
A Native XML Database Supporting Approximate
Match Search�

Giuseppe Amato and Franca Debole

ISTI - CNR
Pisa, Italy

{Giuseppe.Amato, Franca.Debole}@isti.cnr.it

Abstract. XML is becoming the standard representation format for metadata.
Metadata for multimedia documents, as for instance MPEG-7, require approxi-
mate match search functionalities to be supported in addition to exact match search.
As an example, consider image search performed by using MPEG-7 visual descrip-
tors. It does not make sense to search for images that are exactly equal to a query
image. Rather, images similar to a query image are more likely to be searched. We
present the architecture of an XML search engine where special techniques are
used to integrate approximate and exact match search functionalities.

1 Introduction

XML is becoming one of the primarily used formats for the representation of heteroge-
neous information in many and diverse application sectors, such as multimedia digital
libraries, public administration, EDI, insurances, etc. This widespread use has posed a
significant number of technical requirements to systems used for storage and content-
based retrieval of XML data, and many others is posing today. In particular, retrieval
of XML data based on content and structure has been widely studied and it has been
solved with the definition of query languages such as XPath [3] and XQuery [4] and
with the development of systems able to execute queries expressed in these languages.
However, many other research issues are still open.

There are many cases where users may have a vague idea of the XML structure,
either because it is unknown, or because is too complex, or because many different
structures – with similar semantics – are used across the database [5]. In addition there
are cases where the content of elements of XML documents cannot be exactly matched
against constants expressed in a query, as for instance in case of large text context or
low-level feature descriptors, as in MPEG-7 [6] visual or audio descriptors.

In the first case structure search capabilities are needed, while in the second case we
need approximate content search (sometime also referred as similarity search).

In this paper we present the architecture of XMLSe a native XML search engine
that allows both structure search and approximate content match to be combined with

� This work was partially supported by DELOS NoE [1], funded by the European Commission
under FP6 (Sixth Framework Programme) and by the ECD project (Enhanced Content De-
livery) [2], funded by the Italian government. We would like to thank Paolo Bolettieri for its
contribution to the implementation of XMLSe.

A. Rauber et al. (Eds.): ECDL 2005, LNCS 3652, pp. 69–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

70 G. Amato and F. Debole

traditional exact match search operations. Our XML database can store and retrieve any
valid XML document without need of specifying or defining their schema. Our system
stores XML documents natively and uses special indexes for efficient path expression
execution, exact content match search, and approximate match search.

The paper is organized as follows. In Section 2, we set the context for our work.
In Section 3 we present the overall architecture of the XMLSe system. In Section 4 we
describe the query algebra at the basis of the query processor. Section 5 shows some
example of query execution in terms of the query algebra, while Section 6 discusses the
use of XMLSe in a Digital libraries application. Section 7 concludes.

2 Motivation and Related Work

In the Digital Libraries field three different approaches are typically used to support
document retrieval by means of XML encoded metadata. The first consists in using
relational database to store and to search metadata. In this case metadata should be con-
verted into relational schemes [7] [8] [9] and this is very difficult when complex and
descriptive metadata schemes such as ECHO [10] and MPEG-7 [6] should be man-
aged: even simple XML queries are translated into complex sequences of joins among
the relational tables. The second approach consists in using full text search engines
[11] to index metadata records, and in general this applications are limited to rela-
tively simple and flat metadata schemes. Besides, it is not possible to search by spec-
ifying ranges of values. The third and last approach consists in doing full sequential
scan of metadata records. In this case no indexing is performed on the metadata and
the custom search algorithms always scans the entire metadata set to retrieve searched
information.

A relatively new promising approach is to store metadata in native XML databases
as for instance Tamino [12], eXist [13], Xindice [14]. However, these systems, in addi-
tion to some simple text search functionality, exclusively support exact match queries.
They are not suitable to deal with metadata of multimedia documents, such as color
histograms, and to provides users with structure search functionalities.

