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Preface 

This volume is the first part of the two-volume proceedings of the International Con-
ference on Artificial Neural Networks (ICANN 2005), held on September 11–15, 
2005 in Warsaw, Poland, with several accompanying workshops held on September 
15, 2005 at the Nicolaus Copernicus University, Toru , Poland. 

The ICANN conference is an annual meeting organized by the European Neural 
Network Society in cooperation with the International Neural Network Society, the 
Japanese Neural Network Society, and the IEEE Computational Intelligence Society. 
It is the premier European event covering all topics concerned with neural networks 
and related areas. The ICANN series of conferences was initiated in 1991 and soon 
became the major European gathering for experts in those fields. 

In 2005 the ICANN conference was organized by the Systems Research Institute, 
Polish Academy of Sciences, Warsaw, Poland, and the Nicolaus Copernicus Univer-
sity, Toru , Poland. 

From over 600 papers submitted to the regular sessions and some 10 special con-
ference sessions, the International Program Committee selected – after a thorough 
peer-review process – about 270 papers for publication. The large number of papers 
accepted is certainly a proof of the vitality and attractiveness of the field of artificial 
neural networks, but it also shows a strong interest in the ICANN conferences. Be-
cause of their reputation as high-level conferences, the ICANN conferences rarely 
receive papers of a poor quality and thus their rejection rate may be not as high as that 
of some other conferences. A large number of accepted papers meant that we had to 
publish the proceedings in two volumes. Papers presented at the post-conference 
workshops will be published separately. 

The first of these volumes, Artificial Neural Networks: Biological Inspirations, is 
primarily concerned with issues related to models of biological functions, spiking 
neurons, understanding real brain processes, development of cognitive powers, and 
inspiration from such models for the development and application of artificial neural 
networks in information technologies, modeling perception and other biological proc-
esses. This volume covers dynamical models of single spiking neurons, their assem-
blies, population coding, models of neocortex, cerebellum and subcortical brain struc-
tures, brain–computer interfaces, and also the development of associative memories, 
natural language processing and other higher cognitive processes in human beings and 
other living organisms. Papers on self-organizing maps, evolutionary processes, and 
cooperative biological behavior, with some applications, are also included. Natural 
perception, computer vision, recognition and detection of faces and other natural 
patterns, and sound and speech signal analysis are the topics of many contributions in 
this volume. Some papers on bioinformatics, bioengineering and biomedical applica-
tions are also included in this volume. 

The second volume, Artificial Neural Networks: Formal Models and Their Appli-
cations, is mainly concerned with new paradigms, architectures and formal models 
of artificial neural networks that can provide efficient tools and techniques to model 
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a great array of non-trivial real-world problems. All areas that are of interest to the 
neural network community are covered, although many computational algorithms 
discussed in this volume are only remotely inspired by neural networks. A perennial 
question that the editors and reviewers always face is: how to define the boundary or 
the limits of a field? What should still be classified as an artificial neural network 
and what should be left out as a general algorithm that is presented in the network 
form? There are no clear-cut answers to these questions. Support vector machines 
and kernel-based methods are well established at neural network conferences al-
though their connections with neural networks are only of a historical interest. Com-
putational learning theory, approximation theory, stochastic optimization and other 
branches of statistics and mathematics are also of interest to many neural network 
experts. Thus, instead of asking: Is this still a neural method?, we have rather 
adopted a policy of accepting all high-quality papers that could be of interest to the 
neural network community.  

A considerable part of the second volume is devoted to learning in its many forms, 
such as unsupervised and supervised learning, reinforcement learning, Bayesian learn-
ing, inductive learning, ensemble learning, and their applications. Many papers are 
devoted to the important topics in classification and clustering, data fusion from vari-
ous sources, applications to systems modeling, decision making, optimization, con-
trol, prediction and forecasting, speech and text analysis and processing, multimedia 
systems, applications to various games, and other topics. A section on knowledge 
extraction from neural networks shows that such models are not always opaque, black 
boxes. A few papers present also algorithms for fuzzy rule extraction using neural 
approaches. Descriptions of several hardware implementations of different neural 
algorithms are also included. Altogether this volume presents a variety of theoretical 
results and applications covering most areas that the neural network community may 
be interested in.  

We would like to thank, first of all, Ms. Magdalena Gola and Ms. Anna Wilbik for 
their great contribution in the preparation of the proceedings. Moreover, Ms. Magda-
lena Gola, Ms. Anna Wilbik, and Ms. Krystyna Warzywoda, with her team, deserve 
our sincere thanks for their help in the organization of the conference. Finally, we 
wish to thank Mr. Alfred Hofmann, Ms. Anna Kramer and Ms. Ursula Barth from 
Springer for their help and collaboration in this demanding publication project. 

 
 

July 2005                W. Duch, J. Kacprzyk, E. Oja, S. Zadro ny 



Table of Contents – Part II

Formal Models and Their Applications

New Neural Network Models

Neuro-fuzzy Kolmogorov’s Network
Yevgeniy Bodyanskiy, Yevgen Gorshkov, Vitaliy Kolodyazhniy,
Valeriya Poyedyntseva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A Neural Network Model for Inter-problem Adaptive Online Time
Allocation

Matteo Gagliolo, Jürgen Schmidhuber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Discriminant Parallel Perceptrons
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Ariel Garćıa-Gamboa, Neil Hernández-Gress,
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Nonlinear Relational Markov Networks with an Application to the
Game of Go

Tapani Raiko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989

Flexible Decision Process for Astronauts in Marsbase Simulator
Jean Marc Salotti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997

Issues in Hardware Implementation

Tolerance of Radial Basis Functions Against Stuck-At-Faults
Ralf Eickhoff, Ulrich Rückert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003

The Role of Membrane Threshold and Rate in STDP Silicon Neuron
Circuit Simulation

Juan Huo, Alan Murray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009

Systolic Realization of Kohonen Neural Network
Jacek Mazurkiewicz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015

A Real-Time, FPGA Based, Biologically Plausible Neural Network
Processor

Martin Pearson, Ian Gilhespy, Kevin Gurney, Chris Melhuish,
Benjamin Mitchinson, Mokhtar Nibouche, Anthony Pipe . . . . . . . . . . . . 1021

Balancing Guidance Range and Strength Optimizes Self-organization
by Silicon Growth Cones

Brian Taba, Kwabena Boahen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027

Acknowledgements to the Reviewers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039



Table of Contents – Part I

Biological Inspirations

Modeling the Brain and Cognitive Functions

Novelty Analysis in Dynamic Scene for Autonomous Mental
Development

Sang-Woo Ban, Minho Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

The Computational Model to Simulate the Progress of Perceiving
Patterns in Neuron Population

Wen-Chuang Chou, Tsung-Ying Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Short Term Memory and Pattern Matching with Simple Echo State
Networks

Georg Fette, Julian Eggert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Analytical Solution for Dynamic of Neuronal Populations
Wentao Huang, Licheng Jiao, Shiping Ma, Yuelei Xu . . . . . . . . . . . . . . 19

Dynamics of Cortical Columns – Sensitive Decision Making
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Abstract. A new computationally efficient learning algorithm for a hybrid sys-
tem called further Neuro-Fuzzy Kolmogorov's Network (NFKN) is proposed. 
The NFKN is based on and is the development of the previously proposed neu-
ral and fuzzy systems using the famous superposition theorem by A.N. Kolmo-
gorov (KST). The network consists of two layers of neo-fuzzy neurons (NFNs) 
and is linear in both the hidden and output layer parameters, so it can be trained 
with very fast and simple procedures. The validity of theoretical results and the 
advantages of the NFKN in comparison with other techniques are confirmed by 
experiments. 

1   Introduction 

According to the Kolmogorov's superposition theorem (KST) [1], any continuous 
function of d variables can be exactly represented by superposition of continuous 
functions of one variable and addition: 

+
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illd xgxxf ψ , (1) 

where )(•lg  and )(, •ilψ  are some continuous univariate functions, and )(, •ilψ  are 

independent of f. Aside from the exact representation, the KST can be used as the 
basis for the construction of parsimonious universal approximators, and has thus at-
tracted the attention of many researchers in the field of soft computing. 

Hecht-Nielsen was the first to propose a neural network implementation of KST 
[2], but did not consider how such a network can be constructed. Computational as-
pects of approximate version of KST were studied by Sprecher [3, 4] and K rková 
[5]. Igelnik and Parikh [6] proposed the use of spline functions for the construction of 
Kolmogorov's approximation. Yam et al [7] proposed the multi-resolution approach 
to fuzzy control, based on the KST, and proved that the KST representation can be 
realized by a two-stage rule base, but did not demonstrate how such a rule base could 
be created from data. Lopez-Gomez and Hirota developed the Fuzzy Functional Link 
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Network (FFLN) [8] based on the fuzzy extension of the Kolmogorov's theorem. The 
FFLN is trained via fuzzy delta rule, whose convergence can be quite slow. In [9, 10], 
a novel KST-based universal approximator called Fuzzy Kolmogorov's Network 
(FKN) with simple structure and training procedure with high rate of convergence 
was proposed. However, this training algorithm may require a large number of com-
putations in the problems of high dimensionality. In this paper we propose an efficient 
and computationally simple learning algorithm, whose complexity depends linearly 
on the dimensionality of the input space. 

2   Network Architecture 

The NFKN is comprised of two layers of neo-fuzzy neurons (NFNs) [11] and is de-
scribed by the following equations: 
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where n is the number of hidden layer neurons, )( ],1[]2[ l
l of  is the l-th nonlinear syn-

apse in the output layer, ],1[ lo  is the output of the l-th NFN in the hidden layer, 

)(],1[
i

l
i xf  is the i-th nonlinear synapse of the l-th NFN in the hidden layer. 

The equations for the hidden and output layer synapses are 
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where 1m  and 2m  is the number of membership functions (MFs) per input in the 

hidden and output layers respectively, )(]1[
, ihi xμ and )( ],1[]2[

,
l

jl oμ  are the MFs, ],1[
,

l
hiw  and 

]2[
, jlw  are tunable weights. We assume that the MFs are triangular and equidistantly 

spaced over the range of each NFN input. The parameters of the MFs are not tuned. 
Nonlinear synapse is a single input-single output fuzzy inference system with crisp 

consequents, and is thus a universal approximator [12] of univariate functions. It can 
provide a piecewise-linear approximation of any functions )(•lg  and )(, •ilψ  in (1). 

So the NFKN, in turn, can approximate any function ),,( 1 dxxf . 

The output of the NFKN is computed as the result of two-stage fuzzy inference: 
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The description (4) corresponds to the following two-level fuzzy rule base:  
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3   Learning Algorithm 

The weights of the NFKN are determined by means of a batch-training algorithm as 
described below. A training set containing N samples is used. The minimized error 
function is 
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where [ ]TNyyY )(,),1(=  is the vector of target values, and 

[ ]TNtytytY ),(ˆ,),1,(ˆ)(ˆ =  is the vector of network outputs at epoch t. 

Since the nonlinear synapses (3) are linear in parameters, we can employ direct lin-
ear least squares (LS) optimization for the estimation of the output layer weights. To 
formulate the LS problem for the output layer, re-write (4) as 
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(8) 

and introduce the following regressor matrix of dimensionality nmdN ⋅⋅× 1
: 

[ ]TNoo ))((,)),1(( ]1[]2[]1[]2[]2[ ϕϕ=Φ . 
(9) 

Then the LS solution is [9, 10]: 
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The solution (10) is not unique when the matrix ]2[]2[ ΦΦ
T

 is singular. To avoid 
this, instead of (10) at every epoch t we will find 
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where η  is the regularization parameter with typical value 510−=η . 

Introducing the regressor matrix of the hidden layer 

[ ]T
Nxx ))((,)),1(( ]1[]1[]1[ ϕϕ=Φ , we can now obtain the expression for the gradient 

of the error function with respect to the hidden layer weights at the epoch t: 
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and then use the well-known gradient-based technique to update these weights: 
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where )(tγ  is the adjustable learning rate, and 
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and )( ],1[]2[ l
l oa  is determined as proposed in [9, 10] 
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where ]2[
, plw  and ]2[

, plc  are the weight and center of the p-th MF in the l-th synapse of 

the output layer neuron, respectively. The MFs in an NFN are chosen such that only 
two adjacent MFs p and p+1 fire at a time [11]. 

Thus, the NFKN is trained via a two-stage optimization procedure without any 
nonlinear operations, similar to the ANFIS learning rule for the Sugeno-type fuzzy 
inference systems [13]. In the forward pass, the output layer weights are calculated. In 
the backward pass, the hidden layer weights are calculated. 

The hidden layer weights are initialized deterministically as proposed in [9, 10]: 

[ ]
−

−+−−=
)1(

1)1(
exp

1

1],1[
, nmd

hlmi
w l

ih , 1,,1 mh = , di ,,1= , nl ,,1= . (16) 

4   Simulation Results 

To verify the theoretical results and compare the performance of the proposed net-
work to the known approaches, we have carried out two experiments: two spirals 
classification [14, 13] and Mackey-Glass time series prediction [15].  

In the first experiment, the goal was to classify the given input coordinates as be-
longing to one of the two spirals. The NFKN contained 8 neurons in the hidden layer 
with 6 MFs per input, 1 neuron in the output layer with 8 MFs per synapse. The re-
sults were compared with those obtained with the FKN [9], a two-hidden layer MLP 
trained with the Levenberg-Marquardt algorithm, the Neuro-Fuzzy Classifier (NFC) 
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[13], and the cascade correlation (CC) learning architecture [14]. The experiment for 
the MLP was repeated 10 times (each time with a different random initialization). 
Because of the deterministic initialization according to ( ), the experiments for the 
FKN and NFKN were not repeated. 

As is shown in Table 1, the NFKN reached 0 classification errors after 13 epoch of 
training, and thus outperformed all the compared approaches, including the FKN. 

Table 1. Results of two spirals classification 

Network Parameters Epochs Runs Errors 
min 

Errors 
max 

Errors 
average 

NFKN 160 13 1 0 0 0 
FKN 160 17 1 0 0 0 
MLP 151 200 10 0 12 4 
NFC 446 200 1 0 0 0 
CC N/A (12-19 

hidden units) 
1700 100 0 0 0 

The Mackey-Glass time series was generated by the equation [15] 
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)(2.0)(
10 ty

ty

ty

dt

tdy −
−+

−=
τ

τ
 

(17) 

for 1200,...,0=t  with the initial condition 2.1)0( =y  and delay 17=τ . The values 

)6(),12(),18( −−− tytyty , and )(ty  were used to predict )6( +ty . From the gener-

ated data, 500 values for 617,...,118=t  were used as the training data set, and the 
next 500 for 1117,...,618=t  as the checking data set. 

The NFKN used for prediction had 4 inputs, 9 neurons in the hidden layer with 3 
MFs per input, and 1 neuron in the output layer with 5 MFs per synapse (153 adjust-
able parameters altogether). It demonstrated similar performance as the FKN with the 
same structure [10]. Both networks were trained for 50 epochs. 

Root mean squared error on the training and checking sets (trnRMSE and 
chkRMSE) was used to estimate the accuracy of predictions (see Table 2). 

Table 2. Results of Mackey-Glass time series prediction 

Network Parameters Epochs trnRMSE chkRMSE 
FKN 153 50 0.0028291 0.004645 
NFKN 153 50 0.0036211 0.0056408 

Providing roughly similar performance as the FKN, the NFKN requires much less 
computations as it does not require matrix inversion for the tuning of the hidden 
layer. 

16
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5   Conclusion 

In the paper, a new simple and efficient training algorithm for the NFKN was pro-
posed. The NFKN contains the neo-fuzzy neurons in both the hidden and output layer 
and is not affected by the curse of dimensionality because of its two-level structure. 
The use of the neo-fuzzy neurons enabled us to develop fast training procedures for 
all the parameters in the NFKN. 
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Abstract. One aim of Meta-learning techniques is to minimize the time needed
for problem solving, and the effort of parameter hand-tuning, by automating algo-
rithm selection. The predictive model of algorithm performance needed for task
often requires long training times. We address the problem in an online fashion,
running multiple algorithms in parallel on a sequence of tasks, continually up-
dating their relative priorities according to a neural model that maps their current
state to the expected time to the solution. The model itself is updated at the end of
each task, based on the actual performance of each algorithm. Censored sampling
allows us to train the model effectively, without need of additional exploration
after each task’s solution. We present a preliminary experiment in which this
new inter-problem technique learns to outperform a previously proposed intra-
problem heuristic.

1 Problem Statement

A typical machine learning scenario involves a (possibly inexperienced) practitioner
trying to cope with a set of problems, that could be solved, in principle, using one
element of a set of available algorithms. While most users still solve such dilemmas
by trial and error, or by blindly applying some unquestioned rule-of-thumb, the steadily
growing area of Meta-Learning [1] research is devoted to automating this process. Apart
from a few notable exceptions (e.g. [2,3,4,5], see [6], of which we adopt the notation
and terminology, for a commented bibliography), most existing techniques amount to
the selection of a single candidate solver (e.g. Algorithm recommendation [7]), or a
small subset of the available algorithms to be run in parallel with the same priority (e.g.
Algorithm portfolio selection [8]). This approach usually requires a long training phase,
which can be prohibitive if the algorithms at hand are computationally expensive; it also
assumes that the algorithm runtimes can be predicted offline, based on problem features,
and do not exhibit large fluctuations. In more complex cases, where the difficulty of the
problems cannot be precisely predicted a priori, a more robust approach would be to run
the candidate solvers in parallel, adapting their priorities online according to their actual
performance. We termed this Adaptive Online Time Allocation (AOTA) in [6], in which
we further distinguish between intra-problem AOTA, where the prediction of algorithm
performance is made according to some heuristic based on a-priori knowledge about
the algorithm’s behavior; and inter-problem AOTA, in which a time allocation strategy
is learned by collecting experience on a sequence of tasks.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 7–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this work we present an inter-problem approach for training a parametric model
of algorithm runtimes, and give an example of how this model can be used to allo-
cate time online, comparing its performance with the simple intra-problem heuristic
from [6].

2 A Parametric Model for Inter-problem AOTA

Consider a finite algorithm set A containing n algorithms ai, i ∈ I = {1, . . . , n},
applied to the solution of the same problem and running according to some time allo-
cation procedure. Let ti be the time spent on ai; xi a feature vector, possibly including
information about the current problem, the algorithm ai itself (e.g. its kind, the values
of its parameters), and its current state di; Hi = {(x(r)

i , t
(r)
i ), r = 0, . . . , hi} a set of

collected samples of these pairs;H = ∪i∈IHi the historic experience set relative to the
entire A.

In order to allocate machine time efficiently, we would like to map each pair in each
Hi to the time τi still left before ai reaches the solution. If we are allowed to learn such
mapping by solving a sequence of related tasks, we can, for a successful algorithm ai

that solved the problem at time t(hi)
i , a posteriori evaluate the correct τ (r)

i = t
(hi)
i −t(r)

i

for each pair (x(r)
i , t

(r)
i ) in Hi. In a first tentative experiment, that led to poor results,

these values were used as targets to learn a regression from pairs (x, t) to residual time
values τ . The main problem with this approach is which τ values to choose as targets for
the unsuccessful algorithms. Assigning them heuristically would penalize with high τ
values algorithms that were stopped on the point of solving the task, or give incorrectly
low values to algorithms that cannot solve it; obtaining more exact targets τ by running
more algorithms until the end would increase the overhead.

The alternative we present here is inspired by censored sampling for lifetime dis-
tribution estimation [9], and consists in learning a parametric model g(τ |xi, ti;w) of
the conditional probability density function (pdf) of the residual time τ . To see how the
model can be trained, imagine we continue the time allocation for a while after the first
algorithm solves the current task, such that we end up having one or more successful
algorithms ai, with indices i ∈ Is ⊆ I , for whose Hi the correct targets τ (r)

i can be

evaluated as above. Assuming each τ (r)
i to be the outcome of an independent experi-

ment, including t in x to ease notation, if p(x) is the (unknown) pdf of the x(r)
i we can

write the likelihood of Hi as

Li∈Is(Hi) =
hi−1∏
r=0

g(τ (r)
i |x(r)

i ;w)p(x(r)
i ) (1)

For the unsuccessful algorithms, the final time value t(hi)
i recorded in Hi is a lower

bound on the unknown, and possibly infinite, time to solve the problem, and so are the
τ

(r)
i , so to obtain the likelihood we have to integrate (1)

Li/∈Is
(Hi) =

hi−1∏
r=0

[1−G(τ (r)
i |x(r)

i ;w)]p(x(r)
i ) (2)
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whereG(τ |x;w) =
∫ τ

0
g(ξ|x;w)dξ is the conditional cumulative distribution function

(cdf) corresponding to g.
We can then search the value of w that maximizes L(H) =

∏
i∈I L(Hi), or, in a

Bayesian approach, maximize the posterior p(w|H) ∝ L(H |w)p(w). Note that in both
cases the logarithm of these quantities can be maximized, and terms not in w can be
dropped.

To prevent overfitting, and to force the model to have a realistic shape, we can use
some known parametric lifetime model, such as a Weibull distribution [9], with pdf
g(τ |x, t;w) = λββτβ−1e−(λτ)β

and express the dependency on x and w in its two
parameters λ = λ(x;w),β = β(x;w). In the example we present here, these will
be the two outputs of a feed-forward neural network, which will be trained by back-
propagation minimizing the negative logarithm of L(H), whose derivatives are easily
obtainable, in a fashion that is commonly used for modelling conditional distributions
(see e.g. [10], par 6.4).

From the time allocation perspective, one advantage of this approach is that it allows
to learn also from the unsuccessful algorithms, suffering less from the trade-off between
the accuracy of the learned model, and the time spent on learning it.

3 An Example Application

If the estimated model g was the correct one, the time allocation task would be trivial,
as we could allocate all resources to the expected fastest algorithm, i.e., the one with
lower expected run time

∫ +∞
0

τg(τ |x)dτ , periodically re-checking which algorithm is
to be selected given the current states {xi}. In practice, however, the predictive power
of the model depends on the how the current task compares to the ones solved so far,
so trusting it completely would be too risky. In preliminary experiments, we adopted
a time allocation technique similar to the one in ([6]), slicing machine time in small
intervals ΔT , and sharing each ΔT among elements of A according to a distribution
PA = {pi}; the latter is updated at each step based on the current model g, which is
re-trained at the end of each task on the whole history H collected so far, as follows:

for each problem r

while (r not solved)

update {τi} based on current g and current {xi}:
τi =

∫ +∞
0

τg(τ |xi)dτ
update PA = {pi} based on {τi}
for each i = 1..n

run ai for a time piΔT
update xi

end
end
update H
update g maximizing L(H)

end
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To model g we used an Extreme Value distribution1 on the logarithms of time values,
with parameters η(x;w) and δ(x;w) being the two outputs of a feedforward neural
network, with two separate hidden layers of 32 units each, whose weights are obtained
by minimizing the negative logarithm of the Bayesian posterior p(w|H) obtained in
Sect. 2, using 20% of the current historyH as a validation set, and a Cauchy distribution
p(w) = 1/1 + w2 as a prior.

At each cycle of the time allocation, the current expected time τi to the solution
is evaluated for each ai from g(τ |xi;w); these values are ranked in ascending order,
and the current time slice is allocated proportionally to ( log(m+1−j)

log(m) )−ri , ri being the
current rank of ai, m the total number of tasks, j the index of current task (from 1 to
m). In this way the distribution of time is uniform during the first task (when the model
is still untrained), and tends through the task sequence to a sharing pattern in which
the expected fastest solver gets half of the current time slice, the second one gets one
quarter, and so on. We ran some preliminary tests, using the algorithm set A3 from [6],
a set of 76 simple generational Genetic Algorithms [11], differing in population size
(2i, i = 1..19), mutation rate (0 or 0.7/L, L being the genome length) and crossover
operator (uniform or one-point, with rate 0.5 in both cases). We applied these solvers to
a sequence of artificial deceptive problems, such as the “trap” described in [3], consist-
ing of n copies of an m-bit trap function: each m-bit block of a bitstring of length nm
gives a fitness contribution of m if all its bits are 1, and of m − q if q < m bits are 1.
We generated a sequence of 21 different problems, varying the genome length from 30
to 96 and the size of the deceptive block from 2 to 4. The problems were first sorted by
genome length, then by block size, such that the resulting sequence is roughly sorted by
difficulty (see Table 1). The feature vector x included two problem features (genome
length and block size), the algorithm parameters, the current best and average fitness
values, together with their last variation and their current trend, the time spent and its
last increment, for a total of 13 inputs.

We compared the presented inter-problem AOTA with the intra-problem AOTAga,
the most competitive from [6], in which the {τi} were heuristically estimated based on
a simple linear extrapolation of the learning curve. In figure 1 we show the significant
improvement over AOTAga, which by itself already greatly reduces computation time
with respect to a brute-force approach.

4 Conclusions and Future Work

The purpose of this work was to show that a parametric model of algorithm performance
can be learned and used to allocate time efficiently, without requiring a long training
phase. Thanks to the model, the system was able to learn the bits of a-priori knowl-
edge that we had to pre-wire in the intra-problem AOTAga: for example, the fact that
increases in the average fitness are an indicator of potentially good performance. Along
the sequence of tasks, the model gradually became more reliable, and NN-AOTA was

1 If τ is Weibull distributed, l = log τ has Extreme Value distribution g(l) =
1
δ
e{[(l−η)/δ]−e(l−η)/δ}, with parameters δ = 1/β, η = − log λ. The distribution of the log-

arithm of residual times was used to learn a common model for a set of tasks whose solution
times have different orders of magnitude.
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Fig. 1. A comparison between the presented method, labeled NN-AOTA Inter-P, and the intra-
problem AOTAga, on a sequence of 21 tasks. Also shown are the the performances of the (a
priori unknown, different for each problem and for each random seed) fastest solver of the set
(which would be the performance of an ideal AOTA with foresight), labeled UNKNOWN BEST,
and the estimated performance of a brute force approach (running all the algorithms in parallel
until one solves the problem), labeled BRUTE FORCE, which leaves the figure and completes
the task sequence at time 3.3 × 107. The cumulative time spent on the sequence of tasks, i.e. the
total time spent in solving the current and all previous tasks, is plotted against current task index.
Time is measured in fitness function evaluations; values shown are upper 95% confidence limits
calculated on 20 runs.

Table 1. The 21 trap problems used, each listed with its block size m and number of blocks n

m n m n m n

1) 2 15 8) 3 16 15) 4 18
2) 3 8 9) 4 12 16) 2 40
3) 4 6 10) 2 30 17) 3 28
4) 2 20 11) 3 20 18) 4 21
5) 3 12 12) 4 15 19) 2 45
6) 4 9 13) 2 35 20) 3 32
7) 2 25 14) 3 24 21) 4 24
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finally able to outperform AOTAga. In spite of the size of the network used, the obtained
model is not very accurate, due to the variety of the algorithms behavior on the different
tasks; still, it is discriminative enough to be used to rank the algorithms according to
their expected runtimes.

The neural network can be replaced by any parametric model whose learning al-
gorithm is based on gradient descent: in future work, we plan to test a more complex
mixture model [12], in order to obtain more accurate predictions, and even better per-
formances.

As the obtained model is continuous, and can give predictions also before starting
the algorithms (i.e. for ti = 0), it could in principle be used to adapt also the algorithm
set A to the current task, guiding the choice of a set of promising points in parameter
space.

Acknowledgements. This work was supported by SNF grant 16R1GSMLR1.
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Discriminant Parallel Perceptrons
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Abstract. Parallel perceptrons (PPs), a novel approach to committee
machine training requiring minimal communication between outputs and
hidden units, allows the construction of efficient and stable nonlinear
classifiers. In this work we shall explore how to improve their perfor-
mance allowing their output weights to have real values, computed by
applying Fisher’s linear discriminant analysis to the committee machine’s
perceptron outputs. We shall see that the final performance of the re-
sulting classifiers is comparable to that of the more complex and costlier
to train multilayer perceptrons.

1 Introduction

After their heyday in the early sixties, interest in machines made up of Rosen-
blat’s perceptrons greatly decayed. The main reason for this was the lack of
suitable training methods: even if perceptron combinations could provide com-
plex decision boundaries, there were not efficient and robust procedures for con-
structing them. An example of this are the well known committe machines (CM;
[4], chapter 6) for 2–class classification problems. They are made up of an odd
number H of standard perceptrons, the output of the i–th perceptron Pi(X)
over a D–dimensional input pattern X being given by Pi(X) = s(acti(X))
(we assume xD = 1 for bias purposes). Here s(·) denotes the sign function
and acti(X) = Wi · X is the X activation of Pi. The CM output is then
h(X) = s

(∑H
i=1 Pi(X)

)
= s (V(X)), i.e., the sign of the overall perceptron vote

count V(X). Assuming that each X has a class label yX = ±1, X is correctly
classified if yXh(X) = 1. If not, CM training applies Rosenblat’s rule

Wi := Wi + η yXX (1)

to the smallest number of incorrect perceptrons (this number is (1+ |V(X)|)/2);
moreover, this is done for those incorrect perceptrons for which |acti(X)| is
smallest. Although sensible, this training is somewhat unstable and only able
to build not too strong classifiers. A simple but powerful variant of classical
CM training, the so–called parallel perceptrons (PPs), recently introduced by
Auer et al. in [1], allows a very fast construction of more powerful classifiers,
with capabilities close to the more complex (and costlier to train) multilayer

� With partial support of Spain’s CICyT, projects TIC 01–572, TIN2004–07676.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 13–18, 2005.
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14 A. González, I. Cantador, and J.R. Dorronsoro

perceptrons (MLPs). In PP training, (1) is applied to all wrong perceptrons but
the PP key training ingredient is an output stabilization procedure that tries to
keep away from 0 the activation acti(X) of a correct Pi, so that small random
changes on X do not cause its being assigned to another class. More precisely,
when X is correctly classified, but for a given margin γ and a perceptron Pi

we have 0 < yXacti(X) < γ, Rosenblatt’s rule is essentially again applied in
order to push yXacti(X) further away from zero. The value of the margin γ is
also adjusted dynamically so that most of the correctly classified patterns have
activation margins greater than the final γ∗ (see section 2). In spite of their
very simple structure, PPs do have a universal approximation property and, as
shown in [1], provide results in classification and regression problems quite close
to those offered by C4.5 decision trees or MLPs.

There is much work being done in computational learning theory to build
efficient classifiers based on low complexity information processing methods.
This is particularly important for high dimensionality problems, such as those
arising in text mining or bioinformatics. As just mentioned, PPs combine simple
processing with good performance. A natural way to try to get a richer behavior
is to relax their clamping of output weights to 1, allowing these weights to have
real values. In fact, usually PP performance does not depend on the number
of perceptrons used, 3 being typically good enough. For classification problems,
a natural option, that we shall explore in this work, is to use standar linear
discriminant analysis to do so. We shall briefly describe in section 2 the training
of these discriminant PPs as well as their handling of margins, while in section 3
we will numerically analize their performance over several classification problems,
comparing it to that of standard PPs and MLPs. As we shall see, discriminant
PPs will give results somewhat better than those of standard PPs and essentially
similar to those of MLPs.

2 Discriminant PPs

We discuss first perceptron weight and margin updates. Assume that a set W =
(W1, . . . ,WH) of perceptron weights and of Fisher’s weights A = (a1, . . . , aH)t

have been computed. The output hypothesis of the resulting discriminant PP is

h(X) = s
(
A · (P (X)− P̃ )

)
= s

(
H∑
1

ai(Pi(X)− P̃i)

)
,

with P̃ = (P+ +P−)/2 and P± the averages of the perceptron outputs over the
positive and negative classes. We assume that the sign of the A vector has been
adjusted so that a pattern X is correctly classified if yXh(X) = 1. Now,

|(P±)i| ≤
1
N±

∑
X′∈C±

|Pi(X ′)| = 1.

with N± the sizes of the positive and negative classes C±. We can expect in
fact that |(P±)i| < 1 and hence, |P̃i| < 1 too. Therefore, yXai(P (X) − P̃ ) > 0
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Fig. 1. Margin evolution for the thyroid (left) and diabetes datasets. Values depicted
are 10 times 10 fold crossvalidation averages of 500 iteration training runs.

if and only if yXaiP (X) > 0, and if X is not correctly classified, we should
augment yXaiPi(X) over those wrong perceptrons for which yXaiPi(X) < 0.
This is equivalent to augment yXaiacti(X) = yXaiWi ·X , which can be simply
achieved by using again Rosenblatt’s rule (1) adjusted in terms of A:

Wi := Wi + ηs(yXai)X, (2)

for then we have

yXai(Wi + ηs(yXai)X) ·X = yXaiWi ·X + η|yXai||X |2 > yXaiWi ·X.

On the other hand, the margin stabilization of discriminant PPs is essentially
that of standard PPs. More precisely, if X is correctly classified, yXaiPi(X) > 0
and thus s(yXai)acti(X) > 0, which we want to remain > 0 after small X
perturbations. For this we may again apply (2) now in the form Wi := Wi +
λ η s(yXai)X to those correct perceptrons with a too small margin, i.e., those
for which 0 < s(yXai)acti(X) < γ, so that we push s(yXai)acti(X) further away
from zero. The new parameter λ measures the importance given to wide margins.
The value of the margin γ is also adjusted dynamically from a starting value γ0.
More precisely, at the beginning of the t–th batch pass, we set γt = γt−1; then, as
suggested in [1], if a patternX is processed correctly, we set γt := γt+0.25ηt if all
perceptrons Pi that processX correctly also verify s(yXai)acti(X) ≥ γt−1, while
we set γt := γt − 0.75ηt if for at least one Pi we have 0 < s(yXai)acti(X) <
γt−1. In other words, margins are either cautiously increased or substantially
decreased. With these (and in fact, other similar) parameter values, γt usually
has a stable converge to a limit margin γ∗ (see figure 1). We normalize the Wi

weights after each batch pass so that the margin is meaningful. We also adjust
the learning rate as ηt = η0/

√
t after each batch pass, as suggested in [1].

We recall that for 2–class problems, Fisher’s discriminants are very simple
to construct. In fact, the vector A = S−1

T (P+ − P−) minimizes [2] the ratio
J = sT /sB = sT (A)/sB(A) of the total variance sT of discriminant PP outputs
to their between class variance sB. However, the total covariance matrix ST of
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Table 1. Input dimensions and training parameters used for the 7 comparison datasets.
MLPs were trained by conjugate gradient minimization. The number of hidden units
and learning rates were heuristically adjusted to give good training accuracies.

discr. PPs PPs MLPs
Problem set size pos. % input dim. num. hid. lr. rate num. hid. lr. rate num. hid.
breast cancer 34.5 9 5 0.001 3 0.001 5
diabetes 34.9 7 5 0.01 3 0.001 5
glass 13.6 9 5 0.01 3 0.01 5
heart dis. 46.1 13 5 0.001 5 0.001 5
ionosphere 35.9 33 5 0.001 5 0.0001 7
thyroid 7.4 8 5 0.0005 5 0.001 5
vehicle 25.7 18 10 0.01 5 0.001 5

the perceptrons’ outputs is quite likely to be singular (notice that the output
space for H perceptrons has just 2H distinct values). To avoid this, we will take
as the output of the perceptron i the value P ′

i (X) = σγ(Wi ·X), with the ramp
function σγ taking the values σγ(t) = s(t) if |t| > λ = min(1, 2γ) and σγ(t) = t/λ
when |t| ≤ λ. This makes quite unlikely that ST will be singular and together
with the η and γ updates allows for a fast and quite stable learning convergence.
We finally comment on the complexity of this procedure. For D–dimensional
inputs and H perceptrons, Rosenblat’s rule has an O(NDH) cost. For its part,
the ST covariance matrix computation has an O(NH2) cost, that dominates the
O(H3) cost of its inversion. While formally similar to the complexity estimates
of MLPs, computing times are much smaller for discriminant PPs (and more
so for standard PPs), as their weight updates are much simpler. Moreover, as
training advances and the number of patterns not classified correctly decreases,
so does the number of updates.

