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Preface

The promise of the Semantic Web is to move from a Web of data to a Web
of meaning and distributed services. This vision of the Web has attracted re-
searchers from different horizons with the aims of defining new architectures and
languages necessary to make it possible, and of developing the first applications
of these concepts.

This book contains the articles selected for publication and presentation at
the workshop “Principles and Practice of Semantic Web Reasoning” PPSWR
2005, together with three invited talks. Three major aspects of Semantic Web
research are represented in this selection: architecture issues, language issues,
and reasoning methods. These advances are investigated in the context of new
design principles and challenging applications.

The PPSWR 2005 workshop was part of the Dagstuhl seminar on the Seman-
tic Web organized by F. Bry (Univ. München, Germany), F. Fages (INRIA Roc-
quencourt, France), M. Marchiori (MIT, Cambridge, USA) and H.-J. Ohlbach
(Univ. München, Germany), held in Dagstuhl, Germany, 11–16 September 2005.
It was supported by the European Network of Excellence REWERSE (Reason-
ing on the Web with Rules and Semantics, http://rewerse.net). This four-year
project includes 27 European research and development organizations, and is
intended to bolster Europe’s expertise in Web reasoning systems and applica-
tions. It consists of eight main working groups:“Rule Markup Language”,“Policy
Language, Enforcement, Composition”, “Composition and Typing”, “Reasoning-
Aware Querying”, “Evolution”, “Time and Location”, “Adding Semantics to the
Bioinformatics Web”, and “Personalized Information Systems”. The papers in
this volume reflect most of the topics investigated in REWERSE; one third of
them come from outside REWERSE.

July 2005 François Fages and Sylvain Soliman
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SomeWhere in the Semantic Web

P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and L. Simon

PCRI: Université Paris-Sud XI & CNRS (LRI), INRIA (UR Futurs),
Bâtiment 490, Université Paris-Sud XI,

91405 Orsay cedex, France
{adjiman, chatalic, fg, mcr, simon}@lri.fr

Abstract. In this paper, we describe the SomeWhere semantic peer-
to-peer data management system that promotes a “small is beautiful”
vision of the Semantic Web based on simple personalized ontologies (e.g.,
taxonomies of classes) but which are distributed at a large scale. In this
vision of the Semantic Web, no user imposes to others his own ontology.
Logical mappings between ontologies make possible the creation of a web
of people in which personalized semantic marking up of data cohabits
nicely with a collaborative exchange of data. In this view, the Web is a
huge peer-to-peer data management system based on simple distributed
ontologies and mappings.

1 Introduction

The Semantic Web [1] envisions a world wide distributed architecture where
data and computational resources will easily inter-operate based on semantic
marking up of web resources using ontologies. Ontologies are a formalization of
the semantics of application domains (e.g., tourism, biology, medecine) through
the definition of classes and relations modeling the domain objects and properties
that are considered as meaningful for the application. Most of the concepts, tools
and techniques deployed so far by the Semantic Web community correspond
to the “big is beautiful” idea that high expressivity is needed for describing
domain ontologies. As a result, when they are applied, the current Semantic
Web technologies are mostly used for building thematic portals but do not scale
up to the web. In contrast, SomeWhere promotes a “small is beautiful” vision of
the Semantic Web [2] based on simple personalized ontologies (e.g., taxonomies
of atomic classes) but which are distributed at a large scale. In this vision of
the Semantic Web introduced in [3], no user imposes to others his own ontology
but logical mappings between ontologies make possible the creation of a web of
people in which personalized semantic marking up of data cohabits nicely with
a collaborative exchange of data. In this view, the web is a huge peer-to-peer
data management system based on simple distributed ontologies and mappings.

Peer-to-peer data management systems have been proposed recently [4,5,6,7]
to generalize the centralized approach of information integration systems based
on single mediators. In a peer-to-peer data management system, there is no
central mediator: each peer has its own ontology and data or services, and can

F. Fages and S. Soliman (Eds.): PPSWR 2005, LNCS 3703, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 P. Adjiman et al.

mediate with some other peers to ask and answer queries. The existing systems
vary according to (a) the expressive power of their underlying data model and
(b) the way the different peers are semantically connected. Both characteristics
have impact on the allowed queries and their distributed processing.

In Edutella [8], each peer stores locally data (educational resources) that are
described in RDF relatively to some reference ontologies (e.g., http://dmoz.org).
For instance, a peer can declare that it has data related to the concept of the
dmoz taxonomy corresponding to the path Computers/Programming/
Languages/Java, and that for such data it can export the author and the date
properties. The overlay network underlying Edutella is a hypercube of super-
peers to which peers are directly connected. Each super-peer is a mediator over
the data of the peers connected to it. When it is queried, its first task is to check
if the query matches with its schema: if that is the case, it transmits the query to
the peers connected to it, which are likely to store the data answering the query;
otherwise, it routes the query to some of its neighbour super-peers according
to a strategy exploiting the hypercube topology for guaranteeing a worst-case
logarithmic time for reaching the relevant super-peer.

In contrast with Edutella, Piazza [4,9] does not consider that the data dis-
tributed over the different peers must be described relatively to some existing
reference schemas. Each peer has its own data and schema and can mediate with
some other peers by declaring mappings between its schema and the schemas
of those peers. The topology of the network is not fixed (as in Edutella) but
accounts for the existence of mappings between peers: two peers are logically
connected if there exists a mapping between their two schemas. The underlying
data model of the first version of Piazza [4] is relational and the mappings be-
tween relational peer schemas are inclusion or equivalence statements between
conjunctive queries. Such a mapping formalism encompasses the Local-as-View
and the Global-as-View [10] formalisms used in information integration systems
based on single mediators. The price to pay is that query answering is undecid-
able except if some restrictions are imposed on the mappings or on the topology
of the network [4]. The currently implemented version of Piazza [9] relies on a
tree-based data model: the data is in XML and the mappings are equivalence
and inclusion statements between XML queries. Query answering is implemented
based on practical (but not complete) algorithms for XML query containment
and rewriting. The scalability of Piazza so far does not go up to more than
about 80 peers in the published experiments and relies on a wide range of op-
timizations (mappings composition [11], paths pruning [12]), made possible by
the centralized storage of all the schemas and mappings in a global server.

In SomeWhere, we have made the choice of being fully distributed: there
are neither super-peers nor a central server having the global view of the overlay
network. In addition, we aim at scaling up to thousands of peers. To make it pos-
sible, we have chosen a simple class-based data model in which the data is a set of
resource identifiers (e.g., URIs), the schemas are (simple) definitions of classes
possibly constrained by inclusion, disjunction or equivalence statements, and
mappings are inclusion, disjunction or equivalence statements between classes
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of different peer schemas. That data model is in accordance with the W3C rec-
ommendations since it is captured by the propositional fragment of the OWL
ontology language (http://www.w3.org/TR/owl-semantics).

The paper is organized as follows. Section 2 defines the SomeWhere data
model. In Section 3, we show how the corresponding query rewriting problem
can be reduced by a propositional encoding to distributed reasoning in proposi-
tional logic. In Section 4, we describe the properties of the message based dis-
tributed reasoning algorithm that is implemented in SomeWhere, and we report
experiments on networks of 1000 peers. Section 5 surveys some recent related
work on peer-to-peer data management systems. We conclude and present our
forthcoming work in Section 6.

2 SomeWhere Data Model

In SomeWhere a new peer joins the network through some peers that it knows
(its acquaintances) by declaring mappings between its own ontology and the
ontologies of its acquaintances. Queries are posed to a given peer using its local
ontology. The answers that are expected are not only instances of local classes
but possibly instances of classes of peers distant from the queried peer if it can
be infered from the peer ontologies and the mappings that those instances are
answers of the query. Local ontologies, storage descriptions and mappings are
defined using a fragment of OWL DL which is the description logic fragment
of the Ontology Web Language recommended by W3C. We call OWL PL the
fragment of OWL DL that we consider in SomeWhere, where PL stands for
propositional logic. OWL PL is the fragment of OWL DL reduced to the dis-
junction, conjunction and negation constructors for building class descriptions.

2.1 Peer Ontologies

Each peer ontology is made of a set of class definitions and possibly a set of
equivalence, inclusion or disjointness axioms between class descriptions. A class
description is either the universal class (�), the empty class (⊥), an atomic class
or the union (�), intersection (�) or complement (¬) of class descriptions.

The name of atomic classes are unique to each peer: we use the notation P :A
for identifying an atomic class A of the ontology of a peer P . The vocabulary of
a peer P is the set of names of its atomic classes.

Class descriptions
Logical notation OWL notation

universal class � Thing
empty class ⊥ Nothing
atomic class P :A classID
conjunction D1 � D2 intersectionOf(D1 D2)
disjunction D1 � D2 unionOf(D1 D2)
negation ¬D complementOf(D)
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Axioms of class definitions
Logical notation OWL notation

Complete P :A ≡ D Class(P :A complete D)
Partial P :A � D Class(P :A partial D)

Axioms on class descriptions
Logical notation OWL notation

equivalence D1 ≡ D2 EquivalentClasses(D1 D2)
inclusion D1 � D2 SubClassOf(D1 D2)
disjointness D1 � D2 ≡ ⊥ DisjointClasses(D1 D2)

2.2 Peer Storage Descriptions

The specification of the data that is stored locally in a peer P is done through the
declaration of atomic extensional classes defined in terms of atomic classes of the
peer ontology, and assertional statements relating data identifiers (e.g., URIs) to
those extensional classes. We restrict the axioms defining the extensional classes
to be inclusion statements between an atomic extensional class and a description
combining atomic classes of the ontology. We impose that restriction in order to
fit with a Local-as-View approach and an open-world assumption within the in-
formation integration setting [10]. We will use the notation P :V iewA to denote
an extensional class V iewA of the peer P .

Storage description
declaration of extensional classes:
Logical notation OWL notation
P :V iewA � C SubClassOf(P :V iewA C)

assertional statements:
Logical notation OWL notation

P :V iewA(a) individual(a type(P :V iewA))

2.3 Mappings

Mappings are disjointness, equivalence or inclusion statements involving atomic
classes of different peers. They express the semantic correspondence that may
exist between the ontologies of different peers.

The acquaintance graph accounts for the connection induced by the mappings
between the different peers within a given SomeWhere peer-to-peer network.

Definition 1 (Acquaintance graph). Let P = {Pi}i∈[1..n] a collection of
peers with their respective vocabularies V ocPi . Let V oc =

⋃n
i=1 V ocPi be the

vocabulary of P. Its acquaintance graph is a graph Γ = (P ,acq) where P is the
set of vertices and acq ⊆ V oc × P × P is a set of labelled edges such that for
every (c, Pi, Pj) ∈ acq, i �= j and c ∈ V ocPi ∩ V ocPj .

A labelled edge (c, Pi, Pj) expresses that peers Pi and Pj know each other to
be sharing the class c. This means that c belongs to the intentional classes of Pi

(or Pj) and is involved in a mapping with intentional classes of Pj (or Pi).
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2.4 Schema of a SomeWhere Network

In a SomeWhere network, the schema is not centralized but distributed through
the union of the different peer ontologies and the mappings. The important point
is that each peer has a partial knowledge of the schema: it just knows its own
local ontology and the mappings with its acquaintances.

Let P be a SomeWhere peer-to-peer network made of a collection of peers
{Pi}i∈[1..n]. For each peer Pi, let Oi, Vi and Mi be the sets of axioms defining
respectively the local ontology of Pi, the declaration of its extensional classes and
the set of mappings stated at Pi between classes of Oi and classes of the ontologies
of the acquaintances of Pi. The schema S of P is the union

⋃
i∈[1..n] Oi∪Vi∪Mi of

the ontologies, the declaration on extensional classes and of the sets of mappings
of all the peers of P .

2.5 Semantics

The semantics is a standard logical formal semantics defined in terms of inter-
pretations. An interpretation I is a pair (ΔI , .I) where Δ is a non-empty set,
called the domain of interpretation, and .I is an interpretation function which
assigns a subset of ΔI to every class identifier and an element of ΔI to every
data identifier.

An interpretation I is a model of the distributed schema of a SomeWhere
peer-to-peer network P = {Pi}i∈[1..n] iff each axiom in

⋃
i∈[1..n] Oi ∪ Vi ∪ Mi is

satisfied by I.
Interpretations of axioms rely on interpretations of class descriptions which

are inductively defined as follows:

• �I = ΔI , ⊥I = ∅
• (¬C)I = ΔI\CI

• (C1 � C2)I = CI
1 ∪ CI

2 , (C1 � C2)I = CI
1 ∩ CI

2

Axioms are satisfied if the following holds:

• C � D is satisfied in I iff CI ⊆ DI

• C ≡ D is satisfied in I iff CI = DI

• C � D ≡ ⊥ is satisfied in I iff CI ∩ DI = ∅
A SomeWhere peer-to-peer network is satisfiable iff its schema has a model.
Given a SomeWhere peer-to-peer network P = {Pi}i∈[1..n], a class description

C subsumes a class description D iff in each model I of the schema of P , DI ⊆ CI .

2.6 Illustrative Example

We illustrate the SomeWhere data model on a small example of four peers mod-
eling four persons Ann, Bob, Chris and Dora, each of them bookmarking URLs
about restaurants they know or like, according to their own taxonomy for cate-
gorizing restaurants.

Ann, who is working as a restaurant critics, organizes its restaurant URLs
according to the following classes:
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• the class Ann:G of restaurants considered as offering a “good” cooking,
among which she distinguishes the subclass Ann:R of those which are rated:
Ann:R � Ann:G

• the class Ann:R is the union of three disjoint classes Ann:S1, Ann:S2,
Ann:S3 corresponding respectively to the restaurants rated with 1, 2 or 3 stars:

Ann:R ≡ Ann:S1 � Ann:S2 � Ann:S3
Ann:S1 � Ann:S2 ≡ ⊥ Ann:S1 � Ann:S3 ≡ ⊥
Ann:S2 � Ann:S3 ≡ ⊥
• the classes Ann:I and Ann:O, respectively corresponding to Indian and

Oriental restaurants
• the classes Ann:C, Ann:T and Ann:V which are subclasses of Ann:O de-

noting Chinese, Täı and Vietnamese restaurants respectively: Ann:C � Ann:O,
Ann:T � Ann:O, Ann:V � Ann:O
Suppose that the data stored by Ann that she accepts to make available deals
with restaurants of various specialties, and only with those rated with 2 stars
among the rated restaurants. The extensional classes declared by Ann are then:
Ann:V iewS2 � Ann:S2, Ann:V iewC � Ann:C,
Ann:V iewV � Ann:V , Ann:V iewT � Ann:T ,
Ann:V iewI � Ann:I

Bob, who is found of Asian cooking and likes high quality, organizes his
restaurant URLs according to the following classes:

• the class Bob:A of Asian restaurants
• the class Bob:Q of high quality restaurants that he knows

Suppose that he wants to make available every data that he has stored. The ex-
tensional classes that he declares are Bob:V iewA and Bob:V iewQ (as subclasses
of Bob:A and Bob:Q): Bob:V iewA � Bob:A, Bob:V iewQ � Bob:Q

Chris is more found of fish restaurants but recently discovered some places
serving a very nice cantonese cuisine. He organizes its data with respect to the
following classes:

• the class Chris:F of fish restaurants,
• the class Chris:CA of Cantonese restaurants

Suppose that he declares the extensional classes Chris:V iewF and Chris:
V iewCA as subclasses of Chris:F and Chris:CA respectively: Chris:V iewF �
Chris:F , Chris:V iewCA � Chris:CA

Dora organizes her restaurants URLs around the class Dora:DP of her pre-
ferred restaurants, among which she distinguishes the subclass Dora:P of pizze-
rias and the subclass Dora:SF of seafood restaurants.
Suppose that the only URLs that she stores concerns pizzerias: the only exten-
sional class that she has to declare is Dora:V iewP as a subclass of Dora:P :
Dora:V iewP�Dora:P

Ann, Bob, Chris and Dora express what they know about each other using
mappings stating properties of class inclusion or equivalence.
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Ann is very confident in Bob’s taste and agrees to include Bob’ selection
as good restaurants by stating Bob:Q � Ann:G. Finally, she thinks that Bob’s
Asian restaurants encompass her Oriental restaurant concept: Ann:O � Bob:A

Bob knows that what he calls Asian cooking corresponds exactly to what
Ann classifies as Oriental cooking. This may be expressed using the equivalence
statement : Bob:A ≡ Ann:O (note the difference of perception of Bob and Ann
regarding the mappings between Bob:A and Ann:O)

Chris considers that what he calls fish specialties is a particular case of Dora
seafood specialties: Chris:F � Dora:SF

Dora counts on both Ann and Bob to obtain good Asian restaurants : Bob:A
� Ann:G � Dora:DP

Figure 1 describes the resulting acquaintance graph. In order to alleviate the
notations, we omit the local peer name prefix except for the mappings. Edges
are labeled with the class identifiers that are shared through the mappings.

Dora
ontology :
DP � �,
P � DP , SF � DP,
V iewP � P
mappings :
Bob:A � Ann:G � Dora:DP

Bob
ontology :
A � �, Q � �,
V iewA � A,
V iewQ � Q
mappings :
Bob:A ≡ Ann:O

Chris
ontology :
F � �, CA � �,
V iewF � F ,V iewCA � CA
mappings :
Chris:F � Dora:SF

Ann
ontology :
G � �, O � �, I � �,
R � G,
(S1 � S2 � S3) ≡ R,
S1 � S2 ≡ ⊥,
S1 � S3 ≡ ⊥,
S2 � S3 ≡ ⊥,
(C � V � T ) � O,
V iewC � C,
V iewV � V ,
V iewT � T ,
V iewI � I ,
V iewS2 � S2
mappings :
Ann:O � Bob:A,
Bob:Q � Ann:G

Dora:SF

Bob:A

Ann:G

Bob:Q,
Bob:A,
Ann:O

Fig. 1. The restaurants network

3 Query Rewriting

In SomeWhere, each user interrogates the peer-to-peer network through one peer
of his choice, and uses the vocabulary of this peer to express his query. Therefore,
queries are logical combinations of classes of a given peer ontology.

The corresponding answer sets are expressed in intention in terms of the
combinations of extensional classes that are rewritings of the query. The point is
that extensional classes of several distant peers can participate to the rewritings,
and thus to the answer of a query posed to a given peer.
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Given a SomeWhere peer-to-peer network P = {Pi}i∈[1..n], a logical com-
bination Qe of extensional classes is a rewriting of a query Q iff Q subsumes
Qe. Qe is a maximal rewriting if there does not exist another rewriting Q′

e of Q
(strictly) subsuming Qe.

In the SomeWhere setting, query rewriting can be equivalently reduced to dis-
tributed reasoning over logical propositional theories by a straighforward propo-
sitional encoding of the distributed schema of a SomeWhere network.

Before presenting the propositional encoding in Section 3.2 and the distrib-
uted consequence finding algorithm in Section 4, we illustrate the corresponding
query processing on the example of Section 2.6.

3.1 Illustrative Example (Continued)

Consider that a user queries the restaurants network through the Dora peer by
asking the query Dora:DP , meaning that he is interested in getting as answers
the set of favourite restaurants of Dora:

• Using Dora:P�Dora:DP and Dora:V iewP�Dora:P , we obtain Dora:
V iewP as a local rewriting corresponding to the extensional class of pizzeria
URLs stored by Dora.

• Using Dora:SF�Dora:DP , the fact that Dora:SF is shared with Chris
by the mapping Chris:F�Dora:SF , and Chris:V iewF�Chris:F , we obtain
Chris:V iewF as a new rewriting meaning that another way to get restaurants
liked by Dora is to obtain the Fish restaurants stored by Chris.

• Finally, using the mapping Bob:A�Ann:G�Dora:DP , the query leads to
look for rewritings of Bob:A�Ann:G, where both Bob:A and Ann:G are shared
with neighbor peers. In such cases our algorithm uses a split/recombination
approach. Each shared component (here Bob:A and Ann:G) is then processed
independly as a subquery, transmitted to its appropriate neighbors and asso-
ciated with some queue data structure, where its returned rewritings are ac-
cumulated. As soon as at least one rewriting has been obtained for each com-
ponent, the respective queued rewritings of each component are recombined to
produce rewritings of the initial query. This recombination process continues in-
crementally, as new rewritings for a component are produced. Note that since
each subcomponent is processed asynchronously, the order in which recombined
rewritings are produced is unpredictable. For the sake of simplicity, in the follow-
ing we consider sequentially the results obtained for the two subqueries Bob:A
and Ann:G:

– On the Bob peer, because of Bob:V iewA�Bob:A, Bob:V iewA is a local rewrit-
ing of Bob:A, which is transmitted back to the Dora peer, where it is queued for
a future combination with rewritings of the other subquery Ann:G.

In addition, guided by the mapping Ann:O≡Bob:A, the Bob peer transmits
to the Ann peer the query Ann:O. The Ann peer processes that query locally
and transmits back to the Bob peer the rewriting Ann:V iewC � Ann:V iewT �
Ann:V iewV , which in turn is transmitted back to the Dora peer as an additional
rewriting for the subquery Bob:A and queued there.
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– On the Ann peer, using Ann:R�Ann:G, (Ann:S1�Ann:S2 �Ann:S3)≡Ann:R
and Ann:V iewS2�Ann:S2, Ann:V iewS2 is obtained as a local rewriting of
Ann:G. It is transmitted back to the Dora peer where it is queued for re-
combination. Let us suppose that the two rewritings of Bob:A (Bob:V iewA
and Ann:V iewC�Ann:V iewT�Ann:V iewV ) have aleady been produced at that
time. Their combination with Ann:V iewS2 gives two rewritings which are sent
back to the user:

∗ Ann:V iewS2�Bob:V iewA, meaning that a way to obtain restaurants liked
by Dora is to find restautants that are both stored by Ann as rated with 2 stars
and by Bob as Asian restaurants,

∗ Ann:V iewS2�(Ann:V iewC�Ann:V iewT�Ann:V iewV ) meaning that an-
other way to obtain restaurants liked by Dora is to find restautants stored by
Ann as restaurants rated with 2 stars and also as Chinese, Thai or Vietnamese
restaurants. Note that this rewriting, although obtained via different peers after
splitting/recombination, turns out to be composed only of extensional classes of
the same peer: Ann.
Still on the Ann peer, because of the mapping Bob:Q � Ann:G, Ann transmits
the query Bob:Q to Bob, which transmits back to Ann Bob:V iewQ as a rewriting
of Bob:Q (and thus of Ann:G). Ann then transmits Bob:V iewQ back to Dora
as a rewriting of Ann:G, where it is queued for combination. On Dora’s side,
Bob:V iewQ is now combined with the queued rewritings of Bob:A (Bob:V iewA
and Ann:V iewC �Ann:V iewT�Ann:V iewV ). As a result, two new rewritings
are sent back to the user:

∗ Bob:V iewQ�Bob:V iewA meaning that to obtain restaurants liked by Dora
one can take the restaurants that Bob stores as high quality restaurants and as
Asian restaurants,

∗ Bob:V iewQ�(Ann:V iewC�Ann:V iewT�Ann:V iewV ) providing a new
way of getting restaurants liked by Dora: those that are both stored as high
quality restaurants by Bob and as Chinese, Thai or Vietnamese restaurants
by Ann.

3.2 Propositional Encoding of Query Rewriting in SomeWhere

The propositional encoding concerns the schema of a SomeWhere network and
the queries. It consists in transforming each query and schema statement into a
propositional formula using class identifiers as propositional variables.

The propositional encoding of a class description D, and thus of a query, is
the propositional formula Prop(D) obtained inductively as follows:

• Prop(�) = true, Prop(⊥) = false
• Prop(A) = A, if A is an atomic class
• Prop(D1 � D2) = Prop(D1) ∧ Prop(D2)
• Prop(D1 � D2) = Prop(D1) ∨ Prop(D2)
• Prop(¬D) = ¬(Prop(D))
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The propositional encoding of the schema S of a SomeWhere peer-to-peer
network P is the distributed propositional theory Prop(S) made of the formulas
obtained inductively from the axioms in S as follows:

• Prop(C � D) = Prop(C) ⇒ Prop(D)
• Prop(C ≡ D) = Prop(C) ⇔ Prop(D)
• Prop(C � D ≡ ⊥) = ¬Prop(C) ∨ ¬Prop(D)

From now on, for simplicity purpose, we use the propositional clausal form
notation for the queries and SomeWhere peer-to-peer network schemas.

As an illustration, let us consider the propositional encoding of the example
presented in Section 2.6. Once in clausal form and after the removal of tautolo-
gies, we obtain (Figure 2) the acquaintance graph where each peer schema is
described as a propositional theory.

Dora :
¬Dora :V iewP ∨ Dora :P
¬Dora :P ∨ Dora :DP
¬Dora :SF ∨ Dora :DP
¬Bob :A ∨ ¬Ann :G ∨ Dora :DP

Bob :
¬Bob :V iewA ∨ Bob :A
¬Bob :V iewQ ∨ Bob :Q
¬Bob :A ∨ Ann :O
¬Ann :O ∨ Bob :A

Chris :
¬Chris :V iewF ∨ Chris :F
¬Chris :V iewCA ∨ Chris :CA
¬Chris :F ∨ Dora :SF

Ann :
¬Ann :R ∨ Ann :G
¬Ann :S1 ∨ Ann :R
¬Ann :S2 ∨ Ann :R
¬Ann :S3 ∨ Ann :R
¬Ann :R ∨ Ann :S1∨

Ann :S2 ∨ Ann :S3
¬Ann :S1 ∨ ¬Ann :S2
¬Ann :S1 ∨ ¬Ann :S3
¬Ann :S2 ∨ ¬Ann :S3
¬Ann :C ∨ Ann :O
¬Ann :V ∨ Ann :O
¬Ann :T ∨ Ann :O
¬Ann :V iewC ∨ C
¬Ann :V iewV ∨ Ann :V
¬Ann :V iewT ∨ T
¬Ann :V iewI ∨ Ann :I
¬Ann :V iewS2 ∨ Ann :S2
¬Ann :O ∨ Bob :A
¬Bob :Q ∨ Ann :G

Dora:SF

Bob:A

Ann:G

Bob:Q,
Ann:O,
Bob:A

Fig. 2. Propositional encoding for the restaurant network

Proposition 1 states that the propositional encoding transfers satisfiability
and establishes the connection between (maximal) conjunctive rewritings and
clausal proper (prime) implicates.

Definition 2 (Proper prime implicate wrt a theory). Let T be a clausal
theory and q be a clause. A clause m is said to be:

• a prime implicate of q wrt T iff T ∪ {q} |= m and for any other clause m′,
if T ∪ {q} |= m′ and m′ |= m then m′ ≡ m.

• a proper prime implicate of q wrt T iff it is a prime implicate of q wrt T
and T �|= m.

Proposition 1 (Propositional transfer). Let P be a SomeWhere peer-to-peer
network and let Prop(S(P)) be the propositional encoding of its schema. Let Ve

be the set of all the extensional classes.

• S(P) is satisfiable iff Prop(S(P)) is satisfiable.
• qe is a maximal conjunctive rewriting of a query q iff ¬Prop(qe) is a proper

prime implicate of ¬Prop(q) wrt Prop(S(P)) such that all its variables are ex-
tensional classes.
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Proposition 1 gives us a way to compute all the answers of a query. The maximal
conjunctive rewritings of a query q within a peer-to-peer networkP correspond to
the negation of the proper prime implicates of ¬q wrt the propositional encoding
of the schema of S(P). Since the number of proper prime implicates of a clause
wrt a clausal theory is finite, every query in SomeWhere has a finite number of
maximal conjunctive rewritings. Therefore, according to [13], the set of all of its
answers is exactly the union of the answer sets of its rewritings and is obtained
in PTIME data complexity.

In the following section, we present a distributed consequence finding al-
gorithm which computes the set of proper prime implicates of a literal wrt a
distributed propositional clausal theory. According to Proposition 1, if this algo-
rithm is applied to a distributed theory resulting from the propositional encoding
of the schema of a SomeWhere network, with the extensional classes symbols as
target variables, and triggered with a literal ¬q, it computes in fact the negation
of the maximal conjunctive rewritings of the atomic query q. Since in our setting
the maximal rewritings of an arbitrary query can be obtained by combining the
maximal rewritings of its atomic components, we focus on the computation of
the rewritings of atomic queries.

4 Algorithmic Machinery and Experiments

The SomeWhere peer-to-peer data management system relies on a distributed
algorithm presented in [14]. For this paper to be self-contained, we describe the
three message passing procedures of the algorithm which are implemented locally
at each peer. They are triggered by the reception of a query (resp. answer, final)
message, sent by a Sender peer to a receiver peer, denoted by Self, which executes
the procedure. Procedures handle an history initialized to the empty sequence.
An history hist is a sequence of triples (l, P, c) (where l is a literal, P a peer,
and c a clause). An history [(ln, Pn, cn), . . . , (l1, P1, c1), (l0, P0, c0)] represents a
branch of reasoning initiated by the propagation of the literal l0 within the peer
P0, and the splitting of the clause c0: for every i ∈ [0..n− 1], ci is a consequence
of li and Pi, and li+1 is a literal of ci, which is propagated in Pi+1.

ReceiveQueryMessage is triggered by the reception of a query message
m(Sender, Receiver, query, hist, l) sent by the peer Sender to the peer Receiver
which executes the procedure: on the demand of Sender, with which it shares
the variable of l, it processes the literal l.

ReceiveAnswerMessage is triggered by the reception of an answer mes-
sage m(Sender, Receiver, answer, hist, r) sent by the peer Sender to the peer
Receiver which executes the procedure: it processes the answer r (which is a
clause the variables of which are target variables) sent back by Sender for the
literal l (last added in the history) ; it may have to combine it with other answers
for literals being in the same clause as l.

ReceiveFinalMessage is triggered by the reception of a final message
m(Sender, Receiver, final, hist, true): the peer Sender notifies the peer Re-
ceiver that computation for the literal l (last added in the history) is completed.
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Those procedures handle two local data structures:

answer(l, hist) caches answers resulting from the propagation of l within the
reasoning branch corresponding to hist;

final(q, hist) is set to true when the propagation of q within the reasoning
branch of the history hist is completed. The reasoning is initiated by the user (de-
noted by a particular peer User) sending to a given peer P a message m(User, P,
query, ∅, q), which triggers the procedure ReceiveQueryMessage(m(User, P,
query, ∅, q)) that is locally executed by P .

In the following procedures, since they are locally executed by the peer which
receives the message, we denote by Self the receiver peer. We also assume that:

• for a literal q, Resolvent(q, P ) denotes the set of clauses obtained by reso-
lution between q and a clause of P ,

• for a literal q, q̄ denotes its complementary literal,
• for a clause c of a peer P , S(c) (resp. L(c)) denotes the disjonction of

literals of c whose variables are shared (resp. not shared) with any acquaintance
of P . S(c) = � thus expresses that c does not contain any shared variable,

• T arget(P ) is the language of clauses (including �) involving only variables
that are extensonial classes of P .

• � is the distribution operator on sets of clauses: S1�· · ·�Sn = {c1∨· · ·∨cn

|c1 ∈ S1, . . . , cn ∈ Sn}. If L = {l1, . . . , lp}, �l∈LSl denotes Sl1 � · · · � Slp .
The following theorems summarize the main properties of this distributed

message passing algorithm and thus of the SomeWhere peer-to-peer data man-
agement system. Theorem 1 states the termination and the soundness of the
algorithm. Theorem 2 states its completeness under the condition that each
peer theory is saturated by resolution. Theorem 3 states that the user is notified
of the termination when it occurs, which is crucial for an anytime algorithm. Full
proofs are given in [15]. In the following theorems, let T be the propositional
encoding of the schema S(P) of a peer-to-peer SomeWhere network, let ¬q the
negation of an atomic query q, let T be the propositional encoding of the local
schema and mappings of the asked peer.

Theorem 1 (Soundness). If T receives from the user the message
m(User, T, query, ∅,¬q), then:

• a finite number of answer messages will be produced ;
• each produced answer message m(T, User, answer, [(¬q, T, )], r) is such

that r is an implicate of ¬q wrt S(P) which belong to T arget(P).

Theorem 2 (Completeness). If each local theory is saturated by resolution
and if T receives from the user the message m(User, T, query, ∅,¬q), then for
each proper prime implicate r of ¬q wrt S(P) belonging to T arget(P), an answer
message m(T, User, answer, [(¬q, T, )], r) will be produced.

Theorem 3 (Termination notification). If r is the last result returned in an
answer message m(T, User, answer, [(¬q, T, )], r) then the user will be notified
of the termination by a message m(T, User, final, [(¬q, T, true)], true).
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It is important to notice that � can be returned by our algorithm as a proper
prime implicate because of the lines (1) to (3) and (8) to (10) in Receive-
QueryMessage. In that case, as a corollary of the above theorems, the union
the propositional encoding of the schema of the SomeWhere network and the
query is detected unsatisfiable. Therefore, our algorithm can be exploited for
checking the satisfiability of the global schema at each join of a new peer.

Algorithm 1: Message passing procedure for processing queries
ReceiveQueryMessage(m(Sender,Self, query, hist, q))
(1) if (q̄, , ) ∈ hist
(2) send m(Self, Sender, answer, [(q, Self, �)|hist], �)
(3) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(4)else if q ∈ Self or (q, Self, ) ∈ hist
(5) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(6)else
(7) local(Self) ← {q} ∪ Resolvent(q, Self)
(8) if � ∈ local(Self)
(9) send m(Self, Sender, answer, [(q, Self, �)|hist], �)
(10) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(11) else
(12) local(Self) ← {c ∈ local(Self)| L(c) ∈ T arget(Self)}
(13) if for every c ∈ local(Self), S(c) = �

(14) foreach c ∈ local(Self)
(15) send m(Self, Sender, answer, [(q, Self, c)|hist], c)
(16) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(17) else
(18) foreach c ∈ local(Self)
(19) if S(c) = �

(20) send m(Self, Sender, answer, [(q, Self, c)|hist], c)
(21) else
(22) foreach literal l ∈ S(c)
(23) if l ∈ T arget(Self)
(24) answer(l, [(q, Self, c)|hist]) ← {l}
(25) else
(26) answer(l, [(q, Self, c)|hist]) ← ∅
(27) final(l, [(q, Self, c)|hist]) ← false
(28) foreach RP ∈ acq(l, Self)
(29) send m(Self, RP, query, [(q, Self, c)|hist], l)

Algorithm 2: Message passing procedure for processing answers
ReceiveAnswerMessage(m(Sender,Self, answer, hist, r))
(1)hist is of the form [(l′, Sender, c′), (q, Self, c)|hist′]
(2)answer(l′, hist) ← answer (l′, hist) ∪ {r}
(3)result← �l∈S(c)\{l′}answer(l, hist) � {L(c) ∨ r}
(4)if hist′ = ∅, U←User else U← the first peer P ′ of hist′

(5)foreach cs ∈ result
(6) send m(Self,U, answer, [(q, Self, c)|hist′], cs)
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Algorithm 3: Message passing procedure for notifying termination
ReceiveFinalMessage(m(Sender,Self, final, hist, true))
(1)hist is of the form [(l′, Sender, true), (q, Self, c)|hist′]
(2)final(l′, hist) ← true
(3)if for every l ∈ S(c), final(l, hist) = true
(4) if hist′ = ∅ U←User else U← the first peer P ′ of hist′

(5) send m(Self,U, final, [(q, Self, true)|hist′], true)
(6) foreach l ∈ S(c)
(7) answer(l, [(l, Sender, ), (q, Self, c)|hist′]) ← ∅

5 Related Work

As we have pointed it out in the introduction, the SomeWhere peer data man-
agement system distinguishes from Edutella [8] by the fact that there is no need
of super-peers. It does not require either a central server having the global view
of the overlay network, as in Piazza [4,9] or in [16].

The recent work around the coDB peer data management system [17] sup-
ports dynamic networks but the first step of the distributed algorithm is to let
each node know the network topology. In contrast, in SomeWhere no node does
not have to know the topology of the network.

The Kadop system [18] is an infastructure based on distributed hash tables
for constructing and querying peer-to-peer warehouses of XML resources seman-
tically enriched by taxonomies and mappings. The mappings that are considered
are simple inclusion statement between atomic classes. Compared to KadoP (and
also to DRAGO [19]), the mapping language that is dealt with in SomeWhere
is more expressive than simple inclusion statements between atomic classes. It
is an important difference which makes SomeWhere able to combine elements of
answers coming from different sources for answering a query, which KadoP or
DRAGO cannot do.

SomeWhere implements in a simpler setting the vision of peer-to-peer data
management systems proposed in [20] for relational databases.

6 Conclusion and Future Work

We have presented the SomeWhere semantic peer-to-peer data management sys-
tem. Its data model is based on the propositional fragment of the Ontology Web
Language recommended by W3C. SomeWhere implements a fully peer-to-peer
approach. We have conducted a significant experimentation on networks of 1000
peers. It is presented in [21]. To the best of our knowledge, this is the first
experimental study on such large peer-to-peer data management systems. The
motivations of this experimentation was twofold. First, to study how deep and
how wide reasoning spreads on the network. Second, to evaluate the time needed
to obtain answers and to check to what extent SomeWhere is able to support
the traffic load.
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SomeWhere is the basis of the MediaD project with France Télécom, which
aims at enriching peer-to-peer web applications (e.g., Someone [3]) with reason-
ing services.

We plan to extend SomeWhere in three directions.
We first plan to tackle the problem of possible inconsistency of the distributed

schema which can occur because of the mappings, even if the local theories are
all consistent. In principle, our algorithm is able to check whether adding a new
theory and set of mappings to a consistent SomeWhere network of theories leads
to an inconsistency. Therefore, we could forbid a new peer to join the network
if it makes the global schema inconsistent, and thus guarantee by contruction
that query processing applies on consistent SomeWhere networks. However, this
solution is probably too rigid and restrictive to be accepted in practice by users
who want to join a SomeWhere network. At least, a new peer whose join leads
to an inconsistency would like to know with which other peer(s) its ontology
is inconsistent. The problem of detecting the causes of an inconsistency is not
trivial and has been extensively studied for centralized theories or knowledge
bases. We need to investigate that issue in the SomeWhere distributed setting.
We could also decide not to correct the inconsistency but to confine it and answer
queries within consistent sub-networks.

Second, we want to extend the SomeWhere data model with binary relations.
We are currently exhibiting another propositional transfert for peers relying on
the RDF/RDFS data model and accepting conjunctive queries.

Finally, we plan to plug SomeWhere onto a Chord infrastructure [22] in order
to make SomeWhere more robust to frequent changes in the network due to
peers joins and leaves. In addition, the look-up service offered by Chord could be
exploited for optimization purposes of the current SomeWhere query processing.
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Abstract. Ontologies are an important technology for the Semantic
Web. In different areas ontologies have already been developed and many
of these ontologies contain overlapping information. Often we would
therefore want to be able to use multiple ontologies and thus the on-
tologies need to be aligned. Currently, there exist a number of systems
that support users in aligning ontologies, but not many comparative
evaluations have been performed.

In this paper we present a general framework for aligning ontologies
where different alignment strategies can be combined. Further, we ex-
emplify the use of the framework by describing a system (SAMBO) that
is developed according to this framework. Within this system we have
implemented some already existing alignment algorithms as well as some
new algorithms. We also show how the framework can be used to experi-
ment with combinations of strategies. This is a first step towards defining
a framework that can be used for comparative evaluations of alignment
strategies. For our tests we used several well-known bio-ontologies.

1 Introduction

Intuitively, ontologies (e.g. [10,6]) can be seen as defining the basic terms and re-
lations of a domain of interest, as well as the rules for combining these terms and
relations. They are considered to be an important technology for the Semantic
Web. Ontologies are used for communication between people and organizations
by providing a common terminology over a domain. They provide the basis for
interoperability between systems. They can be used for making the content in
information sources explicit and serve as an index to a repository of information.
Further, they can be used as a basis for integration of information sources and as
a query model for information sources. They also support clearly separating do-
main knowledge from application-based knowledge as well as validation of data
sources. The benefits of using ontologies include reuse, sharing and portability
of knowledge across platforms, and improved maintainability, documentation,
maintenance, and reliability. Overall, ontologies lead to a better understanding
of a field and to more effective and efficient handling of information in that field.
In the field of bioinformatics, for instance, the work on ontologies is recognized
as essential in some of the grand challenges of genomics research [1] and there
is much international research cooperation for the development of ontologies
(e.g. the Gene Ontology (GO) [5] and Open Biomedical Ontologies (OBO) [19]
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efforts) and the use of ontologies for the Semantic Web (e.g. the EU Network of
Excellence REWERSE [23,24]).

