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Abstract. The paper reports the results of the first stage of our work on
an automatic dietary monitoring system. The work is part of a large Eu-
ropean project on using ubiquitous systems to support healthy lifestyle
and cardiovascular disease prevention. We demonstrate that sound from
the user’s mouth can be used to detect that he/she is eating. The paper
also shows how different kinds of food can be recognized by analyzing
chewing sounds. The sounds are acquired with a microphone located in-
side the ear canal. This is an unobtrusive location widely accepted in
other applications (hearing aids, headsets). To validate our method we
present experimental results containing 3500 seconds of chewing data
from four subjects on four different food types typically found in a meal.
Up to 99% accuracy is achieved on eating recognition and between 80%
to 100% on food type classification.

1 Introduction

Healthy lifestyle and disease prevention are a major concern for large portions
of the population. Considering the worrying trend of sky-rocketing health care
costs and the ageing population, these are not just personal but also important
socio-economic issues. As a consequence all concerned parties: individuals, health
insurance and governments are willing to spend considerable resources on tools
that help people develop and maintain healthy habits. In Europe a considerable
portion of research funding in this area is directed at mobile and ubiquitous com-
puting technology. Within this program our group is involved in the 34 Million
Euro MyHeart project that includes 35 medical, design, textile and electronics
related research institutions and companies.

The aim of the consortium is to develop schemes that combine long term
physiological monitoring and behavioral analysis with a personalized direct or
professional-observed feedback to help users reduce their risk of cardiovascular
disease. As is well known, the three main aspects that need to be addressed are
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stress, exercise and diet. In the project our group focuses on the later. Our aim is
to develop wearable sensing technology to aid the user in monitoring his eating
habits. In this paper we report on results of the first stage of this work: using
wearable microphones to detect and classify chewing sounds (called mastication
sounds) from the user’s mouth.

1.1 Dietary Monitoring

Dietary monitoring includes a variety of factors starting from the diet compo-
sition to frequency, duration and speed of eating, all of which can be relevant
health issues. Today such monitoring is almost entirely done ‘manually’ by user
questionnaires. Electronic devices are at best used as intelligent log books that
can derive long term trends, calculate calories from entered data and give simple
user recommendations. The collection and entry of the data has to be done by
the user which involves considerable effort. As a consequence, as anyone who has
ever attempted a diet knows, compliance tends to be very poor.

Since prevention involves the adaptation of a healthier lifestyle, long term,
quasi permanent monitoring (months or years) is needed to really make an im-
pact on the risk of cardiovascular diseases. Thus any, even very rudimentary,
tool that reduce the effort and interaction involved in data collection and entry
could make a big difference.

1.2 Automating Dietary Monitoring

The ultimate goal of a system that precisely and 100% reliably determines the
type and amount of all and any food that the user has consumed is certainly
more of a dream then a realistic concept. However, we believe that with a com-
bination of wearable sensors and a degree of environmental augmentation useful
assistive systems are conceivable. On one hand, such systems could provide a
rough estimate on the food consumption much like many today’s physical ac-
tivity monitoring devices provide only a rough guess of the caloric expenditure.
On the other hand, it could be used as an entry assistant that, at the end of the
day, would present the user with its best guess of when, how much, and what he
has eaten and ask him to correct the errors and fill the gaps.

Overall we imagine such a non-invasive dietary monitoring support system
to rely on the following three components:

1. Monitoring of food intake through appropriate wearable sensors. The main
possibilities are
(a) detecting and analyzing chewing sounds,

(b) using electrodes mounted on the base of the neck (e.g in a collar) to
detect and analyze bolus swallowing,
(¢) using motion sensors on hands to detect food intake related motions.

2. Monitoring food preparation/purchase through appropriate environmental
augmentation. Here, approaches such as using RFID-tags to recognize food
components or communicating with the restaurant computer to get a de-
scription and nutrition facts of the order are conceivable.
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3. Including user habits and high level context detection as additional infor-
mation sources. Here, one could accentuate the fact that eating habits tend
to be associated with locations, times and other activities. Thus information
on location (e.g in the dining room sitting at the table), time of day, other
activity (unlikely to eat while jogging) etc. provide useful hints.

