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Abstract. This paper revisits the problem of watermarking a Gaussian
host, where the embedder and attacker are subject to mean-squared dis-
tortion constraints. The worst (nonadditive) attack and unconstrained
capacity have been identified in previous work. Here we constrain the
encoding function to lie in a given family of encoding functions — such
as spread-spectrum or fixed-dimensional Quantization Index Modulation
(QIM), with or without time-sharing, with or without external dithering.
This gives rise to the notion of constrained capacity. Several such families
are considered in this paper, and the one that is best under the worst
attack is identified for each admissible value of the watermark-to-noise
ratio (WNR) and the noise-to-host ratio (NHR). With suitable improve-
ments, even scalar QIM can outperform any (improved) spread-spectrum
scheme, for any value of WNR and NHR. The remaining gap to uncon-
strained capacity can be bridged using higher-dimensional lattice QIM.

1 Introduction

Quantization-index modulation (QIM) methods, introduced by Chen and Wor-
nell [1], possess attractive practical and theoretical properties for watermarking.
On the practical side, they are easy to implement when scalar quantizers or some
low-dimensional lattice quantizers are used. On the theoretical side, the dithered
version of QIM (using an external, uniformly distributed dither vector shared by
encoder and decoder) studied by Eggers et al [2] and by Erez and Zamir [3,4,5] is
mathematically more tractable than the original (nondithered) QIM. It follows
from Erez and Zamir’s work [4,5] that there exist capacity-approaching lattice
QIM coding and decoding schemes for data hiding under additive white Gaus-
sian noise (AWGN) attacks, under some mild technical conditions on the host
(aka interference) signal statistics. A remarkable byproduct of Erez and Zamir’s
analysis is that lattice QIM decoding causes no capacity loss vis-a-vis optimal
maximum-likelihood (ML) decoding. In other words, the lattice QIM decoder is
not penalized (in terms of achievable rates) by not knowing, or ignoring, host
signal statistics.
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Recent research in watermarking [6,7,8] has however raised the concern that
for “weak host signals”, dithered scalar QIM performs somewhat poorly. In par-
ticular, [7] showed that dithered scalar QIM can be outperformed by spread-
spectrum modulation (SSM) [9] methods in this scenario, and [8] studied possi-
ble improvements. The results in [6,7,8] were however restricted to the case of
AWGN attacks. This is a rather restrictive assumption because if the host signal
is weak, compression-type attacks are much more effective than additive-noise
attacks. More precise formulations of this statement appear in [10,11,12].

This motivated us to revisit the data-hiding game under squared-error distor-
tion constraints studied in [12] (and applied to image watermarking in [13,14]),
in which the host signal is Gaussian, and all distortions are measured in an ex-
pected sense, with respect to the host. In this setup, the worst attack (in the
sense of achieving unconstrained capacity) is the Gaussian test channel from
rate-distortion theory [15], and the AWGN attack may be severely suboptimal.
We then ask what is the performance of lattice QIM schemes of arbitrary di-
mensions, and whether substantial improvements are possible:

– either by exploiting the host signal statistics in the design of the QIM de-
coder,

– or by using an improved version of the QIM encoder,
– or both.

These lattice QIM schemes are compared with spread-spectrum schemes using
linear precancellation of the host signal [16,17,18].

In addition to the standard QIM and SSM, several new or uncommon
acronyms are used in this paper. They are summarized in Table 1 for conve-
nience.

Table 1. List of acronyms used in this paper

Acronym Full name Equation
WNR watermark to noise ratio (7)
NHR noise to host ratio (8)

WNReff effective WNR (17)
aSSM attenuated SSM (19)
ISS improved SSM [18] Sec. 4

aQIM attenuated QIM (28)

2 Background: Mutual-Information Game

This section reviews some results from [11,12]. We use uppercase letters for
random variables, lowercase for their individual realizations, and boldface for
vectors. The symbol E denotes mathematical expectation. The symbol f(x) ∼
g(x) as x → x0 denotes asymptotic equality: limx→x0

f(x)
g(x) = 1.
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Fig. 1. The blind watermark communication problem

2.1 Mathematical Model

Let d(x, y) = (x−y)2 be the squared-error distortion measure. Referring to Fig. 1,
a message m is drawn uniformly from a message set M and embedded in a length-
N host sequence s = (s1, · · · , sN) using an encoding function x = fN (s, m). The
following average-distortion constraint is imposed on fN :

E‖X − S‖2 =
1

|M|
∑

m∈M

∫

RN

‖fN(s, m) − s‖2p(s)ds ≤ ND1.

