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Abstract. Gaussian mixture models are being increasingly used in pat-
tern recognition applications. However, for a set of data other distribu-
tions can give better results. In this paper, we consider Dirichlet mixtures
which offer many advantages [1]. The use of the ECM algorithm and the
minimum message length (MML) approach to fit this mixture model
is described. Experimental results involve the summarization of texture
image databases.

1 Introduction

Finite mixture models have continued to receive increasing attention over the
years [2]. These models are used in various fields such as image processing,
pattern recognition, machine learning and remote sensing. For multivariate data
attention has focused on the use of Gaussian components. However, for many
applications the Gaussian can fail when the partitions are clearly non-Gaussian.
In [1], we have demonstrated that the Dirichlet can be a good choice to overcome
the problems of the Gaussian. In dimension dim the Dirichlet distribution with
parameters α = (α1, . . . , αdim+1) is given by:

p(X|α) =
Γ (|α|)

∏dim+1
i=1 Γ (αi)

dim+1∏

i=1

Xαi−1
i (1)

where
∑dim

i=1 Xi < 1, |X| =
∑dim

i=1 Xi, 0 < Xi < 1 ∀i = 1 . . . dim, Xdim+1 =
1 − |X|, and |α| =

∑dim+1
i=1 αi, αi > 0 ∀i = 1 . . . dim + 1. This distribution

is the multivariate extension of the 2-parameter Beta distribution. The mean of
the Dirichlet distribution is given by:

µi = E(Xi) =
αi

|α| (2)

A mixture with M components is defined as : p(X|Θ) =
∑M

j=1 p(X|αj)p(j)
where p(j) (0 < p(j) < 1 and

∑M
j=1 p(j) = 1) are the mixing parameters and

p(X|αj) is the Dirichlet distribution. The symbol Θ refers to the entire set of
parameters to be estimated: Θ = (α1, . . . , αM , p(1), . . . , p(M)), where αj is the
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parameters vector of the jth component. The EM algorithm is a popular method
for iterative maximum likelihood (ML) estimation of finite mixture distributions.
This algorithm, however, is unattractive when the M-Step is complicate [2]. This
is the case of the Dirichlet mixture. Indeed, the M-Step involves the inverse of
the (dim + 1) × (dim + 1) Fisher information matrix which is not easy to com-
pute especially for high-dimensional data. In this paper, we introduce another
approach based on the ECM algorithm which replace a complicated M-step of
the EM algorithm with several computationally simpler CM-Steps [3]. The de-
termination of the number of components is based on the MML approach. The
rest of the paper is organized as follows. Section II, discusses the basic concepts
of the EM algorithm and proposes the ECM algorithm as a method to overcome
the problems of the EM in the case of Dirichlet mixtures. In Section III, we
present the MML approach for the selection of the number of clusters. Section
IV is devoted to experimental results, and Section V ends the paper with some
concluding remarks.

2 ML Estimation of a Dirichlet Mixture Using ECM

We consider now ML estimation for a M-component mixture of Dirichlet dis-
tributions. Given the set of independent vectors X = {X1, . . . , XN}, the log-
likelihood corresponding to an M -component mixture is:

L(Θ,X ) = log

N∏

i=1

p(Xi|Θ) =
N∑

i=1

log

M∑

j=1

p(Xi|αj)p(j) (3)

It’s well-known that the ML estimate: Θ̂ML = argmaxΘ{L(Θ,X )} which can
not be found analytically. The maximization defining the ML estimates is subject
to the constraints 0 < p(j) ≤ 1 and

∑M
j=1 p(j) = 1. Obtaining ML estimates

of the mixture parameters is possible through EM and related techniques [2].
The EM algorithm is a general approach to maximum likelihood in the presence
of incomplete data. In EM, the “complete” data are considered to be Yi =
{Xi, Zi}, where Zi = (Zi1, . . . , ZiM ) with Zij = 1 if Xi belongs to class j and
Zij = 0 otherwise. The relevant assumption is that the density of an observation
Xi given Zi is given by

∏M
j=1 p(Xi|αj)Zij . The resulting complete-data log-

likelihood is:

L(Θ,Z,X ) =
N∑

i=1

M∑

j=1

Zij log(p(Xi|αj)p(j)) (4)

The EM algorithm produces a sequence of estimates {Θt, t = 0, 1, 2 . . .} by
applying two steps in alternation (until some convergence criterion is satisfied):

1. E-step: Compute Ẑij given the parameter estimates from the initialization:

Ẑij =
p(Xi|αj)p(j)

