Jana Dittmann
Stefan Katzenbeisser
Andreas Uhl (Eds.)

Communications and
Multimedia Security

9th IFIP TC-6 TC-11International Conference, CMS 2005
Salzburg, Austria, September 2005
Proceedings

LNCS 3677

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3677

Jana Dittmann Stefan Katzenbeisser
Andreas Uhl (Eds.)

Communications and
Multimedia Security

9th IFIP TC-6 TC-11International Conference, CMS 2005
Salzburg, Austria, September 19 — 21, 2005
Proceedings

@ Springer

Volume Editors

Jana Dittmann

Otto-von-Guericke-Universitit Magdeburg

Institut fiir Technische und Betriebliche Informationssysteme
Universititsplatz 1, 39106 Magdeburg, Germany

E-mail: Jana.Dittmann @iti.cs.uni-magdeburg.de

Stefan Katzenbeisser

Technische Universitidt Miinchen

Institut fiir Informatik

Boltzmannstrasse 3, 85748 Garching, Germany
E-mail: katzenbe @in.tum.de

Andreas Uhl

Universitit Salzburg

Department of Scientific Computing

Jakob Haringer Strasse 2, A-5020 Salzburg, Austria
E-mail: uhl@cosy.sbg.ac.at

Library of Congress Control Number: 2005931928

CR Subject Classification (1998): C.2, E.3,D.4.6, H.5.1, K.4.1,K.6.5, H4

ISSN 0302-9743
ISBN-10 3-540-28791-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28791-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

©2005 IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg, Austria
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11552055 06/3142 543210

Preface

It is our great pleasure to present the proceedings of the 9th IFIP TC-6 TC-11
Conference on Communications and Multimedia Security (CMS 2005), which
was held in Salzburg on September 19-21, 2005. Continuing the tradition of pre-
vious CMS conferences, we sought a balanced program containing presentations
on various aspects of secure communication and multimedia systems. Special
emphasis was laid on papers with direct practical relevance for the construction
of secure communication systems.

The selection of the program was a challenging task. In total, we received
143 submissions, from which 28 were selected for presentation as full papers.
In addition to these regular presentations, the CMS conference featured for the
first time a “work in progress track” that enabled authors to report preliminary
results and ongoing work. These papers were presented in the form of a poster
session during the conference; an extended abstract of the posters appears in this
proceedings volume. From all papers submitted to the CMS conference, the pro-
gram committee chose 13 submissions for inclusion in the work in progress track.

In addition to regular presentations, CMS 2005 featured a special session on
XML security, containing both contributed and invited talks. This special session
was jointly organized by Ridiger Grimm (TU Ilmenau, Germany) and Jorg
Schwenk (Ruhr-Universitidt Bochum, Germany). Their assistance in organizing
CMS 2005 was greatly appreciated.

Besides the above mentioned presentations, the scientific program of CMS
2005 featured three invited speakers: Christian Cachin (IBM Ziirich), with a
talk about the cryptographic theory of steganography, Ton Kalker (HP Labs),
with a survey talk on recent trends in the field of Digital Rights Management,
and Ingemar Cox (University College London), with a talk about robust water-
marking schemes.

We want to thank all contributors to CMS 2005. In particular, we are grateful
to the authors and invited speakers for contributing their latest work to this
conference, as well as to the PC members and external reviewers for their critical
reviews of all submissions. Finally, special thanks go to the organizing committee
who handled all local organizational issues and provided us with a comfortable
location and a terrific social program. For us, it was a distinct pleasure to serve
as program chairs of CMS 2005.

We hope that you will enjoy reading these proceedings and that they will be
a catalyst for your future research in the area of multimedia security.

July 2005 Jana Dittmann
Stefan Katzenbeisser
Andreas Uhl

9th IFIP TC-6 TC-11 Conference on
Communications and Multimedia Security

September 19-21, 2005, Salzburg (Austria)

Program Chairs

Jana Dittmann, Otto-von-Guericke Universitat Magdeburg, Germany
Stefan Katzenbeisser, Technische Universitdt Miinchen, Germany
Andreas Uhl, Universitit Salzburg, Austria

IFIP TC-6 TC-11 Chairs

Otto Spaniol, RWTH Aachen, Germany
Leon Strous, De Nederlandsche Bank, The Netherlands

Program Committee

André Adelsbach, Ruhr-Universitdt Bochum, Germany
Elisa Bertino, University of Milan, Italy
Carlo Blundo, UNISA, Italy
Christian Cachin, IBM Ziirich, Switzerland
Ingemar J. Cox, University College London, UK
David Chadwick, University of Kent, UK
Bart de Decker, KU Leuven, Belgium
Yves Deswarte, LAAS, France
Elke Franz, TU Dresden, Germany
Miroslav Goljan, SUNY Binghamton, USA
Patrick Horster, Universitiat Klagenfurt, Austria
Ton Kalker, HP Labs, USA
Stephen Kent, BBN Technologies, USA
Klaus Keus, BSI, Germany
Herbert Leitold, A-SIT, Austria
Nasir Memon, Polytechnic University, USA
Sead Muftic, Stockholm University, Sweden
Fernando Perez-Gonzalez, University of Vigo, Spain
Giinter Pernul, Universitit Regensburg, Germany
Reinhard Posch, Technische Universitit Graz, Austria
Bart Preneel, KU Leuven, Belgium
Claus Vielhauer, Otto-von-Guericke University Magdeburg, Germany
Moti Young, Columbia University, USA

VIII Organization

Local Organization

Dominik Engel
Roland Norcen
Helma Schondorfer
Michael Tautschnig
Andreas Uhl

External Reviewers

Carlos Aguilar-Melchor
Felix Balado

Lejla Batina
Yannick Chevalier
Stelvio Cimato
Pedro Comesana
Peter Danner
Paolo D’Arco
Liesje Demuynck
Claudia Diaz

Kurt Dietrich
Wolfgang Dobmeier
Anas Abou El Kalam
Martin Feldhofer
Jessica Fridrich
Alban Gabillon
Sebastian Gajek
Steven Galbraith
Clemente Galdi
Jorg Gilberg

Ulrich Greveler
Hazem Hamed
Mark Hogan
Yongdae Kim
Franz Kollmann
Klaus Kursawe
Mario Lamberger
Peter Lipp

Mark Manulis

Bjorn Muschall
Vincent Naessens
Vincent Nicomette
Rodolphe Ortalo
Elisabeth Oswald
Federica Paci

Udo Payer

Luis Perez-Freire
Thomas Popp
Torsten Priebe
Markus Rohe
Thomas Rossler
Heiko Rossnagel
Martin Schaffer
Peter Schartner
Christian Schlaeger
Stefaan Seys

Dieter Sommer
Anna Squicciarini
Hung-Min Sun
Yagiz Sutcu

Ingrid Verbauwhede
Frederik Vercauteren
Tine Verhanneman
Kristof Verslype
Ivan Visconti

Ron Watro
Johannes Wolkerstorfer
Peiter Zatko

Table of Contents

Applied Cryptography

Fast Contract Signing with Batch Oblivious Transfer
L’ubica Stanekovd, Martin Stanek 1

An Instruction Set Extension for Fast and Memory-Efficient AES
Implementation

Stefan Tillich, Johann Grofischidl, Alexander Szekely 11

Self-Healing Key Distribution Schemes with Sponsorization
German SAezo 22

DRM & E-Commerce

Effective Protection Against Phishing and Web Spoofing
Rolf Oppliger, Sebastian Gajek 32