A memoryless attack channel, subject to distortion D2, is a conditional proba-
bility density function (pdf) A(y|x), x, y ∈ R, subject to distortion constraints.
The length-N extension of this channel is defined as AN (y|x) =

∏N
i=1 A(yi|xi).

The attack channel is subject to an average-distortion constraint:

E‖Y − S‖2 =
1

|M|
∑

m∈M

∫

RN

∫

RN

‖y − s‖2AN (y|fN (s, m)) p(s) ds dy ≤ ND2,

(1)
i.e., distortion is measured with respect to the host.

We require D2 ≥ D1, so that the feasible set of attack channels includes
Y = X (no attack). The distortions for the information hider and the attacker
are equal in this special case.

2.2 Watermarking Capacity

Watermarking capacity is defined as the supremum of all achievable transmis-
sion rates, where the supremum is taken over all encoding functions subject to
distortion D1. This capacity is the value of a mutual-information game between
the information hider and the attacker [11]. First, the information hider designs
a covert channel Q(x, u|s), where U is an auxiliary real-valued random variable.
The covert channel satisfies the distortion constraint

∫ ∫ ∫
(x − s)2Q(x, u|s)p(s) dxdsdu ≤ D1. (2)

Next, the attacker designs an attack channel A(y|x) that satisfies the distortion
constraint

∫ ∫ ∫ ∫
(y − s)2A(y|x)Q(x, u|s)p(s) dsdxdudy ≤ D2. (3)
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Let A(Q, D2) and Q(D1) be the set of channels that satisfy the constraints (3),
and (2), respectively. The dependency of A(Q, D2) on Q is via the marginal
p(x|s). The capacity is given by [11]1

C = sup
Q(x,u|s)∈Q(D1)

min
A(y|x)∈A(Q,D2)

J(Q, A) (4)

where
J(Q, A) = I(U ; Y ) − I(U ; S). (5)

2.3 Gaussian Channels

When the host S is Gaussian, the optimal covert channel admits an elegant
closed-form solution: X is the output of a Gaussian test channel with distortion
D1, whose input is S. The optimal attack is the Gaussian test channel with
distortion level D2 − D1. The solution is stated in Theorem 1 below, and the
capacity-achieving marginal pdf of (S, X, Y ) is depicted in Fig. 2. All capacity
expressions in this paper are given in terms of the function

CAWGN (SNR) =
1
2

log(1 + SNR) (6)

which is Shannon’s capacity formula for the AWGN channel with signal-to-noise
ratio equal to SNR. Moreover, all capacity expressions depend on σ2

s , D1 and
D2 only via the watermark-to-noise ratio

WNR � D1

D2
≤ 1 (7)

(where the inequality follows from our discussion below (1)), and the noise-to-
host ratio

NHR � D2

σ2
s

. (8)

Assuming that D2 > 0, the case NHR = 0 corresponds to the limiting case of a
Gaussian host pdf with unbounded variance.

Theorem 1. [12] Assume blind watermarking of a Gaussian host S ∼ N (0, σ2
s).

(i) If NHR ≥ 1, the optimal attack channel is given by Y = 0, and capacity is
C = 0.
(ii) If NHR < 1, capacity is given by

C(WNR, NHR) = CAWGN

(
WNR(1 − NHR)

1 − WNR

)
. (9)

The optimal attack channel A(y|x) is the Gaussian test channel:

Y =
1
β

(X + W ), (10)

1 This theorem was stated in [12] under the assumption that the decoder knows the
attack channel A, however this restriction is now known to be unnecessary.
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Fig. 2. Minmax-optimal p(x|s) and A(y|x) for i.i.d. Gaussian host data S ∼ N (0, σ2
s)

under type-S distortion constraints. Both p(x|s) and A(y|x) are Gaussian test channels.

where W ∼ N (0, σ2
w) is independent of X,

σ2
w = D2(1 − WNR)