3 Numerical Results

We shall compare the performance of discriminant PPs with that of standard
PPs and also of multilayer perceptrons (MLPs) over 7 classification problems
sets from the well known UCI database; they are listed in table 1, together with
the positive class size, their input dimensions and the training parameters used.
Some of them (glass, vehicle, thyroid) are multi–class problems; to reduce them
to 2–class problems, we are taking as the minority classes the class 1 in the
vehicle dataset and the class 7 in the glass problem, and merge in a single class
both sick thyroid classes. We refer to the UCI database documentation [3] for
more details. In what follows we shall compare the performance of standard and
discriminant PPs and also that of standard multilayer perceptrons first in terms
of accuracy, that is, the percentage of correctly classified patterns, but also in
terms of the value g =

√
a+a−, where a± are the accuracies of the positive and

negative classes (see [5]). Notice that for sample imbalanced data sets a high
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Table 2. Accuracy, g test values and their standard deviations for 7 datasets and
different classifier construction procedures. It can be seen that discriminant PPs results
are comparable to those of MLPs and both are better than those of standard PPs.

discr. PPs PPs MLPs
Data set acc. g acc. g acc. g
cancer 96.5 ± 2.2 96.1 ± 2.2 96.6 ± 2.1 96.1 ± 2.2 95.8 ± 1.7 95.5 ± 1.7
diabetes 75.0 ± 2.4 71.9 ± 4.0 74.2 ± 3.2 68.6 ± 5.3 76.0 ± 3.1 70.4 ± 4.3

glass 96.9 ± 2.1 92.1 ± 11.0 94.3 ± 2.1 84.3 ± 11.1 94.0 ± 2.9 85.3 ± 8.5

heart d. 80.0 ± 3.8 78.9 ± 3.9 73.9 ± 3.8 73.8 ± 3.9 75.2 ± 4.0 74.7 ± 4.2

ionosph. 84.1 ± 4.6 82.2 ± 4.5 77.0 ± 3.9 74.3 ± 4.1 84.8 ± 4.2 81.4 ± 4.5

thyroid 97.9 ± 0.4 92.1 ± 1.8 96.9 ± 0.9 82.5 ± 9.5 97.6 ± 1.6 94.0 ± 4.4

vehicle 76.2 ± 0.4 70.6 ± 3.5 74.8 ± 2.5 65.0 ± 5.0 81.5 ± 4.3 74.5 ± 5.8
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Fig. 2. From top left, clockwise: evolution of Fisher’s criterion for the ionosphere, glass,
diabetes and thyroid datasets. Values depicted are 10 times 10 fold crossvalidation
averages of 500 iteration training runs (all figures in log X and Y scale).

accuracy could be achieved simply by assigning all patterns to the (possibly
much larger) negative classes; g gives a more balanced classification performance
measure. In all cases, training has been carried out as a batch procedure using
10–times 10–fold cross–validation. Updates (1) and (2) have been applied in
standard and discriminant PP training, while conjugate gradient has been used
for MLPs. The number of perceptrons in all cases and the initial learning rates
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for PPs and discriminant PPs for each dataset are described in table 1. Table
2 presents average values of the cross–validation procedure just described (best
values in bold face, second best in cursive) for accuracies and g values, together
with their standard deviation. As it can be seen, MLPs’ accuracy is clearly best
in 2 problems, while discriminant PPs give a clear best accuracy in another 2
problems and tie for the best values in the remaining 3. With respecto to g,
discriminant PPs’ values are clearly best in 4 problems and are tied for the first
place in another one; MLPs’ g is best in the other 2 problems. The performance
of discriminant PPs is thus quite close to that of MLPs and improves on that of
standard PPs.

We finish this section by noticing that the weight update (2) only aims to re-
duce the classification error and to achieve a clear margin, but there is no reason
that it should minimize the Fisher criterion J . However, as seen in figure 2, this
also happens. The figure depicts in logartihmic X and Y scales the evolution of
J for the ionosphere, glass, diabetes and thyroid datasets (clockwise from top
left). Values depicted are 10 times 10 fold cross–validation averages of 500 itera-
tion training runs. Although not always monotonic (as in the glass, thyroid and
diabetes problems), the overall J behavior is clearly decreasing and it converges.

4 Conclusions

Parallel perceptron training offers a very fast procedure to build good and stable
committee machine–like classifiers. In this work we have seen that their classifica-
tion performance can be improved by allowing their output weights to have real
values, obtained by applying Fisher’s analysis over the perceptron outputs. The
final performance of these discriminant PPs is essentially that of the powerful
but costlier to build standard MLPs.
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Abstract. In this paper we consider an aggregation way for multilayer neural 
networks. For this we will use the generalized nets methodology as well as the 
index matrix operators. The generalized net methodology was developed as a 
counterpart of Petri nets for modelling discrete event systems. First, a short in-
troduction of these tools is given. Next, three different kinds of neurons aggre-
gation is considered. The application of the index matrix operators allow to de-
veloped three different generalized net models. The methodology seems to be a 
very good tool for knowledge description. 

1   Introduction 

A multilayer neural network is described by layers and within each layer by a number 
of neurons. The neurons are connected by weighted links. The network output is 
strictly related to the presented input, subject to the conditions resulting from the 
constancy of the structure (the neuron connections), the activation functions as well as 
the weights.  

A neural network can be considered with different degree of aggregation. A case 
without aggregation means that all layers and all neurons are “visible” for considera-
tion. A second case where neurons within each layer are aggregated and only layers 
are “visible”. The next case, in which all layers are aggregated, and only inputs and 
outputs of a neural network are available.  

In order to develop these three kinds of aggregation we will apply the methodology 
of generalized nets introduced by K. Atanassov in various works, e.g. [1], [2], [3], [4] 
and [5].  

The generalized nets methodology is defined as an extension of the ordinary Petri 
nets and their modifications, but in a different way, namely the relation of places, 
transitions and characteristics of tokens provide for greater modelling possibilities 
than the individual types of Petri nets.  

In the review and bibliography on generalized nets theory and applications of 
Radeva, Krawczak and Choy in [10] we can find a list 353 scientific works related to 
the generalized nets. 

1.1   Multilayer Neural Networks Structure 

The idea of the aggregation will be described in the following way. The network con-
sists of L  layers; each layer Ll ,...,2,1,0=  is composed of ( )lN  neurons. By ( )0N  
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we denote the number of inputs, while by ( )LN  the number of outputs. The neurons 

are linked through weighted connections.  
The output of the network is strictly related to the presented input, subject to the 

conditions resulting from the constancy of the structure, the activation functions as 
well as the weights. The neural network realizes the following mapping: 

( )inputNNoutput =  (1) 

The neural network consists of neurons described by the activation function as  
follows  

( ))()( lpjlpj netfx =  (2) 

where  

)1(

)1(

1
)()1()( −

−

=
−= lpi

lN

i
ljlilpj xwnet  (3) 

while ( )1−lpix  denotes the output of the i -th neuron with respect to the pattern p , 

Pp ...,,2,1= , and the weight ( ) ( )ljliw 1−  connects the i -th neuron from the ( )1−l -st 

layer with the j -th from the l -th layer, )(,...,2,1 lNj = , Ll ,...,2,1= . 

The different cases of aggregation determine different streams of information pass-
ing through the system.  

1.2   Generalized Net Modeling 

A generalized net contains tokens, which are transferred from place to place. Every 
token bears some information, which is described by token’s characteristic, and any 
token enters the net with an initial characteristic. After passing a transition the to-
kens’ characteristics are modified. The places are marked by        and the transitions  
by     . 

The transition has input and output places, as shown in Fig. 1.  
The basic difference between generalized nets and the ordinary Petri nets is the 

place – transition relation (Atanassov, 1991). 
Formally, every transition is described by a seven-tuple 

,,,,,, 21 MrttLLZ ′′′=  (4) 

where: { }mlllL ′′′=′ ,,, 21  is a finite, non empty set of the transition’s input places, 

{ }mlllL ′′′′′′=′′ ,,, 21  is a finite, non empty set of the transition's output places, 1t  is 

the current time of the transition's firing, 2t  is the current duration of the transition 

active state, r  is the transition's condition determining which tokens will pass the 
transition, M  is an index matrix of the capacities of transition's arcs,  is an ob-
ject of a form similar to a Boolean expression, for true value the transition becomes 
active. 
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The following ordered four-tuple 

bXttTKfcAE KkLA ,,,,,,,,,,,,,,, *0
21 ΦΘΘΘ= πππ  (5) 

is called generalized net if the elements are described as follows: A  is a set of transi-
tions, Aπ  is a function yielding the priorities of the transitions, Lπ  is a function speci-

fying the priorities of the places, c  is a function providing the capacities of the places, 
f  is a function that calculates the truth values of the predicates of the transition's 

conditions, 1Θ  is a function specifying the next time-moment when a given transition 

Z  can be activated, 2Θ  is a function yielding the duration of the active state of a 

given transition Z , K  is the set of the generalized net's tokens, Kπ  is a function 

specifying the priorities of the tokens, KΘ  is a function producing the time-moment 

when a given token can enter the net, T  is the time-moment when the generalized net 
starts functioning; 0t  is an elementary time-step, related to the fixed (global) time-

scale, *t  is the duration of the generalized net functioning, X  is the set of all initial 
characteristics the tokens can receive on entering the net, Φ  is a characteristic func-
tion that assigns new characteristics to every token when it makes the transfer from an 
input to an output place of a given transition, b  is a function specifying the maximum 
number of characteristics a given token can receive. 

The generalized nets with missing some components are called reduced general-
ized nets.  

 

Fig. 1. A generalized net transition 

2   Aggregation of MLNN 

In this section we will introduce three kinds of MLNN aggregation. Due to the lack of 
space only the main results will be shown. 

2.1   Modeling Without Aggregation 

The Generalized net model of this case is shown in Fig. 2. 
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Fig. 2. The Generalized net model of neural network simulation 

The model consists of a set of L  transitions, each transition has the following form 

( ) ( ) ( ){ } ( ) ( ) ( ){ } llllllNlllNlll MrxxxxxxZ ,,,,,,...,,,,...,, 2111211 ττ ′= −−−  (6) 

for Ll ,...,2,1= , where ( ) ( ) ( ){ }11211 ,...,, −−− lNll xxx  - is the set of input places of the l -th 

transition, ( ) ( ) ( ){ }lNll xxx ,...,, 21  - is the set of output places of the l -th transition, the 

rest parameters are described above. The generalized net describing the considered 
neural network simulation process has the following form: 

bYttTKgcAGN KkXA ,,,,,,,,,,,,,,, *0
21 ΦΘΘΘ= πππ  (7) 

where { }LZZZA ,...,, 21= , and other parameters are similar to the parameters of sec-

tion 1.2. 

2.2   Aggregation of Neurons Within Each Layer 

In this case we can obtain two version of aggregation. Here we show only one parallel 
version in Fig. 3. 

Each transition lZ , Ll ...,,2,1= , has the following form 

( ){ } ( ){ } llllllll MrXXZ ,,,,,,1 ττ ′=′ −  (8) 

The reduced form of the generalized net has the following form: 

1,,,*,,,**,,,,*,,,*,, *
21 ΦΘΘ= YtTKcAGN Xπ  (9) 

with the proper components.  
In the second version information carrying by tokens is performed sequencially, 

while in the first one parallel. The number of tokens in the place ( )1−lX , Ll ...,,2,1= , 

corresponds to the number of neurons associated with the l -th layer. In order to in-
troduce a prescribed number of the tokens into each place we need to change the par-
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allelism of signal flows by the sequential flows. In such a case the model of aggrega-
tion will become a little bit more complex through introduction of an extra place to 
each transition.  

Version one is characterised by introduction of only one token but with much ex-
tended characteristic, due to this fact the information entering each transition is deliv-
ered in parallel. For the second version we have introduced the extra places with extra 
tokens. In this way the information of each token enters each transition in a sequential 
way. 

LX1LX2X1X0X

 

Fig. 3. Neurons aggregation within each layer – parallel processing 

2.3   Full Aggregation 

In this case we do not distinguish any subsystems (neurons or layers) within the net-
work. We aggregate all transitions lZ , Ll ...,,2,1= , in only one transition Z , and all 

places are aggregated in only three places 321 ,, XXX  as shown in Fig. 4.  

3X

2X

 

Fig. 4. The Generalized net model of the aggregated neural network 

The aggregated model has the following formal description 

{ } bYtTKgcZGN KX ,,,*,,,*,,,,,,,*,, *
21 ΦΘΘΘ= π  (10) 

where the transition has the form 

{ } { } ,,,,,,,, 3231 MrXXXXZ ττ ′=  (11) 
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3   Conclusions 

In this paper we have described the concept of aggregation of multilayer neural net-
works. We used the generalized nets concept for representing the functioning of the 
multilayer neural networks. 

In somehow informal way we have applied many of the sophisticated tools of the 
generalized nets theory in order to show different kinds of aggregation. 

The Generalized nets theory, as described in [2] by Atanassov, contains many dif-
ferent operations and relations over the transitions, tokens as well as over the charac-
teristics of tokens. The methodology can be used as one possible way to describe 
knowledge of different kinds of subsystems in order to describe the way of function-
ing of the whole system. 
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Abstract. In this paper we consider generalized net models of learning algo-
rithms for multilayer neural networks. Using the standard backpropagation al-
gorithm we will construct it generalized net model. The methodology seems to 
be a very good tool for knowledge description of learning algorithms. Next, it 
will be shown that different learning algorithms have similar knowledge repre-
sentation – it means very similar generalized net models. The generalized net 
methodology was developed as a counterpart of Petri nets for modelling dis-
crete event systems. In Appendix, a short introduction is given.  

1   Introduction 

In the paper we are interested in modelling the learning processes of multilayer neural 
network using generalized net methodology. Such constructed models of neural net-
works can describe the changes of the weights between neurons. This model is some-
how based on the generalized net model described in: [3], [4], and [5]. In the present 
case some of absent elements will be involved in the description of the proper charac-
teristic function, which generates the new tokens characteristics. Additionally, the 
inputs of the neural network are treated also as tokens. Three main parts can be dis-
tinguished in the model of the neural network learning. The first part describes the 
process of simulation or propagation; in the second part the performance index of 
learning is introduced, while the third part describes the operations that are necessary 
to change the states of neurons (by changing the connections – i.e. weights).  

2   Model of Backpropagation Algorithm 

The generalized net model of backpropagation algorithm is shown in Fig. 1. Each 
neuron or a group of neurons are represented by a token of α -type. These tokens 

enter the net through the place 1X  and have the following initial characteristics 

( )( ) ( )= lili fily ,,α  for ( )lNi ...,,2,1= , Ll ...,,1,0= , where i - the number of the 

token (neuron), ( )lf1 - is an activation function of the i -th neuron associated with the 

l -th layer of the neural network. 
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Fig. 1. The generalized net model of the backpropagation algorithm 

The basic generalized net model of the backpropagation algorithm contains six 
transitions.  

Every token ( )liα , ( )lNi ...,,2,1= , Ll ...,,1,0= , is transferred from the place 1X  to 

the place 2X  as well as 3X  via the transition 1Z . The tokens are transferred sequen-

tially according to increasing indexes ( )lNi ...,,2,1=  for given Ll ...,,1,0= , in order 

to be aggregated with other tokens of the same level l  into one new token ( )lα , repre-

senting the whole layer l , according the following conditions of transition 1Z  
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{ } { },,,, 32211 XXXXZ = 1r , ( )∨ 21 , XX  (1) 

where 1r  is the transition's condition determining which tokens will pass the transi-

tion. Here, we are interested in changing the characteristics of the neurons, therefore 
the whole neural network is represented by one transition 1Z  with three places 

321 ,, XXX .  

The new token ( )lα  associated with the l -th layer according to the condition (5) is 

transferred from the place 2X  to the place 3X , and has the following characteristic 

for Ll ...,,2,1,0= , where ( )[ ]lN,1  - denotes ( )lN  tokens (neurons) arranged in a se-

quence, starting form the first and ending at ( )lN , associated with the l -th layer, 

( )lF

 

- is a vector of the activation functions of the neurons associated with the l -th 

layer of the neural network. In result in the place 3X  we obtain L  tokens, the repre-

sentation of the procedure of generating the neural network output.

 

The second transition 2Z  is devoted to introduction of the performance index of 

the learning process. This kind of information is associated with the β -type token, 

which enters the input place 1m  with the following initial characteristic 

( ) = max, EEy β  where E  - performance index, maxE  - threshold value of the per-

formance index, which must be reached. The transition 2Z  has the following form 

{ } { },,,, 24132 mXmXZ = 2r , ( )∧ 13 ,mX  (2) 

where 2r  is the transition's condition determining which tokens will pass the transi-

tion. The token ( )lα  obtains the following new characteristic in the place 

4X ( )( ) ( )[ ] ( ) ( )= lll WFlNly ,,,1,α  for Ll ...,,2,1,0= , where ( )[ ]lN,1  - denotes ( )lN  

tokens (neurons) arranged in a sequence,  starting form the first and ending at ( )lN , 

associated with the l -th layer, ( )lF  - is a vector of the activation functions of the 

neurons associated with the l -th layer of the neural network, ( )lW  - denotes the ag-

gregated initial weights connecting the neurons of the ( )1−l -st layer with the l-th 

layer neurons.  
The β  token obtains the following characteristic in place 2m  ( ) = max,0 Ey β . 

The transition 3Z , in which the new tokens of γ -type are introduced. The token 

pγ , Pp ,2,1= , where p  is the number of the training pattern, enters the place 1n  

with the initial characteristic ( )= pDXy ppp ,),0(γ , where ( )0pX  - the input vector, 

pD  - the vector of desired network outputs. After the pattern p  is applied to the net-

work inputs as )0(pX , the outputs of all layers are calculated sequentially layer by 

layer. The transition 3Z  describes the process of signal propagation within the neural 

network 
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},,,,{},,,,,,{ 23651729543 nmXXnmmXXXZ = 3r , ∨∧ )),,(),,,(( 172954 nmmXXX  (3) 

where 2r  are the transition’s conditions. 

In the place 5X  the tokens of α -type, ( )lα , Ll ...,,2,1,0= , obtain the new  

characteristics as follows ( )( ) ( )[ ] ( ) ( ) ( )= llll XWFlNly ,,,,1,α , where 

( ) ( ) ( )[ ]T
lNlll xxxX )(21 ,...,,= , Ll ,...,2,1= , is the vector of outputs of neurons associated 

with the l  -th layer, related to the nominal weights ( )lW , Ll ,...,2,1= .  

In the place 6X  there are tokens with the following characteristics, which contain 

calculated neuron outputs for the pattern p , ( )( ) ( )[ ] ( ) ( ) ( )= lplll XWFlNly ,,,,1,α  cal-

culated for the nominal values of the weights ( )lW  and states ( )lX , Ll ,...,2,1= . 

In the place 3m  the token β  preserves its characteristic as ( ) = max,0 Ey β , and 

in the place 2n  the token γ  also does not change its characteristic and remains as 

( )= pDXy ppp ,),0(γ . 

The next transition 4Z  describes the first stage of the estimation and weight ad-

justment process, which is related to the performance index computation, and has the 
following form 

},,{},,{ 47364 mXmXZ = 4r , ∧ ),( 36 mX  (4) 

As a result of computations performed within the transition 4Z , the token β  ob-

tains the new value of performance index in the place 4m , ( ) ′= max, EEy β  

where 
==

−+=−+=
)(

1

2
)(,,max2

)(

1

2
)(,, )(

2

1
,)(

2

1
'

LN

j
Ljpjp

LN

j
Ljpjp xdEEprxdEE . 

In the place 7X  the tokens of α -type do not change their characteristics. 

In the next transition 

},,{},,{ 58475 mXmXZ = 5r , ∧ ),( 47 mX  (5) 

the delta factors ( ) [ ]T
lpNlplplp )()(2)(1 ,...,, δδδ=Δ , in backpropagation algorithm are 

computed for Ll ,...,2,1,0= . 

The tokens of α -type obtain, in the place 8X , the following characteristics 

( )( ) ( )[ ] ( ) ( ) ( ) ( )Δ= lplplll XWFlNly ,,,,,1,α . In the place 5m  the token of β -type does 

not change its characteristic. 
The next transition 6Z , describing the process of weight adjustment, has the form 

},,,,{},,{ 76109586 mmXXmXZ = 6r , ∧ ),( 58 mX  (6) 

In the place 9X  the α -type tokens obtain the new characteristic 

( )( ) ( )[ ] ( ) ( )′= lll WFlNlNNy ,,,1,,1α  with updated weight connections 
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( ) ( ) ( )[ ]T
lNlll wwwW )(21 ,...,, ′′′=′ , where ( ) ( ) ( ) ( ) ( ) ( )[ ]T

lNlillillili wwww )(12111 ,...,, −−− ′′′=′  are calcu-

lated in the following way )1()()()1()()1()()1( −−−− =−′=Δ LpiLpjLjLpiLjLpiLjLpi xwww δη for 

)1(,...,2,1 −= LNi , )(,...,2,1 LNj = , 

( )
+

=+
++−−−− ′=−′=Δ

)1(

1)1(
)1()(1()1()()()1()()1()()1(

lN

lk
lklpjlpklpiljpljlpiljlpiljlpi wxnetfwww δη  

for )1(,...,2,1 −= lNi , )(,...,2,1 lNj = , and for 1,...,2,1 −= Ll , and replace 

[ ] [ ]1,01,0 −′=− LWLW , [ ] [ ]LXLX ,1,1 ′= . 

In the place 7m  the β  token obtains the characteristic ( ) =βy max, EE , which is 

not final. 
The final values of the weights satisfying the predefined stop condition are denoted 

by ( ) ( )[ ] ( ) ( )′= lll WFlNlprW ,,,1,5
* , where the characteristics of the α -type tokens in 

the place 10X  are described by ( )( ) ( )[ ] ( ) ( )′= lll WFlNly ,,,1,α  and the β  token char-

acteristic in the place 6m  is described by ( ) ′= max,,1 EENNy β while the final value 

of the performance index is equal ′= max2
* ,,1 EENNprE . 

3   Conclusions 

The here developed generalized net model of the backpropagation algorithm describes 
the main features of the gradient descent based learning algorithms. This model al-
lows for modifying and testing other algorithms by changing a relatively small por-
tion of the generalized net model’s formal description. 
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Appendix 

A generalized net contains tokens, which are transferred from place to place. Every token bears 
some information, which is described by token’s characteristic, and any token enters the net 
with an initial characteristic. After passing a transition the tokens’ characteristics are modified. 
The places are marked by      , and the transitions by   . 

The transition has input and output places, as shown in Fig. 1. The basic difference between 
generalized nets and the ordinary Petri nets is the place – transition relation (Atanassov, 1991). 
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Formally, every transition is described by a seven-tuple ,,,,,, 21 MrttLLZ ′′′=  

where: { }mlllL ′′′=′ ,,, 21  is a finite, non empty set of the transition’s input places, 

{ }mlllL ′′′′′′=′′ ,,, 21  is a finite, non empty set of the transition's output places, 1t  is the current 

time of the transition's firing, 2t  is the current duration of the transition active state, r  is the 

transition's condition determining which tokens will pass the transition, M  is an index matrix 
of the capacities of transition's arcs,  is an object of a form similar to a Boolean expression, 
for true value the transition becomes active. 

The following ordered four-tuple:  

bXttTKfcAE KkLA ,,,,,,,,,,,,,,, *0
21 ΦΘΘΘ= πππ  is called general-

ized net if the elements are described as follows: A  is a set of transitions, Aπ  is a function 

yielding the priorities of the transitions, Lπ  is a function specifying the priorities of the places, 

c  is a function providing the capacities of the places, f  is a function that calculates the truth 

values of the predicates of the transition's conditions, 1Θ  is a function specifying the next 

time-moment when a given transition Z  can be activated, 2Θ  is a function yielding the dura-

tion of the active state of a given transition Z , K  is the set of the generalized net's tokens, 

Kπ  is a function specifying the priorities of the tokens, KΘ  is a function producing the time-

moment when a given token can enter the net, T  is the time-moment when the generalized net 

starts functioning; 0t  is an elementary time-step, related to the fixed (global) time-scale, *t  is 
the duration of the generalized net functioning, X  is the set of all initial characteristics the 
tokens can receive on entering the net, Φ  is a characteristic function that assigns new charac-
teristics to every token when it makes the transfer from an input to an output place of a given 
transition, b  is a function specifying the maximum number of characteristics a given token can 
receive. 
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1l ′′
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Fig. 2. A generalized net transition 
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Abstract. Multi-layer perceptron networks as universal approximators
are well-known methods for system identification. For many applications
a multi-dimensional mathematical model has to guarantee the mono-
tonicity with respect to one or more inputs. We introduce the MON-
MLP which fulfils the requirements of monotonicity regarding one or
more inputs by constraints in the signs of the weights of the multi-layer
perceptron network. The monotonicity of the MONMLP does not depend
on the quality of the training because it is guaranteed by its structure.
Moreover, it is shown that in spite of its constraints in signs the MON-
MLP is a universal approximator. As an example for model predictive
control we present an application in the steel industry.

1 Introduction

Monotonicity in neural networks is a research topic for several years [1] [2] [3]
[4] [5]. Numerous applications in system identification and control require mono-
tonicity for selected input-output relations. The challenge is to fulfil two goals
simultaneously: Good approximation properties together with monotonicity for
certain inputs. Methods with penalty terms in cost functions are not able to guar-
antee monotonicity. Piece-wise linear networks like the monotonic network of Sill
[4] ensure universal approximation capability and monotonicity for all inputs, but
not for some selected ones and their training seems to be demanding. The mono-
tonic multi-layer perceptron network (MONMLP) which is presented here is an
approach for multi-dimensional function approximation ensuring monotonicity
for selected input-output relations [6] [7]1. Moreover, we determine the require-
ments for the network structure regarding universal approximation capabilities.

2 The MONMLP

A fully connected multi-layer perceptron network (MLP) with I inputs, a first
hidden layer with H nodes, a second hidden layer with L nodes and a single
output is defined by
1 H. Zhang and Z. Zhang independently introduced the same idea, with a slightly

different network structure. We thank the unknown reviewer for his valuable hint.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 31–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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ŷ(x) = wb +
L∑

l=1

wl tanh (wb,l +
H∑

h=1

wlh tanh(wb,h +
I∑

i=1

whixi)︸ ︷︷ ︸
θ2

)

︸ ︷︷ ︸
yMLP3︸ ︷︷ ︸
θ1

. (1)

The MLP ensures a monotonically increasing behavior with respect to the input
xj ∈ x, if

∂ŷ

∂xj
=

L∑
l=1

wl · (1− θ21)︸ ︷︷ ︸
>0

·
H∑

h=1

wlh · (1 − θ22)︸ ︷︷ ︸
>0

·whj

!
≥ 0 (2)

The derivative of a hyperbolic tangent is always positive. For this reason, a suf-
ficient condition for a monotonically increasing behavior for the input dimension
j (2) is defined as

wl · wlh · whj ≥ 0 ∀ l, h . (3)

To guarantee a monotonically decreasing relation between xj and ŷ we postulate

wl · wlh · whj ≤ 0 ∀ l, h . (4)

Assuming positive signs for the weights between the hidden and output layer
and between the hidden layers

wl, wlh

!
> 0 ∀ l, h (5)

simplifies the sufficient conditions for increasing or decreasing monotonicity.
Now, constraints on the weights whj provide sufficient conditions for the
monotonicity related to the input dimension j. If all weights related to the
input dimension j are greater equal zero then an increasing behavior is guar-
anteed (6).

whj

!
≥ 0 ∀ h (6)

If all weights whj are greater than zero then the MLP is strictly increasing with
respect to input j. Monotonic decreasing behavior is sufficiently provided by

whj

!
≤ 0 ∀ h (7)

Negative signs for all whj provide a strictly decreasing behavior. The equations
(6) or (7) determine the monotonicity of ŷ with respect to one input xj inde-
pendently from the other inputs xi. Applying the constraints for the training of
the MONMLP the user is able to define a priori the input dimensions for which
he would like to ensure the monotonicity.



Monotonic Multi-layer Perceptron Networks as Universal Approximators 33

3 The MONMLP as Universal Approximator

An MLP is known as a universal approximator [8]. However, the constraints
defined above reduce the degrees of freedom for the weights so that the capa-
bility to approximate arbitrary, partially monotonic functions has to be shown
again.

Firstly, the impact of the conditions defined in (5) is analyzed. The four-
layer feed-forward network in (1) is an extension of a three-layer standard MLP
yMLP3. Since the three-layer topology is already sufficient for an universal ap-
proximator, the extension by a monotonic second hidden layer to a four-layer
network respectively additional calculations by hyperbolic tangents and the mul-
tiplications with positive weights wl do not affect this property. Limitations in
the sign of the weights wlh can be eliminated by appropriate weights whi since
tanh(x) = − tanh(−x). To sum up, a four-layer feed-forward network under the
constraints in equation (5) continues to be a universal approximator.

Secondly, the influences of the constraints determined by (6) or (7) are an-
alyzed. The proof of universal approximation is carried out for positive weights
wl, wlh, whi respectively strictly monotonically increasing networks for all in-
put dimensions i. A monotonic function m(x), IRI → IR [4] can be approx-
imated by a sequence of adjacent, compact areas mk with mk(x) = const.,
mk−1 < mk < mk+1 which are only once cut by hyper-planes p(x) of the form
xj = const. ∀xi �= xj ; xi, xj ∈ IR. In case of steps mk −mk−1 → 0 ∀ k an arbi-
trary approximation accuracy can be achieved. Figure 1 provides an illustration
of this description of monotonic functions in case of two inputs x1 and x2. Ar-
eas mk, i.e. plateaus and level curves are only once cut by the straight lines
x1 = const. ∀x2 and x2 = const. ∀x1. The level curves as borders of plateaus
consist of piece-wise convex and concave curves.

Figure 2 depicts the case of a single input and a single output. A hyperbolic
tangent determines a transition of one plateau to the next one. The maximum
gradient is determined by wlh · whi and the amplitude by 2wlh. wb,h/whi and
wb,h define the position of a single hyperbolic tangent in the x-y-plane. Adding

Fig. 1. Level curves for multi-
dimensional monotonic functions,
here for two inputs
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Fig. 2. Approximation of one-dim.
monotonic functions by superposition of
sigmoids
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several hidden nodes corresponds to the superposition of arbitrary increasing
transitions among arbitrary plateaus which is another definition of arbitrary
increasing monotonic functions.

Considering the multi-dimensional case, a standard three-layer feed-forward
network with positive weights (see Fig. 3(a)) provides a convex level curve as
border for the lower plateau and a convex level curve as border for the upper
plateau. This behavior is due to the addition of two arbitrary hyperbolic tangent
functions with positive gradients. Concave level curves, which are also necessary
for a universal approximation capability, cannot be created. However, if the
three-layer MONMLP is extended by a saturation layer to a four-layer MONMLP
then also concave level curves are possible for the lower and upper plateau border
(Fig. 3(b) and 3(c)). The output range of this network limited by a single node in
the second hidden layer is defined by the maximum amplitude 2wlh and the bias
wb. Extending the four-layer MONMLP to more than two hyperbolic tangent in
the first hidden layer, arbitrary level curves can be provided (Fig. 4(b)) whereas a
three-layer MONMLP still provides convex lower and upper plateaus (Fig. 4(a)).
The idea of providing arbitrary level curves by a saturation layer can be applied
for more than two inputs: The maximum number of nodes in the first hidden layer
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Fig. 3. Effect of two hidden layers: (a) Addition of two sigmoids for two input dimen-
sions (b) Extension of the network of (a) to a four-layer MONMLP (2 + 1 hidden
nodes) (c) The same four-layer MONMLP, but other weights for the saturation node
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Fig. 4. Transition between arbitrary plateaus: (a) Three-layer perceptron network with
4 hidden nodes (b) Network of (a) extended to a four-layer MONMLP (4 + 1 hidden
nodes)
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which are necessary to create a concave or convex line is determined by the input
dimension of the network. To sum up, a four-layer MONMLP is able to provide
arbitrary monotonic transitions from one plateau to the next one. Extending a
four-layer MONMLP by additional hidden nodes enables the concatenation of
these arbitrary transitions to an arbitrary monotonic function qed.

Monotonically decreasing behavior for one input xj can be achieved by mul-
tiplying this input by −1 or by applying the constraints of equation (7). If the
constraints on the whi are omitted for some input dimensions i �= j, the rela-
tion between these inputs and the output ŷ(x) is equivalent to an universal ap-
proximator without monotonicity constraints. Any combination with constrained
parts of the MONMLP does not affect it, so that the MONMLP is a universal
approximator for which a priori monotonic behavior with respect to inputs xj

can be determined.

4 Application in the Steel Industry

Each strip of steel in a hot rolling mill must satisfy customer quality require-
ments. The analysis of strip properties, however, can only be carried out in the
laboratory after the processing. The microstructure monitor of Siemens [9] is
able to predict the mechanical properties such as tensile strength or yield point
by neural networks. The neural networks predict the expected quality taking
into account the current circumstances (alloy components, temperatures, forces,
geometry and so on).

In order to not only monitor but also to control such mechanical properties,
the model should meet some general rules like ’if the expected quality should
be increased then input 1 could be decreased or input 2 could be increased’.
We selected a data set of 2429 patterns with 15 inputs and the tensile strength
Rm as target for the evaluation of the MONMLP. The following prior knowl-
edge was incorporated into the neural network: An increase in ’carbon content’
or ’manganese content’ should increase the tensile strength whereas an increase
in ’temperature before cooling’ should decrease the tensile strength. MONMLPs
with and without second hidden layer were trained taking into account the mono-
tonicity constraints. As a benchmark a standard three-layer MLP was selected
with the same number of nodes as in the first hidden layer of the MONMLPs.
The first 70 percent of the patterns were used for the training and the remaining
30 percent for the validation of the training results.

Table 1. Comparison of MLP and MONMLPs: root-mean-square of approximation
errors in normalized units for training and test data

Neural network MLP MONMLP
Nodes in 2nd hidden layer – – 1 2
RMSE for training data (normalized units) 84.5 94.3 84.9 84.7
RMSE for test data (normalized units) 100.0 100.4 94.9 93.0
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The MONMLPs fulfil the monotonicity constraints even if this prior knowl-
edge would not comply with the information in the data due to sensor errors or
noise. Contrary to the MONMLPs, the analysis of the gradients ∂yMLP /∂xi for
all patterns x did not provide any hint for monotonicity with respect to any in-
put. The question arises if the constraints for the network weights would lead to
reduced approximation capabilities. Comparing the approximation performance
of the MLP and MONMLPs in Tab. 1 three layers seem to be not sufficient
for a MONMLP in case of more than one monotonic input-output relation, but
the approximation performance of four-layer MONMLPs is promising. These
MONMLPs achieve similar results on the training data and outperform on the
test data. The main advantage of the MONMLP, however, is the guaranteed
interpolation and extrapolation behavior for regions without or with insufficient
training data.

5 Conclusions

The MONMLP is a universal function approximator while ensuring monotonic-
ity for selected input-output relations by its structure. The MONMLP augments
the application fields for multi-layer perceptron networks, in particular regard-
ing model-predictive control and all other fields where monotonicity has to be
guaranteed. It was shown that the constraints in the signs of the weights do
not reduce the general approximation capability if a four-layer MLP is chosen.
Moreover, the reliable incorporation of prior knowledge in MONMLPs can im-
prove the approximation quality in case of insufficient training data which is a
common problem of high-dimensional approximation tasks. Elaborated training
methods to overcome the reduced degrees of freedom in the network weights are
topic of current and future research.
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Abstract. Despite the well-known performances and the theoretical
power of neural networks, learning and generalizing are sometimes very
difficult. In this article, we investigate how short term memories and
forcing the agent to re-use its knowledge on-line can enhance the general-
ization capabilities. For this purpose, a system is described in a temporal
framework, where communication skills are increased, thus enabling the
teacher to supervise the way the agent “thinks”.

1 Introduction

In a recent work, Marcus et al. [5] tested the learning capabilities of infants
when habituated on sequences of events of the type AAB. The purpose was to
show that infants are able to extract abstract rules from (positive) examples
and could thus generalize to unseen sequences. Abstraction is, here, the fact
of knowing that the same letter is repeted. They tested recurrent networks on
this same task. Their controversial deduction, e.g. [1], was that neural networks
(NNs) are not able to capture the abstraction of the task.

Anyway, it still remains true that NNs are not able to recognize if an input,
whichever it is, has been activated more than once. Dominey et al. [2] proposed
a Short Term Memory (STM) for improving the abstraction power of NNs and
showed that it could then also allow to learn the Marcus et al. task [3]. In this
article, their definition of the STM is refined to show that the usefulness of such
tools is not limited to “mere” abstraction but also enhances the overall general-
ization power. A Tapped Delay Neural Network (TDNN) [7,4] is provided with
an external loop to allow the agent to “hear” what it produces. Communication
skills are thus augmented and the teacher can then force the agent to re-use its
knowledge. A classification task is proposed in this temporal framework, not in
order to make time series prediction, but rather to use the dynamical properties
of the external loop and of the STMs for generalization.

2 Short Term Memories

Dominey et al. [2] introduced their STM in the Temporal Recurrent Network in
a psychologic context. The aim was to model the fact that humans could learn
surface (the explicit sequence of events) and abstract structures, but could only

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 39–44, 2005.
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do so for the latter when explicitly warned to look for abstraction. Their con-
clusion is that learning surface and abstract structures requires two dissociable
systems. Our work is not for psychological purposes, but these STMs clearly en-
hance the generalization power of standard NNs. However, the way we use them
requires few modifications: Dominey et al. defined them to represent reactiva-
tions of outputs whereas we want to use them on inputs, for recognition. They
also added a node for signaling the absence of repetition, but we don’t need it.
The behavior of the STMs is defined in (1). There are k STMs, each one with a
different delay 1 ≤ d ≤ k, d = t2 − t1:

∀t1, ∀t2, t1 < t2 ≤ t1 + k ⇒[(
∃i ∈ IS : Ai(t1) = 1 ∧ Ai(t2) = 1

)
⇐⇒

(
AMt2−t1

(t2) = 1
)] , (1)

where IS is the set of symbol inputs (inputs that are not STMs), t1 and t2 are
time steps, Md is a STM activated by the repetition of the activation of a symbol
input after d time steps, and Ai is the activation of unit i (symbol or STM). For
example, the sequence ABAACB will activate M2 on the second A, M1 and M3

on the third A and M4 on the second B.
For experiments on the Marcus et al. tasks, the reader can refer to [3].

3 Tapped Delay Neural Network

To show how the STMs can be integrated in a temporal neural network, we chose
a basic temporal architecture, the TDNN, which can take the k last time steps
into account.