Identity Based DRM: Personal Entertainment Domain
Paul Koster, Frank Kamperman, Peter Lenoir, Koen Vrielink 42

Rights and Trust in Multimedia Information Management
Jaime Delgado, Victor Torres, Silvia Llorente, Eva Rodriguez 55

Signature Amortization Using Multiple Connected Chains
Qusai Abuein, Susumu SRIDUSAWAo 65

Media Encryption

A Key Embedded Video Codec for Secure Video Multicast
Hao Yin, Chuang Lin, Feng Qiu, Xiaowen Chu, Geyong Min 7

Puzzle — A Novel Video Encryption Algorithm
Fuwen Liu, Hartmut Koenig. 88

Selective Image Encryption Using JBIG
Roman Pfarrhofer, Andreas Uhl 98

X Table of Contents

Multimedia Security

On Reversibility of Random Binning Techniques: Multimedia
Perspectives

Sviatoslav Voloshynouvskiy, Oleksiy Koval, Emre Topak,

José Emilio Vila-Forcén, Pedro Comesana Alfaro, Thierry Pun

A Graph—Theoretic Approach to Steganography
Stefan Hetzl, Petra Mutzel

Non-Interactive Watermark Detection for a Correlation-Based
Watermarking Scheme
André Adelsbach, Markus Rohe, Ahmad-Reza Sadeghi

Privacy

Video Surveillance: A Distributed Approach to Protect Privacy
Martin Schaffer, Peter Schartner

Privacy-Preserving Electronic Health Records
Liesje Demuynck, Bart De Decker

Using XACML for Privacy Control in SAML-Based Identity Federations
Wolfgang Hommel i

Biometrics & Access Control

Verifier-Tuple as a Classifier for Biometric Handwriting Authentication
- Combination of Syntax and Semantics
Andrea Oermann, Jana Dittmann, Claus Vielhauer

Decentralised Access Control in 802.11 Networks
Marco Domenico Aime, Antonio Lioy, Gianluca Ramunno

Multimodal Biometrics for Voice and Handwriting
Claus Vielhauer, Tobias Scheidat cciiiiia....

Network Security

Compact Stimulation Mechanism for Routing Discovery Protocols in
Civilian Ad-Hoc Networks
Huafei Zhu, Feng Bao, Tieyan Li

Table of Contents

Polymorphic Code Detection with GA Optimized Markov Models
Udo Payer, Stefan Krazberger,

A Secure Context Management for QoS-Aware Vertical Handovers in
4G Networks
Minsoo Lee, Sehyun Park

Mobile Security

Security Analysis of the Secure Authentication Protocol by Means of
Coloured Petri Nets
Wiebke DTespo

Assessment of Palm OS Susceptibility to Malicious Code Threats
Tom Goovaerts, Bart De Win, Bart De Decker, Wouter Joosen

Implementation of Credit-Control Authorization with Embedded
Mobile IPv6 Authentication
HyunGon Kim, ByeongKyun OR

Work in Progress Track

Biometrics: Different Approaches for Using Gaussian Mixture Models

in Handwriting
Sascha Schimke, Athanasios Valsamakis, Claus Vielhauer, Yannis
SEYHANOU . .«

INVUS: INtelligent VUlnerability Scanner
Turker Akyuz, Ibrahim Sogukpinar

Personal Rights Management — Enabling Privacy Rights in Digital
Online Content
Mina Deng, Lothar Fritsch, Klaus Kursawe

Flexible Traitor Tracing for Anonymous Attacks
Hongzxia Jin, Jeffery Lotspiech0

Efficient Key Distribution for Closed Meetings in the Internet
Fuwen Liu, Hartmut Koenig.o,

Blind Statistical Steganalysis of Additive Steganography Using Wavelet
Higher Order Statistics
Taras Holotyak, Jessica Fridrich, Sviatoslav Voloshynovskiy

XI

XII Table of Contents

Applying LR Cube Analysis to JSteg Detection
Kwangsoo Lee, Changho Jung, Sangjin Lee, HyungJun Kim,

Jongin Limo

Digital Signatures Based on Invertible Watermarks for Video
Authentication

Enrico Hauer, Jana Dittmann, Martin Steinebach

A Theoretical Framework for Data-Hiding in Digital and Printed Text
Documents
Renato Villan, Sviatoslav Voloshynovskiy, Frédéric Deguillaume,
Yuriy Rytsar, Oleksiy Koval, Emre Topak, Ernesto Rivera,

Thierry PUumn e e

Semantically Extended Digital Watermarking Model for Multimedia
Content

Huajian Liu, Lucilla Croce Ferri, Martin Steinebach................

An Architecture for Secure Policy Enforcement in E-Government
Services Deployment

Nikolaos Oikonomidis, Sergiu Tcaciuc, Christoph Ruland

Some Critical Aspects of the PKIX TSP

Cristian Marinescu, Nicolae Tapusc..ouue ...

Motivations for a Theoretical Approach to WYSIWYS
Antonio Lioy, Gianluca Ramunno, Marco Domenico Aime,

Massimiliano Pala

Special Session: XML Security

Secure XMaiL: or How to Get Rid of Legacy Code in Secure E-Mail
Applications

Lars EBwers, Wolfgang Kubbilun, Lijun Liao, Jérg Schwenk

Integrating XML Linked Time-Stamps in OASIS Digital Signature
Services

Ana Isabel Gonzdlez-Tablas, Karel Wouters

Trustworthy Verification and Visualisation of Multiple XML-Signatures
Wolfgang Kubbilun, Sebastian Gajek, Michael Psarros,

Jorg Schwenk

Experience XML Security — The XML-Security Plug-In for Eclipse

Dominik Schadow

Table of Contents XIII

How to Make a Federation Manageable
Christian Geuer-Pollmanm i 330

XML Signatures in an Enterprise Service Bus Environment
Eckehard Hermann, Dieter Kessler i, 339

Using the XML Key Management Specification (and Breaking X.509

Rules as You Go)
Stephen Farrell, José Kahan 348

Author Index e 359

Fast Contract Signing with Batch
Oblivious Transfer

Lubica Stanekoval* and Martin Stanek?**

! Department of Mathematics, Slovak University of Technology,
Radlinského 11, 813 68 Bratislava, Slovakia
1s@math.sk
2 Department of Computer Science, Comenius University,
Mlynska dolina, 842 48 Bratislava, Slovakia
stanek@dcs.fmph.uniba.sk

Abstract. Oblivious transfer protocol is a basic building block of var-
ious cryptographic constructions. We propose a novel protocol — batch
oblivious transfer. It allows efficient computation of multiple instances
of oblivious transfer protocols. We apply this protocol to improve the
fast simultaneous contract signing protocol, recently proposed in [11],
which gains its speed from computation of time-consuming operations
in advance. Using batch oblivious transfer, a better efficiency can be
achieved.

1 Introduction

Oblivious transfer is a cryptographic protocol in which one party (usually called
sender) transfers one of two strings to the other party (usually called chooser).
The transfer should have the following properties: The chooser should obtain the
string of his/her choice but not the other one, and the sender should be unable
to identify the chooser’s choice. Oblivious transfer is used as a key component
in many cryptographic applications, such as electronic auctions [12], contract
signing [4,11], and general multiparty secure computations [8]. Many of these
and similar applications make intensive use of oblivious transfer. Therefore, ef-
ficient implementation of oblivious transfer can improve the overall speed and
applicability of various protocols.