1.3 Paper Contributions

In the paper we concentrate on the first component of the envisioned system:
food intake detection. Specifically, we consider the detection and classification
of chewing sounds. To this end the paper presents the following results:

1. We show that good quality chewing sound signal can be obtained from a mi-
crophone placed in the ear canal. Since much of the acoustic signal generated
by mechanical interaction of teeth and food during occlusion is transmitted
by bone conduction, these sounds are actually much stronger than the speech
signal. At the same time the location is unobtrusive and proven acceptable in
applications such as hearing aids or recent high end mobile phone headsets.

2. We show that chewing sequences can be discriminated from a signal con-
taining a mixture of speech, silence and chewing.

3. We present a method that detects the beginning of single chews in a chewing
sequence.

4. We show that chewing sound based discrimination between different kinds
of food is possible with a high accuracy.

For the above methods we present an experimental evaluation with a set of four
different food products selected to represent different categories of food that
might be present in a meal. The experiments consists of a total of 650 chewing
sequences, from 4 subjects that amount to a total of 3500 seconds of labeled data.
We show that recognition rates of up to 99% can be achieved for the chewing
segment identification and of between 80 and 100% for the food recognition.

Overall, while much still remains to be done, our work proves the feasibility of
using chewing sound analysis as an important component in a diet monitoring
system. An important aspect of our contribution is the fact that the type of
information derived by our system (what has actually been eaten) is very difficult
to derive using other means.

1.4 Related Work

Activities of daily living are of central interest for high-level context-aware com-
puting. Information acquisition can be realized by distributing sensors in the en-
vironment and on the human body. Realization of intelligent environments have
been studied, e.g. in the context of smart homes [I] and mobile devices [2]. These
works are generally focused on enhancing the quality of life, e.g. for independent
living [3/4]. Smart identification systems have also been developed [5] which may
provide information associated to nutrition phases, e.g. smart cups [6].
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The interaction of chewing, acoustic sensation and perception of textures in
food has been studied intensively in food science. Work in this area has been
dedicated mainly to the relation of chewing sounds on the sensation of crispness
and crunchiness. This was done by investigating air-conducted noises produced
during chewing [7[§] or by instrumental monitoring of the deformation under
force [9I0LITIT2] and studying correlation with sensory perception [13,[14]. The
loudness of a foodstuff during deformation depends mainly on the inner struc-
ture, i.e. cell arrangement, impurities and existing cracks [15]. Wet cellular mate-
rials, e.g. apples and lettuce, are termed wet crisp since the cell structures contain
fluids whereas dry crisp products, e.g. potato chips have air inclusions [16]. A
general force deflection model has been proposed [17] interpreting the acoustic
emissions as micro-events of fracture in brittle materials under compression.

Initially Drake [9] studied the chewing sound signal in humans when chewing
crisp and hard food products. It was found that a normal chewing cycle after
bringing the food piece to the mouth cavity can be partitioned into two adjacent
phases: Gross cutting the ingested material and conversion in fine grained par-
ticles. This process is understood as a gradually decomposition of the material
structure during chewing and is audible as a decline of the sound level [9]. A
swallowable bolus is formed after a certain level of lubrication and particle size
has been reached. A first attempt was made by DeBelie [I§] to discriminate two
classes of crispness in apples by analyzing principal components in the sound
spectrum of the initial bite.

Originating from the pioneering work on the auscultation of the mastica-
tory system (system related to chewing) done by Brenman [T9] and Watt [20]
the stability of occlusion and has been assessed in the field of oral rehabilita-
tion by analyzing teeth contact sounds (gnathosonic analysis) [21]. Similarly
the sounds produced by the temporomandibular joints during jaw opening and
closing movements have been studied regarding joint dysfunction [22]. It is not
expected that these sound sources provide a audible contribution to chewing of
food materials in healthy subjects. However, these studies provide information
regarding sound transducer types and mounting position that may be usable
also for the analysis of chewing sounds. Recent investigations [23,[21] evaluated
measurement methodology, applicable transducers types and positions.