1 − WNR ∗ NHR
1 − NHR

, (11)

and

β =
σ2

x

σ2
x − (D2 − D1)

=
1 − WNR ∗ NHR

1 − NHR
. (12)

The optimal covert channel Q(x, u|s) is given by

X = aS + Z (13)
U = αS + Z (14)

where Z ∼ N (0, σ2
z) is independent of S,

σ2
z = aD1, a = 1 − WNR ∗ NHR, α =

σ2
z

σ2
z + σ2

w

. (15)

Remark 1. For small distortions (NHR → 0), we have a, β → 1 and C ∼
CAWGN ( WNR

1−WNR ). The AWGN attack is asymptotically optimal as NHR → 0.

Remark 2. For fixed WNR, the capacity expression (9) is zero for NHR ≥ 1 and
strictly decreasing in NHR for 0 ≤ NHR ≤ 1. Informally speaking, capacity is
zero if the host is too weak; and capacity increases with the randomness of S
(NHR → 0). Based on the discussion above, the range of nontrivial values for
(WNR, NHR) is given by

0 ≤ NHR ≤ 1, 0 ≤ WNR ≤ 1. (16)

Remark 3. We may write (9) as C(WNR, NHR) = CAWGN (WNReff) where

WNReff =
σ2

z

σ2
w

=
WNR(1 − NHR)

1 − WNR
. (17)
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Therefore C(WNR, NHR) is the capacity of an AWGN channel with input power
σ2

z and noise power σ2
w. The formula can be interpreted by referring to Fig. 2

and recalling Costa’s result [21]. The known interference aS does not reduce
capacity, and neither, of course, does the known constant β.

Remark 4. In (17), WNReff is a convex, increasing function of WNR. Observe
that WNReff = 0 for WNR = 0; WNReff = WNR for WNR = NHR; and
WNReff = ∞ for WNR = 1.

Remark 5. The optimal attack when a = 1 is the minimum-mean-squared-error
(MMSE) estimator of S given X cascaded with a Gaussian test channel. The
MMSE operation helps the attacker in reducing the distortion with respect to
S, making it possible for the noise source W to have larger variance.

Remark 6. For the optimal choice a = 1 − WNR ∗ NHR, the MMSE estimator
of S given X is X itself. Obviously this choice of a makes the MMSE operation
least useful for the attacker.

3 Spread-Spectrum Modulation

Additive SSM is a linear modulation technique, commonly formulated as

X = S + Zm (18)

where the vector Zm is indexed by the message m to be sent. For weak hosts,
a simple but effective enhancement is to attenuate the host prior to embedding
[16,17]:

X = aS + Zm (19)

where 0 ≤ a ≤ 1 is the attenuation factor. This technique was later called
distortion-compensated SSM [7]. However, since the attenuation mechanism is
fundamentally different from the distortion-compensation mechanism used in
QIM, we shall simply refer to (19) as aSSM.

Remarkably, optimization of the attenuation factor a against the worst attack
in class A(Q, D2) results in the same solution as in Fig. 2, hence in the same
optimal values of a, σ2

z , σ2
w, and β. This follows from [17], where, like here, the

cost function is effective SNR at the receiver.
For aSSM, the effective noise power is a2σ2

s + σ2
w, and the effective signal

power is σ2
z . This results in an effective signal-to-noise ratio

WNRaSSM =
σ2

z

a2σ2
s + σ2

w

=
WNR ∗ NHR (1 − NHR)

1 + (NHR2 − 2 ∗ NHR)WNR
(20)

≤ WNReff
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(where equality holds only in the trivial cases NHR = 1 and WNR = 0), and
the capacity function

CAWGN (WNRaSSM ) < CAWGN (WNReff) = C(WNR, NHR). (21)

As expected from such a simple linear modulation scheme, aSSM is not
capacity-achieving. Conventional SSM is even worse. However, note from (20)
and (17) that WNRaSSM ∼ WNReff as NHR → 1. Therefore we may conclude
from (21) that aSSM is asymptotically capacity-achieving as NHR → 1 for all
values of WNR ∈ [0, 1). Another way to look at this property follows from (11)
and (15): we have

σ2
w

a2σ2
s

∼ 1
1 − NHR

→ ∞ as NHR → 1.