Batch variants of various cryptographic constructions are useful for decreas-
ing computational costs. A batch variant of RSA, suitable for fast signature gen-
eration or decryption, was proposed by Fiat [5]. Batch verification techniques [1]
can be used for efficient proofs of correct decryptions in threshold systems with
applications to e-voting and e-auction schemes.

Simultaneous contract signing is a two-party cryptographic protocol, in which
two mutually suspicious parties A and B wish to exchange signatures on a con-
tract. Intuitively, a fair exchange of signatures is one that avoids a situation

* Supported by APVT 023302.
** Supported by VEGA 1/0131/03.

J. Dittmann, S. Katzenbeisser, and A. Uhl (Eds.): CMS 2005, LNCS 3677, pp. 1-10, 2005.
© IFIP International Federation for Information Processing 2005

2 L. Stanekova and M. Stanek

where A can obtain B’s signature while B cannot obtain A’s signature and
vice-versa. There are two types of contract signing protocols: the ones that use
trusted third party either on-line or off-line [6], and protocols without trusted
third party [4,7]. Protocols without trusted third party are based on gradual
and verifiable release of information. Hence, if one participant stops the proto-
col prematurely, both participants have roughly the same computational task in
order to find the other participant’s signature.

Recently, a contract signing protocol that allows pre-computation of signif-
icant part of the most time consuming operations in advance was proposed in
[11]. The protocol makes an extensive use of oblivious transfers (its security
depends on the security of oblivious transfers) in each protocol run.

Motivation. Oblivious transfer is frequently used in cryptographic protocols.
There are many protocols in which a large number of oblivious transfers is em-
ployed in a single protocol instance. Therefore, an efficient implementation of
oblivious transfer is a natural way to improve the efficiency of such protocols.

Our Contribution. We present a batch RSA oblivious transfer protocol where
multiple independent instances of oblivious transfers can be computed efficiently.
The security of the protocol is based on RSA assumption, and we prove it in the
random oracle model.

We compare actual implementation of batch RSA oblivious transfer protocol
with standard RSA oblivious transfer [11], and oblivious transfer based on the
computational Diffie-Hellman assumption [13].

We show the usefulness and applicability of our proposal and improve the
simultaneous contract signing protocol [11]. The use of batch RSA oblivious
transfers instead of pre-computed oblivious transfers leads to more efficient pro-
tocol. Both settings were implemented and compared to illustrate exact decrease
of computational costs.

Related Work. The efficiency of computing oblivious transfer influences the
overall efficiency of many protocols. Our batch RSA oblivious transfer is a mod-
ification of the RSA oblivious transfer protocol from [11]. Other constructions
of oblivious transfer employ some kind of EIGamal encryption or computational
Diffie-Hellman assumption [13].

Similar problem of amortizing the cost of multiple oblivious transfers, based
on computational Diffie-Hellman assumption, has been considered by Naor and
Pinkas [13]. We compare our approach with their constructions in Sect. 4.

Our security proofs for batch RSA oblivious transfers make use of random
oracles. The application of random oracles in the security analysis of crypto-
graphic protocols was introduced by Bellare and Rogaway [2]. Security proofs
in a random oracle model substitute a hash function with ideal, truly random
function. This approach has been applied to many practical systems, where the
ideal function must be instantiated (usually as a cryptographically strong hash
function). Recently, an interesting discussion about plausibility of security proofs
in the random oracle model appeared in [10].

Fast Contract Signing with Batch Oblivious Transfer 3

The paper is structured as follows. Section 2 presents our main result, the
batch RSA oblivious transfer, and its implementation. The protocol for contract
signing is described in Sect. 3. We analyse an actual implementation of batch
RSA oblivious transfer and the savings of computational costs resulting from its
application in Sect. 4.

2 Batch Oblivious Transfer

Oblivious Transfer (OT) protocol, more specifically OT? protocol, allows two
parties (sender and chooser) to solve the following problem. The sender has two
strings mg and m; and transfers one of them to the chooser in accordance with
the following conditions:

— the chooser selects a particular my, which he wishes to obtain (b € {0,1});
— the chooser does learn nothing about mi_p;
— the sender does not know which my, was transferred.

We modify and extend construction of RSA-based OT¢ protocol from [11].
Most oblivious transfer protocols employ some kind of ElGamal encryption. This
results in increased computational overhead as the chooser must perform at
least one modular exponentiation. Using RSA-based oblivious transfer allows to
reduce the chooser’s complexity, since the public exponent can be made small.
Moreover, RSA decryption with distinct private exponents can be implemented
efficiently, leading to Batch RSA [5]. We use this idea for further improvement
of computational complexity of RSA-based oblivious transfer.

We employ the following notation through the rest of the section. Let n = p-q
be an RSA public modulus (i.e. a product of two distinct primes p and ¢) and let
e, d denote public and private exponents, respectively. Let Z, = {0,1,...,n —
1} and let Zf be the set of all numbers from Z, relatively prime to n. All
computations in protocol descriptions are defined over Z,,, the only exception is
bitwise xor operation ®&. We will omit stating explicitly that our operations in
the paper are mod n whenever it is clear from the context. The hash function
H is modelled as a truly random function (random oracle, see [2]) in the security
analysis. For simplicity we write H(ay,...,a;) for the hash function applied to
the concatenation of I-tuple (ai,...,a;). Random, uniform selection of x from
the set A is denoted by x € A.

We assume the sender (S in protocol description) generates the instance of
RSA system and the chooser (C) already has a valid public key of the sender (i.e.
a pair (n,e)). Moreover, we assume that the length of H output is not shorter
than strings mo and my. Recall, b € {0,1} denotes the index of string, which
the chooser wants to obtain.

2.1 RSA Oblivious Transfer

The RSA oblivious transfer protocol [11] is a modification of the protocol [9].
Since the protocol is executed multiple times a sufficiently long random string
R (chosen by sender) is used to distinguish the instances of the protocol.

4 L. Stanekova and M. Stanek

—_

S—C: CerZz;

C—S: 2/ =2z°C® where z € Z,.

3.5S—C: .R,.E()7E‘17

where ciphertexts Fy, Ep of strings mg, m; are computed as follows:

N

Eo = H(R,z'%,0) ® mo; Ey = H(R,(z'C~Y)% 1) @ m,.
4. The chooser decrypts my, from Ey: my = Ep @ H(R, ,b).

Since the value 2’ is uniformly distributed in Z,, the chooser’s security is
protected in an information-theoretic sense — the sender cannot determine b,
even with infinite computational power. The sender’s security can be proved
in the random oracle model under RSA assumption. The protocol allows pre-
computation of value (C~1)¢, thus allowing efficient implementation of protocols,
where multiple instances of oblivious transfer are required.

Remark 1. Roughly the same efficiency can be obtained (without any pre-
computation) by generating C?% randomly first and computing C' by exponentia-
tion to the short public exponent. This possibility was neglected by the authors
of this protocol. Batch oblivious transfer is even more efficient, as we will see
later.