Each line has the same number of inputs, and each input on one line has
the same value as the preceding line at the preceding time step. There are k
lines, each line containing k STMs. The network has one hidden layer, in which
nodes have a sigmoid activation function and are connected to all the input
lines. The nodes of the output layer have a linear activation function. No special
learning rule is needed: the standard back-propagation algorithm can consider
the STMs as regular inputs. Nothing more is needed and the STMs are now
wholly incorporated into the network (cf. Fig. 1).

Let us take a simple example: if the network has to learn to recognize when
two successive letters are identical, it will then strengthen the connections from
the M1 input to the output through the hidden nodes. Other connections will
probably be weakened and it will then be able to recognize any repetition of any
letter, even if it wasn’t in the training set: the system has learned the abstraction
of repetition.

4 Augmenting the Network

The first part of a more complex system is presented, having in sight the contin-
ual learning framework [6], sometimes called life-long learning or meta-learning
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[9]. It investigates the field of how to re-use knowledge acquired on previous
interactions with the environment to improve performance on present or future
tasks. The main idea is to learn tasks that are similar but more and more dif-
ficult, each solution being a starting bias for learning the next one. However,
there exist lots of tasks where knowledge cannot be implicitly re-used but by a
potentially very costly search algorithm, depending on the size of the knowledge.
This is the case when the re-use is necessary not only to perform better but,
more importantly, to generalize, as we will see in section 5. The teacher then
shows the agent, on some examples, how to re-use its knowledge and the agent
must learn to generalize it. The author is not aware of any neural system where
knowledge is forced to be re-used.

In order to do so, the system is modified to augment the communication
capabilities between the agent and the teacher: inputs and actions (not outputs)
are merged and an external loop is added (cf. Fig. 1).

...

...
t−kt−1t

TDNN

External
Loop

Hidden layer

Reinforcement

Selection
Action

sI STMs sI STMs sI STMs
Teacher

Fig. 1. The whole system. The teacher provides a sequence of symbols to the network,
which processes it to update the STMs values. At each time step, each action (symbol
input) is tested and the one for which the predicted output is higher is chosen. It is
given to the teacher and also fed back to the inputs via the external loop.

4.1 Merging Inputs and Actions

Generally, the output of the network is the action to be chosen. Here, it is
the estimated reinforcement that should follow the actual sequence of events
(symbols): in order to use the STMs on inputs and on actions, the two sets
are merged. The agent chooses its action among the inputs. This will also be
usefull when the external loop is added. Learning is still supervised, but error
signals are reinforcements. This means that the agent produces an action and
the teacher criticizes it: if the right action is chosen, the agent is given a re-
ward (positive reinforcement, typically +1), otherwise it is given a punishment
(negative reinforcement, −1).

To find the action to be chosen, each possible input/action is tested to pre-
dict the reinforcement that may be received if the actual sequence of events is
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completed by this action. At each time step, the action a predicting the best
positive reinforcement for the next time step, or no action if a does not exist, is
then selected:

a = argmax
i∈IS

Net(i) if max
i∈IS

Net(i) > 0, φ otherwise , (2)

where IS is the set of input symbols andNet(i) is the output of the network when
only the ith symbol is active. This is the usual action selection method of rein-
forcement learning system [8]. The STMs are not actions and can be considered
as totaly internal tools. When the agent wrongly produces nothing, the teacher
tells him the right answer and gives him a reward (positive reinforcement).

For example, suppose the agent generally receives a reward after the sequence
ABC. Then, if the sequence AB is presented on its inputs, it searches for an
action that completes the sequence and answers C.

Or, for the repetition task, when the C symbol is presented, only the action
C activates M1 (see (1)) and predicts a reward, so C is chosen.

4.2 External Loop and Forcing the Re-use of Knowledge

We now want the agent to be able to “hear” what it produces, so that it can
auto-stimulate itself by producing and hearing sequences that could have been
produced by the teacher. A loop is thus added around the TDNN and the action
produced by the agent at one time step is also provided to its inputs at the
next time step. We call this an external loop because it can be thought of as a
property of the environment and the learning algorithm does not need to take
it into account. Hence, the system is not really a recurrent network (cf. Fig. 1).

Of course, this can generate ambiguities if the teacher’s and the agent’s sym-
bols are superposed. But, as in any communication protocol, this is not meant
to happen and the teacher must be aware of it. In fact, if the agent produces an
action when it should not have, the teacher punishes it.

Therefore, for the repetition task, not only will the agent choose C because
it would activate M1, but the inputs are also fed with this action, actually really
activating M1.

The teacher can now explicitely, on-line, make the agent re-use its knowledge.
The agent can produce sequences of symbols, which will be reintroduced on its
inputs via the loop, enabling it to “think aloud”.

Suppose the agent has learned to answer E after the sequence CD, C after
AB and D after ABC. If the teacher provides the sequence AB, the agent
answers C and thus hears C. ABC being now an input sequence, the agent
automatically answers D and hears D. The agent produced the sequence CD,
which then auto-stimulates itself to answer E. Yet, an infinite behavior can be
produced, for example if the agent learns to produce AB after the sequence
AB, continually auto-stimulating itself. In this case, all actions are constants
but STMs will emulate variables.
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5 Classification

To show how STMs and forcing the re-use of knowledge can be used together,
we propose a general symbolic classification task. It might seem to be a trivial
task at a human level, but it is not in the neural network framework: NNs are
well-designed for surface structure generalization, but not for abstract problems
[3] and for learning several tasks.

We segment the alphabet in 6 groups A to F , each group containing 5 suc-
cessive letters taken in the alphabet order: a to e are of group A, f to j are of
group B, ... and z is of group F . The agent must learn by heart in which group
is each letter. The teacher then asks it if a given letter is in a given group and
it must answer yes or no. The teacher will give the correct “way of thinking” to
the agent on samples of the training set and the agent must generalize on the
whole alphabet.

First Task. The teacher provides a sequence of the type gpX , where X is a
given letter. The agent must answer the corresponding group of X . The first two
letters gp are the context or the name of the task. This is needed for knowledge
to be re-used. Since no generalization is possible, the whole alphabet is used for
training. To avoid conflicts with the second task, the agent must also learn not
to produce any action for 4 time steps afterwards.

Second Task. The teacher provides a sequence of the type isXY , where X
is a given letter and Y is a given group (also a letter). The agent must answer
gpX , thus asking itself for giving the corresponding group. With the knowledge
of the previous task, it then answers the right group G, supposing its knowledge
is right. It must then output y if G = Y and n otherwise. The whole sequence
is then isXY gpXY y or isXY gpXZn. First, the teacher provides the sequence
isXY , where the agent has nothing to do. Then, the agent must first produce
g, thus receiving a reward. If it produces any other action, the teacher punishes
him. If it does not produce anything, the teacher says g in the agent’s place and
gives it a reward to make it correlate g with the previous sequence. After some
time, the agent produces g by itself. The same is done for p and X . Having heard
gpX , the agent is auto-stimulated and thus answers the corresponding group Y .
Finally, the agent must learn to answer y or n, depending on the activation of
M4 at the previous time step.

For X , the training set is the set of all the letters of groups A and B plus
the letters l, n, p, r and t of groups C and D. All the corresponding groups are
used for Y , but not groups E and F . The test set is the whole alphabet and all
the groups.

Results. The learning rate and the momentum are set to 0.9 and k is set to
4. The symbol inputs are the 26 letters of the alphabet (same inputs for letters
and groups). For the first task, the hidden layer contains 8 units, which weights
are frozen for the second task where 5 more hidden units are added.

On average, the first task is learned perfectly in about 1200 to 2000 epochs,
an epoch being one pass through the training set.
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For the second task, learning takes 620 epochs on average. The system gener-
alizes to the test set, but always fails on the particular case s because it appears
in all sequences isXY . Inserting s in the training set prevents this. Rare errors
(0% to 4%) also occur on other test letters, because of untrained weights dis-
turbing the sequence. Beside this, the agent always gives the correct answers for
letters k, m, o and q, which are not in the training set but which groups are used
during training. This is also the case for letters u through z, which letters and
corresponding groups are not in the training set.

6 Conclusion

We have shown how forcing the re-use of knowledge via the external loop as-
sociated with the abstraction capability of short term memories enhances the
generalization power of an agent. The supervision by the teacher can give it an
access to complex knowledge. Even typically static tasks can benefit from using
these dynamics. Though, the TDNN used in this article is not really adapted to
this kind of task and further dynamic possibilities will be shown when introduc-
ing the second part of the system, where our work consists in superseding the
TDNN by an original and more specialized growing neural system, excluding a
priori many unusefull weights.
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Abstract. In this paper, the interpolation mechanism of functional net-
works is discussed. And a kind of three layers Functional networks with
single input unit and single output unit and four layers functional net-
works with double input units and single output unit is designed, a learn-
ing algorithm for function approximation is based on minimizing a sum
of squares with a unique minimum has been proposed, which can respec-
tively approximate a given one-variable continuous function and a given
two-variable continuous function satisfying given precision. Finally, sev-
eral given examples show that the interpolation method is effective and
practical.

1 Introduction

One of the important problems in digital signal processing is a reconstruction
of the continuous time signal F (t) from its samples F (nT ) [1]. This problem is
known as interpolation described by the following equation:

F (x) =
N∑

i=1

wiφi(x) (1)

where wi are coefficients of interpolation and φi(x) are basis interpolation func-
tions.

If a controlled process is difficult to access, the problem of interpolation be-
comes complicated. In this case it is difficult to satisfy Nyquist Sampling rate
condition and signal is down sampled [1]. In the real time signal process sys-
tem application of the conventional interpolator based on Lagrange polynomial
(parabolic or cubic splines) and orthogonal functions [2] do not satisfy limited
time processing requirement related with the generation of functions φi(x), op-
eration of multiplication etc. in accordance to eq. (1).

Interpolation discrete time signal F (nX) by polynomial filtering (Butter-
worth, Tchebyschev filters) cause a shape distortion. Independent of an original

� This work was supported by NSF of China.
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signal pattern, the result of interpolation is sharply defined at the nodes and it
is exponentially varied between the nodes of interpolation [3]. To satisfy time
limiting and precision specifications in this paper operation of interpolation is
realized using functional network. In this paper, two kinds of Functional net-
works are designed, which can approximate continuous function satisfying given
precision. Finally, several given examples show that the interpolation method is
effective and practical.

2 Functional Networks

Castillo et al. [4,5,6] present functional networks as an extension of artificial
neural networks. Unlike neural networks, in these networks there are no weights
associated with the links connecting neurons, and the internal neuron functions
are not fixed but learnable. These functions are not arbitrary, but subject to
strong constraints to satisfy the compatibility conditions imposed by the exis-
tence of multiple links going from the last input layer to the same output units.
In fact, writing the values of the output units in different forms, by consider-
ing these different links, a system of functional equation is obtained. When this
system is solved, the number of degree of freedom of these initially multidimen-
sional functions is considerably reduced. In learning the resulting functions, a
method based on minimizing a least squares error function is used, which, unlike
the functions used in neural networks has a single minimum. Our definition is
simple but rigorous: a functional network is a network in which the weights of
the neurons are substituted by a set of basis functions. For example, in Fig.1
a neural network and its equivalent functional network are shown. Note that
weights are subsumed by the neural functions.

Fig. 1. (a) A neural network (b) A functional network

where f1, f2 and f3 are functional neuron functions in Fig 1 (b).

3 Interpolation Mechanism of Functional Networks

3.1 One-Variable Interpolation Function Model of Functional
Network

The one-variable interpolation functional network consists of the following ele-
ments ( Fig.2 ): (1) a layer of input units. This first layer accepts input signals.
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(2) Two layers of processing units that evaluate a set of input signals and deliv-
ers a set of output signals (fi). (3) A set of directed links. Indicating the signal
flow direction. (4) A layers of output units. This is the last layers, and contains
the output signals.

Fig. 2. A functional network for interpolation one-variable function F̂ (x)

Fig.2 show a functional network corresponding to the functional equation:

y = F̂ (x) =
N∑

i=1

fi(x) (2)

Learning interpolation function F (x) is equivalent to learning function F̂ (x),
and learning function F̂ (x) is equivalent to learning the neuron functions fi(x).
To this end, we can approximate fi(x) : i = 1, 2, . . . , N by

f̂i(x) =
M∑

j=1

wijφij(x) (3)

Replace this in (2) we get:

y = F̂ (x) =
N∑

i=1

M∑
j=1

wijφij(x) (4)

where {φij(x) : j = 1, 2, . . . , M} is a set of given one-variable interpolation
basis of functions capable of approximation interpolation function to the desired
accuracy.

3.2 Two-Variable Interpolation Function Model of Functional
Network

The two-variable interpolation function model of functional network consists of
the following elements (see Fig.3): (1) a layer of input units. This first layer
accepts input signals. (2) Three layers of processing units that evaluate a set of
input signals and delivers a set of output signals (fi). (3) A set of directed links
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Fig. 3. A functional network for interpolation two-variable function F (x, y)

indicating the signal flow direction. (4) A layer of output units. This is the last
layer, and contains the output signals.

Consider the following equation:

z = F (x, y) =
n∑

i=1

fi(x)gi(y) (5)

we now approximate the functions {fi}, {gi}, i = 1, 2, . . . , n by using a lin-
ear combination of the known functions of a given interpolation basis functions
Φi(x) = {φi1(x), φi2(x), . . . , φim1i(x)}, Ψi(x) = {ϕi1(x), ϕi2(x), . . . , ϕim2i(x)}
are two sets of linearly independent functions, then, we get:

fi(x) =
m1i∑
j=1

aijφij(x) gi(y) =
m2i∑
k=1

bikϕik(y) (6)

Replace this in (5) we get:

z = F (x, y) =
r∑

i=1

n∑
j=r+1

cijφi(x)ϕj(y) (7)

where cij are parameters, and φi(x), ϕi(y) are given interpolation basis functions
capable of approximation two-variable function F̂ (x, y) to the desired accuracy.

4 Interpolation Functional Networks Learning Algorithm

In this section, only we consider the two-variable interpolation functional net-
works (see Fig.3) learning algorithm. In this case, the problem of learning the
polynomial functional network associated with (7) does not involves auxiliary
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functional conditions and, therefore, a simples least squares method allows us
obtained the optimal coefficients cij from the available data consisting of triplets
{(x0i, x1i, x2i) | i = 1, 2, . . . , n}, where x0i, x1i and x2i refer to z, x and y, re-
spectively. Then, the error can be measured by:

ei = xi0 −
r∑

i=1

n∑
j=r+1

cijφi(x1i)ϕj(x2i) (8)

i = 1, . . . , n. Training patterns. Thus, to find the optimum coefficients we min-
imize the sum of square errors:

E =
n∑

k=1

e2k (9)

In this case, the parameters are not constrained by extra conditions, so the
minimum can be obtained by solving the following system of linear equations,
where the unknowns are the coefficients cij :

∂E

∂cpq
= 2

n∑
k=1

ekφp(x1k)ϕq(x2k) = 0; p = 1, . . . , r; q = 1, 2, . . . , r − s (10)

5 Experimental Results

To estimate the performance of approximate, the Root Mean Square Error
(RMSE) defined as:

RMSE =

√√√√1
r

r∑
p=1

‖ bp − b̂p ‖
2

(11)

where b̂p is the network output, and the norm function ‖ · ‖ reduces to the usual
absolute value function | · |.

Example 1. Consider two-dimensional function approximation problem

F : R2 → R z = F (x, y) = 1 + x− y − x2y

Suppose we are given the data set consisting of the triplets shown in Table 1.
where x0, x1 and x2 refer to z, x and y, respectively. Then, by using a struc-
ture of the double-input and single output functional network with the learning
algorithm, only can we discuss two cases as follows:

1) First, we consider the polynomial interpolation basis functions family
φ(x1) = {1, x1, x

2
1}, ϕ(x2) = {1, x2, x

2
2} for the neuron function f1, g1. We

obtain interpolation function F (x, y) of approximation function F̂ (x, y).

z = F̂ (x, y) = 0.997608 + 1.00908x− 0.0105989x2− 0.983605y− 0.0686143xy
−0.928585x2y − 0.0166604y2 + 0.0730798xy2− 0.0776385x2y2

Thus, we get RMSE = 0.
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Table 1. Triplets {x0, x1, x2} for two-variable interpolation function z = F (x, y)

x0 x1 x2 x0 x1 x2

0.880 0.384 0.439 1.072 0.136 0.062
1.117 0.976 0.440 1.369 0.801 0.263
0.299 0.309 0.922 1.449 0.457 0.006
0.873 0.725 0.558 1.214 0.377 0.143
0.359 0.449 0.907 0.604 0.818 0.727
0.935 0.058 0.122 0.669 0.799 0.689
0.681 0.673 0.682 0.760 0.663 0.627
1.336 0.697 0.242 1.228 0.862 0.364
1.019 0.387 0.320 0.989 0.405 0.357
0.556 0.662 0.762 0.814 0.028 0.214

2) Second, we consider the polynomial interpolation basis functions family
φ(x1) = {1, x1, x

2
1}, ϕ(x2) = {1, x2} for the neuron function f1, g1. We obtain the

two-variable interpolation function F (x, y) of approximation function F̂ (x, y).

z = F̂ (x, y) = 0.999241 + 1.00004x+ 0.000994901x2− 0.996202y
−0.00108513xy− 0.993437x2y

Thus, we also get RMSE = 0.

Example 2. Consider two-dimensional function approximation problem

F : I2 → [−1, 1] F (x, y) = −sin(π · x) · cos(π · y)

Suppose we are given the data set consisting of the triplets shown in Table 2
and we are interested in estimating a representative functional network model
of the form (7).

Table 2. Triplets {z, x, y} for two-variable interpolation function z = F (x, y)

x y F (x, y)
0.949605 0.564963 0.0319533
0.709702 0.296671 -0.471442
0.636216 0.138527 -0.825018
0.64929 0.260153 -0.610314
0.554334 0.596855 0.29525
0.315312 0.0471869 -0.827172
0.729573 0.879708 0.698005
0.530368 0.360128 -0.423481
0.900224 0.21243 -0.242192
0.743644 0.0738989 -0.701738
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Let interpolation basis functions: φ(x) = [1, sin(π · x)], ϕ = [1, cos(π · y)], we
can obtain the two-variable approximation interpolation function F̂ (x, y).

F̂ (x, y) = −1sin(π · x) · cos(π · y)

Thus, we get RMSE = 0.

6 Conclusions

Two kinds of interpolation functional networks are designed, A learning algo-
rithm for function approximation is based on minimizing a sum of squares with
a unique minimum is proposed, and the learning of parameters of the functional
networks is carried out by the solving linear equations, which can respectively
approximate continuous function satisfying given precision. Finally, several given
examples show that the interpolation method is effective and practical.
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Abstract. The determination of the optimal architecture of a super-
vised neural network is an important and a difficult task. The classical
neural network topology optimization methods select weight(s) or unit(s)
from the architecture in order to give a high performance of a learning
algorithm. However, all existing topology optimization methods do not
guarantee to obtain the optimal solution. In this work, we propose a
hybrid approach which combines variable selection method and classical
optimization method in order to improve optimization topology solu-
tion. The proposed approach suggests to identify the relevant subset of
variables which gives a good classification performance in the first step
and then to apply a classical topology optimization method to eliminate
unnecessary hidden units or weights. A comparison of our approach to
classical techniques for architecture optimization is given.

1 Introduction

Supervised neural networks are widely used in various areas like pattern recog-
nition, marketing, geology or telecommunications. They are well adapted to pre-
diction using information of databases. Generally, we optimize the architecture
of these techniques before any use. The objectives of neural network topology
optimization can be numerous: improving the prediction performance, resolv-
ing the over-training problem, providing a faster predictor, providing a better
understanding of the underlying process that generates data (facilitating extrac-
tion of rules) and reducing the time and the cost of collecting and transforming
data.

In the last years, several neural network topology optimization methods
have been proposed [1,2]. Generally, these methods are grouped in three classes:
(i) Network Growing Techniques: the algorithms of this class start with a small
network and add units or connections until an adequate performance level is
obtained; (ii) Network Pruning Techniques: the algorithms of this class start
with a fully trained large network and then attempt to remove some of redun-
dant weights and/or units; (iii) Regularization Techniques: the algorithms of this
class add a penalty term to the network error function when training the network
which allows to reduce the number of units and weights in a network.
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These topology optimization methods give a sub-optimal architecture of a
supervised neural network. The goal of this work is to maximize reduction of
network complexity, i.e. removal of all the unnecessary units and weights. It is
known that the neural network architecture size strongly depends on the number
of variables (input units) and some of these variables might contain highly cor-
related information or even irrelevant information. It is important to begin with
the selection of variables before finding irrelevant weights or hidden units in the
network structure. The goal of variable selection methods is to find the subset
of variables which gives a high classification performance by elimination the un-
useless variables or variables which present redundancy. Irrelevant variables are
defined as variables not having any influence on the classification performance.
Contrary to relevant variables which are variables that have an influence on the
classification performance. For a discussion of relevance vs. usefulness and defi-
nitions of the various notions of relevance, see the review articles of [3,4,5]. The
variable selection methods can be subdivided into filter methods and wrapper
methods. The main difference is that the wrapper method makes use of the clas-
sifier, while the filter method does not. The wrapper approach is clearly more
accurate.

With a small subset size of variables resulting from variable selection task,
compared to original number of variables, we have inevitably reduced the net-
work complexity. The next section describe in detail our approach which rec-
ommend to apply variable selection before applying optimization topology tech-
nique. In section 3 an illustration of this approach using Optimal Brain Surgeon
(OBS) variants for variable selection and architecture optimization is presented.
Finally, some conclusions are drawn in section 4.

2 Variables-Weights Neural Network Topology
Optimization

Our hybrid approach is based on the divide-and-conquer principle. It combines
variable selection method and classical topology optimization method i.e. it sug-
gests to identify the relevant subset of variables in the first step and then to apply
a classical topology optimization method to eliminate unnecessary hidden units
or weights. We called this approach Variables-Weights Neural Network Topology
Optimization (VW-NNTO).

When applying the variable selection method to select a relevant subset of
variables, we have a panoply of methods which can be used for selection task.
According to used method, the solution presents: only the relevant subset of
variables or the subset with the topology architecture. When applying a classical
topology optimization method, we have also a panoply of methods which can
be used for optimization task by selecting the weights and/or hidden units. The
choice of the used method can takes in consideration the solution type obtained
by variable selection method. In the case of the solution with the subset of
variables and topology architecture, several questions can be raised, it is good
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to keep: (1) the same architecture? (2) the same training parameters? (3) the
values of the weights?

Practically, irrelevance variable does not imply that it should not be in the
relevant variable subset [3,4]. This step will allows also refine the results obtained
by the selection methods.

3 Illustration: OBS Techniques

3.1 Techniques Describtion

Several heuristic methods based on computing the saliency (also termed sen-
sitivity) have been proposed: Optimal Brain Damage (OBD) [6] and Optimal
Brain Surgeon (OBS) [7]. These methods are known as pruning methods. The
principle of these techniques is: the weight with the smallest saliency will gener-
ate the smallest error variation if it is removed. These techniques considered a
network trained to a local minimum in error by using the Taylor function. The
functional Taylor series of the error with respect to weights is:

δE =
∑

i

∂E

∂wi
δwi +

1
2

∑
i

∂2E

∂w2
i

(δwi)2 +
1
2

∑
i,j �=i

∂2E

∂wi∂wj
δwiδwj +O(‖δW‖3) (1)

A well trained network implies that the first term in (Eq. 1) will be zero
because E is at a minimum. When the perturbations are small, the last term
will be negligible.

Optimal Brain Surgeon (OBS) was introduced by Hassibi et al. [7,8]. In these
works the saliency of a weight is measured by approximating (Eq. 1):

δE =
1
2

∑
i

∑
j

hijδwiδwj =
1
2
δwT .H.δw (2)

it is possible to update the magnitude of all weights in the network by:

δw = − wq

[H−1]qq
H−1.eq (3)

and the saliency of the weight q is given by:

Lq =
1
2

w2
q

[H−1]qq
(4)

where eq is the unit vector in weight space corresponding to (scalar) weight wq.
Optimal Brain Surgeon has inspired some methods for feature selection such

as Generalized Optimal Brain Surgeon (G-OBS), Unit-Optimal Brain Surgeon
(Unit-OBS) and Flexible-Optimal Brain Surgeon (F-OBS).

Stahlberger and Riedmiller [9] proposed to the OBS’s users, a calculation,
called Generalized Optimal Brain Surgeon (G-OBS) which can update every
weights when deleting a subset of m weights in a single step. The solution is
given by:
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ΔE =
1
2
wTM(MTH−1M)−1MTw (5)

Δw = −H−1M(MTH−1M)−1MT w (6)

where M is the selection matrix and q1, q2, · · · , qm are the indices of the weights
that will be removed.

This calculation presents a combinatory calculation in order to know which
weights should be deleted. An implementation for this method is proposed in
[10] which defines the subset of connections by the smallest saliencies.

Unit-OBS was proposed by Stahlberger and Riedmiller [9]; it is a variable
selection algorithm, which computes, using the calculation G-OBS, which input
unit will generate the smallest increase of error if it is removed (Eq. 5).

The F-OBS has been proposed in [10], where its particularity is to remove
connections only between the input layer and the hidden layer.

OBS variants are less efficiency on large networks [10,11] because are severely
influenced by the cumulated noise generated by Hessian matrix calculation on
the weights. They require only one training for all pruning. An alternative is
proposed to re-applied these techniques in several times to resolve this problem.

3.2 Experiments

We use the first Monk’s problem of the proposed approach to optimize the topol-
ogy of Multilayer perceptron (MLP). This well-known problem (See [12]) requires
the learning agent to identify (true or false) friendly robots based on six nominal
attributes. The attributes are head shape (round, square, octagon), body shape
(round, square, octagon), is smiling (yes, no), holding (sword, balloon, flag),
jacket color (red, yellow, green, blue) and has tie (yes, no). The “true” concept
for this problem is (head shape = body shape) or (jacket color = red). The train-
ing dataset contains 124 examples and the validation and test datasets contains
432 examples.

To forecast the class according to the 17 input values (one per nominal value
coded as 1 or -1 if the characteristic is true or false), the multilayer perceptron
starts with 3 hidden neurons containing a hyperbolic tangent activation func-
tion. This number of hidden neurons allows a satisfactory representation able
to solve this discrimination problem. The total number of weights for this fully
connected network (including a bias) is 58. This value will be compared to the
remaining weights after pruning. The performance in classification is equal to
100% according to the confusion matrix. For each method, we build 500 MLPs
by varying: the training/validating subset decomposition, the initialization of
the weights and the order of the pattern presentation.

We select two values as measures of the performance for optimization: the
number of preserved weights (see Figures 2,4,6) and the number of preserved
variables (see Figures 1,3,5). According to all obtained histograms in the figures,
we notice that: (i) There is a certain compromise between the number of variables
and the number of weights for all methods; (ii) The hybrid techniques give good
results compared to the simple optimization methods OBS.
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Fig. 1. OBS : variables distribution
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Fig. 2. OBS: weights distribution
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Fig. 3. Unit-OBS + OBS: variables dis-
tribution
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Fig. 4. Unit-OBS + OBS: weights distri-
bution
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Fig. 5. F-OBS + OBS: variables distribu-
tion
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Fig. 6. F-OBS + OBS: weights distribu-
tion

4 Conclusion

We have proposed a hybrid approach for architecture optimization combining
variable selection methods and classical topology optimization technique. In the
first step we have proposed to select all relevant features or a subset of relevant
features and then to apply classical optimization architecture until there is no
more weight or hidden unit to eliminate. We have presented an illustration of this
approach by using the Optimal Brain Surgeon variants specialized in variable
selection and architecture optimization.



58 M. Attik, L. Bougrain, and F. Alexandre

Acknowledgment

We would like to thank Abdessamad Imine for his helpful remarks.

References

1. Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford
(1995)

2. Reed, R.: Pruning algorithms — A survey. IEEE Transactions on Neural Networks
4 (1993) 740–746

3. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection
problem. In: International Conference on Machine Learning. (1994) 121–129 Jour-
nal version in AIJ, available at http://citeseer.nj.nec.com/13663.html.

4. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence
97 (1997) 273–324

5. Blum, A., Langley, P.: Selection of relevant features and examples in machine
learning. Artificial Intelligence 97 (1997) 245–271

6. Le Cun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In Touretzky, D.S.,
ed.: Advances in Neural Information Processing Systems: Proceedings of the 1989
Conference, San Mateo, CA, Morgan-Kaufmann (1990) 598–605

7. Hassibi, B., Stork, D.G.: Second order derivatives for network pruning: Optimal
brain surgeon. In Hanson, S.J., Cowan, J.D., Giles, C.L., eds.: Advances in Neural
Information Processing Systems. Volume 5., Morgan Kaufmann, San Mateo, CA
(1993) 164–171

8. Hassibi, B., Stork, D.G., Wolff, G.: Optimal brain surgeon: Extensions and perfor-
mance comparison. In Cowan, J.D., Tesauro, G., Alspector, J., eds.: Advances in
Neural Information Processing Systems. Volume 6., Morgan Kaufmann Publishers,
Inc. (1994) 263–270

9. Stahlberger, A., Riedmiller, M.: Fast network pruning and feature extraction by
using the unit-OBS algorithm. In Mozer, M.C., Jordan, M.I., Petsche, T., eds.:
Advances in Neural Information Processing Systems. Volume 9., The MIT Press
(1997) 655

10. Attik, M., Bougrain, L., Alexandre, F.: Optimal brain surgeon variants for feature
selection. In: International Joint Conference on Neural Networks - IJCNN’04,
Budapest, Hungary. (2004)

11. Attik, M., Bougrain, L., Alexandre, F.: Optimal brain surgeon variants for opti-
mization. In: 16h European Conference on Artificial Intelligence - ECAI’04, Va-
lencia, Spain. (2004)

12. Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., Jong, K.D.,
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Abstract. A recursive learning algorithm based on the rough sets ap-
proach to parameter estimation for radial basis function neural networks
is proposed. The algorithm is intended for the pattern recognition and
classification problems. It can also be applied to neuro control, identifi-
cation, and emulation.

1 Introduction

Neural networks techniques play an essential role in data mining and intelligent
data processing tasks. They can be applied a variety of problems like nonli-
near systems identification, time series forecasting, filtration, adaptive control,
pattern recognition, technical diagnostics, etc.

Radial basis function networks (RBFNs) are known as networks with locally-
tuned processing units and possess universal approximation capabilities. The
RBFN consist of two information processing layers, in contrast to the multilayer
perceptrons, include only linear synaptic weights of the output layer providing
desired performance to the nonlinear input-output mapping.

In the general case, the RBFN contains n inputs and m outputs and performs
the following nonlinear mapping: yj = Fj(x) = wj0 +

∑h
i=1 wjiφi(x) = wT

j φ(x),
where yj is the j-th network output signal (j = 1, 2, . . . ,m), Fj(x) is a nonlinear
mapping of the input vector x = (x1, x2, . . . , xn)T into the j-th output, wji re-
present the adjustable synaptic weights, and φi(x) denote a radial basis or kernel
functions, wj = (wj0, wj1, . . . , wjh)T , φ(x) = (1, φ1(x), φ2(x), . . . , φh(x))T .

The only hidden layer of the networks of this type performs a nonlinear
mapping of the input vector space R

n into the space R
h of a larger dimension

(h � n). The output layer consists of a set of adaptive linear associators, and
calculates the network response y = (y1, y2 . . . , ym)T to the input signal x.

The most widely used learning algorithms for the RBFNs are based on the
quadratic criteria of the error function. These methods range from the simple
one-step Widrow-Hoff learning algorithm to the exponentially weighted least-
squares method:

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 59–65, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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wj(k) = wj(k − 1) +

Pφ(k − 1)(dj(k)− wT
j (k − 1)φ(x(k)))

α+ φT (x(k))Pφ(k − 1)φ(x(k))
φ(x(k)),

Pφ(k) =
1
α

(
Pφ(k − 1)− Pφ(k − 1)φ(x(k))φT (x(k))Pφ(k − 1)

α+ φT (x(k))Pφ(k − 1)φ(x(k))

)
,

where k = 1, 2, . . . denotes discrete time, 0 < η < 2 is a scalar parameter, which
determines the convergence of the learning process, dj(k) is the target signal,
and 0 < α < 1 is a forgetting factor.

Estimates of the synaptic weights obtained with these algorithms have a
clear statistical meaning. The weights also reach their optimal values if both the
useful information and disturbances are stochastic signals generated by normal
distributions. The learning algorithms based on non-quadratic criteria are still
connected with a certain distribution law, and have a spatial estimate represen-
ted by the mean value of the distribution.

It is natural that the application of the statistical criteria to the non- sto-
chastic information processing tasks (e.g. dynamic reconstruction of chaotic si-
gnals [1,2,3]) will not provide reasonable accuracy. In this case we could assume
that both the useful signals x(k), dj(k) (here dj(k) is the training signal) and
unobserved disturbances ζ(k) lie within a bounded range. Moreover, these si-
gnals might have a regular, chaotic or synthetic nature (e.g. noise). It is also
obvious that even for the optimal values of the synaptic weights w∗

j an exact
equality yj(k) = dj(k) at the network output cannot be achieved during the
learning process. The optimal values w∗

j can only define a range of compatible
values [4,5]

dj(k)− r(k) ≤ w∗T
j φ(x(k)) ≤ dj(k) + r(k), (1)

with r(k) denoting the bounds of the disturbances: |ζ(k)| ≤ r(k).
It could be readily seen that the inequality (1) defines two hyperplanes

in the synaptic space, which are the bounds for wj(k) values. The sequence
dj(1), dj(2), . . . , dj(N) of the training signals generates N pairs of such hyper-
planes. Denote by Dj(N) the intersection of the sets of synaptic weights com-
patible with all observations (i.e. for all k). Dj(N) is usually called a polytope.
All points of Dj(N) are equivalent, viz. we cannot distinguish the best synaptic
weight vector value. In this case the result of the learning procedure will not be
a spatial estimate, but an interval one. However, for convenience the center of
the polytope Dj(N) could be chosen as an estimate, in a manner, similar to the
defuzzification procedures used in the fuzzy inference systems.

The approach discussed above is called a set-membership approach to para-
meter estimation and is quite popular in the tasks of identification of the control
objects and systems.

One of the possible approaches to find the set of synaptic weights lies in
solving the linear system of N inequalities (1). However, as the number of ver-
tices of the polytope Dj(N) increases much faster than k = 1, 2, . . . , N, . . ., this
approach seems to be quite ineffective in a numerical implementation.
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An alternative approach consists in the approximation of the polytope Dj(k)
by ellipsoids

Lj(k) : (w∗
j − wj(k))TP−1

j (k)(w∗
j − wj(k)) ≤ 1, (2)

with the centers at wj(k) and the positive definite covariance matrices Pj(k),
which are tuned during the learning process to reach the most accurate approxi-
mation of Dj(k) provided by Lj(k). Since wj(k) and Pj(k) contain (h + 1) +
(h+ 2)(h+ 1)/2 adjustable parameters, the use of the ellipsoidal approximation
is more effective than solving the linear system defined by a polytope.

One can see that the polytope Dj(k) is actually a rough-set [6], and the
ellipsoid Lj(k) containing all the elements of Dj(k) is its upper approximation.
Notice also that the rough-sets approach could be applied to the learning of the
multilayer neural networks (see [7]).

The approach developed in this paper is based on the ideas of F. Schweppe [4]
and consists in the concept that the ellipsoid Lj(k) must contain all the pos-
sible values of the synaptic weights, belonging to the intersection of Lj(k − 1)
(an ellipsoid, built at the time k − 1) with the area Gj(k), lying between two
hyperplanes defined by the current k-th observation (1).

Since the intersection of Lj(k − 1) and Gj(k) generally is not an ellipsoid,
we need to determine the values of the parameters wj(k) and Pj(k) giving the
best approximation of the intersection which is provided by Lj(k). From the
equations (1) and (2) it can be readily seen that the desired parameters values
are determined by the set of inequalities:{

(w∗
j − wj(k − 1))TP−1

j (k − 1)(w∗
j − wj(k − 1)) ≤ 1,

r−2(k)(dj(k)− w∗T
j φ(x(k)))2 ≤ 1,

(3)

or for a nonnegative ρj(k):

(w∗
j − wj(k − 1))TP−1

j (k − 1)(w∗
j − wj(k − 1))+

+ ρj(k)r−2(dj(k)− w∗T
j φ(x(k)))2 ≤ 1 + ρj(k). (4)

Denoting the error vector of determining the synaptic weight by w̃j(k) =
w∗

j − wj(k), after simple but tedious transformations of the quadratic form in
the left side of (4), we could obtain the Fogel-Huang’s algorithm [8] most popular
in ellipsoidal estimation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wj(k) = wj(k − 1) + ρj(k)r−2(k)P̃j(k)(dj(k) − wT
j (k − 1)φ(x(k)))φ(x(k)),

P̃j(k − 1) = Pj(k − 1) − ρj(k)r−2(k)Pj(k − 1)φ(x(k))φT (x(k))Pj(k − 1)
1 + ρj(k)r−2(k)φT (x(k))Pj(k − 1)φ(x(k))

,

Pj(k) = P̃j(k − 1)

(
1+ρj(k)− ρj(k)(dj(k) − wT

j (k − 1)φ(x(k)))2

r2(k) + ρj(k)φT (x(k))Pj(k − 1)φ(x(k))

)
.

