction of the values depend on
the pattern of relationship between attributes in instances with instantiated
values.

We observed that the growth cycle of vegetation follows the change of sea-
sons, and the seasons differ between the northern and southern hemispheres.
Deciduous trees in the northern hemisphere can be expected to be the green-
est in June, while those in the southern hemisphere can be expected to peak
in December. We therefore re-aligned the data attributes according to seasons
rather than according to calendar dates. This should give us a more consistent
seasonal pattern of vegetation indices. In addition, it provides us a way to avoid
the totally empty attributes. After the re-alignment, instead of two attributes
with absolutely no values in any instance, we have four attributes each with
some values according to whether a pixel represents a location in the northern
or southern hemisphere.
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Table 1. Corruption Characteristics: Percentages of items corrupted and percentages of
elements corrupted, without and with a nearest neighbor model. An item is considered
corrupted if any one of its elements (attributes or class) has been corrupted.

Corruption Original with Nearest Neighbor
Level % Instance % Elements % Instance % Elements
0; 0 0.0 0.0 0.0 0.0

500; 10 100.0 38.4 100.0 36.4
1000; 20 100.0 61.7 100.0 54.4
1500; 30 100.0 73.1 100.0 62.5
2000; 40 100.0 79.0 100.0 67.1

5 Experiments

5.1 Simulating Data Corruption

In remote sensing, typically optical systems (for example MODIS) are corrupted
by additive, normally distributed random processes, while radar systems in addi-
tion are subject to multiplicative noise [3]. There are further sources contributing
errors to every stage of the data collection and analysis process, but here we will
model the corruption as an additive Gaussian process with mean 0 and a speci-
fied standard deviation, simulating optical disturbances.

The training data were artificially corrupted by introducing random noise
into both the attributes and the class. A corruption level of x; y denotes that

– A value generated from a Gaussian with mean 0 and standard deviation x
is added to each vegetation index attribute.

– Each class label (the land cover type) is assigned a random value y% of the
time, with each alternative class value being equally likely to be selected.

Table 1 shows the amount of change induced in the data at various corruption
levels. The columns under “Original” are actual differences between the original
data and the corrupted data. (The columns under “with Nearest Neighbor”
will be discussed in Section 7.3.) An element (attribute or class) is considered
corrupted if it is different from its corresponding value in the original data set.
An instance is considered corrupted if any one of its elements is corrupted.

Note that at nearly every corruption level considered, 100% of the instances
have at least one corrupted element. Thus, if we were to use an idealized filtering
technique, that is, one that can identify and discard every corrupted instance,
all the data would be eliminated. The filtering methods we use in practice are
typically not this effective; nonetheless this is one argument for attempting to
repair the corruption instead of discarding corrupted instances wholesale.

5.2 Mechanisms Evaluated

The basic learning algorithm we used is c4.5 [11] the decision tree builder, using
the information gain ration criterion as the basis for choosing splitting attributes.
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One of the reasons for adopting decision trees is that the MODIS land cover
classification has been carried out partly also using decision trees.

The three corruption handling mechanisms evaluated in this study are as
follows:

Robust : c4.5, with its built in mechanisms for avoiding overfitting. These in-
clude, for instance, post-pruning, and stop conditions that prevent further
splitting of a leaf node.

Filtering : Instances that have been misclassified by the decision tree built by
c4.5 are discarded, and a new tree is built using the remaining data. This is
similar to the approach taken in [7].

Polishing : Instances that have been misclassified by the decision tree built by
c4.5 are polished, and a new tree is built using the polished data, according
to the mechanism described in Section 3.

We performed ten-fold cross validation on the data set, using the above three
methods (robust, filtering, and polishing) in turn to obtain the classifiers. In each
trial, nine parts of the data were used for training, and the remaining one part
was held for testing. The performance results obtained from the ten-fold cross
validation trials were compared using a number of evaluation metrics. First we
will look at the more traditional classifier specific metrics, namely classification
accuracy and decision tree size, and then we will concentrate on data correction,
and examine some classifier independent metrics, which directly compare the
three versions available of each data set: the original (supposedly noise-free), the
artificially corrupted (noisy), and the treated (cleaned) versions.

6 Classifier Specific Comparisons

We compared the classification accuracy and size of the decision trees built. The
results are summarized in Tables 2 and 3.

Table 2 shows the classification accuracy of trees obtained using the three
methods. We compared the methods in pairs (robust vs. filtering; robust vs.
polishing; filtering vs. polishing), and differences that are significant at the 0.05

Table 2. Classification accuracy. An “∗” indicates a significant improvement of the
latter method over the former at the 0.05 level.

Corruption Level Robust Filtering Polishing Robust/ Robust/ Filtering/
(Percentage) Filtering Polishing Polishing

0; 0 72.4 73.6 74.4 ∗ ∗ ∗
500; 10 69.1 72.8 74.2 ∗ ∗ ∗

1000; 20 56.0 65.9 66.8 ∗ ∗
1500; 30 49.3 58.6 59.3 ∗ ∗ ∗
2000; 40 39.5 51.3 52.6 ∗ ∗ ∗
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Table 3. Tree Size

Corruption Level Robust Filtering Polishing
0; 0 2435.8 1492.6 1594.6

500; 10 3550.6 1592.2 1738.6
1000; 20 3945.4 1852.6 2141.8
1500; 30 3898.6 1601.8 1885.0
2000; 40 3521.8 1862.2 2225.8

level using a paired t-test are marked with an ∗. (An “∗” indicates the latter
method performed better than the former in the pair being compared.)

In almost every case considered, polishing outperformed filtering, which out-
performed c4.5 (the robust algorithm). Both filtering and polishing achieved a
relatively large improvement over c4.5. The difference in accuracy between fil-
tering and polishing is relatively much smaller but statistically significant. The
comparison between c4.5 and filtering also confirmed the results reported in [7],
in which trees built from the filtered data were in many cases more accurate
than trees built from the unfiltered data.

Note that even at the 0;0 corruption level—that is, no artificial corruption
has been added—filtering and polishing gave rise to more accurate classifiers
than c4.5. It is almost certain that there is corruption inherent in the original
data, and the performance of the three methods at the 0;0 corruption level may
serve as an indication of their ability to deal with the existing “real” corruption
in the data.

Table 3 shows the size of the trees built using the three methods. The trend is
that the robust algorithm resulted in the largest trees, followed by polishing, and
filtering resulted in the smallest trees. By discarding corrupted instances (filter-
ing) or repairing the corrupted elements (polishing), the data set became more
uniform and therefore could be represented by a smaller tree. In the case of filter-
ing, the data set in addition became smaller after the corrupted instances have
been discarded; this reduction in training data size may have also contributed
to a reduction in the resulting tree size.

7 Classifier Independent Comparisons (Proximity
Metrics)

As mentioned before, we considered two classes of evaluation metrics, namely,
classifier specific metrics and classifier independent metrics. The performance
measures discussed in the previous section are classifier specific. We judge how
well an imperfection handling mechanism fares by looking at the quality of the
classifier built from the treated data set. In this section we consider a couple
of more general classifier independent metrics. These metrics assess the qual-
ity of the correction directly from the data. They would be more appropriate
than classifier dependent metrics when the corrected data is intended for pur-
poses beyond classification. They would also provide more direct evidence as to
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whether the corruption in the data has indeed been successfully repaired. Note
that these metrics are only applicable to data correction methods, since neither
robust algorithms nor filtering makes changes to the retained instances in the
data set.

Consider the i-th instance in a data set. Let us call this instance in the orig-
inal noise-free data set the root instance xi; the (possibly) corrupted version of
it in the noisy data set the noisy instance yi; and the version in the polished
data set the polished instance zi. The question we want to answer is: have we
been able to repair the corruption in the i-th instance, and if so, to what ex-
tent? In other words, is the polished instance zi any less noisy than the noisy
instance yi?

One simple (but not quite satisfactory, as we will see) interpretation of this
question is: is zi any better than yi in approximating the root instance xi? We
might count the differences between zi and xi, and compare that to the num-
ber of differences between yi and xi. However, there are a number of problems
associated with quantifying proximity this way. Consider the following scenarios.

– Suppose one of the attributes is a dummy attribute whose values are entirely
random. It is unreasonable to expect a noise correction mechanism to be able
to correct the “noise” in an attribute with random values.

– Suppose it just so happens that an instance is corrupted in a way so that
it matches exactly another noise-free instance. The “noise” in the instance
exists only with respect to the original root instance, but in the broader
picture, the instance has been changed from one noise-free instance to an-
other also noise-free instance, and in this sense should not be counted as
noisy.

We can generalize these two scenarios to the case of irrelevant attributes and
the case of adjustment towards an alternative.

7.1 Irrelevant Attributes

In a not as extreme case, some attributes may not be totally random, but they
may not be very relevant to the classification of the target concept either. To
get a clearer picture of how much noise we have corrected, we should exclude
these irrelevant attributes from the tally or weigh the attributes according to
their respective relevance.

To accomplish this we need to identify the (ir)relevant attributes. The ap-
proach we have adopted is to consider as relevant only those attributes used in
building the original classifiers from the corrupted data. If an attribute is not
part of a classifier, it is irrelevant at least with respect to this classifier and the
classification task at hand, regardless of whether it can be important in other as-
pects. This gives us an operational definition of relevance which is simple to use.

Note that the irrelevant attributes do not have to be removed from the data
set at any stage; they are just skipped over in our count.
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7.2 Adjustment Towards an Alternative

Another difficulty with measuring proximity is that the noise added and the ad-
justments we made may move an instance towards an alternative instance (that
is not the root instance) in the original noise-free data set. The root instance may
not be the noise-free instance in the original data set that is closest to the noisy
instance. Fewer changes may be required of the corrupted instance to match an
alternative clean instance than to revert back to the root instance.

In some sense these adjustments towards an alternative instance should be
considered correct with respect to the alternative, yet they would be counted as
incorrect with respect to the root instance, as the polished instance is moved
(usually) even farther away from the root instance in these cases. Thus, a
straightforward comparison between the root, noisy, and polished versions of
an instance would miscount these adjustments as undesirable, and penalize any
deviation away from the root instance towards an alternative, even if the instance
has been repaired to perfectly match the alternative clean instance.

7.3 Relevant Nearest Neighbor

We developed the notion of a relevant nearest neighbor to circumvent the two
problems discussed above. The relevant attributes are taken to be the ones that
have been used to build the original classifiers. The distance d(z, x) between
two instances z and x is measured by the number of differences between their
relevant attributes plus the class. A relevant nearest neighbor of an instance z is
then an instance z∗ in the original noise-free data set, where d(z, z∗) is minimal.

We should also note that a noisy instance and its polished version might not
have the same nearest neighbor, as each may be changed so that they move closer
to different clean instances in the original data set. To obtain a fair comparison,
we need to take this into account. Rather than utilizing a single fixed nearest
neighbor for both the noisy and polished versions of an instance, we quantify the
amount of noise present by the distances relative to their respective (relevant)
nearest neighbors.

We formulated two proximity metrics based on the idea of a relevant nearest
neighbor: the net percentage reduction in overall noise, and the percentage of
correct adjustment.

Let yi and zi be the noisy and polished versions of the i-th instance in the data
set, and y∗

i and z∗i be their respective relevant nearest neighbors. The distance
d(yi, y

∗
i ) denotes the difference between the two instances. Let ni and mi be the

number of correct and incorrect adjustments made to the i-th instance (with
respect to a relevant nearest neighbor). We then have

Net Reduction (NR):
∑

i[d(yi, y
∗
i )− d(zi, z

∗
i )]∑

i d(yi, y∗
i )

;

Correct Adjustment (CA):
∑

i ni∑
i(ni + mi)

.
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Table 4. Proximity Metrics: Net Reduction (NR) and Correct Adjustment (CA), with-
out and with a nearest neighbor model

Corruption Original with Nearest Neighbor
Level NR CA NR CA
0; 0 N/A 0.0 N/A 38.3

500; 10 0.7 53.1 2.9 83.8
1000; 20 1.9 61.1 3.8 91.5
1500; 30 1.6 61.5 3.5 91.6
2000; 40 2.3 71.7 3.4 94.4

Net Reduction indicates how much less (or more) noise exists in a data set
after polishing, and Correct Adjustment reports what proportion of the adjust-
ments made is considered correct.

The proximity metric values for our data set, corrupted to various corruption
levels and then polished, are shown in Table 4. The amount of corruption added
at the different levels, as measured using the nearest neighbor model, is shown
in the columns under “with Nearest Neighbor” in Table 1.

While a fairly low percentage of noise was repaired (NR values in Table 4),
almost all the adjustments made were effectively correct (CA values). Both the
NR and CA scores increased when the comparisons were made with respect to
the nearest neighbors rather than with respect to the original root instances.
These results are encouraging as it is of vast importance that a data correction
mechanism be reliable—false positives, or incorrect repairs, should be minimized
as much as possible.

Even though polishing decreased the overall corruption only a little, the
adjustments were mostly “correct”, and they contributed to an improved classi-
fication performance (as shown in Table 2). This may be an indication that our
Net Reduction metric needs further fine tuning, as it does not reflect the extent
to which the repairs have improved the quality of the classification.

Note that although the percentage of noise reduction decreased as the noise
level increased, this does not automatically translate to a decrease in the net
amount of noise repaired. At a higher noise level, a larger amount of noise is
present, and therefore even a smaller percentage may still amount to a consid-
erable quantity.