2.2 Batch RSA Oblivious Transfer

The main observation regarding efficiency of RSA oblivious transfer is the fact
that multiple parallel executions can use distinct private exponents. This allows
to reduce computational complexity of sender using techniques of Batch RSA.
We assume that L oblivious transfers should be performed. Let m; o, m; 1 (for
0 < i < L) be input strings for i-th oblivious transfer. Similarly, by, ...,b;,_1 are
indices of those strings, which the chooser wants to obtain. The sender selects L
distinct small public RSA exponents eq,...,er_1, each one relatively prime to
(p—1)(¢ — 1), and computes corresponding private exponents dy, . ..,d;_1. For
efficient implementation the public exponents must be relatively prime to each
other and e; = O(logn), for i =0,...,L — 1.
The protocol executes L separate instances of oblivious transfer:
1.S—C: 007017...,6'[,,1 €ER Z,;:
2. C—S: zg,h,..., 2y,
where 2} = 2% C? and x; €g Zy,, for i =0,...,L — 1.
3. S—=C: {Ry, Eio, Ei1}o<i<r,
where ciphertexts F; o, F; 1 of strings m; o, m;,1 are computed as follows:

Ei,O = I‘I(R,i7 (f;;)di7i7 0) D mi0;

Eix = H(R;, (;Ci_l)divi7 1) ®mia.
4. The chooser decrypts m; py, ..., M4ip,_, from E;p, ..., By,
=FE;p, & H(R;, x;,1,b;), fori=0,...,L—1.

mib

i

Fast Contract Signing with Batch Oblivious Transfer 5

One can easily check the correctness of the decryption:

Eip, ® H(R;, xi,0,b;) = H(R;, (2,073 i, b;) @ miy, @ H(R;, x4,4, b;)

= H(R;, (x5 CYC7 %)% i, by) @ mi, & H(Ry, 4,4, b;)
= My b,
Security. The chooser’s objective is to hide values by, ..., br,_1 from the sender.

The values z} are uniformly distributed in Z,,. Thus, the sender cannot compute
b;, even with unrestricted computational power — for each transmitted L-tuple
xg, ..., ¢ _, and every possible selection of values by, . ..,br—1 there exist suit-
able choices xq, ..., z5_1 € Z, (easily computed by the sender himself):

xo = (2} - C’;l”")di7 A rp_1= (2 _4- Cffﬁ’l)d“l.
Hence, all combinations of values by, ...,b;_1 are equiprobable and the sender
cannot identify the correct one. The chooser’s security is protected uncondition-
ally.

The sender’s objective is to hide one string from every pair m; g, m;1 (not
knowing which one exactly). We prove this security property of the protocol
in random oracle model, where the hash function H is modelled as a random
function.

We compare the protocol with the ideal implementation (model). The ideal
model uses a trusted third party that receives all m; g and m; ; from the sender
and by, ...,br_1 from the chooser. After obtaining all inputs, the trusted third
party sends the chooser m;,, for 0 < ¢ < L. The ideal model hides the values
m; 1—p, perfectly — no adversary substituting the chooser can learn anything
about hidden values. The actual protocol should be comparable with the ideal
model in the following sense (for extensive study of various definitions of protocol
security in the ideal model see [3]):

For every distribution on the inputs {m;,m;1}o<i<r and any prob-
abilistic polynomial adversary A substituting the chooser in the actual
protocol there exists a probabilistic polynomial simulator S 4 in the ideal
model such that outputs of A and S4 are computationally indistinguish-
able.

Since the ideal model is secure and outputs of A and S are indistinguish-
able, one can conclude that A does not learn more than allowed by security
requirements.

The simulator S simulates both the sender and adversary A. Therefore,
the verb “send” refers to writing data to input or reading data from output of
simulated adversary.

1. S4 selects random Cy,Ch,...,CrL_1 €r Z} and sends them to A. It starts
to simulate A on this input.

6 L. Stanekova and M. Stanek

2. A sends values z(,z,...,27 _, € Z, to Sa. These values can be computed
by adversary A in any way (adversary does not need to follow the protocol).

3. Sa selects random strings {R;, E; o, Ei1}o<i<r as “sender’s answer” and
sends them in response.

4. S, continues the simulation of A and monitors all its queries to H. All
queries have the form of a quadruple (R, z,,b). We say that the quadruple
(R, x,i,b) is valid if R; = R and #,C;® = 2. All queries not containing a
valid quadruple are answered at random. If A asks for H(R,x,4,b), where
the argument is a valid quadruple, then S 4 asks a trusted third party in the
ideal model for m; ;. The simulator sets H(R, z,i,b) = E;, & m; to allow
A to decrypt E;; correctly. Whatever A outputs, so does Sa.

The distribution of simulated communication with the adversary A is identi-
cal to the distribution of real communication between the sender and A. The only
exception is the case when A asks for any valid pair of quadruples H(R, z,,0)
and H(R,x*,i,1), for i € {0,..., L —1}. In this case, the validity of the quadru-
ples implies o} = 2% and 2/C;' = (2*)%. It easily follows that = - (z*)~! is the
decryption of C;:

(o @) =a - (@) = @) C =

The values C; are chosen randomly by the simulator S4. Hence, the adversary
cannot construct a pair of valid quadruples, assuming the RSA assumption holds.
Therefore the output of S4 cannot be distinguished from the output of A in the
real communication with the sender.

Remark 2. Random strings R; are used in the protocol to ensure distinct inputs
of H in different invocations of the protocol.

Remark 3. Less direct construction would use triples (R;, (,C; %)% b;) instead
of quadruples (R;, (z;C; bi)di ;i b;). The simulator would determine the correct
value of index 7 by testing validity of all potential triples.

Implementation. The most time-consuming part of the protocol is step 3,
where the sender computes 2L RSA decryptions. The use of distinct pairs of
encryption/decryption exponents enables to apply batch RSA decryption [5].
The sender needs to compute following decryptions in step 3:
()%, ()%, fori=0,...,L—1.

7 (22

Certainly, only one decryption has to be computed for every i, namely (x;)dl
This follows from an observation that (z/C;)% = (2)% (C%)~', and C; can
be generated from randomly chosen Cid * by encrypting it: (Cid)¢ (thus having
decryption “for free”). Assuming small size of public (encryption) exponents,
the computation can be implemented in such a way that L decryptions ()%
require time asymptotically proportional to one decryption, see [5]. Notice, that
small public exponents yield efficient implementation of the chooser’s part of the
protocol as well.

Fast Contract Signing with Batch Oblivious Transfer 7

3 LS Protocol

The protocol for contract signing from [11] (we call it LS protocol) is based on
construction by Even, Goldreich and Lempel [4]. The main difference between
these protocols is a criterion when the contract is considered binding (the original
protocol uses threshold acceptance).

Protocols for simultaneous contract signing usually consist of two interlaced
protocols. Both participants are in symmetric positions — each of them wants to
transfer its own signature in exchange for the other participant’s signature. Our
description includes both exchanges.

Let us denote by Siga(m) a digital signature of a message m created by the
participant A. The protocol is independent of chosen digital signature algorithm.
Let k be a security parameter, e.g. k = 128. For the purposes of contract signing
a C-signature (or C'Sig) of a message m is defined as a triple:

CSiga(m) = (Siga(m, R), Siga(R,1,0),Siga(R,i,1)),

for arbitrary i € {1,...,k} and a random binary string R € {0, 1}* long enough
to avoid collisions among instances of the protocol. A C-signature is (considered)
valid if and only if all its parts are formed correctly and have valid signatures.

3.1 The Protocol

Alice and Bob simultaneously transfer C-signatures of contract M. A symmetric
encryption (e.g. one-time pad) of message m with a key K is denoted by {m} k.
We denote by A « B : OTZ(mo,m1) the instance of an oblivious transfer
protocol with A playing the role of the sender (possessing two strings mg, m1),
and B playing the role of the chooser (and selecting the string which he wishes to
obtain randomly). Alice chooses random R4 € {0,1}* and random symmetric
keys Kap, for i € {1,...,k} and b € {0,1}. Similarly, Bob chooses random
Rp € {0,1}* and random symmetric keys Kp;p, for i € {1,...,k} and b €
{0,1}. Let &’ be the length of symmetric key and i-th bit of key K is denoted by
Kiie Kajp=K4,, K4, ... K&, and Kpip =KL, K3, ... Kb .