Many ontologies have already been developed and many of these ontologies
contain overlapping information. Often we would therefore want to be able to
use multiple ontologies. For instance, companies may want to use community
standard ontologies and use them together with company-specific ontologies.
Applications may need to use ontologies from different areas or from different
views on one area. Ontology builders may want to use already existing ontologies
as the basis for the creation of new ontologies by extending the existing ontologies
or by combining knowledge from different smaller ontologies. In each of these
cases it is important to know the relationships between the terms in the different
ontologies. We say that we align two ontologies when we define the relations
between terms in the different ontologies. We merge two ontologies when we,
based on the alignment relations between the ontologies, create a new ontology
containing the knowledge included in the source ontologies.

Ontology alignment and merging is recognized as an important step in ontol-
ogy engineering that needs more extensive research (e.g. [20]). Currently, there
exist a number of systems that support users in merging or aligning ontologies in
the same domain. These systems use different techniques, but it is not clear how
well these techniques perform for different types of ontologies. Few comparative
evaluations on ontology merging and alignment have been performed [12,13,20]
and no tools for supporting these kinds of evaluations exist yet [8].

In this paper we propose a framework for aligning ontologies. We identify
different types of strategies (section 3.1) and show how these strategies can be
integrated in one framework (section 3.2). Further, we exemplify the use of the
framework by describing a system (SAMBO) that is developed according to this
framework (section 4). Within this system we have implemented some already
existing alignment algorithms as well as some new algorithms. We also show how
the framework can be used to combine different strategies and to experiment with
these combinations. This is a first step towards defining a framework that can be
used for comparative evaluations of alignment and merging strategies. We tested
different combinations of alignment algorithms on several bio-ontologies and dis-
cuss the results in section 5. In the next section we provide some background on
(bio-)ontologies and ontology alignment systems.

2 Background

2.1 Ontologies

Ontologies differ regarding the kind of information they can represent. From a
knowledge representation point of view ontologies can have the following com-
ponents (e.g. [10,26]). Concepts represent sets or classes of entities in a domain.
Instances represent the actual entities. They are, however, often not represented
in ontologies. Further, there are many types of relations. Finally, axioms repre-
sent facts that are always true in the topic area of the ontology. These can be
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such things as domain restrictions, cardinality restrictions or disjointness restric-
tions. Depending on which of the components are represented and the kind of
information that can be represented, we can distinguish between different kinds
of ontologies such as controlled vocabularies, taxonomies, thesauri, data models,
frame-based ontologies and knowledge-based ontologies. These different types of
ontologies can be represented in a spectrum of representation formalisms ranging
from very informal to strictly formal. For instance, some of the most expressive
representation formalisms in use for ontologies are description logic-based lan-
guages such as DAML+OIL and OWL.

2.2 Bio-ontologies

In this paper we have chosen to use test cases based on bio-ontologies (e.g. [10]).
There are several reasons for this. Research in bio-ontologies is recognized as
essential in some of the grand challenges of genomics research [1]. The field has
also matured enough to develop standardization efforts. An example of this is
the organization of the first conference on Standards and Ontologies for Func-
tional Genomics (SOFG) in 2002 and the development of the SOFG resource
on ontologies. Further, there exist ontologies that have reached the status of de
facto standard and are being used extensively for annotation of databases. Also,
OBO was started as an umbrella web address for ontologies for use within the
genomics and proteomics domains. Many bio-ontologies are already available via
OBO. There are also many overlapping ontologies available in the field.

The ontologies that we use in this paper are GO ontologies, Signal-Ontology
(SigO), Medical Subject Headings (MeSH) and the Anatomical Dictionary for the
Adult Mouse (MA). The GO Consortium is a joint project which goal is to pro-
duce a structured, precisely defined, common and dynamic controlled vocabulary
that describes the roles of genes and proteins in all organisms. Currently, there
are three independent ontologies publicly available over the Internet: biological
process, molecular function and cellular component. The GO ontologies are a de
facto standard and many different bio-databases are today annotated with GO
terms. The terms in GO are arranged as nodes in a directed acyclic graph, where
multiple inheritance is allowed. The purpose of the SigO project is to extract com-
mon features of cell signaling in the model organisms, try to understand what
cell signaling is and how cell signaling systems can be modeled. SigO is a pub-
licly available controlled vocabulary of the cell signaling system. It is based on
the knowledge of the Cell Signaling Networks data source [30] and treats com-
plex knowledge of living cells such as pathways, networks and causal relationships
among molecules. The ontology consists of a flow diagram of signal transduction
and a conceptual hierarchy of biochemical attributes of signaling molecules. MeSH
is a controlled vocabulary produced by the American National Library of Medi-
cine and used for indexing, cataloguing, and searching for biomedical and health-
related information and documents. It consists of sets of terms naming descriptors
in a hierarchical structure. These descriptors are organized in 15 categories, such
as the category for anatomic terms, which is the category we use in the evalua-
tion. MA is cooperating with the Anatomical Dictionary for Mouse Development
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(EMAP) to generate an anatomy ontology (controlled vocabulary) covering the
entire lifespan of the laboratory mouse. It organizes anatomical structures spa-
tially and functionally, using is-a and part-of relationships.

2.3 Ontology Alignment and Merging Systems

There exist a number of ontology alignment systems that support the user to
find inter-ontology relationships. Some of these systems are also ontology merg-
ing systems. However, up to date only two comparative evaluations of ontology
merge systems have been performed. The EU OntoWeb project [20] evaluated
the systems PROMPT [16] based on Protégé (with extension Anchor-PROMPT
[17]), Chimaera [14] (described, not evaluated), FCA-Merge [28] and ODEMerge.
This evaluation focused on such things as functionality, interoperability and vi-
sualization, but did not include tests on the quality of the alignment. In [12,13]
PROMPT, Chimaera and a previous version of SAMBO were evaluated in terms
of the quality of the alignment as well as the time it takes to align ontologies with
these tools. There are other tools such as ArtGen [15], ASCO [11], GLUE [2],
HCONE [9], IF-Map [33], iMapper [27], ITTalks [29], QOM [3], and S-Match [7],
but these have not appeared in comparative evaluation studies. For the sake of
brevity, we do not describe the different systems in detail, but we show a sum-
mary of the strategies that are used by the systems in table 1 in the next section.

3 Framework for Ontology Alignment

In this section we introduce a framework for ontology alignment. We describe
different strategies for alignment and show they can be integrated in a gen-
eral framework. Although we focus on alignment, we also briefly show how the
framework can be extended to also cover ontology merging.

3.1 Strategies

Different strategies are based on different kinds of knowledge that can be ex-
ploited during the alignment process to enhance the effectiveness and efficiency.
Some of the approaches use information inherent in the ontologies. Other ap-
proaches require the use of external sources. We describe currently used strategies
and in table 1 we give an overview of the used strategies per system.

– Strategies based on linguistic matching. These approaches make use of tex-
tual descriptions of the concepts and relations such as names, synonyms and
definitions. The similarity measure between concepts is based on compar-
isons of the textual descriptions. Simple string matching approaches and
information retrieval approaches (e.g. based on frequency counting) may be
used. Most systems use this kind of strategies.

– Structure-based strategies. These approaches use the structure of the ontolo-
gies to provide suggestions. Typically, a graph structure over the concepts is
provided through is-a, part-of or other relations. The similarity of concepts
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Table 1. Strategies used by alignment systems

linguistic structure constraints instances auxiliary
ArtGen name parents, children domain-specific WordNet

documents
ASCO name, label parents, children, WordNet

description siblings,
path from root

Chimaera name parents, children

FCA-Merge name domain-specific
documents

GLUE name neighborhood instances

HCONE name parents, children WordNet

IF-Map instances a reference
ontology

iMapper leaf, non-leaf, domain, documents WordNet
children, range
related node

ITTalks parents, children documents

(Anchor-) name direct graphs
PROMPT
QOM name parents, children equivalence

label
SAMBO name, is-a and part-of, documents WordNet,

synonym descendants UMLS
and ancestors

S-Match label path from root semantic WordNet
relations
codified
in labels

is based on their environment. An environment can be defined in different
ways. For instance, using the is-a relation (e.g. [13]) an environment could
be defined using the parents (or ancestors) and the children (or descendants)
of a concept. Some approaches also use other relations (e.g. [17]).

– Constraint-based approaches. In this case the axioms are used to provide sug-
gestions. For instance, knowing that the range and domain of two relations
are the same, may be an indication that there is a relationship between the
relations. Similarly, when two concepts are both disjoint with a third con-
cept, we may have a similarity between the first two concepts. On their own
these approaches may not be sufficient to provide high quality suggestions,
but they may complement other approaches to reduce the number of irrele-
vant suggestions. Constraint-based approaches are currently used by only a
few systems.
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– Instance-based strategies. In some cases instances are available directly or can
be obtained. For instance, the entries in biological databases that are anno-
tated with GO terms, can be seen as instances for these GO terms. When
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instances are available, they may be used in defining similarities between
concepts.

– Use of auxiliary information. Dictionaries and thesauri representing general
or domain knowledge, or intermediate ontologies may be used to enhance
the alignment process. They provide external resources to interpret the in-
tended meaning of the concepts and relations in an ontology (e.g. [15]). Also
information about previously merged ontologies may be used. Many systems
use auxiliary information.

– Combining different approaches. The different approaches use different
strategies to compute similarity between concepts. Therefore, a combined
approach may give better results. Although most systems combine different
approaches, not much research is done on the applicability and performance
of these combinations.

3.2 Framework

In figure 1 we propose a general alignment framework. An alignment algorithm
receives as input two source ontologies. The algorithm can include several match-
ers. Each matcher utilizes knowledge from one or multiple sources. For instance,
a linguistic matcher uses textual descriptions and may use auxiliary information
in the form of a general dictionary. The matchers calculate similarities between
the concepts and relations from the different source ontologies. Alignment sug-
gestions are then determined by combining and filtering the results generated by
one or more matchers. For instance, similarity results from a linguistic matcher
and a learning matcher may be combined and the pairs of concepts and rela-
tions with a similarity value above a certain threshold are retained as alignment
suggestions. By using different matchers and combining them and filtering in
different ways we obtain different alignment strategies. The suggestions are pre-
sented to the user who accepts or rejects the suggestions. The acceptance and
rejection of a suggestion may influence further suggestions. Also, some matchers
(e.g. some structural matchers as in [17,13]) require as input already accepted
suggestions. Further, a conflict checker is used to avoid conflicts introduced by
alignment relationships. The output of the alignment algorithm is a set of align-
ment relations between concepts and relations from the source ontologies.

Figure 2 shows a simple merging algorithm. A new ontology is computed
from the source ontologies and their identified alignment. The checker is used to
avoid conflicts as well as to detect unsatisfiable concepts and, if so desired by
the user, to remove redundancy.

4 SAMBO

In this section we describe a prototype of SAMBO, an ontology alignment and
merging tool implemented according to the framework described in section 3.

4.1 System

The current implementation of SAMBO is a web-based system that helps a user
to merge two ontologies into a new ontology with unique names for terms. In
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this implementation the system supports ontologies in OWL and DAML+OIL
formats. After loading the source ontologies, the user can start the alignment
process. The system separates the process into two steps: aligning relations and
aligning concepts. The second step can be started after the first step is finished.
In each step, the user can choose to manually merge terms (i.e. equivalent terms)
or introduce is-a relationships in the ontologies, or to have the system propose
suggestions. The user can choose to accept or reject the suggestions. Upon an
action of the user, the suggestion list is updated. If the user rejects a suggestion
where two different terms have the same name, she is required to rename one of
the terms. At each point in time the user can view the ontologies represented in
trees with the information on which actions have been performed, and she can
check how many suggestions there are left for the step. After the user accom-
plishes the alignment process, the system receives the final alignment list and
can be asked to create the new ontology. The system merges the terms in the
alignment list, computes the consequences, makes the additional changes that
follow from the operations, and finally copies the other terms to the new on-
tology. Furthermore, SAMBO uses a DIG description logic reasoner (e.g. Racer
[25], FaCT [4]) to provide a number of reasoning services. The user can ask the
system whether the new ontology is consistent and can ask for information about
unsatisfiable concepts and cycles in the ontology.

4.2 Alignment Algorithm

For this implementation of SAMBO we experimented with the combination of
already existing strategies as well as some newly implemented strategies.

The terminological matcher contains matching algorithms based on the tex-
tual descriptions (names and synonyms) of concepts and relations. In the current
implementation, the matcher includes two approximate string matching algo-
rithms, n-gram and edit distance, and a linguistic algorithm. A n-gram is a set
of n consecutive characters extracted from a string. Similar strings will have a
high proportion of n-grams in common. Edit distance is defined as the num-
ber of deletions, insertions, or substitutions required to transforming one string
into the other. The greater the edit distance, the more different the strings are.
The linguistic algorithm computes the similarity of the terms by comparing the
lists of words of which the terms are composed. Similar terms have high propor-
tion of words in common in the lists. A porter stemming algorithm is employed
to each word. Further, a general thesaurus, WordNet [32], is used to enhance
the similarity measure by looking up the hypernym relationships of the pairs
of words in WordNet. All these matchers were evaluated in [13]. The termino-
logical matcher outputs similarity values by combining the results from these
three algorithms using weights. The similarity between a concept C1 from the
first source ontology and a concept C2 from the second source ontology is de-
fined as tsim(C1, C2) =

∑3
k=1 wk ∗ tsimk(C1, C2) where wk are the weights

assigned to the algorithms. If the weights are chosen carefully, this combination
can overcome the weaknesses of the individual algorithms. In our experiments
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we used the weights 0.3, 0.3 and 0.21 for the linguistic algorithm, edit distance
and n-gram, respectively.

The structural matcher is an iterative algorithm based on the is-a and part-
of hierarchies of the ontologies (table 2). The algorithm requires as input a list
of alignment relations and can therefore not be used in isolation. The intuition
behind the algorithm is that if two concepts lie in similar positions in the two
hierarchies, then probably they are similar. The propagation coefficients indi-
cate how well the similarity of a given alignment propagates to its neighbors,
and ranges from 0 to 1. Similarity of identified alignments propagates to their
ancestors and descendants, but the effect diminishes with respect to distance,
and therefore a maximal distance can be set optionally.

Table 2. The structure-based algorithm

//MatchSet(O1, O2) is the set of identified alignment relations.
for each element (c1i, c2j) in MatchSet(O1, O2)

for all ancestors c1m of c1i

for all ancestors c2n of c2j

//cp is the propagation coefficient for the is-a/part-whole relation
//l(c1i, c1m) is the length of the path between c1i and c1m

ssim(c1m, c2n) = cp

l(c1i,c1m) ∗ cp

l(c2j ,c2n)

for all descendants c1p of c1i

for all descendants c2q of c2j

//cc is the propagation coefficient for the inverse-is-a/whole-part relation
ssim(c1p, c2q) = cc

l(c1i,c1p) ∗ cc
l(c2j ,c2q)

Another strategy is to use domain knowledge. We utilize the domain lexicon
Unified Medical Language System (UMLS) [31], a repository of biomedical vo-
cabularies. The similarity of two terms in the source ontologies is determined by
how they are mapped to terms in UMLS.

We also included a learning matcher. We created a corpus containing docu-
ments extracted from PubMed [21]. To each term in the source ontologies we as-
sign at most 100 documents, which are the abstracts of the articles retrieved from
PubMed using the name of the term as the search term. The similarity value be-
tween a concept C1 in the first source ontology and concept C2 in the second source
ontology is computed as lsim(C1, C2) = [P (C1|C2) + P (C2|C1)]/2, where the
probability P (C1|C2) is estimated to be the fraction of the total number of doc-
uments associated with C2 that are also classified to be associated with C1, and
similarly for P (C2|C1). A naive Bayes classifier is applied to classify documents.

The matchers compute similarity values in [0..1], where 1 indicates an ex-
pected similarity. The suggestions proposed to the user are those whose simi-
larity values are higher than a threshold (filter in figure 1). The user is given
the choice to employ one or several matchers during the alignment process. The
suggestions can be determined based on the similarity value from one matcher,
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or the combination of the similarity values measured by several matchers using
weights, sim(C1, C2) = (

∑n
k=1 wk ∗ simk(C1, C2))/n, where n is the number of

combined matchers and simk and wk represent the similarity values and weights,
respectively, for the different matchers (combination in figure 1).

5 Evaluation

In the evaluation we compare the quality of the alignment suggestions that are
generated by our different matchers and their combinations.

5.1 Test Cases

We created five test cases based on two groups of bio-ontologies. For the first
two cases we use a part of a GO ontology together with a part of SigO. Each
case was chosen in such a way that there was an overlap between the GO part
and the SigO part. The first case, behavior (B), contains 57 terms from GO
and approximately 10 terms from SigO. The second case, immune defense (ID),
contains 73 terms from GO and 15 terms from SigO. We used more terms from
GO than from SigO because the granularity of GO is higher than the granularity
of SigO for these topics.

The other cases are taken from two bio-ontologies that are available from
OBO: MeSH (anatomy category) and MA. The two ontologies cover a similar
subject domain, anatomy, and are developed independently. The three cases
used in our test are: nose (containing 15 terms from MeSH and 18 terms from
MA), ear (containing 39 terms from MeSH and 77 terms from MA), and eye
(containing 45 terms from MeSH and 112 terms from MA). We translated the
ontologies from the GO flat file format to OWL retaining identifiers, names,
synonyms, definitions and is-a and part-of relationships.

5.2 Comparison of Matchers

We compare the quality of the suggestions that are generated by the different
matchers and their combinations.

In table 3 we present information about the suggestions generated by the
individual matchers: terminological, terminological using WordNet, algorithm
using domain knowledge (UMLS), and learning. The cases are given in the first
column. The second column represents the number of expected suggestions. For
instance, in the ’ear’ case, there are 29 alignments that are specified by domain
experts. This is the minimal set of suggestions that matchers are expected to
generate for a perfect recall. This set does not include the inferred suggestions.
Inferred suggestions will be inferred by the merging algorithm and we therefore
consider them neither as correct nor as wrong suggestions. An example of an
inferred suggestion is that incus is a kind of ear ossicle. In this case we know
that auditory bone (MA) is the same as ear ossicle (MeSH), and incus is a kind
of auditory bone in MA. Then the system should derive that incus is a kind of
ear ossicle. The learning matcher (last column) generates 14 suggestions of which
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Table 3. Comparison of algorithms

Case E.Sugs Terminological T.+ WordNet Domain Learning
B 4 4/4/0 4/4/0 4/4/0 4/4/0
ID 8 6/4/2 6/4/2 4/4/0 5/5/0
nose 7 6/6/0 6/6/0 7/7/0 5/5/0
ear 29 26/26/0 27/27/0 25/25/0 14/14/0
eye 28 21/21/0 22/21/1 21/21/0 19/16/3

14 suggestions are correct and no suggestion is wrong. The structural matcher
requires a set of already identified alignments as input, and thus there are no
results for the structural matcher in table 3.

The test ontologies provide a lot of synonyms and therefore the quality of
the suggestions from the terminological matcher is good. The matcher finds
suggestions where the names of terms are completely different, e.g. (inner ear,
labyrinth), where inner ear has labyrinth as synonym. The matcher also gives sug-
gestions where the names of terms are slightly different, e.g. (stapes, stape). By
using a general dictionary (WordNet), it finds suggestions such as (perilymphatic
channel, cochlear aqueduct) where cochlear aqueduct has perilymphatic duct as syn-
onym, and duct is a synonym of channel in WordNet. On the other hand, since
endothelium is a kind of epithelium in WordNet, it generates a wrong suggestion
(corneal endothelium, corneal epithelium). The quality of the suggestions from the
domain matcher is also good. The matcher finds suggestions of which the terms
have completely different names and synonyms, or have no synonyms at all, e.g.
(external acoustic meatus, ear canal). The matcher works for some terms with
slightly different names, e.g. (optic disc, optic disk), which are mapped to the
concept optic disc in UMLS, but does not work on others, e.g. (stapes, stape),
which are mapped to different concepts in UMLS. The quality of the suggestions
from the learning matcher varies in the different ontologies in this evaluation.
In the ’ID’ case it produces the best result among the matchers. It avoids the
wrong suggestions with slightly different names, such as (B cell activation, T Cell
Activation). It also finds the suggestion (natural killer cell activation, Natural Killer
Cell Response), which is not found by other matchers. However, in the ’eye’ case
it produces the worst result. In this case all its correct suggestions are also found
by the other matchers. The quality of the suggestions from the learning matcher
depends on the associated documents retrieved from PubMed. One factor that
plays a role in this is that the terms are used as search strings and thus may
appear anywhere in the documents. Another factor is that for some concepts
only few documents are retrieved.

Table 4 shows the quality of the extra suggestions generated by the structural
matcher based on the alignment results given by the other matchers, where (1)
indicates the terminological algorithm plus WordNet, (2) indicates the domain
matcher, (3) is the learning matcher, and (4) indicates the structural matcher.
For example, in the ’ID’ case and the terminological matcher, the structural
matcher generates 17 new suggestions of which no suggestion is correct, one sug-
gestion is wrong, and 16 are inferred suggestions. In this evaluation the structural



28 P. Lambrix and H. Tan

Table 4. Structural matcher

Case (1)+(4) (2)+(4) (3)+(4)
B 0/0/0/0 0/0/0/0 0/0/0/0
ID 17/0/1/16 17/0/1/16 0/0/0/0
nose 0/0/0/0 0/0/0/0 0/0/0/0
ear 19/0/2/17 21/0/2/19 2/0/0/2
eye 16/0/0/16 16/0/0/16 20/0/0/16

Table 5. Combination of algorithms

Case E.Sugs (1)+(2) (1)+(3) (2)+(3) (1)+(2)+(3)
B 4 4/4/0 4/4/0 4/4/0 4/4/0
ID 8 4/4/0 6/6/0 5/5/0 6/6/0
nose 7 7/7/0 7/7/0 7/7/0 7/7/0
ear 29 28/28/0 28/28/0 28/28/0 29/29/0
eye 30 22/22/0 21/21/0 21/21/0 22/22/0

matcher is actually not needed in the ’B’ case as the other algorithms already
performed perfectly. In the other cases the structural matcher only returned in-
ferred suggestions and some wrong suggestions. The fact that no more correct
suggestions are found may be explained by the fact that the missing sugges-
tions concern concepts in completely different positions in the two hierarchies.
For other missing suggestions the concepts have a common ancestor or common
descendants, but the ancestor or descendants are too distant for the similarity
values to be influenced.

Table 5 presents the quality of the suggestions considering the combination
of the different matchers. In table 5 we do not include the structural matcher
because of its poor quality. In the evaluation we observe that if we carefully
assign the weights for the matchers, the combination can always eliminate the
wrong suggestions but still keep all the correct suggestions generated by the
respective matchers. In the ’ID’ case the combination also contributes a new
correct suggestion. For instance, when combining the three matchers we obtain
the best results in our experiments for all cases when we assign the weights 1.2,
2.0 and 1.6. Lower weights lead to the loss of correct suggestions and higher
weights generate a number of wrong suggestions.

An advantage of using a system like SAMBO is that one can experiment with
different (combinations of) strategies and different (combinations of) types of on-
tologies. For instance, our evaluation gives an indication about what (combina-
tions of) strategies may work well for aligning ontologies with similar properties
as our test ontologies. For instance, in our tests the terminological matcher gives
good results while the best results are obtained by combining all (1, 2 and 3)
matchers. However, when choosing a strategy other factors may also play a role.
For instance, the combination strategy is more time consuming than the strategy
using only the terminological matcher.
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6 Conclusions

In this paper we have shown that different kinds of strategies are used by current
alignment systems. We presented a framework for aligning ontologies where these
different strategies can be combined. The framework can be used as a basis for
building ontology alignment systems. We exemplified this by describing SAMBO,
a system that is developed according to the framework and that implements
different strategies.

Further, the framework can be used to experiment with combinations of
strategies. This is a first step towards a general framework that can be used for
comparative evaluations of alignment strategies. In this paper we experimented
with different strategies and their combinations and showed results for well-
known bio-ontologies.

In the future we will use the framework as a basis for implementing new
strategies and test these strategies and their combinations using different types
of ontologies. This will result in recommendations on which (combinations of)
strategies are well suited for aligning which kinds of ontologies.
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6. Gómez-Pérez A (1999) Ontological Engineering: A state of the Art. Expert Update

2(3):33-43.
7. Giunchiglia. F, Shvaiko P, Yatskevich M (2004) S-Match: an algorithm and an

implementation of semantic matching. Proceedings of the European Semantic Web
Symposium, LNCS 3053, pp 61-75.

8. KnowledgeWeb Consortium (2004) Deliverable 2.2.4 (Specification of a method-
ology, general criteria, and benchmark suites for benchmarking ontology tools).
http://knowledgeweb.semanticweb.org/



30 P. Lambrix and H. Tan

9. Kotis K, Vouros GA (2004) The HCONE Approach to Ontology Merging. The
Semantic Web: Research and Applications, First European Semantic Web Sympo-
sium, LNCS 3053, pp 137 - 151.

10. Lambrix P (2004) Ontologies in Bioinformatics and Systems Biology. Chapter 8 in
Dubitzky W, Azuaje F (eds.) Artificial Intelligence Methods and Tools for Systems
Biology, pp 129-146, Springer. ISBN: 1-4020-2859-8.

11. Le BT, Kuntz RD, Gandon F (2004) On ontology matching problem (for building
a corporate semantic web in a multi-communities organization). Proceedings of 6th
International Conference on Enterprise Information Systems.

12. Lambrix P, Edberg A (2003) Evaluation of ontology merging tools in bioinformat-
ics. Proceedings of the Pacific Symposium on Biocomputing, pp 589-600.

13. Lambrix P, Tan H (2005) Merging DAML+OIL Ontologies. Barzdins, Caplinskas
(eds) Databases and Information Systems - Selected Papers from the Sixth Interna-
tional Baltic Conference on Databases and Information Systems, pp 249-258, IOS
Press.

14. McGuinness D, Fikes R, Rice J, Wilder S (2000) An Environment for Merging and
Testing Large Ontologies. Proceedings of the Seventh International Conference on
Principles of Knowledge Representation and Reasoning, pp 483-493.

15. Mitra P, Wiederhold G (2002) Resolving terminological heterogeneity in ontologies.
Proceedings of the ECAI Workshop on Ontologies and Semantic Interoperability.

16. Noy NF, Musen M (2000) PROMPT: Algorithm and Tool for Automated Ontol-
ogy Merging and Alignment. Proceedings of Seventeenth National Conference on
Artificial Intelligence, pp 450-455.

17. Noy NF, Musen M (2001) Anchor-PROMPT: Using Non-Local Context for Seman-
tic Matching. Proceedings of the IJCAI Workshop on Ontologies and Information
Sharing, pp 63-70.

18. Noy NF, Musen M (2002) Evaluating Ontology-Mapping Tools: Requirements and
Experience. Proceedings of the EKAW Workshop on Evaluation of Ontology Tools.

19. Open Biomedical Ontologies. http://obo.sourceforge.net/
20. OntoWeb Consortium (2002) Deliverables 1.3 (A survey on ontology tools) and 1.4

(A survey on methodologies for developing, maintaining, evaluating and reengi-
neering ontologies). http://www.ontoweb.org

21. PubMed. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
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Abstract. The current architecture for the Semantic Web, with its emphasis on
RDF syntactic and semantic compatability, has severe problems when expressive
Semantic Web languages are incorporated. An architecture less tied to RDF is
proposed. In this architecture different Semantic Web languages can have differ-
ent syntaxes but must use the same models. This revised architecture provides
significant advantages over the currrent Semantic Web architecture while still re-
maining true to the vision of the Semantic Web.

1 Introduction

Because the aim of the Semantic Web is to make information on the Web more process-
able by computers, reasoning must be a vital part of the Semantic Web. Initial accounts of
the Semantic Web, in particular, the initial versions of The Resource Description Frame-
work (RDF) [Ora Lassila and Ralph R. Swick, 1999] and its schema extension, the RDF
Schema Specification (RDFS) [Dan Brinkley and R. V. Guha, 2000], were without a
formal semantic account, and thus did not support reasoning.

The current RDF recommendations include both a formal syntax
[Dave Beckett, 2004] and semantics [Hayes, 2004] for RDF and RDFS
[Dan Brinkley and R. V. Guha, 2004]. The W3C Web Ontology Language (OWL)
[Dean et al., 2004] has been given a semantics [Patel-Schneider et al., 2004] that fits
well on top of RDF. This thus appears to put the Semantic Web on a firm semantic
foundation.

However, making OWL an extension of RDF was not without problems. This shows
up in two versions of OWL: OWL DL, which has a different, mostly-compatible seman-
tics from RDF and only extends part of RDF; and OWL Full, which has full compata-
bility with RDF, but does not enjoy the computational benefits of OWL DL.

Extensions beyond OWL to first-order logic are even more problematic. In fact,
an extension of RDF to incorporate all of first-order logic gives rise to paradoxes
[Patel-Schneider, 2005], because a truth predicate is needed to encode first-order logic
in the RDF syntax.

The problem is that RDF is not suitable as a basis for both the syntax and semantics
of the Semantic Web. Some way of escaping from the RDF-provided meaning of the
RDF syntax is needed for expressive Semantic Web languages.

2 The Current Semantic Web Architecture

The current architecture of the Semantic Web is based on the well-known Semantic Web
stack described by Tim Berners-Lee in 2000. (See the left-hand side of Figure 1.) This
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Fig. 1. Initial and New Semantic Web architecture

is only a high-level picture of the Semantic Web, and thus leaves out a lot of details.
The general impact of this picture, particularly as it has been interpreted during the
development of RDF, RDFS, and OWL, is that RDF forms the basis of the Semantic
Web, both for syntax and semantics.

All Semantic Web documents thus should have the syntax of RDF, and this syn-
tax should be read as encoding RDF triples [Graham Klyne and Jeremy Carroll, 2004],
which form the abstract syntax of RDF. Further, the meaning of these triples should
include their RDF model-theoretic meaning [Hayes, 2004], that is, all triples can be
thought of a atomic facts.

There are other aspects of the Semantic Web Architecture. These include the use
of URI references as identifiers, XML Schema datatypes as datatypes, and the use of
model-theoretic entailment as the primary semantic relationship. As well, the Semantic
Web was envisioned as a stack of languages, each building directly and completely on
the lower languages. Thus the ontology layer built on the RDF layer, and the logic layer
built on the ontology layer.

Recent accounts of the Semantic Web architecture (the right-hand side of Figure 1)
have split the single stack into two side-by-side extensions of RDF for ontologies and
rules. However, this does not change the fundamental role of RDF in the Semantic Web
architecture.

3 Problems with the Current Architecture

Unfortunately, RDF is just not adequate for this fundamental place in the Semantic Web
architecture. The problems are two-fold, both syntactic and semantic.

On the syntactic side, all RDF has to offer for syntax is triples. It is true that triples
are indeed adequate for encoding all sorts of ground information, and thus appear form
an adequate syntactic basis. However, encoding complex syntactic information in triples
is painful, as shown by the difficult official OWL syntax. For example, the triple encod-
ing of the simple Description Logic construct (∀r.C) � (� 3 r) is
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:c rdf:type owl:Class . :c owl:intersectionOf :l1 . :l1 rdf:type rdf:List . :l1
rdf:first :c1 . :l1 rdf:rest :l2 . :l2 rdf:type rdf:List . :l2 rdf:first :c2 . :l2
rdf:rest rdf:nil . :c1 rdf:type owl:Restriction . :c1 owl:onProperty r . :c1
owl:allValuesFrom C . :c2 rdf:type owl:Restriction . :c2 owl:onProperty r .
:c2 owl:minCardinality 3 .

Not only is this ugly and verbose, there is the problem of what to do with various sorts
of malformed bits of syntax, such as constructs with missing or extra triples.

The semantic side is even more problematic. The problem arises because each triple
in RDF is a fact. This means that all the triples needed to encode syntax are facts, and
these facts must be true before they can be inferred, independent of any other meaning
that these syntactic facts encode. This requires complex machinery to require that the
these facts are true when necessary, and this complex machinery can cause semantic
paradoxes.

The semantic paradoxes were avoided in OWL by not requiring that self-referential
syntactic structures must be inferrrable. This means that certain kinds of inferences
that one might want are not inferrable in OWL, but does mean that OWL has a non-
paradoxical semantics. However, this kind of solution is not available for first-order
logic with equality, as equality can be used as a substitute for self-reference
[Patel-Schneider, 2005].

4 A Revised Architecture for the Semantic Web

The problem is the use of triples as facts that encode syntax. So retaining the use of
triples to encode syntax but making them not be facts will indeed eliminate the problem.
However, this doesn’t make triples any nicer for encoding syntax. As well, the syntax-
encoding triples don’t mean what they mean in RDF, so treating them as RDF doesn’t
make sense. This means that RDF tools will not perform correctly on these triples.

A different way to go is to allow different syntaxes for different Semantic Web lan-
guages. To fit into the Semantic Web vision, these syntaxes should use IRI references as
identifiers and XML Schema datatypes. To fit into the World Wide Web these syntaxes
should be XML dialects.

What then unifies the Semantic Web is a common semantic framework. Separate
syntaxes for OWL, rule languages like SWRL [Horrocks et al., 2005], and first-order
logic including variants like Simple Common Logic (http://www.w3.org/2004/12/rules-
ws/paper/103/) can be specified and their semantics given as extra conditions added to
the RDF model theory. The new syntaxes can be made full partners in the Semantic
Web by giving them MIME types. This does require the use of multiple parsers, but
writing parsers is quite easy. To keep the single stack view of the Semantic Web only
requires that systems for the higher levels also parse the syntax for the lower levels.

This revised architecture does not really require extra work in writing non-parsing
tools, as one might expect. User-interface, reasoning, and other tools for the Semantic
Web are of necessity already tailored for each level of the Semantic Web stack. For
example, a tool for building RDF knowledge bases is not useful for ontology building
in OWL, even though OWL can be written as RDF triples. Separate ontology-building
tools like Protege or OilEd are needed for this purpose. Such tools are likely to be
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easier to write in the revised architecture, as they will not have to worry about the kinds
of malformed syntax that are possible when encoding complex syntactical constructs in
RDF triples.

Certain reasoning tasks can also be easier in this revised syntax. It has recently (pri-
vate communication, but should be public shortly) been shown that a source of unde-
cidability in OWL Full is the RDF ability to manipulate the RDF properties that encode
OWL syntax.

This multi-syntax architecture has other potential benefits. It is possible to use con-
tent negotiation to allow less-capable systems to access approximations of complex
information. For example, if an RDFS-only system asks for an OWL ontology it can be
given the classification taxonomy of that ontology, as computed by an OWL reasoner,
in RDFS form. This gives the RDFS system much better information that it would have
if it was simply given the encoding of the syntax of the OWL ontology.

5 Future Directions

It would also be possible to generalize the revised Semantic Web architecture in several
ways. One could lift the requirement that systems handle lower levels of the stack, turn-
ing the Semantic Web stack into a a collection of languages with a common semantic
framework. One could also loosen the requirement of a common semantic framework
into simply some sort of semantic compatability. Both these generalizations involve
considerable work—in the first to determine whether or not the result would balkanize
the Semantic Web and thus reduce its viability, in the second to determine what sorts of
semantic compatability are desirable or required.
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Abstract. We discuss language architecture for the Semantic Web, and in par-
ticular different proposals for extending this architecture with a rules compo-
nent. We argue that an architecture that maximises compatibility with existing
languages, in particular RDF and OWL, will benefit the development of the Se-
mantic Web, and still allow for forms of closed world assumption and negation
as failure.

Up until recent times it has been widely accepted that the architecture the Semantic Web
will be based on a hierarchy of languages, each language both exploiting the features
and extending the capabilities of the layers below. This has been famously illustrated in
Tim Berners-Lee’s “Semantic Web Stack” diagram [3] (see Figure 1).

As a result of the work of the W3C Web Ontology Working Group, the “Ontology”
layer has now been instantiated with the Web Ontology Language OWL [2]. Since then,
attention has turned to the rules layer, and much effort has been devoted to the design
of suitable rules languages. Perhaps influenced by some of this work, recently seen
versions of the Semantic Web Stack diagram have illustrated a weakened version of the
layering idea, with rules and ontologies (OWL) sitting side by side on top of a layer
labelled as the “DLP bit of OWL/Rules” [4] (see Figure 2).

Unfortunately, this modified stack is based on some fundamental misconceptions
about the semantic relationships between the various languages. In particular, the mod-
ified stack suggests that DLP [7] can be layered on top of RDFS and form a common ba-
sis for parallel Rules (presumably intended as Datalog/Logic Programming style rules)
and OWL layers. This suggestion is, however, based on incorrect assumptions about
the semantics of DLP. In particular, if we want Datalog style closed world semantics
for Rules (in order to support Negation as Failure), as is argued by some proponents,
then the resulting rules language is only a syntactic extension of DLP, and is not seman-
tically compatible with DLP—in fact DLP is a subset of Horn rules and has standard
First Order semantics.
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Fig. 1. Semantic Web Stack

Fig. 2. Latest version of the Semantic Web Stack

Of course it is possible to treat DLP rules as having Datalog semantics (i.e., se-
mantics based on a closed world assumption and Herbrand models [6]). In this case,
however, DLP is no longer semantically compatible with OWL and so cannot be sit-
uated below OWL in the stack. In fact, when given such a semantics, DLP (and rules
languages that extend DLP) are not even semantically compatible with RDF [9]. This
is easy to see if we imagine querying an RDF ontology with a more expressive query
language, for example one that includes counting or negation (as, for example, SQL).
Given an ontology containing only a single RDF triple:

〈#pat〉〈#knows〉〈#jo〉.
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Fig. 3. Semantic Web Stack with Datalog Rules

the answer to a query asking if pat knows exactly one person would be “no” under
RDF’s open world semantics, but “yes” under the closed world semantics of Datalog.

It is thus more appropriate to view DLP with Datalog semantics as being layered
directly on top of the XML layer. Datalog rules, and various extensions such as negation
as failure (NAF) would then naturally layer on top of (this version of) DLP. Similarly,
OWL and other First Order extensions (such as FOL or SCL [10]) would naturally layer
on top of RDFS.1 It has been suggested that the two different semantics (Datalog and
First Order) could be unified in some overarching “Logic Framework”, although it is an
open research problem as to how this could be done.

This more precise analysis of the semantic relationships between the various lan-
guages demonstrates that the Datalog view of DLP and of rules actually leads to a stack
like the one illustrated in Figure 1, where the Datalog languages and First Order lan-
guages are in two separate towers. The Proof and Trust layers have been omitted, as
these are currently rather speculative, as has the overarching “Logic Framework”, given
that, as mentioned above, there is currently no suggestion as to what kind of logic might
instantiate this layer.

An alternative view of DLP is as a subset of First Order Horn clauses (as proposed
in [7]). In this case DLP can be seen simply as a subset of OWL (although more useful
lightweight OWL subsets could be imagined, e.g., based on the EL description logic,
which covers many important use cases, and for which all key inference problems can
be solved in polynomial time [1]). A First Order rules language such as SWRL can then
be layered on top of OWL. More expressive languages such as full First Order Logic
(First Order Predicate Calculus) would layer naturally on top of SWRL [11].

The resulting stack is illustrated in Figure 1 (the DLP/lightweight OWL subset layer
has been omitted, but could be inserted between RDFS and OWL). This language archi-
tecture has many attractive features when compared to the one illustrated in Figure 1.
On the one hand, rules in this framework extend existing work on both RDFS and
OWL, as well as providing a foundation for further extensions within a coherent se-
mantic framework. Features such as closed world assumption and negation as failure
(NAF) can be supported by powerful query languages—queries already have a closed
world flavour (because distinguished variables can only bind to named individuals), and

1 There is an issue with the meta-level features of RDFS, which has been resolved in OWL by
having one language “species” that layers on top of the First Order subset of RDFS (i.e., OWL
DL) and another language species that layers on top of the whole of RDFS (i.e., OWL Full).
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Fig. 4. Semantic Web Stack with First Order Rules

it is natural to extend this with NAF by way of query subtraction (e.g., the answer to
the query “faculty(?x) and NAF professor(?x)” can be computed by subtracting the an-
swer to the query “professor(?x)” from the answer to the query “faculty(?x)”). These
features are already supported in query languages such as SPARQL [14] and nRQL [8]
(the query language implemented in the Racer system). Moreover, recent work on inte-
grating rules with OWL suggests that future versions of this framework could include,
e.g., a decidable subset of SWRL, and a principled integration of OWL and Answer Set
Programming [5,12,13].

On the other hand, adopting Datalog rules (and DLP with Datalog semantics) would
effectively establish two Semantic Webs, with little or no semantic interoperability be-
tween the rules based Semantic Web and the ontology based Semantic Web, even at the
RDF level. These two versions of the Semantic Web would inevitably be in competition
with each other, and this would make the Semantic Web much less appealing: new users
would be presented with a difficult choice as to which part to choose, and in choosing
would sacrifice semantic interoperability with the other part.
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Abstract. This articles discusses the logic, or logic-based, languages
required for a full deployment of the Semantic Web. It presents ten theses
addressing

1. the kinds of logic languages needed,
2. data and data processing,
3. semantics, and
4. engineering and rendering issues.