8 Concluding Remarks

Automated methods for handling data imperfections are especially useful when
the volume of data precludes us from manually inspecting the data in any mean-
ingful way. We studied three such methods in the context of remote sensing. In
our experiments both filtering and polishing were able to improve on the results
achieved by the robust algorithm c4.5, with polishing being slightly better than
filtering.
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In addition to classification accuracy and classifier size, we in particular ex-
amined metrics to evaluate data correction methods. These nearest neighbor
metrics are not specific to polishing, but apply in general to any method that
manipulates the data. Establishing an accurate evaluation metric is a first and
essential step in safeguarding data integrity. An accurate model of the data and
imperfection distribution can be used to achieve a good understanding of the
tradeoff between the sensitivity of polishing and the reliability of the repairs.
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Abstract. We present an adaptation of the Regularized Least-Squares
algorithm for the rank learning problem and an application of the method
to reranking of the parses produced by the Link Grammar (LG) depen-
dency parser. We study the use of several grammatically motivated fea-
tures extracted from parses and evaluate the ranker with individual fea-
tures and the combination of all features on a set of biomedical sentences
annotated for syntactic dependencies. Using a parse goodness function
based on the F-score, we demonstrate that our method produces a statis-
tically significant increase in rank correlation from 0.18 to 0.42 compared
to the built-in ranking heuristics of the LG parser. Further, we analyze
the performance of our ranker with respect to the number of sentences
and parses per sentence used for training and illustrate that the method
is applicable to sparse datasets, showing improved performance with as
few as 100 training sentences.

1 Introduction

Ranking, or ordinal regression, has many applications in Natural Language Pro-
cessing (NLP) and has recently received significant attention in the context of
parse ranking [1]. In this paper, we study parse reranking in the domain of
biomedical texts. The Link Grammar (LG) parser [2] used in our research is
a full dependency parser based on a broad-coverage hand-written grammar.
The LG parser generates all parses allowed by its grammar and applies a set
of built-in heuristics to rank the parses. However, the ranking performance of
the heuristics has been found to be poor when applied to biomedical text [3].
Therefore, a primary motivation for this work is to present a machine learning
approach for the parse reranking task in order to improve the applicability of
the parser to the domain. We propose a method based on the Regularized Least-
Squares (RLS) algorithm (see e.g. [4]), which is closely related to Support Vector
Machines (SVM) (see e.g. [5]). We combine the algorithm and rank correlation
measure with grammatically motivated features, which convey the most relevant
information about parses.

Several applications of SVM-related machine-learning methods to ranking
have been described in literature. Herbrich et al. [6] introduced SVM ordinal

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 464–474, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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regression algorithm based on a loss function between rank pairs. Joachims [7]
proposed a related SVM ranking approach for optimizing the retrieval quality of
search engines. SVM-based algorithms have also been applied to parse reranking,
see, for example, [8]. For a recent evaluation of several parse reranking methods,
see [9].

One of the aspects of the method introduced in this paper is its applicability
to cases where only small amounts of data are available. The annotation of data
for supervised learning is often resource-intensive, and in many domains, large
annotated corpora are not available. This is especially true in the biomedical do-
main. In this study, we use the Biomedical Dependency Bank (BDB) dependency
corpus1 which contains 1100 annotated sentences.

The task of rank learning using the RLS-based regression method, termed
here Regularized Least-Squares ranking (RLS ranking), can be applied as an ma-
chine learning approach alternative to the built-in heuristics of the LG parser.
We address several aspects of parse ranking in the domain. We introduce an
F-score based parse goodness function, where parses generated by the LG parser
are evaluated by comparing the linkage structure to the annotated data from
BDB. For evaluating ranking performance, we apply the commonly used rank
correlation coefficient introduced by Kendall [10] and adopt his approach for ad-
dressing the issues of tied ranks. An application of the method to the parse rank
learning task is presented, and an extensive comparison of the performance of
the built-in LG parser heuristics to RLS ranking is undertaken. We demonstrate
that our method produces a statistically significant increase in rank correlation
from 0.18 to 0.42 compared to the built-in ranking heuristics of the LG parser.

The paper is organized as follows: in Section 2, we describe a set of gram-
matically motivated features for ranking dependency parses; in Section 3, we
introduce a parse goodness function; in Section 4, we discuss the Regularized
Least-Squares algorithm; in Section 5, we provide the performance measure ap-
plied to parse ranking and discuss the problem of tied ranks; in Section 6, we
evaluate the applicability of the ranker to the task and benchmark it with re-
spect to dataset size and the number of parses used in training; we conclude this
paper in Section 7.

2 Features for Dependency Parse Ranking

The features used by a learning machine are essential to its performance, and in
the problem considered in this paper, particular attention to the extracted fea-
tures is required due to the sparseness of the data. We propose features that are
grammatically relevant and applicable even when relatively few training exam-
ples are available. The output of the LG parser contains the following information
for each input sentence: the linkage consisting of pairwise dependencies between
pairs of words termed links, the link types (the grammatical roles assigned to the
links) and the part-of-speech (POS) tags of the words. As LG does not perform
any morphological analysis, the POS tagset used by LG is limited, consisting
1 http://www.it.utu.fi/∼BDB
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mostly of generic verb, noun and adjective categories. Different parses of a sin-
gle sentence have a different combination of these elements. Each of the features
we use are described below.

Grammatical bigram. This feature is defined as a pair of words connected by
a link. In the example linkage of Figure 1, the extracted grammatical bigrams
are absence—of, of—alpha-syntrophin, absence—leads, etc. These grammatical
bigrams can be considered a lower-order model related to the grammatical tri-
grams proposed as the basis of a probabilistic model of LG in [11]. Grammatical
bigram features allow the learning machine to identify words that are commonly
linked, such as leads—to and binds—to. Further, as erroneous parses are pro-
vided in training, the learning machine also has the opportunity to learn to avoid
links between words that should not be linked.

Word & POS tag. This feature contains the word with the POS tag assigned
to the word by LG. In the example, the extracted word & POS features are
absence.n, alpha-syntrophin.n, leads.v, etc. Note that if LG does not assign POS
to a word, no word & POS feature is extracted for that word. These features
allow the ranker to learn preferences for word classes; for example, that “binds”
occurs much more frequently as a verb than as a noun in the domain.

Link type. In addition to the linkage structure and POS tags, the parses contain
information about the link types used to connect word pairs. The link types
present in the example are Mp, Js, Ss, etc. The link types carry information
about the grammatical structures used in the sentence and allow the ranker to
learn to favor some structures over others.

Word & Link type. This feature combines each word in the sentence with the
type of each link connected to the word, for example, absence—Mp, absence—Ss,
of—Js, etc. The word & link type feature can be considered as an intermediate
between grammatical unigram and bigram features, and offers a possibility for
addressing potential sparseness issues of grammatical bigrams while still allowing
a distinction between different linkages, unlike unigrams. This feature can also
allow the ranker to learn partial selectional preferences of words, for example,
that “binds” prefers to link directly to a preposition.

Link length. This feature represents the number of words that a link in the
sentence spans. In Figure 1, the extracted features of this type are 1, 1, 3, etc.
This feature allows the ranker to learn the distinction between parses, which
have different link length. The total summed link length is also used as a part of
LG ordering heuristics, on the intuition that linkages with shorter link lengths
are preferred [2].

Absence.n of alpha-syntrophin.n leads.v to structurally aberrant.a neuromuscular.a synapses.n deficient.a in utrophin.n .

A
MVp A MVpMaJs

Jp

Mp
Ss

JsE

Fig. 1. Example of parsed sentence
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Link length & Link type. This feature combines the type of the link in the
sentence with the number of words it spans. In Figure 1, the extracted features
of this type are 1—Mp, 1—Js, 3—Ss, 1—MVp, etc. The feature is also related
to the total length property applied by the LG parser heuristics, which always
favor linkages with shorter total link length. However, the link length & link type
feature allows finer distinctions to be made by the ranker, for example, favoring
short links overall but not penalizing long links to prepositions as much as other
long links.

Link bigram. The link bigram features extracted for each word of the sentence
are all the possible combinations of two links connected to the word, ordered left-
most link first. In the example, link bigrams are Mp—Ss, Mp—Js, Ss—MVp, etc.

3 F-Score Based Goodness Function for Parses

The corpus BDB is a set of manually annotated sentences, that is, for each
sentence of BDB, we have a manually annotated correct parse. Let P be the set
of parses produced by the LG parser when applied to the sentences of BDB. We
define a parse goodness function as

f∗ : P �→ R+

which measures the similarity of the parse p ∈ P with respect to its correct parse
p∗. We propose an F-score based goodness function that assigns a goodness value
to each parse based on information about the correct linkage structure. This
function becomes the target output value that we try to predict with the RLS
algorithm.

Let L(p) denote the set of links with link types of a parse p. The functions cal-
culating numbers of true positives (TP), false positives (FP) and false negatives
(FN) links with link types are defined as follows:

TP (p) =| L(p) ∩ L(p∗) | (1)

FP (p) =| L(p) � L(p∗) | (2)

FN(p) =| L(p∗) � L(p) | (3)

The links are considered to be equal if and only if they have the same link
type and the indices of the words connected with the links are the same in the
sentence in question. We adopt one exception in (2) because of the characteristics
of the corpus annotation. Namely the corpus annotation does not have all links,
which the corresponding LG linkage would have: for example, punctuation is not
linked in the corpus. As a consequence, links in L(p) having one end connected
to a token without links in L(p∗), are not considered in (2). The parse goodness
function is defined as an F-score

f∗(p) =
2TP (p)

2TP (p) + FP (p) + FN(p)
. (4)
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High values of (4) indicate that a parse contains a small number of errors, and
therefore, the bigger f∗(p) is, the better is parse p.

Next we consider the Regularized Least-Squares algorithm by which the mea-
sure f∗ can be predicted.

4 Regularized Least-Squares Algorithm

Let {(x1, y1), . . . , (xm, ym)}, where xi ∈ P, yi ∈ R, be the set of training exam-
ples. We consider the Regularized Least-Squares (RLS) algorithm as a special
case of the following regularization problem known as Tikhonov regularization
(for a more comprehensive introduction, see e.g. [4]):

min
f

m∑
i=1

l(f(xi), yi) + λ‖f‖2k, (5)

where l is the loss function used by the learning machine, f : P → R is a function,
λ ∈ R+ is a regularization parameter, and ‖·‖k is a norm in a Reproducing Kernel
Hilbert Space defined by a positive definite kernel function k. Here P can be any
set, but in our problem, P is a set of parses of the sentences of the BDB corpus.
The target output value yi is calculated by a parse goodness function, that is
yi = f∗(xi), and is the one which we predict with RLS algorithm. The second
term in (5) is called a regularizer. The loss function used with RLS for regression
problems is called least squares loss and is defined as

l(f(x), y) = (y − f(x))2.

By the Representer Theorem (see e.g. [12]), the minimizer of equation (5) has
the following form:

f(x) =
m∑

i=1

aik(x, xi),

where ai ∈ R and k is the kernel function associated with the Reproducing
Kernel Hilbert Space mentioned above.

Kernel functions are similarity measures of data points in the input space
P , and they correspond to the inner product in a feature space H to which the
input space data points are mapped. Formally, kernel functions are defined as

k(x, x′) = 〈Φ(x), Φ(x′)〉,

where Φ : P → H .

5 Performance Measure for Ranking

In this section, we present the performance measures used to evaluate the parse
ranking methods. We follow Kendall’s definition of rank correlation coefficient
[10] and measure the degree of correspondence between the true ranking and
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the ranking output by an evaluated ranking method. If two rankings are equal,
then correlation is +1, and on the other hand, if one ranking is the inverse of
the other, correlation is −1.

The problem of the parse ranking can be formalized as follows. Let s be a
sentence of BDB, and let Ps = {p1, . . . , pn} ⊆ P be the set of all parses of s
produced by the LG parser. We apply the parse goodness function f∗ to provide
the target output variables for the parses by defining the following preference
function

Rf∗(pi, pj) =

⎧⎨⎩
1 if f∗(pi) > f∗(pj)
−1 if f∗(pi) < f∗(pj)
0 otherwise

which determines the ranking of the parses pi, pj ∈ Ps. We also define a prefer-
ence function Rf (pi, pj) in a similar way for the regression function f learned by
the RLS algorithm. In order to measure how well the ranking Rf is correlated
with the target ranking Rf∗ , we adopt Kendall’s commonly used rank correlation
measure τ . Let us define the score Sij of a pair pi and pj to be the product

Sij = Rf (pi, pj)Rf∗(pi, pj).

If score is +1, then the rankings agree on the ordering of pi and pj , otherwise
score is -1. The total score is defined as

S =
∑

i<j≤n

Sij .

The number of all different pairwise comparisons of the parses of Ps that can
be made is

(
n
2

)
= 1

2 · n (n− 1). This corresponds to the maximum value of the
total score, when agreement between the rankings is perfect. The correlation
coefficient τa defined by Kendall is:

τa =
S

1
2 · n (n− 1)

.

While τa is well applicable in many cases, there is an important issue that is
not fully addressed by this coefficient—tied ranks, that is, f∗(pi) = f∗(pj) or
f(pi) = f(pj) for some i, j. To take into account possible occurrences of tied
ranks, Kendall proposes an alternative correlation coefficient

τb =
S

1
2

√∑
Rf∗(pi, pj)2 ·

∑
Rf (pi, pj)2

.