Both participants check the correctness of received data/signatures immedi-
ately (as soon as they can be verified). In case of failure, the participant aborts
the protocol.

1. (exchange of the first parts of C'Sig)
A — B: Ry, Siga(M, Ra),
B — A: RB,SigB(M, RB).
2. (exchange of encrypted parts of C'Sig)
A — B: {Siga(Ra,i,b)}k,,,, fori=1,...,kandb=0,1,
B — A: {Sigp(RB,i,b0)}kp,,, fori=1,....,kandb=0,1.
3. (opening one half of encryptions)
A~ B: OT12(KA77;70,KA77;71), fOI"L':l,...,k7
B« A: Ole(KB’i,O,KB,i’l)7 fOI‘i:].,...,k.

8 L. Stanekova and M. Stanek

4. (gradual exchange of symmetric keys) For w =1,... k"
. w w w w
A — B: KA,LOaKA,l,p . "KA,k,O’KA,k,l’
. w w w w
B — A: KB,1,0vKB,1,1w~aKB,k,0aKB,k,1'

Transfers are interlaced, so both parties send the pieces in the iteration
w+1 only when they already received (and verified) the pieces from previous
iteration (i.e. w). Alice and Bob check after each iteration that the half of
received pieces is equal to the corresponding pieces of the keys obtained via
oblivious transfers. They continue the protocol only if the check is successful.

The most computationally demanding task of the protocol is the step 3, where
2k oblivious transfers have to be performed. This leaves the room for efficient
implementation of the protocol — by employing efficient oblivious transfers, such
as our batch oblivious transfer presented in Sect. 2.2.

4 Implementation and Comparison

This section presents actual comparison of oblivious transfer protocols and their
impact on efficiency of LS contract signing protocol. All test were implemented
in Java and were performed on Pentium II 400 MHz processor.

The Chinese remainder theorem (CRT) is routinely applied to decrease com-
putational cost of RSA decryption. Both RSA-based implementations of oblivi-
ous transfer protocols employed CRT. Employing CRT in batch RSA oblivious
transfer requires two binary trees for computations mod p and mod q. Results
(decryptions) are combined using CRT just like in “standard” RSA.

4.1 Comparing Oblivious Transfer Implementations

We compare implementation of RSA oblivious transfer (Sect. 2.1), batch RSA
oblivious transfer (Sect. 2.2), and OT? protocol proposed by Naor and Pinkas
in [13] based on the computational Diffie-Hellman assumption (we denote this
protocol NaPi). NaPi computes in subgroup of order r of Z,, where s is prime
and r | s — 1. For the purpose of our test we choose 160 bit long r. The hash
function is instantiated as SHA-1 in the protocols.

The first graph on Fig. 1 shows combined time spent by the sender and the
chooser when performing 128 oblivious transfers simultaneously while increasing
the length of the RSA modulus n (for RSA-based protocols) or the length of
prime s (for NaPi protocol). The second graph presents combined computational
time while increasing the number of oblivious transfers computed in parallel. The
length of RSA modulus, and the length of prime s is fixed to 1024 bits in this case.

We compare only on-line computations, off-line (pre-computed) parts of pro-
tocols are not considered. On-line computation of NaPi protocol requires two
modular exponentiations in a subgroup of order r. Since the length of expo-
nents is 160 bits, the protocol is faster than standard RSA oblivious transfer.
However, when multiple oblivious transfers should be performed, batch RSA

Fast Contract Signing with Batch Oblivious Transfer 9

70 | RSAOT —+— 3 - ' RsAOT ——
NaPi OT —x— NaPi OT —*—
60 I Batch RSAOT —o— Batch RSA OT —o—
> 50 S 20 F
Q Q
£ 40 <2
[0} [0}
£ 30 £
= 10
20
10
0 9 I 1 1 1 0
512 768 1024 1280 1536 2 4 8 16 32 64 128 256
modulus/prime length (bits) oblivious transfers

Fig. 1. Comparison of RSA, batch RSA, and NaPi oblivious transfers

oblivious transfer is even more efficient. Moreover, NaPi protocol requires addi-
tional off-line computation (three exponentiations), while batch RSA oblivious
transfer does not employ off-line computation.

Remark 4. Naor and Pinkas proposed additional constructions of oblivious
transfer protocols in [13]. They proposed efficient OT}¥ protocol and used it to
implement many OT? protocols using bandwidth/computation tradeoff. How-
ever, such construction relies on a fast communication line between the sender
and the chooser. Another OT?2 protocol proposed by the authors has the advan-
tage of not requiring random oracles for its security proof (and can be viewed
as superior to our construction in this sense). On the other hand, its on-line
computational complexity is substantially higher.

4.2 Comparing Implementations of LS Protocol

The most time consuming steps of LS protocol are step 2 and step 3. Com-
putational costs of steps 1 and 4 are negligible. Our implementations use RSA
modulus of 1024 bits and 128 oblivious transfers (the length of symmetric keys
are 128 bits).

Notice the signatures of the second and third parts of C-signatures, i.e.
Siga(Ra,i,b) and Sigs(Rp,1,b), do not depend on actual contract M. Thus,
they can be pre-computed off-line. Table 1 compares computational time of LS
protocol when step 2 is computed on-line (no pre-computation) or off-line (pre-
computed signatures). Using batch RSA oblivious transfer improves computa-
tional costs in both cases.

Table 1. Computational time of LS protocol (sec)

on-line off-line

RSA OT 57.14 19.61
Batch RSA OT 44.25 6.74

10

L. Stanekova and M. Stanek

Further substantial improvements can be achieved by partitioning keys

Kaip, Kp,ip into larger blocks of length ¢, e.g. 2 or 3, thus reducing overall
number of oblivious transfers by factor ¢.

References

10.

11.

12.

13.

. Bellare, M., Garay, J., Rabin, T.: Fast batch verification for modular exponenti-

ation and digital signatures, In Advances in Cryptology — EuroCrypt ’98, LNCS
1403, 236250, Springer-Verlag, 1998.

. Bellare, M., Rogaway, P.: Random Oracles are Practical: a Paradigm for Designing

Efficient Protocols, In 1st ACM Conference on Computer and Communication
Security, 62-73, ACM Press, 1993.

. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols,

Journal of Cryptology, Vol. 13, No. 1, 143-202, 2000.

. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Con-

tracts, In Advances in Cryptology: Proceedings of Crypto 82, 205-210, Plenum
Publishing, 1982.

. Fiat, A.: Batch RSA, In Advances in Cryptology: Proceedings of Crypto ’89, 175—

185, LNCS 435, Springer, 1990.

. Garay, J., Jakobsson, M., MacKenzie, P.: Abuse-Free Optimistic Contract Sign-

ing, In Advances in Cryptology: Proceedings of Crypto 99, LNCS 1666, 449-466,
Springer-Verlag, 1999.

. Garay, J., Pomerance, C.: Timed Fair Exchange of Standard Signatures, In Finan-

cial Cryptography ’03, LNCS 2742, 190-207, Springer-Verlag, 2003.

. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game — a com-

pleteness theorem for protocols with honest majority, In 19th ACM Symposium
on the Theory of Computing, 218-229, ACM Press, 1987.

. Juels, A., Szydlo, M.: A Two-Server Sealed-Bid Auction Protocol, In Financial

Cryptography ’02, LNCS 2537, Springer-Verlag, 2002.