∑M
j=1 p(Xi|αj)p(j)

(5)
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2. M-step: Update the parameter estimates according to:

Θ̂ = argmaxΘL(Θ,Z,X ) (6)

The quantity Ẑij is the conditional expectation of Zij given the observation Xi

and parameter vector Θ. The value Z∗
ij of Ẑij at a maximum of Eq. 4 is the

conditional probability that observation i belongs to class j (the posterior proba-
bility); the classification of an observation Xi is taken to be {k/Z∗

ik = maxjZ
∗
ij},

which is the Bayes rule. The EM algorithm has been shown to monotonically
increase the log-likelihood function. When we maximize Eq. 6, we obtain:

p(j)(t) =
1
N

N∑

i=1

Ẑ
(t−1)
ij (7)

However, we do not obtain a closed-form solution for the αj parameters. We
therefore use the Fisher scoring method to estimate these parameters [1]. The
inconvenient of this approach is that it involves the inverse of the (dim + 1) ×
(dim +1) Fisher information matrix which is not easy to compute especially for
high-dimensional data. One of reasons of the popularity of the EM algorithm
is that the M-step involves only complete-data ML estimation. But, if the M-
Step is complicated as in the case of the Dirichlet mixture, the EM algorithm
becomes less attractive. In many cases, however, the ML estimation is simpler
if maximization is undertaken conditional on some functions of the parameters.
For this goal, Meng and Rubin [3] introduced an algorithm called ECM which
replaces a complicated M-step of the EM algorithm with several computationally
simpler CM-Steps. As a consequence the ECM converges more slowly than the
EM in terms of number of iterations, but can be faster in total computer time.
Another important advantage of the ECM is the preservation of the convergence
properties of the EM, such as its monotone convergence. Now, we focus on the
use of this algorithm for the estimation of Dirichlet mixture.
By substituting Eq. 2 in Eq. 1, the Dirichlet distribution can be written as the
following:

p(X||α|, µ) =
Γ (|α|)

∏dim+1
i=1 Γ (µi|α|)

dim+1∏

i=1

X
µi|α|−1
i (8)

where µ = (µ1, . . . , µdim+1). By this reparameterization, the parameters of the
Dirichlet mixture to estimate will be ξ = (µ1, . . . , µM , |α1|, . . . , |αM |, p(1), . . . ,
p(M)). This set of parameters can be divided into three subsets ξ1 = (|α1|, . . . , |
αM |), ξ2 = (µ1, . . . , µM ), and ξ3 = (p(1), . . . , p(M)). Then, the different pa-
rameters ξ1, ξ2 and ξ3 can be calculated independently. The likelihood for ξ1

alone is:

p(X|ξ1) ∝
N∏

i=1

[ M∑

j=1

p(j)
Γ (|αj |)

∏dim+1
l=1 Γ (µjl|αj |)

dim+1∏

l=1

X
µjl|αj |−1
il

]

(9)
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For the estimation of |αj |, we use a Newton-Raphson method:

|αj |(t) = |αj |(t−1) −
(

∂2logp(X|ξ(t−1)
1 )

∂2|αj |
)−1

∂logp(X|ξ(t−1)
1 )

∂|αj | (10)

The likelihood for ξ2 alone is:

p(X|ξ2) ∝
N∏

i=1

[ M∑

j=1

p(j)
dim+1∏

l=1

X
µjl|αj |−1
il

Γ (µjl|αj |)
]

(11)

By maximizing p(X|ξ2) taking into account the constraint
∑dim+1

l=1 µjl = 1, we
obtain:

µ
(t)
jl =

µ
(t−1)
jl

∑N
i=1 p(µj

(t−1)|Xi)

(

log(Xil) − Ψ(µ
(t−1)
jl |αj |(t))

)

∑dim+1
l=1

[

µ
(t−1)
jl

∑N
i=1 p(µj

(t−1)|Xi)

(

log(Xil) − Ψ(µ
(t−1)
jl |αj |(t))

)] (12)

Then, on the iteration t of the ECM algorithm, the E-Step is the same as given
above for the EM algorithm, but the M-Step is replaced by three CM-Steps, as
follows:

– CM-Step1: Calculate ξ
(t)
1 using Eq. 10 with ξ2 fixed at ξ

(t−1)
2 and ξ3 fixed

at ξ
(t−1)
3 .

– CM-Step2: Calculate ξ
(t)
2 using Eq. 12 with ξ1 fixed at ξ

(t)
1 and ξ3 fixed at

ξ
(t−1)
3 .