(5)

The procedure (5) contains undefined parameter ρj(k), which should be cho-
sen to minimize the volume of the ellipsoid Lj(k) approximating an intersection
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of Lj(k − 1) and Gj(k), that is in fact similar to the D-criterion of optimality
used in experimental design theory. This can be formulated as the minimization
of the function:

detPj(k) =

(
1 + ρj(k)−

ρj(k)e2j(k)
r2(k) + ρj(k)φT (x(k))Pj(k − 1)φ(x(k))

)h+1

·

·
(

1− ρj(k)φT (x(k))Pj(k − 1)φ(x(k))
r2(k) + ρj(k)φT (x(k))Pj(k − 1)φ(x(k))

)
detPj(k − 1) (6)

(where ej(k) = dj(k)−wT
j (k−1)φ(x(k)) is a learning error of the neural network

on the j-th output) or, equivalently, as solving the differential equation:

∂ detPj(k)/∂ρj = 0. (7)

It is quite obvious that (7) does not have an explicit analytic solution. To
determine the value of the parameter ρj(k), one-dimensional global minimization
procedures or other numerical algorithms of finding real nonnegative roots can be
applied to the equations (6) or (7) respectively. However, these methods are not
applicable in real-time learning because of their low computational performance.

2 The Learning Algorithm

In order to overcome the difficulties noted above let us introduce a scalar γj(k)
satisfying the following conditions [9]: D−1

j (k) = γj(k)P−1
j (k), Dj(k) = γ−1

j (k)
Pj(k), γj(k) > 0, and then rewrite equations (3), (4) in the form{

(w∗
j − wj(k − 1))TD−1

j (k − 1)(w∗
j − wj(k − 1)) ≤ γj(k − 1),

r−2(k)(dj(k)− w∗T
j φ(x(k)))2 ≤ 1,

and (w∗
j −wj(k−1))T D−1

j (k−1)(w∗
j −wj(k−1))+ρj(k)r−2(k)(dj(k)−w∗T

j φ(x(k)))2 ≤
γj(k − 1) + ρj(k), respectively.

Performing further a sequence of transformations, we obtain an algorithm:⎧⎪⎪⎨⎪⎪⎩
wj(k) = wj(k − 1) +

δj(k)ej(k)Dj(k − 1)φ(x(k))
1 + δ(k)φT (x(k))Dj(k − 1)φ(x(k))

,

Dj(k) = Dj(k − 1)− δj(k)
Dj(k − 1)φ(x(k))φT (x(k))Dj(k − 1)
1 + δ(k)φT (x(k))Dj(k − 1)φ(x(k))

,

(8)

(where δj(k) = ρj(k)r−2(k)) which structurally coincides with the Hägglund’s
algorithm [10] minimizing the criterion: Ej(k) =

∑k
p=0 δj(p)e

2
j (p). It should be

noted that unlike the Hägglund’s algorithm, the procedure (8) contains two free
parameters γj(k) and δj(k), which fully determine the character of the learning
process.

To find γj(k), let us write an inequality: w̃T
j (k)D−1

j (k)w̃j(k) + δj(k)e2j (k) −
δ2j (k)e2j(k)φT (x(k))Dj(k)φ(x(k)) ≤ γj(k − 1) + δj(k)r2(k), whence it is easy
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to obtain: w̃T
j (k)D−1

j (k)w̃j(k) ≤ γj(k − 1) + δj(k)r2(k) − (δj(k)e2j (k))/(1 +
δj(k)φT (x(k))Dj(k−1) · φ(x(k))) = γ(k). Now the learning algorithm can be
written by a set of recursive equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wj(k) = wj(k − 1) +
δj(k)ej(k)Dj(k − 1)φ(x(k))

1 + δ(k)φT (x(k))Dj(k − 1)φ(x(k))
,

Dj(k) = Dj(k − 1)− δj(k)
D(k − 1)φ(x(k))φT (x(k))Dj(k − 1)
1 + δj(k)φT (x(k))Dj(k − 1)φ(x(k))

,

γj(k) = γj(k − 1) + δj(k)r2(k)−
δj(k)e2j(k)

1 + δj(k)φT (x(k))Dj(k − 1)φ(x(k))
.

(9)

In order to find the value of the parameter δ(k), providing the convergence
to the algorithm (9), consider a process of error decreasing as ‖w̃j(k)‖2

D−1
j (k)

.

The following estimation for the δj(k) can be obtained:

0 < δj(k) ≤ (ej(k)r−2(k)− 1)/(φT (x(k))Dj(k − 1)φ(x(k))). (10)

Hence the algorithm (9) adjusts the weights wj(k) till the following inequality
holds e2j(k) ≥ r2(k), i.e. it converges to the domain bounded by r(k). If the latter
condition is not satisfied, the current observation is ignored as it falls into the
dead-zone of the algorithm.

3 Experiments

The goal of our experiments is to compare the performance of the proposed
learning algorithm with the standard recursive least-squares (RLSE) method on
a set of well-known benchmarks from the UCI and PROBEN1 [11] repositories.

All tests were performed 100 times each and averaged results for the standard
RBFN with RLSE learning and the proposed algorithm are presented in Table 1.
Average mean class error (MCE) values are given in percents of the training and
checking data sets respectively. Each training pass was performed on the same
data and clustering results for both RLSE and the proposed algorithm. In order
to achieve the convergence of the proposed algorithm, it was executed in a batch
mode for several epochs (5 in our case). All input data sets were preliminarily
normalized on a unit hypercube. The subtractive clustering procedure was used
to find the centers and radii of the neurons in the hidden layer. The “iris”
and “wine” data sets from the UCI repository were randomly divided into the
training and checking sets with 70% to 30% ratio respectively.

To determine the values of the δj(k) parameters we used the standard
exponential-decay procedure: δ̃j(k) = (1 − 1/τ)(δ̃j(k − 1) − δ̃∞) + δ̃∞ (here
δ̃∞ denotes the lower bound of the δ̃j(k) values), subject to constraints (10) at
every learning step.

The following parameter values were used for all the data sets: r(k) = 0.25
for all k; wji(0) = 0, δj(0) = 1, γj(0) = 1, Pj(0) = θIh+1 (here Ih+1 is the
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Table 1. Experimental results for the standard RLSE and the proposed learning al-
gorithms

Data set RLSE The proposed algorithm mean{h}
mean{MCEtr} mean{MCEts} mean{MCEtr} mean{MCEts}

iris 3.54 4.09 3.49 4.06 7.29
wine 2.77 4.21 2.10 3.19 8.89

cancer1 4.57 2.30 4.19 0.98 16
cancer2 4.19 5.17 3.49 4.60 14
cancer3 4.00 4.60 3.83 3.22 15
horse1 30.77 29.67 29.66 27.29 26
horse2 21.61 34.07 20.42 33.16 42
horse3 31.50 35.16 30.53 33.67 28

identity matrix of the dimension (h + 1), and θ = 10000) for all j = 1, . . . ,m,
i = 1, . . . , h; δ̃∞ = 0.1, τ = 0.25.

It should be noted that introducing a learning procedure for the radii of
the neurons in the hidden layer, better classification results may be achieved.
However, this should not influence significantly the advantage of one of the
learning algorithms over another.

4 Conclusion

The proposed algorithm is quite simple in its computational realization, involving
only simple matrix operations like summation, multiplication, and division by a
scalar. It provides convergence of the adjustable weights to the ellipsoids of the
minimal volume, which contain the optimal parameters. This algorithm does
not require solving of the additional resource-consuming optimization or root
finding problems. During the learning process and accumulation of information
the algorithm gradually takes the form of the weighted recursive least squares
method, which is quite popular in the neural networks learning tasks.
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Support Vector Neural Training
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Abstract. SVM learning strategy based on progressive reduction of the number
of training vectors is used for MLP training. Threshold for acceptance of useful
vectors for training is dynamically adjusted during learning, leading to a small
number of support vectors near decision borders and higher accuracy of the fi-
nal solutions. Two problems for which neural networks have previously failed to
provide good results are presented to illustrate the usefulness of this approach.

1 Introduction

In the final part of the multi-layer perceptron (MLP) training presentation of most vec-
tors has no influence on the network parameters. Support Vector Machines (SVMs,
[1]) progressively remove such vectors from the training procedure. This approach con-
tributes not only to the increased speed near the end of training, but also to the higher
accuracy that is finally achieved. If the margin between the hyperplane and the vectors
from two classes is small the long tails of sigmoidal output function contributing to the
error function may shift the position of the MLP hyperplane, and although the mean
square error will decrease the number of classification errors may increase. Such be-
havior has been observed [2] after initialization of the MLP network with parameters
obtained from the linear discrimination analysis (LDA).

Selection of training vectors near the border is a form of active learning [3] in which
the training algorithm has an influence on what part of the inputs space the information
comes from. Sensitivity analysis in respect to input perturbations has been used [4] to
visualize and analyze decision borders. Another way to select border vectors is to use
distances between vectors of different classes [5] but for large databases this is costly,
scaling with a square of the number of vectors, and it does not include the information
about possible influence of a given vector on the network training.

In this paper perhaps the simplest, but it seems that so far little explored, approach
to active learning is investigated. Following SVM approach all data is initially used and
progressively vectors that do not contribute much to the training process are removed.
This number of support vectors used in the final stages of training is small, contributing
to the precision and speed of learning. The algorithm and properties of this approach are
described in the next section. In the third section an illustration of the selection process
is shown on a version of XOR data and in section four two applications where MLPs
have previously failed to provide good answers are presented. The paper ends with a
few conclusions.

2 Active Learning by Dynamic Selection of Training Vectors

The Support Vector Neural Training (SVNT) algorithm selects those training vectors
in each iteration that may support the training process. The neural network Fk =
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Mk(X;W), for k = 1 . . .K outputs, is a vector mapping Fk ∈ [0, 1] that depends
on parameters W. These parameters are updated after presentation of the training data
T , depending on the difference between the target output values and the achieved net-
work output Yk −Mk(X;W):

ΔWij = −η∂E(W)
∂Wij

= η
K∑

k=1

(Yk −Mk(X;W))
∂Mk(X;W)

∂Wij
(1)

If the difference ε(X) = maxk |Yk−Mk(X;W)| is suffciently small X vector will
have negligible influence on the training process (a more costly alternative is to check
the gradient). A forward propagation step before each training epoch selects support
vectors close to the decision borders for which ε(X) > εmin that should be included
in the current training set. The number of SVs decreases because the backpropagation
training leads to growing weights, and therefore slopes of sigmoidal functions become
effectively steeper. This comes from the fact that σ(W ·X− θ) = σ(β(W′ ·X− θ′)),
where β = ||W||, W′ = W/||W|| and θ′ = θ/||W||. The network provides sharper
decision borders, leaving fewer support vectors that have ε(X) > εmin.

For noisy data or for strongly overlapping clusters the number of vectors selected in
each training epoch may change rapidly. To avoid such oscillations in the first training
epoch εmin = 0 and all training vectors are used. Then εmin is increased by Δε (0.01
is usually a good choice) after every epoch in which the accuracy has been increased.
If the number of currently selected SVs increases after the next selection εmin should
be set slightly lower to stabilize the iterative process, therefore it is decreased by Δε.
To reduce oscillations Δε is then decreased (dividing it by 1.2 was a good empirical
choice).

This works well if the number of mislabeled patterns, outliers, or noisy patterns
giving large errors is not too large, but it is clear that such patterns may end up as support
vectors even though their contribution to gradients is close to zero. This problem is
solved by excluding from training also the patterns that give very large errors, keeping
only those for which mink |Yk − Mk(X;W)| > 1 − εmin has been used. The εmin

threshold determines the margin of the size 1 − 2εmin, centered at 1/2, for all output
values. This may be translated into a margin around the decision surface near selected
SVs X, using the curvature of the sigmoidal functions in this area.

The SVNT algorithm selects best support vectors for training, cleaning the data at
the same time. The algorithm proceeds as follows:

1. Initialize the network parameters W, set Δε = 0.01, εmin = 0, set SV = T .
Until no improvement is found in the last Nlast iterations do

2. Optimize network parameters for Nopt steps on SV data.
3. Run feedforward step on T to determine overall accuracy and errors,

take SV = {X|ε(X) ∈ [εmin, 1− εmin]}.
4. If the accuracy increases:

compare current network with the previous best one, choose the better one as the
current best (take lower MSE if the number of errors is identical);
increase εmin = εmin +Δε.
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5. If the number of support vectors |SV | increases
decrease εmin = εmin −Δε;
decrease Δε = Δε/1.2.

MSE error should always be determined on the whole data set. Variants of this algo-
rithm may include changes of basic parameters, more sophisticated schedules of param-
eter changes, for example increase of the number of iterations Nopt between support
vector selections that may speed up the final convergence, tolerate small increase of the
number of SVs, and many others. Of course various thresholds may also be built in the
backpropagation procedure itself, but in this paper only the simplest solution that does
not require changes to the network optimization procedure is investigated.

In the implementation used in our experiments the optimization procedure runs for
a small number of iterations (typically Nopt = 2 − 50 ), and then selection of sup-
port vectors is performed. After the number of selected vectors stabilizes the number
of iterations performed between reductions may be increased, or a stopping criterion
for optimization may be used to converge to the particular solution for reduced data.
After subsequent reduction of the training set another solution may be found. Thus the
algorithm explores various solutions in the parameter space, keeping the core support
vectors and changing small percentage of these vectors after every restart. Convergence
at the later stages may therefore be far from monotonic, and it is worthwhile to wait
for some number of iterations before stopping. Network with the lowest number of the
training errors, and among those with the lowest MSE error, is returned at the end and
used on the test data.

3 Numerical Experiments

Implementation of the SVNT algorithm has been made using Scaled Conjugated Gra-
dient (SCG) optimization procedure from the Netlab package [6]. In order to see that
SVNT algorithm is indeed capable of selecting correct support vectors noisy version
of XOR data has been created, with Gaussian clouds around the corners and two addi-
tional vectors per cluster defining decision borders. Correct support vectors have been
selected by the SVM algorithm implemented in the GhostMiner data mining package
[7] using Gaussian and quadratic kernels. Parameter tuning (determined automatically
using crossvalidation) was necessary for Gaussian kernel, but some kernels (linear, cu-
bical) could not find the optimal solution within the range of parameters investigated.
SVNT algorithm with batch selection of support vectors after every 5 iterations and
Δε = 0.01 converges to optimal solution in almost all runs. The number of support
vectors is rapidly reduced to 8 (Fig.1).

Satellite Image data [8] consists of the multi-spectral values of pixels in the 3x3
neighborhoods in a small section (82x100) of an image taken by the Landsat Multi-
Spectral Scanner. The intensities are one-byte numbers (0-255), the training set includes
4435 samples and the test set 2000 samples. Central pixel in each neighborhood is as-
signed to one of the six classes: red soil (1072), cotton crop (479), grey soil (961), damp
grey soil (415), soil with vegetation stubble (470), and very damp grey soil (1038 train-
ing samples). This dataset is rather difficult to classify, with strong overlaps between
some classes. Test set accuracies reported in the Statlog project [9] ranged between
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Fig. 1. Typical run on the noisy XOR data; left, the number of support vectors decreasing during
iterations; right, the final solution with only support vectors shown

71% (Naive Bayes method) to 91% for the k-Nearest Neighbor classifier. Accuracy of
MLPs was at the level of 86%, and RBFs at 88% on the test set.

This dataset has been re-analyzed with a number of methods available in the Ghost-
miner package [7]. Best results (Table 1) were achieved with the k-Nearest Neighbors
classifier with small k (optimal k=3), suggesting that rather complex decision borders
are needed. Creating a network with 36 hidden nodes, one per each output, and adding
a regularization term with α = 0.5 to avoid overfitting led to a very good results. The
maximum variance of the hidden node responses reached 0.85, but for 5 nodes it was of
the order of 0.001, and for another 4 nodes it was below 0.1, showing that such network
is slightly too large, but most neurons are fully utilized. SVNT algorithm has achieved
best results using a fraction of all training vectors. Large classes 1 and 5 may be reduced
to 10% without any degradation of accuracy, while some classes retain almost all their
vectors. With regularization at α = 0.5 level no overfitting is observed, the training re-
sults are well correlated with the test results – the number of training errors goes below
the number of test errors without any increase in the latter. Strong overlap of classes
for this dataset requires relatively large number of support vectors – the final number of
support vectors was 2075, still rather large.

Hypothyroid dataset [8] has been for a long time a challenge to neural networks.
This data has been collected during two years of real medical screening tests for thyroid

Table 1. Results for the Satellite Image data

System and parameters Train accuracy Test accuracy

SVNT MLP, 36 nodes, α = 0.5 96.5 91.3

kNN, k=3, Manhattan – 90.9

SVM Gaussian kernel (optimized) 91.6 88.4

RBF, Statlog result 88.9 87.9

MLP, Statlog result 88.8 86.1

C4.5 tree 96.0 85.0
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Table 2. Results for the hypothyroid dataset

Method % train % test Ref.

C-MLP2LN rules 99.89 99.36 [10]
MLP+SCG, 4 neurons 99.81 99.24 this work
MLP+SCG, 4 neurons, 67 SV 99.95 99.01 this work
MLP+SCG, 4 neurons, 45 SV 100.0 98.92 this work
Cascade correlation 100.0 98.5 [11]
MLP+backprop 99.60 98.5 [11]
SVM Gaussian kernel 99.76 98.4 [10]

diseases and therefore contains mostly healthy cases. Among 3772 cases there are only
93 cases of primary hypothyroid, and 191 of compensated hypothyroid, the remaining
3488 cases are healthy cases. 3428 cases are provided for testing, with similar class
distribution. 21 attributes (15 binary, 6 continuous) are given, but only two of the binary
attributes (on thyroxine, and thyroid surgery) contain useful information, therefore the
number of attributes has been reduced to eight. MLPs trained using all tricks of the trade
(local learning rates, genetic optimization), and the cascade correlation algorithm reach
only 98.5% percent accuracy on the test set [11]. Best results (Table 2) are obtained
with 4 optimized logical rules, or very simple decision trees [10]. This shows the need
of logical, sharp decision borders that may only be provided with a small network with
large weights (at least 4 neurons are needed).

SVM algorithm with 8 features (results with all 21 features were significantly
worse) and Gaussian kernels after optimization achieved best results for C = 1000
and bias= 0.05, found by crossvalidation on the training set. The total number of sup-
port vectors was 391 and the test result was 98.4%. Experiments with SVNT algorithm
showed that with automatic determination of ε zero errors may be reached on the train-
ing set repeating SCG optimization for 100 iterations, followed by training set reduc-
tion. A rather flat error curve has been reached after 27400 iterations, with only two
errors on the training, 34 errors on the test set. The ε has stabilized at 0.048 and only
67 support vectors were selected. If the training is continued further MSE drops very
slowly, and after 43500 iterations zero training errors is reached, with 37 test errors and
45 support vectors (7, 21, and 17 respectively, from the three classes). The final weights
grow to quite high values, of the order of 100, showing that this problem has an inher-
ent logical structure [10]. Convergence is quite slow because little is gained by a very
large increase of network weights. The number of iterations may be large, but with less
than 100 vectors for training and a very small network time to do such calculations is
quite short. Significant improvement over previously published neural network results
has been achieved. These results represent probably the limit of accuracy that may be
achieved for this data set.

4 Discussion and Conclusions

The SVNT algorithm gave significant improvements in classification of unbalanced
data. In case of the hypothyroid problem the total number of SVs was amazingly small
(Table 2) and their class distribution was well balanced. SVs are useful in defining class
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boundaries in one-class learning problems [12] and SVNT may easily compete with
SVM in generating them. Depending on the rejection threshold, MSE, the number of
errors and the number of selected vectors may oscillate. Large oscillations are damped
by the dynamic rejection threshold in the SVNT algorithm, but small oscillations may
actually be useful. Reduction of the traing set introduces a stochastic element to the
training, pushing the system out of the local minima. Comparing this approach to the
algorithms based on evolutionary or on other global optimization algorithms it is clear
that at the initial stages convergence is fast and that all good models need to share
roughly the same characteristics. Near the end of the training gradients are small and
wider exploration of the parameter space is worthwhile to fine tune the decision borders.
This is exactly what SVNT does.

As all gradient-based training algorithms SVNT may sometimes fail. More empir-
ical tests are needed to evaluate it, but the ability to find minimal number of support
vectors, handle multiclass problems with strong class overlaps, and excellent results
on the unbalanced data demonstrated in this paper, combined with simple modifica-
tions to the standard backpropagation algorithms in batch and on-line learning needed
to achieve this, encourage further experimentation.
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Abstract. This paper reports on experiments investigating the use of
Evolutionary Algorithms to train Artificial Neural Networks in real time.
A simulated legged mobile robot was used as a test bed in the experi-
ments. Since the algorithm is designed to be used with a physical robot,
the population size was one and the recombination operator was not
used. The algorithm is therefore rather similar to the original Evolu-
tionary Strategies concept. The idea is that such an algorithm could
eventually be used to alter the locomotive performance of the robot on
different terrain types. Results are presented showing the effect of various
algorithm parameters on system performance.

1 Introduction

Artificial Neural Networks (ANNs) are normally trained before use, off-line. On-
line learning, in complex Neural Networks - for example, those designed for
pattern classification - has proved difficult and complex solutions like Adaptive
Resonance Theory [1] have had to be applied. This is because learning new
patterns effectively means altering the State Landscape of the network.

However, in some cases - for example, in many Control Systems - On-Line
Learning is possible because, in contrast with Pattern Recognition, the network
parameters may only have to change gradually as the controlled system changes.
As an example, consider a legged mobile robot walking across a series of different
ground types (for example, sandy, rocky or boggy). Obviously, in this case, for
optimum locomotive efficiency, the robot will have to alter its gait pattern in
response to the conditions underfoot. It may have to shorten its stride, for exam-
ple, when moving from a hard to a sandy surface. One possible way to achieve
this is for the robot’s leg parameters (such as stride length, etc) to be under the
control of a series of learned or pre-programmed gait patterns. However, this has
the disadvantage of complexity and inflexibility. This latter point is illustrated
when we consider the situation which might occur if the robot meets a surface
for which it has not been prepared. Since it has no way of finding a suitable gait
pattern, it has to lumber on with the “best guess”.

The idea behind the Real-Time Evolutionary Algorithm (RTEA) is to con-
stantly alter the robot’s locomotive algorithms by a small random amount, eval-
uating corresponding changes to the fitness function (in the first approximation,
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the efficiency of walking). Mutations which cause beneficial changes in fitness
are kept; those which make the situation worse are discarded. In this way, the
robot’s control system is constantly seeking a better solution to the walking
problem and will move towards such a solution, even when the robot moves onto
a different surface.

Artificial Neural Networks were used to control the robot’s legs, rather than
direct control (for example, an algorithm generating a rhythmical step pattern),
so that lessons learned from the experience could be applied more generally to
other neural network controlled systems. Such networks are commonly used to
control a variety of different mechanical and mechatronic systems.

2 Robotic Test System

It was decided to use a quadruped robotic system as a test bed for the neural
network since it represented a generalised control system and also it has been
used successfully several times in the past. The system is similar to that used
by Muthuraman [2] and McMinn [3] for work on Evolutionary ANNs. Due to
space restrictions here, only a brief overview of the system is given. The leg
model used is a simulated linear servo mechanism with two active degrees of
freedom, as shown in Fig. 1. The leg advances forward by one unit on receiving
a positive pulse for one clock cycle and backward on receiving a similar negative
going pulse. A similar arrangement is used to lift and lower the leg. The robot
is driven forward when the legs are in contact with the ground and moving in
the correct direction, the distance moved being equal to leg units moved under
these conditions.

The neurons used in the network produce a positive followed by a negative
pulse to drive the leg as shown in Fig. 2. Four evolvable parameters (D1,D2, Ton1

and Ton2) are associated with each neuron; these are trained by the real-time EA.

 

Second degree 
of freedom – 
moves leg 
backward and 
forward  

Main 
body of 
Robot 

First degree of 
freedom – moves leg 
up and down 

Floor 

Fig. 1. Model of Robot Leg (Front View)
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Fig. 2. Neuron Output

The fitness function of the robot is a programmable combination of three
factors - Stability, Fuel Consumption and Distance Travelled. The weighting
between these can be changed in order that the system can develop different
gaits. Stability takes into account the inclination of the robot and how many
feet it has on the ground over its walking cycle. Fuel Consumption is related
to the powered phase of leg use. Finally, Distance Travelled is measured, as
indicated above, using the leg movements.

3 Neural Network Design

Several common network topologies and neuron types were tried at the start of
the project. From these experiments, two important principles were discovered.

Firstly, neuron types with built in threshold functions (for example, Thresh-
old Perceptron types) performed poorly. This was because either many small or
a single large mutation is required to overcome the threshold and this causes
large jumps in the network’s fitness function, rather then small adjustments,
making the global minima difficult to find. Therefore, for success, it is impor-
tant to choose a unit which alters its behaviour gradually in order to avoid this
problem.

Secondly, the network topology is equally important. Fully connected net-
works perform badly because mutations in one side of the network affect the
other side. In the case of the legged robot used in the experiments, this meant
that changes in one system of legs caused changes in an unrelated system and
so the network fitness tended not to increase. Of course, it is often useful to pro-
vide some connection between different synchronised networks within a system
like this and an effective network was one which took its overall timing from a
master clock. Networks with recurrent connections performed poorly for similar
reasons. The network topology is shown in Fig. 3. The outputs are taken from
the child neurons (marked C); two are required for each leg (one for each degree
of freedom).

4 Real-Time Evolutionary Algorithm Parameters

The parameters of the RTEA were tested to establish their effect on system
performance. The first to be tested was the effect of mutating all the parameters
in the system compared with mutating only one at a time. Figure 4 shows the
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Fig. 4. The effect of mutating each parameter singly or in groups

effect of mutating all the parameters compared with the fitness profile of only
mutating one at a time. This experiment was done over a wide variety of system
setups and parameter variation (over 2000 experiments representing all possible
variations of system setup). Each point on the graph is the average of 81 such
experiments. We might expect this effect to be even greater if we used mutation
with an expectation value of zero [4]; however, this was not tested. It can be
seen from the graph that mutating all of the parameters is more successful.

The effect of choosing a uniform versus a normal (Gaussian) distribution [4]
is shown in Fig. 5. In this case the normally distributed numbers proved more
effective in most cases. As before, the graph shows the effect over the whole
range of system setup.

When performing these experiments, we have not allowed error increases to
escape from local minima (which some algorithms such as simulated annealing
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do allow). The reason for this is that, in the case of this system, we are operating
quite close to equilibrium. Should the system have to change gait (for example,
from a walk to a trot), then this facility would have to be utilised.

In many such systems, mutation size is controlled by distance from equi-
librium; examples include simulated annealing, where an artificial temperature
controls mutation size [5], and Evolutionary Strategies with its one in five rule [4].
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Tests were therefore conducted to establish how distance from equilibrium in-
teracted with mutation size. It was found that these generalisations do not nec-
essarily apply; Fig. 6 demonstrates this. In this graph disturbance range means
distance from equilibrium (higher is further) and mutation rate is the average
size of the mutation. Again, this is averaged over all system parameters.

5 Conclusion

The conclusions which were drawn from these experiments were that Real-Time
Evolutionary Algorithms can optimise Neural Networks on-line in certain ap-
plications. Such applications are principally those in which small changes are
needed to “tune” the performance of the system and include many types of
control system.

In such systems the type of neuron unit and network topology types are
critical. The neuron unit should be one where output changes gradually with
input and the network topology should be a feedforward type where unnecessary
lateral connections are suppressed.

The experiments confirm that many of the recommendations for off-line op-
timization using EAs also apply on-line. These include that normal distributions
and variable mutation rates are effective.
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Abstract. The paper deals with an application of the theory of opti-
mum experimental design to the problem of selecting the data set for
developing neural models. Another objective is to show that neural net-
work trained with the samples obtained according to D-optimum design
is endowed with less parameters uncertainty what allows to obtain more
reliable tool for modelling purposes.

1 Introduction

In recent years neural networks have been willingly used in many fields of re-
searcher activities.A still increasing popularity of neural networks results from
their capability of modelling a large class of natural and artificial phenomena
which cannot be successfully dealt with classical parametric models. In the lit-
erature devoted to neural networks it is very often assumed that it is possible
to obtain a neural network with an arbitrary small uncertainty. In this paper,
authors assume that the confidence measure is associated with a neural network
- variance of the predicted output. Thereby the problem of minimization neu-
ral network uncertainty can be solved by utilizing the well-known concepts of
experimental design theory [1]. The main purpose of this paper is to develop
an effective approach that makes it possible to design an artificial neural net-
work with possibly small parameter uncertainty which, undoubtedly increases
its reliability in many applications.

The paper is organized as follows. In Section 2 basic definitions and ter-
minology is given. Section 3 presents important properties regarding Optimum
Experimental Design (OED) applied for neural networks. These properties are
very useful while applying OED in practice. Finally, the last part is devoted to
an illustrative example regarding the DAMADICS benchmark [2].

2 Preliminaries

2.1 Structure of a Neural Network

Let us consider the standard single-hidden layer feed-forward network (SLFN)
with nh non-linear neurons and a single linear output neuron. The choice of such
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structure is not an accidental one since it has been proved that this kind of neural
networks can learn any finite set {(uk, yk) : uk ∈ R

nu , yk ∈ R, k = 1, 2, ...N}
with an arbitrarily small error. The input-output mapping of the network is
defined by:

ym,k = g
(
P (n)uk

)T

p(l) = f(uk,p), (1)

where ym,k ∈ R stands for the model output, g(·) = [g1(·), . . . , gnh
(·), 1]T , where

gi(·) = g(·) is a non-linear differentiable activation function,

p = [(p(l))T ,p(n)(1)T , . . . ,p(n)(nh)T ]T ∈ R
np (2)

represents the parameters (weights) of the model which enter linearly and non-
linearly to the f(·) respectively. Moreover, uk ∈ R

nr+1, uk = [u1,k, . . . , unr,k, 1]T

where ui,k, i = 1, . . . , nr are the system inputs.

2.2 Parameter Estimation

Ones the neural network structure has been selected, the next step to build a
model of a real system is to obtain the best value p̂ of its the parameters. Let
us assume that the system output satisfies the following equality:

ys
k = ym,k + εk = f(uk,p) + εk, (3)

where ε is i.i.d and N (0, σ2). Among many popular estimation techniques one of
them, seems to be of great importance - namely, well known maximum likelihood
estimation [6]. The most important properties of maximum likelihood estimators
is that they are asymptotically Gaussian and unbiased i.e. the distribution of p̂
tends to N (p∗, F−1(p∗)), where p∗ stands for the value of true parameters. In
the presence of additive normal noise (see (3)) the parameters of neural network
can be estimated with the equality criterion:

p̂ = arg min
p∈R

np
||ys(Ξ)− f(Ξ,p)||22 (4)

where || · ||2 is the Euclidean norm and Ξ stands for experimental conditions.
To solve the optimization problem (4) many algorithms can be successful used,
where the Levenberg-Marquardt method is the most popular one. Moreover,
Walter and Pronzato [5] shown that appropriate experimental conditions Ξ may
remove all suboptimal local minima, so that local optimization algorithms can
be used to find the best neural network parameters.

2.3 Parameter Uncertainty

The main problem in estimating parameters of a neural network lies in the
fact that the training data are typically affected by noise and disturbances. It
causes the presence of the so-called parameter uncertainty, which means that
the neural network output should be viewed as a probabilistic one. In the case of
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the regression problem defined in (3), the feasible parameter set can be defined
according to the following formulae [6]:

P =

{
p ∈ R

np
∣∣ nt∑

i=1

(ys
i − f(uk,p))2 ≤ σ2χ2

α,nt

}
(5)

where χ2
α,nt

is the Chi-square distribution quantile. It can be shown [1,6] that
the difference between neural network and the modelled system zk = ys

k − ym,k

is given by:

|zk| ≤ t
α/2
nt−np

σ̂
(
1 + rT

k F−1rk

)1/2
. (6)

nt denotes the number of input-output measurements used for parameter esti-
mation, tα/2

nt−np
is the t-Student distribution quantile, σ̂ is the standard deviation

estimate, rk = ∂f(uk,p)
∂p

∣∣∣
p=p∗

, and F−1 is the inverse of Fisher information ma-

trix defined as :

F =
nt∑
i=1

rir
T
i . (7)

It is easy to see that the length of the confidence interval (6) is strongly related
with the Fisher information matrix (7) that depends on the experimental con-
ditions Ξ = [u1, . . . ,unt ]. Thus, optimal experimental conditions can be found
by choosing ui, i = 1, . . . , nt, so as to minimize some scalar function φ(·) of (7).
Such a function can be defined in several different ways [1], while probably the
most popular is the D-optimality criterion:

φ(F ) = detF , (8)

A D-optimum design minimizes the volume of the confidence ellipsoid approxi-
mating the feasible parameter set 5. Moreover, from the Kiefer-Wolfowitz equiv-
alence theorem [1], it follows that the variance of the predicted models output
can be minimized by determining of experimental conditions according to D-
optimum criterion, assuming that the continuous experimental design [1] is used.
Another reason which speaks in favor of using this criterium is its popularity,
what makes that in the literature one can find several, very effective algorithms
developed for the D-optimum design e.g. DETMAX or Wynn-Fedorov [1],[6].

3 D-Optimum Experimental Design for Neural Networks

3.1 Partially Nonlinear Model

One of the main difficulties associated with the application of an experimental
design theory to neural networks is the dependency of the optimal design on the
model parameters. It can be proved [7] that the experimental design for a general
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structure (1) is independent of the parameters that enter linearly into (1). In
consequence the process of minimizing the determinant of F−1 with respect to
u is independent of the linear parameters pl. This means that at least a rough
estimate of P (n) is required to solve the experimental design problem. Of course,
it can be obtained with any training method for feed-forward neural networks,
and then the specialized algorithms for D-optimum experimental design can be
applied [1,6].

3.2 Fisher Information Matrix in a Neural Network Regression

The Fisher information matrix F of (1) may be singular for some parameter
configurations, and in such cases it is impossible to obtain its inverse F−1 that
is necessary to calculate (6) as well as to utilize the specialized algorithms for
obtaining the D-optimum experimental design [1,6]. Fukumizu [3] established
the conditions under which F is singular and developed the procedure that can
be used for removing the redundant neurons what guarantees that information
matrix is positive defined. Unfortunately, Fukumizu’s theorem have strictly the-
oretical meaning as in most practical situations FIM would be close to singular
but not singular in an exact sense. In such a case FIM should be regularized
with the help of the methods proposed in [1]. In this paper we propose to use
a completely different approach that is more appropriate for the models (1). As
has already been mentioned, process of minimizing the determinant of F with
respect to u is independent of the linear parameters pl. This means that pl can
be set arbitrarily. This implies that it can be employed as an elegant tool for con-
trolling the value of the determinant (7). Thus, before the iterative algorithm for
finding the D-optimum design is started (e.g. the Wynn-Fedorov algorithm [1,6]
that is used in this work), it is necessary to select pl so as to ensure that the
matrix F is far from a singular one.

4 Experimental Simulations

In order to show that the proposed approach effectively leads to the decrease of
the neural network parameter uncertainty, let us consider the following example.
The problem is to develop a neural network that can be used as a model of the
valve plant actuator in the sugar factory in Lublin, Poland. The data for the
normal operating mode have been collected by actuator simulator developed
with MATLAB Simulink (worked out in DAMADICS 1 project). The actuator
itself can be considered as a two-input and one-output system:

u = (U1, U2) y = F (9)

where U1 is the control signal, U2 is the pressure at the inlet of the valve and the
F is the juice flow at the outlet of the valve (for more details see [2]). On the basis

1 Research Training Network funded by the European Commission under the 5th
Framework Programme.
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of a number of trail-and-error experiments a suitable number of hidden neurons
has been established nh = 12. In the preliminary experiment uk, k = 1, . . . , nt =
68 were obtained in such a way so as to equally divide the input space. Then
the Levenberg-Marquardt algorithm [6] was employed for parameter estimation.
Next, in order to prevent the fact that FIM is almost a singular matrix it was
appropriately transformed with the use of linear parameters pl. Based on the
obtained estimates the Wynn-Fedorov algorithm [1] was employed to obtain the
D-optimum experimental design and then the parameter estimation process was
repeated once again. Figure 1 presents the variance function rT

k F
−1rk for the

network obtained with the application of optimal experimental design OED (a)
and the network obtained without it (b). Moreover in Fig. 2 residuals and its
bounds (determined with 1−α = 0.95) can be seen for both networks. It can be
observed that the use of OED results in a network with smaller uncertainty.
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Fig. 1. Variance function of the neural network trained with samples chosen according
to (a) D-optimal design and (b) in the way to uniformly divide input space
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Fig. 2. Difference between output of the real system and its neural model along with
bounds for a network trained with samples chosen according to (a) D-optimal design
and (b) in the way to uniformly divide input space
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5 Concluding Remarks

The paper deals with the problem of minimization parameters uncertainty of
neural networks by means of utilizing optimum experimental design theory. One
of the main advantages of the proposed approach is that it is possible to obtain
a neural model which more accurately describes a real system. This is a crucial
subject in many industrial applications where such systems are used for fault
detection purposes. Moreover, with the use of the proposed approach it is possible
to minimize the size of a training set, what is invaluable in applications for
which process of collecting training samples is very expensive or time consuming.
Besides, an important property of independence of the design of the parameters
that enter linearly into the neural network was revealed. This property was
also employed to prevent the singularity of FIM. This is especially important
from the point of view of the Wynn-Fedorov algorithm because it evaluates
FIM in order to obtain the D-optimum design. The proposed approach was
tested on the DAMADICS benchmark problem. The experimental results show
that the approach makes it possible to obtain a suitably accurate mathematical
description of the system with small model uncertainty.
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Abstract. In this paper, a modeling method of high dimensional piece-
wise affine models is proposed. Because the model interpolates the out-
puts at the orthogonal grid points in the input space, the shape of the
piecewise affine model is easily understood. The interpolation is realized
by a RBFN, whose function is defined with max-min functions. By in-
creasing the number of RBFs, the capability to express nonlinearity can
be improved. In this paper, an algorithm to determine the number and
locations of RBFs is proposed.