Koblitz, N., Menezes, A.: Another Look at “Provable Security”, Cryptology ePrint
Archive, Report 2004/152, http://eprint.iacr.org/, 2004.

Liskova, L., Stanek, M.: Efficient Simultaneous Contract Signing, In 19th Interna-
tional Conference on Information Security (SEC 2004), 18th IFTP Word Computer
Congress, Kluwer Academic Publishers, pp. 441-455, 2004.

Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design, In 1st ACM Conference on Electronic Commerce, 129-139, ACM Press,
1999.

Naor, M., Pinkas, B.: Efficient oblivious transfer protocols, In 12th Annual ACM-
SIAM Symposium on Discrete Algorithms, 448-457, 2001.

An Instruction Set Extension for Fast and
Memory-Efficient AES Implementation

Stefan Tillich, Johann Grofischiddl, and Alexander Szekely

Graz University of Technology,
Institute for Applied Information Processing and Communications,
Inffeldgasse 16a, A-8010 Graz, Austria
{Stefan.Tillich, Johann.Groszschaedl, Alexander.Szekely}Qiaik.at

Abstract. As more and more security-critical computation is done in
embedded systems it is also becoming increasingly important to facili-
tate cryptography in such systems. The Advanced Encryption Standard
(AES) specifies one of the most important cryptographic algorithms to-
day and has received a lot of attention from researchers. Most prior
work has focused on efficient implementations with throughput as main
criterion. However, AES implementations in small and constrained envi-
ronments require additional factors to be accounted for, such as limited
memory and energy supply. In this paper we present an inexpensive ex-
tension to a 32-bit general-purpose processor which allows compact and
fast AES implementations. We have integrated this extension into the
SPARC V8-compatible LEON-2 processor and measured a speedup by a
factor of up to 1.43 for encryption and 1.3 for decryption. At the same
time the code size has been reduced by 30-40%.

Keywords: Advanced Encryption Standard, 32-bit implementation, in-
struction set extensions, S-box, cache-based side-channel analysis.

1 Introduction

The recent years have seen an enormous increase in the number of small and
embedded systems in use. Cell phones, PDAs, portable media players, and smart
cards are just a few examples of such devices. But also more and more computa-
tion is performed totally hidden from the user, e.g. in sensor nodes or RFID tags.
Strong cryptographic algorithms should build the basis for achieving all of the
security assurances required by the system. However, since embedded systems
are generally constrained in resources, the overhead introduced by cryptographic
algorithms should be kept as small as possible.

Many symmetric block ciphers require to perform operations which are costly
in software, but very cheap when realized in hardware. Typical examples of such
operations are bit-level permutations or inversions in the Galois field GF(28).
Moving the execution of these operations from software to hardware, e.g. through
application-specific (custom) instructions integrated into a general-purpose
processor, can have a significant performance impact [9]. The concept of instruc-

J. Dittmann, S. Katzenbeisser, and A. Uhl (Eds.): CMS 2005, LNCS 3677, pp. 11-21, 2005.
© IFIP International Federation for Information Processing 2005

12 S. Tillich, J. Grofischiadl, and A. Szekely

tion set extensions may be viewed as a hardware/software co-design approach
to combine the performance of hardware with the flexibility of software.

The Advanced Encryption Standard (AES) [11] specifies a symmetric block
cipher that has found widespread adoption during the last five years. It can be
used to encrypt digital communication and data or to guarantee integrity and
authenticity. Today, the AES algorithm is prevalent in a plethora of devices,
ranging from high-end servers to RFID tags [5]. Most previous work on efficient
AES implementation has focused either on “pure” hardware or “pure” software.
Our approach is to improve the performance by slight modifications of a 32-bit
general-purpose processor in the form of instruction set extensions. In the current
paper we propose a single custom instruction which requires little additional
hardware and yields advantages for different parts of the AES algorithm.

The rest of this paper is organized as follows. Section 2 summarizes different
choices for AES software implementation and also presents some of the benefits
of our proposed extension. Section 3 presents our extension and also cites some
related work. Section 4 examines the effect of cache size on the performance
of different AES implementations, while Section 5 shows the benefits of our
proposed extension in terms of performance and code size. Section 6 concludes
the paper and gives a short outlook on future work.

2 Implementation Options for AES in Software

AES encrypts or decrypts the 16 bytes of input data in a number of rounds. The
number of rounds is 10, 12, or 14, depending on the chosen key size of either
128, 192 or 256 bits. In encryption, each round but the last consists of the four
transformations SubBytes, ShiftRows, MixColumns, and AddRoundKey, while
a decryption round features the respective inverse operations. The last round is
different as it does not include MixColumns in encryption and InvMixColumns
in decryption. For each round, a round key has to be derived from the cipher
key in an operation called key expansion [4].

All operations except SubBytes can be calculated quite efficiently on general-
purpose processors. SubBytes and the key expansion require a non-linear byte
substitution involving bit permutations and an inversion in GF(2®), which is not
very well supported by general-purpose processors. Therefore, the inversion is
normally implemented as a lookup into a table of 256 bytes. A table of the same
size is required for the operation InvSubBytes in AES decryption.

A second implementation option is to perform most of the AES round (Sub-
Bytes, ShiftRows, and MixColumns) as 16 lookups into larger tables, commonly
referred to as T tables [4]. The overall size of these tables can either be 1 kB or
4 kB, whereby the 1 kB table requires additional rotation operations to be per-
formed. The last round can also be realized with lookup by using other tables
of either 1 kB or 4 kB size. Decryption requires different tables than encryp-
tion. Therefore, an AES implementation able to perform both encryption and
decryption may require up to 16 kB of additional memory. Gladman’s AES
implementation [7] offers the possibility to configure the size of the T tables.

An Instruction Set Extension for Fast and Memory-Efficient AES 13

In the remainder of this paper we will use the following notation to refer to
the two implementation strategies mentioned before. Any AES implementation
which uses large lookup tables to perform most of the round transformations
will be denoted as T lookup AES implementation. On the other hand, an im-
plementation which calculates the round transformations (except SubBytes and
InvSubBytes) will be denoted as calculated AES implementation.

T lookup implementations have a number of drawbacks. For compact AES
implementations the use of large tables is not desirable. Moreover, the perfor-
mance of a lookup table-based implementation is highly dependent on memory
and cache performance. In Section 4 we demonstrate that, for small cache sizes,
the performance of AES with large lookup tables is much worse than that of a
calculated AES. Another problem of large lookup tables is an increased factor
of cache pollution by an execution of the AES. This means that each execution
of AES will throw out a large number of cache lines from other tasks. If these
tasks continue they will have to fetch their data from main memory again, thus
leading to a degradation in overall performance. Another issue for AES decryp-
tion is that it is necessary to use a much more complex key expansion if T lookup
is employed. More specifically, the key expansion requires the transformation of
nearly all round keys with InvMixColumns, which is a very costly operation.

For calculated AES implementations there are a number of design options on
32-bit processors. The 16 input bytes are represented as a 4 x 4-matrix, called the
state, which is subsequently transformed by the AES algorithm. The state can
be stored in four 32-bit registers, where each register can either hold a column
or a row of the state matrix. Bertoni et al. [2] have shown that a row-oriented
AES implementation yields a more efficient implementation of MixColumns and
a better overall performance, especially for decryption.

Another option is to either precompute and store all round keys (precom-
puted key schedule) or to calculate the round keys during AES encryption or
decryption (on-the-fly key expansion). The first option occupies more memory
and may also require more memory accesses while the second option saves mem-
ory at the cost of additional operations in encryption and decryption in order to
calculate the round keys.

