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Abstract. It is widely believed in the pattern recognition field that the number 
of examples needed to achieve an acceptable level of generalization ability de-
pends on the number of independent parameters needed to specify the network 
configuration. The paper presents a neural network for classification of high-
dimensional patterns. The network architecture proposed here uses a layer 
which extracts the global features of patterns. The layer contains neurons whose 
weights are induced by a neural subnetwork. The method reduces the number of 
independent parameters describing the layer to the parameters describing the 
inducing subnetwork. 

1   Introduction 

The great potential of the neural networks is most frequently used in pattern  recogni-
tion. The most challenging problem here is achieving the proper  generalization. 
Typical images and time-series are usually large, often with several hundred vari-
ables. Fully connected, unrestricted networks do not work well as far as recognizing 
such large patterns is concerned. 

The number of examples needed to achieve an acceptable level of generalization  
ability is dependent on the intrinsic entropy of the chosen architecture, and can be  
decreased by reducing the number of independent parameters needed to specify the 
network configuration. One of the ways to improve generalization is a reduction of  
the network structure on the base of a pruning algorithm (e.g. the Optimal Brain  
Damage [7]).  

Another deficiency of the fully-connected architectures is that the topology of the  
inputs is entirely ignored. In fact, images have a strong 2D structure, while time-series 
have a strong 1D structure. Pixels, or variables, spatially or temporally adjacent are 
correlated.  

The application of a specialized network architecture, instead of a fully-connected 
net, can reduce the number of free parameters. 

There are many papers that propose specialized network architectures for the  rec-
ognition of large patterns. Convolutional networks, for instance, use the techniques of 
local receptive fields and shared weights. These networks extract and combine  local 
features of pattern [4,5]. Principal component analysis transforms a number of corre-
lated variables into a smaller number of uncorrelated variables called principal com-
ponents and is frequently adopted for dimensionality reduction [1]. 
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The idea that has been followed in the IWANN is based on the invention of  dy-
namically-calculated weights, which results in giving the individual neurons the abil-
ity to transform large patterns, using only a limited number of parameters describing 
their connection weights. The proposed network architecture extracts and transforms 
the global features of the patterns. 

2   Network Architecture 

The IWANN network makes use of dynamically-calculated connection weights. As  a 
result, the number of parameters describing neural network connections is reduced. 

 

Fig. 1. Induced weights network scheme 

The input layer of the network proposed can be one- or multidimensional, and every 
neuron in this layer is described by its geometric position.  

The layer is a data source for the induced weights layer. It contains radial basis  
neurons which apply the Gaussian transformation function. The input of this radial 
basis transformation function is the Euclidean distance between the input vector and 
the vector of weights calculated by the inducing subnetwork, multiplied by the bias.  
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where, )1(
iy output of the i-th neuron in induced weights layer, ()ϕ  Gaussian  trans-

formation function, )1(
ib bias of neuron, )(M

jiy
&

& output of neuron in output (M-th) layer 

of inducing network equal to the weight of the j-th input of the i-th neuron of the  in-

duced layer, and ( )o
jy output of j-th input neuron – network input. 

The task of the inducing neural subnetwork consists in positioning of high-
dimensional centers. The inducing network is a multilayer perceptron: 
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where,  )(m
jiy &&  output of i-th neuron in the m-th layer for j-th network input, ( )m

ikw &&  

weight of the k-th input of the i-th neuron in m-th layer. 
The number of neurons in the inducing network output layer is equal to the number 

of neurons in the induced weights layer. Geometrical positions of neurons in the input 
layer are introduced to the input layer of the inducing neural network: 

jkjky χ=)0(&      (3) 

where, )0(
jky& value of inducing network k-th input, jkχ - k-th coordinate of j-th input 

neuron 
The inducing network calculates connection weights between every neuron in the  

induced and input layer by using coordinates’ values of the input neurons. 
Remaining output layers of the IWANN network are perceptron layers: 
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where, )(m
iy output i-th neuron from m-th layer (m>1), ( )m

ikw &&  weight of the k-th input 

of the i-th neuron from m-th layer. 
The similar idea is used in the mixture of experts model, were weights of the gating 

function depend on the output of the gating network [2,3]. However, in the ME  algo-
rithm, the input of gating network are the global network inputs’ values and not geo-
metrical coordinates of these inputs. Furthermore, the gating function is a linear or 
non-linear weight function, while the induced layer uses a distance function. 