With the continuous increase of production of multimedia documents in digital
format, the problem of retrieving stored documents by content from large archives is
becoming more and more difficult. A very important direction toward the support of
content-based retrieval is feature based similarity access. Similarity based access means
that the user specifies some characteristics of the wanted information, usually by an ex-
ample image (e.g., find images similar to this given image, represents the query). The
system retrieves the most relevant objects with respect to the given characteristics, i.e.,
the objects most similar to the query. Such approach assumes the ability to measure the
distance (with some kind of metric) between the query and the data set images. Another
advantage of this approach is that the returned images can be ranked by decreasing
order of similarity with the query. The standardization effort carried-out by MPEG-7
[6], intending to provide a normative framework for multimedia content description,
has permitted several features for images to be represented as visual descriptors to be
encoded in XML.

A Native XML Database Supporting Approximate Match Search 71

In our system we have realized the techniques necessary to support XML repre-
sented feature similarity search. For instance, in case of an MPEG-7 visual descriptor,
the system administrator can associate an approximate match search index to a specific
XML element so that it can be efficiently searched by similarity. The XQuery language
has been extended with new operators that deal with approximate match and ranking,
in order to deal with these new search functionality.

3 System Architecture

In this section we will discuss the architecture of our system, explaining the character-
istics of the main components: the data storage and the system indexes. A sketch of the
architecture is given in Figure 1.

<people>(1,1)
<person>(2,2)

<name>(3,3)
<fn>(4,4)John </fn>(5)
<ln>(5,6) Smith</ln>(7)

</name>(8)
<address>(6,9)

San Diego
</address>(10)

</person>(11)
<person>(7,12)

<name>(8,13)
<fn>(9,14) Bill</fn>(15)
<ln>(10,16) McCulloc</ln>(17)

</name>(18)
<address>(11,19)

San Francisco
</address>(20)

</person>(21)
</people>(22)

Offset File

……

……

……

……

<3, 8>3

< 19, 20>11

< 16, 17>10

< 13, 18>8

<2, 21>2

<1, 22>1

Similarity

ContentIndex

PathIndex

Signatures

..

..

..

System Index
XML document

Fig. 1. The components of data storage.

3.1 Data Storage

In recent years various projects [8] have proposed several strategies for storing XML
data sets. Some of these have used a commercial database management system to store
XML documents [7], others have stored XML documents as ASCII files in the file sys-
tem, and others have also used an Object storage [15]. We have chosen to store each
XML document in its native format and to use special access methods to access XML el-
ements. XML documents are sequentially stored in a file, called repository. Every XML
element is identified by an unique Element Instance IDentifier (eiid). As depicted in
Figure 1, we use an offset file to associate every eiid with a 2-tuple < start, end >,
which contain respectively a reference to the start and end position of the element in
the repository. By using structural containment join techniques [16] containment rela-
tionships among elements can be solved. The mapping between XML element names
and the corresponding list of eiid is realized through an element name index.

72 G. Amato and F. Debole

3.2 System Index

Special indexes are needed to improve the efficiency of XML queries. For this reason
we have studied and realized some indexes to efficiently resolve the mapping between
element and its occurrences and to process content predicates, similarity predicates, and
navigation operations throughout the XML structure.

Path Index. Processing a path expression (es: //person/ln), with optional wildcard, in-
volves two steps: first, the occurrences of elements specified in the path expression (es:
person and ln) should be found and second, hierarchical relationships, according to the
path expression being processed, should be verified with containment joins. Processing
a path expression is much more efficient using ad hoc indexes, like those proposed in
[17] [18] [19], which associate entire pathnames with the list of their occurrences in
XML documents.

In our system we have proposed a new path index to resolve efficiently the path
expressions. The advantage of our approach with respect to the others, is that also path
expressions containing wildcards in arbitrary position can be efficiently processed. This
approach, discussed in [20], is based on the construction of a rotated path lexicon, con-
sisting of all possible rotations of all element names in a path. It is inspired by ap-
proaches used in text retrieval systems to processing partially specified query terms.
In our system the concept of term is substituted by path: each path is associated with
the list of its occurrences and for this reason we call path lexicon the set of occurring
paths (see Figure 2). Let path, path1 be pure path expressions, that is path expressions
containing just a sequence of element (and attribute) names, with no wildcards, and
predicates. We can process with a single index access the following types of path ex-
pressions: path, //path, path//path1, path//, and //path//. For more details on technique
see [20].