In the present paper we propose a custom instruction for performing the non-
linear byte substitution of SubBytes and InvSubBytes in a small dedicated hard-
ware unit, which we call SBOX unit. In this fashion we can completely eliminate
the requirement of memory-resident lookup tables. The implementation details
of the sbox instruction are described in Section 3. With this instruction it is
possible to implement AES with very few memory accesses. If there are enough
spare registers to store the state and round key and an on-the-fly key expansion
is used, then the only memory accesses required are the loading of the input
data and cipher key and the storing of the result. Popular RISC architectures
for embedded systems like ARM, MIPS and SPARC offer large enough register
files to allow such implementations.

By eliminating the need for lookup tables, all possible threats through cache-
based side-channel attacks are also removed [12,18,3]. Cache pollution is kept to

14 S. Tillich, J. Grofischiadl, and A. Szekely

a minimum and the performance of AES becomes much more independent of the
cache size as shown in Section 4. Another advantage of our proposed extension
is the reduction of energy dissipation. Memory accesses are normally the most
energy-intensive instructions [15], and hence their minimization will lead to a
substantial energy saving.

3 Custom Instruction for S-Box Lookup

For performing the byte substitution operation of AES in hardware we have used
the implementation presented in [19] as a functional unit. It can perform the
lookup for both encryption and decryption, is relatively small, and can be easily
implemented with any standard cell library. We wanted to achieve a high degree
of flexibility, and therefore we have designed the new instruction such that it
can be used for both column-oriented and row-oriented implementations. The
sbox instruction has the following format (in SPARC notation):

sbox rsi1, imm, rd

The immediate value imm contains information regarding the operation to
perform and the substituted bytes of the source register rs1 and the destination
register rd. The sbox instruction performs the following steps:

1. Select one of the four bytes in the source register (rs1), depending on the
immediate value (imm).

2. Depending on imm perform forward (for encryption and key expansion) or
inverse (for decryption) byte substitution.

3. Replace one of the four bytes in the destination register (rd) with the sub-
stituted value, as indicated by imm. The other three bytes in rd remain
unchanged.

Figure 1 illustrates the operation of the sbox instruction.

The sbox instruction requires the values from the registers rs1 and rd. Since
the second operand of the sbox instruction is always an immediate value, the
second read port of the register file is not occupied. It can therefore be used
to read in the value of the destination register rd, which is required to form
the 32-bit result. The sbox instruction is therefore easy to integrate into most
architectures for embedded processors like ARM, MIPS, and SPARC as they all
have instruction formats with two source registers.

Our instruction supports both encryption and decryption and can be used to
perform all byte substitutions in all AES rounds as well as in the key expansion.
It is possible to select the source byte in rs1 and the destination byte in rd in a
manner so that the SubBytes and ShiftRows transformation can be done at the
same time. The same applies for the InvSubBytes and InvShiftRows operations
in decryption.

We have integrated our proposed extension into the freely available SPARC
V8-compatible LEON-2 embedded processor from Gaisler Research [6] and pro-
totyped it in a Xilinx Virtex2 XC2V3000 FPGA. In Sections 4 and 5 we will

An Instruction Set Extension for Fast and Memory-Efficient AES 15

rsi | imm [::::::]

source byte

| S

SBOX | ==t ?

destination byte

Fig. 1. Functionality of the sbox instruction

state the practical results we have achieved by comparing an AES implementa-
tion which uses our sbox instruction with pure-software implementations. Our
implementations used a key size of 128 bits, but the results also apply to larger
key sizes. We have prototyped the extended LEON-2 on an FPGA board, where
the timing results have been obtained with help of the cycle counter which is
integrated in the processor.

In order to estimate the area overhead due to our extensions, we have synthe-
sized the functional unit presented in [19] using a 0.35 pm CMOS standard cell
library. The required area amounted to approximately 400 NAND gates, which
is negligible compared to the size of the processor. When synthesized for the
Xilinx Virtex2 XC2V3000 FPGA, the extended LEON-2 (with 1 kB instruction
and 1 kB data cache) required 4,274 slices and 5 Block RAMs.

3.1 Comparison with Related Work

Irwin and Page [8] have proposed extensions for PLX, a general-purpose RISC
architecture with multimedia instructions, and presented strategies to use multi-
media instructions for implementing AES with the goal to minimize the number
of memory accesses. The PLX is datapath-scalable, which means that register
size and datapath width are parameterizable from 32 to 128 bits (128 bits were
used in [8]). Unfortunately, most of the presented ideas do not map very well to
32-bit architectures, and hence we did not use these concepts in our work.
Nadehara et al. [10] have proposed an instruction set extension for AES
which calculates the value of a T table entry, i.e. SubBytes and MixColumns,

16 S. Tillich, J. Grofischadl, and A. Szekely

for a single byte of the state. Although implementations which use such an
instruction will be faster than with our proposed solution, there are also several
drawbacks. The functional unit presented in [10] is larger than ours and it has a
longer critical path. Moreover the instruction presented in [10] cannot be used in
the last round of AES where MixColumns is omitted and for the key expansion
where SubBytes is required separately. Therefore, the need for table lookups for
byte substitution remains. Another drawback is a much more complicated key
expansion required for decryption when the extension is used, because all round
keys must be transformed with InvMixColumns before they can be used in Add-
RoundKey [11]. This is a serious limitation for decryption with on-the-fly key
expansion.

Schaumont et al. [14] investigated performance and energy characteristics
of an AES coprocessor loosely coupled to the LEON-2 core. The AES hardware
increased FPGA LUT usage by 70% but still yields lower performance than our
extended LEON-2 with just the sbox instruction (see Section 5.1 for a detailed
performance analysis).

Ravi et al. [13] used the extensible 32-bit processor Xtensa from Tensilica
Inc. [16] to design and integrate instruction set extensions for different public-
and secret-key cryptosystems (including AES). The augmented Xtensa achieved
better performance for AES encryption, but worse performance for decryption
when compared to our approach with just the sbox instruction. Unfortunately,
Ravi et al. do not give details about the functionality and area overhead of the
implemented instruction set extensions.

4 Influence of Cache Size on Performance

In order to demonstrate that an AES implementation with large lookup tables
does not necessarily deliver the best performance, we have compared imple-
mentations with different sizes of lookup tables on an extended LEON-2 with
different cache sizes. The influence of cache size on the performance of AES has
already been studied by Bertoni et al. [1]. Their work assumes that the cache
is large enough to hold all lookup tables. In this section we will examine the
situation where the cache may become too small to hold the complete tables.

In our experiments, we have varied the size of the data and instruction cache
from 1 kB to 16 kB (both caches always had the same size). The implementations
which use T lookup are based on the well-known and referenced AES code from
Brian Gladman [7], whereby we have used a size of 1 kB, 4 kB, and 8 kB for
the lookup tables, respectively. We have compared the achieved performance to
two AES implementations which calculate all round transformations except Sub-
Bytes. In one case, a 256-byte lookup table (only S-box lookup) is used, and in
the other case our sbox instruction is employed. Figure 2 shows the performance
for encryption, while Figure 3 depicts the results for decryption.

The performance of the lookup implementations is very bad for small cache
sizes. For encryption, the usage of the sbox instruction yields a similar perfor-
mance as the use of big lookup tables on a processor with very large cache.