That is, the attacker’s noise W dominates the host signal aS, and the commu-
nication model becomes equivalent to the standard AWGN model without side
information at the encoder.

4 Improved Spread Spectrum

One may ask whether further improvements on aSSM are possible using Malvar
and Florêncio’s Improved Spread Spectrum (ISS) method [18], in which different
attenuation factors and watermark powers are allocated to different host signal
components (different subliminal channels). The fundamental potential advan-
tage of ISS over aSSM resides in the ability to keep the subliminal channels
unknown to the attacker; otherwise an analysis similar to that in [12] shows that
there is nothing to be gained by such strategy.

A mathematically tractable version of ISS would be the following. Host signal
samples S1, · · · , SN are divided into K (secret) groups with size Nk = 	rkN
,
where 1 ≤ k ≤ K and

∑K
k=1 rk = 1. For each group a different attenuation factor

ak and watermark power σ2
z,k is used, resulting in a per-sample embedding dis-

tortion of D1k = (ak −1)2σ2
s +σ2

z,k. Define the random variables Z and X taking
values Zk and Xk respectively, with probability rk for 1 ≤ k ≤ K. The time-
average embedding distortion is D1 =

∑K
k=1 rkD1,k, and the variance of X (also

equal to the time-averaged variance of X) is σ2
x =

∑
k rkσ2

x,k. Similarly, Z has
variance σ2

z =
∑

k rkσ2
z,k; moreover, Z and S are independent. We assume that

the attacker knows the joint statistics of (S, X) but not the subliminal channels
and implements a memoryless Gaussian channel Y = (X +W )/β subject to the
distortion constraint D2; W is independent of X. We may not assume that the
second-order statistics of (S, X) and (X, Y ) are those of Gaussian test channels.

The capacity function for ISS may be written as

CISS(WNR, NHR) = max
σ2

x

min
σ2

w

C̃ISS(D1, σ
2
x, σ2

w) (22)
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where

C̃ISS(D1, σ
2
x, σ2

w) = max
r,{ak,σ2

z,k}

K∑

k=1

rkCAWGN

(
σ2

z,k

ak
2σ2

s + σ2
w

)
. (23)

The maximization is subject to the constraints

K∑

k=1

rk[(ak − 1)2σ2
s + σ2

z,k] = D1,

K∑

k=1

rk[a2
kσ2

s + σ2
z,k] = σ2

x.

The maximization over r takes place over the probability simplex. Therefore
C̃ISS(D1, σ

2
x, σ2

w) is the upper convex envelope (with respect to D1) of the func-
tion

C̃(D1, σ
2
x, σ2

w) = max
a,σ2

z

CAWGN

(
σ2

z

a2σ2
s + σ2

w

)
, 0 ≤ D1 ≤ σ2

s , (24)

where the maximization is subject to the constraints

(a − 1)2σ2
s + σ2

z = D1, a2σ2
s + σ2

z = σ2
x.

Therefore the feasible set for (a, σ2
z) is a singleton. After some simple algebra, we

can establish that the function C̃(D1, σ
2
x, σ2

w) is convex in D1 for all D1 ≥ D∗
1 =

σ2
x + σ2

s − 2σsσw but concave otherwise. Hence its upper convex envelope is

C̃ISS(D1, σ
2
x, σ2

w) =

{
D1

C̃(D∗
1 ,σ2

x,σ2
w)

D∗
1

: D1 < D∗
1

C̃(D1, σ
2
x, σ2

w) : else.
(25)

At most two subliminal channels are needed to achieve ISS capacity. Observe
the following special cases:

– σw

σs
≥ σ2

x+σ2
w

2σ2
s

: in this case, D∗
1 ≤ 0, and C̃ISS(D1, σ

2
x, σ2

w) = C̃(D1, σ
2
x, σ2

w).
This corresponds to the case of high NHR, with WNR not too close to 1.

– σw

σs
≤ σ2

x

2σ2
s
: in this case, D∗

1 ≥ σ2
s , and C̃ISS(D1, σ

2
x, σ2

w) > C̃(D1, σ
2
x, σ2

w) is
in the straight-line regime. This corresponds to the case of low NHR.