– CM-Step2: Calculate ξ
(t)
3 using Eq. 7 with ξ1 fixed at ξ

(t)
1 and ξ2 fixed at

ξ
(t)
2 .

3 MML Approach for the Determination of the Number
of Clusters

3.1 MML Principle

Let us consider a set of data X controlled by a mixture of distributions with
vector of parameters ξ. According to information theory [4], the optimal number
of clusters of the mixture is that which requires a minimum amount of informa-
tion, measured in nats, to transmit X efficiently from a sender to a receiver. The
message length is defined as minus the logarithm of the posterior probability.

MessLen = −log(P (ξ|X )) (13)

The MML principle has strong connections with Bayesian inference, and hence
uses an explicit prior distribution over parameter values. Wallace [5] and Baxter
[6] give us the formula for the message length for a mixture of distributions:
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MessLen � −log(h(ξ)) − log(p(X|ξ)) +
1
2
log(|F (ξ)|) − Np

2
log(12) +

Np

2
(14)

where h(ξ) is the prior probability, p(X|ξ) is the likelihood, and |F (ξ)| is the
Fisher information, defined as the determinant of the Hessian matrix of minus
the log-likelihood of the mixture. Np is the number of parameters to be estimated
and is equal to M(dim+3) in our case. The estimation of the number of clusters
is carried out by finding the minimum with regards to ξ of the message length
MessLen. We will determine the expression of MML for a Dirichlet mixture.

3.2 Fisher Information for a Mixture of Dirichlet Distributions

Fisher information is the determinant of the Hessian matrix of the logarithm of
minus the likelihood of the mixture. The Hessian matrix of a mixture leads to
a complicated analytical form of MML which cannot be easily reproduced. We
will approximate this matrix by formulating two assumptions, as follows. First,
it should be recalled that (ξ1, ξ2) and ξ3 are independent because any prior idea
one might have about (ξ1, ξ2) would usually not be greatly influenced by one’s
idea about the value of the mixing parameter vector ξ3. Furthermore, we assume
that ξ1 and ξ2 are also independent. The Fisher information is then [6]:

F (ξ) � F (ξ1)F (ξ2)F (ξ3) (15)

where F (ξ3) is the Fisher information with regards to the probability of the
mixture. F (ξ1) and F (ξ2) are the Fisher information with regards to the vectors
ξ1 and ξ2. In what follows we will compute each of these separately. For F (ξ3), it
should be noted that the mixing parameters satisfy the requirement

∑M
j=1 p(j) =

1. Consequently, it is possible to consider the generalized Bernoulli process with
a series of trials, each of which has M possible outcomes labeled first cluster,
second cluster, ..., M th cluster. The number of trials of the jth cluster is a
multinomial distribution of parameters p(1), p(2), . . . , p(M). In this case, the
determinant of the Fisher information matrix is [6]:

F (ξ3) =
N

∏M
j=1 p(j)

(16)

For F (ξ1) and F (ξ3), we assume that the components of ξ1 and ξ2 are indepen-
dent, then:

F (ξ1) =
M∏

j=1

F (|αj |) (17)

F (ξ2) =
M∏

j=1

F (µj) (18)

let us consider the jth cluster Xj = (X l, . . . , X l+nj−1) of the mixture, where
l ≤ N , with parameters |αj | and µj . The choice of the jth cluster allows us to
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simplify the notation without loss of generality. The Hessian matrix when we
consider the vector µj is given by:

H(µj) =
∂2

∂µjk1∂µjk2

(−logp(Xj|µj)) (19)

where k1 = 1 . . . dim + 1 and k2 = 1 . . . dim + 1. Straight forward manipulations
give us the determinant of the matrix H(µj):

F (µj) = ndim+1
j |αj |2(dim+1)

dim+1∏

k=1

Ψ
′
(µjk|αj |) (20)

By substituting Eq. 20 in Eq. 18 we obtain:

F (ξ2) =
M∏

j=1

(

ndim+1
j |αj |2(dim+1)

dim+1∏

k=1

Ψ
′
(µjk|αj |)

)

(21)

Now we determine the Fisher information when we consider |αj |. The second
derivative is given by:

− ∂2logp(Xj ||αj |)
∂2|αj | = nj

(

− Ψ
′
(|αj |) +

dim+1∑

k=1

µ2
jkΨ

′
(µjk|αj |)

)

(22)

and represent the Fisher information. By substituting Eq. 22 in Eq. 17, we
obtain:

F (ξ1) =
M∏

j=1

nj

(

− Ψ
′
(|αj |) +

dim+1∑

k=1

µ2
jkΨ

′
(µjk|αj |)

)

(23)

Finally the complete Fisher information for the mixture is found by substituting
Eq. 16, Eq. 21 and Eq. 23 in Eq. 15.