With tied ranks the usage of τb is more justified than τa. For example, if both
rankings are tied except the last member, then τb = 1 indicating complete agree-
ment between two rankings, while τa = 2

n . Then for large values of n this measure
is very close to 0, and therefore inappropriate. Due to many ties in the data, we
use the correlation coefficient τb to evaluate performance of our ranker.
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6 Experiments

In the experiments, BDB consisting of 1100 sentences was split into two datasets.
First 500 were used for parameter estimation and feature evaluation using 10-
fold cross-validation, and the rest were reserved for final validation. Each of the
sentences has a variable amount of associated parses generated by LG. To address
the computational complexity, we limited the number of considered parses per
sentence to 5 in the training and to 20 in testing dataset. We also considered the
effect of varying the number of parses per sentence used in training (Section 6.3).
When more parses than the limit were available, we sampled the desired number
of parses from these. When fewer were available, all parses were used.

We conducted several experiments to evaluate the performance of the method
with respect to different features and learning ability of the ranker. The RLS
algorithm has a regularization parameter λ which controls the tradeoff between
the minimization of training errors and the complexity of the regression func-
tion. The optimal value of this parameter was determined independently by grid
search in each of the experiments.

6.1 Evaluation of Features

In Section 2, we described features that were used to convey information about
parses to the ranker. To measure the influence of individual feature, we con-
ducted an experiment where features were introduced to the ranker one by one.
Performance is measured using τb coefficient with respect to the correct rank-
ing based on the parse goodness function f∗. As a baseline we considered the
correlation between LG ranking and the correct ranking, which is 0.16. We ob-
served that most of the features alone perform above or close to the baseline,
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Fig. 2. RLS ranking performance with different features separately and combined
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and performance of the RLS ranker with all the seven features combined on eval-
uation set is 0.42, supporting the relevance of proposed grammatical features.
The figure 2 shows the performance of RLS ranking with respect to the different
features separately and combined.

6.2 Final Validation

To test the statistical significance of the proposed method, we used the robust
5×2 cross-validation test [13]. The test avoids the problem of dependence be-
tween folds in N-fold cross-validation schemes and results in more realistic esti-
mate than, for example, t-test. The performance of RLS ranker with all the seven
features combined on validation set is 0.42 and the improvement is statistically
significant (p < 0.01) when compared to 0.18 obtained by the LG parser. We
also measured the performance of our ranker with respect to the parse ranked
first. The average F-score of the true best parse in the corpus is 73.2%. The
average F-score value obtained by the parses ranked first by the RLS ranker was
found to be 67.6%, and the corresponding value for the LG parser heuristics
was 64.2%, showing therefore better performance of our method also for this
measure. Note that average F-scores of the highest ranked parses were obtained
from the downsampled 20 parses per sentence.

6.3 Learning Ability of the Ranker with Respect to the Training
Data

To address the issue of applicability of the proposed method to very sparse
datasets, we measured performance of the RLS ranker with respect to two main
criteria: the number of sentences and the number of parses per sentence used for
training. In these experiments all grammatical features were used.

Number of Sentences. The training dataset of 500 sentences was divided into
several parts and for testing a separate set of 500 sentences was used. The vali-
dation procedure was applied for each of the parts, representing sets of sizes 50,
100,..., 500 sentences. The number of parses used per sentence for training was 5
and for testing 20. We observed that even with a very sparse dataset our method
gives a relatively good performance of 0.37 while the learning set size remains as
small as 100 sentences. The learning procedure reflected expected tendency of
the increased ranker performance with increased number of sentences, reaching
0.42 with 500 sentences.

Number of Parses. We measured performance of the RLS ranker based on the
number of parses per sentence used for training with dataset size fixed to 150
sentences. Number of parses per sentence in training was selected to be 5, 10,...,
50 for each validation run. Test dataset consisted of 500 sentences each con-
taining 20 parses. We observed that major improvement in ranker performance
occurs while using only 10 or 20 parses per sentence for training corresponding
to 0.41 and 0.43 performance respectively. When using 50 parses per sentence,
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performance was 0.45, indicating a small positive difference compared to results
obtained with less number of parses.

Parse-Sentence Tradeoff. In this experiment, we fixed the number of training
examples, representing number of sentences multiplied by number of available
parses per sentence, to be approximately one thousand. Datasets of 20, 30, 50,
100, 200, 300, 500 sentences with number of parses per sentence 50, 30, 20, 10, 5,
3, 2, respectively, were validated with 500 sentences each containing 20 parses.
The results of these experiments are presented in Table 1. We found that the
best performance of ranker was achieved using 100 sentences and 10 parses per
each sentence for training, corresponding to 0.41 correlation. The decrease in
performance was observed when either having large number of parses with small
amount of sentences or vice versa.

Table 1. Ranking performance with different number of sentences and parses

# Sentences # Parses Correlation Difference in correlation
20 50 0.3303 0.0841
30 30 0.3529 0.0615
50 20 0.3788 0.0357

100 10 0.4145 0.0000
200 5 0.3798 0.0347
300 3 0.3809 0.0335
500 2 0.3659 0.0485

7 Discussion and Conclusions

In this study, we proposed a method for parse ranking based on Regularized
Least-Squares algorithm coupled with rank correlation measure and grammati-
cally motivated features. We introduce an F-score based parse goodness function.
To convey the most important information about parse structure to the ranker,
we apply features such as grammatical bigrams, link types, a combination of link
length and link type, part-of-speech information, and others. When evaluating
the ranker with respect to each feature separately and all features combined, we
observed that most of them let the ranker to outperform Link Grammar parser
built-in heuristics. For example, grammatical bigram (pair of words connected
by a link) and link bigram (pair of links related by words) underline importance
of link dependency structure for ranking. Another feature yielding good perfor-
mance is link type & word, representing an alternative grammatical structure and
providing additional information in case of similar parses. We observed that link
length feature, which is related to LG heuristics, leads to poor, below the base-
line, performance, whereas other features appear to have more positive effect.

We performed several experiments to estimate learning abilities of the ranker,
and demonstrate that the method is applicable for sparse datasets. A tradeoff
spot between number of parses and sentences used for training demonstrates
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that maximum performance is obtained at 100 sentences and 10 parses per sen-
tence supporting our claim for applicability of the ranker to small datasets.
Experimental results suggest that for practical reasons the use of 10 to 20 parses
per sentence for training is sufficient. We compared RLS ranking to the built-in
heuristics of LG parser and a statistically significant improvement in perfor-
mance from 0.18 to 0.42 was observed.

In the future, we plan to address the issue of RLS algorithm adaptation for
ranking by applying and developing kernel functions, which would use domain
knowledge about parse structure. Several preliminary experiments with multiple
output regression seemed promising and are worth exploring in more detail. In
addition, we plan to incorporate RLS ranking into the LG parser as an alternative
ranking possibility to its built-in heuristics.
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Abstract. Microarray data from time-series experiments, where gene
expression profiles are measured over the course of the experiment, re-
quire specialised algorithms. In this paper we introduce new architectures
of Bayesian classifiers that highlight how both relative and absolute tem-
poral relationships can be captured in order to understand how biological
mechanisms differ. We show that these classifiers improve the classifica-
tion of microarray data and at the same time ensure that the models can
easily be analysed by biologists by incorporating time transparently. In
this paper we focus on data that has been generated to explore different
types of muscular dystrophy.

1 Introduction

The analysis of microarray data has previously focussed on the clustering of genes
into groups of similar expression profiles. This has amongst other things allowed
biologists to infer the functions of previously unknown genes. More recently,
methods to learn gene networks from such data have been explored with the
aim of trying to investigate more than just pairwise relationships and understand
the interactions between genes in more detail [5]. Another research problem that
has arisen from microarray data is the classification of different samples of data
into categories such as diseased and control groups. Many microarray datasets
contain thousands of genes and the number of samples are usually very small.
Therefore methods such as feature selection are required to prevent over-fitting.
Previously we have developed a method for classifying this sort of data that uses
simple models, sampling and global feature selection algorithms [12].

Microarray data from time-series experiments, where gene expression profiles
are measured over the course of the experiment, require specialised algorithms.
Recently, papers have documented using time-series models to capture the tem-
poral relationships between genes [14]. Time-series in microarray data contain
two types of temporal information: relative temporal relationships and absolute
temporal relationships. Considering the former, a point in a time-series can be
classified based upon the changes that occur between time points. In other words

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 475–485, 2005.
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it is the dynamics of the data that are used to classify the series. Ramoni et al.
[8] exploit these relationships in time-series models for clustering. Previously,
we have investigated temporal Bayesian classifiers for modelling relationships
between different variables over time to classify visual field data [9]. However,
another method can be used to model temporal relationships using absolute time
which is relative only to a fixed point (or reference), say the birth of an organism
or the onset of a medical condition, where any feature over time is measured from
that point. Here, it is not the dynamics of the data that are used to classify but
a combination of the data values and the length of time from the reference. For
example, if a variable can be used to determine medication for a condition that
has been diagnosed previously then the decision is dependent on the time since
the diagnosis (the reference). In this case, the relative time between features in
the data are irrelevant as it is the time since diagnosis that will be important in
the decision to give medication. Friedman et al. [5] model temporal relationships
in gene expression data by adding a node representing the phase of a yeast’s cell
cycle whilst numerous papers use dynamic Bayesian networks to exploit relative
temporal relationships [14]. It should be noted that a dynamic Bayesian network
should in theory be able to model absolute temporal relationships if it is of a
suitably high order. However, much more data is required to parameterise such
models than is typically available in microarray datasets.

In this paper we introduce new models that highlight how both relative and
absolute temporal relationships can be captured in order to understand how
biological mechanisms differ. We aim to improve the classification of time-series
microarray data using new forms of Bayesian classifiers, whilst at the same time
ensuring that the models can easily be analysed by biologists by using models
that incorporate time transparently. These classifiers are described in section
2. We focus on microarray data that has been generated in order to explore
the different types of muscular dystrophy based upon three previously identified
biological pathways. The data and the experiments carried out are also described
in section 2. Section 3 documents the results and analyses the results whilst
section 4 concludes with implications and lines for future work.

2 Methods

2.1 Bayesian Classifiers

Bayesian Networks (BNs) [7] are probabilistic models that can be used to model
data transparently. This means that it is relatively easy to explain to non-
statisticians how the data are being modelled unlike other ’black box’ methods.
A BN is a directed acyclic graph consisting of links between nodes that repre-
sent variables in the domain. Links are directed from a parent node to a child
node, and with each node there is an associated set of conditional probability
distributions.

Bayesian classifiers are a special form of Bayesian network where one node
represents some classification of the data. The simplest Bayesian classifier is
the Näıve Bayes. This classifier has been used with surprising success, given its
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simplicity, on a number of different applications. It consists of a set of probability
distributions for each variable given the class. The assumption behind this is
that each variable is independent of one another given the class. A more general
Bayesian classifier includes links between the predictor variables [4]. This requires
learning a network structure between variables using some scoring metric coupled
with a heuristic search. An example of the structure of each classifier is illustrated
in Figure 1.

Fig. 1. Common Bayesian network classifier architectures: Näıve Bayes Classifier
(NBC), Bayesian Network Classifier (BNC)

Many datasets involve measurements of variables over time and the dynamic
Bayesian network (DBN) [3] is an extension of the BN to handle the sort of
relationships found in time-series. A DBN is a BN where the N nodes represent
variables at differing time slices. Therefore links occur between nodes over time
and within the same time lag. Inference in DBNs is very similar to standard
inference in static BNs. In this paper, we use a form of stochastic simulation
called logic sampling [7] because of its speed and its intuitive appeal.

As opposed to DBNs, BNs can also incorporate time by including temporal
nodes into the Bayesian network structures. For example, Friedman et al. [5]
used this method when modelling yeast cell-cycle data where the temporal node
was made the parent of every gene node.

We now discuss how these methods of incorporating time can be used to
analyse and classify gene expression data with respect to absolute and relative
temporal relationships.

2.2 Incorporating Time into Bayesian Classifiers

Figure 2 illustrates the two novel classifier architectures that we explore in this
paper. From now on we refer to them as the Temporal BN Classifier (TBNC)
and the DBN Classifier (DBNC). The TBNC allows genes to be conditioned
upon a node that represents the time from some reference as well as other genes
and the class node. Therefore the classification will take into account the time
from the reference as well as the log ratio of the gene. The DBNC on the other
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hand, allows genes to be conditioned on genes from previous time points (in-
cluding themselves as auto-regressive links) as well as the class node so that the
change over time can assist the classification. We will also explore a classifier
that is a hybrid of the two, the Temporal Dynamic BN Classifier (TDBNC),
where a temporal node is included as well as dynamic links to see whether
both types of temporal information can be discovered within the microarray
data.

Fig. 2. Proposed architectures for incorporating time: Temporal BNC (TBNC) and
Dynamic BNC (DBNC)

2.3 Learning the Classifiers

For all classifiers the links between the class node and every gene are automati-
cally inserted and fixed during the search. Links between genes and between the
time node and genes are explored using a simulated annealing approach similar
to one we used in [12] but that minimises the Mimimum Description Length
(MDL) of the network [6]. This global optimisation search was chosen with the
aim of avoiding local optima, which many greedy searches suffer from. The main
idea behind our method is to make small changes to the classifier structure
and then score the network. The changes involve using three operators, add,
delete and swap, which randomly add a link, remove a link and swap a link,
respectively.