The views reported about in this article have been presented at the W3C
Workshop on Rule Languages for Interoperability (27-28 April 2005,
Washington, D.C., USA, http://www.w3.org/2004/12/rules-ws/).

1 Languages

Thesis 1 (Diversity). The Semantic Web requires logic languages of different
kinds:

1. three kinds of reasoning, or deductive, languages, viz.
(a) constructive rules (or views),
(b) normative rules (or integrity constraints),
(c) descriptive specifications (or ontologies),

2. and reactive rules.

Constructive rules,1 called ‘views’ in databases, specify how to derive new
data from data already available. Constructive rules typically involve data se-
lection and grouping. Constructive rules are often, but not always, expressed as
implications of the form new-data ⇐ query. Examples of constructive rules are
SQL views, Datalog or pure Prolog clauses,2 and XSLT templates. Queries after
XQuery can be seen as constructive rules with intertwined query and new-data
parts. CSS rules can also be seen as constructive rules: CSS selectors are a kind
of queries, declaration-blocks (or {}-blocks) specify how new, styled, data are

1 The name stresses that consequences from such rules can be drawn in constructive
logic, i.e. without relying on excluded middle or refutation.

2 I.e. Prolog clauses without imperative predicates.
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constructed. RDFS semantic rules are further examples of constructive rules.
Inference rules3 used in specifying proof systems, are also constructive rules (cf.
infra Thesis 8).

Normative rules, called ‘integrity constraints’ in databases, express condi-
tions that data must fulfill, e.g. ISBN numbers uniquely characterize books, and
that must be checked when data are updated. Data schemas, especially tree
grammars in their various disguises, e.g. DTD, XML Schema, RelaxNG, etc.,
express normative rules.4 Normative rules can be expressed as denials and eval-
uated like constructive rules. A denial is a rule of the form false ⇐ query
where the head false, or error(...), etc., denotes a violation of a requirement
req and the denial’s body queryexpresses a negation of this requirement, i.e.
query ≡ ¬req. E.g. the following denial expresses that ISBN numbers uniquely
characterize book titles: error(ISBN)⇐ book(Title1, ISBN) ∧ book(Title2,
ISBN) ∧ Title1 �= Title2.

Descriptive specifications specify data types and relationships between data
types without necessarily referring to actual data. They are used in software
specifications, data schemas, and ontologies. They are often expressed in logics5

corresponding to classical logic fragments with restricted quantifications of the
forms ∀x : s F [x] and ∃x : s F [x] restricting the variable x to some sort, class,
entity, etc. s. Such quantifications can be expressed in classical logic as ∀x s(x) ⇒
F [x] and ∃x s(x) ∧ F [x], resp. using a conveniently defined unary predicate
symbol s.

It is worth noting that, in many cases, the distinction between normative
rules (integrity constraints) and descriptive specifications (ontologies) subtly de-
pends on the use. Consider a system of rules expressing some regulation, e.g.
under which conditions students are allowed to register for courses. In drawing
conclusions from the regulation, or in verifying that it is consistent or non-
redundant, the regulation is used as a descriptive specification – certain forms
of reasoning such as excluded middle and refutation make sense and might even
be indispensable. In verifying that student registrations to courses enforce the
regulation, the regulation is used as integrity constraint – excluded middle and
refutation do not make sense.6

Reactive rules specify how a data store can be modified depending on the
current state of the store and, in some languages, on events. Reactive rules com-
monly have one of the forms if condition then action and on event if
condition then action. Rules of the first kind are called production rules,[3]
rules of the second, ECA (short for Event-Condition-Action) rules. In produc-

3 E.g. modus ponens: If both A and A ⇒ B are provable, then B is provable.
4 However, variables in grammars differ from logic variables, since different occurrences

of a same grammar variable represent different data instances.
5 E.g. sorted logics and description logics.
6 One might object that Prolog, or a Prolog-like proof-system, can used for integrity

checking, integrity constraints been expressed as denials, and that the proof method
of Prolog, SLD resolution, is a refutation method. In fact, as opposed to general
resolution, SLD resolution can be re-expressed in constructive logic [8], i.e., without
referring to refutation.
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tion and ECA rules, condition is an (atomic or compound) query to the data
store similar to a body of a constructive or normative rule, and action is an
atomic (i.e. single) or compound update of the data store (typically consisting
of insertions, removal, and/or changes in a data item). In an ECA rule, event
denotes an event query, i.e. a query to events received so far. An event query can
be atomic, i.e. refer to a single event, or compound, i.e. refer to composite events.
In the following, the condition of a production or ECA rule is called standard
query so as to stress its similarity with the body of a constructive or normative
rule.7

Thesis 2 (Negation). Non-monotonic negation8 is the negation of choice for
constructive rules (views), normative rules (integrity constraints), and reactive
rules. Monotonic negation may, but must not, be offered in constructive, nor-
mative, and reactive rules. Monotonic negation is the negation of choice for
descriptive specifications (ontologies).

Non-monotonic negation, cf. [7] for selected articles, is the negation of choice
for constructive rules (views) because data constructions depends on both, avail-
able and non-available data. Since normative rules can be expressed as construc-
tive rules (cf. supra Thesis 1), non-monotonic negation is also the negation of
choice for normative rules. Non-monotonic negation is the negation of choice for
reactive rules, too, for both ‘event queries’ (i.e. the event parts of ECA rules)
and ‘standard queries’ (i.e. the condition parts of production or ECA rules)
refer to the presence or absence of data, events resp.

Monotonic negation is the negation of choice for descriptive specifications
because descriptive specifications do not refer to actual data, e.g. the flights
listed in a time table, but instead to meta-level specifications, e.g. conditions
flights must fulfill, the negation needed in descriptive specifications does not
have to refer to the absence or non-availability of such data.

Recall (cf. supra Thesis 1) that the same rule can be used as a normative
specification (integrity constraint) or descriptive specification (ontologie). As a
consequence, the choice of a negation semantics, monotonic or non-monotonic,
does not necessarily depend on the syntax of negation.

Thesis 3 (Coherency and Inter-Operability). Inter-operable logic lan-
guages of the various kinds should be striven for. Inter-operability is sustained
by the following forms of coherency: syntax coherency, rendering coherency, rea-
soning coherency, and explanation coherency.

Syntax coherency means that expressions from different languages with sim-
ilar meanings are expressed similarly. Rendering coherency means that expres-
sions from different languages are (visually or verbally) rendered (cf. infra Thesis
10) similarly, possibly using the same rendering methods or tools. Reasoning co-
herency means that similar forms of reasoning applied on different languages,
7 [13] further discusses how constructive and reactive rules, called ‘passive’ and ‘active’

resp., relate.
8 The negation used in concluding that flights not mentioned in a time table do not

exist.
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e.g. for deriving new data using constructive rules, for computing the closure of
RDF specifications, or for checking normative rules, are performed using simi-
lar reasoners. Reasoning coherency is desirable both for programmers and lan-
guage design, and implementation. An important aspect of reasoning coherency
is to have a common semantics for non-monotonic negation in constructive, nor-
mative, and reactive rule languages. Explanation coherency means that similar
forms of reasoning are explained, by explanation tools, relaying on similar ex-
planation paradigms.

2 Data and Data Processing

Thesis 4 (Data Distribution and Versatility, and Meta-Level Reason-
ing). A logic language for the Semantic Web must access data everywhere on
the Web; be ‘data versatile’, i.e. capable of accessing data and meta-data in any
common Web Semantic Web format – especially XML, RDF, Topic Maps, and
OWL, as well as the formats of Semantic Web logic languages –, and capable of
some forms of meta-level reasoning

There has already been a number of pleas in favour of data versatile query
languages, e.g. [19].

Meta-level reasoning poses interesting, but not impossible, challenges. Meta-
level reasoning has bad reputation among Computational Logicians, however,
conveniently, e.g. constructively, restricted, cf. [6] meta-level reasoning is seman-
tically as safe, and practically as useful as higher-order functions in Functional
Programming. Note that meta-level reasoning is already present, though in a
limited form, on the Semantic Web: RDF Schema, the “RDF Vocabulary De-
scription Language”, is itself an RDF Vocabulary for describing terms in an RDF
vocabulary.

Thesis 5 (Reasoning Paradigms). Constructive and normative rules (views
and integrity constraints) should be evaluable by both forward chaining9 and
backward chaining10, backward chaining being the reasoning paradigm of choice.
Descriptive specifications (ontologies) call for (non-constructive) reasoning, in-
cluding excluded middle11, non-contradiction12 and refutation13. The reasoning
paradigms of Semantic Web logic languages should support grouping, aggrega-
tion, theory reasoning, and non-monotonic negation.14

On the Web, forward chaining is well-suited only for well-defined and closed
sets of Web sites. Queries referring directly, or indirectly (through sub-queries
triggered by constructive rules at queried Web sites) to a set of Web sites that

9 Also called bottom-up reasoning.
10 Also called top-down reasoning.
11 At least one of A and ¬A is true.
12 At most one of A and ¬A is true.
13 If under the assumption A, a contradiction, i.e. B and ¬B for some B, can be derived,

then ¬A is proven.
14 Preferably with a semantics understandable without PhD in Logic!



46 F. Bry and M. Marchiori

cannot be statically15 recognized, cannot be evaluated by forward chaining. In-
deed, with such queries, forward chaining would require to compute intermediate
results from all possible Web sites.Thus, on the web, backward chaining is the
reasoning paradigm of choice for constructive and normative rules.

Theory reasoning, a term coined after Mark Stickel’s ‘theory resolution’ [20],
denotes enhancing a general purpose reasoning method with special reasoners
where convenient, e.g., reasoning on bank accounts with a basic arithmetic ‘the-
ory reasoner’ instead of the Peano axioms of Arithmetic.

Thesis 6 (Event Processing). Event broadcasting is undesirable on the Web.
Events can be exchanged between Web sites using a push, or a pull model. Pushed
events can be sent as data streams, calling for streamed query evaluation methods.
Evaluating event queries, e.g. the event parts of ECA rules, calls for event driven
query evaluation methods.

On the Web, events can not be broadcasted, i.e. indiscriminately sent to all
sites, because this would result in too high a traffic. Events can be exchanged on
the Web sites via either push, i.e. events are sent by the emitters to specific recip-
ients, or pull methods, i.e. each site publishes the events it emits, together with
the event’s recipients, on a ‘blackboard’ which is repeatedly queried by the po-
tential recipient sites. Such queries are called continuous. With the push model,
event can be sent as ‘data streams’ [4]. Continuous queries [22,1,17,18], data
streams [4], and event queries [5,2] require specific query evaluation methods.

3 Semantics

Thesis 7 (Declarative Semantics). Logic languages for the Semantic Web,
except reactive rule languages, should have declarative semantics defined as
‘Tarski-style model theories’.

Tarski-style models [12], i.e., the models of classical logic, are expressed in
terms of so-called ‘valuation functions’ that are defined recursively on a formula’s
structure. They make possible to evaluate a formula independently of other for-
mulas. Therefore, they are easy to understand, and they do not require complex
operational semantics.16

Production and ECA rules amount to imperative programming, hence they
are inherently not amenable to declarative semantics. However, (1) declarative
semantics are possible and desirable for the ‘standard query’ and ‘event query’
languages used in production or ECA rules languages, and (2) a formal semantics
amenable to reasoning on production and ECA rule programs is possible (and
desirable!).

Thesis 8 (Operational Semantics). The operational semantics of a logic
language is conveniently expressed with constructive and normative rules. Back-
15 I.e. before query evaluation.
16 Note that most declarative semantics for non-monotonic negation that do not assume

stratified, or stratifiable, rules, e.g. the stable [11] and well-founded [10] semantics,
do not have Tarski-style model theories.



Ten Theses on Logic Languages for the Semantic Web 47

tracking is useful for a fine tuning of proof construction in implementing logic
languages.17

The operational semantics of a logic language or reasoner is usually and
conveniently expressed in terms of inference rules of the form:

Premise1 . . . Premisen

Conclusion

Inference rules can be seen as constructive rules in a meta-language specifying
proofs for formulas of the object-level language. Thus, a constructive rules are
subjacent to (the procedural semantics of) every rule language and reasoners.
This observation has led to successful uses of the run-time system [21] of Prolog
or of the Prolog language itself [14] for implementing efficient theorem provers.
Normative rules, too, are convenient in specifying the procedural semantics of
rule languages and reasoners for expressing constraints on the proof, or search,
space. Reactive rule can be convenient in implementing logic languages and
reasoners.18

4 Engineering and Rendering

Thesis 9 (Language Engineering). Logic languages for the Semantic Web
should be referentially transparent, strongly closed, have Web formats, and mod-
ern type systems.19 The specification of abstract machines should be striven for.

Referential transparency, i.e. within a same declaration scope two occurrences
of a same expression have the same meaning, is desirable because it is the trait
of declarativity. Closure, i.e. the data returned by a program are like, e.g. have
formats similar to, the data accessed by programs in the same language. Strong
closure means that the data returned by a program can be further processed by
this same program. Strong closure is desirable because it eases structuring pro-
grams in sub-programs. Web formats, especially XML formats such as RuleML
formats, are desirable for rule languages because they eases inter-changing pro-
grams on the Web, e.g., for Web services applications. Abstract data types and
static type checking are desirable for Semantic Web reasoning and reactive lan-
guages as they are for any other programming languages: “Well typed programs
17 Backtracking is however undesirable as a programming concept for high-level logic

languages like the logic languages needed on the Semantic Web because it destroys
the language’s declarativity. The operational paradigm(s) desirable for a Semantic
Web logic languages can be equivalently called ‘backtracking-free logic programming’
or ‘set-oriented functional programming’. It is worth noting almost of the query
languages proposed for RDF are of this kind.

18 Since constructive and reactive rule languages can be used in specifying and imple-
menting logic languages and reasoners, some claim that a single language of such a
kind would be sufficient for the Semantic Web. This amounts to claiming that only
one single, e.g., imperative, programming language could be sufficient for developing
software.

19 I.e., type systems supporting abstract data types and offering static type checking,
parametric polymorphism, and modules.
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do not go wrong.” [16] Abstract machines are desirable because they are essential
for wide-spreading languages.

Thesis 10 (Visual and Verbal Rendering). Logic languages for the Se-
mantic Web should have visual and verbal renderings.

Declarative languages are especially well-suited to visual rendering and visual
rendering is very appealing to potential users of logic languages for the Seman-
tic Web, as the many systems for graphical rendering and/or visualization of
business rules amply demonstrate.

Programs used on the Web and Semantic Web should be verbalizable, i.e. the
rules or formulas they consist of should be expressible in a controlled language
[15,9], i.e. in a non-ambiguous language resembling natural language. Rules, e.g.
expressing policy specifications and trust, verbalized in a controlled language
would considerably help wide-spreading the (verbal as well as non-verbal forms
of the) languages they are expressed in.
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Abstract. Description Logics (DLs) are playing a central role in ontologies and
in the Semantic Web, since they are currently the most used formalisms for
building ontologies. Both semantic and computational issues arise when extend-
ing DLs with rule-based components. In particular, integrating DLs with non-
monotonic rules requires to properly deal with two semantic discrepancies: (a)
DLs are based on the Open World Assumption, while rules are based on (various
forms of) Closed World Assumption; (b) The DLs specifically designed for the
Semantic Web, i.e., OWL and OWL-DL, are not based on the Unique Name As-
sumption, while rule-based systems typically adopt the Unique Name Assump-
tion. In this paper we present the following contributions: (1) We define safe hy-
brid knowledge bases, a general formal framework for integrating ontologies and
rules, which provides for a clear treatment of the above semantic issues; (2) We
present a reasoning algorithm and establish general decidability and complexity
results for reasoning in safe hybrid KBs; (3) As a consequence of these general
results, we close a problem left open in [18], i.e., decidability of OWL-DL with
DL-safe rules.

1 Introduction

The integration of structured knowledge bases (KBs) and rules has recently received
considerable attention in the research on ontologies and the Semantic Web (see
e.g., [15,1]). Description Logics (DLs) [2] are playing a central role in this field, since
they are currently the most used formalisms for building ontologies, and have been pro-
posed as standard languages for the specification of ontologies in the Semantic Web [19].

Practically all the approaches in this field concern the study of description logic
knowledge bases augmented with rules expressed in Datalog (and its nonmonotonic
extensions). Many semantic and computational problems have emerged in this research
area. Among them, we concentrate on the following main issues/goals:

(1) OWA vs. CWA: DLs are fragments of first-order logic (FOL), hence their semantics
is based on the Open World Assumption (OWA) of classical logic, while rules are
based on a Closed World Assumption (CWA), imposed by the different semantics
for logic programming and deductive databases (which formalize various notions
of information closure). How to integrate the OWA of DLs and the CWA of rules
in a “proper” way? I.e., how to merge monotonic and nonmonotonic components
from a semantic viewpoint?

F. Fages and S. Soliman (Eds.): PPSWR 2005, LNCS 3703, pp. 50–64, 2005.
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(2) UNA vs. non-UNA: some DLs, in particular the ones specifically tailored for the
Semantic Web, i.e., OWL and OWL-DL, are not based on the Unique Name As-
sumption (UNA) (we recall that the UNA imposes that different terms denote dif-
ferent objects). On the other hand, the standard semantics of Datalog rules is based
on the UNA (see e.g. [4] for a discussion on this semantic discrepancy). How to
define a non-UNA-based semantics for DLs and rules? and most importantly, is it
possible to reason under the non-UNA-based semantics by exploiting standard (i.e.,
UNA-based) Datalog engines?

(3) decidability preservation: as shown by the first studies in this field [16], decidabil-
ity (and complexity) of reasoning is a crucial issue in systems combining DL KBs
and Datalog rules. In fact, in general this combination does not preserve decidabil-
ity, i.e., starting from a DL KB in which reasoning is decidable and a rule KB in
which reasoning is decidable, reasoning in the KB obtained by integrating the two
components may not be a decidable problem.

(4) modularity of reasoning: can reasoning in DL KBs augmented with rules be per-
formed in a modular way, strongly separating reasoning about the structural com-
ponent and reasoning about the rule component? This is a very desirable property,
since it allows for defining reasoning techniques (and engines) on top of deduc-
tive methods (and implemented systems) developed separately for DLs [2] and for
Datalog and its nonmonotonic extensions [8].

In this paper, we present an approach which addresses all the above aspects. In
particular, we present safe hybrid KBs, which extend the framework of r-hybrid KBs
presented in [21] to the treatment of KBs interpreted without the UNA. Safe hybrid KBs
are constituted of a structural component, which can be expressed in any fragment of
FOL (e.g., in a DL), and a relational component, corresponding to a disjunctive Datalog
(Datalog¬∨) program [7]. The way in which the two components interact is restricted
to be safe. This notion of safe interaction follows (and extends) the ideas proposed
in [5,16,18].

We prove that all the above listed goals are reached by safe hybrid KBs. More
specifically:

– (1),(2) We show that safe hybrid KBs provide a clear formal treatment of the above
semantic issues, i.e., the semantics of safe hybrid KBs does not assume unique
names, and accounts for OWA on the structural component, and CWA on the rela-
tional component.

– (3) We establish decidability and complexity results for reasoning in safe hybrid
KBs, which prove that, under very general conditions, the safe integration of two
decidable components preserves decidability of reasoning.

– (4),(2) Our algorithm implies that reasoning in safe hybrid KBs can be done by
strongly separating reasoning about the structural component and reasoning about
the rule component. Furthermore, our algorithm allows for reasoning under the non-
UNA-based semantics by exploiting reasoning methods and systems for standard,
UNA-based, disjunctive Datalog.

– Moreover, as a consequence of these general results, we close a problem left open
in [18], i.e., decidability of OWL-DL with DL-safe rules.
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The paper is structured as follows. In Section 2 we define syntax and semantics of
safe hybrid KBs. In Section 3 we study reasoning in safe hybrid KBs: we first define an
algorithm for satisfiability of safe hybrid KBs, then address decidability and complexity
of reasoning with safe hybrid KBs. We discuss related work in Section 4. Finally, we
draw some conclusions in Section 5. Due to space limits, proofs of theorems are omitted
in the present version of the paper.

2 Safe Hybrid KBs

In this section we define syntax and semantics of safe hybrid KBs. We introduce a
monotonic, first-order semantics and a nonmonotonic semantics based on stable models.

2.1 Syntax

We denote by L any subset of the language of function-free first-order logic with
equality (for example, a description logic language) over an alphabet of predicates
A = AP ∪ AR, with AP ∩ AR = ∅, and an alphabet of constants C. Every p ∈ AP is
called a structural predicate. We represent the special equality predicate by the binary
predicate symbol equal (for ease of notation, in the paper we write equality in prefixed
notation), and assume that equal is a structural predicate, i.e., it belongs to AP . An
atom is an expression of the form r(X), where r is a predicate in A of arity n and X
is a n-tuple of variables and constants. If no variable symbol occurs in X , then r(X) is
called a ground atom.

Definition 1. A safe hybrid KB H is a pair (T ,P), where:

– T ⊆ L and no predicate in AR occurs in T . L is called the structural language of
H;

– P is a Datalog¬∨ program over the predicate alphabet A and the alphabet of con-
stants C, i.e., a set of Datalog¬∨ rules where each rule R has the form

p1(X1)∨. . . ∨ pn(Xn) ←
r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk),not u1(W1), . . . ,not uh(Wh)

such that n ≥ 0, m ≥ 0, k ≥ 0, h ≥ 0, each pi(Xi), ri(Yi), si(Zi), ui(Wi) is an
atom and:
• each pi is a predicate from A;
• each ri, ui is a predicate from AR;
• each si is a predicate from AP ;
• (safeness condition) each variable occurring in R must occur in one of the ri’s.

If n = 0, we call R a constraint. If, for all R ∈ P , n ≤ 1, P is called a Datalog¬

program. If, for all R ∈ P , n ≤ 1 and h = 0, P is called a positive Datalog
program. If there are no occurrences of variable symbols in P , P is called a ground
program.

Informally,P is a Datalog¬∨ program with a special safeness condition: in each rule
R, each variable occurring in R must occur in a positive atom in the body of R whose
predicate is from AR, i.e., does not occur in T . Notice that such a condition strengthens
the standard Datalog range restriction condition on the use of variables in rules.

Thus, the structural component and the rule component share the predicates in AP

and the constants in C, while the alphabet of predicates AR is only used by P .
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2.2 Semantics

We now define two semantics for safe hybrid KBs: the first one relies on a first-order
logic interpretation of both the structural and the rule component of the safe hybrid
KB, while the second semantics provides a nonmonotonic meaning to rules. From now
on, unless specified otherwise, we call interpretation a first-order interpretation of the
predicates in A and the constants in C. The notion of satisfaction of a first-order sentence
(or a first-order theory) in a first-order interpretation is the standard one in first-order
logic.

First-Order Semantics. The first-order semantics of a safe hybrid KB consists of a
classical first-order interpretation not only of the structural component, but also of the
rule component of the safe hybrid KB. Formally, let R be the following Datalog¬∨ rule:

R = p1(X1, c1) ∨ . . . ∨ pn(Xn, cn) ← r1(Y1, d1), . . . , rm(Ym, dm),
s1(Z1, e1), . . . , sk(Zk, ek),
not u1(W1, f1), . . . ,not uh(Wh, fh)

(1)

where each Xi, Yi, Zi, Wi is a set of variables and each ci, di, ei, fi is a set of constants.
Then, FO(R) is the first-order sentence

∀x1, . . . , xn, y1, . . . , ym, z1, . . . , zk, w1, . . . , wh.
r1(y1, d1) ∧ . . . ∧ rm(ym, dm) ∧ s1(z1, e1) ∧ . . . ∧ sk(zk, ek)∧
¬u1(w1, f1) ∧ . . . ∧ ¬uh(wh, fh) → p1(x1, c1) ∨ . . . ∨ pn(xn, cn)

Given a Datalog¬∨ program P , FO(P) is the set of first-order sentences {FO(R) |
R ∈ P}.

A FOL-model of a safe hybrid KB H is an interpretation I such that I satisfies
T ∪ FO(P). H is called FOL-satisfiable if it has at least a FOL-model.

Finally, we define skeptical entailment under the FOL semantics. A sentence ϕ ∈ L
is FOL-entailed by H, denoted by H |=FOL ϕ iff, for each FOL-model I of H, I
satisfies ϕ.

Notice that the above first-order semantics of rules does not distinguish between
negated atoms in the body and disjunction in the head of rules: e.g., according to such
semantics, the rules A ← B,not C and A ∨ C ← B have the same meaning.

Nonmonotonic Semantics. An alternative semantics to safe hybrid KBs is based on a
nonmonotonic interpretation of the rule component, according to the notion of stable
model [10]. This is the semantics commonly adopted in Disjunctive Logic Program-
ming (DLP) and in Disjunctive Datalog [7]. We now formalize such a semantics in the
framework of safe hybrid KBs.

Given an interpretation I, we denote by IR the projection of I to AR and C, i.e.,
IR is obtained from I by restricting it to the interpretation of the predicates in AR and
the constants in C. Analogously, we denote by IP the projection of I to AP and C, and
denote I as IP ∪ IR.

The ground instantiation of P with respect to C, denoted by gr(P , C), is the pro-
gram obtained from P by replacing every rule R in P with the set of rules obtained by
applying all possible substitutions of variables in R with constants in C.
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Given an interpretation I of an alphabet of predicates A′ ⊂ A and the constants C,
and a ground program Pg over the predicates in A, the projection of Pg with respect to
I, denoted by Π(Pg, I), is the ground program obtained from Pg as follows. For each
rule R ∈ Pg:

– delete R if there exists an atom r(t) in the head of R such that r ∈ A′ and tI ∈ rI ;
– delete each atom r(t) in the head of R such that r ∈ A′ and tI �∈ rI ;
– delete R if there exists an atom r(t) in the body of R such that r ∈ A′ and tI �∈ rI ;
– delete each atom r(t) in the body of R such that r ∈ A′ and tI ∈ rI ;

Informally, the projection of Pg with respect to I corresponds to evaluating Pg with
respect to I, thus eliminating from Pg every atom whose predicate is interpreted in I.
Thus, when A′ = AP , all occurrences of structural predicates are eliminated in the
projection of Pg with respect to I, according to the evaluation in I of the atoms with
structural predicates occurring in Pg.

Then, we introduce the notions of minimal model and stable model of a Datalog¬∨

program where the UNA is not adopted.1 Given two interpretations I1, I2 of the set of
predicates A and the set of constants C, we write I1 ⊂A,C I2 if (i) for each p ∈ A and
for each tuple t of constants from C, if tI1 ∈ pI1 then tI2 ∈ pI2 , and (ii) there exist
p ∈ A and tuple t of constants from C such that tI1 �∈ pI1 and tI2 ∈ pI2 .

Given a positive ground Datalog¬∨ program P over an alphabet of predicates AR

and an interpretation I, we say that I is a minimal model of P if I satisfies FO(P) and
there is no interpretation I ′ such that I ′ satisfies FO(P) and I ′ ⊂AR,C I.

Given a ground Datalog¬∨ program P and an interpretation I for P , the GL-
reduct [10] of P with respect to I, denoted by GL(P , I), is the positive ground program
obtained from P as follows. For each rule R ∈ P : (i) delete R if there exists a negated
atom not r(t) in the body of R such that tI ∈ rI ; (ii) delete each negated atom not r(t)
in the body of R such that tI �∈ rI .

Given a ground Datalog¬∨ program P and an interpretation I, I is a stable model
for P iff I is a minimal model of GL(P , I).

Given a safe hybrid KB H = (T ,P), we say that an interpretation I is a NM-model
for H if the following conditions hold: (i) IP satisfies T ; (ii) IR is a stable model for
Π(gr(P , C), IP ). H is called NM-satisfiable (or simply satisfiable) if H has at least a
NM-model.

Finally, we define skeptical entailment in safe hybrid KBs under the nonmonotonic
semantics, which is analogous to the previous notion of entailment under the first-order
semantics. We say that a sentence ϕ ∈ L is NM-entailed by H, denoted by H |=NM ϕ
iff, for each NM-model I of H, I satisfies ϕ.

In other words, the nonmonotonic semantics for a safe hybrid KB H = (T ,P) is
obtained in the following way. Take a first-order interpretation I = IP ∪ IR such that
IP satisfies T ; then, evaluate P in IP , obtaining the program Π(gr(P , C), IP ); if IR

represents a stable model for such a program, then I is a NM-model for H.

1 Observe that the notions of minimal model and stable model presented here slightly differs
from the standard ones for Datalog¬∨, since they are expressed in a more general framework
in which unique names are not assumed. Consequently, the interpretation of constants must be
considered in the definition of minimal and stable model.



Semantic and Computational Advantages of the Safe Integration 55

It can be shown that satisfiability of safe hybrid KBs under the first-order semantics
can be reduced to satisfiability under the nonmonotonic semantics (due to space limits,
we are not able to provide details about this aspect in the paper). Therefore, in the rest of
the paper, we study safe hybrid KBs under the nonmonotonic semantics. In particular,
when we speak about satisfiability of safe hybrid KBs we always mean satisfiability
under the nonmonotonic semantics.

OWA vs. CWA. We now briefly comment on how the OWA of the structural part and
the CWA of the relational part coexist in safe hybrid KBs.

The key point is the fact that, in safe hybrid KBs, structural predicates and rela-
tional predicates are interpreted in a different way. More precisely, the semantics of the
relational part is defined starting from a given interpretation of the structural compo-
nent: given an interpretation I of T , we compute the stable models of the projection
of Pg with respect to I. In this way, it is possible to interpret relational predicates un-
der a CWA (actually, the stable model semantics), while keeping the interpretation of
structural predicates open, i.e., based on the classical FOL semantics.

Example 1. Let H be the safe hybrid KB where the following structural component T
defines an ontology about persons:

∀x.PERSON(x) → ∃y.FATHER(y, x) ∧ MALE(y)
∀x.MALE(x) → PERSON(x)
∀x.FEMALE(x) → PERSON(x)
∀x.FEMALE(x) → ¬MALE(x)
MALE(Bob)
PERSON(Mary)
PERSON(Paul)

and the rule component P defines nonmonotonic rules about students, as follows:

boy(X) ← enrolled(X, c1), PERSON(X),not girl(X) [R1]
girl(X) ← enrolled(X, c2), PERSON(X) [R2]
boy(X) ∨ girl(X) ← enrolled(X, c3), PERSON(X) [R3]
FEMALE(X) ← girl(X) [R4]
MALE(X) ← boy(X) [R5]
enrolled(Paul, c1)
enrolled(Mary, c1)
enrolled(Mary, c2)
enrolled(Bob, c3)

It can be easily verified that all NM-models for H satisfy the following ground atoms:

– boy(Paul) (since rule R1 is always applicable for X = Paul and R1 acts like a
default rule, which can be read as follows: if X is a person enrolled in course c1,
then X is a boy, unless we know for sure that X is a girl)

– girl(Mary) (since rule R2 is always applicable for X = Mary)
– boy(Bob) (since rule R3 is always applicable for X = Bob, and, by rule R4, the

conclusion girl(Bob) is inconsistent with T )
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– MALE(Paul) (due to rule R5)
– FEMALE(Mary) (due to rule R4)

Notice that H |=NM FEMALE(Mary), while T �|=FOL FEMALE(Mary). In other
words, adding a rule component has indeed an effect on the conclusions one can draw
about structural predicates. Such an effect also holds under the first-order semantics
of safe hybrid KBS, since it can be immediately verified that in this case H |=FOL

FEMALE(Mary). ��

Among other things, the above example shows that, in safe hybrid KBs, the infor-
mation flow is bidirectional: not only the structural component constrains the forms of
the stable models of the rule component (through the structural predicates in the body
of the rules), but also vice versa, since the rule component imposes constraints that the
models of the structural components must satisfy. Hence, the rule component has an ef-
fect on the conclusions that can be drawn from the structural component, since it filters
out those models I of the structural component for which the program Π(gr(P , C), I)
has no stable models.

UNA vs. Non-UNA. The semantic issue concerning the UNA is treated in safe hybrid
KBs in the following way:

– The equality predicate is a structural predicate, therefore its semantics is “under
control” of the structural KB, and is interpreted under the classical FOL semantics.
In particular, equality is not involved in the computation of stable models, since sta-
ble models of the relational part are defined based only on a particular interpretation
of the equality predicate;

– Nevertheless, new equalities may be imposed by the relational component (just like
any other structural predicate), since rules may have equality atoms in the head.

Example 2. Let H = (T ,P) where P is the program constituted by the fact r(a, b) and
the rule equal(X, Y ) ← r(X, Y ), and suppose T ∪ {equal(a, b)} is satisfiable. Then,
H is satisfiable, and equal(a, b) holds in every model for H. Indeed, the effect of the
relational component is to eliminate from the set of models of H all the interpretations
I of the structural predicates in which aI �= bI , since for such interpretations the
projection of Pg with respect to I is a program that has no stable models. ��

3 Reasoning in Safe Hybrid KBs

We now study satisfiability in safe hybrid KBs, i.e., the basic reasoning task in this
framework (entailment can be easily reduced to unsatisfiability). We first define an al-
gorithm for deciding satisfiability of safe hybrid KBs, and prove its correctness; Then,
based on such an algorithm, we analyze decidability and complexity of reasoning in
safe hybrid KBs; Finally, we prove decidability of OWL-DL with DL-safe rules.

Algorithm. We start by providing some preliminary definitions. First, we introduce the
notion of rectification of a Datalog¬∨ program [6], which will be needed in the algo-
rithm to properly handle the effects of the non-UNA-based semantics of the structural
component on the relational component.
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Definition 2. Let R be a Datalog¬∨ rule. We denote by rectify(R) the Datalog¬∨ rule
obtained from R as follows:

1. for each variable X which occurs n ≥ 2 times in R, and for each i ∈ {1, . . . , n},
replace the i-th occurrence in R of the variable X with the new variable symbol
X i;

2. for each variable X which occurs n ≥ 2 times in R, and for each i ∈ {2, . . . , n},
add the atom equal(X i−1, X i) to the body of the rule.

3. for each constant c occurring in R and not occurring within the predicate equal,
replace every occurrence of c with the new variable symbol Xc, and add the atom
equal(Xc, c) to the body of the rule.

Given a Datalog¬∨ program P , we denote by rectify(P) the program rectify(P) =⋃
R∈P rectify(R).

Then, we introduce a notion of grounding of a relational component of a safe hy-
brid KB. Given a Datalog¬∨ program P , we denote by CP the set of constant symbols
occurring in P , and denote by AP /P the set of predicates from AP occurring in P . We
assume that AP always contains the equality predicate, even if such a predicate does
not actually occur in P .

Definition 3. Let H = (T ,P) be a safe hybrid KB. The grounding of the structural
predicates in P , denoted by grp(P) is the set of ground atoms

{m(t) | m ∈ AP /P and m has arity k and t is a k-tuple of constants of CP}

The idea behind the above definition is that, in the case of safe hybrid KBs, grp(P)
identifies the set of all the relevant instantiations of the predicates in AP needed to
decide satisfiability of the rule component of the safe hybrid KB H: In fact, due to the
safeness condition in the program rules, it turns out that we can restrict the grounding
of the rules only to the instantiations which substitute each variable with a symbol in
CP (notice that, since we assume that AP /P always contains the equality predicate,
grp(P) always contains all the atoms representing the equality between two constants
in CP ).

Thus, we can divide the set of all interpretations for T into equivalence classes,
based on the way in which such interpretations evaluate the ground atoms in grp(P).
Each such equivalence class can be represented by a partition (GP , GN ) of grp(P).
More precisely, GP is the set of ground atoms in grp(P) satisfied by the interpretations
in the equivalence class, while GN is the set of atoms in grp(P) which are not satisfied
by such interpretations.

However, not all the partitions of grp(P) represent a guess of the ground atoms
that is compatible with the KB T . The following definition formalizes the notion of
consistency of a partition of ground atoms with respect to T .

Definition 4. A partition (GP , GN ) of grp(P) is consistent with T iff the first-order
theory T ∪ {m(t) | m(t) ∈ GP } ∪ {¬m(t) | m(t) ∈ GN} is satisfiable.

Informally, the above definition indicates that, if a partition is consistent with T ,
then there exists at least one interpretation that both satisfies T and evaluates the atoms
in grp(P) according to the partition (GP , GN ).
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Algorithm Safe-Hybrid-Sat(H)
Input: safe hybrid KB H = (T , P)
Output: true if H is satisfiable, false otherwise
begin

if there exists partition (GP , GN ) of grp(P)
such that

(a) (GP , GN ) is consistent with T and
(b) rectify(P(GP , GN )) has a standard stable model

then return true
else return false

end

Fig. 1. The algorithm Safe-Hybrid-Sat

Finally, we denote by P(GP , GN ) the Datalog¬∨ program

P(GP , GN ) = P ∪ GP ∪ {← r(t) | r(t) ∈ GN}

In Figure 1 we report the algorithm Safe-Hybrid-Sat for deciding satisfiability of a
safe hybrid KB H = (T ,P). The algorithm formalizes the idea that a way to decide
satisfiability of H is to look for a partition of grp(P) that is consistent with T and such
that the program rectify(P(GP , GN )) has a standard stable model, i.e., a stable model
according to the standard, UNA-based semantics of Datalog¬∨ [7].

More precisely, we reduce reasoning in the absence of UNA to reasoning in the
presence of UNA in the relational component as follows:

– a partition (GP , GN ) of grp(P) fixes an interpretation of the equality predicate for
the constants in CP (since all ground atoms stating equality between constants in
CP belong to grp(P));

– now, the program P(GP , GN ) takes into account such an interpretation of equal-
ity by adding the corresponding facts and constraints to P . However, to correctly
model the absence of the UNA, each rule must be transformed (rectified) as in De-
finition 2. In fact, it can be shown [6] that the transformation of a rule produced
by the rectification precisely corresponds to allow for unification of terms via the
equality predicate under UNA, thus simulating the absence of the UNA in the actual
semantics for safe hybrid KBs.

Example 3. Let H = (T ,P) where P is the following program:

equal(X, Y ) ← r(X, Y ), r(X, Z)
t(X) ← s(X, X)

r(a, b)
r(a, c)
s(b, c)

and for simplicity suppose that T is the empty theory. Let GP , GN be as follows:

GP = {equal(b, c), equal(c, b), equal(a, a), equal(b, b), equal(c, c)}
GN = {equal(a, c), equal(c, a), equal(a, b), equal(b, a)}
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First, (GP , GN ) is consistent with T , since it does not violate the semantics of equal
(i.e., the fact that equal is an equivalence relation). Then, rectify(P(GP , GN )) is the
following program:

equal(X1, Y 1) ← r(X2, Y 2), r(X3, Z), equal(X1, X2), equal(X2, X3), equal(Y 1, Y 2)
t(X1) ← s(X2, X3), equal(X1, X2), equal(X2, X3)

r(Xa, Xb) ← equal(Xa, a), equal(Xb, b)
r(Xa, Xc) ← equal(Xa, a), equal(Xc, c)
s(Xb, Xc) ← equal(Xb, b), equal(Xc, c)

← equal(a, c)
← equal(c, a)
← equal(a, b)
← equal(b, a)

equal(b, c)
equal(c, b)
equal(a, a)
equal(b, b)
equal(c, c)

It is immediate to verify that, for instance, the facts s(b, b), t(b), s(c, c), t(c) belong
to the only standard stable model of rectify(P(GP , GN )). It is also easy to see that
the only other guess (GP , GN ) that is both satisfiable at step (a) and at step (b) of the
algorithm is the one in which GN = ∅, i.e., the three constants are assumed as equal. In
fact, every other guess is either unsatisfiable at step (a) of the algorithm (since it violates
the fact that equal must be an equivalence relation) or is such that there are no stable
models for rectify(P(GP , GN )) (since equal(b, c) ∈ GN and therefore the first rule of
the program is violated). ��

The algorithm Safe-Hybrid-Sat is sound and complete with respect to the non-
monotonic semantics defined in Section 2.2, as stated by the following theorem.

Theorem 1. Let H = (T ,P) be a safe hybrid KB. Then, H is satisfiable iff Safe-
Hybrid-Sat(H) returns true.

We remark that the algorithm reduces reasoning in safe hybrid KBs to standard rea-
soning in the structural component (step (a)) and to standard reasoning in Datalog¬∨

(step (b)). Therefore, not only the algorithm is modular, but also it allows for reusing
deductive techniques (and implemented systems) developed for the structural language
and for Datalog¬∨ [8].