On the other hand, the capacity function for aSSM is given by

CAWGN (WNRaSSM) = max
σ2

x

min
σ2

w

C̃(D1, σ
2
x, σ2

w). (26)

Due to (22) and (25), the aSSM capacity cannnot exceed CISS(WNR, NHR).
Equality is achieved at high NHR, provided WNR is not too close to 1. A po-
tential advantage of ISS over aSSM2 appears at low NHR, as illustrated by the
numerical results in Fig. 3. Plots are given for a low value of NHR and for a
large value of NHR.3

2 Also note that ISS presents dramatic advantages over aSSM in terms of error prob-
ability for zero-rate watermarking [20].

3 Some of the values of (NHR, WNR) used in Fig. 3 are likely to be unrealistic in
a practical application. We use them to illustrate the limiting performance of the
various schemes considered.
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Fig. 3. Capacity curves: C is plotted on a log scale as a function of WNReff ≥ 0
(corresponding values of WNR ∈ [0, 1] are indicated underneath)
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5 Dithered Lattice QIM

Let

Λ = lattice in Euclidean space R
L;

Q = quantization function mapping each point x ∈ R
L to the nearest

lattice point in Λ;
V = {x ∈ R

L : Q(x) = 0} = Voronoi cell of Λ.

Let M be an integer, and R = 1
L log2 M . Consider the problem of embedding

a message m ∈ {0, 1, · · · , M − 1}. A rate-R lattice QIM embedding scheme is
defined by a set of vectors {zm, 0 ≤ m < M}, a lattice inflation parameter
0 ≤ α ≤ 1 (aka Costa parameter), and the embedding function

x = Q(αs + zm − d) + (1 − α)s − zm + d. (27)

The vector d in (27) is an external dither vector that is randomized uniformly
over V and independent of s and m, and is known to the decoder. Such random-
ization achieves two purposes: (1) it facilitates the proof of capacity theorems [4]
and error exponent analyses [?,?], and (2) it provides a certain level of security
against attackers that are not limited to additive-noise attacks. In the remain-
der of this section, we assume that d satisfies the statistical model above. This
makes the self-noise due to quantization uniformly distributed over the scaled
Voronoi cell (1 − α)V and independent of s and m.

A natural idea in our problem with nonadditive attacks is to apply lattice
QIM to the attenuated signal aS, resulting in the embedding formula

x = Q(αas + zm − d) + (1 − α)as − zm + d. (28)

Analogously to aSSM in (19), this scheme could be termed aQIM. The maximum
achievable rate for L-dimensional aQIM is given by

C̃L(WNR) = CL(WNReff)

where
CL(WNReff) � max

0≤α≤1
max

Λ
max

pZ
I(Z; Ỹ) (29)

is the capacity function for the Erez-Zamir scheme. In (29), pZ is a pdf over the
Voronoi cell V of Λ, and

Ỹ = αβY mod Λ = αβY − Q(αβY) (30)

is the output of the lattice-reduction step at the decoder. The capacity formula
(29) can be obtained by analyzing the MAN vector channel of Fig. 4.4 The noise
V in this channel is the sum (mod Λ) of the self-noise and the scaled attacker’s
noise, αW ∼ N (0, α2σ2

wIL).
From Remark 3 in Sec. 2, we immediately obtain the following result.

4 The method of proof used by Erez and Zamir [4] is somewhat different.
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Fig. 4. Modulo Additive Noise (MAN) channel for lattice QIM

Proposition 1. The aQIM scheme (28) achieves the unconstrained capacity
bound (9), in the limit as the lattice dimension L tends to infinity.

The capacity-achieving pZ in (29) is uniform over V [4]. The sequence
CL(WNReff) is nondecreasing in L and converges to the unconstrained capacity
limit CAWGN (WNReff) as L → ∞. It is remarkable that the lattice-reduction
step (30), which is information-lossy, does not cause a loss of capacity. There-
fore any substantial improvement to QIM would have to be restricted to low-
dimensional QIM.

Consider the two extreme values of NHR in (16), and fix WNR.

– For NHR = 0 we have WNRaSSM = 0; hence scalar QIM outperforms SSM.
– As NHR → 1, we have WNRaSSM ∼ WNReff ; both tend to zero.