Content Index. Processing the queries that, in addition to structural relationships, con-
tains the content predicates (es: /people/person//ln=’McCulloc’), can be inefficient. In
order to solve this problem we have extended our path index technique to handle si-
multaneously the content predicates and structural relationships. The content of an el-
ement is seen as a special child of an element so it is included as the last element of a

John

person person

people

Smith
Bill McCulloc

fn fnln ln

address addressname name

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

179

San Diego S. Francisco

John

person person

people

Smith
Bill McCulloc

fn fnln ln

address addressname name

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

179

San Diego S. FranciscoSan Diego S. Francisco

{8,16}/people/person/address

{6, 14}/people/person/name/ln

{4, 12}/people/person/name/fn

{3,11}/people/person/name

{2,10}/people/person

{1}/people

Posting ListPath lexicon

{8,16}/people/person/address

{6, 14}/people/person/name/ln

{4, 12}/people/person/name/fn

{3,11}/people/person/name

{2,10}/people/person

{1}/people

Posting ListPath lexicon

Fig. 2. The paths and their inverted lists associated

A Native XML Database Supporting Approximate Match Search 73

path. Of course, it does not make sense to index content of all elements and attributes.
The database administrator can decide, tacking into account performance issues, which
elements and attributes should have their content indexed. By using this extension,
an expression of comparison can simply be processed by a single access to the path
index [20].

Tree Signature. Efficient processing of path expressions in XQuery queries requires
the efficient execution of navigation operations on trees (ancestor, descendant, parent
etc . . .), for this reason in our system we have used the signature file approach. Signa-
tures are a compact representations of larger structures, which allow the execution of
queries on the signatures instead of the documents. We define the tree signature [21] as
sequences of tree-node entries to obtain a compact representation of the tree structures.
To transform ordered trees into sequences we apply the preorder and the postorder
numbering schema. The preorder and postorder sequences are ordered lists of all nodes
of a given tree T. In a preorder sequence a tree node is traversed and assigned its rank
before its children are assigned their rank and traversed from left to right, whereas in
the postorder sequence a tree node is traversed and assigned its rank after its children
are assigned their rank and traversed from left to right.

The general structure of tree signature for a document tree T is

sig(T) =< t1, post1, ff1, fa1; t2, post2, ff2, fa2; . . . ; tn, postn, ffn, fan >

where ffi(fai) is the preorder value of the first following (first ancestor) node of
the node with the preorder number i. The signature of an XML file is maintained in a
corresponding signature file consisting of a list of records. Through this tree signature
the most significant axes of XPath can be efficiently evaluated, resolving any navigation
operation.

Exploiting the capability of the tree signature is it is also possible to process struc-
ture search queries, as discussed in [5]. In fact, there are many cases where the user may
have a vague idea of the XML structure, either because it is unknown, or because it is
too complex. In these cases, what the user may need to search for are the relationships
that exist among the specified components. For instance, in an XML encoded bibliog-
raphy dataset, one may want to search for relationships between two specific persons to
discover whether they were co-authors, editors, editor and co-author.

Approximate Match Index. Recently published papers [22] [23] investigate the possi-
bility to search for XML documents not only with the exact-match paradigm but also
with the approximate match paradigm. An exact-match approach is restrictive, since it
limits the set of relevant and correlated results of queries. With the continuous increase
of multimedia document encoded in XML, this problem is even more relevant. In fact
rarely a user express exact requests on the features of a multimedia object (e.g., color
histogram). Rather, the user will more likely express queries like ”Find all the images
similar to this”.

For supporting the approximate match search in our system, we have introduced
a new operator ∼, which can be applied to content of XML elements. To be able to
resolve this type of query we have used suitable index structures. With regard to the
generic similarity queries the index structure which we use is the AM-tree [24]. It can

74 G. Amato and F. Debole

be used when a distance function is available to measure the (dis)-similarity among
content representations. For instance it can be used to search by similarity MPEG-7
visual descriptors.