An Instruction Set Extension for Fast and Memory-Efficient AES 17

5000
4500 1

4000
——T lookup 1 KB
3500
—&—T lookup 4 KB
3000
—&—T lookup 8 KB
2500

2000 Only SBOX lookup

1500 \k-:u SBOX instruction

1000 A -

Clock cycles

500

1KB 2 KB 4 KB 8 KB 16 KB

Cache size

Fig. 2. Performance of AES-128 encryption in relation to cache size

In decryption, T lookup implementations become faster at cache sizes of more
than 4 kB. This is due to the fact, that the InvMixColumns transformation is
rather complex to calculate and therefore T lookup becomes more efficient than
calculation for large caches sizes. The main result of our experiments is that
the performance of implementations using the sbox instruction is almost inde-
pendent from the cache size. On the other hand, the performance of T lookup
implementation depends heavily on the size of the cache.

5 Comparison of Calculated AES Implementations

The previous section has shown that the performance of AES implementations
using T lookup varies greatly with cache size. In this section we aim to highlight
the benefits of using the sbox instruction in settings where T lookup is not an
option, e.g. due to limited memory. To analyze the performance, we have com-
pared a calculated AES implementation (without extensions) to one that uses
our proposed sbox instruction. We have estimated both the gain in performance
as well as the reduction in code size. All comparisons have been done for both
precomputed key schedule and on-the-fly key expansion.

The sbox instruction performs the inversion in GF(2%) in a single clock cycle,
while a calculated implementation requires a number of instructions for the
inversion, which increases both the execution time and the size of the executable.
In systems with small cache, the speedup factor for the implementation with
sbox instruction will be higher than in systems with large cache, mainly because
the performance of the calculated software implementation (without extensions)
degrades due to cache misses in the instruction cache. Therefore, we have used
a LEON-2 system with large caches since we are primarily interested in the
speedup due to the sbox instruction (and not due to less cache misses).

18 S. Tillich, J. Grofischadl, and A. Szekely

4500

4000

2500 '\ —B—T lookup 1 KB
3000

—&— T lookup 4 KB

2500 —&—T lookup 8 KB

1500 \\§\\ SBOX instruction
1000 | T :A.

500

2000 Only SBOX lookup

Clock cycles

1KB 2 KB 4 KB 8KB 16 KB
Cache size

Fig. 3. Performance of AES-128 decryption in relation to cache size

We have also tested a third implementation that uses both the sbox instruc-
tion as well as the gf2mul/gf2mac instructions', which have been proposed in a
previous paper of the first two authors [17]. The third implementation uses the
gf2mul/gf2mac instructions to calculate MixColumns in an efficient manner.

All three implementations have been written in C and inline assembly has
only been used to execute the custom instructions. For on-the-fly key expansion,
we have also tested an assembler-optimized implementation which uses both the
sbox and gf2mul/gf2mac instructions. This variant makes optimal use of the
large register file offered by the SPARC V8 architecture and performs only a
minimal number of memory accesses (8 loads for plaintext and key, 4 stores for
ciphertext), which cannot be reduced further.

In the following subsections, we will only comment on the benefits of using the
sbox instruction alone. The figures for the additional use of the gf2mul/gf2mac
instructions are only stated for the interested reader familiar with [17].

5.1 Performance

Table 1 contains the timings for AES encryption and decryption with a precom-
puted key schedule. The use of the sbox instruction yields a speedup of 1.43 for
encryption and 1.25 for decryption respectively. It can also be seen that the key
expansion is accelerated by the use of our proposed extension. For comparison,
Table 1 also contains the performance figures for the implementations in [14]
and [13] for pure-software and hardware-accelerated AES-128 as far as they are
available. Table 2 states the timing results for an on-the-fly key expansion. The
figures for decryption assume that the last round key is directly supplied to the

! The gf2mul (gf2mac) instruction performs a multiplication (multiply-and-add oper-
ation) of two binary polynomials of degree 31, yielding a polynomial of degree 62.

An Instruction Set Extension for Fast and Memory-Efficient AES 19

Table 1. Execution times of AES-128 encryption, decryption and key expansion

Key exp. Encryption Decryption
Cycles Cycles Speedup Cycles Speedup

[14] (pure SW) n/a 45,228 n/a
[14] (HW accelerated) n/a 1,494 n/a
[13] (pure SW) n/a 24,419 24,419
[13] (HW accelerated) n/a 1,400 1,400
Our work (no custom instr.) 738 1,636 1 1,954 1
Our work (sbox instr.) 646 1,139 1.43 1,554 1.25
sbox & gf2mul instruction 345 807 2.02 1,087 1.79

Table 2. Execution times of AES-128 en/decryption with on-the-fly key expansion

Encryption Decryption
Cycles Speedup Cycles Speedup
No custom instructions 2,254 1 2,433 1
sbox instruction 1,576 1.43 1,866 1.3
sbox & gf2mul instruction 868 2.59 1,126 2.16

sbox & gf2mul instr. (optimized) 612 3.68 881 2.76

AES decryption function. The speedup for encryption and decryption is about
1.43 and 1.3, resprectively.

5.2 Code Size

Savings in code size are mainly due to the fact that the lookup tables for Sub-
Bytes and InvSubBytes can be omitted with the sbox instruction and that the
code for SubBytes and ShiftRows as well as for their inverses becomes more
compact. The figures for the implementation with a precomputed key schedule
are stated in Table 3. The code size shrinks by 32% for encryption and by
36% for decryption. Table 4 specifies the code sizes for AES with on-the-fly key
expansion. Savings in code size range from nearly 43% for decryption to more
than 37% for encryption.

6 Conclusions and Future Work

In this paper we have presented an inexpensive extension to 32-bit processors
which improves the performance of AES implementations and leads to a re-
duction in code size. With the use of our sbox instruction, all data dependent
memory lookups can be removed and the overall number of memory accesses
can be brought to an absolute minimum. This instruction has been designed
with flexibility in mind and delivers compact AES implementations with good
performance even if cache is small and memory is slow. In our practical work

20 S. Tillich, J. Grofischadl, and A. Szekely

Table 3. Code size of AES-128 en/decryption with precomputed key schedule in bytes

Encryption Decryption
Bytes Reduction Bytes Reduction
No custom instructions 2,168 0% 2,520 0%
sbox instruction 1,464 32.4% 1,592 36.8%

sbox & gf2mul instr. 680 68.6% 792 68.5%

Table 4. Code size of AES-128 en/decryption with on-the-fly key expansion in bytes

Encryption Decryption
Bytes Reduction Bytes Reduction
No custom instructions 1,656 0% 2,504 0%
sbox instruction 944 42.9% 1,564 37.5%
sbox & gf2mul instruction 628 62.0% 764 69.4%

sbox & gf2mul instr. (optimized) 480 71.0% 596 76.1%

we have observed a speedup of up to 1.43 while code size has been reduced by
over 40%. The performance gain is much higher on processors with small cache
size. Furthermore, the sbox instruction also improves the resistance of an AES
implementation against cache-based side-channel attacks. The extra hardware
cost of the sbox instruction amounts to only 400 gates.

As future work we will examine the possibility to provide dedicated and flex-
ible support for the MixColumns operation of AES. Our goal will be to integrate
this support with the ECC extensions we have used for AES acceleration in [17].

Acknowledgements. The research described in this paper was supported by
the Austrian Science Fund (FWF) under grant number P16952-N04 “Instruction
Set Extensions for Public-Key Cryptography” and in part by the European Com-
mission through the IST Programme under contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided
as is and no guarantee or warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and
liability.

References

1. G. Bertoni, A. Bircan, L. Breveglieri, P. Fragneto, M. Macchetti, and V. Zaccaria.
About the performances of the Advanced Encryption Standard in embedded sys-
tems with