Decidability and Complexity. We now study decidability and complexity issues in
the framework of safe hybrid KBs. We start by recalling a decidability and complexity
result for Datalog¬∨ programs under standard (UNA-based) stable model semantics.

Proposition 1 ([7]). Satisfiability of Datalog¬∨ programs under standard stable model
semantics is NEXPTIMENP -complete. Moreover, satisfiability of Datalog¬ programs
under standard stable model semantics is NEXPTIME-complete.

Then, it can be shown that satisfiability of Datalog¬∨ programs under standard sta-
ble model semantics can be reduced to satisfiability in safe hybrid KBs. Consequently,
the following hardness result follows.



60 R. Rosati

Theorem 2. Satisfiability of safe hybrid KBs is NEXPTIMENP -hard. Moreover, it is
NEXPTIME-hard if the rule component is a Datalog¬ program.

We now prove a very general result on the decidability of reasoning in safe hybrid
KBs.

Theorem 3. Let H = (T ,P) be a safe hybrid KB. If establishing consistency of a
partition of grp(P) with T is decidable, then satisfiability of H is a decidable problem.

Proof. First, observe that the set grp(P) is finite, therefore the number of partitions
of grp(P) is finite. Then, since by hypothesis establishing consistency of a partition
(GP , GN ) with T is decidable, for each such partition (GP , GN ) condition (a) of the al-
gorithm can be verified in a finite amount of time; moreover, since rectify(P(GP , GN ))
is a finite Datalog¬∨ program, from Proposition 1 it follows that condition (b) of the
algorithm can also be verified in a finite amount of time. ��

We remark that, starting from a logic L in which reasoning is decidable, it is very
often the case that deciding satisfiability of a theory of an L-KB augmented with a finite
set of ground literals is still decidable, and therefore that reasoning in safe hybrid KBs
made of L theories as structural components is decidable. In this sense, the previous
theorem can be read as a very strong result, stating that the framework of safe hybrid
KBs generally preserves decidability of reasoning.

Decidability of OWL-DL with DL-Safe Rules. The DL that currently plays a central
role in the Semantic Web is SHOIN (D): as mentioned in Section 1, it is equivalent to
OWL-DL [19], which is a W3C recommendation language for ontology representation
in the Semantic Web. Reasoning in SHOIN (D), and hence in OWL-DL, is decidable,
as stated by the following property.

Proposition 2 ([14,22]). Satisfiability of SHOIN (D) KBs is NEXPTIME-complete.

Based on Theorem 3, it is possible to prove that reasoning in SHOIN (D) safe hy-
brid KBs is decidable, and to provide a computational characterization of the problem.

Theorem 4. Let H = (T ,P) be a safe hybrid KB where T is a SHOIN (D) KB and
P is a Datalog¬∨ program. Deciding satisfiability of H is NEXPTIMENP -complete.
Moreover, if P is a Datalog¬ program, deciding satisfiability of H is NEXPTIME-
complete.

As a corollary of the above theorem, we close an open problem in [18], i.e., de-
cidability of satisfiability of SHOIN (D) with DL-safe rules. This problem exactly
corresponds in our framework to deciding satisfiability of a safe hybrid KB composed
of a SHOIN (D) KB and a positive Datalog program: as a corollary of the above re-
sults, it immediately follows that satisfiability in such safe hybrid KBs is decidable and
is NEXPTIME-complete.

4 Related Work

Although in various forms, the notion of safe integration has been taken into account
since the earliest studies concerning the extension of DLs with rules. The first formal
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proposal for the integration of Description Logics and rules is AL-log [5]. AL-log is a
framework which integrates KBs expressed in the description logic ALC and positive
Datalog programs. Then, disjunctive AL-log was proposed in [20] as an extension of
AL-log, based on the use of Datalog¬∨ instead of positive Datalog, and on the possibil-
ity of using binary predicates (roles) besides unary predicates (concepts) in rules. When
choosing ALC as the structural language, the framework of safe hybrid KBs captures
disjunctive AL-log and can be seen as a generalization of it: indeed, differently from
safe hybrid KBs, in disjunctive AL-log structural predicates can occur only in the bod-
ies of rules, which restricts the information flow only from the structural KB to the rule
KB, but not vice versa.

This line of research was carried on by the work on CARIN [16], which established
several fundamental decidability results concerning non-safe interaction between DL-
KBs and rules. Some of such results clearly indicate that, in case of unrestricted in-
teraction between the structural component and the rule component in hybrid KBs,
decidability of reasoning holds only if at least one of the two component KBs has very
limited expressive power: e.g., in order to retain decidability of reasoning, allowing re-
cursion in the rule KB imposes very severe restrictions on the expressiveness of the
structural KB.

The framework of AL-log has been extended in a different way in [18]. There, the
problem of extending OWL-DL with positive Datalog programs is analyzed. The inter-
action between OWL-DL and rules is restricted through a safeness condition which is
exactly the one adopted in safe hybrid KBs. With respect to disjunctive AL-log, in [18]
a more expressive structural language and a less expressive rule language are adopted:
moreover, the information flow is bidirectional, i.e., structural predicates may appear
in the head of rules. As we have shown in Section 3, such a framework is perfectly
captured by safe hybrid KBs.

The work presented in [11] can also be seen as an approach based on a form of safe
interaction between the structural DL-KB and the rules: in particular, a rule language
is defined such that it is possible to encode a set of rules into a semantically equivalent
DL-KB. As a consequence, such a rule language is very restricted.

A different approach is presented in [13,12], which proposes Conceptual Logic Pro-
gramming (CLP), an extension of answer set programming (i.e., Datalog¬∨) towards
infinite domains. In order to keep reasoning decidable, a syntactic restriction on CLP
program rules is imposed. This approach is related to integrating DLs and rules, since
the authors also show that CLPs can embed expressive DL-KBs, which in turn im-
plies decidability of adding CLP rules to such DLs. However, the syntactic restriction
on CLP rules, whose purpose is to impose a “forest-like” structure to the models of
the program, is different from the safeness conditions analyzed so far, which makes it
impossible to compare this approach with safe hybrid KBs (and with the approaches
previously mentioned).

Another approach for extending DLs with Datalog¬ rules is presented in [9]. Dif-
ferently from safe hybrid KBs and from the other approaches above described, this pro-
posal allows for specifying in rule bodies queries to the structural component, where
every query also allows for specifying an input from the rule component, and thus for
an information flow from the rule component to the structural component. The meaning
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of such queries in rule bodies is given at the meta-level, through the notion of skeptical
entailment in the DL-KB. Thus, from the semantic viewpoint, this form of interaction-
via-entailment between the two components is more restricted than in safe hybrid KBs
(and in the similar approaches previously mentioned); on the other hand, such an in-
creased separation in principle allows for more modular reasoning methods, which are
able to completely separate reasoning about the structural component and reasoning
about the rule component. However, in this paper we have shown that an analogous
form of modularization of reasoning is possible also in the presence of a semantically
richer form of interaction between the two components of a safe hybrid KB.

An approach for the combination of defeasible reasoning with Description Logics is
presented in [1], under a safe interaction-via-entailment scheme which is semantically
analogous to the one proposed in [9]. Besides the differences with our approach (and
with the studies on nonmonotonic extensions of DL-KBs previously mentioned) con-
cerning the semantics of nonmonotonic rules, a main characteristic of these proposals
consists in the fact the information flow is unidirectional, i.e., it goes from the structural
component to the rule component.

Generally speaking, it is difficult to provide a satisfactory semantic account for
non-safe interaction between DL-KBs and nonmonotonic rules, due to the classical,
open world semantics of DL-KBs, and the closed world assumption underlying non-
monotonic systems. For instance, [17] illustrates the problems in providing a semantic
account for non-safe interaction of ontologies and Datalog¬∨ programs.

Finally, [4] proposes OWL Flight, a logic programming based formalism for the Se-
mantic Web. A detailed comparison of the relative expressive abilities of OWL Flight
and OWL-DL is made, which proves the adequacy of the proposed approach for Se-
mantic Web applications. Although based on logic program rules, the purpose of this
approach is different from ours and from the ones mentioned above, and does not actu-
ally deal with the problem of integrating DLs with rules.

5 Conclusions

In this paper we have formally demonstrated that the form of safe interaction introduced
in [5] and extended in various forms by [20,18] can be generally applied, and consti-
tutes a good choice for the design of integrated KBs when we want to keep expressive
power both in the structural component and in the rule component, and when decid-
ability and complexity of (sound and complete) reasoning is a crucial aspect. Indeed,
in general, such safe interaction preserves decidability of reasoning and, in many cases,
does not increase the complexity of reasoning, i.e., reasoning in the integrated KB is
computationally no harder than reasoning separately in the two components.

Moreover, we have shown that such a form of safe interaction allows for a clear
formal treatment of hybrid KBs in which the UNA is not adopted, and in which we
want the OWA on the structural component and the CWA on the rule component.

A possible further extension of the present work is towards the study of data com-
plexity in the framework of safe hybrid KBs, following the lines of [3], which ana-
lyzes data complexity for AL-log. Moreover, it should be interesting to analyze whether
tighter forms of interaction between the structural and the rule component can be de-
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fined, relaxing, on the one hand, the safeness condition of safe hybrid KBs, while pre-
serving, on the other hand, their nice computational properties. Finally, it would be very
interesting to study data complexity in the framework of safe hybrid KBs, continuing
the research presented in [3], which analyzes data complexity for AL-log.
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Abstract. In this sketchy paper we introduce a logical reconstruction
of the RDF family of languages and the OWL-DL family of languages.
We prove that our logical framework is equivalent to the standard W3C
definitions of RDF and OWL-DL/Lite. The main aim is to have a uni-
fied model theoretic semantics for both worlds. As a consequence we
get various complexity results and a model theoretic semantics for basic
SPARQL.

1 Introduction

The main aim of this sketchy paper is to recast the RDF model theory in a more
classical logic framework, and to use this characterisation to shed new light on
the ontology languages layering in the semantic web, and to lay down the logic
based semantics of SPARQL. In particular, we will show how the models of RDF
can be related to the models of DL based ontology languages, without requiring
any change on the existing syntactic or semantic definitions in the RDF and
OWL-DL realms.

We first introduce the notion of herbrand and canonical models for RDF
graphs, and we use this notion to characterise RDF entailment. RDF herbrand
models can also be seen as classical first order structures, that we call FO in-
terpretations. These structures provide the semantic bridge between RDF and
classical logics, such as description logics (DL) based languages (e.g., OWL-DL).
The intuition beyond FO interpretations is that it singles out the concepts and
the individuals from an RDF herbrand model – possibly in a polymorphic way
when the same node is given both the meaning as a class and as an individual.

Once we have characterised RDF graphs in terms of their herbrand models, it
is possible to understand the notion of logical implication between RDF graphs
and classical logic formulas. At the end of this paper we analyse the problem
� This work has been partially supported by the EU projects KnowledgeWeb, Interop,
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of querying RDF graphs with OWL-DL ontologies. We prove an important re-
duction result. That is, given an RDF graph S and a query Q, the answer set
of Q to S (as defined by W3C) is the same as the answer of Q to S given the
empty KB. This shows a complete interoperability between RDF and OWL-DL.
For example, in absence of ontologies, it would be possible to use OWL-QL to
answer queries to RDF graphs, or to use SPARQL to answer queries to ABoxes.

In this paper we assume that the reader is familiar with the definitions asso-
ciated to RDF.

2 RDF Model Theory Revisited

In this paper we consider an extended notion of RDF graph, in which we are
less restrictive on the kind of triples. In particular we allow

– literals in subject positions;
– blank nodes in property positions.

Note that the first kind of extension has been already considered by W3C
working groups (e.g. see Section 2.2 of [Prud’hommeaux and Seaborne, 2005]).
All the results shown in this paper still holds for the standard definition of
RDF graph. From now on, by RDF graph we intend the extended definition.
Also note that reification is not considered as not being part of the standard
semantic definition of RDF.

We indicate with RDFU the set of all RDF URI references together the set
of all literals in their canonical representation1. An RDF graph is said to be well
typed if doesn’t contain the triple

〈"xxx"^^rdf:XMLLiteral, rdf:type, rdf:XMLLiteral〉

where "xxx"^^rdf:XMLLiteral is an ill-typed XML literal string (see the RDF
semantic conditions in Section 3.1 of [Hayes, 2004]).

We first define the notion of herbrand and canonical models for an RDF
graph.

Definition 1. (Herbrand and canonical models)
A herbrand model of an RDF graph S is a well typed ground instantiation of the
graph obtained by replacing each bnode in the completed S with some element
in RDFU .
A graph is completed if it is augmented by the RDF axiomatic triples, it is
extended by applying the property RDF entailment and grounded lg rules (see
sections 3.1, 7.1 and 7.2 in [Hayes, 2004])2, and all the literals are in their
canonical representation.
1 The canonical representation of a literal is a chosen representative of all the literals

associated to the same value, if the literal is non ill-typed, otherwise it is the literal
itself.

2 Note that, since we allow literals as subject in RDF triples, we need to add a sym-
metric lg rule acting on literals in the subject of a triple.
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The canonical model Ŝ of an RDF graph S is the herbrand model of S obtained
by replacing each distinct bnode in S with a distinct fresh URI – that is, a skolem
constant not appearing elsewhere in S nor in the context in which S is used (e.g.
in queries).

Note that a herbrand model is always finite if the RDF graph is finite, that
a ground RDF graph has a unique herbrand model that it is also its canonical
model, and that a herbrand model is a ground RDF graph.

As the following theorem shows, the herbrand models of an RDF graph con-
tain explicitly all the information entailed by the graph itself.

Theorem 2. (RDF entailment)
An RDF graph S entails an RDF graph E (as defined in [Hayes, 2004]), written
S � E, if and only if some herbrand model of E is a subgraph of the canonical
model of S.

Corollary 3. (Complexity of entailment)

1. RDF entailment is NP-complete in the size of the RDF graphs.
2. RDF entailment is polynomial in the size of the entailing graph S.
3. RDF entailment is polynomial in the size of the graphs if E is acyclic or

ground.

The proofs are based on a reduction to the problem of conjunctive query
containment, and by using the interpolation lemma in [Hayes, 2004].

The above theorem and corollary (without the polynomiality results) have
been already sketched in [Gutierrez et al., 2004]. However, the results in
[Gutierrez et al., 2004] are imprecise since the role of axiomatic triples and the
completion (as defined here) are neglected, and literals are not taken in careful
account.

2.1 The Semantics of Basic SPARQL

Let’s now consider SPARQL queries on RDF graphs. If we restrict our attention
to SPARQL query basic graph patterns [Prud’hommeaux and Seaborne, 2005],
we can define the semantics of query answering in the usual logic based way (as,
e.g., is defined for classical relational databases, or for description logics). We
also disallow in this paper the answer to a query to contain blank nodes. Relaxing
this restriction raises several issues regarding the redundancy of answer, which
are not taken into account in [Prud’hommeaux and Seaborne, 2005].

Definition 4. (Semantics of basic SPARQL)
A SPARQL query basic graph pattern to an RDF graph S is a (possibly ground)
RDF graph Qx where, in addition to URIs and bnodes, variables are allowed; the
elements in the set x (possibly empty) of n variables of a query are called distin-
guished variables, and the bnodes play the role of non-distinguished variables.
The answer set of Qx is the set of all substitutions of the distinguished variables
with some arbitrary URI from RDFU , such that the for each substitution the
instantiated query is entailed by S, i.e.,
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{〈c1 . . . cn〉 ∈ (RDFU )n | S � Q[x1 �→c1,...,xn �→cn]}.

Note that according to our extended definition of RDF graphs we allow blank
nodes and variables in property position.

Corollary 5. (Complexity of SPARQL)
Query answering for SPARQL query basic graph patterns is polynomial in data
complexity.

Again, the proof follows from an encoding of the problem as a conjunctive
query containment problem. Note that the above definition together with the
correspondence stated in Theorem 2 suggests an implementation of query an-
swering for SPARQL based on the canonical models.

The result of Corollary 5 has been already sketched in [Gutierrez et al., 2004]
for a richer query language, with the same imprecision we mentioned before.

2.2 The FO Model Theory for RDF

A FO interpretation (first order interpretation) of an RDF graph shows how
models of RDF can be seen as interpretations of classical first order logic.

Definition 6. (FO interpretation of an RDF herbrand model)
A FO interpretation of an RDF herbrand model (say, IRDF) is a first order
type structure I(IRDF) = 〈Δ, .IO , .IC , .IR〉, where Δ is an abstract domain cor-
responding to RDFU . The interpretation of the elements of IRDF is given by the
interpretation functions .IO , .IC , .IR , whose domain is RDFU , and the range is
respectively all elements of Δ, all subsets of Δ, and all binary relations over Δ.
The interpretation functions state which of the elements of the graph play the
role of individuals, concepts, and roles.

For each u ∈ RDFU , I(IRDF) should be such that:

uIO = u

uIC = {o | 〈o, rdf:type, u〉 ∈ IRDF}
uIR = {(o1, o2) | 〈o1, u, o2〉 ∈ IRDF}

An URI reference is associated to more than one syntactic type, e.g., an URI may
refer to an individual and to a class at the same time: polymorphic meanings of
URIs are allowed. However note that, just like in the case of contextual predicate
calculus (as defined in [Chen et al., 1993]), in the above definition there is no
semantic interaction between the distinct occurrences of the same URI as a
concept name, or as a role name, or as an individual. This absence of interaction
is required for classical first order (description) logic fragments such as OWL-
Lite or OWL-DL. For example, given the triple 〈ex:o, rdf:type, ex:o〉 within
an RDF herbrand model, in the FO interpretation associated to it the URI ex:o
is interpreted as both an individual and a concept, and the individual ex:o is in
the extension of the concept ex:o.

We say that the FO interpretations of an RDF graph are the FO interpreta-
tions of its herbrand models. The main theorem of this Section states that we
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can correctly define RDF entailment and queries using a classical logic with FO
interpretations.

Theorem 7. (FO entailment and query)

1. An RDF graph S entails an RDF graph E (as defined in [Hayes, 2004]),
written as S � E, if and only if the set of all the FO interpretations of S is
included in the set of all the FO interpretations of E, written S |= E.

2. The answer set of a SPARQL query basic graph pattern Qx to an RDF graph
S, as defined in Definition 4, is equal to

{〈c1 . . . cn〉 ∈ (RDFU )n | S |= Q[x1 �→c1,...,xn �→cn]}.

3 Classical Logic Interoperability

In this Section we define the interoperability between RDF graphs and classical
logics. We show how a tower of classical logics (e.g., from OWL-Lite to OWL-
DL, to full first order logic, or any arbitrary logic equipped with classical first
order models) can be built on top of the language of RDF: the interoperability
is grounded on the notion of FO interpretations.

First, we need to define the notion of non high order graphs, that basically
do not have bnodes in any property or class position.

Definition 8. (Non-high order RDF graph)
An RDF graph is non-high order if bnodes and variables are not in property
position of any triple, nor in object position of rdf:type triples.

Note that herbrand models and canonical models are always non-high order
RDF graphs, since they are always ground graphs.

Definition 9. (Classical logic translation)
The classical logic translation FO(S) of a non-high order RDF graph S is a
predicate logic formula, where URIs and literals are constants and blank nodes
are existentially quantified variables, and the body is a conjunction of the ground
binary atomic formulas in correspondence with the triples of S, where the bi-
nary atomic formulas of the kind “rdf:type(a, b)” are replaced by ground unary
atomic formulas of the kind “a(b)”.

We now introduce the general problem of reasoning and query answering in
a classical logic C given an RDF graph. We require that in C the interpretation
of well-typed literals is subject to the Unique Name Assumption.

Definition 10. (Classical logic RDF extension)

1. The logical implication problem in a classical logic C given an RDF graph S
is defined as follows:

FO(Ŝ), φ |=C ψ

where φ and ψ are formulas in C, and |=C is entailment in C.



70 J. de Bruijn, E. Franconi, and S. Tessaris

2. The query answering problem in a classical logic C given an RDF graph S
is defined as follows:

{〈c1 . . . cn〉 ∈ (RDFU )n | FO(Ŝ), φ |=C ψ[x1 �→c1,...,xn �→cn]}.

where φ is a formula in C and ψx is an open formula in C (expressing the
query) with x being the free (distinguished) variables, and |=C is entailment
in C.

The above general definition of reasoning and querying given an RDF graph is
actually an abstraction of basic reasoning and querying for RDF graphs only, as
the following reduction theorem shows. In this way, we believe that the classical
logic RDF extension presented above is a meaningful way to build up logical
languages on top of RDF, and it is a formal justification of the semantic web
tower of languages proposed by Tim Berners-Lee.3

Theorem 11. (Reduction theorem)

1. Given an RDF graph S and a non-high order graph E, S � E if and only if
FO(Ŝ) |=C FO(E)

2. Given an RDF graph S and a SPARQL non-high order query basic graph
pattern Qx, its answer set is equal to

{〈c1 . . . cn〉 ∈ (RDFU )n | FO(Ŝ) |=C FO(Q[x1 �→c1,...,xn �→cn])}.

The proof of the reduction theorem is based on the following lemma.

Lemma 12. (Canonical entailment)
An RDF graph S entails an RDF graph E (as defined in [Hayes, 2004]), i.e.,
S � E, if and only if the FO interpretation corresponding to the canonical model
of S is in the set of all the FO interpretations of E.

This lemma together with the reduction theorem justifies the use of datalog-like
implementations for SPARQL.

3.1 The Case of OWL-DL

The results presented so far have several immediate consequences when consid-
ering the interoperability between OWL-DL/Lite with RDF.

First of all, it is possible to have an implementation for free of a query
evaluation engine for SPARQL non-high order query basic graph patterns, using
any of the existing description logics based query system available. In fact, it is
enough to encode the (arbitrary) RDF graph to query as an ABox in the system
(by considering its canonical model), and to query it by encoding the SPARQL
non-high order query basic graph pattern as a standard conjunctive query. The
reduction theorem above guarantees that we will get the correct answer.
3 This paper focuses on RDF; for the sake of simplicity, we ignore RDFS in the se-

mantic web tower. Including RDFS is currently subject of our research work.
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Moreover, it is possible to extend the query problem of an RDF graph in
SPARQL to the query problem of an RDF graph given an ontology in OWL-
DL, again by exploiting standard description logics based query systems. This
is achieved by just adding the encoding of the RDF graph to query as an ABox.

This work also shows how it is possible to give a semantics to OWL-DL based
on RDF, generalising the recommended semantics given in [Peter-Schneider et
al., 2004]. Our proposal is fully compatible with the W3C recommended seman-
tics, but removes some of the non necessary limitations related to the polymor-
phism of URIs. As a matter of fact, [Patel-Schneider et al., 2004] would allow in-
teroperation and queries only with RDF graphs not containing any meta informa-
tion (for example, of the kind represented by the triple 〈ex:o, rdf:type, ex:o〉);
a similar kind of restriction has been proposed in [Antoniou and van Harmelen,
2004](called type separation) and in [Pan and Horrocks, 2003] (where a more
liberal stratification is proposed).
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Abstract. Metadata processing is recognized as a central challenge for
database research in the next decade. Already, novel desktop data man-
agement and search applications (cf. Apple’s Spotlight and Microsoft’s
WinFS) are enabled by rich metadata. Efficient and effective access to
such data becomes a crucial issue for more and more application scenar-
ios. In this article, we focus on metadata represented in RDF. A number
of query languages for RDF have been presented in recent years. This
article argues that most of these approaches fail to address properly two
core issues: the provision of rich operators and constructs to adequately
support RDF’s graph data model and the ability to intertwine access to
metadata (in RDF format) and data (in XML format). To address this
points, two XML views over RDF data are expressed in the query lan-
guage Xcerpt and discussed. Furthermore, it is shown how these views
together with Xcerpt’s rich graph patterns allow the succinct expression
of complex, but common queries against RDF graphs.

1 Introduction

The ‘Semantic Web’ is an endeavor widely publicized in [1], envisioning the
current Web, which consists of (X)HTML and documents in other XML formats,
extended by metadata specifying the meaning of these documents in forms usable
by both human beings and computers.

The integral processing of data and metadata is recognized as a central chal-
lenge for the next decade (cf., e.g., Pat Selinger’s ICDE 2005 Keynote) not only
as a contribution to the Semantic Web vision, but also on a smaller scale as part
of the next generation of desktop data management (cf. Apple’s Spotlight and
Microsoft’s WinFS that aim at extending current file storage and desktop search
with extensive metadata facilities).

In the (Semantic) Web context, a number of formalisms have been proposed
for representing metadata, in particular RDF, Topic Maps, and OWL. This
article concentrates concentrate on RDF as the most widely used formalism.
This article illustrates first steps towards integrating access to standard Web
data in XML format and RDF metadata: First, as argued above, integrated
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access to standard Web data in XML and metadata in RDF is essential. A
framework to access RDF data through XML views is proposed. Second, this
article argues that the currently predominant treatment of RDF data as flat
triples is, although easy to comprehend, not the only and often not the best way
of considering RDF data. Rather, a view of the RDF data directly as a graph
is not only natural and closer to the RDF data model, but also allows for easy
expression of graph patterns using much the same constructs as for navigating in
XML data. This is particularly evident in face of incomplete information about
the precise graph structure. Third, this article argues that querying RDF data
is often most conveniently achieved if queries are composed in terms of both
the triple and the graph view of RDF. Finally, this article argues that many
applications call for queries combining object data in (X)HTML or XML and
metadata in RDF. Thus, it is convenient to “marry” triple and graphs as well
as RDF and XML in querying the Semantic Web.

The proposed framework is realized by rules in the XML query language
Xcerpt that allow (a) the easy conversion between the two views on RDF and
(b) the ‘serialization transparent’ querying of RDF, i.e., the querying of RDF
in many of the over a dozen serialization formats for RDF proposed in recent
years.

2 Preliminaries

2.1 RDF and RDF Schema: Metadata Representation in the
Semantic Web

RDF [2] is the prevalent standard for representing metadata in the (Semantic)
Web. RDF data is sets of ‘triples’ or ‘statements’ of the form (Subject, Property,
Object). RDF’s data model (as defined in [3]) is a directed graph, whose nodes
correspond to statements’ subjects and objects and whose arcs correspond to
statements’ property (thus relating subjects with objects). Nodes are labeled by
either (1) URIs describing (Web) resources, or (2) literals (i.e. scalar data such
as strings or numbers), or (3) are unlabeled, being so-called anonymous or ‘blank
nodes’. Blank nodes are commonly used to group or ‘aggregate’ properties. Edges
are always labeled by URIs indicating the type of relation between its subject
and object.

RDFS allows one to define so-called ‘RDF Schemas’ or ‘ontologies’, similar
to object-oriented data models. Based on an RDFS, ‘inference rules’ can be
specified, for instance the transitivity of the class hierarchy, or the type of an
untyped resource that has a property associated with a known domain.

RDF can be serialized in various formats, the most frequent being XML.
Early approaches to RDF serialization have raised considerable criticism due to
their complexity. As a consequence, a surprisingly large number of RDF serial-
ization have been proposed, cf. [4] for a survey of serialization formats.

Figure 1 shows the running example for this article, a (simplified) represen-
tation of an RDF graph as used, e.g., in a book recommender system.
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Writing

Novel Essay

Historical Novel Historical Essay

author

translator

foaf:Person

Bellum Civile

The First Man in Rome

Colleen McCullough

Julius Caesar

Aulus Hirtius

J. M. Carter

rdfs:domain

rdfs:domain

rdfs:range

rdfs:range

dc:title

dc:title

author

translator

author

author

foaf:name

foaf:name

foaf:name

foaf:name

Classes

Properties

Literals

Resources

rdf:type (“is-a”)
Relation

rdf:subClassOf
(“is-a-kind-of”)
Relation

Fig. 1. Sample Data: representation as a (simplified) RDF graph

2.2 Xcerpt, a Versatile Web Query Language

Xcerpt [5,6] is a query language designed after principles given in [7] for querying
both data on the standard Web (e.g., XML and HTML data) and data on the
Semantic Web (e.g., RDF, Topic Maps, etc. data).

Xcerpt is ‘data versatile’, i.e. a same Xcerpt query can access and generate,
as answers, data in different Web formats. Xcerpt is ‘strongly answer-closed’, i.e.
it not only gives rise to construct answers in the same data formats as the data
queries, but also to include in a query program data generated by this same query
program. Xcerpt’s queries are pattern-based and give rise to incompletely specify
the data to retrieve by (1) not explicitly specifying all children of an element, (2)
specifying descendant elements at indefinite depths (restrictions in the form of
regular path expressions being possible), and (3) specifying optional query parts.
Xcerpt’s evaluation of incomplete queries is based on a novel form algorithm
called ‘simulation unification’. Xcerpt’s processing of XML documents is graph-
oriented, i.e., aware of the reference mechanisms (e.g., ID/IDREF attributes and
links) of XML. Xcerpt is rule-based: An Xcerpt rule expresses how data queried
can be re-assembled into new data items.

Xcerpt Programs consist of at least one ‘goal’ and some (possibly zero) ‘rules’.
Rules and goals contain query and construction patterns, called ‘terms’. Terms
represent tree- or graph-like structures. The children of a node may either be
‘ordered’ (as in a XHTML document or in RDF sequence containers), i.e. the
order of occurrence is relevant, or ‘unordered’, i.e. the order of occurrence is
irrelevant and may be ignored (as in the case of RDF statements). In the term
syntax, an ordered term specification is denoted by square brackets [], an un-
ordered term specification by curly braces {}. Terms may contain the reference
constructs ˆid (‘referring’ occurrence of the identifier id) and id @ t (‘defin-
ing’ occurrence of the identifier id). Using reference constructs, terms can form
cyclic (rooted) graph structures.
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Terms can be either data, query, or construct terms. Data terms represent XML
documents and the data items of a semistructured database. They are similar to
ground functional programming expressions and logical atoms. A database is a
(multi-)set of data terms (e.g. the Web). A non-XML syntax has been chosen for
Xcerpt to improve readability, but there is a one-to-one correspondence between
an XML document and a data term.

Query terms are (possibly incomplete) patterns matched against Web re-
sources represented by data terms. In many ways, they are like forms or exam-
ples for the queried data (in the style of the ‘query-by-example’ paradigm [8]),
but also

– may be incomplete in breadth, i.e., contain ‘partial’ as well as ‘total’ term
specifications: A term t using a partial term specification for its subterms
matches with all such terms that (1) contain matching subterms for all sub-
terms of t and that (2) might contain further subterms without correspond-
ing subterms in t. Partial term specification is denoted by double (square or
curly) brackets. In contrast, a term t using a total term specification does not
match with terms that contain additional subterms without corresponding
subterms in t.

– may be augmented by variables for selecting data items, possibly with ‘vari-
able restrictions’ using the → construct (read as), which restricts the admis-
sible bindings to those subterms that are matched by the restriction pattern.

– may contain query constructs like position matching (using position), sub-
term negation (using without), optional subterms (using optional), regular
expressions for namespaces, labels, and text, and conditional or uncondi-
tional path traversal (using desc).

– may contain further constraints on the variables in a so-called condition box,
beginning with the keyword where.

Construct terms serve to reassemble variables (the bindings of which are
specified in query terms) so as to construct new data terms. Again, they are
similar to the latter, but augmented by variables (acting as place holders for data
selected in a query) and the grouping construct all (which serves to collect all
instances that result from different variable bindings). Occurrences of all may
be accompanied by an optional sorting specification.

Rules or construct-query rules relate a construct term to a query consisting
of arbitrary boolean expressions using only AND, OR, and NOT to connect query
terms. They have the form

CONSTRUCT query term FROM and { query term, or { query term, ... }, ... } END

An Xcerpt rule may contain one or several references to resources (expressed
using in and resource).

Rules can be seen as ‘views’ specifying how to obtain documents shaped in
the form of the construct term by evaluating the query against Web resources
(e.g. an XML document or a database).

Xcerpt rules may be chained like active or deductive database rules to form
complex query programs, i.e., rules may query the results of other rules.
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3 Two Perspectives on RDF

This section introduces two different perspectives on RDF: (1) a flat, almost re-
lational view and (2) a graph view reminiscent of semi-structured data. Existing
approaches for RDF querying are classified along these perspectives briefly.

To illustrate these two perspectives, the selection query “Select all Essays
together with their authors (i.e. author URIs and corresponding names)” is
used against the data of Figure 1. This simple, but natural query requires a
(unconditional) traversal of the sub-classes of Essay, to find also books classified
as, e.g., Historical Essay.

3.1 RDF Triples: A Flat, Relational View

The following Xcerpt program expresses the above query on a triple view of the
RDF data:

1 DECLARE ns-prefix rdf = ”http ://www.w3 . org/1999/02/22−rdf−syntax−ns#”
DECLARE ns-prefix books = ”http :// example . org/books#”

3 GOAL
result [

5 all essay [
id [ var Essay ],

7 all author [
id [ var Author ],

9 all name [ var AuthorName ]
] ] ]

11 FROM
and{ RDFS-TRIPLE [

13 var Essay, rdf:type{{}}, books:Essay{{}} ],
RDF-TRIPLE [

15 var Essay, books:author{{}}, var Author ],
RDF-TRIPLE [

17 var Author, books:authorName{{}}, var AuthorName ] }
END

The query pattern (between FROM and END) is a conjunction of queries against
the RDF triples represented in the predicate RDF-TRIPLE using the prefixes
declared in line 1 and 2. Notice that the first conjunct actually uses RDFS-
TRIPLE. This view of the RDF data contains all basic triples plus the ones
entailed by the RDFS semantics (cf. [9] for a detailed description). Using RDFS-
TRIPLE instead of RDF-TRIPLE ensures that also resources actually classified in
a sub-class of books:Essay are returned.

In the construct pattern (between GOAL and FROM), one of the strengths of
combining XML and RDF querying in Xcerpt is shown: Following the W3C’s
requirements for an RDF data access language, yet in contrast to most other
RDF query languages, it is possible to construct arbitrary XML: E.g., here, a
list of all essays with their authors grouped inside is constructed. Indeed, when
constructing structured data such as RDF and XML, grouping is among the
most essential constructs, cf. [10,11] on grouping in an XML context. For RDF
querying, this points towards the need for similarly powerful, declarative, and
explicit grouping constructs, as provide in Xcerpt’s all.
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Fig. 2. RDF Query Languages: historical overview and classification

Except for the construction of arbitrary XML, a similar (triple) view of RDF
is taken in most of the current RDF query languages (cf. Figure 2), most no-
tably in RDQL and the W3C’s SPARQL [12], and also in [13], an approach for
querying RDF with XQuery: A query is composed of conjunctions (and in some
languages including our proposal disjunctions) of “triple patterns”, i.e., triples
with variables indicating queried data. Using multiple occurrences of same vari-
ables more complex conditions can be expressed, e.g., for traversing paths in the
RDF data or even for restricting a resource using several of its properties.

While familiar from SQL, this style leads for RDF data to hard-to-read and
lengthy queries that also pose problems for evaluation (cf., e.g., [14]). Further-
more, queries involving (conditional or unconditional) traversals of unknown
length in the RDF graph can often not be expressed in query languages us-
ing this style and, if it is provided, requires recursive views, rules, or functions
(e.g., in [13]). This applies to the traversal of the subclasses of Essay needed
in the sample query. This is a serious limitation of triple-based RDF query lan-
guages, as such queries are frequent (especially when considering ontological
data in RDFS or other ontology languages) and recursive views or similar mech-
anisms make optimization and efficient evaluation of such queries hard or even
impossible.

The previous observations lead us to an alternative view of RDF that is both
closer to its actual data model and can make better use of the advanced features
of an XML query language such as the traversal of arbitrary length paths in tree
or graph data.
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3.2 RDF Graphs: A Semi-structured View

For this view of RDF, Xcerpt’s treatment of XML as graph data is an advantage
over XML query languages such as XPath or XQuery, which consider XML
as strictly tree shaped, providing no direct support for (ID/IDREF or similar)
references in the data model. Although there have been proposals for slicing an
(acyclic) RDF graph into trees (cf. Figure 2) for processing them with XSLT
or XQuery (e.g., [15]), these approaches invariantly suffer (a) from choosing an
appropriate slicing and (b) from the (in general) exponential blow-up of the tree
view of an acyclic RDF graph.

In Xcerpt, a graph view of RDF is rather natural as the following Xcerpt
program expressing the same query as above, but on the graph instead of the
triple view, demonstrates:

DECLARE ns-prefix rdf = ”http ://www.w3 . org/1999/02/22−rdf−syntax−ns#”
2 DECLARE ns-prefix books = ”http :// example . org/books#”

GOAL
4 result [

all essay [
6 id [ var Essay ],

all author [
8 id [ var Author ],

all name [ var AuthorName ]
10 ] ] ]

FROM
12 RDFS-GRAPH {{

var Essay {{
14 rdf:type {{ books:Essay {{ }} }},

books:author {{
16 var Author {{ books:name {{ var AuthorName }} }}

}}
18 }} }}

END

The RDF graph view is represented in the RDF-GRAPH predicate. Here,
the RDFS-GRAPH view is used that extends RDF-GRAPH as RDFS-TRIPLE ex-
tends RDF-TRIPLE. Triples are represented similar to striped RDF/XML: each
resource is a direct child element in RDF-GRAPH with a sub-element for each
statement with that resource as object. The sub-element is labeled with the
URI of the predicate and contains the object of the statement. As Xcerpt’s data
model is a rooted graph this can be represented without duplication of resources.

In contrast to the previous query against the RDF triple view, no conjunction
is used but rather a nested pattern that naturally reflects the structure of the
RDF graph. The more complex a query, the more evident the advantage of the
graph view becomes: instead of having to use multiple occurrences of same vari-
ables for relating parts of the query, that relation is represented in the structure
of the query itself (represented in the textual version of the query shown above
by nesting and indentation).

Path traversals of arbitrary length can be expressed using traversal operators
such as descendant. E.g., to find all subclasses of a given class one can use
Xcerpt’s qualified descendant desc(rdfs:subClassOf<rdfs:Class)* that is similar to
regular path expressions or conditional XPath. Similarly, other constructs for
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querying XML data with incomplete information about the structure of the
queried data can be used for RDF as well.

The following Xcerpt rule illustrate the use of a conditional descendant. It
computes all persons that have a common ancestor and includes any such com-
mon ancestor, if it is the ‘nearest’ common ancestor, i.e., there is no other com-
mon ancestor on the path to the two persons. Since all persons have at least
foaf:Person as common ancestor, the query also excludes all resources reached
by rdf:type relations.

DECLARE ns-prefix rdf = ”http ://www.w3 . org/1999/02/22−rdf−syntax−ns#”
2 DECLARE ns-prefix books = ”http :// example . org/books#”

GOAL
4 result [

all related-persons [
6 var Person1,

var Person2,
8 all via { var Resource }

]
10 }

FROM
12 RDFS-GRAPH {{

var Resource @ /.*/ {{
14 desc(!/rdf:type/)* var Person1 {{ rdf:type { foaf:Person {{}} } }},

desc(!/rdf:type/)* var Person2 {{ rdf:type { foaf:Person {{}} } }},
16 without desc /.*/ {{

desc(!/rdf:type/)* var Person1 {{ }},
18 desc(!/rdf:type/)* var Person2 {{ }},

}}
20 }}

}}
22 END

Such explicit query constructs make optimization and evaluation of a fre-
quent class of queries easier than relying on recursive views or similar generic
mechanisms as required on the triple view. Considering the efficient evaluation of
queries against such a graph view of RDF data, there are results on the efficient
evaluation of queries against graph-shaped semi-structured data, cf. [16]. Ongo-
ing work by the authors targets efficient evaluation methods for implementing
Xcerpt queries against graph-shaped data. We believe it likely that at least for
some interesting subsets of Xcerpt queries efficient evaluation methods against
graph-shaped data can be found.

Nevertheless, only a surprisingly small number of RDF query languages con-
sider a graph-view of RDF and provide expressive traversal operators, aside of
Xcerpt most notably Versa [17,18]. In contrast to the proposal presented in this
paper, Versa uses an unfamiliar syntax instead of established traversal operators
from XML and generalized path expressions.

Graph Merging. In contrast to conventional data such as XML or relational
data, RDF data from different and heterogeneous sources can be easily merged,
as nodes in an RDF graph can be and mostly (with the exception of blank
and literal nodes) are identified by URIs, i.e., globally valid identifiers. On the
first glance, it might seem that merging two RDF graphs is more difficult if
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considering the graph view of RDF. However, this crucial use case can be solved
in Xcerpt easily on either view.

On parsing RDF data, Xcerpt annotates the RDF data with provenance
information similar to recent proposals on named graphs [19] and their use in
RDF query languages [20]: In the case of the triple view, a origin attribute is
added to each RDF-TRIPLE term indicating the URI of the data’s origin resource.
In the case of the graph view, the same procedure could be taken. Alternatively,
a single origin attribute for an entire RDF graph can be used by adding it to
the RDF-GRAPH term. While this sacrifices some flexibility, it saves considerable
space.