1 Introduction

In moving towards the production of high added value chemicals, changes in op-
erating conditions become larger and more frequent and increases in the strength
of nonlinear characteristics of the dynamics of the plant occur. In some processes,
switching of dynamics such as follows occurs. If temperature increases to a cer-
tain value, some reaction occurs. Manipulation has saturation.

Mixed logical dynamical system [BM1] can deal with switching of dynamics.
The system equations including switching can be described with mixed (1,0) in-
teger inequalities. If the nonlinearity of the switched dynamics was approximated
by a piecewise affine model, model predictive control problem of every nonlinear
system could be described with mixed (1,0) integer linear programming.

For approximation of nonlinear systems with piecewise linear models, several
methods have been proposed such as hinging sigmoids [HH1], clustering and local
affine models [CC1][CC2][FT1][KT2] and Max-Min propagation neural networks
[EP1]. In the models, an affine function is defined for each partition and the
partition is defined by the combination of linear functions. If the dimension of
the input space is high, it is very difficult to understand the boundaries.

Hashimoto et. al. [Ha1] proposed a piecewise affine modeling using a radial
basis function network (RBFN). Each RBF is located on a grid point of orthogo-
nal coordinate of the input space. The output is generated by linear combination
of heights of RBFs. It is equal to the result from interpolating of tops of RBFs.
Therefore, the space of the piecewise affine model is easily understood. The re-
liability of a local model can be estimated based on the number of data and
variance of estimation errors in its local area. Because the model was proposed
for on-line modeling and control, recursive least square method was adopted to

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 85–90, 2005.
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calculate weights of RBFNs. The results of RLS deteriorated when the number
of RBFs were increased to improve the expression capability.

In this paper, an off-line algorithm to approximate nonlinear system equa-
tion is discussed. In the next section, the RBFN proposed in [Ha1] is illustrated.
In the third section, the modeling procedure of the RBFN is proposed. By us-
ing a numerical example, the effectiveness of proposed method is illustrated in
comparison with the result of the previous work.

2 RBFN for Piecewise Affine Models

The RBFN for piecewise affine model has a popular structure shown in Fig.1.

ŷ(x) =
N1∑

n1=1

. . .

NL∑
nL=1

ω[n1,···,nL] · a[n1,...,nL](x) (1)

Its characteristics are RBFs’ shape and locations. Each RBF is located on a
grid point of orthogonal coordinate in the input space. The output of each RBF
a[n1,...,nL](x) is defined by the metric from the grid point D(X, [n1, . . . , nL]T ),
where L is the dimension of the input space, nl indicates the grid number of the
lth axis of the input space and X is a scaled vector of the input vector x.

a[n1,...,nL](x) = 1−D(X, [n1, . . . , nL]T ) (2)

The scaling defined in Eq. (3) is executed to make the intervals of grids unity,
where gr[n1,...,nl,...,nL] indicate the coordinate of the grid in the input space.

if gr[n1,...,nl,...,nL] ≤ xl < gr[n1,...,nl+1,...,nL]

then Xl = nl +
xl − gr[n1,...,nl,...,nL]

gr[n1,...,nl+1,...,nL] − gr[n1,...,nl,...,nL]
(3)

Fig. 1. RBFN structure

Fig. 2. RBF for 2-inputs

Fig. 3. Intersection of RBFs
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The metric in the scaled space is defined in Eq. (4) by using max-min functions.

D(X,Xo) = min( max
l∈{1,...,L}

(Xl −Xol, 0)

− min
l∈{1,...,L}

(Xl −Xol, 0), 1) (4)

This equation can be applied to any dimensional systems. The shape of a RBF in
2-input systems is a six-sided pyramid as shown in Fig. 2. An Intersection with
neighboring three RBFs in 2-input system is shown in Fig. 3. By using the metric
defined in Eq. (4) and locating RBFs on orthogonal grids, the linear combinations
of RBFs generate affine planes which interpolating the tops of neighboring RBFs.
In 1-input systems, the affine planes are line segments between two tops. They
are triangles in 2-input systems and are trigonal pyramids in 3-input systems.
The RBFN’s weight parameter ω[n1,...,nL] is equal to the height of the RBF on
the [n1, . . . , nL]-th grid point. The shape of the piecewise affine model is easily
understood.

The weights ω can be determined by the least-square method. A new perfor-
mance index to determine the weights is proposed as shown in Eq.(5), where K
is the number of data.

P.I. =
K∑

k=1

(ŷ(x[k])− y[k])2

+ρ ·
N1∑

n1=1
. . .

NL∑
nL=1

L∑
l=1

(
ω[n1,···,nL] − ω[n1−δ1l,···,nL−δLl]

gr[n1,···,nL] − gr[n1−δ1l,···,nL−δLl]

− ω[n1+δ1l,···,nL+δLl] − ω[n1,···,nL]

gr[n1+δ1l,···,nL+δLl] − gr[n1,···,nL]
)2

→ min
ω[n1,···,nL]

where δij =
{

1 · · · (i = j)
0 · · · (i �= j) (5)

The first term indicates the magnitude of the estimation errors. The second
term’s aim is smoothing.

3 Incrementation of RBFs to Improve Approximation

Approximation capability can be improved by increasing the number of RBFs.
Because the proposed RBFN utilizes the orthogonal coordinate, the number of
RBFs are increased by dividing axes of the input space. In this section, it is
discussed to divide the axes effectively.

1. (Initial model)
A RBF is put on the each end point of the input space. Dots on the corners
in Fig.4 show the center points of RBFs in the initial model. Weighting
parameters are calculated by Eq.(5).
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2. (Assess of the deviations from the model)
For every input datum x[k], the estimated out ŷ(x[k]) is calculated and
memorized. The variance of approximation errors around each grid point is
estimated by calculating σ[n1,...,nL] defined in Eq. (6). Select the grid point,
whose σ2 is maximum.

σ2
[n1,...,nL] =

1
n[n1,...,nL]

K∑
k=1

{
(ŷ(xk − yk)2 · a[n1,...,nL](xk)

}
(6)

where n[n1,...,nL] =
K∑

k=1

a[n1,...,nL] (7)

If the number of data around the grid n is small, the grid was omitted from
the estimation of σ.

3. (Temporary divide of neighborhood of the max point)
Every grid line around the selected point is divided into 5 sections as shown
in Fig.5. RBFs are added and rearranged. Because the calculation load of
least square method is heavy, the model parameters are not calculated. By
using memorized data ŷ(x[k])−y(x[k]) and new RBFs, Bias of approximation
errors ε[n1,...,nL] defined in Eq. (8) is calculated at each grid point.

ε[n1,...,nL] =
K∑

k=1

{
(ŷ(x[k]) − yk) · a[n1,...,nL](x[k])

}
(8)

4. (Select the dividing line)
For each dividing line (hyper plane), ε[n1,...,nL]s are summed up. Choose two
lines(hyper planes), whose absolute values of the sum of ε[n1,...,nL]s are top
two, as shown in Fig. 6.
In our previous work [Ha1], only variance σ was utilized to estimate the

approximation errors. The grid line whose end-point has the largest σ was
selected for divide. The advantage of ε is ability to check biases of errors.
Another disadvantage of the previous method is that it didn’t the distribution
of errors in intermediate regions.

5. (Update RBFN and estimation errors)
For the new grids on the two added lines, RBFs are reassigned. Weighting
parameters are calculated by Eq.(5) and estimation error for every datum is
memorized.

The procedure from 2 to 5 is iterated. The maximum value of σ[n1,···,nL]

in Eq.(6) can be utilized as an index to terminate the iteration.

4 Numerical Example

In this section, the performance of this modeling is illustrated in comparison
with our previous work [Ha1]. As an example nonlinear function, the function
defined in Eq. (9) is utilized.

y = sin(1.5 ∗ π ∗ x2)− 0.1 ∗ x1 (9)
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Fig. 4. Errors of Ini-
tial model

Fig. 5. Temporary divide of axes Fig. 6. Select the di-
viding line

Fig. 7. Original nonlinear function Fig. 8. Maximum variances in iteration

Fig. 9. Result after 3rd division iteration Fig. 10. Variances of RBFs

Fig. 11. Result of previous method Fig. 12. σ2 by previous method

Fig. 7 shows the original function. 2500 data, which are equally-spaced discrete
points in the input space, are utilized for approximation. For the value of smooth-
ing factor ρ in Eq. (5), 1.5 was selected in this example. It is shown in Fig. 8
that the approximation errors become almost zeros after the division iteration is
executed three times. Fig. 9 shows the approximation result after third division
iteration. It is similar to the original function in Fig. 7. Fig. 10 shows the grid
points of its RBFs and heights of bars on them show the values σ2. The heights
are almost zeros. Fig. 11 shows the approximation result of our previous method.
Fig. 12 shows the grid points of its RBFs. Because the nonlinear function in Eq.
(9) has linear dependence with x1, x1 axis is not necessary to be dived. While
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the proposed method divided only x2 axis and only 16 RBFs make approximate
almost perfect, the previous one divided x1 and the approximation result using
much more RBFs is inferior. The advantage of the proposed method to estimate
the biases of errors in intermediate regions is illustrated.

5 Conclusion

In this paper, a multidimensional piecewise affine modeling method based on a
Radial Basis Function Network was proposed. Because this model interpolates
the values at orthogonal grid points, the shape of the piecewise affine model
is easily understood. The algorithm to improve approximation capability with
small number of RBFs was introduced. This modeling technique can be applied
to higher dimension systems. The reliability of the model outputs can be esti-
mated. This piecewise affine model is hoped to be applied to many nonlinear
problems.
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Abstract. The use of entropy as a cost function in the neural network
learning phase usually implies that, in the back-propagation algorithm,
the training is done in batch mode. Apart from the higher complexity
of the algorithm in batch mode, we know that this approach has some
limitations over the sequential mode. In this paper we present a way of
combining both modes when using entropic criteria. We present some
experiments that validates the proposed method and we also show some
comparisons of this proposed method with the single batch mode algo-
rithm.

1 Introduction

In our previous work we introduced the use of Entropy as cost function in the
learning process of Multi Layer Perceptrons (MLP) for classification [1]. This
method computes the entropy of the error between the output of the neural
network and the desired targets as the function to be minimized. The entropy is
obtained using probability density estimation with the Parzen window method
which implies the use of all available samples to estimate its value. This fact
forces the use of the batch mode in the Back-propagation algorithm limiting
the use of, in some cases most appropriate, sequential mode. To overcome this
limitation we propose a new approach that combines these to modes (the batch
and the sequential) to try to use their mutual advantages. What we call the
batch-sequential mode divides, in each epoch, the training set in several groups
and sequentially presents each one to the learning algorithm to perform the
appropriate weight updating.

The next section of this work introduces the Error Entropy Minimization
Algorithm and several optimizations to achieve a faster convergence by manip-
ulating the smoothing parameter and the learning rates. Section 3 presents the
new batch-sequential algorithm and section 4 several experiments that show the
applicability of the proposed method. In the final section we conclude with some
discussion of the paper.
� This work was supported by the Portuguese Fundação para a Ciência e Tecnolo-

gia(project POSI/EIA/56918/2004).
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2 The EEM Algorithm

The use of entropy and related concepts in learning systems is well known.
The Error Entropy Minimization concept was introduced in [2] and, using the
same approach, we introduced in [1] the Error Entropy Minimization Algorithm
for Neural Network Classification. This algorithm uses the entropy of the error
between the output of the neural network and the desired targets as the function
to be minimized in the training phase of the neural network. Despite the fact
that we use Renyi’s Quadratic Entropy we may as well use other kinds of entropy
measures, like Shannon’s entropy, as in [4].

Let y = {yi} ∈ R
m, i = 1, ..., N , be a set of samples from the output vector

Y ∈ R
m of a mapping R

n �→ R
m : Y = g(w,X), where w is a set of neural

network weights, X is the input vector and m is the dimensionality of the out-
put vector. Let d = di ∈ { − 1, 1}m be the desired targets and ei = di − yi

the error for each data sample. In order to compute the Renyi’s Quadratic En-
tropy of e we use the Parzen window probability density function (pdf) esti-
mation using Gaussian kernel with zero mean and unitary covariance matrix,
G(e, I) = 1

(2π)
m
2
exp

(
− 1

2e
T e
)
. This method estimates the pdf as

f(e) =
1

Nhm

N∑
i=1

G(
e− ei

h
) (1)

where h is the bandwidth or smoothing parameter.
Renyi’s Quadratic Entropy of the error can be estimated, applying the inte-

gration of gaussian kernels [5], by

ĤR2(e) = − log

⎡⎣ 1
N2h2m−1

N∑
i=1

N∑
j=1

G(
ei − ej

h
, 2I)

⎤⎦
= − logV (e)

(2)

The gradient of V (e) for each sample i is:

Fi = − 1
2Nh2m+1

N∑
j=1

G(
ei − ej

h
, 2I)(ei − ej) (3)

The update of the neural network weights is performed using the back-
propagation algorithm with Δw = −η ∂V

∂w .
One of the first difficulties in estimating the entropy is to find the best value

for h in pdf estimation. In our first experiments with this entropic approach the
value of the smoothing parameter was experimentally selected. Latter, we have
developed a formula to obtain an appropriate value for h, as a function of the
number of samples and the dimensionality of the neural network output (related
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with the number of classes in the classification problem). This formula, proposed
in [6]

hop = 25
√
m

N
(4)

gives much higher values than those formulas usually proposed for probability
density function estimation and gives very good results for the EEM algorithm.

3 Batch-Sequential Algorithm

The Batch-Sequential algorithm tries to combine the two methods applied in
the back propagation learning algorithm: the sequential mode, also referenced
as on-line or stochastic, where the update is made for each sample of the training
set, and the batch mode, where the update is performed after the presentation
of all samples of the training set.

We know that, the estimated pdf approximates the true pdf as N →∞ but,
in the EEM algorithm, we only need to compute the entropy and its gradient; we
do not need to estimate the probability density function of e. This is a relevant
fact because, in the gradient descent method, more important than computing
with extreme precision the gradient is to get accurately its direction. Also, the
computation with extreme accuracy of the probability density function causes
the entropy to have high variability. This fact could lead to the occurrence of
local minima. The sequential mode updating of the weights leads to a sample by
sample stochastic search in the weight space implying that becomes less likely
for the back-propagation algorithm to be trapped in local minima [7]. However,
we still need some samples to estimate the entropy what limits the use of the
sequential mode. Other advantage of the sequential mode occurs when there
are some redundancy in the training set. The batch mode also presents some
advantages: the gradient vector is estimated with more accuracy guarantying
the convergence to, at least, a local minima and the algorithm is more easily
parallelized than using sequential mode.

In order to make use of the advantages of both modes and also to speedup the
algorithm, we developed a batch-sequential algorithm consisting of the splitting
of the training set in several groups that are presented to the algorithm in a
sequential way. In each group we apply the batch mode.

Let {Ts} be the training set of a given data set and {Tsj} the subsets
obtained by randomly dividing Ts in several groups with an equal number of
samples, such as

#Ts = n+
L∑

j=1

#Tsj (5)

where L is the number of subsets and n the remainder. Leaving, in each epoch,
some samples out of the learning process (when n �= 0) is not significant because
those samples will most likely be included in the next epoch. The partition of the
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training set in subsets being performed in a random way reduces the probability
of the algorithm getting trapped in local minima. The subsets are sequentially
presented to the learning algorithm, that applies to each one, in batch mode, the
respective computation and subsequent weight update. The pseudo code for the
Error Entropy Minimization Batch-Sequential algorithm (EEM-BS) is presented
in Table 1.

Table 1. Pseudo-code for the EEM-BS Algorithm

For k:=1 to number of epochs
Create L subsets of Ts
For j:=1 to L

- Compute the error entropy gradient of Tsj applying formula 3
- Perform weight update

End For
End For

One of the advantages in using the batch-sequential algorithm is the decrease
of the algorithm complexity. The complexity of the original EEM algorithm, due
to formulas 2 and 3, is O(Ts2). We clearly see that, for large training sets, the
algorithm is highly time consuming. With the EEM-BS algorithm the complexity
is proportional to:

L

(
Ts

L

)2

(6)

Therefore, the complexity ratio of both algorithms is:

Ts2

L(Ts
L )2

= L (7)

which means that, in terms of computational processing time, we achieve a reduc-
tion proportional to L. For a complete experiment, similar to the one presented
in the next section with the data set ”Olive”, we reduce the processing time from
about 30 to 6 minutes in our machine.

The number of subsets, L, is determined by the size of the data set. If, in a
given problem, the training set has a large number of data samples, we can use
a higher number of subsets than if we have a small training set. We recommend
the division of the training set in a number of subsets with a number of samples
not less than 40, even though we had some good results with less elements.

In order to perform the experiments with the batch-sequential algorithm, we
tried to use the optimization proposed in [3], the EEM-VLR. This optimization
is based on the use of a global variable learning rate (VLR) during the training
phase, as a function of the entropy value in consecutive iterations. Since this op-
timization compares HR2 of a certain epoch with the same value in the previous
one, we could not use it because, in each epoch, we use different sets of samples
and, by this simple fact, we would have different values of HR2. To overcome
this limitation we implemented a similar process, also using variable learning
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Fig. 1. Training Error for the EEM-BS and the two optimizations

rate, but this time, the variation of the learning rate is done for each neural
network weight by comparing the respective gradient in consecutive iterations
(EEM-BS(SA)). This approach was already used in back-propagation with MSE
[8]. We also used, for the same purpose of speeding up the convergence, the com-
bination of this implementation with the resilient back-propagation, achieving
very good results (EEM-BS(RBP)). Examples of the training phase for the three
different methods, with data set ”Olive”, are depicted in Fig.1.

4 Experiments

In order to establish the validity of the proposed algorithm we performed several
classification experiments, comparing the results obtained with the EEM-BS
algorithm and with the simple EEM-VLR algorithm. The characteristics of the
data sets used in the experiments are summarized in Table 2.

In all experiments we used (I, n h,m) MLP’s, where I is the number of input
neurons, n h is the number of neurons in the hidden layer and m is the number
of output neurons. We applied the cross-validation method using half of the
data for training and half for testing. The experiments for each data set were
performed varying the number of neurons in the hidden layer, the number of
subsets used and the number of epochs. Each result is the mean error of 20
repetitions. In Table 3 we only present the best results for each experiment with
4 and 8 subsets for the EEM-VLR and the EEM-BS algorithms.

The results of EEM-BS algorithm are, in some cases, even better than those
of EEM-VLR. The complexity of the neural networks for each experiment is very

Table 2. Data sets used for the experiments.

Data set # Samples # Features # Classes

Ionosphere 351 33 2
Olive 572 8 9
Wdbc 569 30 2
Wine 178 13 3
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Table 3. Results for EEM-VLR and EEM-BS (Tpe: Time per epoch ×10−3 sec.)

Ionosphere Error (Std) L n h Epochs Tpe Olive Error (Std) L n h Epochs Tpe
EEM-VLR 12.06 (1.11) - 12 40 16.7 EEM-VLR 5.04 (0.53) - 25 200 77.7
EEM-BS 12.00 (1.22) 4 16 80 6.4 EEM-BS 5.17 (0.51) 4 30 140 17.6
EEM-BS 12.22 (1.14) 8 16 60 4.8 EEM-BS 5.24 (0.70) 8 20 180 12.8

Wdbc Error (Std) L n h Epochs Tpe Wine Error (Std) L n h Epochs Tpe
EEM-VLR 2.33 (0.37) - 4 40 38.7 EEM-VLR 1.83 (0.83) - 14 40 5.8
EEM-BS 2.31 (0.35) 5 10 60 13.6 EEM-BS 1.88 (0.80) 4 16 60 3.2
EEM-BS 2.35 (0.48) 8 10 40 9.6 EEM-BS 1.88 (0.86) 8 16 60 2.5

similar for both algorithms what reenforces the validity of the proposed method.
Since the best results were obtained with different neural network complexity
we present in column Tpe the processing time per epoch for each algorithm.

5 Conclusions

We presented, in this paper, a way of combining the sequential and batch modes
when using entropic criteria in the learning phase, taking profit of the advantages
of both methods. We show, using experiments, that this is a valid approach that
can be used to speed-up the training phase, maintaining a good performance.
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Abstract. Sparse regression is the problem of selecting a parsimonious
subset of all available regressors for an efficient prediction of a target
variable. We consider a general setting in which both the target and re-
gressors may be multivariate. The regressors are selected by a forward
selection procedure that extends the Least Angle Regression algorithm.
Instead of the common practice of estimating each target variable in-
dividually, our proposed method chooses sequentially those regressors
that allow, on average, the best predictions of all the target variables.
We illustrate the procedure by an experiment with artificial data. The
method is also applied to the task of selecting relevant pixels from images
in multidimensional scaling of handwritten digits.

1 Introduction

Many practical data analysis tasks, for instance in chemistry [1], involve a need to
predict several target variables using a set of regressors. Various approaches have
been proposed to regression with a multivariate target. The target variables are
often predicted separately using techniques like Ordinary Least Squares (OLS)
or Ridge Regression [2]. An extension to multivariate prediction is the Curds and
Whey procedure [3], which aims to take advantage of the correlational structure
among the target variables. Latent variable models form another class with the
same goal including methods like Reduced Rank, Canonical Correlation, Prin-
cipal Components and Partial Least Squares Regression [4].

Prediction accuracy for novel observations depends on the complexity of the
model. We consider only linear models, where the prediction accuracy is tradi-
tionally controlled by shrinking the regression coefficients toward zero [5,6]. In
the latent variable approach the data are projected onto a smaller subspace in
which the model is fitted. This helps with the curse of dimensionality but the
prediction still depends on all of the regressors. On the contrary, sparse regres-
sion aims to select a relevant subset of all available regressors. Many automatic
methods exist for the subset search including forward selection, backward elimi-
nation and various combinations of them. Least Angle Regression (LARS) [7] is
a recently introduced algorithm that combines forward selection and shrinkage.

The current research in sparse regression is mainly focused on estimating a
univariate target. We propose a Multiresponse Sparse Regression (MRSR) algo-

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 97–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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rithm, which is an extension of the LARS algorithm. Our method adds those
regressors sequentially to the model, which allow the most accurate predictions
averaged over all the target variables. This allows to assess the average im-
portance of the regressors in the multitarget setting. We illustrate the MRSR
algorithm by artificially generated data and also apply it in a discriminative
projection of images representing handwritten digits.

2 Multiresponse Sparse Regression

Suppose that the targets are denoted by an n × p matrix T = [t1 · · · tp] and
the regressors are denoted by an n × m matrix X = [x 1 · · ·xm]. The MRSR
algorithm adds sequentially active regressors to the model

Y k = XW k (1)

such that the n×p matrix Y k = [yk
1 · · ·yk

p] models the targets T appropriately.
The m× p weight matrix W k includes k nonzero rows in the beginning of the
kth step. Each step introduces a new nonzero row and, thus, a new regressor to
the model. In the case p = 1 MRSR coincides with the LARS algorithm. This
makes MRSR rather an extension than an improvement of LARS.

Set k = 0, initialize all elements of Y 0 and W 0 to zero, and normalize both
T and X to zero mean. The columns of T and the columns of X should also
have the same scales, which may differ between the matrices. Define a cumulative
correlation between the jth regressor x j and the current residuals

ckj = ||(T −Y k)Tx j ||1 =
p∑

i=1

|(t i − yk
i )Tx j |. (2)

The criterion measures the sum of absolute correlations between the residuals
and the regressor over all p target variables in the beginning of the kth step.
Let the maximum cumulative correlation be denoted by ckmax and the group of
regressors that satisfy the maximum by A, or formally

ckmax = max
j
{ckj }, A = {j | ckj = ckmax}. (3)

Collect the regressors that belong to A as an n×|A| matrix XA = [· · ·x j · · ·]j∈A
and calculate an OLS estimate

Ȳ
k+1 = XA(X T

AXA)−1X T
AT . (4)

Note that the OLS estimate involves k + 1 regressors at the kth step.
Greedy forward selection adds regressors based on (2) and the OLS esti-

mate (4) is used. However, we define a less greedy algorithm by moving from
the MRSR estimate Y k toward the OLS estimate Ȳ

k+1, i.e. in the direction
U k = Ȳ

k+1 −Y k, but we will not reach it. The largest step possible is taken
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in the direction of U k until some x j , where j /∈ A, has as large cumulative
correlation with the current residuals as the already added regressors [7]. The
MRSR estimate Y k is updated

Y k+1 = Y k + γk(Ȳ k+1 −Y k). (5)

In order to make the update, we need to calculate the correct step size γk.
The cumulative correlations ck+1

j may be obtained by substituting (5) into (2).

According to (4), we may write X T
A(Ȳ k+1 −Y k) = X T

A(T −Y k). This gives
the cumulative correlations in the next step as a function of γ

ck+1
j (γ) = |1− γ|ckmax for all j ∈ A (6)

ck+1
j (γ) = ||ak

j − γbk
j ||1 for all j /∈ A, (7)

where ak
j = (T −Y k)T x j and bk

j = (Ȳ k+1 −Y k)T x j . A new regressor with
index j /∈ A will enter the model when (6) and (7) are equal. This happens if
the step size is taken from the set

Γj =

{
ckmax + sT ak

j

ckmax + sTbk
j

}
s∈S,

(8)

where S is the set of all 2p sign vectors of size p× 1, i.e. the elements of s may
be either 1 or −1. The correct choice is the smallest of such positive step sizes
that introduces a new regressor

γk = min{γ | γ ≥ 0 and γ ∈ Γj for some j /∈ A}, (9)

which completes the update rule (5).
The weight matrix, which satisfies (5) and (1) may be updated

W k+1 = (1 − γk)W k + γkW̄
k+1

, (10)

where W̄
k+1 is an m× p sparse matrix. Its nonzero rows, which are indexed by

j ∈ A, contain the corresponding rows of the OLS parameters (X T
AXA)−1X T

AT .
The parameters of the selected regressors are shrunk according to (10) and the
rest are kept at zero during the steps k = 0, . . . ,m− 2. The last step coincides
with the OLS parameters. The selection of the final model from m possibilities
is based on prediction accuracy for novel data.

3 Multidimensional Scaling

Multidimensional scaling (MDS) [8] is a collection of techniques for exploratory
data analysis that visualize proximity relations of objects as points in a low-
dimensional Euclidean feature space. Proximities are represented as pairwise
dissimilarity values δij . We concentrate on the Sammon criterion [9]

E(Y ) =
n∑

i=1

∑
j>i

αij(||ŷ i − ŷ j ||2 − δij)2. (11)
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Fig. 1. Results for the artificial data: (left) Estimates of the weights wji and (right)
cumulative correlations cj as a function of the number of regressors in the model

Normalization coefficients αij = 2/(n(n − 1)δij) put focus on similar objects.
The vector ŷ i is the ith row of an n× p feature configuration matrix Y .

Differing from the ordinary Sammon mapping, we are not only seeking for
Y that minimizes the error (11), but also the parameterized transformation
from the data space to the feature space that generates Y as a function of
an n × m matrix X . More specifically, we define Y as a linear combination
of some relevant columns of X . Next, a gradient descent procedure for such a
minimization of (11) is outlined by modifying the Shadow Targets algorithm [10].

Make an initial guess Y 0 and set the learning rate parameter η0 to a small
positive value. The estimated targets at each of the following iterations are

T +1 = Y  − η ∂E(Y )
∂Y

. (12)

Calculate W +1 by feeding T +1 and X to the MRSR algorithm and update
Y +1 = XW +1. As suggested in [10], set η+1 = 0.1η if error (11) has in-
creased from the previous iteration, and otherwise set η+1 = 1.2η.

The only difference between the original Shadow Targets algorithm is the
way in which the weights W +1 are calculated. MRSR replaces the calculation
of OLS parameters (X TX )−1X TT +1. This allows us to control the sparsity of
the solution. The number of nonzero rows in W +1 depends on the number of
steps we perform in the MRSR algorithm.

4 Experiments

To illustrate the MRSR algorithm, we generated artificial data from the setting
T = XW + E , where the elements of a 200 × 6 matrix X are independently
distributed according to the Gaussian distribution N(0, 1), the elements of a
200× 2 matrix E according to N(0, 0.352), and the weights are set to

W T =
[

1 0 −1/3 1/2 0 0
−1 0 1/3 0 0 −2/5

]
.
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Fig. 2. Results for the digits data: (left) Training and validation errors as a function
of the number of regressors in the model. (middle) Projection of the test set. (right)
Example images from the test set and images illustrating the weights wji.

Fig. 1 shows results of MRSR analysis of the artificial data. The regressors
are added to the model in the order 1, 3, 4, 6, 5, 2 and each addition decreases
the maximum cumulative correlation between the regressors and residuals. The
apparently most important regressor x 1 is added first and the two useless re-
gressors x 2 and x 5 last. Importantly, x 3 enters the model before x 4 and x 6,
because it is overall more relevant. However, x 4 (x 6) would enter before x 3 if
the first (second) target was estimated individually using the LARS algorithm.

The second experiment studies images of handwritten digits 1, 2, 3 with
28 × 28 resolution from the MNIST database. An image is represented as a
row of X , which consists of grayscale values of 784 pixels between zero and
one. We constructed randomly three distinct data sets: a training set with 100,
validation set with 200, and test set with 200 samples per digit. The aim is
to form a model that produces a discriminative projection of the images onto
two dimensions by a linear combination of relevant pixels. Pairwise dissimi-
larities are calculated using a discriminative kernel [11]. A within digit dis-
similarity is δij = 1− exp(−||x̂ i − x̂ j ||2/β) and a between digit dissimilarity is
δij = 2− exp(−||x̂ i − x̂ j ||2/β), where x̂ i denotes the ith image. The parameter
β controls discrimination and we found a visually suitable value β = 150.

Fig. 2 displays results for the digits data. The left panel shows the best
training set error of MDS starting from 100 random initializations Y 0 and the
corresponding validation error as a function of the number of effective pixels
in the model. The validation error is at the minimum when the model uses 85
pixels. The middle panel shows a projection of test images obtained by this model
and the right panel illustrates sparsity of the estimated weights wji. The selected
group of about 11% of the pixels is apparently enough to form a successful linear
projection of novel images.

5 Conclusions

We have presented the MRSR algorithm for forward selection of regressors in the
estimation of a multivariate target using a linearly parameterized model. The
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algorithm is based on the LARS algorithm, which is designed for a univariate
target. MRSR adds regressors one by one to the model such that the added
regressor always correlates most of all with the current residuals. The order in
which the regressors enter the model reflects their importance. Sparsity places
focus on relevant regressors and makes the results more interpretable. Moreover,
sparsity coupled with shrinkage helps to avoid overfitting.

We used the proposed algorithm in an illustrative experiment with artificially
generated data. In another experiment we studied images of handwritten digits.
The algorithm fitted a MDS model that allows a discriminative projection of the
images onto two dimensions. The experiment combines the two major categories
of dimensionality reduction methods: input selection and input transformation.

LARS is closely connected to the Lasso estimator [6,7]. As such, MRSR
does not implement a multiresponse Lasso, which constraints the �1-norm of the
weight matrix. MRSR updates whole rows of the matrix instead of its individual
elements. However, the connection might emerge by modifying the constraint
structure of Lasso. Another subject of future research could be basis function
selection for linear neural networks.
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Abstract. Taguchi Methods (and other orthogonal arrays) may be used
to train small Artificial Neural Networks very quickly in a variety of
tasks. These include, importantly, Control Systems. Previous experimen-
tal work has shown that they could be successfully used to train single
layer networks with no difficulty. However, interaction between layers
precluded the successful reliable training of multi-layered networks. This
paper describes a number of successful strategies which may be used to
overcome this problem and demonstrates the ability of such networks to
learn non-linear mappings.

1 Introduction

A number of papers have outlined the use of Taguchi and other Orthogonal
arrays to train Artificial Neural Networks (ANNs). The idea was originated by
C. MacLeod in 1994 [1] at the Robert Gordon University and implemented in
practice by his student Geva Dror in an MSc project [2]. Another group at the
JPL research centre in NASA also developed the same idea independently at
around the same time [3].

The technique works by trying a series of different weight combinations on
the network and then using Taguchi’s techniques [4] to interpolate the best
combination of these. A detailed description is not presented here due to space
restrictions and the fact that the method is explained fully in several of the
references [1,3,5]. The American team added to the basic technique by proposing
an iterative approach [3].

The technique can operate very quickly to set network weights and it has
been suggested that this could be used in “disaster control” networks [5] where
the ANN takes over control from a damaged system (for example, an aircraft
with compromised control surfaces).

The problem with the technique is that Taguchi Methods only operate well
on variables which do not interact. In the case of a two layer ANN, the weights
in the initial layer interact strongly with those of the second layer (that is, if
you change the first layer weights, those in the second layer must also change
if the error is to stay the same). This meant that, although it was occasionally
possible to get a two layer network to train, more often than not, it did not.
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Maxwell suggested some possible ways around this problem [5] but these did
not work reliably in all cases. However, the methods outlined below do show
good results when used with two layer networks. They do this by treating the
neurons, rather then the individual weights, as the basic units of the network.

2 Coding the State of Each Neuron

Since interaction between weights in different layers is the cause of the problem
described above, one possible way around this is to have each variable used in
the Orthogonal Array (OA) correspond to the state of a particular neuron [6].
For example, an array with eight levels could be used to code a two input neuron
as shown in Fig. 1. The possible combinations of weights are shown in table 1.
These are then used in the OA which represents the overall network.

As with the original method [1], the weights are quantised. As noted in the
references [5], although standard texts on the Taguchi method [4] give only
simple arrays, it is possible to generate others using standard formulae [7,8].

When this method is used, it does give a better error reduction than applying
the standard method to a two-layer network. However, when compared against
the full-factorial results for the same problem, although the error reduction is
generally good, it is not as high as theoretically possible. The reason for this is
neuron to neuron interaction replacing layer by layer interaction as a problem.

One can see this if one considers the structure of the experimental arrays.
Consider a very simple example of the middle two experiments in a L4 array: 1
2 2 and 2 1 2. We can see that both these experiments correspond to the same
network (although the neurons are in a different order) as shown in Figs. 2(a)
and 2(b). This means that, when we calculate the best state for a particular

 
a 

b 

c 

Fig. 1. Using levels to code neuron states

Table 1. List of all weight combinations

Level Weight a Weight b Weight c
1 -1 -1 -1
2 -1 -1 +1
3 -1 +1 -1
4 -1 +1 +1
5 +1 -1 -1
6 +1 -1 +1
7 +1 +1 -1
8 +1 +1 +1
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 State1 

State2 

State2 

(a)

 State2 

State1 

State2 

(b)

Fig. 2. Two different combinations of neuron weights which give the same result

neuron, the system cannot differentiate between states 1 and 2 for a particular
neuron as the table is symmetric.

It is possible that this problem might be overcome by allocating different
states to the same level in different neurons or by using interaction columns in
the tables; however, this has not been tested.

The advantage of this approach is that reasonably good (although not opti-
mum) results can be achieved. Its disadvantage is that large tables are required
(as the size of the network increases) because the size of the table is proportional
to the number of neurons.

3 Neuron by Neuron Training

A more successful technique is to train each neuron one by one. This does allow
the error to fall to its lowest theoretical limit. It works as shown in Fig. 3. In
network (a), the weights of the neuron are set using an orthogonal array in the
usual way. These weights are then fixed and not altered during the rest of the
training. Next, as in (b), a new neuron is added and its weights trained; the first
neuron’s output is used in the calculation of the error. Finally, the third neuron
is added and the process is repeated, again using the first two neurons’ outputs
in the error calculation.

 

(a) First neuron’s weights
are trained

 

(b) Second neuron added and
trained. The first neuron’s
output is also used to calcu-
late the error.

 

(c) Third neuron added and
trained. Previous neurons
used in calculation of error.

Fig. 3. Neuron by Neuron training
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Apart from the guarantee of reaching a low error (within the limits that the
quantised weights apply), this method also has the advantage that the orthogonal
arrays used are small (because their size is proportional to the number of weights
associated with an individual neuron, not the whole network). The disadvantage
is that each succeeding neuron is refining the output and so the initial neuron has
the greatest affect and each successive addition has less. In effect, the method
acts rather like the iterative method discussed earlier [3]. Indeed, one can tailor
the succeeding weights to refine the output in a similar way. When the network
reaches the correct number of neurons required to solve the problem, the overall
error will not continue to fall.

4 Power Series Neurons

Power series neurons are a refinement of perceptron types and are discussed in
previous papers [9]. They allow a single neuron unit to fulfil any differential
function as shown in Fig. 4. It was shown in earlier work [5,9] that power series
neurons can be trained using these methods.

 
an 

bn 

cn 

Fig. 4. A power series neuron

c = f((a0.i1 + b0.i2) + (a1.i
2
1 + b1.i

2
2) + (a2.i

3
1 + b2.i

3
2) + . . .) (1)

Where f(x) is the activation function of x (typically a sigmoid), ixn is the
xth power of nth input and ay, by are the weights a and b associated with the
(y + 1)th power of the inputs.