Fig. 3 compares capacity functions for scalar QIM in (28) and aSSM in (19) to
the unconstrained capacity formula (9). These plots illustrate the superiority of
scalar QIM over aSSM for low NHR, but also the high performance of aSSM for
large NHR. We reemphasize that the advantage of aSSM over scalar QIM in this
case is due to the low dimensionality of the lattice QIM scheme used.

6 Time-Shared Lattice QIM

The scalar QIM capacity function C1(WNReff) is nonconvex. Therefore time-
sharing can be used to improve capacity performance [5,19]. In a time-shared
scheme, transmission takes place during a fraction τ of the time; the transmission
power during that time is boosted by a factor of 1

τ . The effect of time-sharing is to
convexify the capacity function C1(WNReff). The resulting (improved) capacity
function is given by5

C̃STDM (WNR) = CSTDM (WNReff)

=
{

WNReff
C1(WNR∗)

WNR∗ : 0 ≤ WNReff < WNR∗

C1(WNReff) : WNReff ≥ WNR∗ (31)

5 Recall our assumption that the attacker does not know the subliminal channels and
sticks to the memoryless attack of Theorem 1.
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i.e., improvements are obtained at all WNReff below a critical value WNR∗ ≈ 1;
the corresponding critical value of WNR is obtained from (17) as WNR∗

WNR∗+1−NHR .
We also have C1(WNR∗) ≈ 0.3 bits ≈ 0.2 nats. The straight-line portion of
the curve (31) is obtained by varying τ from 0 to 1. Time-shared scalar QIM
was introduced by Chen and Wornell under the name Spread Transform Dither
Modulation (STDM) [1] and further studied by Eggers et al [2].

Due to (17), the capacity expression (31), viewed as a function of WNR and
measured in nats, has slope at the origin equal to (1 − NHR) C1(WNR∗)

WNR∗ . The
slope of the spread-spectrum capacity function (21) at WNR = 0 is equal to

d(WNRaSSM )
d(WNR)

∣∣∣∣
WNR=0

=
1
2
NHR (1 − NHR).

Therefore a necessary condition for time-shared scalar QIM to outperform SSM
at all WNR’s is

C1(WNR∗)
WNR∗ ≥ 1

2
NHR. (32)

i.e., NHR ≤ 0.4. If the condition above is violated, then aSSM outperforms
time-shared scalar QIM at low WNR’s, as illustrated in Fig. 3.

This derivation carries to the higher-dimensional case. Lattice QIM can be
improved at low WNR’s using time-sharing, but WNR∗ tends to 0 as L → ∞6;
therefore limL→∞

CL(WNR∗)
WNR∗ = 1

2 . Moreover, equation (32) holds with CL in
place of C1, and thus in the limit as L → ∞, lattice QIM outperforms SSM at
all NHR and WNR, in agreement with our earlier analysis.

7 Nondithered Lattice QIM

For scalar QIM subject to AWGN attacks, numerical experiments by Pérez-Freire
and Pérez-González [7,8] have revealed possible improvements in communication
performance if no external dither is used in (27).7

Here we comment upon this interesting result from an analytical perspective.
The mutual information I(Z; Ỹ) for lattice QIM can be written as

I(Z; Ỹ) =
∫

V
pD(d)I(Z; Ỹ|D = d)dd

≤ max
d∈V

I(Z; Ỹ|D = d)

= max
d∈V

I(Z − d; Ỹ|D = 0) (33)

6 By convexity of the limiting capacity function CAWGN (WNReff).
7 Additionally, Pérez-Freire and Pérez-González [7,8] discovered that additional im-

provements – albeit minor ones – are obtained if the lattice-reduction step (30) is
omitted at the decoder. The existence of an improvement follows from the data-
processing inequality [15]: I(Z; Ỹ) ≤ I(Z;Y). As discussed in the Introduction, the
improvement vanishes for higher-order QIM, as L → ∞.
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where the last line follows from the definition (27) of the dithered QIM scheme.
In the Erez-Zamir scheme, pD is chosen to be uniform over V ; as we know, this
choice is asymptotically optimal as L → ∞. It is however clear that if one uses
pD as an additional variable to be optimized, one will do at least as well as the
Erez-Zamir scheme. Specifically, the upper bound in (33) is achieved by a mass
distribution pD located at some d∗ ∈ V . Optimizing the left side of (33) over pZ,
we obtain

max
pZ,pD

I(Z; Ỹ) = max
pZ

max
d∈V

I(Z − d; Ỹ|D = 0)

= max
pZ

I(Z; Ỹ|D = 0),

i.e., the cost function is maximized when no external dither is used! Note that
the maximizing pZ above is not necessarily uniform over V (as was the case in
the Erez-Zamir scheme). For any L, α, and Λ, the nondithered design improves
over the Erez-Zamir design with uniform dither; however, as mentioned above,
the performance gap vanishes for large L.