2 Methodology

This section will give an overview of our approach. It is important to note that,
as described in the introduction, we consider the sound analysis to be just one
part of a larger dietary monitoring system. This means that sound analysis is not
meant to solve the entire dietary monitoring problem by itself. Instead the goal
of our work is to demonstrate that a significant amount of useful information
that is difficult to obtain through other means can be extracted from chewing
sound analysis. Furthermore, the question how it can be expected to interact
with other context information is an important research question pursued by
our group (although it is not the focus of this paper).
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2.1 Approach

Nutrition intake can be coarsely divided into three phases: fracturing (tearing)
the food mainly with the incisors, chewing of the pieces and swallowing of the
bolus. Ultimately, all three phases should be analyzed since the bolus formation
process differs for characteristic food materials [24], e.g. a dry potato chip differs
in structure, fluid compartments and chewing from cooked pasta. Initial bites
may have more distinctive properties [I8], but occur less often and are not avail-
able for all food types. A combination of fracture sound and bolus production
process features may permit the acoustic detection of food products.

In this paper, we concentrate on the longest phase. Therefore we have chosen
to analyze the sound of normal chewing cycles, i.e. beginning after intake of
the food piece up to and excluding swallowing of the bolus. We stopped with
analyzing the sound when the amplitude level decayed to approximately 5dB
above the noise level.

Fig. M illustrates the overall structure of our approach. It consists of three
main steps: signal acquisition, chewing segment identification and food type
classification.

signal acquisition

A 4

chewing

identif

segment
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y

A

, classification of
food type

High level context

Fig. 1. Approach to the analysis of chewing sounds

The challenge of signal acquisition is to identify a microphone position that
combines good amplitude levels for the chewing sounds, with good suppression
of other sounds at a location that is comfortable and socially acceptable to the
user.

For chewing segment identification this paper considers only sound-related
means. In particular, we investigate a classifier that can distinguish between
a broad range of chewing sound and various speech/conversation sounds. In a
wearable computing environment, other means are possible. E.g., food intake
is usually accompanied by moving the arm up and bringing the hand close to
the users mouth. The lower arm is then pointing away from the earths center
of gravity; something which can easily detected by an accelerometer mounted
on the users wrist. However, the user can perform similar movements for other
activities (e.g. scratching his chin) so other information from sensors in the
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environment might be needed (e.g. location information that the user is in the
kitchen or the dining room).

Once a segment is classified as being a chewing sound, the type of food needs
to be identified. Again, we focus on the audio analysis of the chewing sound. In
doing so, we do not aim to be able to pick any of the thousands of possible food
types. This would clearly be unrealistic. Instead we assume (1) that we have a
certain prior knowledge about the type of foods that are relevant to the particu-
lar situation and (2) that often it is sufficient to just be able to identify a general
type of food or be able to say “could have been XY”. The first assumption is
not as far fetched as it might sound. The intelligent refrigerator/cardboard that
knows what food is inside and what has been taken out (e.g. through RFID) is
the prototypical ubiquitous application. In a restaurant credit card information
or an electronic menu could be used to constrain the number of possibilities.
Additionally, people have certain fairly predictable eating habits. The second
point relates to the type of application that is required. As stated in the intro-
duction, the system does not need be fully automated to be useful and to be
an improvement over current ‘manual’ monitoring. Thus it is perfectly sufficient
if at the end of the day the system can remind the user that for example “at
lunch you had something wet and crisp (could have been salad) and some soft
texture stuff (spaghetti or potatoes)” and asks him to fill in the details. From the
above considerations we concentrate our initial work on being able to distinguish
between a small set of predefined foods and on the distinction between certain
food classes.

2.2 Experiments

The evaluation of all methods described in the remainder of the paper has been
performed using the following experimental setup.

Test subjects: Four subjects (2 female, 2 male, mean age 29 years) were instructed
to eat different food products normally, with the mouth closed during chewing.
In this way the chewing phase of the nutrition cycle is covered: Beginning after
intake of the food piece up to swallowing of the bolus (see Sec. 2.1)).