The following Xcerpt program shows the construction of the merged triples
from the base triples. Notice, how the outer all groups only over the variables
Subject, Property, and Object (as they occur free in that all, i.e., nested
inside that all without another all in between). Therefore, a RDF-TRIPLE is
created for each combination of subject, property, and object occurring in the
base triples (from either graph) with a origin attribute that is a concatenation of
the values of all origin attributes of base triples. If a statement occurred in both
graphs the origin attribute will thus point to two resources.

CONSTRUCT
2 merged-triples {{

all RDF-TRIPLE [
4 attributes {{ origin { all var Origin }, all var OtherAttributes }},

var Subject, var Property, var Object
6 ]

}}
8 FROM

RDF-TRIPLE [
10 attributes {{ origin {{ var Origin }}, var OtherAttributes }}

var Subject, var Property, var Object
12 ]

END

If only named graph provenance (i.e., provenance for entire RDF graphs) is
needed, the following rule illustrate the merging of two RDF graphs using the
graph view:

1 CONSTRUCT
RDF-GRAPH {

3 all var Resources {{
all var Statements {{ }}

5 }}
}

7 FROM
and {

9 RDF-GRAPH {{
var Resource {{

11 optional var Statements → /.*/ {{ }}
}}

13 }}
}

15 END

Notice, how the query can simply ignore where the resources come from. Dupli-
cate resources and statements are eliminated implicitly during the grouping.
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3.3 Marrying Triples and Graphs

A final observation on the two views on RDF is that they are not mutually
exclusive. In fact, conversion between the two views can be performed by the
following, linear Xcerpt view:

1 CONSTRUCT
RDF-GRAPH {

3 all var Subject @ var Subject {
all optional var Predicate { ˆvar Object },

5 all optional var Predicate { var Literal }
} }

7 FROM
or{

9 RDF-TRIPLE[
var Subject, var Predicate{},

11 optional var Literal as literal{{}},
optional var Object {{}} where { var Object != ’literal’}

13 ],
RDF-TRIPLE[

15 /.*/:/.*/{{}}, /.*/:/.*/{{}}, var Subject{{}}
] }

17 END

Notice the use of the optional keyword in lines 11 and 12. This indicates
that the contained part of the pattern does not have to occur in the data, but
if it does occur the contained variables are bound appropriately. In lines 3 and
4 the actual graph structure is constructed: by using the operators @ and ˆ a
(possibly cyclic) link can be constructed.

Indeed, the framework for RDF access in Xcerpt discussed in this article
provides both views, thus allowing the query author to decide which view is
more appropriate for his liking and requirements.

4 Marrying XML and RDF

Providing integrated access to RDF and XML is a crucial issue for the success of
the Semantic Web. This is reflected by a number of proposals for such integrated
access: As discussed above, [13] and [15] share with the work presented in this
article the aim to extend XML query languages with access to RDF data, but
are limited to a triple or tree view of RDF. In [21] the dual approach has been
taken: mapping XML data into RDF. However, [21] only preserves a subset
of the information represented in the XML data and requires schema-specific
mapping rules to be defined prior to accessing the information. Reconciling the
RDF and XML data models has been considered in [22] and [23]. Whereas the
first essentially defines a new data model, the latter proposes a new node type
for XML as means for handling RDF edges.

In the remainder of this section, the mapping from RDF into XML discussed
in this article is further detailed.

4.1 A Marriage Contract: Issues When Mapping RDF into XML

The mapping proposed here, although it has some similarities with [23], differs
from all of the above noticeably: Figure 3 illustrates the mapping from an ex-
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Element Identifier
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Element Label:
http://example.com/books/Novel@

Fig. 3. Excerpt of RDF Graph represented in XML

cerpt of the sample RDF graph into three (top-level) XML elements (i.e., direct
children of RDF-GRAPH). The following Xcerpt data term is a textual represen-
tation of the data in Figure 3:

1 DECLARE ns-prefix rdf = ”http ://www.w3 . org/1999/02/22−rdf−syntax−ns#”
DECLARE ns-prefix rdfs = ”http ://www.w3 . org /2000/01/rdf−schema#”

3 DECLARE ns-prefix books = ”http :// example . org/books#”
RDF-GRAPH {

5 id1 @ blank {
books:title { literal { ”The F i r s t Man in Rome” } },

7 rdf:type { ˆbooks:Novel }
},

9 books:author @ books:author {
rdfs:domain { ˆbooks:Novel }

11 },
books:Novel @ books:Novel {},

13 ...
}

Notice how both edges and nodes from the RDF graph are represented as
XML elements. However, nodes can still be distinguished as they are either blank
nodes (without namespace) literal nodes (again without namespace) or named
resources in which case both their element identifier and element label are set
to the URI identifying the resource. In contrast, elements for edges never have
an identifier (as they can not be referenced by another part of the data). This
mapping results in a ‘stripped’ representation of the RDF graph: the children
of elements representing nodes (i.e., resources) are always elements representing
edges and vice versa. One might question the use of resource URIs both as labels
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and identifiers of nodes. However, while element labels are more convenient for
querying, unique identifiers for the elements are needed (for establishing graph
references). Since URIs already provide uniqueness, they are also used for this
purpose. [23] suggest the use of RDF types (i.e., the URI of the resource associ-
ated with rdf:type) as element labels when mapping RDF to XML. However, this
approach is not able to map all RDF graphs as RDF resources may be classified
by distinct types (that may not be related at all in the type hierarchy).

The XML mapping allows additional information about the RDF statements,
e.g., provenance information, to be recorded alongside.

4.2 Serialization Transparency

Aside of providing the above discussed two views on RDF, Xcerpt’s rules are also
convenient for making the language ‘serialization transparent’. For each RDF
serialization, a set of rules expresses a translation from or into that serialization.
Exemplary rules for RDF/XML and RXR can be found in [9], similar functions
for parsing RDF/XML in XQuery are described in [13].

5 Conclusion and Outlook

In this article, a brief overview of a framework for RDF querying in the XML
query language Xcerpt is presented highlighting in particular the need for re-
consideration of the triple view as the only perspective on RDF available in the
established RDF query languages. We believe that a richer view of RDF more
akin to XML data with graph-shape not only makes the integration of data and
metadata easier but also leads in many cases to more succinct queries without
sacrificing efficiency.
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Abstract. We present typing rules for the Web query language Xcerpt.
The rules provide a descriptive type system: the typing of a program is an
approximation of its semantics. The rules can also be seen as an abstract
form of a type inference algorithm (presented in previous work), and as a
stage in a formal soundness proof of the algorithm. The paper considers
a substantial fragment of Xcerpt; the main restriction is that we deal
with data terms corresponding to trees (instead of general graphs), and
we do not deal with Xcerpt rule chaining. We provide a formal semantics
for the fragment of Xcerpt and a soundness theorem for the presented
type system.

1 Introduction

This article presents a type system for the Web and Semantic Web query lan-
guage Xcerpt [12,6,11], formalized using typing rules in the spirit of [7]. It is an
extension and reformulation of the type system presented in the earlier work
[13,8]. The type system is descriptive, this means a typing approximates the
semantics of a program (in an untyped programming language). In descriptive
typing, type inference means finding an approximation of the semantics of the
given program; type checking means proving program correctness with respect
to a specification expressed by means of types. In our case, for a given Xcerpt
program and a type of data (i.e. the set of data objects to which the program
may be applied) the type system provides a type of the program’s results (i.e.
a superset of the set of the program’s results). This is type inference; if a type
of expected results is given then type checking can be performed by checking if
the obtained type of results is a subset of the the given one. The main intended
application of the proposed type system is discovering errors in Xcerpt programs.

In the previous work [13,8] two descriptive type systems for an Xcerpt frag-
ment1 have been presented. They are formulated by means of algorithms. This
1 The main Xcerpt features excluded are: data terms corresponding to general graphs

(which are not trees), grouping constructs (all, some), negation, and programs con-
sisting of multiple query rules.
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is rather complicated and makes any formal reasoning about the type system
difficult. In the present paper we generalize the simpler of these type systems
to a bigger fragment of Xcerpt (grouping constructs are added). An important
difference is that we formulate the type system by means of derivation rules.
The rules are similar to proof rules of logic, rules used in operational semantics,
and those used in prescriptive typing [7]. Employing rules makes it possible to
specify a type system in a formal and concise way. Such approach facilitates
formal reasoning; we confirm this by presenting a soundness proof of the type
system in a full version of this paper [2]. The rules may be seen as an abstraction
of an algorithm; they abstract from lower level details. Thus – we believe – this
formulation of a type system is also easier to understand by humans than the
previous one.

To facilitate a soundness proof we provide a formal semantics (based on
[13,6,11]) of the fragment of Xcerpt. The semantics is substantially simpler than
that of a full Xcerpt [11] (as it does not use the notion of simulation unification),
and may be of separate interest.

Similarly to other work related to Xcerpt [12,11] we use data terms as an
abstraction of semi-structured data [1] of the Web. Data terms generalize the
notion of a term: the number of arguments of a symbol is not fixed, moreover
a symbol may have an (unordered) set of arguments, instead of an ordered
sequence. (This paper does not deal with data terms representing graphs which
are not trees). As a formalism to define types we use type definitions [13,4]. They
are similar to unranked tree automata [3] (and equivalent formalisms), but deal
also with the case of unordered children of a tree node. The types defined by
type definitions roughly correspond to the sets of documents defined by various
schema languages like DTD, XML Schema or Relax NG.[10]

Our descriptive type system uses rules in a similar way as prescriptive type
systems [7] do. We expect that this should make possible a formal comparison of
the two approaches, and maybe even combining their advantages, thus obtaining
a system that can be used for detecting errors, checking program composition
and providing a base for documentation. (There is no general agreement about
what exactly descriptive and prescriptive typing mean. Roughly speaking, the
former deals with an untyped programming language and types approximate
program semantics, while in the latter the language is typed and types are an
important part of its semantics.)

The article is organized as follows: First, data terms and type definitions are
introduced. A short introduction of Xcerpt is given afterwards, explaining a sub-
stantial fragment of the language and the semantics of the fragment. Then, in
Section 4 the type system for the Xcerpt fragment is introduced, by (1) motivat-
ing the idea of descriptive types for Xcerpt, and (2) providing typing rules in the
spirit of [7], specifying the type system inductively based on the syntax of Xcerpt.

2 Modelling XML Data

We model XML data using a formalism of data terms similar to that defined
in [12]. Data terms can be seen as mixed trees which are labelled trees where



Descriptive Typing Rules for Xcerpt 87

children of a node are either linearly ordered or unordered. This is related to
existence of two basic concepts in XML: tags which are nodes of an ordered tree
and attributes that attach attribute-value mappings to nodes of a tree. These
mappings are represented as unordered trees. Unordered children of a node may
also be used to abstract from the order of elements, when this order is inessential.
We assume that there is no syntactic difference between XML tag names and
attribute names and they both are labels of nodes in our mixed trees (and
symbols of our data terms). The infinite alphabet of labels will be denoted by L.

A content of an element is a sequence of other elements or basic constants.
Basic constants are basic values such as attribute values and all “free” data
appearing in an XML document – all data that is between start and end tag
except XML elements, called PCDATA (short for parseable character data) in
XML jargon. Basic constants occur as strings in XML documents but they can
play a role of data of other types depending on an adequate definition in DTD (or
other schema languages) e.g. IDREF, CDATA,. . . . The set of basic constants will
be denoted by B. In our notation we will enclose all basic constants in quotation
marks ” ”.

XML documents are represented as data terms.

Definition 1. A data term is an expression defined inductively as follows:

– Any basic constant is a data term,
– If l is a label and t1, . . . , tn are n ≥ 0 data terms, then l[t1, . . . , tn] and

l{t1, . . . , tn} are data terms.

The linear ordering of children of the node with label l is denoted by enclosing
them by brackets [ ], while unordered children are enclosed by braces {}.

A subterm of a data term t is defined inductively: t is a subterm of t, and
any subterm of ti (1 ≤ i ≤ n) is a subterm of l′[t1, . . . , tn] and of l′{t1, . . . , tn}.
Data terms t1, . . . , tn will be sometimes called the arguments of l′, or the direct
subterms of l′[t1, . . . , tn] (and of l′{t1, . . . , tn}). The root of a data term t, de-
noted root(t), is defined as follows . If t is of the form l[t1, . . . , tn] or l{t1, . . . , tn}
then root(t) = l; for t being a basic constant we assume that root(t) = $.

2.1 Type Definitions

Here we introduce a formalism for specifying a class of decidable sets of data
terms representing XML documents. It is a certain simplification of the formal-
ism of [4]. First we specify a set of type names T = C ∪ S ∪ V which consist of

– type constants from the alphabet C
– special type names from the alphabet S
– type variables from the alphabet V

We associate each type name T with a set [[T ]] (the type denoted by T ) of
data terms which are allowed values assigned to T . For T being a type constant
or a special type name, the elements of [[T ]] are basic constants.
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Type constants correspond to an XML schema language base types. The set
of type constants is fixed and finite. In our examples we will use a type constant
# assuming that [[#]] is the set of non empty strings of characters. This is similar
to #PCDATA in DTD. In our notation, type constants and special type names are
sequences of letters beginning with character #.

Each type variable T is associated with a set of data terms [[T ]] which is
specified in a way similar to that of [4] and described below. Similarly, each
special type name T is associated with a finite set [[T ]] of basic constants.

First we introduce some auxiliary notions. The empty string will be denoted
by ε. A regular expression over an alphabet Σ is ε, φ, any a ∈ Σ and any
r1r2, r1|r2 and r∗1 , where r1, r2 are regular expressions. A language L(r) of
strings over Σ is assigned to each regular expression r in the standard way (see
e.g. [9]). In particular, L(φ) = ∅, L(ε) = {ε} and L(r1|r2) = L(r1) ∪ L(r2).

Definition 2. A regular type expression is a regular expression over the
alphabet of type names T . We abbreviate a regular expression rn|rn+1| · · · |rm,
where n ≤ m, as r(n:m), rnr∗ as r(n:∞), rr∗ as r+, and r(0:1) as r?. A regular
type expression of the form

r1 · · · rk

where k ≥ 0, each ri is T
(ni,1:ni,2)
i , 0 ≤ ni,1 ≤ ni,2 ≤ ∞ for i = 1, . . . , k, and

T1, . . . , Tk are distinct type names, will be called a multiplicity list.

Multiplicity lists will be used to specify multisets of type names. We use
typesD(r) to denote the set of all type names occurring in the regular expres-
sion r.

Definition 3. A type definition is a set D of rules of the form

T → l[r], T → l{s}, or T ′ → c1| . . . |cn,

where T is a type variable, T ′ a special type name, l a label, r a regular type
expression, s a multiplicity list, and c1, . . . , cn are basic constants. A rule U →G
∈ D will be called a rule for U in D. We require that for any type name U ∈ V∪S
occurring in D there is exactly one rule for U in D.

If the rule for a type variable T in D is as above then l will be called the
label of T (in D) and denoted labelD(T ) = l. For T being a type constant or a
special type name we define labelD(T ) = $. The regular expression in a rule for
type variable T is called the content model of T .

Example 4. Consider type definition D:

Cd → cd [Title Artist+ #Category?]
Title → title[# Subtitle?]
Subtitle → subtitle[#]
Artist → artist [#]
#Category → pop | rock | classic

D contains a rule for each of type variables: Cd, Title, Subtitle, Artist and a rule
for special type name #Category. Labels occurring in D are: cd, title, subtitle,
artist, and pop, rock, classic are basic constants.
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Type definitions are a kind of grammars, they define sets by means of deriva-
tions, where a type variable T is replaced by the right hand side of the rule for
T and a regular expression r is replaced by a string from L(r); if T is a type
constant or a special type name then it is replaced by a basic constant from
respectively [[T ]], or from the rule for T . This can be concisely formalized as
follows (treating type definitions similarly to tree automata).

Definition 5. Let D be a type definition. We will say that a data term t is
derived in D from a type name T , iff there exists a mapping ν from the subterms
of t to type names such that ν(t) = T and for each subterm u of t

– if u is a basic constant then ν(u) ∈ C and u ∈ [[ν(u)]] or ν(u) ∈ S and there
exists a rule ν(u) → · · · |u| · · · in D.

– otherwise ν(u) = U ∈ V and
• there is a rule U ← l[r] ∈ D, u = l[t1, . . . , tn], and ν(t1) · · · ν(tn) ∈ L(r),
• or there is a rule U ← l{r} ∈ D, u = l{t1, . . . , tn}, and ν(t1) · · · ν(tn) is

a permutation of a string in L(r).

The set of the data terms derived in D from a type name T will be denoted
by [[T ]]D.

Example 6. For the type definition D from the previous example, we have that
the data term

t = cd[ title[”Stop”], artist[”Sam Brown”], ”pop” ]

is derived from the type variable Cd . The type names assigned to the three ar-
guments of cd are, respectively, Title, Artist , #Category, and the type constant
# is assigned to the constants ”Stop”, and ”Sam Brown”.

Notice that if T is a type constant then [[T ]]D = [[T ]]. If it is clear from the
context which type definition is considered, we will often omit the subscript in the
notation [[ ]]D and similar ones. For U being a set of type names {T1, . . . , Tn}, we
define a set of data terms [[U ]] = [[T1]] ∪ . . .∪ [[Tn]]. For a regular type expression
r we define [[r]] = { d1, . . . , dn | d1 ∈[[T1]], . . . , dn ∈[[Tn]] for some T1, . . . , Tn ∈
L(r) }. Notice that if D ⊆ D′ are type definitions then [[T ]]D = [[T ]]D′ for any
type name T occurring in D.

3 Xcerpt – Introduction

Xcerpt is a rule-based query and transformation language for XML (see
[11,6,12,5]). It employs patterns instead of paths to query XML and semi-
structured data. This approach stems from logic programming. A query term
is matched against a data term from a database. A successful matching results
in binding the variables in the query term to certain subterms of the data term.
This operation is called simulation unification.

We consider here a somehow simplified version of Xcerpt. We focused on
core Xcerpt features to make our type system simpler and easier to understand.
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The main difference is that our data terms represent trees while in full Xcerpt
terms are used to represent graphs (by adding unique identifiers to some tree
nodes and introducing nodes which are references to these identifiers). Other
neglected Xcerpt features in respect to the Xcerpt version described in [12,11] are:
functions and aggregations, non-pattern conditions, optional subterms, position
specifications, negation, regular expressions and label variables. Moreover, we
restrict ourselves to Xcerpt programs containing only one query rule.

We provide a formal semantics to the chosen fragment of Xcerpt. The seman-
tics of query terms is from [13], the rest of the semantics is based on [11].

We assume that a database is a data term or a multiset of data terms. There
are two other kinds of terms in Xcerpt: query terms and construct terms. The
role of query terms is to be matched against a database. Construct terms are
used in constructing data terms which are query results.

Definition 7. Query terms are inductively defined as follows:
– Any basic constant is a query term.
– A variable X is a query term.
– If q is a query term, then desc q is a query term.
– If X is a variable and q is a query term, then X � q is a query term.
– If l is a label and q1, . . . , qn (n ≥ 0) are query terms, then l[q1, . . . , qn],

l{q1, . . . , qn}, l[[q1, . . . , qn]] and l{{q1, . . . , qn}} are query terms (called rooted
query terms).

For a rooted query term q = lαq1, . . . , qnβ, where αβ are parentheses [ ], [[ ]], {}
or {{}}, root(q) = l and q1, . . . , qn are the child subterms of q. If q is a basic
constant then root(q) = $.

To informally explain the role of query terms, consider a query term q =
lαq1, . . . , qmβ and a data term d = l′α′d1, . . . , dnβ′, where α, β, α′, β′ are paren-
theses. In order to q match d it is necessary that l = l′. Moreover the child
subterms q1, . . . , qm of q should match certain child subterms of d. Single paren-
theses in d ([ ] or {}) mean that m = n and each qi should match some (distinct)
dj . Double parentheses mean that m ≤ n and q1, . . . , qm are matched against
some m terms out of d1, . . . , dn. Curly braces ({} or {{}}) in q mean that the
order of the child subterms in d does not matter; square brackets in q mean that
q1, . . . , qm should match (a subsequence of) d1, . . . , dn in the same order.

A variable matches any data term, desc q matches a data term d whenever
q matches some subterm of d. A query term X � q matches any data term
matched by q. A side effect of a query term X or X � q matching a data term
d is that variable X obtains a value d.

Now we formally define which query terms match which data terms and what
are the resulting assignments of data terms to variables. We do not follow the
original definition of simulation unification. Instead we define a notion of answer
substitution for a query term q and a data term d. As usually, by a substi-
tution (of data terms for variables) we mean a set θ = {X1/d1, . . . , Xn/dn },
where X1, . . . , Xn are distinct variables and d1, . . . , dn are data terms; its do-
main dom(θ) is {X1, . . . , Xn}, its application to a (query) term is defined in a
standard way.
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Definition 8 ([13]). A substitution θ is an answer substitution (shortly, an an-
swer) for a query term q and a data term d if q and d are of one of the forms
below and the corresponding condition holds. (In what follows m, n ≥ 0, X is
a variable, l is a label, q, q1, . . . are query terms, and d, d1, . . . data terms; set
notation is used for multisets, for instance {d, d} and {d} are different multisets).

q d condition on q and d

b b b is a basic constant

l[q1, . . . , qn] l[d1, . . . , dn] θ is an answer for qi and di,
for each i = 1, . . . , n

l[[q1, . . . , qm]] l[d1, . . . , dn] for some subsequence di1 , . . . , dim of d1, . . . , dn

(i.e. 0 < i1 < . . . < im ≤ n)
θ is an answer for qj and dij ,
for each j = 1, . . . , m,

l{q1, . . . , qn} l{d1, . . . , dn} for some permutation di1 , . . . , din of d1, . . . , dn

or (i.e. {di1 , . . . , din} = {d1, . . . , dn})
l[d1 · · ·dn] θ is an answer for qj and dij

for each j = 1, . . . , m,

l{{q1, . . . , qm}} l{d1, . . . , dn} for some {di1 , . . . , dim} ⊆ {d1, . . . , dn}
or θ is an answer for qj and dij

l[d1, . . . , dn] for each j = 1, . . . , m,

X d Xθ = d

X � q d Xθ = d and θ is an answer for q and d

desc q d θ is an answer for q
and some subterm d′ of d

We say that q matches d if there exists an answer for q, d.

Thus if q is a rooted query term (or a basic constant) and root(q) �= root(d)
then no answer for q, d exists. If q = d then any θ is an answer for q, d. A query
l{{}} matches any data term with the label l. If θ, θ′ are substitutions and θ ⊆ θ′

then if θ is an answer for q, d then θ′ is an answer for q, d. If a variable X occurs
in a query term q then queries X � q and X � desc q match no data term,
provided that q �= X and q is not of the form desc · · ·descX .

Example 9. Query term q1 = a[ c{{d[ ], ”e”}}, f [[g[ ], h{”i”}]] ] matches data
terms a[ c{”e”, d[ ], g[ ]}, f [g[ ], l[ ], h[”i”] ] ] and a[ c[d[ ], g[ ], ”e”], f [g[ ], h[”i”] ] ].
In contrast, data terms f [h[”i”], g[ ] ] and f{g[ ], h[”i”]} are not matched
by f [[g[ ], h{”i”}]]. Query term q2 = desc w{{}} matches data terms
a[b{w[ ]}] and w{”s”}. Query term q2 = a[[ X1�c[[d{}]], X2, ”p” ]] matches
a[”s”, c[d{}, ”r”], h{j[ ]}, ”p”], with an answer which binds X1 to c[d{}, ”r”]
and X2 to h{j[ ]}.

Each answer for a query term q binds all the variables of the query to some
data terms. For any such answer θ′ (for q and d) there exists an answer θ ⊆ θ′
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(for q and d) binding exactly these variables. We will call such answers non
redundant. From Definition 8 one can derive an algorithm which produces non
redundant answers for a given q and d. Construction of the algorithm is rather
simple, we skip the details. Non redundant answers are actually those of interest;
we consider a more general class of answers to simplify Definition 8.

A targeted query term is a pair in(db, q), of a URI and a query term.
We assume that the URI locates on the Web a data term d(db). An answer
substitution for q and d(db) is called an answer substitution for in(db, q) (and
an arbitrary data term).

Definition 10. A query is inductively defined as follows.

– Any query term and any targeted query term is a query.
– If Q1, . . . , Qn (n ≥ 0) are queries then and(Q1, . . . , Qn) and or(Q1, . . . , Qn)

are queries.
A substitution θ is an answer substitution for and(Q1, . . . , Qn) (respectively
for or(Q1, . . . , Qn)) and a data term d iff θ is an answer substitution for
each of (some of) Q1, . . . , Qn and d.

A query can be transformed into equivalent one in disjunctive normal form
or(Q1, . . . , Qn), where each Qi is of the form and(Qi1, . . . , Qiki) and each Qij is
a (targeted) query term (cf. [11, Proposition6.4]).

Definition 11. A construct term and the set FV (c) of free variables of a
construct term c are defined recursively. If b is a basic constant, X a variable, l
a label, c, c1, . . . , cn construct terms (n ≥ 0), and k a natural number then

b, X, l[c1, . . . , cn], l{c1, . . . , cn}, all c, some k c,

are construct terms. FV (b) = ∅, FV (X) = {X}, FV (l[c1, . . . , cn]) =
FV (l{c1, . . . , cn}) =

⋃n
i=1 FV (ci), FV (all c) = FV (some k c) = ∅.

Notice that any data term is a construct term. (Also, a construct term without
any all and some construct is a query term).

Before we define the notion of a query rule and its result we need to provide
some auxiliary definitions. By a substitution set we mean a set of substitutions
of data terms for variables, e.g. of answers for a query and a data term.

Definition 12. Given a substitution set Θ and a set V of variables, such that
V ⊆ dom(θ) for each θ ∈ Θ, the equivalence relation �V ⊆ Θ × Θ is defined as:
θ1 � θ2 iff θ1(X) = θ2(X) for all X ∈ V . The set of equivalence classes of �V

is denoted by Θ/
V .

The concatenation of two sequences S1, S2 of data terms will be denoted
by S1 ◦ S2. We do not distinguish between a data term d and the one element
sequence with the element d.

Definition 13. Let c be a construct term and Θ be a substitution set containing
the same assignments for the free variables FV (c) of c (i.e. θ1 �FV (c) θ2 for any
θ1, θ2 ∈ Θ). The application Θ(c) of the substitution set Θ to c is a sequence of
data terms defined as follows
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– Θ(b) = b, where b is a basic constant
– Θ(X) = Xθ, where θ ∈ Θ
– Θ(l{c1, . . . , cn}) = l{Θ(c1) ◦ · · · ◦ Θ(cn)}
– Θ(l[c1, . . . , cn]) = l[Θ(c1) ◦ · · · ◦ Θ(cn)]
– Θ(all c′) = Θ1(c′) ◦ · · · ◦ Θk(c′), where {Θ1, . . . , Θk} = Θ/
FV (c′)
– Θ(some k c′) = Θ1(c′) ◦ · · · ◦ Θm(c′), where {Θ1, . . . , Θm} ⊆ Θ/
FV (c′) and

m = k if |Θ/
FV (c′)| ≥ k or m = |Θ/
FV (c′)| otherwise.

For a construct term c containing neither all nor some, Θ(c) = cθ for any θ ∈ Θ.
Notice that Θ(c) is defined uniquely unless c contains all or some (and Θ(c) is
defined uniquely up to reordering provided c does not contain some). Notice also
that Θ(c) is a one element sequence unless c is of the form all c′ or some k c′.

Definition 14. A construct-query rule (shortly, query rule) is an expres-
sion of the form c ← Q, where c is a construct term not of the form all c′ or
some k c′, Q is a query and every variable occurring in c also occurs in Q. More-
over, if or(Q1, . . . , Qn) is a disjunctive normal form of Q then every variable of
c occurs in each Qi, for i = 1, . . . , n. The construct term c will be sometimes
called the head and Q the body of the rule.

If Θ is the set of all answers for Q and a data term d, and Θ′ ∈ Θ/
F V (c)

then Θ′(c) is a result for query c ← Q and d.

Each result of a query rule is a data term, as an answer for a query term
binds all the variables of the rule to data terms.

Example 15. Consider a database which is a data term:

catalogue[ cd[ title[”Empire Burlesque”], artist[”Bob Dylan”], year[”1985”] ],
cd[ title[”Hide your heart”], artist[”Bonnie Tyler”], year[”1988”] ],
cd[ title[”Stop”], artist[”Sam Brown”], year[”1988”] ] ]

Here is a rule which extracts titles and artists for the CD’s issued in 1988
and presents the results in a changed form (title as name and artist as author).
TITLE and ARTIST are variables.

result [name[TITLE ], author [ARTIST ] ] ←
catalogue{{ cd{title[TITLE ], artist [ARTIST ], year [”1988”] }}}

The results returned by the rule are:

result [name[”Hide your heart”], author [”Bonnie Tyler”] ]
result [name[”Stop”], author [”Sam Brown”] ]

The next query rule is similar. It uses all for grouping all the results together
and another all for grouping together the CD’s from the same year.

results[ all result [ cds [ allname[TITLE ] ], year [YEAR] ] ] ←
catalogue{{ cd{{ title[TITLE ], year [YEAR] }}}}

The rule returns the following result:

results[ result[ year[”1988”], cds[ title[”Hide your heart” ], title[”Stop”]] ],
result[ year[”1985”], cds[ title[”Empire Burlesque” ]] ] ].
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4 Reasoning About Types of Xcerpt Query Results

4.1 Motivation

In this section we study the relation between types of databases and types of
query results. Assume that the only information available about the database is
that it is a data term (or a set of data terms) from a given type [[TDB]] (or from
a given union of types [[T1]] ∪ . . . ∪ [[Tn]]). One may want to know what query
results are possible for such database. We show how to compute (a superset of)
the set of such results The set will be expressed as a type, specified by a type
definition. We will usually call it the query result type.

Computing the query result type may serve some additional purposes. 1. If
this type is empty, then the query will never give an answer for a data term from
[[TDB]]. An algorithm checking this property is obtained by combining computing
query result type with checking emptiness of a type. 2. If some specification of
the intended type of results exists, one may check if the query is correct w.r.t. the
specification, by checking whether the computed type of the results is included
in the specified one. 3. If we use a data term d as the body of the query, then
computing the result type is also a check whether d ∈ [[TDB]]. Namely d ∈ [[TDB]]
iff the result type is not empty. 4. The algorithm computing the query result type
produces as a side effect the types of the variables of the queries. For each variable
from the query it gives a set containing every value that can be assigned to the
variable (when querying a data term from type [[TDB]]). This provides additional
information about the behaviour of the query. We may consider specifications of
the types of the query variables. A query is correct w.r.t. such a specification if
for every variable the computed type is a subset of the specified type.

Example 16. Consider the type definition D from Example 4 and a construct-
query rule Q:

result [name[TITLE ], author [ARTIST ] ] ←
cd{{TITLE , ARTIST�artist{{}}, ”rock”}}

The intention of the rule is to collect titles and authors of all the CD’s of the
rock category. When the query term of the rule is matched against a database
of type Cd, the variables TITLE, ARTIST are bound to data terms of types,
respectively, Title, Artist or Artist, Artist. As the variable TITLE is intended
to take values only of type Title, the query is incorrect w.r.t. our expectations.
The type Result of the query result can be described by the following type
definition D ′ = D ∪ {Result→result [Name Author ], Name→name[Title|Artist ],
Author→author[Artist] }.

4.2 Variable-Type Mappings

In this section we assume a fixed type definition D (describing the type of the
database).

To represent a set of answers (for a query term and a set of data terms) we
will use a mapping Γ : V → E (called a variable-type mapping), where V is the set
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of variables occurring in the considered query rule and E is a set of expressions.
E contains 0, 1, the type names from D, and expressions of the form T1 ∩ T2,
where T1, T2 ∈ E . Each expression E from E denotes a set [[E]] of data terms. [[1]]
denotes the set of all data terms, [[0]] = ∅, [[T ]] = [[T ]]D for any type name T , and
[[T1 ∩ T2]] = [[T1]] ∩ [[T2]]. The set of substitutions corresponding to a mapping
Γ : V → E is

substitutionsD(Γ ) = { θ | ∀X∈V θX ∈ [[Γ (X)]] }.

(According to our convention, we will often skip the index D.) Notice that if
θ ∈ substitutions(Γ ) then V ⊆ dom(θ) and if θ ⊆ θ′ then θ′ ∈ substitutions(Γ ).
For a set Ψ of variable-type mappings we define substitutions(Ψ) =⋃

Γ∈Ψ substitutions(Γ ).
For Y1, . . . , Yk ∈ V, T1, . . . , Tk ∈ E , mapping [Y1 !→ T1, . . . , Yk !→ Tk] : V → E

is defined as

[Y1 !→ T1, . . . , Yk !→ Tk](X) =
{

Ti if X = Yi

1 otherwise.

We will not distinguish between expressions T ∩ 1 and T , and between T ∩ 0
and 0 (where T ∈ E).

Inclusion of types induces a partial order � on the mappings from V → E ,
as follows. If Γ and Γ ′ are such mappings then Γ � Γ ′ iff [[Γ (X)]] ⊆ [[Γ ′(X)]]
for each variable X ∈ V . Notice that Γ � Γ ′ is equivalent to substitutions(Γ ) ⊆
substitutions(Γ ′).

4.3 Typing Rules for Xcerpt

The rules presented in this section provide a descriptive type system for Xcerpt:
the typing of a program is an approximation of its semantics. An algorithm com-
puting a type of results for a given Xcerpt query rule can be easily derived from
the presented rules as they can be seen as an abstract version of the algorithm.
Below we present the rules for query terms, queries, construct terms and query
rules. In the Appendix we prove correctness of the typing system.

Query Terms. The rules in this subsection provide a way to derive facts of the
form D � q : T � Γ , where D is a type definition, q a query term, T a type name,
and Γ a variable-type mapping. The intention is that if q is applied to a data
term d ∈ [[T ]] then the resulting substitution is in substitutions(Γ ) for some Γ
such that D � q : T � Γ can be derived.

b ∈ [[T ]]
D � b : T � Γ

(Const)

where b is a basic constant.

Γ � [X !→ T ]
D � X : T � Γ

(Var)
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D � q : T � Γ Γ � [X !→ T ]
D � X � q : T � Γ

(As)

D � q : T � Γ

D � desc q : T � Γ
(Descendant)

D � desc q : T ′ � Γ

D � desc q : T � Γ
(Descendant Rec)

where T ′ ∈ types(r) and r is the content model of T .

D � q1 : T1 � Γ · · · D � qn : Tn � Γ

D � l αq1, · · · , qnβ : T � Γ
(Pattern)

where the rule for T in D is of the form T → l[ r ]
or it is of the form T → l{ r } and (αβ = {} or αβ = {{}}),
s is r with every type name U replaced by U |ε,
T1 · · ·Tn ∈ L(r) if αβ = [ ],
T1 · · ·Tn ∈ L(s) if αβ = [[ ]],
T1 · · ·Tn ∈ perm(L(r)) if αβ = {},
T1 · · ·Tn ∈ perm(L(s)) if αβ = {{}}.

Here perm(L) stands for the language of permutations of the strings from a
language L.

Queries. From the rules below one can derive facts of the form D � Q : U � Γ ,
where Q is a query, U a finite set of type names and Γ a variable-type map-
ping. If θ is an answer substitution for Q and a data term from [[U ]] then
θ ∈ substitutions(Γ ) for some Γ such that D � q : T � Γ can be derived.

In general a query may be applied to data terms produced by query rules of
an Xcerpt program. As their results may be of different types, we consider here
a set of types U instead of a single type T .

D � q : T � Γ T ∈ U

D � q : U � Γ
(Query Term)

D � q : T � Γ

D � in(db, q) : U � Γ
(Targeted Query Term)

where d(db) is of type T (formally d(db) ∈ [[T ]]).

D � Q1 : U � Γ · · · D � Qn : U � Γ

D � and(Q1, . . . , Qn) : U � Γ
(And Query)

D � Q : U � Γ

D � or(. . . , Q, . . .) : U � Γ
(Or Query)
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Construct Terms. To formulate typing rules for construct terms we need an
equivalence relation on mappings:

Definition 17. Given a type definition D, a set of variable-type mappings Ψ
and a set V of variables, such that V ⊆ dom(Γ ) for each Γ ∈ Ψ , the relation
∼V ⊆ Ψ × Ψ is defined as: Γ1 ∼V Γ2 iff [[Γ1(X)]] ∩ [[Γ2(X)]] �= ∅ for all X ∈ V .
The set of equivalence classes of the transitive closure ∗∼V of ∼V is denoted
by Ψ/ ∗∼V

.

The following rules allow to derive facts of the form D � c : Ψ � S, where c is
a construct term, Ψ is a set of variable-type mappings (for which the types are
defined by D) and S is a regular type expression. The intention is that if applying
a substitution set Θ to c results in a data term sequence Θ(c) = d1, . . . , dn and
substitutions(Θ) ⊆ substitutions(Ψ) then D � c : Ψ � S can be derived such that
each di ∈ [[Ti]] and T1 · · ·Tn ∈ L(S). To derive D � c : Ψ � S it is necessary that
Γ (X) �= 1 for any Γ ∈ Ψ and any variable X occurring in c. For correctness of
the rules it is required that for any Γ1, Γ2 ∈ Ψ , Γ1

∗∼FV (c) Γ2.

(Tc → c) ∈ D

D � c : Ψ � Tc
(Const)

where c is a basic constant.

[[T1]] = [[Γ1(X)]] · · · [[Tn]] = [[Γn(X)]]
D � X : {Γ1, . . . , Γn} � T1 | · · · |Tn

(Var)

D � c1 : Ψ � S1 · · · D � cn : Ψ � Sn (Tc → lαS1 · · ·Snβ) ∈ D

D � lαc1, . . . , cnβ : Ψ � Tc

(Pattern)

D � c : Ψ1 � S1 · · · D � c : Ψn � Sn {Ψ1, . . . , Ψn} = Ψ/ ∗∼F V (c)

D � all c : Ψ � (S1 | · · · |Sn)+
(All)

D � c : Ψ1 � S1 · · · D � c : Ψn � Sn {Ψ1, . . . , Ψn} = Ψ/ ∗∼F V (c)

D � some k c : Ψ � (S1 | · · · |Sn)(1:k) (Some)

Xcerpt Query Rules. For a given type definition D, query Q and a set U of
types names, the rules introduced above nondeterministically generate variable
type mappings. Now we describe which sets of generated mappings are sufficient
for the purpose of approximating the semantics of query-rules.

Definition 18. Let D be a type definition. Let Q be a query term and W a
type name, or Q a query and W a set of type names. A set {Γ1, . . . , Γn} of
variable-type mappings is complete for Q and W wrt. D if

– D � Q : W � Γi for i = 1, . . . , n, and
– whenever D � Q : W � Γ , there exists i ∈ {1, . . . , n} such that Γ � Γi.
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From the following rule one can derive facts of the form
D � (c ← Q) : U � S1 | · · · | Sn where c ← Q is a query rule, U is a finite
set of type names and Si are regular type expressions. The intention is that if
we apply a query rule c ← Q to a database of a type [[U ]] then we obtain results
belonging to the set [[S1 | · · · | Sn]].

D � c : Ψ1 � S1 · · · D � c : Ψn � Sn {Ψ1, . . . , Ψn} = Ψ/ ∗∼F V (c)

D � (c ← Q) : U � S1 | · · · | Sn

(Query Rule)

where Ψ is complete for Q and U wrt. D.

Example 19. Consider type definition D = {T → l[A∗B C], A→ a, B → b,
C → c, R1 → a[A+A], R2 → a[A+B], R3 → a[(A |B)+C] } and the query rule

a [ allX, Y ] ← l [[ X, Y ]]

abbreviated as c0 ← q. We apply the query rule to a set of types U ={T, A, B, C}.
First we need to find a complete set of mappings Ψ0 for q and U . If we apply the
query term q to the type T using the rules for query terms we can derive facts
D � q : T � Γi for i = 1, . . . , 4, where Γ1 = [X !→A, Y !→A], Γ2 = [X !→A, Y !→B],
Γ3 = [X !→A, Y !→C] and Γ4 = [X !→B, Y !→C]. If we apply the query term q to
the type A, B or C we cannot derive anything using the rules. Hence, the rules
for queries allow us to derive D � q : U � Γi for i = 1, . . . , 4. The set Ψ0 =
{Γ1, Γ2, Γ3, Γ4} is complete for q and U . Since FV (c0) = {Y }, Ψ0/ ∗∼FV (c0)

=
{Ψ1, Ψ2, Ψ3}, where Ψ1 = {Γ1}, Ψ2 = {Γ2}, Ψ3 = {Γ3, Γ4}. Now we apply each of
Ψi to the construct term c0. Using the rules for construct terms we can derive
the following facts: D � c0 : Ψ1 � R1, D � c0 : Ψ2 � R2 and D � c0 : Ψ3 � R3.
Using the rule (Query Rule) we can derive D � c0 ← q : U � R1 |R2 |R3. It
means that if the rule c0 ← q is applied to a data term from [[U ]] all the obtained
results are in the set [[R1 |R2 |R3]].