The optimisation algorithm is documented fully below, where D represents
the input data, the initial annealing temperature is denoted by t0, the cooling
parameter for the temperature by c, the maximum number of scoring function
calls by maxfc and the score of a network by score(bn), computed by the MDL.
R(0, 1) is a uniform random number generator with limits 0 and 1. For all our
experiments, we set t0 to 1. This was based upon the initial scores when applied
to the dataset investigated in this paper (we have generally found that a good
starting temperature is similar to the changes in score in the early iterations).
maxfc was set to 10000 as this was found through empirical analysis to ensure
that convergence has occurred on the dataset explored. c was set to 0.999, cal-
culated to ensure that the temperature after maxfc iterations was suitably close
to zero.
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Input: t0,maxfc,D
fc = 0, t = t0
Initialise bn to a Bayesian
classifier with no inter-gene links
result = bn
oldscore = score(bn)
While fc ≤ maxfc do

For each operator do
Apply operator to bn
newscore = score(bn)
fc = fc + 1
dscore = newscore− oldscore
If dscore < 0 then

result = bn
Else If R(0, 1) < edscore/t Then

Undo the operator
End If

End For
t = t× c

End While
Output: result

Algorithm 1 : Simulated annealing for building Bayesian networks

2.4 Muscular Dystrophy Data

Muscular dystrophies are a heterogeneous group of inherited disorders character-
ized by progressive muscle wasting and weakness. The genetic defects underlying
many muscular dystrophies have been elucidated [1,2]. A particular subset of
muscular dystrophies is caused by mutations in genes coding for constituents of
the dystrophin-associated glycoprotein complex (DGC). Mutations in the dys-
trophin gene cause Duchenne muscular dystrophy, whereas mutations in sarco-
glycan genes are responsible for Limb-Girdle Muscular Dystrophies. Large-scale
gene expression profiling of mouse models known to recapitulate different human
muscular dystrophies was performed to delineate the molecular mechanisms un-
derlying the shared and distinct phenotypic characteristics [10,11].

The MDX mouse is a mouse model for Duchenne muscular dystrophy, beta-
sarcoglyan-deficient (BSG) and gamma-sarcoglycan-deficient (GSG) mice are
mouse models for Limb-Girdle Muscular Dystrophies 2E and 2C. Expression
profiles were generated from two individual mice (two biological replicates) at
different ages: 1, 2.5, 4, 6, 8, 10, 12, 14, 20 weeks. There were four technical
replicates in the experiment: the arrays were spotted in duplicate and the samples
were hybridized twice (dye-swapped). The arrays used were spotted 7.5K 65-mer
oligonucleotide arrays (Sigma-Genosys mouse library).

A temporal loop hybridization design was applied in which consecutive time
points were hybridized to the same array. For this paper, we focused on the
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analysis of a subset of 28 genes, belonging to 3 different pathways, which are
related to muscle regeneration. These pathways have been identified in MDX
mice, where effective muscle regeneration accounts for regression of the pathol-
ogy. The first pathway is the Notch-Delta signaling pathway, the second the
bone morphogenetic protein pathway, the third the neuregulin pathway. To-
gether, these pathways appear to regulate the proliferation and differentiation
of muscle precursor cells, which gives rise to the formation of new muscle fibres
and consequently muscle repair. It is not clear yet if these pathways are equally
active in the beta- and gamma-sarcoglycan-deficient mice that seem to suffer
from a more progressive muscle pathology than the MDX mice.

As there are two independent biological samples for each class of muscular
dystrophy, we have decided to perform two-fold cross validation where one ex-
periment involves training from data based solely on one biological sample and
tested on the other. This approach avoids testing on data that are highly corre-
lated with the training set (as a higher correlation is expected between technical
repeats). Furthermore, for each fold, we repeat the network search 10 times, due
to the stochastic nature of our simulated annealing algorithm. For each of these
runs, the frequency count is maintained for each link in all networks generated
on the training data for the corresponding fold and the classifiers tested on the
portion of data taken out. In this way we are able to produce a confidence mea-
sure for each link in the network based on different training samples. This is
similar to the method used by [5], where the confidence measure on links in a
Bayesian network is achieved by bootstrapping the data.

The data were normalised using the all.norm function from the smida R-
library. The method essentially corrects for spatial, dye and across-array effects.
These normalization procedures are applied in a sequential manner, starting with
local corrections and proceeding towards more global corrections like across-
array normalization. More details about the methods can be found in [13]. The
log-ratios of the gene expression at a particular time point with respect to the
first time point were then considered for the study. These were estimated from
the raw log-ratios using a simple linear model [13]. The data were then discre-
tised into two states using a frequency-based policy whereby the resultant genes
appear in each state with equal probability.

3 Results

First of all we investigate the accuracy of the classifiers when determining
whether the disease is not present (the wild-type) or, if it is, which form the dis-
ease takes - a four class classification problem. Figure 3 (top) shows the accuracy
of the classifiers when applied to each of the two folds (i.e trained on one biolog-
ical sample and tested on the other). It is evident that the simple NBC performs
poorly at around 60% (note that a totally random classification output would
result in 25% accuracy) with very large variation between the samples. Surpris-
ingly, the BNC which models the dependencies between genes results in a small
decrease in the mean accuracy but considerably reduces the variation. When the
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DBNC is used to classify the data, a small improvement is seen over the BNC.
The TBNC performs considerably better with a 64% accuracy and the TDBNC
hybrid (with both dynamic links and a time node) records a further albeit small
improvement still at 65%. It seems that the variation between folds is greater
when the time node is used (in TBNC and TDBNC compared to BNC and
DBNC). This could be due to the increasing complexity and also the fact that the
time node only has a small number of examples in the data for each instantiation.

We now look at the accuracy of the methods for each of the four classes in
Figure 3 (bottom). It appears that the wild-type (WT) and the MDX form of
muscular dystrophy are more easily classified than the BSG and GSG forms.
The genes used in this study are known to be associated with the MDX form
and were thought likely to be involved in the other two forms. However, the
obtained result implies that the three pathways investigated here are more closely
associated with dystrophin deficiency (MDX) than with sarcoglycan deficiency

Fig. 3. Top: Comparison of classification accuracy for each biological sample (fold).
Bottom: Accuracy for each disease type
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(BSG and GSG), which seems reasonable given the regeneration pathways being
more active in the MDX mice than in the BSG and GSG mice.

Due to the transparent nature of Bayesian network classifiers we can explore
some of the discovered relationships between genes including the temporal as-
pect in DBNC, TBNC and TDBNC. We turn firstly to the resulting networks
generated from the DBNC.

The first observation to make is that only 4% of the links found in the DBNC
are dynamic (i.e. spanning two timepoints). Table 1 reports the most commonly
occurring links during learning the DBNCs. A single line arrow denotes a normal
link whereas a double lined arrow denotes a dynamic link.

Four out of 19 links found by DBNC with highest confidence were associated
with genes functioning in the same Notch-Delta signaling pathway. When we
consider only the links found with consistently high confidence in the two folds,
the percentage of links from genes within the Notch-Delta signaling pathway is
even higher (3 out of 5). This is in agreement with our expectation that, of the
three studied signaling pathways, the Notch-Delta pathway shows the most co-
herent regulation. The other links were mapping to genes functioning in different
pathways. Since we expect the three different pathways to act synergistically in
muscle regeneration, co-expression or co-regulation of these genes may have bio-
logical significance, despite the absence of a direct interaction between the gene
products. Future assessment of the false positive rate in the identified links, for
example by including genes in completely unrelated pathways, will be necessary
to further evaluate their biological relevance.

Table 1. Table of the most frequently occurring links in DBNC and TBNC

DBNC Link Percent TBNC Link Percent
NM010950→NM009861 0.5 Time→NM008380 0.7
NM007866→NM009758 0.35 Time→NM013871 0.5

D32210→D90156 0.35 Time→NM008284 0.5
NM007866→NM008734 0.3 NM010950→NM009861 0.45

D32210→NM010091 0.3 Time→NM010423 0.4
D32210→NM021877 0.3 D32210→AF059176 0.4
D32210→AF059176 0.3 NM010949→NM008110 0.4

NM010950→NM008734 0.3 Time→NM010091 0.35
NM010949→NM013871 0.3 NM010949→NM008163 0.35
NM010949→NM008163 0.3 NM010949→NM008734 0.35
NM010091→NM008380 0.3 NM010091→D32210 0.35
NM021877→NM008380 0.3 NM009861→NM010866 0.35
NM010423→NM008163 0.3
NM010496→NM008540 0.3
NM008110→NM009097 0.3
NM009757→NM009861 0.3
NM009861→NM010950 0.3
NM008284→NM007888 0.3
NM013871⇒NM009758 0.2
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Fig. 4. Comparing cross correlations of discovered dynamic links:
NM013871→NM009758 (top) found in 20% and NM008110→NM008380 (bottom)
found in 10%

Figure 4 plots the cross-correlation of two of the dynamic links that were
discovered in the highest proportion of networks during the 10 runs over the two
folds. This is the correlation between gene profiles over varying time lags and for
each of the classes, where the class profile is averaged across the biological and
technical repeats. It is evident that for many of these plots the most significant
correlation is at time lags of one or greater implying a relationship that spans
time. Interestingly, for some genes it appears that the highest correlation is at
a time lag of one but only in certain classes. For example, in the top cross
correlation plot the most significant correlation was at a lag of zero for BSG ,
MDX and GSG but at a lag of one for wild type (WT).

For the TBNC classifiers, we plot the genes that were discovered to be most
commonly associated with the time node. Note that the plots in figure 5 have
peaks and troughs for all classes rather than having a high or low log-ratio
throughout. It is the shape of the plot that differentiates them. In other words,
you must take the time when a gene is expressed into account. For example,
the gene NM008380 is over-expressed at the first and seventh timepoint for the
wild-type. On the other hand, GSG is over-expressed at all time points except
the seventh and BSG appears under-expressed at the seventh timepoint. Table
1 reports the most commonly occurring links during learning the TBNCs where
Time denotes the temporal node.

Most of the identified links between genes are between genes functioning in dif-
ferent regenerative pathways. This suggests that the regenerative pathways are si-
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Fig. 5. Examples of genes found associated with the time node. NM008380 and
NM008284 were found in 70% and 50% of runs, respectively

multaneously activated and potentially cooperate, while there is less evidence for
synchronizedactivation ofmembers of a specific pathway.Notch2 signallingmaybe
anotable exception, sinceDBNClinksNotch2 (D32210) to several downstreamtar-
gets: Dvl1 (NM010091), Hr (NM021877) Myog (D90156). A link between Numb-
likeprotein (NM010950)and the lowmolecularweightGTPaseCdc42 (NM009861)
was found by both DBNC and TNBC with high confidence. These genes seem to
have similar temporal profiles of expression for BSG mice, discriminating them
from othermouse models. Although a biological interactionbetween these proteins
has not been identified yet, it may be rewarding to study this further.

4 Conclusions

In this paper we have investigated different Bayesian classifier architectures to
classify time-series data with the aim of explaining the underlying structure of
the data. The methods have been applied and tested on real-world microarray
data in order to classify forms of muscular dystrophy. In addition, the classi-
fiers have enabled us to explore the interactions between genes responsible for
differentiating between the classes. We have found that incorporating both ab-
solute temporal information which refers to some reference time (e.g. the birth
of an organism) and relative temporal information in the form of dynamic links
between variables results in more accurate classifiers.

In [12], we explored the use of simple Bayesian classifiers for selecting genes
that differentiate between different classes. Due to the small sample sizes of
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our datasets, we only explored classifiers that assumed independence between
genes. However, more interesting features could be discovered if we took into
account the relationships between genes including the temporal ones. We intend
to combine our work presented in this paper with our feature selection methods
in order to identify combinations of genes that work together over time that
determine the class of the gene profile in question. We also intend to incorporate
expert knowledge by hard-wiring certain key relationships into the networks and
experiment with a number of different biological datasets.
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Abstract. In most problems of Knowledge Discovery the human ana-
lyst previously constructs a new set of features, derived from the initial
problem input attributes, based on a priori knowledge of the problem
structure. These different features are constructed from different trans-
formations which must be selected by the analyst. This paper provides a
first step towards a methodology that allows the search for near-optimal
representations in classification problems by allowing the automatic se-
lection and composition of feature transformations from an initial set of
basis functions. In many cases, the original representation for the prob-
lem data is not the most appropriate, and the search for a new represen-
tation space that is closer to the structure of the problem to be solved
is critical for the successful solution of the problem. On the other hand,
once this optimal representation is found, most of the problems may be
solved by a linear classification method. As a proof of concept we present
two classification problems where the class distributions have a very in-
tricate overlap on the space of original attributes. For these problems,
the proposed methodology is able to construct representations based on
function compositions from the trigonometric and polynomial bases that
provide a solution where some of the classical learning methods, e.g.
multilayer perceptrons and decision trees, fail. The methodology con-
sists of a discrete search within the space of compositions of the basis
functions and a linear mapping performed by a Fisher discriminant. We
play special emphasis on the first part. Finding the optimal composition
of basis functions is a difficult problem because of its nongradient nature
and the large number of possible combinations. We rely on the global
search capabilities of a genetic algorithm to scan the space of function
compositions.

1 Introduction

Knowledge discovery from large data sets has become an increasingly important
field of research due to the large potential to be tapped from many commer-
cial, scientific and industrial databases. Nevertheless, in most cases the knowl-
edge discovery processes are still quite costly due to the number of iterations
that the human analysts have to perform over the discovery loop [3]. To reduce
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this cost a number of tasks within the knowledge discovery loop can be par-
tially automated. This is the case for feature selection and feature construction
[4,5,6,7,8,11,14,15,17,19]. In most problems of knowledge discovery the human
analyst previously constructs a new set of features, derived from the initial prob-
lem input attributes, based on a priori knowledge of the problem structure. These
different features are constructed from different transformations which must be
selected by the analyst.