By restricting our experiments to the chewing phase, we ensure that the
recognition works solely on chewing. Specifically, we exclude swallowing and tear-
ing sounds since these phases have different acoustic characteristics. Fracturing
(tearing) and swallowing sounds are regarded as additional source of information
and may be analyzed independently. Since these events are not occurring at the
same high frequency than chewing, they are considered less relevant.

The subjects had no denture, no acute teeth or facial pain and no known
history of occlusion or temporomandibular joint dysfunction. Furthermore none
of the subjects expressed a strong dislike of any food product in this study.

Test objects: The food products shown in Table [I] have been selected since they
imitate typical components in a meal or daily nutrition. The food groups reflect
the acoustic behavior during chewing and not their nutrition value. They can be
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simply reproduced with a high fidelity. Furthermore some of the crisp-classified
products have been referenced in texture studies before: Potato chips [17] and
apples [18]. Beside the dry-crisp and wet-crisp categories, a third acoustic group
of “soft texture” foods have been included: Cooked pasta and cooked rice.

Table 1. Details for the food products and categorization

Food product | Food group Product/Ingredients/Preparation
Potato chips |dry-crisp Zweifel, potato chips

(approx. 3cm in diameter)
Apple wet-crisp type “Jonagold” and “Gala”

washed, cut in pieces, with skin

Mixed lettuce endive, sugar loaf, frisée,

raddichio, chicory, arugula

wet-crisp

Pasta “soft texture” | spaghetti
(al dente)
Rice “soft texture” |rice without skin

Initial evaluation of the sound data showed that the rice recordings were
smallest in amplitude of all recorded foods. The potato chips produced the high-
est amplitude for all subjects. Fig. [l illustrates a typical waveforms recorded for
apples.

Table 2] depicts the inspected sound durations for the food products from all
subjects. The number of single chews is the number given by the single chew
detection algorithm explained in Sec.[2.Jl The single chews per chewing sequence
reflects the authors’ experience that usually potato chips are destruced with only
a few chews, whereas pasta or lettuce require several chews to masticate properly.

Table 2. Statistics of the acquired and inspected sounds for all food products

F Time recorded | No. of chew- | Detected No. of | Single chews per
ood product . . . .

and inspected |ing sequences| single chews chewing sequence
Potato chips 677 sec 179 979 5.5
Apple 1226 sec 245 1538 6.3
Mixed lettuce 1054 sec 152 1691 11.1
Pasta 630 sec 74 1290 17.4
Rice® 240 sec - - -
| Total | 3827 sec | 650 5498 |

) omitted because of small amplitude, see Sec. H]

Test procedure: A electret condenser microphone (Type Sony ECM-C115) was
placed in the ear canal as described in Sec.Bl After positioning, the microphone
fixation was checked to avoid interference between movements of the jaw and
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the microphone in the ear canal. A second microphone of the same type was
used at collar level, at the side of the instrumented ear, as reference to detect
possible environmental sounds during inspection. The waveforms were recorded
at a sampling frequency of 44.1kHz, 16 bit resolution.

All products were served on a plate. Cutlery was used for the mixed lettuce,
pasta and rice. Subjects were instructed to take pieces, small enough to be
ingested and chewed at once, as described above. The temperature of pasta and
rice was cold enough to allow normal chewing.

3 Positioning of the Microphone

Sound produced during the masticatory process can be detected by air- and
bone-conduction. Frequency analysis of air-conduced sounds from chewed potato
chips showed spectral energy between zero and 10kHz [10] although the fre-
quency range with highest amplitude for various crisp products are in the range of
1kHz—2kHz [25]. Bone-conducted sounds are transmitted through the mandibu-
lar bones to the inner ear. The soft tissue of mouth and jaw damp high frequen-
cies and amplify at the resonance frequency of the mandible (160Hz) when
chewed with closed mouth [IT].