3.3 Prior Distribution h(ξ)

The performance of the MML criterion is dependent on the choice of the prior
distribution h(ξ). Several criteria have been proposed for the selection of prior
h(ξ). Following Bayesian inference theory, the prior density of a parameter is
either constant on the whole range of its values or the value range is split into
cells and the prior density is assumed to be constant within each cell. Since ξ1,
ξ2 and ξ3 are independent, we have:

h(ξ) = h(ξ1)h(ξ2)h(ξ3) (24)

We will now define the three densities h(ξ1), h(ξ2), and h(ξ3). The vector ξ3

has M dependent components; i.e. the sum of the mixing parameters is one.
Thus, we omit one of these components, say p(M). The new vector has (M −
1) independent components. We treat the p(j), j = 1 . . .M − 1 as being the
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parameters of a multinomial distribution. With the (M − 1) remaining mixing
parameters, (M − 1)! possible vectors can be formed. Thus, we set the uniform
prior density of ξ3 to [6]:

h(ξ3) =
1

(M − 1)!
(25)

For h(ξ2), since µj , j = 1 . . .M are assumed to be independent:

h(ξ2) =
M∏

j=1

h(µj) (26)

Using the same approach as for the vector ξ3, we set the uniform prior density
of µj to:

h(µj) =
1

dim!
(27)

Indeed,
∑dim+1

k=1 µjk = 1. By substituting Eq. 27 in Eq. 26, we obtain:

h(ξ2) =
1

dim!M
(28)

For h(ξ1), since |αj |, j = 1 . . .M are assumed to be independent:

h(ξ1) =
M∏

j=1

h(|αj|) (29)

We will now calculate h(|αj|). In the absence of other knowledge about the |αj |,
we use the principle of ignorance by assuming that h(|αj |) is locally uniform over
the ranges [0, e3|α̂pop|] (in fact, we know experimentally that |αj | < e3|α̂pop|,
where |α̂pop| is the estimated parameter when we consider the entire population.
We choose the following uniform priors in accordance with Ockham’s razor (a
simple priors which give good results) [7]:

h(|αj |) =
e−3

|α̂pop| (30)

By substituting Eq. 30 in Eq. 29, we obtain

h(ξ1) =
M∏

j=1

e−3

|α̂pop| =
e−3M

|α̂pop|M (31)

By substituting Eq. 31, Eq. 28 and Eq. 25 in Eq. 24, we obtain:

h(ξ) =
e−3M

|α̂pop|M (M − 1)!dim!M
(32)

The expression of MML for a finite mixture of Dirichlet distributions is obtained
by substituting Eq. 32 and Eq. 15 in Eq. 14.
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3.4 Estimation and Selection Algorithm

The algorithm of selection and estimation is thus as follows:

Algorithm
For each candidate value of M :

1. Initialization
2. E-Step: Compute the posterior probabilities:

Ẑij = p(Xi|αj)p(j)
∑ M

j=1 p(Xi|,αj)p(j)

3. CM-Steps:
(a) CM-Step1: Calculate ξ

(t)
1 using Eq. 10 with ξ2 fixed at ξ

(t−1)
2 and ξ3

fixed at ξ
(t−1)
3 .

(b) CM-Step2: Calculate ξ
(t)
2 using Eq. 12 with ξ1 fixed at ξ

(t)
1 and ξ3 fixed

at ξ
(t−1)
3 .

(c) CM-Step2: Calculate ξ
(t)
3 using Eq. 7 with ξ1 fixed at ξ

(t)
1 and ξ2 fixed

at ξ
(t)
2 .

4. If the convergence test is passed, terminate, else go to 2.
5. Calculate the associated criterion MML(M) using Eq. 14.
6. Select the optimal model M∗ such that: M∗ = arg minM MML(M)

details about the initialization algorithm can be found in [1]. The convergence
test can involve the stabilization of the parameters or the likelihood function.