3   Learning Algorithm 

We can express the training error E as a function (5). If the transformation functions 
used in the network are continuous and differentiable, it is possible to calculate  de-
rivatives of this error function. Therefore, the proposed network can trained with the 
use of gradient learning methods. 
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where, id  and ( )M
iy   are the target and output values for training example. 

The gradient of the error function specifies the vector in whose direction the great-
est increase in E can be obtained. Our aim is to calculate the partial derivatives of er-
ror function for each weight of the network. The algorithm to calculate the error  de-
rivatives for perceptron output layers is well-known:   
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where, )(m
iδ signal error of i-th neuron in m-th perceptron layer, )1( +m

kδ signal  error 

of k-th neuron in next layer, )1( +m
kiw connection weight between i-th neuron in current 

layer and k-th neuron in the next layer, )(m
ikw weight of the i-th input of the k-th   neu-

ron in the current layer, ( )1−m
ky output of neuron in the previous layer. 

Applying the algorithm, we can obtain signal errors for the neurons of the induced 
layer, and the derivatives for biases of these neurons: 
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The values of signal error may be used to calculate errors of neurons in the output 
layer of the inducing network.  They have to be calculated individually for every j-th 
input of the induced layer: 
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Signal errors of neurons in the remaining layers are calculated by using the same 
backpropagation method as in (6). 

The derivatives for the weights of a neuron of the inducing network are the sums of 
the derivatives calculated for every j-th input of the network: 
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Owing to the evaluation of these derivatives, various gradient-based optimization 
methods can be utilized (e.g. QuickProp, RPROP).  
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4   Experiments 

The proposed neural network was applied to classification of one- and  two-
dimensional patterns. The first dataset consisted of 200 artificially generated  one-
dimensional patterns of size 100. These data were evenly divided into the training and 
test sets. The dataset contained four classes of patterns. Figure 2a shows examples of 
patterns in the dataset. 

 

 

Fig. 2.  Classes of patterns in dataset 1 (a) and dataset 2 (b) 

The base patterns were randomly scaled (60÷140%), translated horizontally (±25) 
and vertically (±0.25).  

The architecture of the neural network consisted of an induced layer with 4 neu-
rons and an output perceptron layer with 4 neurons. The inducing subnetwork was  a 
multilayer perceptron. This neural network consisted of three layers and the number 
of  neurons in the hidden layer was 10. The error function was minimized by the 
RPROP method [6]. The training was stopped after 340 epochs.  At the end of the 
training, the mean square error was 0.0022 and the percentage of wrong classifica-
tions was below 1%.  Results of a classic multilayer perceptron with the optimized 
structure (100x20x4) were 0.0352 (MSE) and 16% (wrong classifications). 

The second dataset consisted of 200 two-dimensional patterns of size 50x50. The  
patterns were evenly divided into the six classes and into the training and test datasets.  

Figure 4b contains examples of patterns in the six classes. The base patterns were 
randomly transformed by rotation (±5°) and translation of polygons vertexes (±5 pix-
els). Uniformly distributed random noise was introduced to patterns at the level of 
20%.  

The network consisted of the induced layer with 10 neurons, the output layer with 
6 neurons and the inducing subnetwork with 25 neurons in the hidden layer. 

The network was trained by the RPROP method [6]. After 1230 epochs the mean 
square error was 0.0034 and the percentage of wrong classifications was  equal to 3%. 
Results of the multilayer perceptron (2500x40x6) were 0.1134 and 41%. 
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5   Conclusions 

The experiments described in this paper show that the IWANN network is a suitable 
model for the classification of large patterns.  The presented algorithm may be of 
great help to the network designers in their time-consuming task of preprocessing the 
patterns.  The method reduces the number of independent parameters of the induced 
layer to the parameters describing the biases of neurons in this layer and parameters 
describing the inducing subnetwork. Owing to this, it is possible to obtain satisfactory 
results of classification for high-dimensional patterns with the help of a limited  num-
ber of learning examples. 
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