Condenser or dynamic microphone transducers have been used in texture
studies literature at various places with the goal to detect and reproduce human
perception. Mainly the following positions were evaluated: In front of the mouth
[OI[10], at the outer ear above the ear canal [13], a few centimeters in front of the
ear canal opening [12], pressed against the cheek [9,[12] or placed over the ear
canal opening [9,[18]. Gnathosonic studies used a stereo-stethoscope technique
[20] and microphones [I1] at the forehead or over the zygoma [26]. More recently
a method using head-phones with the microphones positioned over the ear canal
opening has been proposed [21].

Several positions for the microphone have been evaluated for this study as
indicated in Table Bl This list includes some of the positions used in previous

Table 3. Evaluated microphone positions

Microphone | Position
1 Inner ear, directed towards eardrum
(Hearing aid position)
2 2cm in front of mouth
(Headset microphone position)
3 At cheek
(Headset position)
4 5cm in front of ear canal opening
(Reference position for audible chewing sounds)
5 Collar
(Collar microphone position)
6 Behind outer ear
(Hidden by the outer ear, used by older hearing aid models)
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work. The evaluation of ubiquitous positions, not hindering the user’s perception
was emphasized. To this end, positions 1, 5 and 6 are favorable because their
implementation can be hidden in human anatomy or in cloths.

Potential artifacts introduced by daily use could interfere significantly with
the microphone function. This may affect position 5 since it has the disadvantage
of being hidden under cloths or disturbed by cloth sounds. Position 1 has the
advantage of being less affected by loud environmental noises since it is embedded
directly into the ear canal: With a directional microphone oriented towards the
eardrum, the intensity of any noise from the environment is reduced.
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Fig. 2. Signal intensity of different microphone positions (see Table ()

The position of the microphone was evaluated while a subject was chewing
potato chips and while the subject was speaking. The mean amplitude perceived
at position 1 was used as reference for normalization. Fig. Pldepicts the relation
of the signal amplitude intensity shown on a logarithmic scale. It can be seen
clearly that position 1 not only has the highest intensity for chewing sounds
but it is also the only position with chewing sound intensity higher than speech
intensity. Therefore for all further measurements position 1 was used.

A microphone at position 1 does not need to hinder the person, as modern
hearing aids prove. Applicable microphones could be very small and combined
with an earphone be used for other applications, e.g. mobile phones. For example,
modern hearing aids already operate with a combined microphone/earphone.
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4 Chewing Segment Identification

The identification of chewing segments in a continuous sound signal can be
regarded as a base functionality and hence is of high importance for the detailed
analysis of the masticated food type. We see mainly two different methods based
on audio signal processing.

A: Intensity of Audio Signal: In an environment, like a living room, with
background music playing or in a quiet restaurant, the chewing sound picked
up in the inner ear is much louder than a normal conversation or background
music. This is indicated in the sample recording shown in Fig.[3.

0.6 T
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[0}
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©
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-06 Eating lettuce User speaking Eating pasta Music playing|
0.8 L L L L L L
0 10 20 30 40 50 60
time [s]

Fig. 3. Chewing sound and speech recording in a room with background music

B: Chewing Sound — Speech Classifier: Despite the general suppression of
the speech signal, loud speech can at times develop amplitude peaks similar to
chewing signals. Therefore it is necessary to be able to separate these two classes.
This is achieved by calculating audio features from a short signal segment of
length t,,, averaging the features over Ng,4 segments and then finally classifying
them with a previously trained classifier [27].

Features: We used features that are popular in the area of speech, audio and
auditory scene recognition [2829)30]. In the temporal domain, those were zero-
crossing rate and fluctuation of amplitude. Frequency domain features were eval-
uated based on a 512-point Fast Fourier Transformation (FFT) using a Hanning
window. Here, the features included: frequency centroid, spectral roll-off point
with the threshold of 0.93, fluctuation of spectrum and band energy ratio in
4 logarithmically divided sub-bands. Additionally 6 cepstral coefficients (CEP)
were evaluated. Both time and frequency domain features were evaluated on a
window of ¢,, = 11.6 ms. No overlap between the windows was used.