The following theorem expresses the correctness of the typing rules wrt. the
semantics given in section 3. More precisely, it expresses the existence of a typing
derivation for a rule whenever it has a result for some data term d in the type
denoted by a set U of type names. It also expresses that any derivation of a
query rule (c ← Q) wrt. a set of type names U is a correct approximation of the
set of results for (c ← Q) and any data term in the type denoted by U .

Theorem 20. Let D be a type definition and (c ← Q) be a query rule, where for
each targeted query term in(db, q) in Q there is a type name T in D such that
d(db) ∈ [[T ]]. Let U be a set of type names and d a data term such that d ∈ [[U ]].

If a result for (c ← Q) and d exists then there exist S and D′ such that
D′ ⊇ D and D′ � (c ← Q) : U � S.

If there exists S such that D � (c ← Q) : U � S and if d′ is a result for
(c ← Q) and d, then d′ ∈ [[S]].

Proof. See an extended version of this article [2].
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5 Conclusion

This paper presents a descriptive type system for a substantial fragment of the
Web and Semantic Web query language Xcerpt. The type system provides ap-
proximation of the semantics of Xcerpt programs. For a given Xcerpt query rule
it provides a type of its results (i.e. a superset of the set of the results) under
the assumption that the query rule is applied to data of a given type. The main
contribution of the paper is a formalization of the type system of [13] by means
of typing rules and a soundness theorem for the type system. The employed
formal semantics of the Xcerpt fragment may be of separate interest.

A topic for the future work is formalization by means of typing rules of the
more precise typing algorithm presented in [8]. The current work should also be
generalized to the omitted features of Xcerpt. Dealing with some of them, e.g.
negation or terms representing graphs, seems to be difficult and needs further
investigation. Moreover the type system should be extended to Xcerpt programs
containing more than one query rule.

Another interesting topic for the future work is a comparison between the
descriptive typing approach (to which our work belongs) and the prescriptive
approach [7,8]. As our type system is presented by means of typing rules similar
to the typing rules of prescriptive type systems, the differences and similarities
between two approaches can be better understood.

The work on a prototype implementation of the type system for Xcerpt is in
progress. The algorithm corresponding to the presented typing rules has been
implemented as an additional module in Xcerpt prototype. We plan to implement
the more precise version of the algorithm and also to extend the prototype to
be able to handle all constructs used in Xcerpt.
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pean Commission and by the Swiss Federal Office for Education and Science
within the 6th Framework Programme project REWERSE number 506779 (cf.
http://rewerse.net).
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José Júlio Alferes1, Ricardo Amador1, and Wolfgang May2

1 Centro de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa
2 Institut für Informatik, Universität Göttingen

Abstract. In this paper we define the basic concepts for a general lan-
guage for evolution and reactivity in the Semantic Web. We do this by
exposing an UML model that specifies an ontology for the language. The
proposed language is based on Event-Condition-Action rules, where dif-
ferent languages for events (including languages for composite events),
for conditions (queries) and actions (including complex actions) may be
composed, this way catering for language heterogeneity (besides hetero-
geneity on the data-model) that we think is essential for dealing with
evolution and reactivity in the Semantic Web.

1 Introduction

The Web and the Semantic Web, as we see it, can be understood as a “living
organism” combining autonomously evolving data sources, each of them possibly
reacting to events it perceives. The dynamic character of such a Web requires
declarative languages and mechanisms for specifying the evolution of the data.
This vision of the Web, as well as a state of the art overview of related areas, is
described in our previous work [17].

Rather than a Web of data sources, we envisage a Web of Information Sys-
tems, where each such system, besides being capable of gathering information
(querying, both on persistent data, as well as on volatile data such as occurring
events), is capable of updating persistent data, communicating the changes, re-
questing changes of persistent data in other systems, and being able to react
to requests from other systems. As a practical example, consider a set of data
(re)sources in the Web of travel agencies, airline companies, train companies,
etc. It should be possible to query the resources about timetables, availability
of tickets, etc. But in such an evolving Web, it should also be possible for a
train company to report on late trains, and travel agencies (and also individual
clients) be able to detect such an event and react upon it, by rescheduling travel
plans, notifying clients that in turn could have to cancel hotel reservations and
book other hotels, or try alternatives to the late trains, etc.

The importance of being able to update the Web has long been acknowledged,
and several languages exist (e.g. XUpdate [24], XML-RL [15], XPathLog [16])
for just that. More recently some reactive languages have been proposed, that
not only allow for updating Web data as the above ones, but are also capable

F. Fages and S. Soliman (Eds.): PPSWR 2005, LNCS 3703, pp. 101–115, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of dealing-with/reacting-to some forms of events, evaluate conditions, and upon
that act by updating data. These are the cases of the XML active rules of [6],
of Active XQuery [5], of the Event-Condition-Action (ECA) language for XML
defined in [2], and RDFTL [18], which is an ECA reactive language on RDF data.
The common aspect of all of these languages is the use of ECA (declarative) rules
for specifying reactivity and evolution. Such kind of rules (also known as triggers,
active rules, or reactive rules), that have been widely used in other fields (e.g.
active databases [19,23]) have the general form on event if condition do action.
They are intuitively easy to understand, and provide a well-understood formal
semantics: when an event (atomic or composite) occurs, evaluate a condition,
and if the condition is satisfied then execute an action (or a sequence of actions,
a program, a transaction, or even start a process).

In fact, we agree with the arguments exposed for the definition of the above
languages in what regards adopting ECA rules for dealing with evolution and
reactivity in the Web (declarativity, modularity, maintainability, etc). But in our
opinion, these languages fall short in various aspects, when the goal is aimed at
the general view of an evolving Web as described above. Namely, they do not
provide for more complex events and actions and, most important, they do not
deal with heterogeneity at the level of the language. Autonomous web nodes will
use different formalisms for ECA rules, and also different formalism for events,
conditions and actions, depending on the requirements of their applications.

In general, actions are more than just simple updates to Web data (be it
XML or RDF data). As said above, besides that, actions can be notifications
to other resources, update requests of other resources, can be composition of
simpler actions (like: do this, and then do that), or even transactions whose
ACID properties ensure that either all actions in a transaction are performed,
or nothing is done. In our view, a general language should cater for such richer
actions. Moreover, events may in general be more than simple atomic events
in Web data, as in the above languages. First, there are atomic events other
than physical changes in Web data: events may be received messages, or even
“happenings” in the global Web, which may require complex event detection
mechanisms (e.g (once) any train to St. Wendel is delayed ...). Moreover, as in
active databases [10,25], there may be more complex (composite) events. For
example, we may want a rule to be triggered when there is a flight cancellation
and then the notification of a new reservation whose price is much higher than the
previous (e.g. to complain to the airline company). In this respect, there is some
preliminary work on composite events in the Web [3], but that only considers
composition of events of modification of XML-data in a single document.

The quite recent work on the language XChange [8] already aims at having
more complex actions and events for evolution and reactivity on the Web and, in
our opinion, is an important contribution in this direction. However, having in
mind the requirements we set up for the general evolving Semantic Web, there
are still some important aspects, that are not yet dealt with by XChange, namely
that of language heterogeneity.
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The problem of language heterogeneity will definitely appear when dealing
with evolution and reactivity on the Web. This calls for more general languages.
In such an open and heterogeneous environment as the Web, it is difficult to
assume that there will be a single event language, or a single way to deal with
actions. Our view is that a general language for evolution and reactivity in the
Web should allow for the usage of different event languages, different condition
languages, and different action languages, considering ontological descriptions
and mappings for these languages. Each of these different (sub)languages should
adhere to some minimal requirements (e.g. dealing with variables), but it should
be as free as possible. The task of the general ECA language is then to combine
these various (sub)languages for reacting and performing evolution in the (Se-
mantic) Web. This requirement is far from the goals of XChange, which is based
on a concrete language for all the components of ECA.

Moreover, the ECA rules do not only operate on the Semantic Web, but are
themselves also part of it. In general, especially if one wants to reason about
evolution, ECA rules (and their components) must be communicated between
different nodes, and may themselves be subject to being updated. For that, the
ECA rules themselves must be represented as data in the (Semantic) Web. This
need calls for a (XML) Markup Language of ECA Rules. A markup proposal
for active rules can be found already in RuleML [4], but it does not tackle
the complexity of events, actions, and the generality of rules, as described here.
Moreover, to deal with the requirements of heterogeneity and of reasoning about
rules, an ontology of ECA rules and (sub)ontologies for events, conditions and
actions, with rules possibly specified in RDF/OWL, is required.

In this paper we define the basic concepts of a general language for evolution
and reactivity in the Semantic Web that responds to the requirements just ex-
posed. Rather than presenting an RDF/OWL ontology, in this paper we present
a UML 2.0 [14] model. By doing this, we not only consubstantiate the language
concepts, but also provide an abstract syntax for it, which is already a step for
having a markup (XML) language for general ECA rules. For defining such a
markup, it is worth noting that the UML model we present is mappable into
XMI [13], this directly providing an XML representation. The modelling of the
language starts in Section 2, where the global aspects are spelled out, and the
composition between the components is discussed. The common structure of the
(sub)languages for the rule components discussed in Section 3. Then, in Section
4, the specific aspects of each of the E, C, and A components is discussed and
an illustrative concrete (instantiation) of each of these (sub)languages is given.
We end the paper by mentioning ongoing and future work.

2 Global Aspects for a General ECA Language

In order to cope with the Semantic Web heterogeneity, the target of development
and definition of languages for (ECA) rules, for events, for conditions and for
actions should be a semantic approach, i.e. an approach based on an (extensible)
ontology for rules, events, conditions and actions that also allows for reasoning
about these concepts.
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Rule

RuleComponent
1..*

{ordered}

rulecomponent

EventComponent

event+

ConditionComponent

condition+0..1

ActionComponent

action+

Language

*

ECARule*

Fig. 1. General UML model for ECA rules

At a quite abstract level a rule is an aggregation of rule components, and an
ECA rule can be described by the UML diagram given in Figure 1. As expected,
an ECA rule has 3 different components: event, condition and action. The con-
dition is optional, in the sense that it can be omitted, or that languages may
allow to integrate the evaluation of the condition with the event component,
or with the action component. This model can be readily extended by adding
a fourth component (also optional) – the post-condition (another Condition)
– resulting in a variation usually called ECAP rules. In most cases, this post-
condition can be omitted by allowing the action language to test for conditions
inside the action part. But it may have particular relevance when considered
together with cascading reactions and transactional rules, in which case the
post-condition allows the declarative specification of restrictions that must ap-
ply after the whole transaction, given by the action, is successfully executed.
This will be further detailed in Section 4.3 below, when discussing languages for
the action part.

Current databases already support active concepts by triggers (e.g., SQL)
where the distinction between events, conditions and actions is not necessarily
explicit. Such rules can be handled as opaque rules of a given language that
are understood as a whole by an underlying system. Note that there exist well-
defined mappings into the above ECA model.

When defining (ECA) rules, language heterogeneity has to be considered not
only at the global rule level, but also at the rule component level. As stated be-
fore, several reactive rule languages have already been proposed (e.g. XChange
[8], RDFTL [18]), introducing heterogeneity at the rule level. A generic ap-
proach for rules in the Semantic Web must be able to cover all such explicit
language proposals. In most of these proposals there exists a pattern of lan-
guage reuse, usually a query (sub)language that already exists (e.g. XQuery) is
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RuleComponent
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*
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*
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> use_variable

declare_variable =

  bind_variable->union(

    rulecomponent->collect(

      bind_variable )->asSet() )

declare_variable->includesAll(

  rulecomponent->collect(

    use_variable )->asSet() )

Fig. 2. Rules and Variables

chosen for the condition and either an existing update (sub)language is chosen
(e.g. XQuery+Updates [21]) or an extension is built over the query language
(e.g. Xcerpt [20]) in order to obtain a new (sub)language (e.g. XChange [8]) for
the action component. Finally, an event (sub)language is defined (often based
on an existing one from the field of Active Databases, e.g. the SQL3 standard).

A general approach requires a clean distinction between the three components
E, C, and A on the ontology level of the rules (as shown in Figure 1). Given
this, additional heterogeneity is provided by using and combining different event,
condition, and action (sub)languages according to a global ECA schema. Each
language is identified by its namespace which then contains markup elements of
the specific languages. To achieve language heterogeneity at the rule component
level, there must be a precise convention between all languages how the different
parts of a rule can exchange information and interact with each other. This is
achieved by a set of “bindable” names (logical variables), cf. Figure 2.

A variable must be bound only once to a value; in case that an already bound
variable is “bound” again, the values must coincide, i.e., yielding an analogous
semantics as in logic programming (this e.g. allows for an event component
that in some cases binds a variable which is then used as a join variable in the
condition, and in others is bound by the latter). The OCL constraints in Figure 2
guarantee that the variables of the rule are exactly those bound either in the
Rule or in a RuleComponent. The binding mechanism can be extended with a
type system.

The actual handling (and its markup) of variables will be discussed below for
a simple case of rules, and later in Sections 3 and 4. We currently recommend to
be explicit with declaring variables that are used or bound in a rule component,
although in most cases it will be possible to derive this from the markup and
the languages’ ontologies.
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Rules with Opaque Components. At the most basic level, each rule component
has a textual specification (again called opaque) that is to be understood by some
language engine. In this case it is marked up as text content of an eca:opaque
element that references the language via its lang attribute (see Example 1).
Additionally, since variable bindings must be communicated and binding/using
cannot be derived from the opaque text, this information must be given ex-
plicitly. Thus, the eca:opaque element must list all variables that are used or
bound by it (i.e., whose bindings must be exchanged with the engine), also op-
tionally giving their names (e.g., for embedding JDBC where variables are only
named ?1, ?2 etc.). Variables can be bound by opaque parts by (i) matching
them – logic programming style, or (ii) assigning the result set of a query to
them.

Example 1. Consider an ECA rule expressing the idea that whenever a flight is
cancelled, every customer who has a reservation for this flight must be notified,
preferably by SMS. Using XML rule markup with opaque rule components (using
different languages), this rule could take the following form:

<eca:rule xmlns:eca=”http://www.eca.org/eca-ml”
xmlns:datalog=”http://www.lp.org/datalog”
xmlns:xpath=”http://www.w3.org/XPath”
xmlns:pseudocode=”http://www.pseudocode-actions.nop”>

<eca:bind-variable name=”Reservations”>

http://www.reservations.nop/actual.xml
</eca:bind-variable>

<eca:variable name=”Flight”/>

<eca:variable name=”Customers”/>

<eca:event>

<eca:opaque lang=’datalog’>
<eca:bind-variable name=”Flight” use=”F” mode=”match”/>

flight cancelation(F) <!-- matches literal against event in datalog -->

</eca:opaque>

</eca:event>

<eca:condition>

<eca:opaque lang=’xpath’>
<eca:use-variable name=”Flight” use=”$Flight”/>

<eca:use-variable name=”Reservations” use=”$Reservations” />

<eca:bind-variable name=”Customers” mode=”result-set”/>

document($Reservations)//flight[@id=$Flight]/reservation/customer
</eca:opaque>

<!-- evaluates XPath expression, binds the result to the variable ’Customers’
and checks if it is not empty -->

</eca:condition>

<eca:action>

<eca:opaque lang=’pseudocode’>
<eca:use-variable name=”Customers”/>

<eca:use-variable name=”Flight”/>

for each C in Customers do
notify cancelation(Flight, sms:C)
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otherwise notify cancelation(Flight, mail:C)
otherwise signal failure(notify cancelation(Flight, C))

done
</eca:opaque>

</eca:action>

</eca:rule>

Thus, the specification of a rule component in its simplest (opaque) form is just
some opaque text associated with a set of variables that can either be bound
or simply used in that component. When this text is given to the respective
language engine together with a set of variables, some of them already bound,
the engine interprets this text, optionally producing new bindings for some of
the yet unbound variables.

3 Common Structure of E, C and A Sublanguages

The level of reasoning that can be performed with the model defined so far is yet
restricted. In order to do deeper reasoning, one must go inside of the rule com-
ponents. For this, instead of a simple text like the opaque specifications above,
these specifications may also be given as structured ones. The generic structure
of these (sub)languages, independently of whether they are event, condition or
action languages, is modelled in Figure 3. Each such language consists of a set of
composers ; actual rules then combine it with a separate language of atomic ele-
ments (events, literals, actions) that are part of domain languages, and in most
cases come from application-dependent ontologies. Expressions of the language
are then (i) atomic elements, or (ii) composite expressions recursively obtained

Language

+id:uri

Composer

+/arity:int

+cardinality:int

Parameter

+name:string[0..1]

* {ordered}

*

Engine

*

DomainLanguage

AlgebraicLanguage

Fig. 3. Language Structure
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by applying composers to expressions. Due to their structure, these languages
are called algebraic languages, e.g. used in event algebras.

Each composer has a given cardinality that denotes the number of expressions
(of the same type of language, e.g., events) it can compose, and (optionally) a
sequence of parameters (that come from another ontology, e.g., time intervals)
that determines its arity.

For instance, “E1 followed by E2 within t” is a binary composer to recognize
the occurrence of two events (atomic or not) in a particular order within a time
interval, where t is a parameter. A language for atomic events could define an
event “received message(M)” for receiving a message. Together with an action
language that provides an action for sending a message, one could easily define
a negotiation dialog between two systems by means of a set of reactive rules.

As mentioned above, actual rules combine these languages with appropriate
languages for atomic elements. Usually, these are provided by domain languages
(e.g. languages for the domain of travels, or banking, or ...) that are induced
by an ontology, and define atomic events, predicates or literals (for conditions),
and actions of that specific domain (e.g. events of train schedule changes, ac-
tions of reserving tickets, ...). There exist also domain-independent primitive
constructs (with arguments), e.g. for general communication, such as the above
received message(M) (where M in turn contains domain-specific content). Note
that the markup must also provide the handling of variables; here we propose to
borrow from XSLT: use variables by {$var-name}, and bind them by <variable
name=“...” select=“...”/> elements; but the actual decision is up to the language
designers.

Each of these languages has an associated engine that captures the semantics
of the (composers of the) language. The engines provide the (expected) interfaces

Parameter Composer

CompositeExpressionAtomicElement

OpaqueSpec

Expression

*

{ordered}

RuleComponent

Variable

*

*

> bind_variable

*
*

*
*

*

*

> use_variable

Language
*

AlgebraicLanguage

*

DomainLanguage

*

* *

1..*

{ordered}

Fig. 4. Model of the Rule Components
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for communication, must keep their own state information, including at least
the current variable bindings. Specific tasks of the engines then include e.g. the
evaluation of composite events (for the event languages), or the execution of
transactions (for the action engines). The issue of transactions is of particular
importance (see Section 4.3).

Note that since each subtree of such a specification is a specification of the
same kind (e.g., subevents composed into more complex events), it is also possible
to nest composers and expressions from different languages. Thus, languages are
associated on the expression level. In the XML markup, this is done by the
namespaces (from which the tree’s markup is taken).

Given the additional level of knowledge about the structure of a sublanguage,
the modelling of the rule component specifications can be more detailed, as
shown in Figure 4. This raises the level of reasoning that may be performed
about ECA rules, regardless of the degree of language heterogeneity that may
be present.

4 Concrete Languages for Events, Conditions, and
Actions

In the previous sections we have defined a general model for ECA rules and their
components. In this section we discuss specific issues of the languages of events,
of conditions and of actions.

4.1 A Language for Events in the Web

In the context of the Semantic Web, an (atomic) event is in general any de-
tectable occurrence. Events in the Web can be local events, e.g. updates of local
data (that can be used for deriving/raising global events), but also incoming
messages, and changes in other nodes.

Atomic Events on Web data. On the most basic (physical) level, there are con-
structs to deal with the detection of changes on local data, be it on XML or
RDF data, similar to those found in database triggers. Work on triggers for
XQuery has e.g. been described in [5] with Active XQuery and in [2], emulating
the trigger definition and execution model of the SQL3 standard that specifies a
syntax and execution model for ECA rules in relational databases. The former
uses the same syntax and switches as SQL. For modifications of an XML tree, we
proposed in [1] the following basic constructs for atomic events of modifications
of XML data:

– ON {DELETE|INSERT|UPDATE} OF xsl-pattern: if a node matching the xsl-
pattern is deleted/inserted/updated,

– ON MODIFICATION OF xsl-pattern: if anything in the subtree is modified,
– ON INSERT INTO xsl-pattern: if a node is inserted (directly) into a node

matching the xsl-pattern,
– ON INSERT [IMMEDIATELY] BEFORE|AFTER xsl-pattern: if a node is inserted

(immediately) before or after a node matching the xsl-pattern.
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In all these constructs, xsl-pattern is a (typically input) argument. Moreover,
these events should make relevant values accessible, e.g., OLD AS ... and NEW
AS ... (like in SQL), both referencing the complete node to which the event
happened, additionally INSERTED AS, DELETED AS referencing the inserted or
deleted node. These relevant values are additional arguments of the above con-
structs, typically (output) to be bound with variables. The implementation of
these events in XML repositories is probably to be based on the DOM Level 2/3
Events [11].

Regarding RDF data, RDF triples, describing properties/values of a resource,
are much more similar to SQL. In contrast to XML, there is no assignment of
data with subtrees, which makes it impossible to express “deep” modifications
in a simple event. Proposals can be found in [18], and in [1]; in the latter, we
considered the following basic constructs:

– ON {DELETE|INSERT|UPDATE} OF property [OF class]: if a property is re-
moved from/added to/updated of a resource of a given class, then such an
event is raised;

– ON CREATE OF class: it is raised if a new resource of a given class is created;
– ON NEW CLASS: is raised if a new class is introduced,
– ON NEW PROPERTY [OF CLASS class]: is raised, if a new property (option-

ally: to a specified class) is introduced.

Besides the OLD and NEW values mentioned for XML, these events should con-
sider as arguments (to bind variables) RESOURCE AS ... and PROPERTY AS ...,
referring to the modified resource and the property (as URIs), respective.

Communication events. Besides the above events that react on updates on a
given data model level, communication events are raised by messages, inde-
pendent from the abstraction level of the rule. We propose the following basic
construct:

– ON MESSAGE [OF sender] [AT time] [MATCHING pattern ]

In this construct, the metadata about sender and time are to be bound to vari-
ables upon receipt of the message, as well as the actual content. However, one
might want to trigger such an event only when a message with a specific sender,
time, or content is received. In this case a methodology for testing the content
must be specified. This can be done by (regular expression) matching, or by
querying the (XML or RDF) content. For the above (opaque) syntax as triggers,
we restrict it to matching; a markup version may include more detailed condi-
tions (as illustrated below), where also more elaborate constructs for incoming
messages are possible, e.g. with parameters for specifying an ontology describ-
ing the language of the message, or along the lines of the FIPA language for
communication among agents [12].

Composite events. For dealing with composite events in the context of the ECA
rules proposed here, the event languages must define several composers. We
propose at least the following composers of events: “E1 OR E2”, “E1 AND E2”
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(in arbitrary order), and “E1 AND THEN E2 [AFTER PERIOD {< | >} time]”
the latter one composing two events and using an additional parameter time,
indicating the time that has passed between the occurrence of E1 and E2. The
actual semantics of composers must be defined similarly to that of operators
in event algebras in the context of active databases [25]. In it, detection of
a composite event means that its “final” atomic subevent is detected. Event
algebras contain not only the aforementioned straightforward basic conjunctive,
disjunctive and sequential connectives, but also additional operators. Several
event algebras have been defined that provide also e.g. “negative events” in
the style that “when E1 happened, and then E3 but not E2 in between, then
do something”, “aperiodic” and “cumulative” events, e.g., the SNOOP event
algebra [9] of the “Sentinel” active database system. A quite rich set of composers
for events in the Web is being also considered in the language XChange [8], where
exclusions, repetitions, and cardinality are also explored.

Example 2. The following specifies, in an illustrative, non-normative (XML)
markup, an event for (very simplified) detection of a late train. It is a com-
posite event in the SNOOP (algebraic) language, and uses atomic events from
messaging and the domain of train travels. The detection of late trains is made
either by being warned by the travel agency, or by the occurrence of a domain-
specific event signaling changes in a given (pre-defined) source with expected
arrival times:

<eca:event xmlns:xmlsnoop=”http://xmlsnoop.nop”
xmlns:msg=”http://www.messages.msg/messages”
xmlns:mytravel=”http://www.trains.tr”>

<eca:bind-variable name=”newArrival”/>

<!-- The 2 variables below are bound on the rule level -->

<eca:use-variable name=”myTravelAgent” use=”$myAgent”/>

<eca:use-variable name=”myTrain” use=”$myTrain”/>

<xmlsnoop:or>

<xmlsnoop:atomic detect=”xml-pattern”>

<msg:receive-message sender=”$myAgent”>

<content> <delayed train={$myTrain}/> </content>

</msg:receive-message>

<xmlsnoop:variable name=”newArrival” <!-- borrowed from xsl:variable -->

select=”$event/content/delayed/@arrivalTime” />

</xmlsnoop:atomic>

<xmlsnoop:atomic detect=”xpath”>

<xmlsnoop:cond test=”$event/name()=’mytravel:changeTime’”/>

<xmlsnoop:cond test=”$event/@trainId=$myTrain”/>

<xmlsnoop:variable name=”newArrival” select=”$event/@newTime”/>

</xmlsnoop:atomic>

</xmlsnoop:or>

</eca:event>

The composite event is an “or” of two atomic events: the first one is receiving
a message (marked-up in XML) with an attribute sender which is equal to the
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value of the variable myAgent, and with a content with a delayed element with
an attribute train conciding with that of myTrain. The mechanism used here for
testing this matching with the event that occurred is an xml-pattern. If so, the
variable newArrival is bound to the value of the attribute arrivalTime of that
delayed element. The second one is a domain specific event travel:changeTime
(that occurs “somewhere in the Web” and has to be detected by Semantic Web
mechanisms. It is implicitly bound to $event). The details are then checked by
XPath expressions against $event: If its attribute trainId equals the value of the
variable myTrain, then newArrival is bound to the value of the newTime attribute
of the event.

4.2 Conditions in ECA Rules for the Web

Conditions in ECA rules basically amount to queries in the (Semantic) Web,
that possibly bind rule variables to be then used in the action component. For
this purpose, and in case reasoning is not required inside the condition, one can
envisage the condition language specification simply as opaque. This way, e.g.
XPath, XQuery, RDQL, or Xcerpt can be used in the condition.

In case reasoning about the condition component is desired, an ontology for
the query language(s) is needed, that models the basic constructs and composers
of the language in the terms described above. XQueryX is an example for an
XML markup of a query language. Deeper work in the direction of modelling
query languages for the Web already exists, e.g. in [22] where a UML modelling
of the language Xcerpt [20] is shown.

4.3 Actions and Transactions

As for events, also (atomic) actions in the Web can be considered at various
levels: there can be local actions of updating web data; event raising; external
update requests to other nodes; general (local or remote) method calls.

Local update actions can be specified in any appropriate language for chang-
ing web data, such as XUpdate [24], XML-RL [15], or XPathLog [16]. Their
integration in the ECA framework can be done as just described for conditions,
i.e. either as opaque specification, or by providing a proper ontology, based on
constructs and composers, specifying those update languages.

Activities of remote nodes can be invoked by sending a message with an
update (request) statement. Here a basic construct for sending a message is
required, the simplest one being: SEND MESSAGE message TO recipient. This mes-
sage sending can also be used for event-raising actions, in this case making sure
that the event raised is then collected by a corresponding ON MESSAGE construct.
As for events, more elaborate action constructs can be defined. General action
constructs that can be defined may be those for (remote) procedure/method
calls to Web Services, where the SOAP protocol can be used.

The execution of an action may in general succeed or fail. Considering fail-
ure of actions is important e.g. in the case of remote update requests: once the
request is issued, it is important to be able to receive feedback on whether the
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update was actually done, or not. For example, upon request of a flight reserva-
tion, it is important to know whether the reservation was accepted or not. The
operational semantics of a general language for actions, and a corresponding
processor, should thus allow for failure of atomic actions. Moreover, when used
with non-deterministic condition languages, the failure of an action should some-
how “backtrack” into the condition to check for alternative bindings of variables
that may result in successful actions.

Complex actions can be defined by composing atomic actions. This is done
by enriching the action language with appropriate composers. The most basic
composers for actions are those of (parallel) conjunction of actions (A1 AND A2)
sequential execution of actions (A1; A2). Other more elaborate composers can be
defined in action languages, such as if-then-else composers (IF test THEN A1 ELSE
A2), while-iterations (WHILE test DO A), and forall-iterations (FORALL variable
DO A). Note that some of these complex actions already require the use of a
condition language in the action language for evaluating conditions. This idea
can be further exploited by introducing an action construct – TEST CONDITION
condition which tests the condition and either fails if the condition is false, or
does nothing in case it is true but possibly binding some extra variables). With
such a rich action language, similar to Transaction Logic [7], combining condition
testing with (trans)actions, the condition of rules can be omitted.

In general, each of the complex actions should be allowed to be specified as
a transaction with ACID properties, in particular where either all of the actions
are executed, or the whole composite action fails, and no action is performed.
This can be done by having a composer TRANSACTION id A, where id is a para-
meter for storing a unique identifier of the transaction, and A is the (complex)
action. Note here how some form of post-condition, in the line of those men-
tioned in Section 2 may be specified by combining these transactions with the
above condition testing. While the transaction composer is easy to understand
in case all atomic actions in A consist of local updates, this is not the case when
A involves actions like e.g. sending messages, or remote method calls. In fact,
in these cases, what should be the meaning of rolling back over such an action?
When a message is sent, what does it mean to rollback on sending it? It is our
stance that in these cases, compensating actions must be specified, to be exe-
cuted when rolling back is not possible. This, and a deeper study of transactions
in this context (including considering transactions that are not limited to a single
rule), is not detailed further here, and is subject of ongoing work.

5 Conclusions

In this paper we describe the basic concepts and a UML modelling of a gen-
eral ECA-rule framework for the Semantic Web. Moreover, we discuss concrete
languages for events, conditions, and actions to be composed in this general lan-
guage. This framework sets the ground for a general framework for evolution and
reactivity on the Web, where heterogeneity of languages is taken into account,
and reasoning about rules is possible. The integration of other ECA-based lan-
guages in this framework, such as the ones mentioned in the introduction, is a
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subject of ongoing and future work. In this respect, special attention will be paid
to the language XChange, as it is the one which already consider richer events
and actions.

Lack of space prevents us from elaborating here on further ongoing work
that is being developed by us in the context of the general language. Namely,
further detailing the concepts involved in the definition of domain languages, and
also the definition of a general architecture for executing the ECA rules are left
out. This general architecture also raises the issue of communication strategies
regarding events and actions (are events that are raised by actions “pushed”
into respective nodes? or do nodes periodically “pull” for events that may have
occurred?). Another important issue that is also related with the execution, and
that was only briefly addressed here is that of transactions. It is our belief that
the issue of transactions on the Web is an important and difficult subject, that
will gain increasing importance and interest in a near future. It is in our agenda
to continue working in this subject, along the lines exposed above.
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Overview

Not surprisingly, everyone perceives the Semantic Web in a different way. One
view is that the Semantic Web is about semantics, and semantics is about AI-
style knowledge representation, which leads to knowledge representation lan-
guages like OWL.

Another view is that the Semantic Web is about overcoming the syntax of
data so that users and developers can concentrate on the semantics of infor-
mation. Following this view means that languages and tools for the Semantic
Web must focus on practical problems rather than generic KR tasks. That is,
they should make it easier and cheaper to publish, understand, use, and reuse
data and services on the Web in an interoperable and scalable way. Languages
that help define how different data sets and vocabularies relate to each other are
necessary; they are able to provide the glue between (distributed) information
systems and data sets. Following this view also has consequences for designing
rule languages for the Semantic Web.

A major task to achieve on the Semantic Web is to provide tools that drive
down the cost of establishing interoperability between different data providers.
A rule language can help here: writing rules is usually faster and cheaper than
writing program code since a rule language has more declarative features and is
usually not burdened with the details of a general programming language. Rules
provide benefits over a software product’s life cycle; they are simpler to write
than code, more concise, and easier to understand, to share, and to maintain.

Standardizing such a rule language has several benefits. Interested parties can
invest in building the infrastructure because a market is being created. Standard-
ization also enables competition to drive innovation. And last but not least, it
allows rule sharing (that is, knowledge about how to achieve interoperability).

In other words, a rule language for the Semantic Web may be seen as a data
transformation and glue language - in contrast to a knowledge representation
language, which captures knowledge about a certain domain.

Of course such a rule language needs a defined semantics (as a basis for im-
plementation) and efficient evaluation mechanisms. Starting from modest begin-
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nings (SiLRI) reported in [1], with TRIPLE [2] [3] we were aiming at a practical
language suitable for applications. TRIPLE has been used in a variety of differ-
ent projects, including Ontology Management [4], Conflict Analysis [5], Resource
Matching on the Grid [6], Personalization Services [7], and E-Government [8].
A relatively new application is validation of data sets for Web services using
integrity constraints. In my talk I will introduce the different use cases and in-
vestigate what gives TRIPLE the flexibility required for being an adequate tool
for this wide range of applications.
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Abstract. The design of the logical layer of the Semantic Web, and sub-
sequently of the mark-up language SWRL, has renewed the interest in
hybrid knowledge representation and reasoning. In this paper we discuss
principles of inductive reasoning for this layer. To this aim we provide
a general framework for learning in AL-log, a hybrid language that in-
tegrates the description logic ALC and the function-free Horn clausal
language Datalog, thus turning out to be a small yet sufficiently ex-
pressive subset of SWRL. In this framework inductive hypotheses are
represented as constrained Datalog clauses, organized according to the
B-subsumption relation, and evaluated against observations by apply-
ing coverage relations that depend on the representation chosen for the
observations. The framework is valid whatever the scope of induction
(description vs. prediction) is. Yet, for illustrative purposes, we concen-
trate on an instantiation of the framework which supports description.

1 Introduction

The layered architecture of the Semantic Web [2] poses several challenges in
the field of Knowledge Representation and Reasoning (KR&R), mainly attract-
ing people doing research on Description Logics (DLs) [1]. E.g., the design of
OWL for the ontological layer has been based on the DL SHIQ [14]. Also
SWRL (http://www.w3.org/Submission/SWRL/), recently proposed for the log-
ical layer, extends OWL ’to build rules on top of ontologies’. It bridges the no-
torious expressive gap between DLs and Horn clausal logic (or its fragments) [4]
in a way that is similar in the spirit to hybridization in KR&R systems such
as AL-log [8]. Generally speaking, hybrid systems are KR&R systems which are
constituted by two or more subsystems dealing with distinct portions of a single
knowledge base by performing specific reasoning procedures [13]. The motiva-
tion for building hybrid systems is to improve on two basic features of knowl-
edge representation formalisms, namely representational adequacy and deductive
power. In particular, AL-log integrates ALC [25] and Datalog [6] by using ALC
concept assertions essentially as type constraints on variables. Given the links
between ALC and SHIQ as well as between Datalog and Horn clauses, it can
be considered a small yet sufficiently expressive subset of SWRL.
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Reasoning is commonly intended to be based on deduction. Yet induction,
deeply investigated in the area of Machine Learning [9], is a very interesting
inference which could be of help to the Semantic Web practitioners, e.g. to sup-
port them in the task of defining rules for the logical layer. The approach known
under the name of Inductive Logic Programming (ILP) seems to be particu-
larly promising due to the common roots with computational logic [10]. ILP
has been historically concerned with concept learning from examples and back-
ground knowledge within the representation framework of Horn clausal logic and
with the aim of prediction. More recently ILP has moved towards either different
first-order logic fragments (e.g., DLs) or new learning goals (e.g., description). In
this paper we resort to the methodological apparatus of ILP to define a general
framework for learning in AL-log. Inductive hypotheses are represented as con-
strained Datalog clauses, organized according to the B-subsumption relation,
and evaluated against observations by applying coverage relations that depend
on the representation chosen for the observations. The framework proposed is
general in the sense that it is valid whatever the scope of induction (description
vs. prediction) is. For the sake of illustration we concentrate on an instantia-
tion of the framework which corresponds to the logical setting of characteristic
induction from intepretations and is particularly suitable for descriptive data
mining tasks such as frequent pattern discovery (and its variants) [7].

The paper is organized as follows. Section 2 introduces the basic notions of
AL-log. Section 3 defines the framework for learning in AL-log. Section 4 illus-
trates the instantiation of the framework in the case of characteristic induction
from intepretations. Section 5 concludes the paper with final remarks.

2 Basics of AL-Log

The system AL-log [8] integrates two KR&R systems: Structural and relational.

2.1 The Structural Subsystem

The structural part Σ is based on ALC [25] and allows for the specification of
knowledge in terms of classes (concepts), binary relations between classes (roles),
and instances (individuals). Complex concepts can be defined from atomic con-
cepts and roles by means of constructors (see Table 1). Also Σ can state both
is-a relations between concepts (axioms) and instance-of relations between in-
dividuals (resp. couples of individuals) and concepts (resp. roles) (assertions).
An interpretation I = (ΔI , ·I) for Σ consists of a domain ΔI and a mapping
function ·I . In particular, individuals are mapped to elements of ΔI such that
aI �= bI if a �= b (Unique Names Assumption (UNA) [22]). If O ⊆ ΔI and
∀a ∈ O : aI = a, I is called O-interpretation. Also Σ represents many different
interpretations, i.e. all its models (Open World Assumption (OWA) [1]).

The main reasoning task for Σ is the consistency check. This test is performed
with a tableau calculus that starts with the tableau branch S = Σ and adds
assertions to S by means of propagation rules such as
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Table 1. Syntax and semantics of ALC

bottom (resp. top) concept ⊥ (resp. �) ∅ (resp. ΔI)
atomic concept A AI ⊆ ΔI

role R RI ⊆ ΔI × ΔI

individual a aI ∈ ΔI

concept negation ¬C ΔI \ CI

concept conjunction C � D CI ∩ DI

concept disjunction C � D CI ∪ DI

value restriction ∀R.C {x ∈ ΔI | ∀y (x, y) ∈ RI → y ∈ CI}
existential restriction ∃R.C {x ∈ ΔI | ∃y (x, y) ∈ RI ∧ y ∈ CI}
equivalence axiom C ≡ D CI = DI

subsumption axiom C � D CI ⊆ DI

concept assertion a : C aI ∈ CI

role assertion 〈a, b〉 : R (aI , bI) ∈ RI

– S →� S ∪ {s : D} if
1. s : C1 � C2 is in S,
2. D = C1 and D = C2,
3. neither s : C1 nor s : C2 is in S

– S →∀ S ∪ {t : C} if
1. s : ∀R.C is in S,
2. sRt is in S,
3. t : C is not in S

– S →� S ∪ {s : C′ � D} if
1. C � D is in S,
2. s appears in S,
3. C′ is the NNF concept equivalent to ¬C
4. s : ¬C � D is not in S

– S →⊥ {s : ⊥} if
1. s : A and s : ¬A are in S, or
2. s : ¬� is in S,
3. s : ⊥ is not in S

until either a contradiction is generated or an interpretation satisfying S can be
easily obtained from it.

2.2 The Relational Subsystem

The relational part of AL-log allows one to define Datalog1 programs enriched
with constraints of the form s : C where s is either a constant or a variable,
and C is an ALC-concept. Note that the usage of concepts as typing constraints
applies only to variables and constants that already appear in the clause. The
symbol & separates constraints from Datalog atoms in a clause.
1 For the sake of brevity we assume the reader to be familiar with Datalog.
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Definition 1. A constrained Datalog clause is an implication of the form
α0 ← α1, . . . , αm&γ1, . . . , γn where m ≥ 0, n ≥ 0, αi are Datalog atoms and
γj are constraints. A constrained Datalog program Π is a set of constrained
Datalog clauses.

An AL-log knowledge base B is the pair 〈Σ, Π〉 where Σ is an ALC knowledge
base and Π is a constrained Datalog program. For a knowledge base to be
acceptable, it must satisfy the following conditions:

– The set of Datalog predicate symbols appearing in Π is disjoint from the
set of concept and role symbols appearing in Σ.

– The alphabet of constants in Π coincides with the alphabet O of the indi-
viduals in Σ. Furthermore, every constant in Π appears also in Σ.