For each new feature, a subset of input attributes must be selected (attribute
selection) and a transformation to be applied to those attributes must be also
selected (transformation selection). Both processes can be viewed as a search
process and hence both can be automated to some degree by heuristic search.
In this regard, domain knowledge can be introduced by choosing a set of bases
that include transformations closer to the problem structure and heuristics that
guide/bias the search process. The methodology described in this paper inter-
twines attribute selection and transformation selection in an overall search pro-
cess implemented by a genetic algorithm. We have introduced the bias by means
of the set of basis functions included. The different bases provide with different
transformation properties, for instance the trigonometric basis introduces peri-
odicity in an explicit manner. Furthermore, the architecture presented in this
paper allows for basis function composition. Function composition enriches the
expressive power by allowing the construction of features that have combined
properties from the selected bases while giving rise to more compact represen-
tations. This is so since a basis closer to the problem structure gives rise to a
more compact representation of the problem solution.

Classical methods for pattern classification are based on the existence of
statistical differences among the distributions of the different classes. The best
possible situation is perfect knowledge of these distributions. In such a case,
Bayes classification rule gives the recipe to obtain the best possible solution.
In real problems, however, class distributions are rarely available because the
number of patterns is generally small compared with the dimensionality of the
feature space. To tackle this problem many techniques of density estimation have
been developed, both parametric and non-parametric [2]. When density estima-
tion becomes too difficult, there is a variety of supervised learning algorithms,
such as neural networks [1] or support vector machines [18], that try to find a
non-linear projection of the original attribute space on to a new space where a
simple linear discriminant is able to find an acceptable solution.

Let us assume a particular classification problem in which, when looking at
the original attribute space, we observe an almost complete overlap among the
class distributions. Following the Bayes rule, we see that for any point in this
attribute space, the probabilities of belonging to any of the classes are all equal.
We could be tempted to conclude that there is no solution to the problem better
than choosing the class randomly. However, it could be that the overlapping is
due to a bad representation of input data, and that there exists a transformation
that separates the classes. We hypothesize that if such a transformation exists,
there must exist a suitable basis in which it has a simple and compact expres-
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sion. So solving such a problem can be reduced to finding the most appropriate
basis or representation for the input data (with respect to the classification tar-
get). Once this representation is found, a linear discriminant will suffice to find
a simple and compact solution. We propose an expansion of the Evolutionary
Functional Link Networks (EFLNs) of Sierra et al. [16]. They used a genetic
algorithm to construct polynomial combinations of the input attributes, which
in turn constituted the input for a linear network. They obtained very compact
solutions on problems from public databases. Here we incorporate other bases
apart from the polynomial one. We use a genetic algorithm to perform both
variable selection and search in the transformation space, and a Fisher discrim-
inant that performs the final linear projection. We show that this approach is
able to solve problems where other methods fail to find a solution, even when
the overlap is so large that there are no apparent statistical differences among
the classes. This overlap may be due simply to the fact that the original repre-
sentation of data is not well suited to the problem. Actually, it is well known
that many classification problems are solved only after the application of some
“intelligent” transformations provided by a domain “expert”. Here we want to
go a step closer into the automatic selection of these intelligent transformations,
by allowing the algorithm to search for the optimal basis.

2 Methodology

When facing a two-class classification problem, our starting point is the assump-
tion that there exists a non-linear function that projects the input data onto a
unidimensional space where a linear separator is able to discriminate among
the two classes. This function must have a simple and compact form in some
basis, so finding an appropriate set of basis functions will strongly contribute
to the simplification of the problem: the final projection may be constructed as
a linear combination of these non-linear transformations. Here we propose to
explore jointly the Taylor and Fourier bases, as well as compositions of both.
We use a genetic algorithm (GA) to construct the non-linear transformations
that operate on the raw input data, and a Fisher discriminant to perform the
linear projection on the transformed attributes. The separating threshold is se-
lected to minimize the classification error. In this regard our approach follows
on the work developed by [16] with the EFLN algorithm, introducing two main
differences: first, we do not limit the transformations to polynomials, but we
expand the representation capabilities by adding trigonometric functions; and
second, the linear projection is performed by a Fisher discriminant, instead of a
linear neural network. Both methods are equivalent and they do not suffer from
local minima, but the Fisher projection provides the solution avoiding gradient
descent optimization.

The proposed algorithm includes feature construction as well as feature selec-
tion. For the first task, it combines different bases of transformation (e.g. poly-
nomial and trigonometric) to generate the input for the linear classifier. Feature
selection is performed by the application of the genetic algorithm, which selects
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Fig. 1. Schematics of the overall methodology. The genetic algorithm evolves individ-
uals consisting of different sets of transformations that operate on the input data. The
transformed attributes are then fed into a Fisher discriminant whose error rate deter-
mines the fitness of the individual, used by the genetic algorithm to compute the next
generation of transformation sets.

the best subsets of transformed variables by using the linear classifier error rate
as the fitness criterion. Consequently our algorithm can be viewed as a wrap-
per method [7]. The general form for the input transformations operating in a
n-dimensional feature space is given by the expression:

F (x1, x2, ..., xn) =
n∏

i=1

yai

i Ti(biπyi) (1)

where the xi represent the original input variables, ai and bi are integer coeffi-
cients, and Ti is a trigonometric function (a sine or a cosine). Each yi is either
equal to xi or to a new F (x1, x2, ..., xn). In this way compositions of polynomials
and trigonometric functions can be constructed. Function composition strongly
increments computational complexity and is not always allowed.

Our algorithm starts by generating K different function sets, each one com-
posed of m functions as that of equation 1:

Si = {F i
1, F

i
2 , ..., F

i
m}, i = 1, 2, ..., K (2)

Each of these sets Si corresponds to an individual in the initial population
which will be evolved by the genetic algorithm. The fitness of the individual Si

is calculated as the classification error of a Fisher linear discriminant operating
on the transformed attributes F i

1(x), F i
2(x), ..., F i

m(x). Note that an exhaustive
search over the space of input transformations would be computationally too
expensive and would not scale properly on the number of input variables. This
fact, together with the absence of gradient information, makes the use of an
evolutionary approach very appropriate. In figure 1 we show a scheme of the
algorithm, which is briefly described below:

1. Initialize the first population of individuals randomly, and set the parameters
for the GA, such as the number of iterations and the mutation probability.

2. For each evolution iteration:
(a) For each individual:
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i. Generate the new features applying the input transformations to the
original attributes.

ii. Evaluate its fitness value as the classification error of the Fisher Lin-
ear Discriminant applied to the transformed features on the training
and validation data sets.

(b) Select the lowest error individuals for the next iteration.
(c) Generate a new population applying genetic operators and the individuals

selected in (b).
3. Evaluate the most accurate individual on the test data set.

3 Test Cases

We have applied the previous methodology to two different synthetic data sets.
Both of them consist of two classes, A and B, in a two-dimensional input space,
given by the attributes x and y. The two problems present the following prop-
erties: (i) there exists an appropriate non-linear transformation that is able to
separate the classes with no error; and (ii) in the original input space the classes
present a very high overlap and, given the number of examples, seem to follow
the same distribution. This last fact makes the problems particularly difficult to
solve. For both problems we present the results of our algorithm in comparison
with the results obtained with other classification methods, namely multilayer
perceptrons trained with backpropagation, decision trees trained with the C4.5
algorithm, and evolutionary FLNs that use the polynomial basis. The back-
propagation algorithm was tested using networks of one single hidden layer,
with different number of hidden units (ranging from 3 to 10) with a sigmoidal
activation function. Different values for the learning rate between 0.01 and
0.3 were tried. For the decision trees, we used Quinlan’s C4.5 algorithm [13]
with probabilistic thresholds for continuous attributes, windowing, a gain ra-
tio criterion to select tests and an iterative mode with ten trials. Finally, the
evolutionary FLN was trained as described in [16], with polynomials of up to
degree 3.

3.1 Case 1

The first test case we consider consists of 2000 patterns, 1000 of class A and
1000 of class B, defined in the interval [0 ≤ x ≤ 100, 0 ≤ y ≤ 100]. Class A
patterns are defined in the following way:

(x, y) ∈ A ←→ mod(int(x), 2) = mod(int(y), 2) (3)

where int(x) is the integer part of x and mod(x, 2) is the remainder of x/2.
Class B patterns are those that do not satisfy the equality in eq. 3. We can
imagine the input space as a big chess board where class A patterns occupy black
squares and class B patterns occupy white ones. In principle, this problem seems
not particularly difficult to solve. However, as far as the number of patterns is
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Fig. 2. Input patterns for test case 1, consisting of two classes, A and B, and two
attributes, x and y. The problem data consist of 1000 patterns of class A (circles) and
1000 patterns of class B (crosses). Apparently the two classes follow the same (uniform)
distribution in the considered interval, and classical methods will have great difficulties
to deal with this problem.

very small compared with the number of squares, it becomes more complicated
to discover the hidden structure. Here we have forced this situation, and the
two classes appear to follow the same (uniform) statistical distribution in the
considered interval (see figure 2).

In table 1 we show the results obtained by the different tested classification
methods when trying to solve this problem. None of the tested strategies achieves
a successful result. All of them achieve error rates close to a 50% on the test
set. This means that they are not performing much better than selecting the
class randomly. The difficulty these traditional methods are confronting is due
to the high overlap between the two classes. Note that for an absolute class
overlap, even the best (Bayes) class estimator fails. However Bayesian decision
theory assumes perfect knowledge of class distributions, which is not the present
case. In fact, we know that below the apparent class mixing there is a hidden
structure that the tested methods are not able to discover when just focusing on
the original input space.

Table 1. Comparison of performances of various classification methods on the problem
of test case 1

Algorithm Train Error % Test Error %
Backpropagation 51.1 48.7

C4.5 49.1 51.4
EFLN 46.1 43.8
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Fig. 3. Plot of sin(πx)sin(πy) vs x for the patterns of the problem of test case 1. The
final transformation discovered by the proposed algorithm allows for a linear separation
of the two classes.

We applied the algorithm of section 2 to this problem, using populations of
up to 50 individuals, each one consisting of a set of m = 3 input transformations.
Function compositions were not allowed. The optimization was performed using
a standard GA package [10]. The different trials we ran converged quickly (in no
more than 50 GA iterations) to optimal solutions with a perfect class separation.
As an example we show the outcome of one of the trials, for which the best
individual corresponded to the following set of input transformations:⎛⎝ 0

x sin(2πx) sin(πy)
sin(πx) sin(πy)

⎞⎠
These transformations constitute the input for the Fisher discriminant. The

resulting Fisher projection is given by the vector:(
0 0 −9.33

)
So the final transformation reached by the algorithm is −9.33sin(πx)sin(πy).

Note that the Fisher projection is ignoring all the terms except the third one.
As shown in figure 3, this transformation allows a perfect linear separation of
the two classes.

3.2 Case 2

Let us consider a second test case constructed in a similar manner as test case 1.
As before, it consists of 2000 patterns in a two-dimensional input space, defined
in the interval [0 ≤ x ≤ 100, 0 ≤ y ≤ 100]. We select 1000 patterns of each class.
The patterns of class A are defined as:

(x, y) ∈ A ←→ mod(int(x2y2), 2) = mod(int(y), 2) (4)
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where int(x) and mod(x, 2) are as before. Class B patterns are those that do
not satisfy the equality in eq. 4. As with the previous example, there exists
a non-linear transformation that solves this problem with 0 error. However in
this case the required transformation involves a composition of polynomial and
trigonometric functions. If we plot all the patterns in the original space we obtain
the result shown in figure 4. As before, in spite of the deterministic nature of
the problem, there appears to be an absolute class mixing. This is due to the
relatively small number of patterns.
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Fig. 4. Input patterns for test case 2, consisting of two classes, A and B, and two
attributes, x and y. The problem data consist of 1000 patterns of class A (circles) and
1000 patterns of class B (crosses).

We applied the same three traditional methods to this new problem, ob-
taining the results shown in table 2. Classification error rates are in all cases
close to 50%, which indicates that no improvement with respect to random class
selection is achieved.

Table 2. Comparison of performances of various classification methods on the problem
of test case 2

Algorithm Train Error % Test Error %
Backpropagation 50.4 49.5

C4.5 46.4 50.2
EFLN 44.6 46.4

Finally we tested our algorithm. We used the same experimental conditions
as for test case 1, but using sets of m = 6 input transformations and allowing
function composition. All the trials we ran converged to the optimal solution,
the outcome of one of them is shown below:
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Fig. 5. Plot of sin(πx2y2)sin(πy) vs x for the patterns of the problem of test case
2. The final transformation discovered by the proposed algorithm allows for a linear
separation of the two classes.

⎛⎜⎜⎜⎜⎜⎜⎝
sin(πx2y2) sin(πy)

0
x2 sin(3πx2y2)y sin(2πx2y2 sin(3πx) sin(πy))

0
0

cos(3πx2y2)

⎞⎟⎟⎟⎟⎟⎟⎠
The corresponding Fisher projection is given by:(

−9.53 0 0 0 0 0
)

Which produces the final transformation −9.53 sin(πx2y2) sin(πy) that sep-
arates the two classes with no error (see figure 5).