For the text search, we make a use of the functionalities of the full-text search engine
library. Specifically we have used Lucene [25].

4 Query Algebra

An XQuery query is translated into a sequence of simple operations to be executed
(the logical query execution plan). Operators of our query algebra take as arguments,
and return, lists of tuples of eiid (see Section 3.1). We call these lists Element Instance
Identifier Result (EIIR). For instance, given an EIIR R, the evaluation of RO = Par-
ent(R, article) gives back the EIIR RO that is the set of elements named article, which
are parents of elements contained in R.

InstanceElements. To initiate processing a query, the first step is finding the occur-
rences of the element names specified in the query. We define the operator RO =
instanceElements(EN) that returns RO, which contain all the eiid corresponding
to the element name EN . It returns all occurrences of the element name EN in the
repository.

Selection. The selection RO = selectP (RI) is applied to RI to return RO ⊆ RI

that satisfy a selection predicate P . In addition to the standard set of operators (=, ≤,
etc.), the elementary conditions supported by XML include the approximate match (or
similarity) operator ∼, which is used as a binary operator as Exp ∼ Const. When the
elements of Exp are indexed using the AM-tree index the selection operator returns
all the elements similar Const, according to the similarity function associated with the
AM-Tree. When the Exp is indexed using the full-text index, the selection returns all
the elements whose content is pertinent to the text given.

Join. The join operator (RO = RI ��P RE) take as input two EIIR , respectively ex-
ternal RE and internal RI , and returns the EIIR output RO, which contain the elements
of RI × RE that satisfy the predicate P , which is defined on both the EIIR .

Navigation Operators. The navigation operators are described in the following. These
operators are typically evaluated using the signatures (as described in [26] and resumed
in Section 3.2). Several common combinations of these operators can also be processed
with the path index (see Section 5 and [21])

– a child operator RO = child(RI), which given the EIIR RI returns for every
element of RI its children. For instance the node i has as the first child the node
with index i + 1 and all the other children nodes are determined recursively until
the bound ff i is reached.

– a parent operator RO = parent(RI), which given the EIIR RI returns for every
element of RI its parent. The parent node is directly given by the pointer fai in
tree signature of every element of RI .

A Native XML Database Supporting Approximate Match Search 75

– a descendant operator RO = descendant(RI) which given the EIIR RI returns
for every element of RI its descendants. The descendants of node i are the nodes
with index i + 1 up to nodes with index ff i − 1.

– an ancestor operator RO = ancestors(RI) which for every element of EIIR RI

returns its ancestors. The ancestors nodes is calculated like a just recursive closure
of parent.

Structure Join. The structure join operator is used to support structure search queries.
It is useful when the structure of XML data is unknown and the specific objective of the
query is to verify the existence of relationships (in terms of XML hierarchies) among
specific elements. Basically this operators, given a tuple of elements, verifies if they
have a common ancestor below a specified level, considering that the root of an XML
document has level 0. For instance, in Figure 2, nodes John and San Diego have a
common ancestor of level 1. On the other hand, John and S. Francisco does not have
an ancestor of level 1, but they have one of level 0.

The structure join operator RO = structureJoinl(R1, . . . , Rk) takes as input k
EIIR , and returns the EIIR RO ⊆ R1 × . . . × Rk which have a common ancestors
at least a level l in the document structure: all tuples for which there is not a common
ancestor of level l are eliminated from the result.

The cost of producing first the Cartesian product of the k lists and then eliminating
those tuples that do not satisfy the predicates, can be very high. In [5] we propose a new
structure join algorithm, able to perform this step of query execution efficiently.