4 Experimental Results

The application concerns the summarization of image databases. Interactions be-
tween users and multimedia databases can involve queries like “Retrieve images
that are similar to this image”. A number of techniques have been developed to
handle pictorial queries. Summarizing the database is very important because it
simplifies the task of retrieval by restricting the search for similar images to a
smaller domain of the database. Summarization is also very efficient for brows-
ing. Knowing the categories of images in a given database allows the user to find
the images he or she is looking for more quickly. Using mixture decomposition,
we can find natural groupings of images and represent each group by the most
representative image in the group. In other words, after appropriate features are
extracted from the images, it allows us to partition the feature space into regions
that are relatively homogeneous with respect to the chosen set of features. By
identifying the homogeneous regions in the feature space, the task of summariza-
tion is accomplished. For the experiment, we used the Vistex gray-level texture
database obtained from the MIT Media Lab. In our experimental framework,
each of the 512 × 512 images from the Vistex database was divided into 64
× 64 images. Since each 512 × 512 “mother image” contributes 64 images to
our database, ideally all of the 64 images should be classified in the same class.
In the experiment, six homogeneous texture groups, “Bark”, “Fabric”, “Food”,
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(a) (b) (c) (d) (e) (f)

Fig. 1. Sample images from each group. (a) Bark, (b) Fabric, (c) Food, (d) Metal, (e)

Sand, (f) Water.

Table 1. Number of clusters found by three criteria (MML, MDL and AIC)

Number of clusters MML MDL AIC

1 -12945.10 -12951.40 -12974.90
2 -12951.12 -13001.52 -13019.12
3 -12960.34 -13080.37 -13094.23
4 -13000.76 -13206.73 -13225.57
5 -13245.18 -13574.98 -13591.04
6 -13765.04 -13570.09 -13587.64
7 -13456.71 -13493.50 -13519.50
8 -13398.16 -13387.56 -13405.92
9 -13402.64 -13125.41 -13141.95
10 -13100.82 -13001.80 -13020.23

Table 2. Confusion matrix for image classification by a Dirichlet mixture

Bark Fabric Food Metal Sand Water

Bark 250 0 0 0 6 0
Fabric 0 248 8 0 0 0
Food 0 9 375 0 0 0
Metal 0 0 0 250 0 6
Sand 4 0 0 0 380 0
Water 3 0 0 7 2 372

“Metal”, “Water” and “Sand” were used to create a new database. A database
with 1920 images of size 64 × 64 pixels was obtained. Four images from each
of the Bark, Fabric and Metal texture groups and 6 images from Water, Food
and Sand were used. Examples of images from each of the categories are shown
in Fig. 1. In order to determine the vector of characteristics for each image,
we used the cooccurrence matrix introduced by Haralick et al. [8]. For relevant
representation of texture, many cooccurrences should be computed, each one
considering a given neighborhood and direction. In our application, we have
considered the following four neighborhoods: (1; 0), (1; π

4 ), (1; π
2 ), and (1; 3π

4 ).
For each of these neighborhoods, we calculated the corresponding cooccurrence
matrix, then derived from it the following features: Mean, Energy, Contrast, and
Homogeneity [9]. Thus, each image was represented by a 16D feature vector. By
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Table 3. Confusion matrix for image classification by a Gaussian mixture

Bark Fabric Food Metal Sand Water

Bark 240 0 0 3 8 5
Fabric 0 236 12 0 4 4
Food 0 12 365 4 0 3
Metal 0 2 2 242 4 6
Sand 8 2 0 0 370 4
Water 5 1 0 10 5 363

applying our algorithm to the texture database using MML and other different
selection selection criteria such that MDL and AIC [2], only the MML criterion
found six categories (see Table 1). In what follows we use the selection found
by the MML. The classification was performed using the Bayesian decision rule
after the class-conditional densities were estimated. The confusion matrix for
the texture image classification is given in Table 2. In this confusion matrix, the
cell (classi, classj) represents the number of images from classi which are clas-
sified as classj. The number of images misclassified was small: 45 in all, which
represents an accuracy of 97.65 percent. From Table 2, we can see clearly that
the errors are due essentially to the presence of macrotexture, i.e., the texture at
large scale, (between Fabric and Food for example) or because of microtexture,
i.e., the texture at pixel level (between Metal and Water for example). Table 3
shows the confusion matrix for the Gaussian mixture.

5 Conclusion

In this paper, we have proposed a new method based on the ECM algorithm to
estimate the parameters of a Dirichlet mixture. The ECM algorithm replaces a
complicated M-step of the EM algorithm with several computationally simpler
CM-Steps. The number of clusters is determined using an MML-based approach.
From the experimental results, we can say that the Dirichlet distribution offers
strong modeling capabilities.
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