4 Conclusions

This paper presents a proof of concept for the construction of near-optimal
problem representations in classification problems, based on the combination of
functions selected from an initial family of transformations. The selection of an
appropriate transformation allows the solution of complex nonlinear problems
by a simple linear discriminant in the newly transformed space of attributes. The
proposed approach has been tested using two complex synthetic problems that
are not properly solved by other standard classification algorithms. A few trials
on classification problems from the UCI repository [12] have also been performed,
where our methodology seems to reach error rates similar to other methods.
However the solutions obtained are highly complex and difficult to interpret.
Note that we have not included any mechanisms to control the complexity of
the solutions.
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Work in progress includes the introduction of a more extensive family of basis
functions that will allow for the construction of a wider repertoire of problem
representations. Additionally, mechanisms to control the combinatorial explosion
in the space of representations and the complexity of solutions will be analyzed.
Additional work in progress also includes information/statistical measures that
allow to uncover the structural/statistical properties of the input attributes and
this in turn provides additional heuristics over which transformations to select.

Other advantages of the proposed method are that a closer, more compact
problem representation usually allows for easier model interpretation [16], and,
hence, a deeper understanding of the structure and mechanisms underlaying the
problem under study. Related work on the extraction of hidden causes [9], which
provide the generative alphabet, will be farther explored.
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Abstract. In this paper, we introduce a hybrid technique based on particle 
swarm optimization (PSO) algorithm combined with the nonlinear simplex 
search method. This approach is applied to multimodal function optimizing 
tasks. To evaluate its reliability and efficiency, we empirically compare the per-
formance of two variants of the Particle Swarm Optimizer with our hybrid algo-
rithm. The computational results obtained in experiments on large variety of 
test functions indicate that the hybrid algorithm is competitive with other tech-
niques, and can be successfully applied to more demanding problem domains. 

1   Introduction 

Particle Swarm Optimization (PSO) [1], which is inspired by the analogy of social 
behavior of insects and animals, is a recently proposed meta-heuristic algorithm that 
can be used to find approximate solutions to difficult continuous function optimiza-
tion tasks. Since its introduction in 1995, the Particle Swarm Optimization paradigm 
has undergone various modifications and improvements, and has been successfully 
applied to wide range of industrial fields [2], [3], [4]. It is known from the literature 
that the convergence rate of PSO is typically slower than those of local search tech-
niques [5]. As an evolutionary computation technique, PSO is severely limited by 
high computational cost in solving multimodal optimization problems. 

The nonlinear simplex search method proposed by Nelder and Mead (NM method) 
is a simple direct search technique that has been widely used in various unconstrained 
optimization problems [6]. It is very easy to implement and does not need any deriva-
tive information of the objective function. But the NM method is very sensitive to the 
initial points and is not guaranteed to obtain global optima [7]. 

Hybrid PSO algorithms with the NM method are proved to be superior to the origi-
nal two techniques and have many advantages over other heuristic algorithms [8], 
such as hybrid GA, continuous GA, simulated annealing (SA), and tabu search (TS). 
Generating initial swarm by the simplex method (SM) might improve, but is not satis-
fying for multimodal function optimizing tasks [9]. Developing the simplex search as 
an operator during the optimization may increase the computational complex consid-
erably [8]. 

In this paper, the nonlinear simplex method is adopted at late stage of the Canoni-
cal PSO algorithm when particles hunt quite close to the extrema. In the hybrid ap-
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proach, PSO contributes to ensure that the search is not likely to be immersed in local 
optima, while the simplex search makes the search converge faster than pure PSO 
procedures. Experimental results on several famous test functions show that this is a 
very promising way to increase both the convergence speed and the success rate sig-
nificantly of multimodal function optimization. 

We briefly introduce the NM method and the PSO algorithm in section 2 and 3; in 
section 4, the proposed hybrid algorithm and experimental design is described; cor-
relative results of experiments are exhibited in section 5. The paper comes to the end 
with terse conclusions and some ideas for further work. 

2   The NM Method 

The basic simplex method was presented by Spendley et al in 1962, and then im-
proved by Nelder and Mead [6], to what is called the nonlinear simplex method. Since 
its publication in 1965, the NM simplex algorithm has become one of the most widely 
used local direct search methods for nonlinear unconstrained optimization. 

The NM method attempts to minimize a scalar-valued nonlinear function of D real 
variables using only function values, without any derivative information. At each 
iteration, the simplex-based direct search method begins with a simplex, specified by 
its D+1 vertices and the values of objective function. One or more test points are 
computed, along with their function values, and the iteration terminates with bounded 
level sets. 

A D-dimensional simplex is a geometrical figure consisting of D+1 vertices (D-
dimensional points) and all their interconnecting segments, polygonal faces etc. We 
consider only simplexes that are non-degenerated, i.e., that enclose a finite inner D-
dimensional volume. 

The nonlinear simplex search procedure starts with an initial simplex which is gen-
erated using the found minimum as one of its vertices and generating the rest D points 
randomly. Then it takes a series of steps to rescale the simplex: first, it finds the 
points where the objective function is highest (the least favorable trial W) and lowest 
(the most favorable trial B); then it reflects the simplex around the high point to point 
R. If the solution is better, it tries an expansion in that direction; else if the solution is 
worse than the second-highest (next-to-the worst) point S, it tries an intermediate 
point. When the method reaches a “valley floor”, the simplex is contracted in the 
transverse direction in order to ooze down the valley or it can be contracted in all 
directions, pulling itself in around its lowest point, and started again. 

At each step, the rejected trial W is replaced by one of the following trials on con-
ditions that:  
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The different test points of a simplex are shown in Figure 1. 
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Fig. 1. Different simplex test points from the rejected trial condition in two dimension space. 
W= the rejected trial, R = reflection, E = expansion, C+ = positive contraction, C- = negative 
contraction. 

Where C is the centroid of the remaining vertices;α ,γ , +β and −β is coefficients 

of reflection, expansion, positive contraction and negative contraction; fB, fS, fW and fR 

are the values of object function on point B, S, W and R respectively. 

3   The Particle Swarm Algorithm 

Particle Swarm Optimization (PSO) algorithm proposed by Kennedy and Eberhart is 
one of the latest evolutionary techniques for continuous function optimization tasks 
[10]. In comparison with previous population-based evolutionary approaches, such as 
genetic algorithm (GA) and evolutionary strategy (ES), PSO does not implement the 
filtering operation, instead, a simulated social behavior, where members of a group 
tend to follow the lead of the best of the group, is adopted by PSO [11]. Generally 
speaking, PSO is applicable to most optimization problems which can be transferred 
into a general form of continuous global optimization problems. 

The theory of PSO describes that each particle flies through the multidimensional 
search space while the particle’s velocity and position are updated based on the best 
previous performance of the particle and of the particle’s neighbors, as well as the 
best performance of particles in the entire population so that each particle can benefit 
from the current search results of other particles. 

In the original PSO formulae, particle i is denoted as Xi=(xi1,xi2,...,xiD), which 
represents a potential solution to a problem in D-dimensional space. Each particle 
maintains a memory of its previous best position, Pi=(pi1,pi2,...,piD), and a velocity 
along each dimension, represented as Vi=(vi1,vi2,...,viD). At each iteration, the P vector 
of the particle with the best fitness in the local neighborhood, designated g, and the P 
vector of the current particle are combined to adjust the velocity along each dimen-
sion, and that velocity is then used to compute a new position for the particle. 

The evolutionary equations of the swarm are: 

vid = w*vid+c1*rand()*(pid - xid)+c2*Rand()*(pgd - xid)                               (1) 
xid = xid+vid                                                                                                  (2) 

Constants c1 and c2 determine the relative influence of the social and cognition 
components (learning rates), which often both are set to the same value to give each 
component equal weight. Rand() and rand() are random values in the rang (0,1). A 
constant, Vmax, was used to limit the velocities of the particles. The parameter w, 
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which was introduced as an inertia factor, can dynamically adjust the velocity over 
time, gradually focusing the PSO into a local search [12], [13], [14]. 

We can see that only a very few parameters are need to adjust in PSO, which 
makes it very attractive in the literature of meta-heuristic algorithms. Maurice Clerc 
has derived a constriction coefficient K, a modification of the PSO that runs without 
Vmax, reducing some undesirable explosive feedback effects. The constriction factor is 
computed as [15]: 
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>+=
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ϕϕϕ
ccK

    (3) 

With the constriction factor K, the PSO formula for computing the new velocity is: 

vid = K*(vid+c1*rand()*(pid - xid)+c2*Rand()*(pgd - xid))                    (4) 

Carlisle and Doziert investigated the influence of different parameters in PSO, se-
lected c1=2.8, c2=1.3, population size as 30, and proposed the Canonical PSO [16]. 

4   The Proposed Algorithm and Experimental Design 

At late stage of PSO running, promising regions of solutions have been located. Apply-
ing the nonlinear simplex method to enhance exploitation search at this stage is capable  

Table 1. Parameters for each test function 

Function GM Error Goal Xmin Xmax 

F1: Branin2 0.397887 10-6 -5 15 

F2: Easom2 -1 10-8 -100 100 

F3: Shubert2  -186.7309 10-7 -10 10 

F4: Zakharov2  0 10-6 -5 10 

F5: Griewank2  1 10-7 -300 600 

F6: H3,4  -3.86343 10-7 0 1 

F7: S4,10  -10.53641 10-5 0 10 

F8: H6,4  -3.32237 10-5 0 1 

F9: Rastrigin10  0 10 -5.12 5.12 

F10: Griewank10  9 10-1 -300 600 

F11: Zakharov10  0 10-1 -5 10 

*Note:  The subscript of each function name denotes its dimension. 
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Table 2. Pseudo code of the proposed hybrid algorithm 

Randomly generate a swarm of size PopSize on the range [Xmin..Xmax], set pi to 
xi, set vi to random values. 

Calculate fitness of all particles, set pbesti to fitnessi, and find particle gbest with 
the best pbest. 

For(iter=1:itermax) do 

If(8) algorithm successfully terminate 

End if 

For each particle i with fitness<DRadius 

Generate an initial simplex randomly with the mean of xi and standard de-
viation of DRadius 

For(NMiter=1:NMitermax) do 

Apply the nonlinear simplex search operator to the simplex 

Replace particle i with the update 

if (8) algorithm successfully terminate 

End if 

End for 

Update pbesti, and gbest of the swarm 

End for 

        Update vi, xi 

Calculate fitness of all particles 

        Update pbest of all particles, and gbest of the swarm 

End for 

of improving the solution quality and convergence rate, utilizing the merits of NM 
method’s accurate exploitation abilities and PSO algorithm’s finer exploration abilities. 

We propose a hybrid NM Method PSO, which isolates a particle and apply the 
nonlinear simplex search to it when it reaches quite close to the extrema (within the 
diversion radius). If the particle “lands” within a specified precision of a goal solution 
(error goal) during the simplex search procedure, a PSO process is considered to be 
successful, otherwise it may be laid back to the swarm and start the next PSO iteration. 

The diversion radius is computed as: 

δ+= ErrorGoalDRadius                                                      (6) 
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In a SM process, an initial simplex is consists of the isolated particle i and other D 
vertices randomly generated with the mean of Xi and standard deviation of DRadius.  

The stopping criterion is defined as: 

                                        
ErrorGoalGMgbestf <−)(

                                        (8) 

Where GM (theoretic global minimum) and Error Goal (search accuracy) for each 
test function is defined in Table 1. In order to get quicker convergence, we set maxi-
mums of iterations in all experiments as a second stopping criterion. In the later case, 
we consider the search process to be failed. 

The pseudo code of the proposed hybrid algorithm is shown in Table 2. 
The benchmark functions on which the proposed algorithm has been tested and com-

pared to other methods in the literature, as well as the equation of each one and the 
corresponding parameters are listed in the appendix [8], [9], [17]. To avoid the influence 
of different initial swarms and make unbiased comparisons, we implement 200 experi-
ments for each test, and demonstrate the statistical results in Section 5. The maximum 
number of PSO iterations is set to be 500 (itermax), swarm size is 30 (PopSize). Parame-
ters used in the NM method are: α =1.0, γ =2.0, +β = −β =0.5, NMitermax=50. We used 

unsymmetrical search space, as shown in Table 1. All algorithms are programmed in 
Matlab 7.0 and the simulations are executed on a Pentium IV 2.8G with memory capac-
ity of 512 MB under Windows2000 Professional Operating System. 

5   Experimental Results 

We have conducted large variety of experiments on over 20 test functions, among 
which most functions are multimodal, abnormal or computational time consuming, and 
can hardly get favorable results by current optimizers. Comparisons to several other 
published methods are also investigated, among which we only select NS-PSO and 
Canonical PSO to list in the paper. NS-PSO is another SM hybrid PSO proposed by 
Parsopoulos and Vrahatis, which can improve the overall performance of PSO algo-
rithm by generating initial swarm with the simplex method [9]. The Canonical PSO 
[16] exhibits quite promising on most optimization problems in the literature, which 
has been used most to accomplish comparison experiments in this research field. 

The rate of success, mean function evaluations, average optima and total CPU time 
for each test are listed in table 3 and table 4, from which we can see that the overall 
performance of HNMPSO algorithm is apparently superior to other 2 algorithms 
taken from the literature in terms of success rate, solution quality and convergence 
speed as well. 