The features were averaged over Ng,, windows to improve the recognition
results. This method helped to bridge pause gaps between the chewing sounds.
These gaps vary between 100 ms and 600 ms depending on the chewed material
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and the progression of decomposition (see Fig.[). Longer pauses may be observed
at the beginning of a chewing sequence for larger food pieces as well as before
and after partial bolus swallowing.

Classifiers: A C4.5 decision tree classifier from the Weka Toolkit [31] was
trained with the aforementioned features. The classifier was 10-fold cross-validat-
ed on a two class data set. The first class contained all food products as specified
in Table [2] except cooked rice. Rice was excluded since individual classification
of food products against speech signals showed weak results for rice. This was
expected from the low signal-noise ratio of the rice sounds. The second class
included various speech signal segments from several speakers as well as conver-
sation of test subjects and the authors.

Since the accuracy of a classifier depends on the class distribution, the ROC
curve (Receiver Operating Characteristic) is presented instead (see Fig.[d]). ROC
curves help to visualize classifier performance over the whole range of frequency
of occurrence [32]; the best classifier is the one to the top-left corner. This is
useful in our case since the number of occurrences of speech and chewing sounds
may vary and may not be known beforehand. Clearly, the classifier that uses
the CEP features dominates. This was expected since the CEP features help to
pick out speech sequences. Furthermore, the number N, of averaging frames
was varied. We found that the highest recognition rates can be achieved if NV,
is chosen so that the features are at least averaged over one single chew which
takes about one second. In our case this occurs if Ng,g > 1 sec/t,, = 86.2.
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Fig. 4. ROC curve for chewing sounds (positives) and speech sounds (negatives)
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5 Discrimination of Foods Products

5.1 Isolation of Single Chews

First trials in separating different food products with the same methods as in
the previous section (i.e. calculating features over a large window) produced
recognition rates around 60%. The reason for this is mainly due to the rather
long pause between single chews, which produces the same audio signature for
all food items.

To overcome this problem we have looked in more detail at the temporal
structure of a typical chewing sequence (see Fig. B)). It can be seen that the
audio signal of one chew is mainly composed of four phases: The closing of the
mandible to crush the material, a small pause, the opening of the mandible
in which material that stick to the upper and lower teeth is uncompressed,
and again a pause. The timing between those phases is given mainly by the
mechanical properties of the food and the physical limitations of the mandible.
All test subject showed almost the same timing for the same food, with the
exception of a longer or shorter pause in phase 4 (fast/slow eater). The four
phases are very well distinguishable in crispy food, in softer food like pasta the
phases tend to merge. Still, the pause in phase 4 and the increase in amplitude
at the beginning of phase 1 remain.

1.2

amplitude

Audio signal (apple)

low—pass filtered signal
¢  detected start of chew

500 1000 1500 2000 2500
time [ms]

Fig. 5. Sample sound signal observed for chewing an apple

A relatively simple algorithms helps us the detect the beginning of each
chew. The short-time signal energy in a 20 ms window is compared to a energy
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threshold and the resulting signal is set to 1 if the short-time signal energy is
larger than the threshold and to 0 otherwise. The resulting signal is low-pass
filtered with a 4th order butterworth filter. We found that a filter with a 3dB
cut-off frequency of 4 to 5 Hz reliably responds to the pause in phase 4 while
filtering out the shorter pause in phase 2. With help of the hill climbing algorithm
the beginning of each chew is detected as shown in Fig. Bl We found that this
algorithm can detect the start point of about 90% of all chews while producing
only very little insertions.