– For each clause in Π , each variable occurring in the constraint part occurs
also in the Datalog part.

These properties state a safe interaction between the structural and the rela-
tional part of an AL-log knowledge base, thus solving the semantic mismatch
between the OWA of ALC and the CWA of Datalog [23]. This interaction is
also at the basis of a model-theoretic semantics for AL-log. We call ΠD the set of
Datalog clauses obtained from the clauses of Π by deleting their constraints.
We define an interpretation J for B as the union of an O-interpretation IO
for Σ (i.e. an interpretation compliant with the unique names assumption) and
an Herbrand interpretation IH for ΠD. An interpretation J is a model of B if
IO is a model of Σ, and for each ground instance α′

0 ← α′
1, . . . , α

′
m&γ′

1, . . . , γ
′
n

of each clause α0 ← α1, . . . , αm&γ′
1, . . . , γ

′
n in Π , either there exists one γ′

i,
i ∈ {1, . . . , n}, that is not satisfied by J , or α′

0 ← α′
1, . . . , α

′
m is satisfied by J .

The notion of logical consequence paves the way to the definition of answer set
for queries. Queries to AL-log knowledge bases are special cases of Definition
1. An answer to the query Q is a ground substitution σ for the variables in
Q. The answer σ is correct w.r.t. a AL-log knowledge base B if Qσ is a logical
consequence of B (B |= Qσ). The answer set of Q in B contains all the correct
answers to Q w.r.t. B.

Reasoning for AL-log knowledge bases is based on constrained SLD-resolution
[8], i.e. an extension of SLD-resolution to deal with constraints. In particular, the
constraints of the resolvent of a query Q and a constrained Datalog clause E
are recursively simplified by replacing couples of constraints t : C, t : D with the
equivalent constraint t : C � D. The one-to-one mapping between constrained
SLD-derivations and the SLD-derivations obtained by ignoring the constraints is
exploited to extend known results for Datalog to AL-log. Note that in AL-log
a derivation of the empty clause with associated constraints does not represent
a refutation. It actually infers that the query is true in those models of B that
satisfy its constraints. Therefore in order to answer a query it is necessary to
collect enough derivations ending with a constrained empty clause such that
every model of B satisfies the constraints associated with the final query of at
least one derivation.
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Definition 2. Let Q(0) be a query ← β1, . . . , βm&γ1, . . . , γn to a AL-log knowl-
edge base B . A constrained SLD-refutation for Q(0) in B is a finite set
{d1, . . . , ds} of constrained SLD-derivations for Q(0) in B such that:

1. for each derivation di, 1 ≤ i ≤ s, the last query Q(ni) of di is a constrained
empty clause;

2. for every model J of B, there exists at least one derivation di, 1 ≤ i ≤ s,
such that J |= Q(ni).

Constrained SLD-refutation is a complete and sound method for answering
ground queries.

Lemma 1. [8] Let Q be a ground query to an AL-log knowledge base B. It holds
that B � Q if and only if B |= Q.

An answer σ to a query Q is a computed answer if there exists a constrained
SLD-refutation for Qσ in B (B � Qσ). The set of computed answers is called
the success set of Q in B. Furthermore, given any query Q, the success set of
Q in B coincides with the answer set of Q in B. This provides an operational
means for computing correct answers to queries. Indeed, it is straightforward to
see that the usual reasoning methods for Datalog allow us to collect in a finite
number of steps enough constrained SLD-derivations for Q in B to construct a
refutation - if any. Derivations must satisfy both conditions of Definition 2. In
particular, the latter requires some reasoning on the structural component of B.
This is done by applying the tableau calculus as shown in the following example.

Constrained SLD-resolution is decidable. Furthermore, because of the safe
interaction between ALC and Datalog, it supports a form of closed world rea-
soning, i.e. it allows one to pose queries under the assumption that part of the
knowledge base is complete.

3 The General Framework for Learning in AL-Log

In our framework for learning in AL-log we represent inductive hypotheses as
constrained Datalog clauses and data as an AL-log knowledge base B. In par-
ticular B is composed of a background knowledge K and a set O of observations.
We assume K ∩ O = ∅.

To define the framework we resort to the methodological apparatus of ILP
which requires the following ingredients to be chosen:

– the language L of hypotheses
– a generality order $ for L to structure the space of hypotheses
– a relation to test the coverage of hypotheses in L against observations in O

w.r.t. K
The framework is general, meaning that it is valid whatever the scope of

induction (description/prediction) is. Therefore the Datalog literal q(X)2 in
the head of hypotheses represents a concept to be either discriminated from
others (discriminant induction) or characterized (characteristic induction).
2 X is a tuple of variables.
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3.1 The Language of Hypotheses

To be suitable as language of hypotheses, constrained Datalog clauses must
satisfy the following restrictions.

First, we impose constrained Datalog clauses to be linked and connected
(or range-restricted) as usual in ILP.

Definition 3. Let H be a constrained Datalog clause. A term t in some literal
li ∈ H is linked with linking-chain of length 0, if t occurs in head(H), and is
linked with linking-chain of length d + 1, if some other term in li is linked with
linking-chain of length d. The link-depth of a term t in some li ∈ H is the length
of the shortest linking-chain of t. A literal li ∈ H is linked if at least one of its
terms is linked. The clause H itself is linked if each li ∈ H is linked. The clause
H is connected if each variable occurring in head(H) also occur in body(H).

Second, we impose constrained Datalog clauses to be compliant with the
bias of Object Identity (OI) [26]. This bias can be considered as an extension
of the unique names assumption from the semantic level to the syntactic one
of AL-log. We would like to remind the reader that this assumption holds in
ALC. Also it holds naturally for ground constrained Datalog clauses because
the semantics of AL-log adopts Herbrand models for the Datalog part and
O-models for the constraint part. Conversely it is not guaranteed in the case of
non-ground constrained Datalog clauses, e.g. different variables can be unified.
The OI bias can be the starting point for the definition of either an equational
theory or a quasi-order for constrained Datalog clauses. The latter option relies
on a restricted form of substitution whose bindings avoid the identification of
terms.

Definition 4. A substitution σ is an OI-substitution w.r.t. a set of terms T iff
∀t1, t2 ∈ T : t1 �= t2 yields that t1σ �= t2σ.

From now on, we assume that substitutions are OI-compliant.

3.2 The Generality Relation

The definition of a generality relation for constrained Datalog clauses can
disregard neither the peculiarities of AL-log nor the methodological apparatus
of ILP. Therefore we rely on the reasoning mechanisms made available by AL-log
knowledge bases and propose to adapt Buntine’s generalized subsumption [5] to
our framework as follows.

Definition 5. Let H be a constrained Datalog clause, α a ground Datalog
atom, and J an interpretation. We say that H covers α under J if there is a
ground substitution θ for H (Hθ is ground) such that body(H)θ is true under J
and head(H)θ = α.

Definition 6. Let H1, H2 be two constrained Datalog clauses and B an AL-
log knowledge base. We say that H1 B-subsumes H2 if for every model J of
B and every ground atom α such that H2 covers α under J , we have that H1
covers α under J .
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We can define a generality relation $B for constrained Datalog clauses on
the basis of B-subsumption. It can be easily proven that $B is a quasi-order (i.e.
it is a reflexive and transitive relation) for constrained Datalog clauses.

Definition 7. Let H1, H2 be two constrained Datalog clauses and B an AL-
log knowledge base. We say that H1 is at least as general as H2 under B-
subsumption, H1 $B H2, iff H1 B-subsumes H2. Furthermore, H1 is more gen-
eral than H2 under B-subsumption, H1 %B H2, iff H1 $B H2 and H2 �B H1.
Finally, H1 is equivalent to H2 under B-subsumption, H1 ∼B H2, iff H1 $B H2
and H2 $B H1.

The next lemma shows the definition of B-subsumption to be equivalent to
another formulation, which will be more convenient in later proofs than the
definition based on covering.

Definition 8. Let B be an AL-log knowledge base and H be a constrained Dat-
alog clause. Let X1, . . . , Xn be all the variables appearing in H, and a1, . . . , an

be distinct constants (individuals) not appearing in B or H. Then the substitution
{X1/a1, . . . , Xn/an} is called a Skolem substitution for H w.r.t. B.

Lemma 2. [18] Let H1, H2 be two constrained Datalog clauses, B an AL-log
knowledge base, and σ a Skolem substitution for H2 with respect to {H1} ∪ B.
We say that H1 $B H2 iff there exists a ground substitution θ for H1 such that
(i) head(H1)θ = head(H2)σ and (ii) B ∪ body(H2)σ |= body(H1)θ.

The relation between B-subsumption and constrained SLD-resolution is given
below. It provides an operational means for checking B-subsumption.

Theorem 1. Let H1, H2 be two constrained Datalog clauses, B an AL-log
knowledge base, and σ a Skolem substitution for H2 with respect to {H1} ∪ B.
We say that H1 $B H2 iff there exists a substitution θ for H1 such that (i)
head(H1)θ = head(H2) and (ii) B∪body(H2)σ � body(H1)θσ where body(H1)θσ
is ground.

Proof. By Lemma 2, we have H1 $B H2 iff there exists a ground substitution θ′

for H1, such that head(H1)θ′ = head(H2)σ and B ∪ body(H2)σ |= body(H1)θ′.
Since σ is a Skolem substitution, we can define a substitution θ such that H1θσ =
H1θ

′ and none of the Skolem constants of σ occurs in θ. Then head(H1)θ =
head(H2) and B ∪ body(H2)σ |= body(H1)θσ. Since body(H1)θσ is ground, by
Lemma 1 we have B ∪ body(H2)σ � body(H1)θσ, so the thesis follows.

The decidability of B-subsumption follows from the decidability of both gen-
eralized subsumption in Datalog [5] and query answering in AL-log [8].

3.3 Coverage Relations

When defining coverage relations we make assumptions as regards the represen-
tation of observations because it impacts the definition of coverage.
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In the logical setting of learning from entailment extended to AL-log, an
observation oi ∈ O is represented as a ground constrained Datalog clause
having a ground atom q(ai)3 in the head.

Definition 9. Let H ∈ L be a hypothesis, K a background knowledge and oi ∈ O
an observation. We say that H covers oi under entailment w.r.t K iff K∪H |= oi.

Theorem 2. [17] Let H ∈ L be a hypothesis, K a background knowledge, and
oi ∈ O an observation. We say that H covers oi under entailment w.r.t. K iff
K ∪ body(oi) ∪ H � q(ai).

In the logical setting of learning from interpretations extended to AL-log,
an observation oi ∈ O is represented as a couple (q(ai),Ai) where Ai is a set
containing ground Datalog facts concerning the individual i.

Definition 10. Let H ∈ L be a hypothesis, K a background knowledge and
oi ∈ O an observation. We say that H covers oi under interpretations w.r.t. K
iff K ∪Ai ∪ H |= q(ai).

Theorem 3. [17] Let H ∈ L be a hypothesis, K a background knowledge, and
oi ∈ O an observation. We say that H covers oi under interpretations w.r.t. K
iff K ∪Ai ∪ H � q(ai).

Note that the both coverage tests can be reduced to query answering.

4 An Instantiation of the Framework

As an instantiation of our general framework for learning in AL-log we choose the
case of characteristic induction from interpretations which is defined as follows.

Definition 11. Let L be a hypothesis language, K a background knowledge, O a
set of observations, and M(B) a model constructed from B = K∪O. The goal of
characteristic induction from interpretations is to find a set H ⊆ L of hypotheses
such that (i) H is true in M(B), and (ii) for each H ∈ L, if H is true in M(B)
then H |= H.

The logical setting of characteristic induction has been considered very close
to that form of data mining, called descriptive data mining, which focuses on
finding human-interpretable patterns describing a data set r [7]. Scalability is a
crucial issue in descriptive data mining. Recently, the setting of learning from in-
terpretations has been shown to be a promising way of scaling up ILP algorithms
in real-world applications [3].

4.1 A Task of Characteristic Induction

Among descriptive data mining tasks, frequent pattern discovery aims at the
extraction of all patterns whose cardinality exceeds a user-defined threshold.
3 ai is a tuple of constants.
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<owl:Class rdf:ID="MiddleEastCountry">
<owl:sameAs>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:ID="AsianCountry" />
<owl:Restriction>

<owl:onProperty rdf:resource="#Hosts" />
<owl:someValuesFrom rdf:resource="#MiddleEasternEthnicGroup" />

</owl:Restriction>
</owl:intersectionOf>

</owl:sameAs>
</owl:Class>

Fig. 1. Definition of the concept MiddleEastCountry in OWL

Indeed each pattern is considered as an intensional description (expressed in a
given language L) of a subset of r.

The blueprint of most algorithms for frequent pattern discovery is the level-
wise search [21]. It is based on the following assumption: If a generality order
$ for the language L of patterns can be found such that $ is monotonic w.r.t.
the evaluation function supp, then the resulting space (L,$) can be searched
breadth-first starting from the most general pattern in L and by alternating
candidate generation and candidate evaluation phases. In particular, candidate
generation consists of a refinement step followed by a pruning step. The for-
mer derives candidates for the current search level from patterns found frequent
in the previous search level. The latter allows some infrequent patterns to be
detected and discarded prior to evaluation thanks to the monotonicity of $.

We consider a variant of this task which takes concept hierarchies into ac-
count during the discovery process, thus yielding descriptions of r at multiple
granularity levels [20]. More formally, given

– a data set r including a taxonomy T where a reference concept Cref and
task-relevant concepts are designated,

– a multi-grained language L = {Ll}1≤l≤maxG of patterns
– a set {minsupl}1≤l≤maxG of support thresholds

the problem of frequent pattern discovery at l levels of description granularity,
1 ≤ l ≤ maxG, is to find the set F of all the patterns P ∈ Ll frequent in r,
namely P ’s with support s such that (i) s ≥ minsupl and (ii) all ancestors of P
w.r.t. T are frequent in r.

4.2 Casting the Framework to the Task

When casting our general framework for learning in AL-log to the task of fre-
quent pattern discovery at multiple levels of description granularity, the data set
r is represented as an AL-log knowledge base.

Example 1. As a running example, we consider an AL-log knowledge base BCIA

that enriches Datalog facts4 extracted from the on-line 1996 CIA World Fact
4 http://www.dbis.informatik.uni-goettingen.de/Mondial/mondial-rel-facts.
flp
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Book5 with ALC ontologies. The structural subsystem Σ of BCIA focuses on the
concepts Country, EthnicGroup, Language, and Religion. Axioms like

AsianCountry � Country.
MiddleEasternEthnicGroup� EthnicGroup.
MiddleEastCountry≡ AsianCountry� ∃Hosts.MiddleEasternEthnicGroup.
IndoEuropeanLanguage� Language.
IndoIranianLanguage� IndoEuropeanLanguage.
MonotheisticReligion� Religion.
ChristianReligion� MonotheisticReligion.
MuslimReligion� MonotheisticReligion.

define four taxonomies, one for each concept above. Note that Middle East coun-
tries (concept MiddleEastCountry, whose definition in OWL is reported in Fig-
ure 1) have been defined as Asian countries that host at least one Middle Eastern
ethnic group. Assertions like

’ARM’:AsianCountry.
’IR’:AsianCountry.
’Arab’:MiddleEasternEthnicGroup.
’Armenian’:MiddleEasternEthnicGroup.
<’ARM’,’Armenian’>:Hosts.
<’IR’,’Arab’>:Hosts.
’Armenian’:IndoEuropeanLanguage.
’Persian’:IndoIranianLanguage.
’Armenian Orthodox’:ChristianReligion.
’Shia’:MuslimReligion.
’Sunni’:MuslimReligion.

belong to the extensional part of Σ. In particular, Armenia (’ARM’) and Iran
(’IR’) are two of the 14 countries that are classified as Middle Eastern.

The relational subsystem Π of BCIA expresses the CIA facts as a constrained
Datalog program. The extensional part of Π consists of Datalog facts like

language(’ARM’,’Armenian’,96).
language(’IR’,’Persian’,58).
religion(’ARM’,’Armenian Orthodox’,94).
religion(’IR’,’Shia’,89).
religion(’IR’,’Sunni’,10).

whereas the intensional part defines two views on language and religion:

speaks(CountryID, LanguageN)←language(CountryID,LanguageN,Perc)
& CountryID:Country, LanguageN:Language

believes(CountryID, ReligionN)←religion(CountryID,ReligionN,Perc)
& CountryID:Country, ReligionN:Religion

that can deduce new Datalog facts when triggered on BCIA.
5 http://www.odci.gov/cia/publications/factbook/
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<ruleml:imp>
<ruleml: body>

<swrlx:classAtom>
<owlx:Class owlx:name="&MiddleEastCountry" />
<ruleml:var>X</ruleml:var>

</swrlx:classAtom>
<swrlx:classAtom>

<owlx:Class owlx:name="&Religion" />
<ruleml:var>Y</ruleml:var>

</swrlx:classAtom>
<swrlx:individualPropertyAtom swrlx:property="&believes">

<ruleml:var>X</ruleml:var><ruleml:var>Y</ruleml:var>
</swrlx:individualPropertyAtom>

</ruleml: body>
<ruleml: head>

<swrlx:individualPropertyAtom swrlx:property="&q">
<ruleml:var>X</ruleml:var>

</owlx:individualPropertyAtom>
</ruleml: head>

</ruleml:imp>

Fig. 2. Representation of the O-query Q1 in SWRL

The language L for a given problem instance is implicitly defined by a declar-
ative bias specification that allows for the generation of expressions, called O-
queries, relating individuals of Cref to individuals of the task-relevant concepts.

Definition 12. Given a ALC concept Cref , an O-query Q to an AL-log knowl-
edge base B is a (linked, connected, and OI-compliant) constrained Datalog
clause of the form

Q = q(X) ← α1, . . . , αm&X : Cref , γ1, . . . , γn

where X is the distinguished variable and the remaining variables occurring in
the body of Q are the existential variables.

The O-query Qt = q(X) ← &X : Cref is called trivial for L.

Example 2. We want to describe Middle East countries (individuals of the ref-
erence concept) with respect to the religions believed and the languages spo-
ken (individuals of the task-relevant concepts) at three levels of granularity
(maxG = 3). To this aim we define LCIA as the set of O-queries with Cref =
MiddleEastCountry that can be generated from the alphabet A= {believes/2,
speaks/2} of Datalog binary predicate names, and the alphabets

Γ 1= {Language, Religion}
Γ 2= {IndoEuropeanLanguage, . . . , MonotheisticReligion, . . .}
Γ 3= {IndoIranianLanguage, . . . , MuslimReligion, . . .}
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of ALC concept names for 1 ≤ l ≤ 3. Examples of O-queries in LCIA are:

Qt= q(X) ← & X:MiddleEastCountry
Q1= q(X) ← believes(X,Y) & X:MiddleEastCountry, Y:Religion
Q2= q(X) ← believes(X,Y), speaks(X,Z) & X:MiddleEastCountry,

Y:MonotheisticReligion, Z:IndoEuropeanLanguage
Q3= q(X) ← believes(X,Y), speaks(X,Z) & X:MiddleEastCountry,

Y:MuslimReligion, Z:IndoIranianLanguage

where Qt is the trivial O-query for LCIA, Q1 ∈ L1
CIA, Q2 ∈ L2

CIA, and Q3 ∈ L3
CIA.

A representation of Q1 in SWRL is reported in Figure 2.

Being a special case of constrained Datalog clauses, O-queries can be $B-
ordered. Also note that the underlying reasoning mechanism of AL-log makes
B-subsumption more powerful than generalized subsumption as illustrated in
the following example.

Example 3. We want to check whether Q1 B-subsumes the O-query

Q4= q(A) ← believes(A,B) & A:MiddleEastCountry, B:MonotheisticReligion

belonging to L2
CIA. Let σ={A/a, B/b} a Skolem substitution for Q4 w.r.t. BCIA ∪

{Q1} and θ={X/A, Y/B} a substitution for Q1. The condition (i) of Theorem 1
is immediately verified. It remains to verify that (ii) B′ =

BCIA ∪ {believes(a,b), a:MiddleEastCountry, b:MonotheisticReligion}
|=believes(a,b) & a:MiddleEastCountry, b:Religion.

We try to build a constrained SLD-refutation for

Q(0) = ← believes(a,b) & a:MiddleEastCountry, b:Religion

in B′. Let E(1) be believes(a,b). A resolvent for Q(0) and E(1) with the empty
substitution σ(1) is the constrained empty clause

Q(1) = ← & a:MiddleEastCountry, b:Religion

The consistency of Σ′′ = Σ′ ∪ {a:MiddleEastCountry, b:Religion} needs
now to be checked. The first unsatisfiability check operates on the initial tableau
S

(0)
1 = Σ′ ∪ {a:¬MiddleEastCountry}. The application of the propagation rule

→⊥ to S
(0)
1 produces the final tableau S

(1)
1 = {a:⊥}. Therefore S

(0)
1 is unsat-

isfiable. The second check starts with S
(0)
2 = Σ′ ∪ {b:¬Religion}. The rule

→� w.r.t. MonotheisticReligion�Religion, the only one applicable to S
(0)
2 ,

produces S
(1)
2 = Σ ∪ {b:¬Religion, b:¬MonotheisticReligion�Religion}.

By applying →� to S
(1)
2 w.r.t. Religion we obtain S

(2)
2 = Σ ∪ {b:¬Religion,

b:Religion} which brings to the final tableau S
(3)
2 = {b:⊥} via →⊥.

Having proved the consistency of Σ′′, we have proved the existence of a
constrained SLD-refutation for Q(0) in B′. Therefore we can say that Q1 $B Q4.
Conversely, Q4 �$B Q1. Similarly it can be proved that Q2 $B Q3 and Q3 �$B Q2.
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Example 4. It can be easily verified that Q1 B-subsumes the following query

Q5= q(A) ← believes(A,B), believes(A,C) & A:MiddleEastCountry,
B:Religion

by choosing σ={A/a, B/b, C/c} as a Skolem substitution for Q5 w.r.t. BCIA∪{Q1}
and θ={X/A, Y/B} as a substitution for Q1. Note that Q5 �$B Q1 under the OI
bias. Indeed this bias does not admit the substitution {A/X, B/Y, C/Y} for Q5
which would make possible to verify conditions (i) and (ii) of Theorem 1.

The coverage test reduces to query answering. An answer to an O-query Q
is a ground substitution θ for the distinguished variable of Q. The conditions
of well-formedness reported in Definition 3 guarantee that the evaluation of O-
queries is sound according to the following notions of answer/success set.

Definition 13. An answer θ to an O-query Q is a correct (resp. computed)
answer w.r.t. an AL-log knowledge base B if there exists at least one correct
(resp. computed) answer to body(Q)θ w.r.t. B.

Therefore proving that an O-query Q covers an observation (q(ai),Ai) w.r.t. K
equals to proving that θi = {X/ai} is a correct answer to Q w.r.t. Bi = K∪Ai.

Example 5. With reference to Example 1, the background knowledge KCIA en-
compasses the strcutural part and the intensional relational part of BCIA. We
want to check whether the O-query Q1 reported in Example 2 covers the obser-
vation (q(’IR’),AIR) w.r.t. KCIA. This is equivalent to answering the query

← q(’IR’)

w.r.t. KCIA∪AIR∪Q1. Note that AIR contains all the Datalog facts concerning
the individual IR.

The support of an O-query Q ∈ L w.r.t. B supplies the percentage of indi-
viduals of Cref that satisfy Q and is defined as

supp(Q,B) =| answerset(Q,B) | / | answerset(Qt,B) |

where answerset(Q,B) is the set of correct answers to Q w.r.t. B.

Example 6. Since |answerset(Q1,BCIA) | = 14 and | answerset(Qt,BCIA) | =
| MiddleEastCountry |= 14, then supp(Q1,BCIA) = 100%.

It has been proved that $B is monotone w.r.t. supp [20]. This has allowed us
to implement the levelwise search. The resulting ILP system has been called
AL-QuIn (AL-log Query Induction) [19,17].

5 Conclusions

Building rules on top of ontologies is a task that can be automated by giving
the logical layer of the Semantic Web an inductive reasoning service. One such
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service applies Machine Learning algorithms to data expressed with hybrid for-
malims combining DLs and Horn clauses. Learning in DL-based hybrid languages
has very recently attracted attention in the ILP community. In [24] the chosen
language is Carin-ALN , therefore example coverage and subsumption between
two hypotheses are based on the existential entailment algorithm of Carin [16].
Following [24], Kietz studies the learnability of Carin-ALN , thus providing a
pre-processing method which enables ILP systems to learn Carin-ALN rules
[15]. In [20], Lisi and Malerba propose AL-log as a KR&R framework for the
induction of association rules. Closely related to DL-based hybrid systems are
the proposals arising from the study of many-sorted logics, where a first-order
language is combined with a sort language which can be regarded as an elemen-
tary DL [11]. In this respect the study of a sorted downward refinement [12] can
be also considered a contribution to learning in hybrid languages.

The main contribution of this paper is the definition of a framework for
learning in AL-log. It extends previous work on the case of characteristic in-
duction from interpretations [19,17] to the general case of induction of hybrid
rules. We would like to emphasize that AL-log has been preferred to CARIN for
two desirable properties which are particularly appreciated in ILP: safety and
decidability. We intend to extend the framework towards more expressive hybrid
languages along the direction shown in [23] in order to make it closer to SWRL.

Acknowledgement. The author is grateful to Francesco M. Donini and Ric-
cardo Rosati for their precious advice on AL-log.
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Abstract. The CTTN–system is a computer program which provides
advanced processing or temporal notions. The basic data structures of
the CTTN–system are time points, crisp and fuzzy time intervals, la-
belled partitionings of the time line, durations, and calendar systems.
The labelled partitionings are used to model periodic temporal notions,
quite regular ones like years, months etc., partially regular ones like
timetables, but also very irregular ones like, for example, dates of a
conference series. These data structures can be used in the temporal
specification language GeTS (GeoTemporal Specifications). GeTS is a
functional specification and programming language with a number of
built-in constructs for specifying customised temporal notions.

CTTN is implemented as a Web server and as a C++ library. This
paper gives a short overview over the current state of the system and its
components.

1 Introduction

In the CTTN–project we aim at a very detailed modelling of the temporal no-
tions which can occur in semi-structured data. The CTTN–system consists of
a kernel and several modules around the kernel. The kernel itself consists of
several layers. At the bottom layer there are a number of basic data types for el-
ementary temporal notions. These are time points, crisp and fuzzy time intervals
[9,12] and partitionings for representing periodical temporal notions like years,
months, semesters etc. [11]. The partitionings can be specified algorithmically
or algebraically. The algorithmic specifications allows one to encode phenomena
like leap seconds, daylight savings time regulations, the Easter date, which de-
pends on the moon cycle etc. Partitionings can be arranged to form ‘durations’,
e.g. ‘2 year + 1 month’, but also ‘2 semester + 1 month’, where semester is a
user defined partitioning. Sets of partitionings, together with certain procedures,
form a calendar. The Gregorian calendar in particular can be formalised with
the partitionings for years, months, weeks, days, hours, minutes and seconds.

The second layer uses the functions and relations of the first layer as building
blocks in the specification language GeTS (‘GeoTemporal Specifications’ [10]).
It is essentially a functional programming language with certain additional con-
structs for this application area. A flex/bison type parser and an abstract ma-
chine for GeTS has been implemented as part of the CTTN–system. GeTS is the
first specification and programming language with such a rich variety of built-in
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data structures and functions for geotemporal notions. In a first case study it
has been used to define various versions of fuzzy interval–interval relations [12].

The third layer consists of a command interface to the CTTN–system which
can be accessed via IP/TCP. Prototypes of RMI, CORBA and SOAP interfaces
have been implemented, but not yet fully tested.

CTTN is not the implementation of a theoretical temporal logic, but it models
the flow of time as it is perceived on our planet. It realizes the main concepts
and operations underlying many temporal notions in natural language.

2 Time Points and Time Intervals

The flow of time underlying most calendar systems corresponds to a time axis
which is isomorphic to the real numbers R. Therefore CTTN takes as time points
just real numbers. Since the most precise clocks developed so far, atomic clocks,
measure the time in discrete units, it is sufficient to restrict the representation
of concrete time points to integers. In the standard setting these integers count
the seconds from the Unix epoch, which is January 1st 1970. Nothing signifi-
cant changes, however, if the meaning of these integers is changed to count, for
example, femtoseconds from the year 1.

The next important datatype is that of time intervals. Time intervals can be
crisp or fuzzy. With fuzzy intervals one can encode notions like ‘around noon’
or ‘late night’ etc. This is more general and more flexible than crisp intervals.
Therefore the CTTN–system uses fuzzy intervals as basic interval datatype.

Fuzzy intervals are usually defined through their membership functions [17,5].
A membership function maps a base set to real numbers between 0 and 1. The base
set for fuzzy time intervals is a linear time axis, isomorphic to the real numbers.

�

�

R0

1

Crisp and Fuzzy Intervals

The fuzzy intervals can also be infinite. For example, the term ‘after tonight’
may be represented as a fuzzy value which rises from fuzzy value 0 at 6 pm until
fuzzy value 1 at 8 pm and then remains 1 ad infinitum.

�

�

R0

1

after tonight
6 8
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Fuzzy time intervals are realized in the FuTI–library. Besides the pure data-
type definitions (the membership function of a fuzzy interval is realized as a
polygon with integer coordinates), it provides a large collection of operations on
these intervals. There are methods for accessing information about the intervals,
the location of various parts of an interval, its size (which is the integral over the
membership function), its components etc. There are methods for transforming
the intervals, for example hull computations, integration functions, fuzzification
functions etc. There are also very general unary and binary transformation func-
tions which can be parameterised with functions operating on the fuzzy values.
All the set operations on fuzzy intervals, for example, are realized as transfor-
mations with functions on the fuzzy values. The transformations of the fuzzy
membership functions need not be linear, i.e. they may transform straight lines
into curved lines. The FuTI–library contains for these cases an approximation
algorithm which approximates curved lines by polygons.

3 Partitionings

The CTTN–system uses the concept of partitionings of the real numbers to
model periodical temporal notions. In particular, the basic time units years,
months etc. are realized as partitionings. Other periodical temporal notions,
for example semesters, school holidays, sunsets and sunrises etc. can also be
modelled as partitionings.

A partitioning of the real numbers R may be, for example, (..., [−100, 0[,
[0, 100[, [100, 101[, [101, 500[, ...). The intervals in the partitionings need not be
of the same length (because time units like years are not of the same length
either). The intervals can, however, be enumerated by natural numbers (their
coordinates). For example, we could have the following enumeration

... [−100 0[ [0 100[ [100 101[ [101 500[ ...

... −1 0 1 2 ...

Calendar Systems
A calendar in the CTTN–system is a set of partitionings, for example the par-
titionings for seconds, minutes, hours, weeks, months and years, together with
some extra data and methods. Dershowitz and Reingold’s ‘calendrical calcula-
tions’ are used here [4]. The calendar systems in CTTN model all the nasty
features of real calendar systems, in particular leap seconds and daylight saving
time schemes.

The partitionings in CTTN can represent infinite partitionings of the real
numbers. This is suitable to model, for example, years. They can, however, also
be used to represent finite sequences of intervals. Examples are the school hol-
idays in Bavaria from 1970 until 2006. CTTN extrapolates these intervals in a
certain way to get an infinite partitioning. This simplifies the algorithms consid-
erably, but it may yield unwanted results for time points where the partitioning
is not meant for. Therefore one can define boundaries for the validity of the par-
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titionings. These boundaries have no influence on the computations, but they
can be checked with special functions in the GeTS language.

The PartLib–library [11] for representing partitionings consists of two com-
ponents. There is an interface which allows one to work with the partitionings
without referring to the details of their representation. The second component
contains specification mechanisms for different types of partitionings:

Algorithmic Partitionings
This type of partitionings is mainly used for modelling the basic time units of
calendar systems, years, months etc. The specification consists of an average
length of the partitions, a correction function and an offset against time point 0.
Example 1 (Basic Time Units for the Gregorian Calendar).
The specification of the basic time units as algorithmic partitionings for the
Gregorian Calendar are:
second: average length: 1, offset: 0, correction function: λ(n)0.
minute: average length: 60, offset: 0, correction function: λ(n)0.
hour: average length: 3600, offset: 0, correction function: λ(n)0.
day: average length: 86400, offset: 0, correction function: −3600 · h if the day i
is during the daylight saving time period, 0 otherwise.
The number h is usually 1 (for 1 hour). Exceptions are, for example, the year
1947 in Germany, where in the night of 1947/5/11 the clock was set forward a
second time by 1 hour such that the offset against standard time was 2 hours.
week: average length: 604800, offset -259200, correction function: again, this
function has to return an offset of −3600 · h for the weeks during the daylight
saving time periods.
month: average length: 2592000 (30 days), offset 0, correction function: this
function has to deal with the different length of the months and the daylight
saving time regulations.
year: average length: 31536000 (365 days), offset 0, correction function: this
function has to deal with leap years only. The effects of daylight saving time
regulations are averaged out over the year.

Duration Partitionings
They are specified by an anchor time and a sequence of ‘durations’.

For example, I could define ‘my weekend’ as a duration partitioning with
anchor time 2004/7/23, 4 pm (Friday July, 23rd, 2004, 4 pm) and durations: (‘8
hour + 2 day’, ‘4 day + 16 hour’). The first interval would be labelled ‘weekend’,
and the second interval would be labelled ‘gap’ (see below for the labelling of
partitions.)

A simpler example is the notion of a semester at a university. In the Munich
case, the dates could be: anchor time: October 2000. The durations are: 6 months
(with label ‘winter semester’) and 6 months (with label ‘summer semester’). This
defines a partitioning with partition 0 starting at the anchor time, and then
extending into the past and the future. The first partition in this example is the
winter semester 2000/2001.
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Date Partitionings
Date Partitionings are specified by providing the boundaries of the partitions as
concrete dates.

An example could be the dates of the Time conferences: 1994/5/4 Time94
1994/5/5 gap 1995/4/26 Time95 1995/4/27 gap 1996/5/19 Time96 1996/5/21
gap 1997/5/10 Time97 1997/5/12 gap 1998/5/16 Time98 1998/5/18 gap 1999/5/
1 Time99 1999/5/3 gap 2000/7/7 Time00 2000/7/10 gap 2001/6/14 Time01
2001/6/17 gap 2002/7/7 Time02 2002/7/10 gap 2003/7/8 Time03 2003/7/11
gap 2004/7/1 Time04 2004/7/4.

Another example could be the seasons: 2000/3/21 spring 2000/6/21 summer
2000/9/23 autumn 2000/12/21 winter 2001/3/21. These finitely many dates can
be turned into an infinite partitioning: the differences between two subsequent
dates are turned into durations. The durations are then used to extrapolate the
partitioning into the infinity.

Folded Partitionings
This type allows one to ‘fold’ several ‘component partitionings’ into one ‘frame
partitioning’. As an example, consider bus timetables. A bus timetable changes
from season to season. The best way to specify this, would be to specify the
seasons first, and for each season to specify the particular bus timetable. The
‘folded partitioning’ specification operation takes as input a frame partitioning,
for example the seasons, and a sequence of component partitionings, for example
the four different bus timetables. It maps the component partitionings automat-
ically to the right frame partition, such that from the outside the whole thing
looks like an ordinary partitioning.

Labelled Partitionings
The CTTN–system uses labelled partitionings. The labels are names for the par-
titions. They can be used for two purposes. The first purpose is to get access
to the partitions via their names (labels). For example, the labels for the ‘day’
partitioning can be ‘Monday’, ‘Tuesday’ etc., and one can use these names in var-
ious GeTS functions. The second purpose is to use the labels to group partitions
together to so called granules [2]. The concept of ‘working day’, for example,
can be modelled by taking an ‘hour’ partitioning, and attaching labels ‘work-
ing hour’ and ‘gap’ to the hour partitions. Groups of hour partitions labelled
‘working hour’ yield a working day. The working days can be interrupted by
‘gap’ partitions, for example to take ‘lunch time’ out of a ‘working day’.

Definition 1 (Labels and Granules). A labelling L is a finite sequence of
strings l0, . . . , ln−1. The label gap has a special meaning.

A labelling L can now be very easily attached to a partitioning: the partition
with coordinate i gets label L(i mod n).

A granule is a sequence pi, . . . , pi+k of partitions such that: (1) the labels of
pi and pi+k are not gap; (2) the labels of pi, . . . , pi+k which are not gap are the
same, and (3) i mod n < (i + k) mod n.
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Example 2 (The Labelling of Days). The origin of the reference time is again
January 1st 1970. This was a Thursday. Therefore we choose as labelling for the
day partitioning

L =def Th, Fr, Sa, Su, Mo, Tu, We.

The following correspondences are obtained:

time : . . . [−86400, 0[ [0, 86400[ [86400, 172800[ . . .
coordinate : . . . −1 0 1 . . .
label : . . . We Th Fr . . .

This means, for example, L(−1) = We, i.e. December 31 1969 was a Wednesday.

The partitionings are the mathematical model of periodic time units, such
as years, months etc. This offers the possibility to define durations. A duration
may, for example, be ‘3 months + 2 weeks’. Months and weeks are represented as
partitionings, and 3 and 2 denote the number of partitions in these partitionings.
The numbers need not be integers, but they can be arbitrary real numbers.

A duration can be interpreted as the length of an interval. In this case the
numbers should not be negative. A duration, however, can also be interpreted
as a time shift. In this interpretation negative numbers make perfect sense.
d = −2 week + 3 month, for example, denotes a backward shift of 2 weeks
followed by a forward shift of 3 months.

4 The GeTS Language

The design of the GeTS language was influenced by the following considerations:

1. Although the GeTS language has many features of a functional programming
language, it is not intended as a general purpose programming language. It
is a specification language for temporal notions, however, with a concrete
operational semantics.

2. The parser, compiler, and in particular the underlying GeTS abstract ma-
chine are not standalone systems. They must be embedded into a host system
which provides the data structures and algorithms for time intervals, par-
titionings etc., and which serves as the interface to the application. GeTS
provides a corresponding application programming interface (API).

3. The language should be simple, intuitive, and easy to use. It should not
be cluttered with too many features which are mainly necessary for general
purpose programming languages.

4. The last aspect, but even more the point before, namely that GeTS is to
be integrated into a host system, were the main arguments against an easy
solution where GeTS is only a particular module in a functional language
like SML or Haskell. The host system was developed in C++. Linking a
C++ host system to an SML or Haskell interpreter for GeTS would be more
complicated than developing GeTS in C++ directly. The drawback is that
features like sophisticated type inferencing or general purpose data structures
like lists or vectors are not available in the current version of GeTS.
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5. Developing GeTS from scratch instead of using an existing functional lan-
guage has also an advantage. One can design the syntax of the language in
a way which better reflects the semantics of the language constructs. This
makes it easier to understand and use. As an example, the syntax for a time
interval constructor is just [expression1, expression2].

The GeTS language is a strongly typed functional language with a few imperative
constructs. Here we can give only a flavour of the language. The technical details
are in [10].

Example 3 (tomorrow). The definition

tomorrow = partition(now(),day,1,1)

specifies ‘tomorrow’ as follows: now() yields the time point of the current point
in time. day is the name of the day partitioning. Let i be the coordinate of
the day-partition containing now(). partition(now(),day,1,1) computes the
interval [t1, t2[ where t1 is the start of the partition with coordinate i + 1 and
t2 is the end of the partition with coordinate i + 1. Thus, [t1, t2[ is in fact the
interval which corresponds to ‘tomorrow’.

In a similar way, we can define

this_week(Time t) = partition(t,week,0,0).

The time point t, for which the week is to be computed, is now a parameter of
the function.

Example 4 (Christmas). The definition

christmas(Time t) =
dLet year = date(t,Gregorian_month) in

[time(year|12|25,Gregorian_month),
time(year|12|27,Gregorian_month)]

specifies Christmas for the year containing the time point t.

date(t,Gregorian month) computes a date representation for the time point t
in the date format Gregorian month (year/month/day/hour/minute/second).
Only the year is needed. dLet year = ... therefore binds only the year to the
integer variable year. If, for example, in addition the month is needed one can
write dLet year|month = date(....

time(year|12|25,Gregorian month) computes t1 = begin of the 25th of
December of this year. time(year|12|27,Gregorian month) computes t2 =
begin of the 27th of December of this year. The expression [...,...] denotes
the half open interval [t1, t2[.1 The result is therefore the half open interval from
the beginning of the 25th of December of this year until the end of the 26th of
December of this year.
1 Crisp intervals in CTTN are always half open intervals [. . . , . . . [. Sequences of such

intervals, for example sequences of days, can therefore be used to partition a time
period. The syntactic representation of these intervals in GeTS is [...,...] and
not [...,...[ because this simplifies the grammar and the parser considerably.
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Example 5 (Point–Interval Before Relation). The function

PIRBefore(Time t, Interval I) =
if (isEmpty(I) or isInfinite(I,left)) then false
else (t < point(I,left,support))

specifies the standard crisp point–interval ‘before’ relation in a way which works
also for fuzzy intervals.