Such a neuron can fulfil complex mathematical functions without having
to resort to many layers. Although it is not capable in this form of separat-
ing discrete areas of input space, this is not necessary for fulfilling many func-
tions required of control systems. It is possible to combine the power series and
neuron-by-neuron approaches. Each additional power series neuron provides a
new classifier.

5 Results

The training methods were shown to work by testing them on some non-linear
mappings. These were a sigmoid, reverse sigmoid and gaussian. In this case
the first method (coding the state of the neuron as a level) was used. The
network consists of two inputs, one of which is held constant (at one unit);
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the other is varied as shown on the x axis. There are nine hidden layer and
one output neuron. The array used is 64 rows of 8 levels coded as shown in
Fig. 1 and generated using Owen’s data [8]. The results are shown in Figs. 5, 6
and 7.
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Fig. 5. Sigmoid Test
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Fig. 6. Reverse Sigmoid Test
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Fig. 7. Gaussian Test

6 Conclusion

Using Orthogonal or Taguchi arrays to train neural networks is a promising tech-
nique. It allows relatively small networks to be trained very quickly and simply.
This makes it an ideal technique for some specialised applications in control, par-
ticularly in the stabilisation of systems which may have undergone some change
which makes their system model difficult or impossible to determine.

The method, however, suffers from the problem of interaction which means
that it is difficult to apply to multi-layer networks. However, it is possible to
overcome this problem. The three techniques discussed above are examples of
how this may be done, the last two being particularly effective.
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Application to Wave Overtopping Prediction 
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Abstract. We present a hybrid Radial Basis Function (RBF) - sigmoid neural 
network with a three-step training algorithm that utilises both global search and 
gradient descent training. We test the effectiveness of our method using four 
synthetic datasets and demonstrate its use in wave overtopping prediction. It is 
shown that the hybrid architecture is often superior to architectures containing 
neurons of a single type in several ways: lower errors are often achievable using 
fewer hidden neurons and with less need for regularisation. Our Global-Local 
Artificial Neural Network (GL-ANN) is also seen to compare favourably with 
both Perceptron Radial Basis Net (PRBFN) and Regression Tree RBFs. 

1   Introduction 

Multi-Layer Perceptron (MLP) and RBF networks have complementary properties. 
While both are theoretically capable of approximating a function to arbitrary accuracy 
using a single hidden layer, their operation is quite different [1]. MLP networks have a 
fixed architecture and are usually trained using a variant of gradient descent. MLP 
networks invariably incorporate neurons with sigmoid activation functions. Their 
response therefore varies across the whole input space and weight training is affected 
by all training points. RBF networks, on the other hand, are most commonly created 
using a constructive algorithm. Gradient descent training is usually replaced by 
deterministic, global methods such as Forward Selection of Centres with Orthogonal 
Least Squares (FS-OLS). Unlike sigmoid neurons, RBF neurons generally respond 
strongly only to inputs within a local region [2]. RBF training is usually quicker, since 
training methods often involve the solving of linear equations. However RBF networks 
are usually larger, partly offsetting the improvement in computational efficiency. 

We present a hybrid network that combines the global approximation capabilities 
of MLP networks with the local approximation capabilities of RBF networks. The 
hybrid structure of our network is reflected in a hybrid training algorithm that 
combines gradient descent with forward selection. It is tested using 4 synthetic 
datasets and comparisons are made with alternative architectures and training 
methods, including PRBFN and RT-RBF [3,4]. Our network is then applied to the 
real-world problem of wave overtopping prediction. 

2   Global-Local Artificial Neural Networks 

A hybrid ANN containing both sigmoidal and radial neurons may have the 
advantages of both RBF and MLP ANNs, i.e. fast training and compact networks with 
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good generalisation. Our approach may be compared with those of PRBFN and RT-
RBF. They both cluster the data and choose a neuron that approximates the local 
function within each cluster [3,4]. In the case of PRBFN each neuron may be either 
sigmoidal or RBF, leading to a hybrid network. We approximate on a global level 
first using a MLP and then add RBF neurons using FS-OLS, in order to add local 
detail to the approximating function. For this reason we call our network a Global-
Local Artificial Neural Network (GL-ANN). The advantages of our approach are: 

• There is no need to cluster the data prior to training. This gives more flexibility 
to the FS-OLS process and avoids possible problems when clustering reflects 
the distribution of the available data rather than the underlying functionality. 

• All phases of training take into account all of the training data. 
• Unlike pure RBF networks and PRBFNs, our networks do not require 

regularisation. The MLP created in the first phase of training has a moderating 
effect on the selection and training of RBF neurons added subsequently. 

3   Training Method 

In order to achieve rapid training, the Levenberg-Marquardt (L-M) method is used to 
train the MLP networks. Fixed numbers of sigmoidal neurons are used in a single 
hidden layer and the output neuron has a linear activation function. Initial weights are 
set to small random values at the start of training and inputs and outputs undergo a 
linear transformation to give them a range of [-0.8, 0.8]. 

RBF neurons are then added using FS to choose RBF centres from the training 
data. Symmetrical radial functions with fixed widths are employed. After each 
addition the output weights from both sigmoidal and RBF neurons are adjusted using 
OLS minimisation. We have introduced a modification to the traditional OLS method 
to allow for the presence of non-radial neurons while maintaining the computational 
efficiency of the method [2]. 

Finally all weights, including hidden layer weights and RBF steepnesses, are 
optimised using L-M training. We have found that this step is valuable in creating 
networks that are compact and have strong generalisation capability. 

Using this algorithm a series of networks with different architectures may be 
created. Their performance is then assessed using unseen test data. In each case the 
data is sampled several times to determine the training - test split and averages are 
taken over all runs. 10 runs are used for the benchmark tests and 30 for the wave 
overtopping data. 

4   Benchmark Tests 

4.1   Method and Datasets 

Four benchmark tests are employed. They are all function approximation tasks using 
synthetic data. The first function is 
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f(x)=sin(12x) . 
(1) 

with x randomly selected from [0,1]. The second function is the 2D sine wave 

f(x)=0.8sin(x1/4)sin(x2/2) . (2) 

with x1= [0,10] and x2=[-5,5]. The third function is a simulated alternating current 
used by Friedman in the evaluation of multivariate adaptive regression splines 
(MARS) [5]. It is given by  

Z(R,ω,L,C)=√(R2+(ωL-1/ωC)2) . (3) 

where Z is the impedance, R the resistance, ω the angular frequency, L the inductance 
and C the capacitance of the circuit. The input ranges are R=[0,100], ω=[40π,560π], 
L=[0,1] and C=[1×10-6,11×10-6]. The fourth function is the Hermite polynomial, 

f(x)=1+(1-x+2x2)exp(-x2) . (4) 

with x randomly selected from [-4,4]. This function was first used by Mackay [6]. 
Gaussian noise is added to all training outputs, with a standard deviation (s.d.) of 
0.1 except for Friedman’s dataset which has noise with s.d. of 175. Clean data is 
used for test purposes, except for the 1D sine data which uses test data containing 
added noise with s.d. of 0.1. The latter dataset therefore has a minimum test MSE of 
0.01. 

4.2   Results and Discussion 

Mean MSE results averaged over 10 runs for MLP, FS-OLS and GL-ANN networks 
are given in Table 1. In the case of the third dataset we follow Friedman [5] in 
dividing the MSE by the variance of the test data. 

Table 1. Mean square errors for 4 benchmark datasets 

 1D sine 2D sine Friedman MacKay 
MLP (L-M) 1.75e-2 1.28e-3 1.02e-1 2.14e-3 
FS-OLS 1.19e-2 0.95e-3 1.55e-1 1.41e-3 
GL-ANN 1.20e-2 1.11e-3 0.98e-1 1.30e-3 

GL-ANN does better than the pure networks with the complex datasets 
(Friedman and Mackay). With the 1D sine data GL-ANN and FS-OLS achieve 
comparable results. The sine 2D dataset gives best results using a pure RBF 
network (FS-OLS).  

Table 2 gives the number of neurons used in the most successful networks. In each 
case S, R and T refer to the number of sigmoid, RBF and total neurons in the hidden 
layer, respectively. For the first two datasets, the GL-ANN imitates the RBF 
networks, using just 1 sigmoid neuron. The GL-ANN uses just 3 hidden neurons to 
reproduce Mackay’s function and 6 for Friedman’s. These results show that the GL-
ANN is parsimonious in its use of hidden neurons. 



112 D. Wedge et al. 

Table 2. Number of hidden layer neurons for 4 benchmark datasets 

 1D sine 2D sine Friedman MacKay 
 S R T S R T S R T S R T 

MLP(L-M) 12 0 12 5 0 5 5 0 5 14 0 14 
FS-OLS 0 6 6 0 13 13 0 43 43 0 7 7 
GL-ANN 1 6 7 1 16 17 3 3 6 1 2 3 

Finally, the introduction of regularisation into OLS training of GL-ANNs does not 
improve the errors of the most effective networks. The initial MLP appears to have a 
moderating effect on the weights of RBF neurons added subsequently. 

4.3   Comparison with PRBFN and RT-RBF 

Table 3 shows the test MSEs for PRBFN and RT-RBF. For all but the 1D sine data 
these errors are higher than those produced by GL-ANN. Further, the results quoted 
for the first dataset are below the minimum error achievable, given the noisy test data. 
We believe that these results cannot therefore be taken at face value. 

Table 3. MSEs for PRBFN and Regression Tree RBF on 4 benchmark tests 

 1D sine 2D sine Friedman MacKay 
PRBFN  0.66e-2 1.28e-3 1.50e-1 1.50e-3 
RT-RBF 0.88e-2 2.28e-3 1.12e-1 1.52e-3 
Minimum error 1.00e-2 - - - 

5   Wave Overtopping 

5.1   Introduction 

Much research has been conducted into predicting overtopping at sea-walls during 
storm events. One approach is to use scale models in laboratories, [7], but this is 
expensive and time-consuming. An alternative is to numerically model a particular 
seawall configuration and sea-state, e.g. [8]. However, accurate simulation requires a 
detailed knowledge of both the geometry of the seawall and sea conditions. Results 
may therefore be applied only to individual scenarios. As part of the European 
CLASH project [9] a large overtopping database has been compiled, of sufficient size 
to allow ANN training. We have used this database to test our GL-ANNs. 

5.2   Data Characteristics and Pre-processing 

10 input parameters are selected for training primarily on the basis of information 
content [10]. 7 of these describe the structure of the seawall in question, including the 
height (crest freeboard) of the wall, R0. The remaining 3 are the wave period T0, water 
depth and angle of wave attack. The single output is the logarithm of the wave 
overtopping rate, ln(q0). It is known that ln(q0) is related to R0 and T0 by the 
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approximate relationship of equation (5), where A and B are determined by the 
remaining parameters but usually vary slowly across the input space [7]. However, 
there are regions in which there are larger variations in q0, due to phenomena such as 
impacting waves. 

ln(q0)≅A-BR0/T0 . (5) 

A hybrid network could be well-suited to this data, since the MLP network may 
represent the global relationship in equation (5) well, leaving the RBF neurons to 
identify local variations in the function. 

6   Wave Overtopping Results and Discussion 

The GL-ANN and RBF networks give lower MSEs than the MLP network, but 
require more hidden neurons (Table 4). The GL-ANNs are superior to the pure RBF  
 

Table 3. Mean Square Errors and Hidden Layer Sizes using overtopping data 

 Average test MSE Hidden layer size 
MLP (L-M) 1.16e-2 14 
FS-OLS 1.04e-2 195 
GL-ANN 0.94e-2 80 
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Fig. 1. Test errors for given hidden layer sizes with FS-OLS and GL-ANN 
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networks in terms of both MSE and hidden layer size. As neurons are added, the 
errors of both networks decrease before reaching a minimum (Fig 1). However, the 
GL-ANN networks require considerably fewer neurons to achieve a given test error. 
They also give errors comparable to those from numerical simulation, even though the 
latter is specific to a particular structure and sea-state. 

These results suggest that GL-ANNs may be particularly suited to high-
dimensional, noisy data. Further investigation of the strengths and weaknesses of GL-
ANNs with different types of data is required. 

7   Conclusions 

It has been shown that GL-ANNs have strong generalisation capabilities, particularly 
with noisy, high-dimensional data. They compare favourably with traditional MLP 
and RBF networks, as well as with variable width RBF networks, exemplified here by 
RT-RBF. The training algorithm used by GL-ANN also seems more effective than the 
early clustering method used by PRBFNs. When compared to pure RBFs, GL-ANNs 
are more compact and have less need of regularisation. 
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Abstract. In this paper we introduce a model of ensemble of linear perceptrons. 
The objective of the ensemble is to automatically divide the feature space into 
several regions and assign one ensemble member into each region and training 
the member to develop an expertise within the region. Utilizing the proposed 
ensemble model, the learning difficulty of each member can be reduced, thus 
achieving faster learning while guaranteeing the overall performance.  

1   Introduction 

Recently, several models of neural networks ensemble have been proposed [1,2,3], 
with the objective of achieving a higher generalization performance compared to the 
singular neural network.  Some of the ensembles, represented by Boosting [4] and 
Mixture of Experts [5], proposed mechanisms to divide the learning space into a num-
ber of sub-spaces and assign each sub-space into one of the ensemble’s member, 
hence the learning burden of each member is significantly reduced, leading to a better 
overall performance. In this paper, we proposed an algorithm that effectively divides 
the learning space in a linear manner, and assign the classification task of each sub-
space to a linear perceptron [6] that can be rapidly trained. The objective of this algo-
rithm is to achieve linear decomposition of nonlinear problems through an automatic 
divide and conquer approach utilizing ensemble of linear perceptrons. In addition to 
the ordinary output neurons, each linear perceptron in the proposed model also has an 
additional neuron in its output layer. The additional neuron is called “confident neu-
ron”, and produced an output that indicates the “confidence level” of the perceptron 
with regard to its ordinary output. An output of the perceptron which has a high con-
fidence level can be considered as a reliable output, while an output with low confi-
dence level is unreliable one. The proposed ensemble is equipped with a competitive 
mechanism for learning space division based on the confidence levels and at the same 
time to train each member to perform in the given sub learning space. 

The linearity of each member also enables us to analyze the division of the problem 
space that can be useful in understanding the structure of the problems and also to 
analyze the overall performance of the ensemble. 

2   Ensemble of Linear Perceptron 

The Ensemble of Linear Perceptron (ELP) consists of several linear perceptrons 
(called members), each with an additional output neuron that indicates the confidence 
level as shown in Fig. 1.  
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The ordinary output of each member is shown as follows. 
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Where i
jO is the j-th output neuron of the i-th member, while i

kjw is the connection 

weight between the k-th input neuron and the j-th output neuron in the i-th member 

and i
jθ is the threshold for the j-th output neuron in the i-th member.  

 

Fig. 1. Ensemble’s Member 

The output of the confidence neuron can be written as follows. 
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Where i
cO is the output of the confidence neuron in the i-th member, i

kv is the con-

nection weight between the k-th input neuron to the confidence neuron in the i-th 

member, and i
cθ is the threshold of the confidence neuron in the i-th member. 

As illustrated in Fig. 2, in the running phase, the output of the member with the 

highest confidence value is taken is as the ensemble’s output, ensO as follows. 
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In the training phase only the winning member (a member with the highest confidence 
level) is allowed to modify its connections weights between the ordinary output neu-
rons and the input neurons, while the connection weights between the input neuron 
and ordinary output neurons for the rest of members remain unchanged. The weights 
corrections are executed as follows. 
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Where D(t) indicates the teacher signal. 
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However all members are required to modify the connection weights between their 
input neurons and confidence neurons as follows. 
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    Where i
cV is the connection weight vector between the input neurons and the confi-

dence neuron in the i-th member. The correction of the weights leading to the confi-
dence neuron is illustrated in Fig. 3. 

           

Fig. 2. Running Phase                         Fig. 3. Confidence Level Training 

The learning mechanism triggers competition among the members to take charge 
of a certain region in the learning space. Because initially the connection weights of 
the members were randomly set, we can expect some bias in the performance of the 
members regarding different regions in the learning space. The training mechanism 
assures that a member with higher confidence level with regard to a region will per-
form better than other members regarding that region and at the same time produce a 
better confidence level, while other members’ confidence will be reduced. Thus, the 
learning space is divided into subspaces where a member will develop an expertise 
upon a particular subspace. 

3   Experiments 

In the first experiment, we trained the ELP with XOR problem, which cannot be 
solved with a single linear perceptron [6]. In this experiment we use ELP with two 
members, whose training rates were uniformly set to 0.1 and α in Equation 5 is set to 
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     (a) Hyperspace          (b) Confidence Space      (c) Member 1              (d) Member 2  

Fig. 4. Hyperspace of ELP 

 

Fig. 5. Learning Curve of ELP                    Fig. 6. 

 
Fig. 7. Hyperspace (MLP) 

Figure 4(a) shows the hyperspace of ELP, where the nonlinear problem is divided 
into two linearly separable problems. The black shows the regions that are classified 
as 1, and white shows the region of 0, while the gray regions are ambiguous where the 
outputs are in the range of 0.4 and 0.6. Figure 4(b) indicates the confidence space of 
ELP, where the region marked “1” is a region where the confidence level of Member 
1 exceeds that of Member 2, while the region marked “2” indicates where the confi-
dence level of Member 2 exceeds that of Member 1. Figs. 4(c) and 4(d) show the 
hyperspace of Member 1 and Member 2, respectively. From Fig. 4, it is obvious that 
ELP have the ability solve nonlinear problem through linear decomposition. 

We compared the performance of the ELP to that of MLP [7] with 3 hidden neu-
rons. The learning rate for MLP is set to 0.3. Fig.6 (a) shows the hyperspace formed 
by the MLP, where the learning space is nonlinearly classified. We also compared the 
learning performances between ELP and MLP, where we calculate the number of 
weight corrections. For ELP, for each training iteration, the connection weights of 
between the input neurons and output neurons of the winning member and the con-

Learning Curve of ELP            
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nection weights between confidence neuron and the input neurons of all the members 
are corrected, hence the number of weight corrections, CELP is as follows. 

)( MNNC outinELP +⋅=                                                (6) 

where Nin, Nout and M are the number of input neurons, the number of output neurons 
and the number of members in the ensemble, respectively. 

The number of the weight corrections in MLP, CMLP is calculated as follows. 

)( outinhidMLP NNNC +⋅=                                               (7) 

Nhid shows the number of hidden neurons in the MLP. 
From Fig. 5 and Fig. 6 (b), we can see that the ELP can achieve the same classifi-

cation performance with significantly lower number of weight corrections.  
In the second experiment we trained ELP, with two members with Breast Cancer 

Classification Problem [8][9]. In this problem the task of neural network is to classify, 
a 9 dimensional input into two classes. In this experiment, the parameter settings for 
the ELP are the same as the previous experiment, while for MLP we set 5 hidden 
neurons. Comparing Fig. 8 and Fig. 9, we can see that ELP achieves similar perform-
ance to MLP with significantly less number of weights corrections. 

          

Fig. 8. Learning Curve of ELP                       Fig. 9. Learning Curve of MLP 

In the third experiment we trained the ELP with the 3-classed Iris Problem, in 
which it is known one classis linearly inseparable from the rest of the classes. The 
performance of 3-membered ELP is shown in Fig. 10, while the performance of MLP 
with 5 hidden neurons is shown in Fig. 11. 

  

Fig. 10. Learning Curve of ELP                  Fig. 11. Learning Curve of MLP 
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4   Conclusion and Future Works 

In this study, we propose an ensemble of linear perceptron that can automatically 
divide the problem space in linear manner and assign one of the ensemble members to 
the sub-problem space. This division of problem space is achieved based on the con-
fidence level of each member, in which each member is only responsible to perform 
in the region where its confidence is the highest, hence the learning burden of each 
member can be significantly lessen. Because the members are linear perceptrons, 
overall ELP learns significantly faster than MLP, because the number of connection 
weights to be corrected is significantly less than MLP, while the performances are 
similar. In the future, we consider to develop a more efficient competitive mechanism 
so that the uniqueness of each member expertise is enforced. We also consider to 
develop the proposed ELP for efficient Boosting mechanism. 
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Abstract. Building an ensemble of classifiers is a useful way to improve the 
performance. In the case of neural networks the bibliography has centered on 
the use of Multilayer Feedforward (MF). However, there are other interesting 
networks like Radial Basis Functions (RBF) that can be used as elements of the 
ensemble. In a previous paper we presented results of different methods to build 
the ensemble of RBF. The results showed that the best method is in general the 
Simple Ensemble. The combination method used in that research was averaging. 
In this paper we present results of fourteen different combination methods for a 
simple ensemble of RBF. The best methods are Borda Count, Weighted Aver-
age and Majority Voting. 

1   Introduction 

The most important property of a neural network (NN) is the generalization capabil-
ity. One method to increase this capability with respect to a single NN consist on 
training an ensemble of NNs, i.e., to train a set of NNs with different weight initializa-
tion or properties and combine the outputs in a suitable manner.  

In the field of ensemble design, the two key factors to design an ensemble are how 
to train the individual networks and how to combine the different outputs. 

It seems clear from the bibliography that this procedure generally increases the 
generalization capability in the case of the NN Multilayer Feedforward (MF) [1,2]. 

However, in the field of NNs there are other networks besides MF, and tradition-
ally the use of ensembles of NNs has restricted to the use of MF. 

Another useful network which is quite used in applications is Radial Basis Func-
tions (RBF). This network can also be trained by gradient descent [3] and it can be 
also an element of an ensemble. 

In [4], we obtain the first results on ensembles of RBF, we presented a comparison 
of different methods to build the ensemble and we concluded that the “Simple En-
semble” was the most appropriate. The combination method was averaging. 

In this paper we present results of different combination methods for the case of a 
“simple ensemble” of RBFs. The number of combination methods analyzed is four-
teen. With these results we can have a hint to select the appropriate combination 
method and improve the performance of RBFs ensembles. 

                                                           
1  This research was supported by the project MAPACI TIC2002-02273 of CICYT in Spain. 
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2   Theory 

In this section, first we briefly review the basic concepts of RBFs networks and after 
that we review the different methods of combining the outputs of the ensemble. 

2.1   RBF Networks with Gradient Descent Training 

A RBF has two layers of networks. The first layer is composed of neurons with a 
Gaussian transfer function and the second layer has neurons with a linear transfer 
function. The output of a RBF network can be calculated with equation 1. 
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Where Cq,n
k are the centers of the Gaussian units, σq

k control the width of the Gaus-
sian functions and wq

k are the weights among the Gaussian units and the output units. 
The equations for adaptation of centers and weights are the following [3]. 
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Where η is the step size and εk is the difference between the target and the output 
and the equation for the adaptation of the centers is number 3. 
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2.2   Ensemble Combination Methods 

Average: This approach simply averages the individual classifier outputs. 

Majority Vote: The correct class is the one most often chosen by the classifiers. 

Winner Takes All (WTA): In this method, the class with overall maximum value in 
all the classifiers is selected. 

Borda Count: For any class q, the Borda count is the sum of the number of classes 
ranked below q by each classifier. If Bj(q) is the number of classes ranked below the 
class q by the jth classifier, then the Borda count for class q is in the equation 4.  
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Bayesian Combination: This combination method was proposed in reference [5]. 
According to this reference a belief value that the pattern x belongs to class i can be 
approximated by the following equation. 
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Where the conditional probability that sample x actually belongs to class i, given 
the classifier k assign it to class j (λk(x)=jk) is estimated from the confusion matrix [6]. 

Weighted Average: This method introduces weights to the outputs of the different 
networks prior to averaging [7]. The weights try to minimize the difference between 
the output of the ensemble and the “desired or true” output. 

Choquet Integral: This method is based in the fuzzy integral and the Choquet inte-
gral. The method is complex and a full description can be found in reference [6]. 

Combination by Fuzzy Integral with Data Dependent Densities (Int. DD): It is 
another method based on the fuzzy integral and the Choquet integral. But in this case 
[6], prior to the application of the method it is performed a partition of the input space 
in regions by k-means clustering or frequency sensitive learning. 

Weighted Average with Data Dependent weights (W.Ave DD): This method is the 
weighted average described above. But in this case, a partition of the space is per-
formed by using k-means clustering and the weights are calculated for each partition. 

BADD Defuzzification Strategy: It is another combination method based on fuzzy 
logic concepts. The method is complex and the description can be found in [6]. 

Zimmermann’s Compensatory Operator: This combination method is based in the 
Zimmermann’s compensatory operator [8]. The method is described in [6]. 

Dynamically Averaged Networks (DAN), version 1 and 2: It is proposed in refer-
ence [9]. In this method instead of choosing static weights derived from the network 
performance on a sample of the input space, we allow the weights to adjust to be 
proportional to the certainties of the respective network output. 

Nash Vote: In this method [10] each net assigns a number between zero and one for 
each output. The maximum of the product of the values of the nets is the winner. 

3   Experimental Results 

We have applied the 20 ensemble methods to 9 different classification problems. 
They are from the UCI repository and their names are Balance Scale (Bala), Cylinders 
Bands (Band), Liver Disorders (Bupa), Credit Approval (Credit), Glass Identification 
(Glass), Heart Disease (Heart), the Monk’s Prob. (Monk 1, Monk 2) and Voting Re-
cords (Vote). 

We have constructed ensembles of 3 and 9 networks. We repeated the process of 
training ten times for different partitions of data in training, cross-validation and test. 
With this procedure we can obtain a mean performance of the ensemble for each 
database (the mean of the ten ensembles) and an error in the performance calculated 
by standard error theory. We have used the error, but this measure is related to the 
standard deviation as equation 6 and to the confidence interval with equation 7. 
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Errorn·=σ  (6) 

Where n is the number of experiments performed to obtain the mean, which is 10. 
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Where zα/2 is obtained from the following probability of the normal distribution. 
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The results of the performance are in table 1 and 2. 
As table 1, 2 show the improvement by the use of an ensemble depends of the 

problem. We get an improvement in Bupa, Credit, Glass, Heart, Monk1 and Vote. 
The results of tables 1 and 2 show that the improvement of training nine networks 

(instead of three) is low. The best alternative might be an ensemble of three networks. 
Comparing the results of the different combination methods of tables 1 and 2, we 

can see that the differences are low. The largest difference between simple average 
and other method is around 0.7% in the problem Heart. 

However, we should point out that the computational cost of any combination 
method is very low. So the selection of an appropriate combination method allows an 
improvement without extra cost. 

Table 1. Results for the ensemble of three networks 

 Bala Band Bupa Credit Glass 
Single Network 90.2 ± 0.5 74.0 ± 1.1 70.1 ± 1.1 86.0 ± 0.8 93.0 ± 0.6 
Average 89.7 ± 0.7 73.8 ± 1.2 71.9 ± 1.1 87.2 ± 0.5 93.2 ± 1.0 
Majority V. 89.9 ± 0.7 74.4 ± 1.2 72.0 ± 1.0 87.1 ± 0.6 93.2 ± 1.0 
WTA 90.1 ± 0.8 72.9 ± 1.1 71.1 ± 1.2 87.2 ± 0.6 93.2 ± 1.0 
Borda 89.8 ± 0.7 74.4 ± 1.2 72.0 ± 1.0 87.1 ± 0.6 93.2 ± 1.0 
Bayesian 89.9 ± 0.7 74.4 ± 1.2 72.0 ± 1.0 87.1 ± 0.6 93.2 ± 1.0 
W. Average 89.9 ± 0.7 72.9 ± 1.5 72.4 ± 1.2 87.2 ± 0.5 93.0 ± 1.2 
Choquet 89.9 ± 0.7 73.1 ± 1.1 71.4 ± 1.0 86.9 ± 0.6 93.2 ± 1.0 
Int. DD 89.9 ± 0.7 72.9 ± 1.2 71.9 ± 0.9 86.9 ± 0.6 93.0 ± 0.9 
W. Ave DD 89.7 ± 0.7 74.2 ± 1.0 71.9 ± 1.1 87.2 ± 0.5 93.2 ± 1.0 
BADD 89.7 ± 0.7 73.8 ± 1.2 71.9 ± 1.1 87.2 ± 0.5 93.2 ± 1.0 
Zimmermann 65 ± 5 63 ± 5 62 ± 3 70 ± 5 87.2 ± 1.5 
DAN 89.8 ± 0.8 73.5 ± 1.3 71.9 ± 1.0 87.3 ± 0.5 93.6 ± 1.1 
DAN version 2 89.9 ± 0.8 73.1 ± 1.3 71.7 ± 1.0 87.2 ± 0.5 93.8 ± 1.1 
Nash Vote 89.7 ± 0.7 74.0 ± 1.2 72.3 ± 1.1 87.2 ± 0.5 93.2 ± 1.0 

Table 1. (Continued). 
 Heart Monk 1 Monk 2 Vote 
Single Network 82.0 ± 1.0 98.5 ± 0.5 91.3 ± 0.7 95.4 ± 0.5 
Average 83.9 ± 1.6 99.6 ± 0.4 91.5 ± 1.2 96.3 ± 0.7 
Majority V. 84.6 ± 1.5 99.6 ± 0.4 90.9 ± 1.1 96.4 ± 0.6 
WTA 83.9 ± 1.6 99.6 ± 0.4 91.4 ± 1.3 96.3 ± 0.7 
Borda 84.6 ± 1.5 99.6 ± 0.4 90.9 ± 1.1 96.4 ± 0.6 
Bayesian 84.6 ± 1.5 99.4 ± 0.4 90.1 ± 1.1 96.4 ± 0.6 
W. Average 83.6 ± 1.6 99.8 ± 0.3 92.0 ± 1.2 96.3 ± 0.6 
Choquet 83.6 ± 1.6 99.6 ± 0.4 91.5 ± 1.2 96.3 ± 0.7 
Int. DD 83.6 ± 1.4 99.6 ± 0.4 91.1 ± 1.3 96.3 ± 0.7 
W. Ave DD 83.9 ± 1.6 99.6 ± 0.4 92.0 ± 1.2 96.3 ± 0.7 
BADD 83.9 ± 1.6 99.6 ± 0.4 91.5 ± 1.2 96.3 ± 0.7 
Zimmermann 75 ± 4 90 ± 5 82 ± 3 92 ± 3 
DAN 83.6 ± 1.3 99.5 ± 0.4 90.8 ± 1.3 96.0 ± 0.6 
DAN version 2 83.4 ± 1.5 99.6 ± 0.4 90.6 ± 1.4 96.1 ± 0.6 
Nash Vote 84.1 ± 1.7 99.6 ± 0.4 91.6 ± 1.1 96.3 ± 0.7 
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Table 2. Results for the ensemble of nine networks 

 Bala Band Bupa Credit Glass 
Single Network 90.2 ± 0.5 74.0 ± 1.1 70.1 ± 1.1 86.0 ± 0.8 93.0 ± 0.6 
Average 89.7 ± 0.7 73.3 ± 1.4 72.4 ± 1.2 87.2 ± 0.5 93.0 ± 1.0 
Majority V. 89.7 ± 0.7 74.0 ± 1.5 72.1 ± 1.1 87.1 ± 0.5 93.2 ± 1.0 
WTA 89.8 ± 0.8 73.6 ± 1.7 72.0 ± 1.3 87.2 ± 0.5 93.4 ± 1.0 
Borda 89.6 ± 0.7 74.0 ± 1.5 72.1 ± 1.1 87.1 ± 0.5 93.2 ± 1.0 
Bayesian 90.2 ± 0.7 74.2 ± 1.5 72.3 ± 1.1 87.2 ± 0.5 92.6 ± 1.0 
W. Average 89.5 ± 0.7 73.1 ± 1.6 71.6 ± 1.3 86.9 ± 0.5 92.8 ± 1.2 
Choquet 89.8 ± 0.8 74.0 ± 1.5 72.0 ± 1.4 87.3 ± 0.5 93.4 ± 1.0 
Int. DD 89.8 ± 0.8 74.0 ± 1.5 72.1 ± 1.5 87.2 ± 0.5 93.4 ± 1.0 
W. Ave DD 89.7 ± 0.7 73.3 ± 1.4 72.3 ± 1.2 87.2 ± 0.5 93.0 ± 1.0 
BADD 89.7 ± 0.7 73.3 ± 1.4 72.4 ± 1.2 87.2 ± 0.5 93.0 ± 1.0 
Zimmermann 69 ± 5 66 ± 3 62 ± 4 75 ± 5 80 ± 3 
DAN 89.8 ± 0.8 72.7 ± 1.7 71.6 ± 1.3 87.2 ± 0.5 92.8 ± 1.0 
DAN version 2 89.8 ± 0.8 73.3 ± 1.7 71.4 ± 1.3 87.3 ± 0.5 92.8 ± 1.0 
Nash Vote 89.6 ± 0.7 73.1 ± 1.4 72.6 ± 1.2 87.2 ± 0.5 93.0 ± 1.0 

Table 2. (Continued). 
 Heart Monk 1 Monk 2 Vote 
Single Network 82.0 ± 1.0 98.5 ± 0.5 91.3 ± 0.7 95.4 ± 0.5 
Average 83.9 ± 1.5 99.6 ± 0.4 91.4 ± 1.2 96.3 ± 0.7 
Majority V. 84.6 ± 1.6 99.6 ± 0.4 91.5 ± 1.2 96.4 ± 0.6 
WTA 83.6 ± 1.7 99.8 ± 0.3 90.8 ± 1.2 96.0 ± 0.6 
Borda 84.6 ± 1.6 99.6 ± 0.4 91.5 ± 1.2 96.4 ± 0.6 
Bayesian 84.6 ± 1.6 99.5 ± 0.3 90.9 ± 1.1 96.4 ±  0.6 
W. Average 83.7 ± 1.4 99.8 ± 0.3 91.8 ± 1.4 96.6 ± 0.7 
Choquet 83.4 ± 1.6 99.6 ± 0.4 90.6 ± 1.2 96.0 ± 0.6 
Int. DD 83.4 ± 1.6 99.6 ± 0.4 90.8 ± 1.2 96.1 ± 0.6 
W. Ave DD 83.9 ± 1.5 99.6 ± 0.4 91.3 ± 1.2 96.3 ± 0.7 
BADD 83.9 ± 1.5 99.6 ± 0.4 91.4 ± 1.2 96.3 ± 0.7 
Zimmermann 73 ± 4 92 ± 2 76 ± 5 81 ± 6 
DAN 84.4 ± 1.7 99.4 ± 0.4 88.9 ± 1.6 96.0 ± 0.6 
DAN version 2 84.1 ± 1.8 99.5 ± 0.4 88.9 ± 1.5 96.0 ± 0.6 
Nash Vote 83.9 ± 1.5 99.6 ± 0.4 91.5 ± 1.1 96.3 ± 0.7 

Table 3. Relative Performance with respect to a Single Network 

 Three Networks Nine Networks 
Average 13,07 12,64 
Majority V. 13,24 13,93 
WTA 12,26 12,63 
Borda 13,24 13,84 
Bayesian 11,39 12,91 
W. Average 13,89 13,62 
Choquet 12,21 11,70 
Int. DD 11,50 12,10 
W. Ave DD 13,86 12,42 
BADD 13,07 12,64 
Zimmermann -118,01 -168,30 
DAN 10,94 6,46 
DAN version 2 12,00 7,45 
Nash Vote 13,58 12,68 

To appreciate the results more clearly, we have also calculated the percentage of 
error reduction of the ensemble with respect to a single network. We have used equa-
tion 9 for this calculation. 

networkgle

ensemblenetworkgle
reduction PorError

PorErrorPorError
PorError

sin

sin·100
−

=  (9) 
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This new measurement is just a simple way to perform a ranking of the perform-
ance, but the results are not statistical significant. A correct way to obtain statistical 
significant results might be to use the normal percentage and a McNemar’s test with 
Bonferroni correction, this will be addressed in future researches.  

Also, this new measurement is relative and we can calculate a mean value across 
all databases. The result is in table 3 for the case of three and nine networks. 

According to the values of the mean performance of error reduction, the best per-
forming methods are Majority Vote, Borda Count and Weighted Average. 

4   Conclusions 

In this paper we have presented experimental results of 14 different methods to com-
bine the outputs of an ensemble of RBF nets, using 10 databases. We trained ensem-
bles of 3 and 9 nets. The results showed that the improvement in performance from 
three to nine networks in the ensemble is usually low. Taking into account the compu-
tational cost, an ensemble of three networks might be the best alternative. The differ-
ences among the different combination methods are low, but we can obtain a extra 
performance. Finally, we have obtained the mean percentage of error reduction over 
all databases. According to their values the best performing methods are Majority 
Vote, Borda Count and Weighted Average. 
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Abstract. When a real world system is described either by means of
mathematical model or by any soft computing method the most impor-
tant is to find out whether the model is of good quality, and for which
configuration of input features the model is credible. Traditional meth-
ods restrict the credibility of model to areas of training data presence.
These approaches are ineffective when non-relevant or redundant input
features are present in the modeled system and for non-uniformly dis-
tributed data. Even for simple models, it is often hard to find out how
credible the output is for any input vector. We propose a novel approach
based on ensemble techniques that allows to estimate credibility of mod-
els. We experimentally derived an equation to estimate the credibility
of models generated by Group of Adaptive Models Evolution (GAME)
method for any configuration of input features.