5.2 Classification

Once the audio signal is segmented into single chews, the segments are classified
using the same procedure as in Sec.[d Several features were applied to a short
window that was consecutively shifted. We found that a 11.6 ms window with
a shift of 8.7ms works best for our sound classes. The most promising features
were: zero crossing rate, band energy ratios, fluctuation of amplitude, fluctuation
of spectrum and bandwidth. The features were further averaged over the length
of a single chew. The length of a single chew was used as an additional feature and
helped to improve the recognition rate of especially the pasta, since soft-texture
foods have shorter durations of chews. The features were then 10-fold cross-
validated with a C4.5 decision tree classifier. Recognition rates range around
66% to 86% and the corresponding confusion matrix is listed in Table

Table 4. Confusion matrix for single chews

a b ¢ d | < classified as| Accuracy
669 170 25 115| a = Chips 68.34%
183 1024 41 290| b = Apple 66.58%
25 39 1112 114| ¢ = Pasta 86.20%
125 293 95 1178 d = Lettuce 69.66%

Since the material inside the mouth can not change between single chews,
a majority decision over a whole chewing cycle was performed. This measure
resulted in an increase of recognition rate of 15 to 20% as shown in Table Bl It
can be seen that there is some confusion between apple and lettuce which can

Table 5. Confusion matrix for chewing cycles

a b ¢ d | « classified as || Accuracy
156 12 1 10| a = Chips 87.15%
24 198 1 22| b = Apple 80.82%

0 0 74 0| ¢ = Pasta 100.00%

4 21 0 127 d = Lettuce 83.55%
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be explained by them belonging into the same food category (see Table[l) and
therefore having similar mechanical properties.

6 Conclusion and Future Work

6.1 Conclusion

The work presented in this paper has proven that chewing sound analysis is a
valuable component for automated dietary monitoring systems. Specifically we
have shown that:

1. A microphone location inside the ear can acquire good quality chewing
sounds while suppressing many other sounds originating inside the oral cav-
ity such as speech. At the same time it is a location that has been proven
to be acceptable to users in other applications (e.g. hearing aids, headsets).
Applicable microphones could be very small, not hindering the normal per-
ception. Moreover, a combination of microphone and earphone for shared
use with other applications, e.g. a mobile phone, could be employed.

2. Chewing sounds can be reliably separated from the main sound source inside
the mouth cavity: speech.

3. Individual chews can be isolated and partitioned into phases with a simple
low pass filter based algorithm

4. Audio analysis can be used to distinguish between a small predefined set of
different food types as for example found in a single meal.

The food groups introduced in the experiments reflect the acoustic behavior dur-
ing chewing and not their nutrition value. The results show, that our approach is
not limited to a specific group of foods. Moreover, it is possible to discriminate
foods from the same group. The actual nutrition value can be derived either
precisely from other monitoring components, e.g. RFID tags of packages, or as
an estimate from a generic food database.

An important aspect of our work is the fact that information about the
specific type of food which is being chewed is very difficult to derive using other
sensor modalities. The only alternative we could think of is video analysis of the
items inserted into the mouth. While theoretically feasible it has many problems
of its own, in particular sensitivity to light conditions and background clutter as
well as large computational complexity.

Overall the results presented in this paper provide crucial groundwork for
further development that, we believe, will lead to complete automated dietary
monitoring systems. Within the scope of the EU funded MyHeart project we
aim to have first versions of such a system within the next two to three years.
Additionally, points 1 and 2 have implications beyond dietary monitoring as
they allow a fairly accurate recognition of the fact that the user is eating. This
in itself is an important context information.
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Future Work
the sound analysis the next steps that we will undertake are:

Modeling temporal evolution of the signal from individual chews with hidden
Markov models to further increase the recognition rates and allow similar
food types to be distinguished.

. Modeling the temporal evolution of the individual chewing signals over an

entire chewing cycle to extract food type specific parameters. This shall
include the number of individual chews needed, their length and the evolution
of the sound intensity.

. Performing studies about the robustness of the system by adding controlled

levels of noise.

. Performing more studies with more, different food types.
. Performing studies to determine how the recognition performance degrades

with increasing number of food types that need to be differentiated.

. Using a hierarchical approach with an initial classification of the category

(dry crisp, wet crisp etc.) and then a category specific algorithm for further
recognition, to overcome the above limitation.

Furthermore, other components of a dietary monitoring system will also be in-
vestigated. In particular, we will look at the detection of swallowing motion with
collar electrodes, analyze the hand motions related to food intake and integrate
high level context information relevant to eating habits into the system.
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