If the interval I is empty or infinite at the left side then PIRBefore(t,I)
is false, otherwise t must be smaller than the left boundary of the support
of I. Now we define a parameterised fuzzy version of the interval–interval before
relation.

Example 6 (Fuzzy Interval–Interval Before Relation). A fuzzy version of an
interval–interval before relation could be

IIRFuzzyBefore(Interval I, Interval J, Interval->Interval B) =
case
isEmpty(I) or isEmpty(J) or

isInfinite(I,right) or isInfinite(J,left) : 0,
(point(I,right,support) <= point(J,left,support)) : 1,
isInfinite(I,left):integrateAsymmetric(intersection(I,J),B(J))

else integrateAsymmetric(I,B(J))

The input are the two intervals I and J and a function B which maps intervals
to intervals. B is used to compute for the interval J an interval B(J), which
represents the degree of ‘beforeness’ for the points before J.

The function first checks some trivial cases where I cannot be before J
(first clause in the case statement), or where I definitely is before J (second
clause in the case statement). If I is infinite at the left side then

∫
(I ∩ J)(x) ·

B(J)(x)dx/|I ∩ J | is computed to get a degree of ‘beforeness’, at least for the
part where I and J intersect. If I is finite then

∫
I(x) · B(J)(x)dx/|I| is com-

puted. This averages the degree of a point–interval ‘beforeness’, which is given
by the product I(x) · B(J)(x), over the interval I.

The next example is a parameterised version of an ‘Until’ operator. It can
be used to formalise expressions like ‘from around noon until early evening’.
The paramters are operators which manipulate the front and back end of the
intervals, together with a complement operator.

Example 7 (Until). an ‘Until’ operator can be defined in GeTS:

Until(Interval I, Interval J, Side s1, Side s2,
(Interval*Interval)->Interval Ints,
Interval->Interval Ep, Interval->Interval En,
Interval->Interval C) =

if (s1 == left) then
(if (s2 == left) then Ints(Ep(I),C(Ep(J)))

else Ints(Ep(I),En(J)))
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else
(if (s2 == left) then Ints(C(En(I)),C(Ep(J)))

else Ints(C(En(I)),En(J)));

As an example for the application of this operator, consider a database about,
say, the institute’s birthday parties. It may contain the entry that the birth-
day party for the director took place ‘from around noon until early evening’ of
20/7/2003. ‘Around noon’ is a fuzzy notion and ‘early evening’ is a fuzzy notion.
Suppose, we have a formalisation of ‘around noon’ and ‘early evening’ as the
following fuzzy sets:

�

�

R0

1

Around Noon and Early Evening
11 12 13 20 21 2422

What is now the duration of the birthday party? It must obviously also be a
fuzzy set. The fuzzy value of the birthday party duration at a time point t is 1 if
the probability that the party started before t is 1 and the probability that the
party ended after t is also 1. Therefore the fuzzy value at point t is computed
by integrating over the probabilities of the start points and the end points. One
could use the above defined Until operator with the following call:
Until(I, J, left, right,

lambda(Interval K, Interval L) intersection(K,L),
lambda(Interval K) integrate(K,positive),
lambda(Interval K) integrate(K,negative),
lambda(Interval K) complement(K)).

The resulting fuzzy set is:

�

�

R0

1

Birthday Party Time: Until(I, J, left, right, . . .)
11 12 13 20 21 2422

I J

The dashed curve may, for example, represent the percentage of people at the
party at a give time.

5 The Web–Interface

CTTN is a collection of C++ classes and methods which can be used in any other
C++ program. There is, however, also a command interface which is realized as
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a web server. It communicates with a client through a socket. There is a group of
commands for uploading application specific definitions of temporal notions in
the GeTS language and in the specification language for labelled partitionings.
There are also commands for working with instances of these temporal notions,
particular time intervals, particular partitionings, particular calendar systems
etc. The Web interface is currently being developed and not yet documented.

6 Extensions of the CTTN–System

A number of extensions of the CTTN–system are on the agenda. The most
important one is the inclusion of constraint reasoning for ‘floating’ time intervals.
The expression ‘two weeks between Christmas and Easter’, for example, cannot
be represented so far, because the precise location of these two weeks are not
known. Here we need to invoke constraints and constraint reasoning. Since the
basic intervals are fuzzy intervals, the constraint calculus must also be able to
deal with fuzziness. There are some approaches in the direction of fuzzy temporal
reasoning [6,16,7] and fuzzy constraint networks [15,8] which might be usable for
the CTTN–system. Temporal constraint reasoning without taking fuzziness into
account is certainly also very useful and should be integrated into the system [3].

Another extension is a context module. A simple example for context infor-
mation which is useful for an application of the CTTN–system are the specifi-
cation of time zones. Time zones are submitted to the current CTTN–system
as offsets to GMT time. It would, however, be much more user friendly, if there
would be an automatic mapping of countries or regions to time zones.

A third extension is a link to a system which represents named entities. The
phrase ‘after the Olympic games in Rome’, for example, can only be analysed
if some date about the Olympic games in Rome are available. We are currently
working at a link to the EFGT net, which stores named entities in a three
dimensional context of thematic fields, geographic regions and time periods [13].

More details about the CTTN–system are available at the CTTN homepage:
http://www.pms.ifi.lmu.de/CTTN.

7 Possible Applications for the Semantic Web

Many of the general systems for the semantic web, XML itself, XML query
languages, ontology languages etc. are meta systems in the sense that they can
be used to represent facts about the world. They have, however, only very limited
built-in knowledge about the world. XML query languages, for example, have
built-in knowledge about the structure of XML documents and a few simple
data types. Ontology languages have built-in knowledge about logical operators,
functions and binary relations. These systems could profit considerably if more
knowledge about the world could be built in.

There are some general combination mechanism for integrating special al-
gorithms into general reasoning systems, theory resolution for the resolution
calculus in predicate logic [14], or concrete domains for Description Logics and
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ontology languages [1]. One of the goals of the CTTN project is to use the
CTTN–system for integrating geotemporal data processing into more general
purpose reasoning systems and query languages.

Example 8. As an example, consider the an XML document with, say, our in-
stitute’s timetable for the winter semester. The data could be

<semester> Winter Semester 2005/2005</semester>
<Monday>
<lecture>
<time> 10-12 </time>
<titel>Introduction to Computer Science</title>
</lecture>
<lecture>
<time> 13-15 </time>
<titel>Analysis</title>
</lecture>
...

A query could be ‘is there a math lecture at the 5th of December?’ In order
to evaluate this query, one has of course to figure out that ‘Analysis’ is a math
lecture, which requires ontology reasoning. For processing ‘5th of December’ one
must at first figure out that the 5th of December in the year 2005 is meant. This
may require to contact an external data source in order to find out that the winter
semester lasts from October 2005 until March 2006. Therefore December can only
be the December 2005. Then one must figure out that the 5th of December 2005
is a Monday. Only now can an XML query language access the XML document.

We are still far away from doing this fully automatically, but the temporal
reasoning which is necessary for this is easy for the CTTN–system. An impor-
tant follow up project for the CTTN–project is therefore the integration of the
CTTN–style temporal theory reasoning into more general knowledge represen-
tation and reasoning systems as they are used for the semantic web.
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Abstract. The Semantic Web is an endeavour aiming at enhancing Web data
with meta-data and data processing, as well as processing methods specifying the
“meaning” of such data and allowing Web-based systems to take advantage of
“intelligent” reasoning capabilities. The representation of the meaning of data es-
sentially requires the development of a world model. Ontologies, for example, are
logical descriptions of world models. In this paper we investigate what it means
to develop a world model for “geospatial” data that can be used for Semantic Web
applications. Different aspects are analysed and a proposal for a concrete archi-
tecture is developed. The architecture takes into account that geospatial data (road
maps etc.) are usually owned by companies and only accessible through their in-
terfaces. The article also argues that, to complement standard, general purpose,
logic-based data modelling and reasoning methods, as e.g. offered by RDF and
OWL and reasoners for these languages, location reasoning is best tackled using
graphs for data modelling and well-established algorithms for reasoning. Hence,
the article illustrates, for the practical case of location reasoning for providing
guidance, the thesis that, on the Semantic Web, “theory reasoning” is a desirable
complement to “standard reasoning”.

1 Introduction

The Semantic Web is an endeavour aiming at enhancing Web data with meta-data and
data processing, as well as processing methods specifying the “meaning” of such data
and allowing Web-based systems to take advantage of “intelligent” capabilities. In a
Scientific American article [1] which has diffused the Semantic Web vision, this en-
deavour is described as follows:

“The semantic web will bring structure to the meaningful content of Web
pages, creating an environment where software agents roaming from page to
page can readily carry out sophisticated tasks for users.”

Reasoning is central to the Semantic Web vision since reasoning is central to process-
ing declarative data and specifying intelligent forms of data processing. In the above-
mentioned Scientific American article, this central role of reasoning for realizing the
Semantic Web vision is stressed as follows:

“For the semantic web to function, computers must have access to [. . . ] sets
of inference rules that they can use to conduct automated reasoning.” [1]

F. Fages and S. Soliman (Eds.): PPSWR 2005, LNCS 3703, pp. 145–159, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



146 F. Bry et al.

Inference rules operate on facts and axioms. Axioms specify in an abstract way a
model of the world. For example, the axiom ∀x motorway(x) ⇒ road(x) says some-
thing about the relation between the words ‘motorway’ and ‘road’. The most detailed
axiomatisations which are currently being used for the Semantic Web are ontologies.
They are formulated in logical formalisms like Description Logics [2] or OWL [3] and
describe more or less complex relationships between different notions (concepts and re-
lations) used in particular domains. Pure logical formalisms have a somewhat one-track
style of expressiveness, so logical axiomatisations often give only a very coarse picture
of the world. A web service, for example, which computes the shortest way to get from
Munich to Hamburg needs a much more detailed picture of the world, namely digital
road maps, than any pure logical axiomatisation is likely to provide.

In this paper we argue that “geospatial” notions play an important role for the Se-
mantic Web, and that a very sophisticated world model is necessary for giving them
a useful semantics. The world model consists of concrete data, road maps, train con-
nections, floor plans etc., as well as logically formalised ontologies of, for example,
transport networks. We sketch a first approach which combines concrete computations
with data from Geographical Information Systems (GIS), for example route planning,
and higher level logical formalisations. Our approach also takes into account very prac-
tical constraints, such as companies owning and not releasing GIS data.

We also argue that to complement standard, general purpose, logic-based data mod-
elling and reasoning methods, as e.g. offered by RDF and OWL and reasoners for these
languages, geospatial reasoning with topographical data is best tackled using graphs for
data modelling and well-established graph algorithms for handling inference.

Completely general reasoning techniques must, by their very nature, be weakly
committed to any particular class of problems and are thus unable to take advantage
of any particular properties of that class. We therefore claim not only that the class
of geospatial reasoning problems requires equally specific reasoning methods but that
logic-based, general-purpose methods could never properly, intuitively, and efficiently
realize what is best achieved using graphs and graph algorithms.

It has been claimed by Bry and Marchiori [4] that, on the Semantic Web, “theory
reasoning” is a desirable complement to “standard reasoning”. This articles substanti-
ates this claim with respect to evidence from the practical case of geospatial reasoning
for geographical guidance.

2 Motivating Examples

Before we present our approach we illustrate potential applications with simple exam-
ples and case studies. The first group of examples concerns querying XML or ordinary
databases.

Example 1. Suppose we have some data about cities, states and countries. Entries could
be:

1. San Francisco is a city
2. San Francisco is in California
3. San Francisco has 3 million inhabitants
4. California is in the USA.
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A query could be: “give me all metropolises in the USA”. In order to evaluate this query
we need to:

– formulate the database entries in a logic based knowledge representation language,
for example OWL or its underlying Description Logic.

– define the concept “metropolis” in the same knowledge representation language,
e.g.

metropolis = city∧atleast 1000000 has inhabitant (1)

(A a metropolis is a city with at least 1 million inhabitants.)
– make a so called instance test for the database entries. The instance test would

conclude from (2) and (4) that San Francisco is in the USA, and from (1) and (3)
that San Francisco is a metropolis.

Example 2. Suppose the database contains the yellow pages entries, i.e. businesses with
their addresses. A query could be: “give me the nearest pharmacy”, with the context
information that I am at a particular location X in the city, and with all the other context
information about my current situation (availability of a car, luggage, my age and gender
etc.).

This query could be evaluated in a naive way by selecting the pharmacy with the
smallest geographic distances between it and the location X . This might be a first ap-
proximation, but it can give completely useless results. A pharmacy which is located
very close by, but unfortunately it is on the other side of the river, and the next bridge is
miles away, may not be a good choice.

The answers would be much more appropriate if we use, instead of the geographic
distance, a metric which is determined by the local transport systems. This means, the
nearest pharmacy is the one which can be reached in the shortest time. This problem
amounts to a route planning problem. The system must compute the shortest route from
the location X to the pharmacies and choose the one with the shortest route. The route
planner must take into account the transport networks (road maps, tram lines, bus lines
etc.), as well as the context information about the users current situation.

Reasoning about locations normally operates at a numerical level (e.g. coordinates)
or at a symbolic level (e.g. graphs). Extensive research has been conducted in either
case [5], hence there is a broad choice of proven sets of calculi and algorithms to solve
the respective tasks [6,7,8,9]. The fundamental insight is that many queries pertaining
to location information are closely related to the problem of route planning and way
finding. There are two reasons for this. First, whenever a certain location is sought after,
the chances are that the inquirer intends to visit the location. Cases like these result in
classic route planning tasks. Second, when people refer to the “distance” between two
locations in the sense of locomotion, they are almost never talking about distances per se
(metres, kilometres) but the time needed to cover these distances (“a ten minute walk”
or “half an hour by train”). In fact, in many scenarios the absolute distance between two
points is of rather marginal significance from a traveller’s point of view, especially in
urban environments.

As stated in section 1, general purpose reasoning is not the ideal choice for more
complex reasoning tasks like route planning which involve a number of locations and/or
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additional constraints. Of course, general purpose reasoning can be used for some sub-
tasks, such as deriving from the symbolic information shown in figure 5, that for exam-
ple “Munich” is located in “Germany” (since it is located in “Bavaria”, which in turn
is part of “Germany”). More complex tasks, such as finding out which pharmacy or
hospital can be reached in the shortest time involves a number of subtasks and higher
level reasoning techniques.

Example 3. Consider the query “give me all cities between Munich and Frankfurt”.
What does between mean here? If we take a map of Germany and draw a straight line
from Munich to Frankfurt, it does not cross many cities. A more elaborate (and still
too simple) formalisation of between could be: in order to check whether a city B is
between the cities A and C, compute the shortest route R1 from A to B, the shortest
route R2 from B to C and the shortest route R3 directly from A to C. If the extra distance
d = length(R1)+ length(R2)− length(R3), I need to travel from A to C via B, compared
to the direct route from A to C, is small enough, B can be considered to be between A
and B. Since the condition “is small enough” is not very precise, one could use the
distance d directly to order the answers to the query.

Example 4. Suppose a company looks for a building site for a new factory. The site
should be close to the motorway. “Close to” does in this case of course not mean the
geographic distance to the motorway. It means the time it takes for a car or for a lorry
to get to the next junction of the motorway. The length of the shortest path to the next
junction can be used to order the answers to the query.

Example 5. Suppose the database contains a road map, together with dynamic infor-
mation about, say, traffic jams. The information about traffic jams is usually not very
precise. It could be something like “there is a traffic jam on the M25 2 miles long be-
tween junction 8 and junction 10”.

If the M25 is taken as a straight line then the traffic jam is a one-dimensional interval
whose location is not exactly determined. Instead, we have some constraints: length =
2 miles, start after coordinate of junction 8, and end before coordinate of junction 10.

So queries like “is there a traffic jam on the western part of the M25” give rise to a
constraint-solving problem.

The ability to solve route planning problems is obviously very important for a useful
geospatial world model. If this is solved, and there are good solutions already available,
one can think of more interesting examples.

Example 6 (Appointment Scheduling). For a route planning algorithm it makes no dif-
ference if a route is to be planned such that a traveller catches, say, a particular train in
a particular train station, or that he meets a particular person in his office. Appointment
scheduling with a single person is therefore an instance of a route planning problem.
More interesting are problems where several persons want to meet at a particular place.
In this case one has to solve two problems. The first problem is to find the time slots
where they can meet. This is a constraint handling problem. The second problem is
to synchronise the routes of the different persons such that they really meet at their
meeting place.
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3 Practical Constraints

A useful geospatial world model needs geographical data of various kinds, road maps,
public transport networks, floor plans of buildings, where the books are in the book-
shelves of libraries, or where the items are on the shelves of supermarkets etc. This
data are owned by various companies and organisations: the government which oper-
ates the highways or the public transport systems within a city, the company that runs
an airline or a taxi service, or the owner of a building. Some companies have built up
large databases of geographical data and earn money by granting limited access to them.
Companies like NAVTEQ [10] or Tele Atlas [11] operate and maintain databases about
infrastructures, which other parties (governments, companies) are responsible to build,
maintain and operate. NAVTEQ, for example, took some seven years to build their data-
base about the German road and highway network, which was finished in 2000 and now
contains around 7.5 GBytes of data. For NAVTEQ alone, over 500 field employees are
working worldwide on data acquisition and maintenance [12].

The operators of purely commercial networks, such as airlines or public trans-
port systems, are – of course – inclined to inform customers as optimally as possible
about their services. Not all commercial providers are doing this equally though, pub-
lic providers even less so. And, with the few that already provide good services in this
respect, there is very little interaction between different services. They are mostly in-
compatible, either technically or by design. Interaction occurs only in those cases when
the networks are complementary in nature – such as EasyJet offering train tickets for
the Stansted Express from London Stansted airport to the centre of London, or hotel
bookings which can be made in connection with a flight booking. Apart from these ex-
ceptions, those who own the most detailed data about infrastructures are generally not
the first in line to sell their information or to provide a service of some kind.
The consequences for our geospatial world model are

– it will never be possible to have centralised access to a complete world model.
Instead, the data will be distributed and only accessible through particular web
services;

– the web services will not reveal data in a way that the whole database can be recon-
structed by suitable sequences of queries. For example, if the web service provides
route planning then the routes need to be described without detailed reference to
the underlying road or transport network.

The first point requires an architecture where there is only a central coordinator of the
world model, but the details of the model are hidden behind the interfaces of the various
providers. This requires a quite complicated architecture, but it offers the possibility
to change and extend the world model dynamically by linking new servers into the
network.

3.1 Existing Approaches

Geospatial reasoning is a rather broad notion that has been looked at from various angles
from within computer science and AI.
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On the very concrete side there are the Geographic Information Systems (GIS),
i.e. databases and algorithms which deal with the representation and use of concrete
geographical data, road maps, land coverage etc.

‘Shortest path’ algorithms have been developed to solve the path planning problems,
for example in transportation networks. The path planning problem in a concrete 2- or
3-D environment is one of the robot navigation problems, and there are a number of
more or less practically useful algorithms to solve it [13].

Shortest path algorithms typically do not take into account context information
about the traveller, e.g. if the traveller has a car available, or if he depends on public
transport systems. One way to use context information in a shortest path algorithm is
to construct a problem-specific graph so that, for example, if the traveller has a bicycle,
the system might first construct a graph consisting of paths and roads, together with
those railway and bus lines where a bicycle can be taken on board.

GIS techniques depend on the availability of concrete coordinates. If coordinates
are not available, symbolic data representation and reasoning is necessary. One of the
symbolic locational reasoning systems is the ‘region connection calculus’ (RCC8, [14]).
It generalises the ideas of Allen’s interval calculus from one to two dimensions. RCC8
provides basic relations between two-dimensional areas and has rules for reasoning with
the relations.

A very general knowledge representation and reasoning technique are the Descrip-
tion Logics [2], with OWL as its WWW version [3]. In Description Logics one can
define ‘concepts’, corresponding to sets of objects, and one can relate individuals to the
concepts. The formula (1) is an example of a concept definition in a Description Logic.

Planning algorithms, originally developed within AI. [15] constitute one particular
class of shortest path algorithms that can be handled very efficiently by precompiling an
axiomatic problem representation into a graph. Certainly, route planning services can
be regarded from this perspective.

Yet route planning services of different kinds will need to present the results of
planning to users. The required style of presentation can vary enormously, both in terms
of detail, and also in terms of modality (visual, verbal, audio, multi-modal).

One of the advantages of using graph structures as the basis of planning is that
the output of a planning process is itself a graph - of a particular kind, with a formal
structure that acts as a point of departure for a wide variety of different presentation
styles.

Such variety needs to be anticipated to accommodate the unforeseeable nature of
the environment under which the information might need to be accessed. This is partic-
ularly the case for the Semantic Web. For example, a user planning a trip from an office
desk might profit from a presentation employing high resolution graphics and audio; a
mobile user driving a car might avoid visual distractions by requesting spoken verbal
description; a tourist on foot with a mobile phone might well prefer a low resolution
sketch of the route through the city.

All these different presentation techniques can be based upon the same, underlying
abstract plan structure by relatively straightforward generation techniques as illustrated
by Rosner and Mizzi [16] and Rosner and Scicluna [17] which respectively deal with
the presentation of natural verbal and visual instructions.
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The reason this is possible is because there is a kind of isomorphism between the
plan structure, and the elements out of which the presented description is based whether
this be verbal, visual, or a mixture of the two.

4 Towards a Geospatial World Model

The examples in the introduction show that “geospatial reasoning” is very heteroge-
neous. Therefore we tried to develop a unified view of the area, which allows one to
incorporate the various techniques and results in a single system.

4.1 Graphs, Graph Transformations and Ontologies

The basis of the unified view is the observation that in most of the approaches the data
can be represented as graphs, and that there are close connections between the different
types of graphs. We illustrate this observation with some examples.

Example 7 (Road Crossings). Figure 1 shows a detailed representation of an inter-
section of two streets, including an underpass (dashed lines) and pedestrian pathways
(shown in red). This graph is suitable for guiding an autonomous vehicle through the
area of the crossing. A simplified version of this crossing is shown in figure 2. It con-
tains enough information for a standard navigation system.

Finally, one can collapse the whole road crossing into a single node of the road
network as seen in figure 3. This is sufficient for path planning on a larger scale.

In all three pictures we see the same road crossing, but on different level of detail.
We are working at a language for describing how to generate the graphs with less detail
from the graphs with more detail.

Different levels of detail are also pertinent to the problem of presenting solutions
to geospatial planning problems in a way that is sensitive to the particular situation of
the user and the resolution capabilites of the display device at hand. Rosner and Sci-
cluna [17] discuss and implement the use of graph-reduction algorithms for simplifying
the data at hand for efficient communication of information.
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Fig. 1. Road Crossing: High detail
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Fig. 2. Road Crossing: Medium detail
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Fig. 3. Road Crossing: Low detail

(1)

(2)

Fig. 4. Plain Floor Plan without and with Network Overlay

Example 8 (Floor Plans). Indoor navigation of autonomous vehicles requires a detailed
floor plan, as shown in figure (1) of figure 4. In order to plan a way from, say, the
entrance of the building to a particular office, such a detailed floor plan is not necessary.
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Fig. 5. Symbolic Data Representation

A simplified net plan, such as shown in picture (2) of figure 4 is much more suitable
for this purpose. The simplified plan can be generated from the detailed floor plan.
The convenient similarities between the examples 7 and 8, which present very different
situations, are by design.

Finally, one can collapse the whole building to a single node in a bigger city map.
The node is sufficient for planning a path through the city to this building.

Example 9 (Symbolic Data Representation). This example shows the transition from
GIS style data representation to a pure symbolic knowledge representation.

The left hand side of figure 5 shows the boundaries of two of the German states,
and some cities. The boundaries can be represented as polygons, and these are again
just graphs. In the right picture the polygons are collapsed into single nodes of a graph.
The relation ‘polygon A is contained in polygon B’ is turned into an NTTP edge (Non
Tangential Proper Part) of the new graph. The relation ‘polygon A touches polygon B’
is turned into an EC edge (Externally Connected) of the new graph.

The examples illustrate a number of observations

1. There is a hierarchy of graphs. At the lowest level there are graphs with the concrete
geographical details which are necessary for, say, guiding autonomous vehicles. At
the highest level there are graphs which represent logical relations between entities.

2. There are correlations between the nodes and edges of the graphs at different levels
of the hierarchy. These need not be a one to one correspondence. Usually a whole
subgraph of a lower level graph corresponds to a single node or edge of the higher
level graph. A typical example is the representation of the city of Munich in Ex-
ample 9, as a polygon in the left hand graph and as a single node in the right hand
graph.

3. A transition from a lower level graph to a higher level graph can be facilitated
by identifying specific structures in the lower level graph, and transforming them
into structures of the higher level graph with the same meaning. In example 7 this
structure is a road crossing. In example 8 these structures are floors, doors, rooms
etc. In example 9 these are cities, states etc.
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These structures are in general part of an ontology. In parallel with the devel-
opment of the graphs, we therefore need to develop the corresponding ontologies.
The elements of the ontology are the anchor points for controlling the graph trans-
formations and for choosing suitable graphs to solve a given problem.

4. It is in general not a good idea to put all information into one single graph, even if
it is information of the same level of detail. In a typical city we have, for example, a
road map as a graph, the bus lines as a graph, the underground lines as a graph etc.
We therefore need to consider collections of graphs with transition links between
the graphs. Typical transition links between a road map and an underground map
are the underground stations. The transition links, can, however, be little graphs
themselves, for example the network of corridors and stairs in a big underground
station.

5. The graphs at the higher levels of the hierarchy can and should usually be extended
with additional information which is not represented in the lower level graphs. For
example, the graph in example 9 with the symbolic information about cities and
states can easily be extend by adding further cities and states.

4.2 A Road Map for the Development of Hierarchical Graphs

One of the most important goals is the development of a technology of ‘geospatial’
knowledge representation with hierarchies of graphs. The hierarchy connects the coor-
dinate based GIS like information processing with the logic based symbolic reasoning.
The following steps are necessary to achieve this goal.

Step 1: Unified Representation of Graphs.
The structures at the different levels of the hierarchy are all graphs. Therefore there
should be a unified representation of these graphs. The graphs need, however, be repre-
sented in different forms.

– We need a persistent representation of graphs which can be stored in files or data-
bases.

– We need an in-memory representation of the graphs with a well defined application
programming interface, probably similar to the DOM structures of XML data.

– We also need geometric representations of the graphs which can be used to display
the graphs on the screen. As long as the nodes of the graph have coordinates, this is
not a big problem. Graphs at the symbolic level of the hierarchy usually don’t have
coordinates. Fortunately there are well developed graph layout algorithms which
we can use here.

Since graphs at different levels of the hierarchy can represent the same objects, road
crossings, for example, it is very important to maintain the links between the same
objects in the different graphs. These links enable algorithms to choose the level of
detail they need for doing their computations.

It must also be possible to use the transition links between different graphs of the
same level to join several graphs into one graph. For example, a route planner for some-
body without a car may need a combined graph of all public transport systems.
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As mentioned above, it should be possible to add extra information to the graphs,
which is not derivable from graphs at the lower levels. In order to do this, we need to
develop an editor for the graphs.

Step 2: ‘Geospatial’ Ontology.
We need to develop an ontology of interesting structures which can occur within graphs
(road crossings, roundabouts, floors, train stations etc.). Such an ontology would be the
anchor point for various auxiliary structures and algorithms, in particular:

– patterns which allow one to identify the structure in a graph, a roundabout, for
example;

– transformation algorithms which simplify the structures to generate the nodes and
edges in the graphs at the higher levels of the hierarchy;

– transformation algorithms which generate a graphical or verbal representation of
the structures on the screen.

The ontology will also be used to annotate the structures in the graphs.

Step 3: Ontology of Graph Types.
The graphs at the different levels of the hierarchy provide the data for solving different
kinds of problem. We need to classify the graph types, such that it is possible to choose
the right graph for a given problem.

Step 4: Ontology of Means of Transportation.
A graph for a railway network, for example, represents only routes, but not the charac-
teristics of the trains which are used on these routes. It can, for example, be important
to know, which trains can take a bicycle on board, or which trains have wireless LAN
on board etc. Therefore we need to develop an ontology for the objects which are con-
nected with the graphs. If the graphs represent transportation networks, this must be an
ontology of the vehicles used on the network. If, on the other hand, the graph represents,
for example, a local area computer network, it must be an ontology of the characteristics
of the cables together with an ontology of the devices connected to the cables.

Step 5: Context Modelling.
In the introductory examples we showed that queries which require ‘locational reason-
ing’ need to take into account the context of the user. We must therefore develop a
formal model of the context. The context can, for example, be the current situation of
a human user: whether he has a car or not, whether he has luggage or not, his age and
sex, and many other factors.

Step 6: Customised Graph Construction.
As we have seen in the introduction, many ‘locational reasoning’ problems require the
solution of shortest path problems in a graph. The concrete graph which is relevant for
the given problem, may, however, not be one of the graphs which are permanently avail-
able. It may be a combination of subgraphs from different graphs, and the combination
may be determined by the context of the problem. Therefore we need to develop mech-
anisms for determining and constructing for a given problem the right combination of
subgraphs as the input to the relevant problem solving algorithm.
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Step 7: The Main Problem Solvers.
Finally we need to adapt or develop the algorithms for solving the main problems.
These range from ‘shortest path in a graph’ algorithms to logical calculi for reasoning
with symbolic information. Fortunately most of these algorithms are well developed
and can, hopefully, be taken off the shelf.

4.3 Distributed Geospatial Services

The practical constraints, i.e. that businesses, organisations or governments make access
to their data difficult and harbour potentially commercial interests leads to the need for
a distributed architecture. Each and every provider in this architecture offers geospatial
data either directly or through a set of services, as described in the following paragraph.

Whenever there exists an infrastructure of some kind (see section 4.1 for some ex-
amples), a corresponding web information server provides either a set of services re-
garding the infrastructure, or at least grants access to the necessary data. By services, we
mean the processing of data in form of the above mentioned representation of geospa-
tial data as graphs. Typical processing can be partly based on shortest paths, nearest
neighbours, etc. Furthermore, from a software engineering point of view, services can
easily be developed as highly reusable components which can be integrated within one
device as well interoperating components over a network of distributed systems on the
web. A set of services might include the following:

– Routing Service: Within a single graph, provide a route from one node to another.
– Connection Service: Provide a set of other graphs, which can be accessed from a

given graph, including transition nodes.
– Listing Service: Provide a list of nodes or edges.
– Integrity Service: Check for the existence of connections between nodes within

one or more graphs; e.g. “is office 136 in this building?”.

The reason for not providing data directly, but instead the above mentioned services,
is data protection. Whenever a provider wants to protect their assets by not disclos-
ing information, they still have the opportunity of providing above mentioned services.
Considering the substantial efforts required for geospatial data modelling and acquisi-
tion, data protection is likely to remain a central requirement for the service-oriented
view. The data that is returned as an answer to a query might be provided in some form
that does not allow for reconstruction of the original data sets – or at least make this
operation too cumbersome and therefore not economically worthwhile. In cases where
the infrastructure is publicly accessible, such as a street or public transport network,
the need for data protection might have less importance. From the user’s point of view,
there might be little difference between the two, because whether the services and data
are operated and/or provided by the same party or not, is typically irrelevant.

The main incentives for any provider to offer either data or services or both are the
following:

– Increased Revenue: The better the quality and accessibility of the services (or
data) provided, the more customers are attracted. An airline or railway company
which provides easy to use information services and comfortable booking services
on the internet will have an advantage over competitors with lower quality services.
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– Increased Efficiency: By controlling the information and/or services about a net-
work, a provider can significantly influence the use of the network itself. In cases
where no direct revenue is generated, because the use of the network itself is free
of charge, this may be the most powerful incentive. There are numerous possibili-
ties for example in load balancing or directing traffic. The government of a city for
example has great interest in optimising traffic flow, which is increasingly difficult
to achieve by static means (signage) only.

– Increased Value: The value of a network increases with the number of connections
to other networks. The more possibilities there are of accessing for example an
airport, the more travellers will be attracted by the services provided there. If the
only possibility to get there is “by car”, then quite a big percentage of passengers
will stay away.

4.4 Data Exchange Languages

We mentioned already a very important point, data protection. The results of a query to
a server must be such that the underlying data cannot be reconstructed. For a route plan-
ning service this means that the generated route must be represented in a language which
does not refer directly to the underlying graph. Instead one must use more higher level
instructions like “drive along the main street until the fourth traffic light” or “board the
train in Piccadilly Station” or “climb the stairs up to the third level” etc. This exchange
language for routes refers to concepts in an ontology of actions like “drive along”,
“board a train” or “climb the stairs” etc. The language must be able to represent routes
in a way such that

– partial routes can be concatenated to form longer routes
– particular steps in a route can be refined. For example, a route can say “drive to the

airport”, “board the plane”. A refinement might be “drive to the airport”, “park in
the garage”, “go to the check-in counter”, “go to the passport control”, “go to the
departure gate” and “board the plane”.

– the route descriptions can be verbalised or visualised. Prototypes of a verbalisation
module [16] and a visualisation module [17] have already been developed.

A route description or plan language is one of the data exchange languages, probably
the most complicated one. Other services of the distributed world model will require
other languages. The resulting plan itself is a formal structure that acts as a point of
departure for a wide variety of different presentation styles.

5 Summary

One of the key features of the Semantic Web is that data on the web can be inter-
preted with respect to their meaning, their semantics. The meaning can be represented
in various ways, as ontologies, as axioms in some logic, as rules in some rule language,
and even with special purpose procedures. In this paper we considered the meaning
of ‘geospatial’ notions. Examples are ‘in Munich’, ‘between Munich and Frankfurt’,
‘along the highway’, ‘next to the shelf with the milk’ etc. We argue that a suitable
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representation of the meaning of these notions requires the development of a geospatial
world model. Such a model is essentially a complete representation of all the geographic
facts and relations of the real world out there.

Most of the geographic facts are already ‘computerised’ in GIS databases. The prob-
lem is that most of them are owned by companies with primarily commercial interests.
In this paper we presented a proposal for a geospatial world model which can be used
as the basis for interpreting geospatial notions in the Semantic Web. The basis of the
world model are hierarchies of networks of graphs. At the bottom end of the hierarchy
we have detailed maps of the geographic entities (road maps, underground maps, floor
plans etc.) At the upper end we have purely symbolic representations of concepts and
relations. The correlation between the different levels is by a, yet to be developed, lan-
guage, which allows one to describe structures in the lower level graphs, which repre-
sent nodes or edges in the higher level graphs (road crossings, buildings, city boundaries
etc.)

The fact that GIS data are usually not publicly available is taken into account by
having a distrubuted architecture. A central server only coordinates the access to var-
ious other servers which provide access to their data. The response to such an access,
however, must be a description of a problem solution which does not allow one to recon-
struct the underlying data. Since many of the geospatial notions implicitly refer to route
planning problems, a route planning service will be one of the important components
of the geospatial world model. The result of a route planning request, however, must be
described in a more abstract way than just as a sequence of edges in a graph. A “route
markup language” is needed which, on the one hand, hides the underlying concrete data,
and, on the other had, contains still enough information such that visualisation and ver-
balisation modules can generate useful presentations. Such a route markup language is
only one, probably the most complicated, example for a data exchange language for the
geospatial servers. Every class of queries to such a server needs an appropriate answer
language.

The proposed road map for the development of hierarchical graphs and the concept
of distributed data and services for geospatial applications for the Semantic Web pose
an interesting challenge with the prospect of far greater integration than is offered on
the web today.
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1 Introduction

The measurement of gene expression data using microarrays has become a stan-
dard high throughput method in many areas of biology and medicine. Despite
some issues in quality and reproducibility of microarray and derived data [3,4],
microarrays are still considered one of the most promising experimental tech-
niques for the understanding of complex molecular mechanisms, and the analysis
of gene expression data is still a very active area of research in bioinformatics
and statistics.

Typical analysis methods result in a list of genes that exhibit a relevant
expression behavior in the experiment under consideration. While this is an
important first step in understanding the data, it does not reveal the causative
biological mechanism of the observed gene expressions. Unfortunately, this mech-
anism is not necessarily reflected by changes in gene expression; gene regulation
often relies on molecular events other than transcription, such as protein modi-
fication (phosphorylation, cleavage), translocation, DNA methylation, etc. Still,
if a hypothesis about the relevant mechanism is available, it can be tested on the
basis of expression data and prior knowledge in form of a network model. Such
a hypothesis could be for instance that a certain kinase is active and phosphory-
lates a transcription factor which causes the observed differences in the expres-
sion profiles. This hypothesis can be visualized as a small network as shown in
Figure 1. The pathway query language provides a formalism to formulate such
mechanistic hypotheses or contexts in order to exploit them in the analysis of
gene expression or other measured data.

Other approaches that aim at finding a biological interpretation of the data
include over-representation analysis of functional classes among differentially
expressed genes [6,1,5] and network reconstruction methods [2]. There are also
approaches that identify regulated metabolic or signalling pathways based on
given networks and expression data [8,7], but none of these approaches allows
the user to provide detailed hypotheses about the underlying biological processes
as it is possible with pathway queries.
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Kinase X

Transcription
Factor

Differentially
expressed

genes

…

phosphorylation

regulation

Fig. 1. Example of a simple pathway query. If an instance of this query can be found
in a biological network with annotated expression data, it gives rise to a hypothesis
about the role of the kinase X and the transcription factor found in that instance.

2 A Language for Network-Based Hypotheses in
Molecular Biology

The pathway query language allows specifying templates for biological networks
using functional annotations of genes or proteins and their interactions. In many
cases it is possible to translate hypotheses about the biological processes relevant
for the measured data into such network templates. E.g. finding an instance
of the template described in Figure 1 can be evidence for the hypothesis that
the differentially expressed genes found in that instance are regulated by the
corresponding transcription factor which might be activated or inhibited by the
kinase X. In other cases, the pathway query may simply be viewed as a definition
of the context in which the expression data should be analysed.

Given a pathway query and a biological network all instances of the query in
the network can be enumerated using the pathway search algorithm which solves
a special version of the subgraph isomorphism problem. In many situations it is
necessary to examine rather unspecific queries so that many conforming instances
may be found. Therefore, the statistical significance of each instance has to be
assessed. As the pathway query defines an individual context for the data, the
scoring function may have to be defined individually as well.

In general, conducting an analysis with pathway queries on a new data set
involves four steps:

1. Develop a pathway query that describes the hypothesis or context.
2. Assemble networks that contain the relevant information.
3. Devise a scoring scheme to identify significant instances.
4. Run the pathway search algorithm and evaluate the results.
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All of these steps are critical for a successful analysis and they need an under-
standing of the biological context as well as statistical modeling.

In my talk, I will introduce pathway queries and the pathway search algorithm
as a method that approaches the problem of expression data analysis using con-
textual information. After a detailed description of the pathway query language,
I will show some results on a public expression data set using simple queries and
scoring schemes that aim at identifying relevant transcription factors and other
regulators.
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Goasdoué, F. 1

Hendler, James 37
Horrocks, Ian 37

Lambrix, Patrick 17
Lisi, Francesca A. 118
Lorenz, Bernhard 145

Marchiori, Massimo 42
May, Wolfgang 101

Ohlbach, Hans Jürgen 133, 145

Parsia, Bijan 37
Patel-Schneider, Peter F. 32, 37

Rosati, Riccardo 50
Rosner, Mike 145
Rousset, M.-C. 1

Simon, L. 1
Sohler, Florian 160

Tan, He 17
Tessaris, Sergio 65

Wilk, Artur 85


	Frontmatter
	Architectures
	SomeWhere in the Semantic Web
	A Framework for Aligning Ontologies
	A Revised Architecture for Semantic Web Reasoning
	Semantic Web Architecture: Stack or Two Towers?

	Languages
	Ten Theses on Logic Languages for the Semantic Web
	Semantic and Computational Advantages of the Safe Integration of Ontologies and Rules
	Logical Reconstruction of RDF and Ontology Languages
	Marriages of Convenience: Triples and Graphs, RDF and XML in Web Querying
	Descriptive Typing Rules for <Literal>Xcerpt</Literal>
	A General Language for Evolution and Reactivity in the Semantic Web

	Reasoning
	Use Cases for Reasoning with Metadata or What Have Web Services to Do with Integrity Constraints?
	Principles of Inductive Reasoning on the Semantic Web: A Framework for Learning in ${\mathcal AL}$-Log
	Computational Treatment of Temporal Notions: The CTTN--System
	A Geospatial World Model for the Semantic Web
	Generating Contexts for Expression Data Using Pathway Queries

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