1 Introduction

If we build a black-box model of a real world system, we would like to know
when we can trust the model. The very first information about the quality of
our model we can get from its error on the training set1. The quality of models
is usually evaluated on a testing data set. The disadvantage of this approach is
that the quality of the model is tested just in few testing points (testing data).
We cannot get any information about the model’s quality for input configura-
tions that are out of testing data. This is a problem particularly for multivariate
real world systems (data are sparse or non-uniformly distributed) and for sys-
tems where some inputs are of low relevance. For such systems we can evolve
inductive models using the GAME [2] method. These models are valid even for
configurations of inputs that are very far from training and testing data (eg. val-
ues of irrelevant inputs can be out of areas of data presence). For these models
we need more sophisticated technique to evaluate their quality and so estimate
their credibility even for areas, where data about the system behavior are absent.
Such technique is introduced in this paper.

1 The data set describing a real system is usually split into two subsets: training set
and the testing set. The model is built on the training data set and its performance
is evaluated on the testing data set.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 127–132, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



128 P. Kord́ık and M. Šnorek

At first, we shortly describe the process of GAME models evolution. In the next
section, we mention ensemble techniques our approach is based on. Then we ex-
perimentally derive the equation that estimates the credibility of GAME models
for artificial and real world data. At last, we apply the derived theory to the
uncertainty signaling for visual knowledge mining.

2 Group of Adaptive Models Evolution (GAME)

Our work proceeds from the theory of inductive models construction commonly
known as Group Method of Data Handling (GMDH) that was originally intro-
duced by A.G. Ivachknenko in 1966 [1]. Where the traditional modeling methods

input variables

output variable

first layer

second layer

third layer

output layer

interlayer connection

3 inputs
max

4 inputs max

P C P G

P P C

L

P L C

Fig. 1. The example of the GAME network. Network evolved on the training data con-
sisting of units with suitable transfer function (P-percepton unit optimized by back-
propagation algorithm, L-linear transfer unit and C-polynomial transfer unit, both
optimized by Quasi Newton method).

(eg. MLP neural network) fail due to the ”curse of dimensionality” phenomenon,
the inductive methods are capable to build reliable models. The problem is de-
composed into small subtasks. At first, the information from most important
inputs is analyzed in the subspace of low dimensionality, later the abstracted
information is combined to get a global knowledge of the system variables rela-
tionship. Figure 1 shows the example of inductive model (GAME network). It
is constructed layer by layer during the learning stage from units that transfer
information feedforwardly form inputs to the output. The coefficients of units’
transfer functions are estimated using the training data set describing the mod-
eled system. Units within single model can be of several types (hybrid model)
- their transfer function can be linear(L), polynomial(C), logistic(S), exponen-
tial(E), small multilayer perceptron network(P), etc. Each type of unit has its
own learning algorithm for coefficients estimation. The niching genetic algorithm
is employed in each layer to choose suitable units. Which types of units are se-
lected during the evolution to make up the model depends on the nature of
modeled data. More information about inductive modeling can be found in [2].
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3 Ensemble Techniques

Ensemble techniques [6] are based on the idea that a collection of a finite number
of models (eg. neural networks) is trained for the same task. Neural network
ensemble [5] is a learning paradigm where a group of neural networks is trained
for the same task. It originates from Hansen and Salamons work [3], which
shows that ensembling a number of neural networks can significantly improve
the generalization ability. To create the ensemble of neural networks, the most
prevailing approaches are Bagging and Boosting. Bagging is based on bootstrap
sampling [5]. It generates several training sets from the original training set and
then trains a component neural network from each of those training sets. Our
Group of Adaptive Models Evolution method generates the ensemble of models
(GAME networks) by the Bagging approach. By using the ensemble, instead
of single GAME model, we can improve the accuracy of modelling. But this is
not only advantage of using ensembles. There is a highly interesting information
encoded in the ensemble behaviour. It is the information about credibility of
member models.

4 GAME Models’ Credibility Estimation

Following experiments explore the relationship between the dispersion of models’
responses in the GAME ensemble and the credibility of models. Given a training
data set L and testing data set T , suppose that (x1, x2, ..., xm, y) is a single
testing vector from T , where x1...xm are input values and y is the corresponding
output value. Let G is an ensemble of n GAME models evolved on L using the
Bagging technique [5]. When we apply values x1, x2, ..., xm to the input of each
model, we receive models’ outputs y′1, y

′
2, ...y

′
n. Ideally, all responses would match

the required output (y′1 = y′2 = ... = y′n = y). This can be valid just for certain
areas of the input space that are well described by L and just for data without
noise. In most cases models’ outputs will differ from the ideal value y. Figure 2

Fig. 2. Responses of GAME models for a testing vector lying in the area insufficiently
described by the training data set
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illustrates a case when a testing vector is lying in the area insufficiently defined
by L. Responses of GAME models y′1, y

′
2, ..., y

′
n significantly differ. The mean of

responses is defined as μ = 1
n

∑n
i=1 y

′
i, the distance of ith model from the mean

is dy′i = μ − y′i and the distance of the mean response from required output
ρ = μ− y (see Figure 2). We observed that there may be a relationship between
dy′1, dy

′
2, ..., dy

′
n and ρ. If we could express this relationship, we would be able to

compute for any input vector not just the estimate of the output value (μ), but
also the interval 〈μ+ ρ′, μ− ρ′〉 where the real output should lie with a certain
significant probability.

4.1 Credibility Estimation - Artificial Data

We designed an artificial data set to explore this relationship by means of in-
ductive modeling. We generated 14 random training vectors (x1, x2, y) in the
range x1, x2 ∈ 〈0.1, 0.9〉 and 200 testing vectors in the range x1, x2 ∈ 〈0, 1〉,
y = 1

2sinh(x1 − x2) + x2
1(x2 − 0.5). Then using the training data and the

Bagging scheme we evolved n inductive models G by the GAME method. The

dyi' dyi'

< a dyi'max

Fig. 3. The dependence of ρ on dy′
i is linear for artificial data without noise

density of the training data in the input space is low, therefore there are sev-
eral testing vectors far from training vectors. For these vectors responses of
GAME models considerably differ (similarly to the situation depicted on the
Figure 2). For each testing vector, we computed dy′1, dy

′
2, ..., dy

′
n and ρ. This

data (x1 = dy′1, ..., xn = dy′n, y = ρ) we used to train a GAME model D to
explore the relationship between dy′i and ρ. In the Figure 3 there are responses
of the model D for input vectors lying on dimension axes of the input space.
Each curve express the sensitivity of ρ to the change of one particular input
whereas other inputs are zero. We can see that with growing deviation of model
Gi from the required value y, the estimate of ρ given by the model D increases
with a linear trend. There exist a coefficient amax that limits the maximal slope
of linear dependence of ρ on dy′i. If we present an input vector2 to models from
G, we can approximately limit (upper bound) the maximal deviation of their
mean response from the real output as ρ ≤ amax

n

∑n
i=1 |dy′i|.

2 We show relationship between dy′
i and ρ just on dimension axes of the input

space(Fig.3), but the linear relationship was observed for whole input space (in-
puts are independent), therefore the derived equation can be considered valid for
any input vector.
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4.2 Credibility Estimation - Real World Data

We repeated the same experiment with a real world data set (mandarin tree
water consumption data - see [2] for description). Again, GAME model D was
trained on distances of GAME models from μ on the testing data (2500 vectors).
Figure 4 shows the sensitivity of D to the deviation of each GAME model from

dyi'
dyi'

2dyi'(    )<

Fig. 4. The dependence of ρ on dy′
i is quadratic for real world data

the mean response. Contrary to the artificial data set, the dependence of ρ on
dy′i is quadratic. We can approximately limit the maximal error of models’ mean
response for this real word data set as ρ ≤ amax

n

∑n
i=1(dy

′
i)

2, so the credibility
models is inversely proportional to the size of this interval.

5 An Application: Uncertainty Signaling for Visual
Knowledge Mining

The ”Building data set” is frequently used for benchmarking modeling methods
[4]. It consists of more than three thousand measurements inside the building
(hot water (wbhw), cold water (wbc), energy consumption (wbe)) for the specific
weather conditions outside (temperature (temp), humidity of the air (humid), so-
lar radiation (solar), wind strength (wind)). We excluded the information about
time of measurement. On this data set we evolved nine GAME models for each
output (wbc, wbhw, wbe). Figure 5 left shows the relationship of the cold water
consumption variable on the temperature outside the building under conditions
given by the other weather variables. The relationship of the variables can be
clearly seen within the area of models’ compromise response. We have insuffi-
cient information for modeling in the areas where models’ responses differ. By
the y thickness of dark background we signal the uncertainty of the models’ re-
sponse for particular values of inputs. It is computed according to the equation
derived above for real world data 〈ywbc − 1

n

∑n
i=1(dy

′
i)

2, ywbc + 1
n

∑n
i=1(dy

′
i)

2〉.
The real value of the output variable should be in this interval with a significant
degree of probability. In Figure 5 right we show that the level of uncertainty for



132 P. Kord́ık and M. Šnorek

Fig. 5. GAME models of the cold water (left) and hot water (right) consumption
variable. Left: Models are not credible for low temperature of the air. With increasing
temperature, the consumption of cold water grows. Right: When its too hot outside,
the consumption of hot water drops down. Nothing else is clear - we need more data
or include more relevant inputs.

wbhw is significantly higher than for wbc. For this specific conditions (values of
humid, solar, wind) our GAME models are credible just in thin area where the
consumption of hot water drops down.

6 Conclusions

We presented the method for credibility estimation of GAME models. Proposed
approach can be also used for many similar algorithms generating black-box
models. The main problem of black-box models is that user does not know when
one can trust the model. Proposed techniques allow estimating the credibility of
the model’s response, reducing the risk of misinterpretation.

References

1. Madala, Ivakhnenko,Inductive Learning Algorithm for Complex System Modelling,
CRC Press, Boca Raton, 1994.

2. Kord́ık,Group of Adaptive Models Evolution, Technical Report DCSE-DTP-2005-07,
CTU Prague 2005.

3. L.K. Hansen, P. Salamon, Neural network ensembles, IEEE Trans. Pattern Anal.
Machine Intelligence 12 (10) (1990) 9931001.

4. Prechelt, L.,A Set of Neural Network Benchmark Problems and Rules, Technical
Report 21/94, Karlsruhe, Germany 1994.

5. Zhi-Hua Zhou , Jianxin Wu, Wei Tang: Ensembling neural networks: Many could be
better than all, Artificial Intelligence 137 (2002) p. 239263

6. Gavin Brown: Diversity in Neural Network Ensembles, Ph.D. thesis, The University
of Birmingham, January 2004



W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 133 – 138, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Combination Methods for Ensembles of MF1 

Joaquín Torres-Sospedra, Mercedes Fernández-Redondo, 
and Carlos Hernández-Espinosa1 

Universidad Jaume I. Dept. de Ingeniería y Ciencia de los Computadores, 
Avda Vicente Sos Baynat s/n. 12071 Castellon, Spain 

{espinosa, redondo}@icc.uji.es  

Abstract. As shown in the bibliography, training an ensemble of networks is an 
interesting way to improve the performance. The two key factors to design an 
ensemble are how to train the individual networks and how to combine the dif-
ferent outputs of the nets. In this paper, we focus on the combination methods. 
We study the performance of fourteen different combination methods for en-
sembles of the type “simple ensemble” (SE) and “decorrelated” (DECO). In the 
case of the “SE” and low number of networks in the ensemble, the method 
Zimmermann gets the best performance. When the number of networks is in the 
range of 9 and 20 the weighted average is the best alternative. Finally, in the 
case of the ensemble “DECO” the best performing method is averaging. 

1   Introduction 

The most important property of a neural network (NN) is the generalization. One 
technique to increase the generalization capability with respect to a single NN consist 
on training an ensemble of NNs, i.e., to train a set of neural network with different 
weight initialization or properties and combine the outputs in a suitable manner. 

It is clear from the bibliography that this procedure in general increases the gener-
alization capability [1,2] for the case of Multilayer Feedforward and other classifiers. 

The two key factors to design an ensemble are how to train the individual networks 
and how to combine the different outputs to give a single output. 

Among the methods of training the individual networks there are several alterna-
tives. Our research group has performed a comparison [3], which shows that the best 
performing method is called “Decorrelated” (DECO). It is also shown that the “simple 
ensemble” (SE) provides a reasonable performance with a lower computing cost. 

In the other aspect, (the combination methods) there are also several different 
methods in the bibliography, and we can also find a comparison in paper [4]. In [4], 
they conclude that the combination by the weighted average with data dependent 
weights is the best method. However, the comparison lacks of two problems. The 
method CVC was used and the results were obtained in only four databases. 

In this paper, we present a comparison of 14 different methods of combining the 
outputs for a total of ten databases. So these results are more complete. Furthermore, 
we present results for two methods of building the ensemble: “SE” and “DECO”. 

                                                           
1  This research was supported by the project MAPACI TIC2002-02273 of CICYT in Spain. 
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2   Theory 

In this section, we briefly review the methods of combination, “DECO” and “SE”. 

2.1   Simple Ensemble and Decorrelated 

Simple Ensemble: A simple ensemble can be constructed by training different net-
works with the same training set, but different random weight initialization. 

Decorrelated (Deco): This ensemble method was proposed in [5]. It consists on in-
troducing a penalty added to the usual error function of Backpropagation. The penalty 
term for network j is: 

))·()(,(· ji fyfyjidPenalty −−= λ  (1) 

Where λ determines the strength of the penalty term and should be found by trial 
and error, y is the target of the training pattern and fi and fj are the outputs of networks 
number i and j in the ensemble. The term d(i,j) is in equation 2. 
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=
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2.2   Combination Methods 

Average: This approach simply averages the individual classifier outputs. The output 
yielding the maximum values is chosen as the correct class. 

Majority Vote: Each classifier provides a vote to a class, given by its highest output. 
The correct class is the one most often voted by the classifiers. 

Winner Takes All (WTA): In this method, the class with overall maximum output 
across all classifier and outputs is selected as the correct class. 

Borda Count:. For any class q, the Borda count is the sum of the number of classes 
ranked below q by each classifier. If Bj(q) is the number of classes ranked below the 
class q by the jth classifier, then the Borda count for class q is in the equation 3.  

=
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j
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Bayesian Combination: This combination method was proposed in reference [6]. 
According to this reference a belief value that the pattern x belongs to class i can be 
approximated by the following equation. 
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Where the probability that sample x actually belongs to class i, given that classifier k 
assign it to class j (λk(x)=jk) can be estimated from the confusion matrix [4]. 
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Weighted Average: This method introduces weights to the outputs of the different 
networks prior to averaging. The weights try to minimize the difference between the 
output of the ensemble and the “desired or true” output. The weights can be estimated 
from the error correlation matrix. A description of the method can be found in [7]. 

Choquet Integral: This method is based in the fuzzy integral and the Choquet inte-
gral. The method is complex and a full description can be found in reference [4]. 

Combination by Fuzzy Integral with Data Dependent Densities (Int. DD): It is 
another method based on the fuzzy integral and the Choquet integral [4]. But in this 
case, prior to the application of the method it is performed a partition of the input 
space in regions by k-means clustering or frequency sensitive learning.  

Weighted Average with Data Dependent Weights (W.Ave DD): This method is the 
weighted average described above. But in this case, a partition of the space is per-
formed by using k-means clustering and the weights are calculated for each partition. 
We have a different combination scheme for the different partitions of the space. 

BADD Defuzzification Strategy: It is another combination method based on fuzzy 
logic concepts. The method is complex and the description can be found in [4]. 

Zimmermann’s Compensatory Operator: This method is based in the Zimmer-
mann’s compensatory operator described in [8]. The description can be found in [4]. 

Dynamically Averaged Networks (DAN), Version 1 and 2: It is proposed in [9]. In 
this method instead of choosing static weights derived from the NN performance on a 
sample of the input space, we allow the weights to adjust to be proportional to the 
certainties of the respective network output. 

Nash Vote: In this method each voter assigns a number between zero and one for 
each candidate output. The product of the voter’s values is compared for all candi-
dates. The higher is the winner. The method is reviewed in reference [10]. 

3   Experimental Results 

We have applied the fourteen combination methods in ten different problems. They 
are from the UCI repository and their names are Cardiac Arrhythmia (Aritm), Derma-
tology (Derma), Protein Location Sites (Ecoli), Solar Flares (Flare), Image Segmenta-
tion (Image), Johns Hopkins University Ionosphere (Ionos), Pima Indians Diabetes 
(Pima), Haberman’s survival (Survi), Vowel Recognition (Vowel) and Wisconsin 
Breast Cancer (Wdbc). 

We have constructed ensembles of 3, 9, 20 and 40 networks. We repeated the proc-
ess of training an ensemble ten times for different partitions of data in training, cross-
validation and test. With this procedure we can obtain a mean performance of the 
ensemble for each database (the mean of the ten ensembles) and an error in the per-
formance. We have used the error, but this measure is related to the standard devia-
tion as equation 5 and to the confidence interval with equation 6. 



136 J. Torres-Sospedra, M. Fernández-Redondo, and C. Hernández-Espinosa 

Errorn·=σ  (5) 

Where n is the number of experiments performed to obtain the mean, which is 10. 
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Where zα/2 is obtained from the following probability of the normal distribution. 
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The results of the performance for an ensemble of the type “SE” and 3 net-
works are in table 1. For the ensemble of type “DECO” the results are in table 3 
also for the case of three NNs. The rest of results are omitted by the lack of  
space. 

As the results show, the difference in performance among the different combina-
tion methods is low. For example, for the case of table 1 (“SE”, three networks) the 
largest difference between two combination methods is only 1.9% in the case of 
Ionos. 

However, the computational cost of the different combination methods is very low 
and it can be worthy to select an appropriate combination method. 

Table 1. Results of combination methods for the ensemble of three nets, “Simple Ensemble” 

 ARITM DERMA ECOLI FLARE IMAGEN 
Single Network 75.6 ± 0.7 96.7 ± 0.4 84.4 ± 0.7 82.1 ± 0.3 96.3 ± 0.2 
Average 73.5 ± 1.1 97.2 ± 0.7 86.6 ± 0.8 81.8 ± 0.5 96.5 ± 0.2 
Majority V. 73.1 ± 1.0 96.9 ± 0.8 86.0 ± 0.9 81.5 ± 0.5 96.2 ± 0.3 
WTA 73.6 ± 1.0 97.2 ± 0.7 86.3 ± 0.9 81.7 ± 0.5 96.4 ± 0.2 
Borda 73.1 ± 1.0 97.0 ± 0.7 86.5 ± 0.8 81.5 ± 0.5 95.70 ± 0.2 
Bayesian 73.6 ± 0.9 96.9 ± 0.8 86.3 ± 0.9 81.5 ± 0.5 96.3 ± 0.3 
W. Average 73.0 ± 0.9 96.3 ± 0.7 85.9 ± 0.9 81.3 ± 0.6 96.7 ± 0.3 
Choquet 74.1 ± 1.1 97.2 ± 0.7 86.3 ± 0.9 81.7 ± 0.5 96.3 ± 0.2 
Int. DD 74.1 ± 1.1 97.2 ± 0.7 85.9 ± 0.7 81.8 ± 0.5 96.3 ± 0.2 
W. Ave DD 73.5 ± 1.1 97.2 ± 0.7 86.6 ± 0.8 81.8 ± 0.5 96.5 ± 0.2 
BADD 73.5 ± 1.1 97.2 ± 0.7 86.6 ± 0.8 81.8 ± 0.5 96.5 ± 0.2 
Zimmermann 74.7 ± 1.4 97.3 ± 0.7 86.0 ± 1.2 81.5 ± 0.6 96.6 ± 0.3 
DAN 73.2 ± 1.1 96.9 ± 0.6 85.7 ± 1.0 81.4 ± 0.6 95.7 ± 0.2 
DAN version 2 73.2 ± 1.1 96.9 ± 0.6 85.4 ± 0.9 81.4 ± 0.6 95.7 ± 0.2 
Nash Vote 73.5 ± 1.1 97.3 ± 0.7 86.6 ± 0.8 81.8 ± 0.5 95.8 ± 0.2 
      
 IONOS PIMA SURVI VOWEL WDBC 
Single Network 87.9 ± 0.7 76.7 ± 0.6 74.2 ± 0.8 83.4 ± 0.6 97.4 ± 0.3 
Average 91.1 ± 1.1 75.9 ± 1.2 74.3 ± 1.3 88.0 ± 1.0 96.9 ± 0.5 
Majority V. 91.3± 1.0 75.9 ± 1.3 74.4 ± 1.4 86.9 ± 0.9 96.9 ± 0.5 
WTA 91.1 ± 1.1 75.9 ± 1.2 73.9 ± 1.4 86.7 ± 0.8 96.9 ± 0.5 
Borda 91.3± 1.0 75.9 ± 1.3 74.4 ± 1.4 85.9 ± 1.0 96.9 ± 0.5 
Bayesian 91.4 ± 1.1 75.8 ± 1.3 74.3 ± 1.4 86.4 ± 1.0 96.9 ± 0.5 
W. Average 91.3± 0.9 75.3± 1.3 74.1 ± 1.3 87.7 ± 1.0 96.9 ± 0.5 
Choquet 91.3± 1.1 76.1 ± 1.2 74.1 ± 1.4 86.4 ± 0.7 96.9 ± 0.5 
Int. DD 91.1 ± 1.1 75.6 ± 1.3 74.1 ± 1.3 86.3 ± 0.7 96.9 ± 0.5 
W. Ave DD 91.1 ± 1.1 75.9 ± 1.2 74.3 ± 1.3 88.0 ± 0.9 96.9 ± 0.5 
BADD 91.1 ± 1.1 75.9 ± 1.2 74.3 ± 1.3 88.0 ± 0.9 96.9 ± 0.5 
Zimmermann 91.9± 1.1 76.0 ± 1.0 74.3 ± 1.3 87.8 ± 1.0 96.9 ± 0.5 
DAN 90.0 ± 1.2 75.9± 1.2 74.4 ± 1.4 84.6 ± 1.2 96.9 ± 0.5 
DAN version 2 90.0 ± 1.2 75.9± 1.2 74.4 ± 1.4 84.5 ± 1.2 96.9 ± 0.5 
Nash Vote 91.3± 1.2 75.9 ± 1.2 74.3± 1.3 86.2 ± 1.0 96.9 ± 0.5 
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Table 2. Results of the combination methods for the ensemble of three nets, “Decorrelated” 

 ARITM DERMA ECOLI FLARE IMAGEN 
Single Network 75.6 ± 0.7 96.7 ± 0.4 84.4 ± 0.7 82.1 ± 0.3 96.3 ± 0.2 
Average 74.9 ± 1.3 97.2 ± 0.7 86.6 ± 0.6 81.7 ± 0.4 96.7 ± 0.3 
Majority V. 74.9 ± 1.1 97.5 ± 0.6 86.3 ± 0.7 81.4 ± 0.5 96.5 ± 0.3 
WTA 74.9 ± 1.1 97.0 ± 0.7 86.0 ± 0.6 81.7 ± 0.5 96.7 ± 0.2 
Borda 74.9 ± 1.1 97.0 ± 0.9 86.6 ± 0.8 81.4 ± 0.5 96.0 ± 0.4 
Bayesian 74.8 ± 1.2 96.9 ± 0.8 86.8 ± 0.5 81.3 ± 0.5 96.7 ± 0.3 
W. Average 74.4 ± 1.2 97.3 ± 0.5 86.6 ± 0.7 81.6 ± 0.5 96.7 ± 0.3 
Choquet 74.9 ± 1.2 97.0 ± 0.7 86.0 ± 0.6 81.7 ± 0.5 96.58 ± 0.19 
Int. DD 74.9 ± 1.2 97.0 ± 0.7 86.2 ± 0.8 81.5 ± 0.4 96.56 ± 0.19 
W. Ave DD 75.1 ± 1.3 97.2 ± 0.7 86.6 ± 0.7 81.5 ± 0.4 96.7 ± 0.3 
BADD 74.9 ± 1.3 97.2 ± 0.7 86.6 ± 0.6 81.7 ± 0.4 96.7 ± 0.3 
Zimmermann 74.6 ± 1.2 97.3 ± 0.5 86.0 ± 0.9 81.4 ± 0.6 96.5 ± 0.3 
DAN 72.9 ± 1.1 96.8 ± 1.1 85.2 ± 0.7 81.3 ± 0.5 95.9 ± 0.3 
DAN version 2 72.9 ± 1.1 96.6 ± 1.2 85.0 ± 0.8 81.3 ± 0.5 96.0 ± 0.3 
Nash Vote 75.3 ± 1.3 97.2 ± 0.7 86.3 ± 0.5 81.6 ± 0.5 96.2 ± 0.3 
      
 IONOS PIMA SURVI VOWEL WDBC 
Single Network 87.9 ± 0.7 76.7 ± 0.6 74.2 ± 0.8 83.4 ± 0.6 97.4 ± 0.3 
Average 90.9 ± 0.9 76.4 ± 1.2 74.6 ± 1.5 91.5 ± 0.6 97.0 ± 0.5 
Majority V. 90.7 ± 1.2 75.8 ± 1.1 74.1 ± 1.5 89.4 ± 0.5 97.0 ± 0.5 
WTA 91.4 ± 0.9 76.1 ± 1.1 74.6 ± 1.5 91.2 ± 0.7 96.8 ± 0.4 
Borda 90.7 ± 1.2 75.8 ± 1.1 74.1 ± 1.5 87.8 ± 0.8 97.0 ± 0.5 
Bayesian 92.3 ± 1.0 75.7 ± 1.1 73.8 ± 1.3 88.0 ± 0.4 97.0 ± 0.5 
W. Average 91.6 ± 0.8 76.1 ± 0.9 73.4 ± 1.2 91.1 ± 0.4 96.9 ± 0.4 
Choquet 91.1 ± 1.0 75.9 ± 1.1 74.8 ± 1.3 90.1 ± 0.5 96.7 ± 0.4 
Int. DD 91.0 ± 0.9 75.5 ± 1.1 74.6 ± 1.3 90.0 ± 0.5 96.7 ± 0.4 
W. Ave DD 91.1 ± 1.0 76.4 ± 1.1 74.6 ± 1.5 91.7 ± 0.6 97.0 ± 0.5 
BADD 90.9 ± 0.9 76.4 ± 1.2 74.6 ± 1.5 91.5 ± 0.6 97.0 ± 0.5 
Zimmermann 91.4 ± 1.0 76.6 ± 1.0 74.1 ± 1.3 90.6 ± 0.6 96.7 ± 0.4 
DAN 89.9 ± 1.2 75.2 ± 1.0 74.4 ± 1.4 85.8 ± 0.7 97.1 ± 0.4 
DAN version 2 89.9 ± 1.2 75.2 ± 1.0 74.4 ± 1.4 86.3 ± 0.8 97.1 ± 0.4 
Nash Vote 91.0 ± 0.9 76.4 ± 1.2 74.6 ± 1.5 88.1 ± 0.8 96.9 ± 0.4 

We can obtain further conclusions and insights in the performance of the different 
methods by calculating the percentage of error reduction of the ensemble with respect 
to a single network. We have used equation 5 for this calculation. 

networkgle

ensemblenetworkgle
reduction PorError

PorErrorPorError
PorError

sin

sin·100
−

=  (5) 

The value of the percentage of error reduction ranges from 0%, where there is no 
improvement by the use of a particular ensemble method to 100%. There can also be 
negative values when the performance of the ensemble is worse than the single net. 

This new measurement is just a simple way to perform a ranking of the perform-
ance, but the results are not statistical significant. A correct way to obtain statistical 
significant results might be to use the normal percentage and a McNemar’s test with 
Bonferroni correction, this will be addressed in future researches. 

Furthermore, we can calculate the mean performance of error reduction across all 
databases. This value is in table 3 for the case “SE”. 

As the results of table 3 show the average is quite appropriate for SE. It provides 
the best performance for the case of 40 nets. However, the method Zimmermann gets 
the best results and should be used for ensembles of low number of networks (3 nets). 
There is another method that should be taken into account. Weighted average gets the 
best performance when an intermediate number of networks is used (9 and 20). 

In the case of “DECO” the best performing methods are clearly the simple average 
and BADD over a wide spectrum in the number of networks in the ensemble. 
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Table 3. Mean percentage of error reduction for the different ensembles, “Simple ensemble” 

 Average Majority V. WTA Borda Bayesian W. Average Choquet 
Ensem. 3 Nets 5,49 2,73 4,16 1,55 3,20 2,22 4,35 
Ensem. 9 Nets 8,25 6,61 6,01 4,63 -0,52 9,77 4,87 
Ensem. 20 Nets 8,13 7,52 6,65 5,35 -9,05 10,82  
Ensem. 40 Nets 9,73 8,11 6,14 6,39 -16,58 6,38  

 Int. DD W. Ave DD BADD Zimmermann DAN DAN 2 Nash 
Ensem. 3 Nets 3,74 5,54 5,49 6,80 -1,27 -1,50 3,30 
Ensem. 9 Nets 3,75 8,52 8,25 9,18 1,72 1,15 5,13 
Ensem. 20 Nets   8,13 4,98 -1,38 -1,46 6,34 
Ensem. 40 Nets   9,73 -16,36 -0,71 -0,83 7,08 

4   Conclusions 

In this paper, we have focused in the different alternatives of ensemble combination 
methods. We have performed experiment with a total of fourteen different combina-
tion methods for ensembles of the type “simple ensemble” and “decorrelated”. The 
experiments are performed with ten different databases. The ensembles are trained 
with 3, 9, 20 and 40 networks. The results show that in the case of the “simple en-
semble” and low number of networks, the method Zimmermann gets the best per-
formance. When the number of networks is in greater the weighted average is the best 
alternative. Finally, in the case of the ensemble “decorrelated” the best performing 
method is averaging over a wide spectrum of networks in the ensemble. 
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Abstract. As shown in the bibliography, training an ensemble of networks is an 
interesting way to improve the performance. However there are several methods 
to construct the ensemble. In this paper we present some new results in a com-
parison of twenty different methods. We have trained ensembles of 3, 9, 20 and 
40 networks to show results in a wide spectrum of values. The results show that 
the improvement in performance above 9 networks in the ensemble depends on 
the method but it is usually low. Also, the best method for a ensemble of 3 net-
works is called “Decorrelated” and uses a penalty term in the usual Backpropa-
gation function to decorrelate the networks outputs in the ensemble. For the 
case of 9 and 20 networks the best method is conservative boosting. And finally 
for 40 networks the best method is Cels. 

1   Introduction 

The most important property of a neural network (NN) is the generalization. 
One technique to increase the generalization capability with respect to a single NN 

consist on training an ensemble of NN, i.e., to train a set of NNs with different weight 
initialization or properties and combine the outputs in a suitable manner. 

It is clear from the bibliography that this procedure in general increases the gener-
alization capability [1,2]. 

The two key factors to design an ensemble are how to train the individual networks 
and how to combine the different outputs to give a single output. 

Among the methods of combining the outputs, the two most popular are voting and 
output averaging [3]. In this paper we will normally use output averaging. 

In the other aspect, nowadays, there are several different methods in the bibliogra-
phy to train the individual networks and construct the ensemble [1-3]. 

However, there is a lack of comparison among the different methods. 
One comparison can be found in [4], it is a previous work developed by our re-

search group. In paper [4], eleven different methods are compared. 
Now, we present more complete results by including nine new methods, so we in-

crease the number of methods in the comparison to a total of twenty. The empirical 
results are quite interesting, one of the new methods analyzed in this paper seems to 
have the best performance in several situations. 

                                                           
1  This research was supported by the project MAPACI TIC2002-02273 of CICYT in Spain. 
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2   Theory 

In this section we briefly review the new nine ensemble methods introduced in this 
paper for comparison. The description of the rest of methods can be found in [4]. 

CVC version 2: The version 2 of CVC included in this paper is used in reference [5]. 
The data for training and cross-validation is jointed in one set and with this jointed set 
the usual division of CVC is performed. In this case, one subset is omitted for each 
network and the omitted subset is used for cross-validation. 

Aveboost: Aveboost is the abbreviation of Average Boosting. This method was pro-
possed in reference [6] as a variation of Adaboost. In Adaboost, it is calculated a 
probability for each pattern of being included in the training set for the following 
network. In this case a weighted adaptation of the probabilities is performed.  

TCA, Total Correptive Adaboost: It was also proposed in [6] and it is another varia-
tion of Adaboost. In this case the calculation of the probability distribution for each 
network is treated as an optimization problem and an iterative process is performed. 

Aggressive Boosting: Aggressive Boosting is a variation of Adaboost. It is reviewed 
in [7]. In this case it is used a common step to modify the probabilities of a pattern for 
being included in the next training set.  

Conservative Boosting: It is another variation of Adaboost reviewed in [7]. In this 
case the probability of the well classified patterns is decreased and the probability of 
wrong classified patterns is kept unchanged. 

ArcX4: It is another variation of Boosting, it was proposed and studied in reference 
[8]. The method selects training patterns according to a distribution, and the probabil-
ity of the pattern depend on the number of times the pattern was not correctly classi-
fied by the previous networks. The combination procedure proposed in the reference 
is the mean average. In our experiments we have used this procedure and also voting. 

EENCL Evolutionary Ensemble with Negative Correlation: This method is pro-
posed in reference [9]. The ensemble is build as a population of a genetic algorithm. 
The fitness function is selected to consider the precision in the classification of the 
individual networks and also to penalize the correlation among the different networks 
in the ensemble. Two variations of the method are used, EENCL UG and MG. 

3   Experimental Results 

We have applied the twenty ensemble methods to ten different classification prob-
lems. They are from the UCI repository of machine learning databases. Their names 
are Cardiac Arrhythmia Database (Aritm), Dermatology Database (Derma), Protein 
Location Sites (Ecoli), Solar Flares Database (Flare), Image Segmentation Database 
(Image), Johns Hopkins University Ionosphere Database (Ionos), Pima Indians Diabe-
tes (Pima), Haberman’s survival data (Survi), Vowel Recognition (Vowel) and Wis-
consin Breast Cancer Database (Wdbc). 
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We have constructed ensembles of a wide number of networks in the ensemble, 3, 
9, 20 and 40. We repeated the process of training each ensemble ten times for differ-
ent partitions of data in training, cross-validation and test. With this procedure we can 
obtain a mean performance of the ensemble for each database (the mean of the ten 
ensembles) and an error in the performance calculated by standard error theory. We 
have used the error, but this measure is related to the standard deviation as equation 1 
and to the confidence interval with equation 2. 

Errorn·=σ  (1) 

Where n is the number of experiments performed to obtain the mean, which is 10. 

+−= ErrorzXErrorzXIntervalConfidence ·,·
22

αα
 (2) 

Where zα/2 is obtained from the following probability of the normal distribution. 
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n
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The results are in table 1 for the case of ensembles of 3 networks and in table 2 for 
9. We omit the results of 20 and 40 networks by the lack of space. 

By comparing the results of table 1, and 2 with the results of a single network we 
can see that the improvement by the use of the ensemble methods depends clearly on 
the problem. For example in databases Aritm, Flare, Pima and Wdbc there is not a 
clear improvement. In the rest of databases there is an improvement; perhaps the most 
important one is in database Vowel. 

There is, however, one exception in the performance of the method Evol. This 
method did not work well in our experiments. In the original reference the method 
was tested only in database Heart. 

Now, we can compare the results of tables 1 and 2 for ensembles of different num-
ber of networks. We can see that the results are in general similar and the improve-
ment of training an increasing number of networks, for example 20 and 40, is in gen-
eral low. Taking into account the computational cost, we can say that the best alterna-
tive for an application is an ensemble of three or nine networks. 

We have also calculated the percentage of error reduction of the ensemble with re-
spect to a single network. We have used equation 4 for this calculation. 

networkgle

ensemblenetworkgle
reduction PorError

PorErrorPorError
PorError

sin

sin·100
−

=  (4) 

The value of the percentage of error reduction ranges from 0%, where there is no 
improvement by the use of a particular ensemble method to 100%. There can also 
be negative values when the performance of the ensemble is worse than the single 
net. 