<?xml version="1.0" encoding="ISO-8859-1"?>
<Mpeg7 xmlns="urn:mpeg:mpeg7:schema:2001" …>
<Description xsi:type="ContentEntityType">
<MultimediaContent xsi:type="ImageType">
<Image>
<MediaLocator>
<MediaUri>D:\ANSAnumb\104.JPG</MediaUri>
</MediaLocator>
<VisualDescriptor xsi:type="ScalableColorType" numOfBitplanesDiscarded="0“
numOfCoeff="64">
<Coeff>-16 34 127 94 5 14 -5 -14 27 15 -11 -28 -11 12 0 1 … </Coeff>
</VisualDescriptor>
….
<VisualDescriptor xsi:type="EdgeHistogramType">
<BinCounts>2 4 5 6 5 5 1 4 5 4 4 1 2 3 5 3 2 7 7 5 4 3 2 6 5 3 1 4 5 4 4 3 6 6 4 3 1 2 3
</BinCounts>
</VisualDescriptor>
<VisualDescriptor xsi:type="HomogeneousTextureType">
<Average>94</Average><StandardDeviation>144</StandardDeviation><Energy>238
215 186 200 189 209 210 171 179 180 179 170 174 151 122 163 123 151 144 115 98
138 128 141 139 69 53 110 61 71</Energy>
….
</Image>
</MultimediaContent>
</Description></Mpeg7>

Fig. 3. An example of a MPEG7 document encoded in XML

76 G. Amato and F. Debole

5 Query Execution

In this section we discuss the translation of some XQuery queries into our algebra.
In the following we assume that the document considered are those of Figure 2 and
Figure 3. We resolve the path expression with path index. We suppose that the elements
VisualDescriptor are indexed by an AM-Tree and ln by a full-text index. For each query
we give both, the query execution plan in terms of operations of the algebra, and the
optimized physical execution plan that conveniently exploits available indexes.

Example 1. Considering the following query:

for $a in /people/person,
(A) where $a//ln ∼ ’Culloc’

return $a//address

We look for the address of person which have Culloc in their lastname ln. This query is
translated in our algebra as follow:

a) R1 = instanceElements(people)
b) R2 = child(R1, person)
c) R3 = descendant(R2, ln)
d) R4 = select(R3, ∼ ’Culloc’)
e) R5 = ancestor(R4, person)
f) R6 = descendant(R5, address)

Whereas using the indexes we have this execution plan:

A1 R1 = PathIndex(/people/person//ln)
A2 R2 = FullTextIndex(ln,’Culloc’)
A3 R3 = Intersect(R1, R2)
A4 R4 = Ancestor(R3, person)
A5 R5 = Descendant(R4, address)

We have processed (A1) the path expressions /people/person//ln with a single access
to the index (PathIndex), whereas in the logical plan the same expressions is processed
with three operations. Second (A2), since full-text index is available on the last element
(ln) of path, we resolve the select operator with an access to full-text index. Then (A4)
the tree signatures are used to navigate through the structure and taken first the person
ancestor of R3 and then the address descendants of R4.

Example 2. Considering the following query related to XML document of Figure 3:

for $a in /Mpeg7, $b in /Mpeg7
(B) where $a//MediaUri =’D:\ANSAnumb\104.jpg’ and

$a//VisualDescriptor ∼ $b//VisualDescriptor
return $b

It returns all the elements Mpeg7 whose visual descriptors are similar to that of image
(’D:\ANSAnumb\104.jpg’). The logical query plan is:

A Native XML Database Supporting Approximate Match Search 77

a) R1 = instanceElements$a(Mpeg7)
b) R2 = instanceElements$b(Mpeg7)
c) R3 = descendant(R1, MediaUri)
d) R4 = select(R3, = ’D:\ANSAnumb\104.jpg’)
e) R5 = ancestor(R4, Mpeg7)
f) R6 = descendant(R5, VisualDescriptor)
g) R7 = descendant(R2, VisualDescriptor)
h) R8 = select(R7, ∼′ R′

6)
i) R9 = ancestor(R8, Mpeg7)

In the previous plan we use the notation instanceElementsx(E) to indicate the retrieval
of all the eiid corresponding to E, and the binding with the variable x. This is an example
of a possible physical execution plan:

B1 R1 = PathIndex(/Mpeg7//MediaUri)
B2 R2 = Select(R1, = ’D:\ANSAnumb\104.jpg’)
B3 R3 = Ancestor(R2, Mpeg7)
B4 R4 = Descendant(R3, VisualDescriptor)
B5 R5 = AM-Tree(VisualDescriptor, R4)
B6 R6 = Ancestor(R5, Mpeg7)

As in Example 1 we have processed in B1 the path expressions /Mpeg7//MediaUri with
an access to index (PathIndex). Second (B2), we have selected from the elements of R1,
the one corresponding to the image 104.jpg. With the navigation operations (B3, B4)
we have accessed the corresponding element VisualDescriptor. Then (B5), since image-
similarity index is available on the elements (VisualDescriptor), we use it to take the
elements similar to the selected one R4. Finally (B6) the tree signatures are used to
navigate through the structure to access the Mpeg7 ancestor of R5.

6 Use of Xmlse for Digital Library Applications

Our XML search engine has been successfully employed to support metadata manage-
ment in the MILOS [27] [28] multimedia content management system, which in turns
has been used for implementing multimedia digital libraries. In Figure 4 we show the
search and retrieval interface of the ECHO [10] video digital library application built
using Milos. This application allows users to find videos by combining full text, image
similarity, and exact/partial match search. Users can browse among scenes of videos,
and access corresponding metadata.

In Figure 4 the user searches for German videos related to ’worker strike’. Milos
correspondingly generates and submit to XMLSe the following XQuery query:

for $a in /echo/AVDocument
where $a/DescriptionLanguage=’DE’
and $a/EnglishAbstract ∼ ’worker strike’
return $a

where the element EnglishAbstract is indexed by a full-text index (the exact match
radio button is not checked). The user interface, on the left side, shows the results of the

78 G. Amato and F. Debole

Fig. 4. An example of combined use of exact match and similarity search functionality in MILOS,
as supported by XMLSe

query. On the right side, the user can display, for each retrieved document, the related
metadata and structural information, which basically consists of the key frames of the
scenes contained in the video. The user can select a specific key frame and search for
other similar key frames in the repository (see the “similar” link above each key frame
in Figure 4).

As a consequence of this, Milos generates and asks XMLSe for processing the fol-
lowing query:

for $a in /echo/Video, $b in /Mpeg7, $c in /Mpeg7
where $a/Keyframe = ’urn:milos:echo video:0000000000025653’
and $a/Keyframe = $b//MediaUri
and $b//VisualDescriptor ∼ $c//VisualDescriptor
return $c

where we suppose that the user is searching for key frames similar to the one identified
by ’urn:milos:echo video:0000000000025653’, the MPEG-7 VisualDescriptor element
is used for assessing similarity between key frames, and the VisualDescriptor is indexed
by an AM-tree (Section 3.2).

A Native XML Database Supporting Approximate Match Search 79

7 Conclusion

We have presented the architecture of XMLSe, a native XML search engine that offers
XML approximate content search and structure search in addition to traditional exact
match search. We have introduced the various index structures that are used to effi-
ciently process XML queries and we have presented the query algebra at the basis of
the query processor. This XML search engine is particularly indicated to manage meta-
data for multimedia digital libraries, where approximate match queries are particularly
frequent. The XML search engine has been successfully employed to support metadata
management in the MILOS multimedia content management system.

References

1. Delos: (http://www.delos.info/)
2. ECD, Enhanced, Content, Delivery: http://ecd.isti.cnr.it (2002)
3. XPath1.0: http://www.w3.org/tr/xpath (1999)
4. XQuery1.0: http://www.w3.org/tr/xquery (2005)
5. Amato, G., Debole, F., Rabitti, F., Savino, P., Zezula, P.: Signature-based approach for effi-

cient relationship search on xml data collections. In: XSym 2004, XML Database Sympo-
sium in Conjunction with VLDB 2004. (2004) 82–96

6. MPEG: http://www.chiariglione.org/mpeg/ (2004)
7. Florescu, D., Kossmann, D.: Storing and querying xml data using an rdbms. In: IEEE Data