The averages of the objective functions evaluation numbers of HNMPSO for lower 
dimension test functions are all considerably less than those of the pure PSO algo-
rithm (CPSO), indicating that the efficiency of PSO can be improved by the hybrid 
method. 
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Table 3. The rate of success and mean function evaluations for each test function 

Rate of success Mean function evaluations 
 

HNMPSO NS-PSO CPSO 
 

HNMPSO NS-PSO CPSO 

F1 1 0.89 1  1466.1 2749.5 1686.5 

F2 1 0.98 1  2599.3 3823.1 2951.3 

F3 0.995 0.01 0.025  42019 14903 14727 

F4 1 0.995 1  1213.9 1089.8 1389 

F5 0.775 0.73 0.79  7952.4 8831.9 8047.5 

F6 1 0.125 0.055  3889.1 13338 14284 

F7 0.62 0.355 0.56  8348.3 10633 8683.5 

F8 0.525 0.69 0.5  9082.1 6135 8591.7 

F9 0.945 0.84 0.96  5687.1 6012.9 5418.8 

F10 0.85 0.84 0.825  22552 7001.7 7483.6 

F11 1 0.875 0.985  22036 10026 9619.6 

*Note:   
HNMPSO: the proposed algorithm 
NS-PSO: another SM hybrid PSO proposed by Parsopoulos and Vrahatis [9] 
CPSO: the Canonical PSO, Carlisle A [16] 

For function Shubert, which has 760 local minima and 18 global minima, 
HNMPSO possesses absolute predominance over other alternatives. As to high di-
mension function optimizing, the numbers of evaluations and total CPU time are 
larger than the other methods due to its high computational expense, but the ratios of 
success and the solution qualities are absolutely perfect. 

From the results of computational experiments and the analyses above, it can be 
anticipated that the proposed HNMPSO approach remains quite competitive as com-
pared to the other published methods. 

6   Conclusions and Future Work 

In this paper, we thoroughly investigate a new hybrid Particle Swarm Optimization 
algorithm, which applies the nonlinear simplex method at late stage of PSO running 
when the most promising regions of solutions have been located. We implement wide 
variety of experiments on well-known benchmark functions to test the proposed algo-
rithm. The results compared to other competitive methods that this method is great 
potential in solving continuous multimodal functions. 



504 F. Wang, Y. Qiu, and Y. Bai 

Table 4. The average optima and total CPU time for each test function 

Average optima Total CPU time 
 

HNMPSO NS-PSO CPSO 
 

HNMPSO NS-PSO CPSO 

F1 0.39789 0.62566 0.39789  6.1406 10.281 5.75 

F2 -1 -0.98489 -1  9.6563 13.609 10.109 

F3 -186.73 -174.02 -186.731  173.58 68.781 67.7344 

F4 4.567e-7 0.14469 4.789e-7  5.625 5.375 5.5625 

F5 1.0015 1.0022 1.0014  40.438 44.953 40.047 

F6 -3.8634 -3.8486 -3.8634  24.875 69.078 72.516 

F7 -8.0113 -5.6708 -7.642  150.3 191.91 155.06 

F8 -3.265 -3.2772 -3.2598  49.188 32.797 44.922 

F9 9.7901 10.194 9.6313  31.25 33.078 29.281 

F10 9.0971 9.0994 9.0993  104.58 41.766 43.875 

F11 9.1628e-7 4.0497 0.44228  98.36 43.75 41.25 

Future work may focus on investigating the influence of scaling behavior, acceler-
ating the convergence for high dimension problems, extending the approach to con-
strained multi-objective optimization, and developing parallel algorithm of this hybrid 
technique.  
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Appendix: List of Test Functions 

Branin 

10)cos()
8

1
1(10)6

5

4

5
()( 1

2
1

2
122 +−+−+−= xxxxxf

πππ  
Dimensions: 2 
X1: [-5, 10] 
X2: [0, 15] 
3 global minima 
Theoretic optimum: 0.397887 
Error Goal: 10-5 
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Dimensions: 2 
X: [-100, 100] 
1 global minimum 
Several local minima 
Theoretic optimum: -1 
Error Goal: 10-6 

Shubert 
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Dimensions: 2 
X: [-10, 10] 
18 global minima 
760 local minima 
Theoretic optimum: -186.7309 
Error Goal: 10-6 

Zakharov 
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Dimensions: 2, 10 
X: [-5, 10] 
1 global minimum 
Several local minima 
Theoretic optimum: 0 
Error Goal: 10-5 

Griewank 
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Dimensions: 2, 10 
X: [-300, 600] 
1 global minimum 
Several local minima 
Theoretic optimum: n-1 
Error Goal: 10-7, 10-1(for 10 dimension) 

Rastrigin 
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Dimensions: 10 
X: [-5.12, 5.12] 
1 global minimum 
More than 50 local minima for 2 dimension 
Theoretic optimum: 0 
Error Goal: 10 

Hartmann (H3,4)  
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Dimensions: 3 
X: [0, 1] 
1 global minimum 
4 local minima (pi) 
Theoretic optimum: -3.86343 
Error Goal: 10-6 

i aij ci pij 
1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673 
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470 
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547 
4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8827 

Hartmann (H6,4)  
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Dimensions: 6 
X: [0, 1] 
1 global minimum 
4 local minima (pi) 
Theoretic optimum: -3.32237 
Error Goal: 10-4 

j aij pij 
1 10.0 0.05 3.00 17.0 0.1312 0.2329 0.2384 0.4047 
2 3.0 10.0 3.50 8.00 0.1696 0.4135 0.1451 0.8828 
3 71.0 17.0 1.70 0.05 0.5569 0.8307 0.3522 0.8732 
4 3.50 0.10 10.0 10.0 0.0124 0.3736 0.2883 0.5743 
5 1.70 8.00 17.0 0.10 0.8283 0.1004 0.3047 0.1091 
6 8.00 14.0 8.00 14.0 0.5886 0.9991 0.6650 0.0381 
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Shekel (S4,n) 
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Dimensions: 4 
X: [0, 10] 
1 global minimum 
n local minima 
Theoretic optimum: -10.53641 (for n=10) 
Error Goal: 10-4 

i T
ia  ci 

1 4.0 4.0 4.0 4.0 0.1 
2 1.0 1.0 1.0 1.0 0.2 
3 8.0 8.0 8.0 8.0 0.2 
4 6.0 6.0 6.0 6.0 0.4 
5 3.0 7.0 3.0 7.0 0.4 
6 2.0 9.0 2.0 9.0 0.6 
7 5.0 5.0 3.0 3.0 0.3 
8 8.0 1.0 8.0 1.0 0.7 
9 6.0 2.0 6.0 2.0 0.5 
10 7.0 3.6 7.0 3.6 0.5 
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Abstract. Pattern discovery is a facet of data mining concerned with
the detection of ”small local” structures in large data sets. In high di-
mensions this is typically difficult because of the computational work
involved in searching over the data space. In this paper we outline a
tool called PEAKER which can detect patterns efficiently in high di-
mensions. We approach the subject through the two aspects of pattern
discovery, detection and verification. We demonstrate various ways of
using PEAKER as well as its various inherent properties, emphasizing
the exploratory nature of the tool.

1 Introduction

We define patterns in data as local structures which deviate in some way from
the expected structure (see [1] and [2]). The search for patterns in large data sets
constitutes a major component of data mining, with the need for such searches
arising in a wide variety of settings including banking (e.g. fraud detection),
astronomy (e.g. detection of anomalous radio signals), customer relationship
management (e.g. market basket analysis) and pharmaceuticals (e.g. adverse-
event detection) and the Internet (e.g. text-mining).

In this paper we focus on the area of unsupervised pattern discovery, in which
the structure being sought is not specified a priori. Typically one is faced with a
high-dimensional data set and one of the major problems is how to search over
such a data space for patterns. We describe a pattern-search tool called PEAKER
which is efficient in searching over high-dimensional space. We illustrate the use
of PEAKER for both aspects of pattern discovery: the problem of detecting
potential patterns in the first place and the problem of verifying the reality of
these detected patterns.

The layout of the paper is as follows. Section 2 introduces the PEAKER
algorithm. Section 3 discusses various ways of detecting and verifying significant
peaks. Finally, some illustrative examples, both simulated and real, are given,
demonstrating some of the properties of PEAKER.
� The work of the first author was supported by an EPSRC CASE award in conjunction

with GlaxoSmithKline. We are particularly grateful for the support given by Dr
Steven Barrett.
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2 The PEAKER Algorithm

The basic PEAKER algorithm is defined as follow: Given a data set of n points,
(xi, i = 1, . . . , n) of some dimension d, we calculate the probability density esti-
mates f̂(xi) for all xi. For each point xi, we say that it is a peak with M(xi) = m

iff f̂(xi) > f̂(xj), ∀xj ∈ Nm(xi) but f̂(xi) ≤ f̂(x(m+1)), where Nm(xi) is the set
of the m nearest neighbours to xi (defined by some distance function d(xi, xj))
and x(k) is the (k)th nearest neighbour to xi.

PEAKER essentially estimates the pdf at each data point and performs near-
est neighbour search on all data points, identifying those points which have a
higher pdf estimate than their surrounding points (we will call these local peaks).
Clearly peaks arise as a result of a local region of anomalously high concentra-
tion of data points. A local mode of the underlying true density will thus tend
to lead to a peak. We can thus regard peaks as approximations to local modes in
the underlying true density. We say approximations since peaks (a) derive from
density estimates rather than the true underlying density, and (b) are restricted
to the locations of actual data points, which are unlikely to be in exactly the
same position as the local pdf modes. Note that peaks can also arise, by random
variation, even when there is no underlying local pdf mode. The essence of ver-
ification, discussed below, is determining when peaks do reflect real underlying
modes, and when they are merely chance occurrences. This random occurrence
of peaks which do not reflect underlying modes can occur (a) because of a chance
grouping of data points, or (b) because of an interaction between the estimated
pdfs and the locations of the data points. We illustrate this last situation below.

One attractive property of PEAKER is its computational efficiency in high-
dimensional spaces which follows from restricting the search to the actual data
points only. This avoids the potentially huge search required (in, for example
scan statistics) when moving a window over a high-dimensional space.

The algorithm is not uniquely defined above. Two of the most important
aspects to be fixed are the choice of distance metric and the method of esti-
mating the probability density. As far as choice of metric is concerned, this is
crucial in determining how points are configured in the data space: the metric
determines the commensurability of the different dimensions. As far as the den-
sity estimation method is concerned, this determines what can be detected as a
peak: over-smoothing will smooth away the localised small peaks while under-
smoothing will give many peaks. The traditional bump-hunting literature uses
some form of optimal density estimation. In kernel estimation, for instance, one
would typically use an optimal bandwidth obtained through the minimization
of some criterion function (see [3]). In our context, however, one must be careful
to strike a balance between the theoretical nicety of optimal estimates and the
practical aspect of being able to detect small localized peaks.

3 Significant Peaks

This section describes the criteria by which we can detect peaks and the methods
with which we can verify the significance of a peak once detected (that is, to
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determine whether a detected peak represents a true anomaly of the underlying
mechanism or whether it is a chance occurrence). Similarly we should consider
whether we are more interested in detecting sharp peaks or peaks that occupy
a large proportion of the density space (which we will refer to simply as large
peaks). It can be argued that large peaks represent the more obvious structures
within a data set, which would be picked up by standard modeling strategies,
and that we are mainly concerned with only the small sharp peaks.

All the above considerations (as well as the choices of distance metrics and
density estimation) lead to different variants of the PEAKER algorithm. As
such, there is no single best algorithm which can answer all the questions posed.
PEAKER is an exploratory tool, and any of its different variants might be useful
in detecting interesting and useful local structures.

Before we move on, we must make an important distinction. Any data point
can be one of the following

1. A mode (a maximum) - one which is a maximum in the density surface. To
decide whether a point is a mode one needs to evaluate the entire density
surface around the point.

2. A maximum peak - a data point with higher pdf estimate than its near-
est neighbours and which is also an approximation to a maximum. This is
of course the essence of PEAKER, since we only make use of density esti-
mates at the data points and not the entire surface and so can only look for
approximations.

3. A non-maximum peak - This is simply a point which has a larger pdf estimate
than some neighbourhood of data points. Such a point does not need to
approximate a maximum and arises due to a chance configuration of the
neighbouring points (in one dimension, for instance, the nearest points with
lower pdf estimates lying to one side of the peak).

4. A non-peak - A data point which has lower pdf estimate than its nearest
neighbour.

Intuitively one would like to detect maxima or approximations to maxima.
This is rather difficult since it involves evaluation of the density surface. We will
describe a method in the next section by which we can achieve this probabilis-
tically.

3.1 Setting M

The parameter m, defined above, determines the area of the peaks, in the sense
that it gives us the number of neighbouring points which have smaller estimated
pdf than that at the point in question. Based on this, an intuitively attractive
criterion for detecting peaks is to set a minimum neighbourhood size M , re-
quiring that all points flagged as potential peaks should have m ≥ M . In the
extreme case, of course, we can choose to look at all peaks, which is equivalent
to setting M = 1. Alternatively we can set M beforehand at a sensible size, say
M = 50 or some proportion of the data size. This is clearly rather arbitrary and
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subject to personal taste - but, once again, this is legitimate in an exploratory
tool. Choosing M small means that there is a greater chance of detecting minor
fluctuations in the estimated pdf as apparent peaks, while choosing M large
means that only the largest fluctuations will be detected. In the limit, setting
M equal to n− 1, using the entire data set, will mean that a single peak will be
detected - that corresponding to the point which has the highest pdf estimate.

An extension to this idea, and one which sits with the idea of an exploratory
tool, is to let M range between 1 and n−1. As M decreases in size, so more peaks
will be detected. Figures 1 to 3 shows the increase in the number peaks as M
decreases. Here the underlying distribution is a mixture of a uniform distribution
on the square (−2, 2),(−2, 2) and three bivariate normal distributions with means
located at the three peaks indicated in Fig. 1. We can see the increase in the
number of peaks from the three true peaks in Fig. 1 to the spurious peaks as M
decreases.