For small L, the performance gap may be substantial. Indeed Erez and Zamir
showed that at high WNReff , the gap to capacity for their scheme is equal to
the shaping gain of lattice VQ (about 1.53 dB in the scalar case, L = 1). In the
case NHR → 1, aSSM is capacity-achieving and therefore outperforms (by about
1.53 dB when L = 1) dithered L-dimensional QIM.8 The following proposition
shows that nondithered aQIM does much better.

Proposition 2. The capacity function of aSSM cannot exceed that of
nondithered aQIM for any value of NHR, WNR, and L.

Sketch of the proof: To prove the claim, it suffices to consider the scalar QIM
case (L = 1) and identify a particular value of the lattice inflation parameter α
and of the quantizer step size ∆, as well as a pdf pZ , such that nondithered QIM
and aSSM have the same capacity performance. Let ∆ → ∞ and choose α = 0
and pZ = N (0, σ2

z). Then Q(aαS + Z) = 0 with probability tending to 1, and
(28) becomes X = aS − Z (with probability one), i.e., coincides almost surely
with aSSM. The actual proof is based on the continuity of mutual information
with respect to variational norm. �

From the proposition above, one could numerically optimize α, ∆ and pZ to
devise a scalar QIM scheme that outperforms both the aSSM and dithered aQIM
schemes. We have not attempted such costly optimization, simply noting that
time-sharing between aSSM and aQIM (with time-sharing parameter determined
by the values of WNR and NHR) achieves the convex hull of the aSSM and aQIM
capacity curves, which may be good enough for practical purposes. Similarly to
the proposition above, we also have

Proposition 3. The capacity function of ISS cannot exceed that of nondithered
STDM for any value of NHR and WNR.
8 Some care is needed about the order in which asymptotics are taken. To have both

NHR → 1 and WNReff → ∞, we need that 1 − WNR � 1 − NHR.
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8 Discussion

We have considered Gaussian host signals and studied the effects of NHR ∈ [0, 1]
on the capacity function of constrained watermark embedding schemes, allowing
nonadditive attacks with bounded squared distortion. For unconstrained schemes
the worst attack is known to be the Gaussian test channel. When NHR → 0
(host signal whose variance tends to infinity), additive attacks are optimal. For
NHR = 1, the compression attack Y = 0 is feasible, and capacity is zero. We
have introduced the aQIM scheme, which is a simple variation on the Erez-
Zamir scheme [4], and compared its performance with that of the aSSM linear
modulation scheme [16,17]. Our results are summarized as follows.

1. Prop. 1: At all NHR’s, L-dimensional aQIM with uniform dither and lattice
reduction at the decoder is asymptotically capacity-achieving, as L → ∞.

2. In the extreme case NHR → 1, host-signal interference is weak, and at-
tacker’s noise dominates at the decoder. aSSM is asymptotically capacity-
achieving and outperforms low-dimensional aQIM schemes with uniform
dither.

3. For any finite choice of L, the aQIM scheme can be improved by eliminating
the external dither (and keeping the lattice reduction step at the decoder);
the improvement vanishes as L → ∞.

4. Prop. 2: The nondithered aQIM scheme outperforms aSSM [16,17] for all
values of L, WNR, and NHR.

5. Prop. 3: The nondithered STDM scheme outperforms ISS [18] for all values
of L, WNR, and NHR.

Clearly, the potential for improving the attacker’s performance exists in the
form of non-Gaussian strategies and strategies with memory.

Acknowledgements. The authors thank Tie Liu and the reviewers for helpful
comments and suggestions.
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marking Performance Improvement Using Host Statistics: AWGN Attack Case,”
Proc. ACM Multimedia and Security Workshop, Magdeburg, Germany, Sep. 2004.
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