Engineering Bulletin Vol. 22 No 3. (1999) 27–34
8. Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., Naughton, J.: Relational

databases for querying xml documents:limitations and opportunities. In: Proceedings of the
25th VLDB Conference, Edinburgh, Scotland (1999)

9. Shimura, T., Yoshikawa, M., Uemura, S.: Storage and retrieval of xml documents using
object-relational databases. In: DEXA ’99: Proceedings of the 10th International Conference
on Database and Expert Systems Applications, Springer-Verlag (1999) 206–217

10. ECHO: http://pc-erato2.iei.pi.cnr.it/echo/ (2000)
11. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill Book

Company (1984)
12. Tamino: http://www1.softwareag.com/corporate/products/tamino/default.asp (2001)
13. Meier, W.: exist: An open source native xml database. In: NODe 2002 Web- and Database-

Related Workshops, Springer LNCS Series 2593 (2002)
14. Xindice, A.: http://xml.apache.org/xindice/ (2001)
15. Carey, M.J., DeWitt, D.J., Franklin, M.J., Hall, N.E., McAuliffe, M.L., Naughton, J.F.,

Schuh, D.T., Solomon, M.H., Tan, C.K., Tsatalos, O.G., White, S.J., Zwilling, M.J.: Shoring
up persistent applications. (1994) 383–394

16. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On supporting containment
queries in relational database management systems. In: SIGMOD ’01: Proceedings of the
2001 ACM SIGMOD international conference on Management of data, ACM Press (2001)
425–436

17. Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimization in
semistructured databases. In Jarke, M., Carey, M.J., Dittrich, K.R., Lochovsky, F.H.,
Loucopoulos, P., Jeusfeld, M.A., eds.: VLDB’97, Proceedings of 23rd International Con-
ference on Very Large Data Bases, August 25-29, 1997, Athens, Greece, Morgan Kaufmann
(1997) 436–445

80 G. Amato and F. Debole

18. Chung, C.W., Min, J.K., Shim, K.: Apex: An adaptive path index for xml data. In: Pro-
ceedings of the 2002 ACM SIGMOD International Conference on Management of Data,
Madison, Wisconsin, June 3-6, 2002, ACM Press (2002)

19. Cooper, B., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon, M.: A fast index for
semistructured data. In Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao,
K., Snodgrass, R.T., eds.: VLDB 2001, Proceedings of 27th International Conference on Very
Large Data Bases, September 11-14, 2001, Roma, Italy, Morgan Kaufmann (2001) 341–350

20. Amato, G., Debole, F., Zezula, P., Rabitti, F.: Yapi: Yet another path index for xml searching.
In: ECDL 2003, 7th European Conference on Research and Advanced Technology for Digital
Libraries. (2003)

21. Amato, G., Debole, F., Zezula, P., Rabitti, F.: Tree signatures for xml querying and naviga-
tion. In: XSym 2003, XML Database Symposium in Conjunction with VLDB 2003. (2003)

22. Fuhr, N., Großjohann, K.: XIRQL: An extension of XQL for information retrieval (2000) In
ACM SIGIR Workshop On XML and Information Retrieval, Athens, Greece.

23. Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate xml joins. In:
SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD international conference on Man-
agement of data, ACM Press (2002) 287–298

24. Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region proximity in metric spaces and its use
for approximate similarity search. ACM Trans. Inf. Syst. 21 (2003) 192–227

25. Lucene: http://lucene.apache.org/java/docs/index.html (2000)
26. Zezula, P., Amato, G., Debole, F., Rabitti, F.: Tree Signatures for XML Querying and Navi-

gation. Lecture Notes in Computer Science Springer (2003)
27. Milos: http://milos.isti.cnr.it (2002)
28. Amato, G., Gennaro, C., Rabitti, F., Savino, P.: Milos: A multimedia content management

system for digital library applications. In: Europeean Conference on Digital Libraries, ECDL
2004, Bath, UK, September 12-17 2004. (2004) http://milos.isti.cnr.it/.

	Introduction
	Motivation and Related Work
	System Architecture
	Data Storage
	System Index

	Query Algebra
	Query Execution
	Use of Xmlse for Digital Library Applications
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