Fig. 1. Peaks Detected With M = 500 Fig. 2. Peaks Detected With M = 50

Fig. 3. Peaks Detected With M = 10

Note that anomalies arising from the interaction between data point config-
urations and estimated pdfs can occur, though we believe they will be unimpor-
tant. Alternatively, to introduce some objectivity, we can venture the following
method. It seems sensible to decide that we only want to detect modes, and so
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would like to exclude peaks which do not constitute a local maximum. A peak
is not a mode when a specific configuration of the nearest points arises. It is
easy to see this in one dimension. Let a set of points (x1, . . . , xn) be generated
from some underlying probability density f . For any three consecutive points
xi−1, xi, xi+1, with estimated pdf f̂(xi−1) > f̂(xi) > f̂(xi+1), then xi is a peak
with M(xi) > 0 iff d(xi−1, xi) > d(xi, xi+1). In this instance, we have xi being a
peak but not a mode. We can extend this further, so that for a set of consecutive
points xi−1, xi, . . . , xi+m with f̂(xi−1) > f̂(xi) > . . . > f̂(xi+m), xi is a peak
(but not a mode) with M(xi) ≥ m. This particular configuration of points (in
one dimension) is the only way for which a point can be a peak but not a mode.
Thus we can make a binomial argument and say that the probability of a point
being a peak with M(xi) = m but not a mode is simply Rm = Rm(1−R), where
R is the probability of a point being generated closer to xi on the right than on
the left. We can show that this probability converges to 1

2 for the one dimen-
sional case. For the higher dimensions R converges to values below one half, but
here we must keep in mind that there are points which cannot be peaks (the two
end points in the one-dimensional case, for instance) and such points distort the
convergent value of Rm. Clearly this gives us a way of setting a reasonable value
for a minimum M so as to exclude non-modal peaks.

3.2 Sharpness of a Peak

Detecting peaks, as potential modes of the underlying pdf, is one thing, but we
need to be reasonably confident that they are genuine, and not merely due to
random fluctuation. We can explore this using ideas of significance tests, and of
the probability mass of a peak. We now describe some methods of verifying the
significance of detected peaks.

A simple approach is to calculate the ratio of the pdf estimate at a peak to
the average of the pdf estimates at the points in a surrounding neighbourhood.
This will be a measure of sharpness of the peak (which we will call Tsharp). The
general form is given by

Tsharp =
Nsf̂(x)∑Ns

i=1 f̂(xi)
(1)

where Ns is the number of nearest neighbours from which we take the average .
For simplicity we can set Ns = m

2 . Of course this is again rather arbitrary and
moreover prone to distortion by specific arrangements of peaks. For instance, the
sharpness of one peak can be very much affected by the shape of the neighbouring
peaks (if a small sharp peak is close to a large flat peak, it is likely to have a
smaller value of Tsharp).

There are more sophisticated methods of measuring the sharpness of peaks.
[4] describes two such tests (which they refer to as tests for leptokurtosis). The
idea is to assume a null hypothesis in which the points are locally uniformly
distributed in a d-dimensional hypersphere of radius R. Denoting the distance
of each point to the centre as X , then the transformed variate Y = (X

R )d is
distributed as U(0, 1). The two tests are based on this transformed variate Y .
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The first test uses the test statistic

Tlepto1 =
1
n

n∑
i=1

Φ−1(Yi) (2)

where Φ−1 is the inverse of the cumulative normal distribution. Tlepto1 is dis-
tributed as a N(0, 1

n ) distribution. This test is based on the fact that a local
dense region will have an abundance of short distances and a large negative
value of Tlepto1.

The second test uses the rth order statistic Y(r) = (X(r)

R )d and Y(r) follows a
Beta(r, n− r + 1). Here Y(r) will be smaller if there is a region of high density.

3.3 Probability Mass Contained in Peaks

An alternative to testing for the sharpness of a peak, is to derive a measure of
the probability mass contained in a peak. This section follows the approaches
contained in [5] and [6], which are used to test for modes in the one-dimensional
case. Both assume the use of gaussian kernel estimates. The gaussian kernel has
the property that the number of modes found in the data is non-decreasing with
decreasing bandwidth h, which facilitate the testing procedures. In [5], to test
the null hypothesis that the underlying density g has k modes, the test proposed
uses the test statistic

hcrit = inf(h; f̂(x, h) has at most k-modes). (3)

Here hcrit is the smallest value at which the data remains k-modal. With the
property of the gaussian kernel, one can perform a binary search to calculate
hcrit. To obtain the significance level P (hcrit > h0), [5] proposes sampling for
from g if g is known or sampling from a bootstrap density g0 obtained from the
data if g is unknown.

[6] extends the above to investigate each mode in turn. For a single mode vi,
he defined htest,i as the smallest h at which the mode remains a single mode,
and proposed the test statistic

Mi =
∫ ui+1

ui−1

[f̂(x) −max(f̂(ui−1), f̂(ui+1))]dx (4)

where ui−1 and ui+1 are the two anti-modes either side of mode vi. In effect Mi

is the area of probability mass above the higher of the two surrounding anti-
modes. To obtain a p-value for Mi, the approach of [5] is followed and points are
sampled from a representative density of the region with no modes (possibly a
uniform density).

Higher-dimensional extensions to the above ideas are difficult to implement
since it is computationally expensive to either (a) look for anti-modes in high-
dimensional space and (b) obtain accurate significance levels by re-sampling.

For our case, we will simply calculate the ratio between an estimate of the
density in the local region, and the density that this region would have if the
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local region was part of a larger region in which the density was uniform. Such
a measure would have the generic form

Tdensity =

∑
Ns

f̂(xi)/Ns∑
M f̂(xj)/M

(5)

where
∑

Ns
f̂(xi)/Ns is an estimate of the density contained in the local

region, defined as the region containing the nearest Ns points, and
∑

M f̂(xj)/M
is an estimate of the density over the larger region, containing the nearest M
points. There is, of course, some arbitrariness about the choices of M and Ns.

3.4 Size of the Local Neighbourhood

Much of the discussion in the previous sections are based on rather arbitrary
selections of the neighbourhood size that we use to calculate various measures.
This includes the neighbourhood size Ns used in Tsharp and Tdensity and the size
of the uniform hyper-sphere used in the two tests by [4]. The problem in all these
cases is that these measures work well when the null model of global uniformity
holds. When this is not the case, there are various ways for these measures to
be distorted. For instance, if we have two identical peaks, one against a uniform
background of higher pdf estimates than the other, then the measure Tsharp

would return very different values for the two peaks, similarly for the two tests
contained in [4]. In [6], such problems are resolved by only testing for uniformity
of a mode in the local region bounded by the two nearest anti-modes. In our
case, the neighbourhood M extends all the way to the next peak.

In the case of PEAKER we cannot evaluate the anti-modes since we only
work with the data points themselves. The most intuitive analogy to the anti-
mode is the anti-peak (ie, a point which has a lower pdf estimate than its nearest
points). We can make use of this in deciding on the neighbourhood sizes. Clearly
there are also problems associated with this, since anti-peaks may be false and
so make the neighbourhood sizes again rather arbitrary.

Having said this, we must not forget the exploratory nature of PEAKER
and as such it is important to experiment with differing neighbourhood sizes
to look for otherwise undetected peaks. Therefore we are quite happy in using
rather arbitrary parameters in the PEAKER algorithm knowing that one needs
to explore these parameters to obtain peaks of different properties.

4 Examples

Our first example demonstrates the use of PEAKER as a high-dimensional ex-
ploratory tool. The data set consists of 5000 data points in 10-dimensional space
drawn from a mixture of background uniform and three normal distributions.
The normals have covariance matrices 0.025I, 0.025I, 0.1I with mixing proba-
bilities 0.0025, 0.0025, 0.02. The background uniform is drawn in the hyper-box
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Fig. 4. First Two Principal Components of 10-dimensional Data With Three Modes

(−2, 2), . . . , (−2, 2). For visualization we have reduced the data set down to two
dimensions by plotting the points on the first two principal components.

The three normal means are at (0, 0), (2.32, 0.81), (−2.32,−0.81) in Fig.4.
The peak at (0.0) is detectable visually (but this is distorted by the fact that we
are plotting the first two principal components, which pushes the points towards
the center. It is not nearly as clear if we simply plot any two random dimensions)
, but the other two peaks are not at all clear by visualization (since the mixing
probabilities are so low). It is interesting to note that here many peaks are thrown
up for M = 200 say, but the three normals are clearly detected when one uses
the measure Tsharp (in that they give much higher values of Tsharp than other
peaks). Of course PEAKER is well designed for detecting such peaks otherwise
undetectable by eye (since at high dimensions points are sparse and a small but
dense region would be easily detected by PEAKER).

The second example shows the properties of PEAKER when applied to sim-
ulated data sets with changing parameters. Here, again, we simulated data sets
of mixtures of background noise and normal distributions. The parameters we
change are 1) dimensionality, 2) sample size, 3) covariance matrices of the nor-
mals, 4) mixing probabilities of the normals and 5) separation of the normal
means. To illustrate the use of PEAKER, we plot a histogram of how close the
detected peaks are to the true normal means.

Figure 5 shows the histogram with the distance of a detected peak to a true
peak on the horizontal axis. We can see that the majority of the peaks detected
are close to the true normal means. We must keep in mind that some devia-
tion are unavoidable since we are only looking at points approximating the true
means. This demonstrates that PEAKER is rather robust in detecting different
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Fig. 5. Histogram of Distances Between Peaks and Normal Means

types of peaks (in our example here normal means of different dimensionality,
size, sharpness and separation within a uniform background). The peaks arising
at around 0.7 and 1.0 represent those which are merged from two normal dis-
tributions and are consequently only detected as one peak. This is a common
problem in bump-hunting whereby it can be difficult to separate modes close to
one another.

Lastly we take an example from the pharmaceutical industry. The data set we
have comprises of 931 drugs. We have a distance matrix derived from using the
Jaccard coefficient on the chemical properties of the drugs (fingerprints of the
presence of molecules). We ran PEAKER to find dense regions of drugs which
may have similar properties. Figure 6 shows the configuration of the drugs in
2-dimensional space obtained via Principal Components Analysis.

We have indicated various peaks in Fig.6 which represent some interesting
patterns. All these peaks contain drugs almost exclusively of individual types.
With a smooth bandwidth and M = 20, we discover mostly peaks of the more
common drugs (including anti-inflammatory, antineoplastic, anti-bacterial, anti-
convulsant, anesthetic, anti-depressant and analgesic drugs) as shown in Fig. 6.
It is surprising that we have managed to find patterns of such purity (in terms
of homogeneous drugs).

Figure 7 shows the peaks found using a smaller bandwidth and M = 5. Some
of the peaks found with M = 5 are not immediately obvious in similarity and it
is only with further investigation that they are revealed as interestingly similar
drugs. Certain drug peaks found have very low incidence rate in the data set
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Fig. 6. First Two Principal Components Drugs Data Set Showing Peaks of the Com-
mon Drugs

(sometimes only 3 or 4 drugs). Overall there are not very many false peaks and
most of the peaks found consist of interestingly similar groups of drugs, but
this may be due to the closeness of chemical similarity to general behaviour of
a drug. The general trend seems to be that sharper peaks tend to show more
homogeneous drug clusters. Indeed it does seem that PEAKER can be applied
to search for the rarer drugs that constitute interesting patterns or associations.

5 Conclusion

In this paper we have focused our attention on a pattern discovery algorithm
called PEAKER. We have explored some of the properties of PEAKER and
demonstrated its value as an exploratory tool, particularly for high dimensional
data due to its computational efficiency and ability to detect peaks otherwise
difficult to identify. As discussed, high-dimensional data is typically difficult to
explore efficiently and PEAKER achieves this by restricting attention only to the
data points so that we no longer have to explore the entire space. On the other
hand, what we gain in terms of efficiency and simplicity we lose out somewhat
when it comes to an accurate evaluation of the data space. As such, we can only
approximate the true modes in the data. However, we believe that given the
exploratory nature of PEAKER such approximations are justified.

Moreover, we have discussed various ways of using PEAKER (in terms of
both detection and evaluation of peaks), depending on personal judgement of
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Fig. 7. First Two Principal Components Drugs Data Set Showing All Peaks

the types of peaks that one prefers to detect. Of course, the true essence of
PEAKER relies on the user to experiment with the various parameters inherent
in the tool (density estimation, distance metric, M , neighbourhood size, etc) so
as to detect peaks with different properties.

Work on PEAKER is still ongoing and we hope to explore deeper the various
properties offered by the algorithm.
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Allende, Héctor 272
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González-Pachón, Jacinto 66

Govaert, Gérard 249, 373
Gunetti, Daniele 133
Gyftodimos, Elias 145

Hand, David J. 509
Herrero, P. 339
Hoen, Peter A.C. ’t 475
Horman, Yoav 157
Hüllermeier, Eyke 168, 180

IJzerman, Ad P. 385

Kaminka, Gal A. 157
Kegelmeyer, W. Philip 192
Klawonn, Frank 316
Koegler, Wendy S. 192
Kok, Joost N. 385
Kokol, Peter 305
Kruse, Rudolf 316

Lago-Fernández, Luis F. 486
Lamma, Evelina 109
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Pérez, M.S. 339
Picardi, Claudia 133
Pintilie, A. Simona 97
Povalej, Petra 305
Prati, Ronaldo C. 24
Pyysalo, Sampo 464

Qiu, Yuhui 497

Raivio, Kimmo 204
Ranilla, J. 239
Raoult, Jean Pierre 409
Rehm, Frank 316
Rhee, Phill Kyu 260
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