This new measurement is just a simple way to perform a ranking of the perform-
ance, but the results are not statistical significant. A correct way to obtain statistical 
significant results might be to use the normal percentage and a McNemar’s test with 
Bonferroni correction, this will be addressed in future researches.  
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Table 1. Results for the ensemble of three networks 

 ARITM DERMA ECOLI FLARE IMAGEN 
Single Net. 75.6 ± 0.7 96.7 ± 0.4 84.4 ± 0.7 82.1 ± 0.3 96.3 ± 0.2 
Adaboost 71.8 ± 1.8 98.0 ± 0.5 85.9 ± 1.2 81.7 ± 0.6 96.8 ± 0.2 
Bagging 74.7 ± 1.6 97.5 ± 0.6 86.3 ± 1.1 81.9 ± 0.6 96.6 ± 0.3 
Bag_Noise 75.5 ± 1.1 97.6 ± 0.7 87.5 ± 1.0 82.2 ± 0.4 93.4 ± 0.4 
Boosting 74.4 ± 1.2 97.3 ± 0.6 86.8 ± 0.6 81.7 ± 0.4 95.0 ± 0.4 
Cels_m 73.4 ± 1.3 97.7 ± 0.6 86.2 ± 0.8 81.2 ± 0.5 96.82 ± 0.15 
CVC 74.0 ± 1.0 97.3 ± 0.7 86.8 ± 0.8 82.7 ± 0.5 96.4 ± 0.2 
Decorrelated 74.9 ± 1.3 97.2 ± 0.7 86.6 ± 0.6 81.7 ± 0.4 96.7 ± 0.3 
Decorrelated2 73.9 ± 1.0 97.6 ± 0.7 87.2 ± 0.9 81.6 ± 0.4 96.7 ± 0.3 
Evol 65.4 ± 1.4 57 ± 5 57 ± 5 80.7 ± 0.7 77 ± 5 
Ola 74.7 ± 1.4 91.4 ± 1.5 82.4 ± 1.4 81.1 ± 0.4 95.6 ± 0.3 
CVC version 2 76.1 ± 1.6 98.0 ± 0.3 86.8 ± 0.9 82.5 ± 0.6 96.9 ± 0.3 
AveBoost 73.4 ± 1.3 97.6 ± 0.7 85.3 ± 1.0 81.8 ± 0.8 96.8± 0.2 
TCA 70.7 ± 1.9 96.1 ± 0.6 85.4 ± 1.3 81.9 ± 0.7 94.8 ± 0.5 
ArcX4 75.4 ± 0.8 97.8 ± 0.5 85.3 ± 1.1 78.3± 0.9 96.6 ± 0.2 
ArcX4 Voting 73.0 ± 0.8 97.0 ± 0.5 85.7 ± 1.1 80.6 ± 0.9 96.5 ± 0.2 
Aggressive B 72.3 ± 1.9 97.0 ± 0.5 85.7 ± 1.4 81.9 ± 0.9 96.6 ± 0.3 
Conservative B 74.8 ± 1.3 96.9 ± 0.8 85.4 ± 1.3 82.1 ± 1.0 96.5 ± 0.3 
EENCL UG 71 ± 2 96.8 ± 0.9 86.6 ± 1.2 81.4 ± 0.8 96.3 ± 0.2 
EENCL MG 74.5 ± 1.3 97.2 ± 0.8 86.6 ± 1.2 81.9 ± 0.5 96.0 ± 0.2 
Simple Ens. 73.4 ± 1.0 97.2 ± 0.7 86.6 ± 0.8 81.8 ± 0.5 96.5 ± 0.2 

Table 1. (Continued). 

 IONOS PIMA SURVI VOWEL WDBC 
Single Net. 87.9 ± 0.7 76.7 ± 0.6 74.2 ± 0.8 83.4 ± 0.6 97.4 ± 0.3 
Adaboost 88.3 ± 1.3 75.7 ± 1.0 75.4 ± 1.6 88.43 ± 0.9 95.7 ± 0.6 
Bagging 90.7 ± 0.9 76.9 ± 0.8 74.2 ± 1.1 87.4 ± 0.7 96.9 ± 0.4 
Bag_Noise 92.4 ± 0.9 76.2 ± 1.0 74.6 ± 0.7 84.4 ± 1.0 96.3 ± 0.6 
Boosting 88.9 ± 1.4 75.7 ± 0.7 74.1 ± 1.0 85.7 ± 0.7 97.0 ± 0.4 
Cels_m 91.9 ± 1.0 76.0 ± 1.4 73.4 ± 1.3 91.1 ± 0.7 97.0 ±0.4 
CVC 87.7 ± 1.3 76.0 ± 1.1 74.1 ± 1.4 89.0 ± 1.0 97.4 ± 0.3 
Decorrelated 90.9 ± 0.9 76.4 ± 1.2 74.6 ± 1.5 91.5 ± 0.6 97.0 ± 0.5 
Decorrelated2 90.6 ± 1.0 75.7 ± 1.1 74.3 ± 1.4 90.3 ± 0.4 97.0 ± 0.5 
Evol 83.4 ± 1.9 66.3 ± 1.2 74.3 ± 0.6 77.5 ± 1.7 94.4 ± 0.9 
Ola 90.7 ± 1.4 69.2 ± 1.6 75.2 ± 0.9 83.2 ± 1.1 94.2 ± 0.7 
CVC version 2 89.7 ± 1.4 76.8 ± 1.0 74.1 ± 1.2 89.8 ± 0.9 96.7 ± 0.3 
AveBoost 89.4 ± 1.3 76.5 ± 1.1 75.1 ± 1.2 88.1 ± 1.0 95.6 ± 0.5 
TCA 87.9 ± 1.2 75.4 ± 0.8 73.0 ± 1.5 87.5 ± 1.1 91 ± 4 
ArcX4 89.4 ± 1.0 76.0 ± 0.8 68 ± 2 90.8 ± 0.9 96.3 ± 0.6 
ArcX4 Voting 89.0 ± 1.0 76.3 ± 0.8 74 ± 2 86.2 ± 0.9 96.1 ± 0.6 
Aggressive B 90.3 ± 0.9 74.3 ± 1.5 73.8 ± 1.5 86.9 ± 1.2 96.6 ± 0.6 
Conservative B 89.4 ± 1.0 75.6 ± 1.2 75.6 ± 1.1 88.8 ± 1.1 97.0 ± 0.6 
EENCL UG 93.0 ± 1.0 74.7 ± 1.0 73.9 ± 1.2 87.2 ± 0.8 96.2 ± 0.4 
EENCL MG 93.7 ± 0.9 75.3 ± 1.0 73.9 ± 0.8 87.4 ± 0.7 96.4 ± 0.5 
Simple Ens. 91.1 ± 1.1 75.9 ± 1.2 74.3 ± 1.3 88.0 ± 0.9 96.9 ± 0.5 

Furthermore we can calculate the mean performance of error reduction across all 
databases this value is in table 4 for ensembles of 3, 9, 20 and 40 nets. According to 
this global measurement Ola, Evol and BagNoise performs worse than the Simple 
Ensemble. The best methods are Bagging, Cels, Decorrelated, Decorrelated2 and 
Conservative Boosting. 

The best methods for 3 nets in the ensemble are Cels and Decorrelated, the best 
method for the case of 9 and 20 nets is Conservative Boosting and the best method for 
the case of 40 networks is Cels but Conservative Boosting is also good. 



 New Results on Ensembles of Multilayer Feedforward 143 

Table 2. Results for the Ensemble of nine networks 

 ARITM DERMA ECOLI FLARE IMAGEN 
Adaboost 73.2 ± 1.6 97.3 ± 0.5 84.7 ± 1.4 81.1 ± 0.7 97.3 ± 0.3 
Bagging 75.9 ± 1.7 97.7 ± 0.6 87.2 ± 1.0 82.4 ± 0.6 96.7 ± 0.3 
Bag_Noise 75.4 ± 1.2 97.0 ± 0.7 87.2 ± 0.8 82.4 ± 0.5 93.4 ± 0.3 
Cels_m 74.8 ± 1.3 97.3 ± 0.6 86.2 ± 0.8 81.7 ± 0.4 96.6 ± 0.2 
CVC 74.8 ± 1.3 97.6 ± 0.6 87.1 ± 1.0 81.9 ± 0.6 96.6 ± 0.2 
Decorrelated 76.1 ± 1.0 97.6 ± 0.7 87.2 ± 0.7 81.6 ± 0.6 96.9 ± 0.2 
Decorrelated2 73.9 ± 1.1 97.6 ± 0.7 87.8 ± 0.7 81.7 ± 0.4 96.84 ± 0.18 
Evol 65.9 ± 1.9 54 ± 6 57 ± 5 80.6 ± 0.8 67 ± 4 
Ola 72.5 ± 1.0 86.7 ±1.7 83.5 ± 1.3 80.8 ± 0.4 96.1 ± 0.2 
CVC version 2 76.1 ± 1.6 98.0 ± 0.3 86.8 ± 0.9 82.5 ± 0.6 96.9 ± 0.3 
AveBoost 73.4 ± 1.3 97.6 ± 0.7 85.3 ± 1.0 81.8 ± 0.8 96.8 ± 0.2 
TCA 70.7 ± 1.9 96.1 ± 0.5 85.4 ± 1.3 81.9 ± 0.7 94.8 ± 0.5 
ArcX4 75.4 ± 0.8 97.8 ± 0.5 85.3 ± 1.1 78.3 ± 0.9 96.6 ± 0.2 
ArcX4 Voting 73.3 ± 0.8 97.6 ± 0.5 84.9 ± 1.1 80.1 ± 0.9 97.2 ± 0.2 
Aggressive B 72.3 ± 1.9 97.0 ± 0.5 85.7 ± 1.4 81.9 ± 0.9 96.6 ± 0.3 
Conservative B 74.8 ± 1.3 96.9 ± 0.8 85.4 ± 1.3 82.1 ± 1.0 96.5 ± 0.3 
EENCL UG 71 ± 2 96.8 ± 0.9 86.6 ± 1.2 81.4 ± 0.8 96.3 ± 0.2 
EENCL MG 74.5 ± 1.3 97.2 ± 0.8 86.6 ± 1.2 81.9 ± 0.5 96.0 ± 0.2 
Simple Ens 73.8 ± 1.1 97.5 ± 0.7 86.9 ± 0.8 81.6 ± 0.4 96.7 ± 0.3 

Table 2. (Continued).  
 IONOS PIMA SURVI VOWEL WDBC 
Adaboost 89.4 ± 0.8 75.5 ± 0.9 74.3 ± 1.4 94.8 ± 0.7 95.7 ± 0.7 
Bagging 90.1 ± 1.1 76.6 ± 0.9 74.4 ± 1.5 90.8 ± 0.7 97.3 ± 0.4 
Bag_Noise 93.3 ± 0.6 75.9 ± 0.9 74.8 ± 0.7 85.7 ± 0.9 95.9 ± 0.5 
Cels_m 91.9 ± 1.0 75.9 ± 1.4 73.4 ± 1.2 92.7 ± 0.7 96.8 ± 0.5 
CVC 89.6 ± 1.2 76.9 ± 1.1 75.2 ± 1.5 90.9 ± 0.7 96.5 ± 0.5 
Decorrelated 90.7 ± 1.0 76.0 ± 1.1 73.9 ± 1.3 92.8 ± 0.7 97.0 ± 0.5 
Decorrelated2 90.4 ± 1.0 76.0 ± 1.0 73.8 ± 1.3 92.6 ± 0.5 97.0 ± 0.5 
Evol 77 ± 3 66.1 ± 0.7 74.8 ± 0.7 61 ± 4 87.2 ± 1.6 
Ola 90.9 ± 1.7 73.8 ± 0.8 74.8 ± 0.8 88.1 ± 0.8 95.5 ± 0.6 
CVC version 2 89.7 ± 1.4 76.8 ± 1.0 74.1 ± 1.2 89.8 ± 0.9 96.7 ± 0.3 
AveBoost 89.4 ± 1.3 76.5 ± 1.1 75.1 ± 1.2 88.1 ± 1.0 95.6 ± 0.5 
TCA 87.9 ± 1.2 75.4 ± 0.8 73.0 ± 1.5 87.5 ± 1.1 91 ± 4 
ArcX4 89.4 ± 1.0 76.0 ± 0.8 68 ± 2 90.8 ± 0.9 96.3 ± 0.6 
ArcX4 Voting 91.3 ± 1.0 76.3 ± 0.8 73.9 ± 1.0 94.6 ± 0.9 96.6 ± 0.6 
Aggressive B 90.3 ± 0.9 74.3 ± 1.5 73.8 ± 1.5 86.9 ± 1.2 96.6 ± 0.6 
Conservative B 89.4 ± 1.0 75.6 1.2 75.6 ± 1.1 88.8 ± 1.1 97.0 ± 0.6 
EENCL UG 93.0 ± 1.0 74.7 ± 1.0 73.9 ± 1.2 87.2 ± 0.8 96.2 ± 0.4 
EENCL MG 93.7 ± 0.9 75.3 ± 1.0 73.9 ± 0.8 87.4 ± 0.7 96.4 ± 0.5 
Simple Ens 90.3 ± 1.1 75.9 ± 1.2 74.2 ± 1.3 91.0 ± 0.5 96.9 ± 0.5 

Table 3. Mean percentage of error reduction for the different ensembles 

 Ensemble 3 Nets Ensemble 9 Nets Ensemble 20 Nets Ensemble 40 Nets 
Adaboost 1.33 4.26 9.38 12.21 
Bagging 6.86 12.12 13.36 12.63 
Bag_Noise -3.08 -5.08 -3.26 -3.05 
Boosting -0.67 --- --- --- 
Cels_m 9.98 9.18 10.86 14.43 
CVC 6.18 7.76 10.12 6.48 
Decorrelated 9.34 12.09 12.61 12.35 
Decorrelated2 9.09 11.06 12.16 12.10 
Evol -218.23 -297.01 -375.36 -404.81 
Ola -33.11 -36.43 -52.53 -47.39 
CVC version 2 10.25 10.02 7.57 7.49 
AveBoost 1.13 10.46 9.38 10.79 
TCA -9.71 -25.22 -43.98 -53.65 
ArcX4 1.21 2.85 7.85 10.05 
ArcX4 Voting -2.08 9.73 10.76 11.14 
Aggressive B 1.22 7.34 13.03 13.54 
Conservative B 4.45 13.07 14.8 14.11 
EENCL UG 0.21 -3.23 -3.59 1.10 
EENCL MG 3.96 1.52 2.84 7.89 
Simple Ens 5.89 8.39 8.09 9.72 
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So, we can conclude that if the number of networks is low it seems that the best 
methods are Cels and Decorrelated and if the number of network is high the best 
method is in general Conservative Boosting. 

Also in table 3, we can see the effect of increasing the number of networks in the 
ensemble. There are several methods (Adaboost, Cels, ArcX4, ArcX4 Voting, Aggres-
sive Boosting and Conservative Boosting) where the performance seems to increase 
slightly with the number of networks in the ensemble. But other methods does not 
increase the performance beyond 9 or 20 networks in the ensemble. 

4   Conclusions 

In this paper we have presented experimental results of twenty different methods to 
construct an ensemble of networks, using ten different databases. We trained ensem-
bles of 3, 9, 20 and 40 networks. The results showed that in general the improvement 
by the use of the ensemble methods depends on the database. Also the improvement 
in performance from three or nine networks in the ensemble to a higher number of 
networks it is usually low. Taking into account the computational cost, an ensemble 
of nine networks may be the best alternative. Finally, we have obtained the mean 
percentage of error reduction over all databases. According to this measurement the 
best methods are Bagging, Cels, Decorrelated, Decorrelated2 and Conservative 
Boosting. The best method for 3 networks in the ensemble is Cels, the best method for 
the case of 9 and 20 nets is Conservative Boosting and the best method for 40 is Cels 
but the performance of Conservative Boosting is also good. 
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Abstract. The power iteration is a classical method for computing the
eigenvector associated with the largest eigenvalue of a matrix. The sub-
space iteration is an extension of the power iteration where the subspace
spanned by n largest eigenvectors of a matrix, is determined. The nat-
ural power iteration is an exemplary instance of the subspace iteration,
providing a general framework for many principal subspace algorithms.
In this paper we present variations of the natural power iteration, where
n largest eigenvectors of a symmetric matrix without rotation ambiguity
are determined, whereas the subspace iteration or the natural power it-
eration finds an invariant subspace (consisting of rotated eigenvectors).
The resulting method is referred to as constrained natural power itera-
tion and its fixed point analysis is given. Numerical experiments confirm
the validity of our algorithm.

1 Introduction

A symmetric eigenvalue problem where the eigenvectors of a symmetric matrix
are required to be computed, is a fundamental problem encountered in a va-
riety of applications involving the spectral decomposition. The power iteration
is a classical and the simplest method for computing the eigenvector with the
largest modulus. The subspace iteration is a natural generalization of the power
iteration, where the subspace spanned by n largest eigenvectors of a matrix, is
determined.

The natural power iteration [1] is an exemplary instance of the subspace
iteration, that was investigated mainly for principal subspace analysis. In this
paper we present variations of the natural power iteration and show that its
fixed point is the n largest eigenvectors of a symmetric matrix up to a sign
ambiguity, whereas the natural power iteration just finds a principal subspace
(i.e., arbitrarily rotated eigenvectors). The resulting algorithm is referred to as
constrained natural power iteration. Numerical experiments confirm the validity
of our algorithm.

2 Natural Power Iteration

The power iteration is a classical method which finds the largest eigenvector
(associated with the largest eigenvalue) of a matrix C ∈ R

m×m [2]. Given a
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symmetric matrix C ∈ R
m×m (hence its eigenvalues are real), the power iteration

starts from a nonzero vector w(0) and iteratively updates w(t) by

w̃(t+ 1) = Cw(t), (1)

w(t+ 1) =
w̃(t+ 1)
‖w̃(t+ 1)‖2

, (2)

where ‖ · ‖2 represents Euclidean norm. Combining (1) and (2) leads to the
updating rule which has the form

w(t+ 1) = Cw(t)
[
wT (t)C2w(t)

]− 1
2 . (3)

Assume that C has an unique eigenvalue of maximum modulus λ1 associated
with the leading eigenvector u1. Then the power iteration (3) leads w(t) to
converge to u1.

The subspace iteration [3] is a direct generalization of the power iteration, for
computing several eigenvectors of C. Starting from W (0) ∈ R

m×n, the subspace
iteration updates W (t) by

W (t+ 1) = CW (t). (4)

The space spanned by W (t) converges to invariant subspace determined by n
largest eigenvectors of C, provided that |λn| > |λn+1| [3]. As in the power
iteration, the subspace iteration requires the normalization or orthogonalization.

The subspace iteration

W̃ (t+ 1) = CW (t), (5)

followed by an orthogonalization

W (t+ 1) = W̃ (t+ 1)
[
W̃

T
(t+ 1)W̃ (t+ 1)

]− 1
2
, (6)

leads to

W (t+ 1) = CW (t)︸ ︷︷ ︸
power term

[
W T (t)C2W (t)

]− 1
2︸ ︷︷ ︸

normalizer

, (7)

which is known as the natural power iteration proposed in [1].
Denote the eigendecomposition of the symmetric matrix C ∈ R

m×m of rank
r(> n) as

C =
[
U1 U2

] [Λ1 0
0 Λ2

] [
U1 U2

]T
, (8)

where U1 ∈ R
m×n contains n largest eigenvectors, U2 ∈ R

m×(m−n) consists of
the rest of eigenvectors, and associated eigenvalues are in Λ1, Λ2 with |λ1| >
|λ2| > · · · > |λm|. The key result in regards to the natural power iteration is
summarized in the following theorem
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Theorem 1 ( Y. Hua et al. [1] ). The weight matrix W (t) ∈ R
m×n in the

natural power iteration (10) globally and exponentially converges to W = U1Q
where Q ∈ R

n×n is an arbitrary orthogonal matrix, provided that the nth and
(n+1)th eigenvalues of C are distinct and the initial weight matrix W (0) meets
a mild condition, saying that there exists a nonsingular matrix L ∈ R

(m−n)×n

such that UT
2 W (0) = LUT

1 W (0) for a randomly chosen W (0).

The natural power iteration was mainly studied for principal subspace analy-
sis where C = E{x(t)x(t)} is the covariance matrix of m-dimensional stationary
vector sequences, x(t), with zero mean. In such a case, the matrix C is symmetric
as well as positive semidefinite. For the case of principal subspace analysis, the
weight vector W (t) of the natural power iteration (7) converges to n principal
arbitrary rotated eigenvectors of C. A variety of algorithms, including Oja’s sub-
space rule [4], PAST [5], OPAST [6], can be viewed as the implementations of the
natural power iteration [1]. However, all these algorithms belong to the principal
subspace method where arbitrarily rotated eigenvectors are determined, unless
the deflation method was used to extract principal components one by one. Next
section describes a simple variation of the natural power iteration, incorporating
the upper-triangularization operator into the normalizer in (7). This variation
is referred to as a constrained natural power iteration. It is shown here that a
fixed point of the constrained natural power iteration is W = U1 (up to a sign
ambiguity). Thus, the constrained natural power iteration computes the exact
eigenvectors of a given symmetric matrix, whereas the natural power method
finds a principal subspace.

3 Constrained Natural Power Iteration

We impose a constraint in the normalization term in the natural power method
(7), through an upper-triangularization operator UT [·] which sets all elements
of its matrix argument that are below the diagonal to zero, i.e., UT [Y ] for an
arbitrary matrix Y ∈ R

n×n gives

UT [yij ] =
{

0 if i > j
yij if i ≤ j

, (9)

where yij is the (i, j)-element of Y . The constrained natural power iteration
updates the weight matrix by

W (t+ 1) = CW (t)
{
UT

[
W T (t)C2W (t)

]}− 1
2
. (10)

Only difference between the constrained natural power iteration (10) and the
natural power method (7) lies in the presence of UT in the normalization term.
As will be shown below, the operator UT leads the algorithm (10) to find exact
principal eigenvectors of C up to a sign ambiguity under mild conditions that
are generally required for power iteration. That is, the fixed point of (10) satisfies

W = U1

◦
I where

◦
I is a diagonal matrix with its diagonal entries being 1 or -1,

whereas the fixed point of (7) is U1Q for an arbitrary orthogonal matrix Q.
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Theorem 2. The fixed point W of the constrained natural power iteration (10)

satisfies W = U1

◦
I, under the same conditions as Theorem 1.

Proof. We define Φ(t) = UT
1 W (t) and Ω(t) = UT

2 W (t). With this definition,
pre-multiplying both sides of (10) by [U1 U2]

T leads to[
Φ(t+ 1)
Ω(t+ 1)

]
=
[
Λ1 0
0 Λ2

] [
Φ(t)
Ω(t)

]
Z(t), (11)

where

Z(t) =
{
UT

[
ΦT (t)Λ2

1Φ(t) + ΩT (t)Λ2
2Ω(t)

]}− 1
2
. (12)

As in the convergence proof of the natural power iteration in [1], one can show
that Ω(t) goes to zero. Assume that Φ(0) ∈ R

n×n is a nonsingular matrix, then
it implies that Ω(0) = LΦ(0) for some matrix L. Then it follows from (11) that
we can write

Ω(t) = Λt
2LΛ−t

1 Φ(t). (13)

The assumption that first n eigenvalues of C are strictly larger than the others,
together with (13), implies that Ω(t) converges to zero and is asymptotically in
the order of |λn+1/λn|t where |λn| and |λn+1| (< |λn|) are nth and (n + 1)th
largest eigenvalues of C.

Taking into account that Ω(t) goes to zero, the fixed point Φ of (11) satisfies

Φ
{
UT

[
ΦT Λ2

1Φ
]} 1

2
= Λ1Φ. (14)

Note that Λ1 is a diagonal matrix with diagonal entries λi for i = 1, . . . , n. Thus,

one can easily see that Φ is the eigenvector matrix of
{
UT

[
ΦT Λ2

1Φ
]} 1

2
with

associated eigenvalues in Λ1. Note that the eigenvalues of an upper-triangular
matrix are the diagonal elements. Then it follows from (14) that we have a set
of equations (

ϕT
i Λ2

1ϕi

) 1
2 = λi, i = 1, . . . , n. (15)

where ϕi is the ith column vector of Φ, i.e., Φ = [ϕ1 ϕ2 · · · ϕn]. We can re-write
(15) as

n∑
i=1

λ2
iϕ

2
ij = λ2

j , j = 1, . . . , n, (16)

where ϕij is the (i, j)-element of Φ. Assume n ≤ rank(C), then λi �= 0, i =

1, . . . , n. For non-zero λi, the only Φ satisfying (16) is Φ =
◦
I. Therefore, W =
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U1

◦
I, implying that the fixed point of (10) is the true eigenvector matrix U1 up

to a sign ambiguity. �
Based on the result in Theorem 2, we can consider a variation of the con-

strained natural power iteration (10), described by

W (t+ 1) = CW (t)
{
UT

[
W T (t)C2W (t)

]}−1

. (17)

Following Theorem 2, one can easily see that the weight matrix W (t) in (17)
also converges to the scaled eigenvector matrix of C. Algorithms (10) and (17)
have a difference in their normalizers. The matrix inverse requires less complex-
ity, compared to the square-root-inverse of a matrix, although (17) finds scaled
eigenvectors.

4 Numerical Experiments

Two simple numerical examples are shown in order to verify that the weight
matrix W (t) converges to true eigenvectors of a given symmetric matrix C.
The first experiment was carried out with a symmetric matrix C ∈ R

5×5 whose
eigenvalues are 2.48,−2.18, 1.20,−0.50, 0.34. Fig. 1 (a) shows the the evolution
of

∣∣wT
i ui

∣∣ for i = 1, 2, 3, where wi is the ith column vector of W and ui are
true eigenvectors computed by SVD in Matlab.

The second experiment is related to principal component analysis. We gener-
ated 100-dimensional data vectors of length 1000, x(t) ∈ R

100, t = 1, . . . , 1000,
through linearly transforming 5-dimensional Gaussian vectors, s(t) ∈ R

5, with
zero mean and unit variance, i.e., x(t) = As(t) where A ∈ R

100×5 and its
elements were randomly drawn from Gaussian distribution. We applied the con-
strained natural power iteration (10) with a weight matrix W (t) ∈ R

100×3 to
estimate first 3 eigenvectors of C = 1

1000

∑1000
t=1 x(t)xT (t). Fig. 1 (b) shows the

evolution of
∣∣wT

i ui

∣∣ for i = 1, 2, 3, where ui are true eigenvectors computed by
SVD in Matlab.

5 Discussions

We have presented the constrained natural power iteration and have shown that
its fixed point corresponded to the exact eigenvectors of a given symmetric ma-
trix, up to sign ambiguity. Its slight variation was also discussed. Numerical
experiments confirmed that the constrained natural power iteration successfully
first n eigenvectors of C. The constrained natural power iteration will be useful,
especially for the case where a few eigenvectors are required to be determined
from very high-dimensional data. Constrained natural power iteration could be
viewed as a recognition model counterpart of the generative model-based meth-
ods in [7,8] where EM optimization were used. The constrained natural power
iteration has an advantage over EM algorithms in [7,8], in the sense that the for-
mer involves a single-step updating whereas the latter needs two-step updating
(E and M steps), although both share a similar spirit.
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Fig. 1. Convergence of W = [w1 w2 w3] in the constrained natural power iteration,
is shown in terms of the absolute values of the inner product between these weight
vectors and first three true eigenvectors of C : (a) experiment 1; (b) experiment 2
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Abstract. In high dimensional data analysis, finding non-Gaussian components
is an important preprocessing step for efficient information processing. By modi-
fying the contrast function of JADE algorithm for Independent Component Anal-
ysis, we propose a new linear dimension reduction method to identify the non-
Gaussian subspace based on the fourth-order cumulant tensor. A numerical study
demonstrates the validity of our method and its usefulness for extracting sub-
Gaussian structures.

1 Introduction

Recently enormous amount of data with a huge number of features have been stored and
are necessary to be analyzed. In most real-world applications, the ’signal’ or ’informa-
tion’ is typically contained only in a low-dimensional subspace of the high-dimensional
data, thus dimensionality reduction is a useful preprocessing for further data analysis.
Here we make an assumption on the data: the high-dimensional data includes low-
dimensional non-Gaussian components (’signal’) and the other components are Gaus-
sian noise. Under this modeling assumption, therefore, the task is to recover the relevant
non-Gaussian components. Once such components are identified and extracted, it can
be applied for various tasks in the data analysis process, say, data visualization, cluster-
ing, denoising or classification.

If the number of Gaussian components is at most one and all the non-Gaussian com-
ponents are mutually independent, Independent Component Analysis (ICA) techniques
[3,6] can be applied to identify the non-Gaussian subspace. Unfortunately, however, this
is often a too strict assumption on the data. On the other hand, we treat here more com-
plicated non-Gaussian structures as Projection Pursuit (PP) algorithms [4,5,6]. In fact,
PP methods can extract non-Gaussian components in a general setting, i.e., the number
of Gaussian components can be more than one and the non-Gaussian components can
be dependent.

In this paper, we will propose a new approach to identifying the non-Gaussian sub-
space based on the fourth-order cumulant tensor. JADE algorithm [1] minimizes the
sum of squared fourth-order cross cumulants for extracting independent components. It
is important to remark that as far as we know, JADE has no theoretical guarantee for
non-Gaussian structures except the independent model. Therefore, we will introduce a
different contrast function which measures, roughly speaking, the total squared cumu-
lants in the subspaces. The optimization of this contrast function leads a simple iterative
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scheme of the eigenvalue decomposition. We will also present results of numerical ex-
periments with synthetic data, in order to show validity of our method. In particular, it
can extract sub-Gaussian structures quite well.

2 The Model and Cumulant Tensor

Suppose {xi}n
i=1 are i.i.d. samples in R

d drawn from an unknown distribution with
density f(x), which is expressed as

f(x) = g(BNx)φθ,Γ (x), (1)

where BN is an unknown linear mapping from R
d to another space R

m with m ≤ d,
g is an unknown function on R

m, and φθ,Γ is a Gaussian density with unknown mean
θ and unknown covariance matrix Γ . Note that the general semiparametric model (1)
includes as particular cases both the pure parametric (m = 0) and pure non-parametric
(m = d) models. We effectively consider an intermediate case where d is large and
m is rather small. In this paper, we assume the effective dimension m to be known.
In order to simplify the coming analysis, we will actually impose the following two

assumptions: (A1) Ef [x] =
∫

xf(x)dx = 0 ; (A2) θ = 0 .

Our goal is to estimate the m-dimensional non-Gaussian subspace

I = Ker(BN )⊥ = Range(B

N )

from the samples {xi}n
i=1 and to project out the “Gaussian part” of the data. Note that

we do not estimate the nuisance parameters Γ and g at all.
At first, we remark that the semiparametric model (2) can be translated into a linear

mixing model (3) which is more familiar in signal processing.

Lemma 1. Suppose that data x ∈ R
d have a density of the form

f(x) = g(BNx)φ0,Γ (x), (2)

whereBN is anm×dmatrix, g is a function on R
m and φ0,Γ is the density ofN(0, Γ ).

Then, it can be expressed as a linear mixing model,

x = ANsN +AGsG, (3)

where (B

N , B



G)
 = (AN , AG)−1 and A


GΓ
−1AN = 0. Furthermore sN and sG are

independent and sG is Gaussian distributed.

The fourth-order cumulant tensor

cum(xi, xj , xk, xl)
:= E[xixjxkxl]− E[xixj ]E[xkxl]− E[xixk]E[xjxl]− E[xixl]E[xjxk]

is used in JADE algorithm for extracting independent components. From the linear
model representation (3), we can show that many components of the cumulant tensor
of the factors (s


N , s


G) take 0.
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Lemma 2. Suppose the linear model (3) holds. If sN = (s1, . . . , sm)
 and sG =
(sm+1, . . . , sd)
 are independent and sG is Gaussian distributed,

cum(si, sj , sk, sl) = 0, (4)

unless 1 ≤ i, j, k, l ≤ m.

The whitening transformation z = V −1/2x is often used as a preprocessing in ICA,
where V = Cov[x]. Let us define the matrices

WN := BNV
1/2, WG := BGV

1/2,

which are the linear transformations from the sphered data to the factors s=(s

N , s



G)
.

We remark that the non-Gaussian index space can be expressed as

I = Range(B

N ) = V −1/2Range(W


N ).

and therefore, it is enough to estimate the matrix WN . Without loss of generality, we
can assume that Cov[s] = I . Then, (W


N ,W


G ) becomes an orthogonal matrix.

In JADE algorithm for ICA, the linear operator

{Q(M)}ij :=
d∑

k,l=1

qijklMkl

from a d×dmatrixM to a d×d matrix is considered, where qijkl = cum(zi, zj, zk, zl)
is the fourth-order cumulant tensor of the sphered data z. In contrast to ICA, we can
prove that the linear operator Q(M) has at most m(m+1)

2 non-zero eigenvalues under
our model assumption. Furthermore, the corresponding eigen matrices take the form as
W


N M̃WN , where M̃ is an m×m symmetric matrix. Therefore, in principle, the non-
Gaussian subspace can be estimated by solving the eigenvalue problem of the linear
operator Q(M). However, calculating eigenvalues of a d2 × d2 matrix is computation-
ally heavy, if d is large.

3 Contrast Function and Algorithm

Instead of solving the d2×d2 eigenvalue problem, we will introduce a contrast function
which is inspired by that of JADE algorithm. JADE extracts the independent compo-
nents by maximizing the contrast function

LJADE(W ) =
d∑

i=1

d∑
k,l=1

|cum(yi, yi, yk, yl)|2 (5)

where y = Wz is a linear transformation of the sphered data by an orthogonal matrix
W . In contrast to ICA, we want to get anm-dimensional vector yN = (y1, . . . , ym)
 =
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WNz by anm×dmatrixWN for dimension reduction with the propertyWNW


N = I .

Here we propose the following contrast function

L(WN ) =
d∑

k,l=1

m∑
i′,j′=1

|cum(yi′ , yj′ , zk, zl)|2

=
d∑

k,l=1

m∑
i′,j′=1

⎧⎨⎩
d∑

i,j=1

wi′iwj′jqijkl

⎫⎬⎭
2

=
d∑

k,l=1

‖WNQ
(kl)W


N ‖2Fro, (6)

where Q(kl) = (Q(kl)
ij ) = (qijkl) for each 1 ≤ k, l ≤ d and ‖ · ‖2Fro is Frobenius norm

of matrices.

Theorem 1. The objective function L(WN ) takes maximum, when WN is equal to the
true matrix W ∗

N .

Now, let us take the derivative of the criterion L with the orthonormal constraints

d∑
k,l=1

‖WNQ
(kl)W


N ‖2Fro − 2tr(WNW


N − Im)Λ

with respect to WN , where Λ is an m × m symmetric matrix (Lagrange multipliers).
Then, we get

WN

d∑
k,l=1

Q(kl)W

NWNQ

(kl) = ΛWN . (7)

We can assumeΛ is diagonal without loss of generality, becauseUWN is also a solution
of the optimization problem for any orthogonal matrix U ∈ O(m), and so we can fix
U arbitrary. The equation (7) reminds us the eigenvalue of

∑d
k,l=1Q

(kl)W

NWNQ

(kl),
once WN in this matrix is fixed. Therefore, we propose the following iterative scheme.

Algorithm

1. Sphere the data {xi}n
i=1. Let ẑi = V̂ −1/2xi, where V̂ = Ĉov[x]

2. Calculate the fourth-order cumulant tensor from the sphered data {ẑi}n
i=1.

q̂ijkl = ĉum(ẑi, ẑj, ẑk, ẑl)

3. Compute m eigen vectors with largest absolute eigenvalues.

W
(0)
N

d∑
k,l=1

Q̂(kl) = ΛW
(0)
N

4. Solve the following eigenvalue problem until the matrix W (t)
N converges.

W
(t+1)
N

d∑
k,l=1

Q̂(kl){W (t)
N }
W (t)

N Q̂(kl) = ΛW
(t+1)
N

The symbols Ĉov and ĉum denote the sample covariance and the sample cumulant,
respectively.



Linear Dimension Reduction Based on the Fourth-Order Cumulant Tensor 155

4 Numerical Experiments

For testing our algorithm, we performed numerical experiments using various synthetic
data used in Blanchard et al.[7]. Each data set includes 1000 samples in 10 dimen-
sion. Each sample consists of 8-dimensional independent standard Gaussian and 2 non-
Gaussian components as follows.

(A) Simple: 2-dimensional independent Gaussian mixtures with density of each com-
ponent given by 1

2φ−3,1(x) + 1
2φ3,1(x).

(B) Dependent super-Gaussian: 2-dimensional isotropic distribution with density
proportional to exp(−‖x‖).

(C) Dependent sub-Gaussian: 2-dimensional isotropic uniform with constant posi-
tive density for ‖x‖ ≤ 1 and 0 otherwise.

(D) Dependent super- and sub-Gaussian: 1-dimensional Laplacian with density pro-
portional to exp(−|xLap|) and 1-dimensional dependent uniformU(c, c+1), where
c = 0 for |xLap| ≤ log 2 and c = −1 otherwise.

The profiles of the density functions of the non-Gaussian components in the above
data sets are described in Figure 1. The mean and standard deviation of samples are
normalized to zero and one in a component-wise manner.

Besides the proposed algorithm, we applied for reference the following three meth-
ods in the experiments: PPs with ‘pow3’ or ‘tanh’ index1 (denoted by PP3 and PPt,
respectively) and JADE. We remark that the purpose of these experiments is not com-
paring our methods to the others, but checking its validity. To avoid local optima, ad-
ditionally 9 runs from random initial matrices were also carried out and the optimum
among these 10 solutions were chosen. Figure 2 shows boxplots of the error criterion

E(Î, I) =
1
m
‖(Id − PI)PÎ‖

2
Fro, (8)

obtained from 100 runs, where PI (resp. PÎ ) is the projection matrix onto the true

non-Gaussian subspace I (resp. the estimated one Î).
Although we did not prove theoretically, JADE could find the non-Gaussian sub-

space I in all these examples. The performance of the proposed algorithm was essen-
tially same as JADE for data (B) and (D) which contain super-Gaussian structures. On
the other hand, it outperformed JADE for data (A) and (C) only with sub-Gaussian
structures.

5 Conclusions

In this paper, we proposes a new linear method to identify the non-Gaussian subspace
based on the fourth-order cumulant tensor. We also checked the validity of our method
by numerical experiments. In particular, the proposed method works well in extracting
sub-Gaussian structures. Although JADE is designed to extract independent compo-
nents, in our examples JADE could estimate the non-Gaussian subspace I. However,

1 We used the deflation mode of the FastICA code [6] as an implementation of PP. ‘pow3’ means
with the kurtosis based index while ‘tanh’ means with a robust index for heavy-tailed data.
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(A) (B) (C) (D)

Fig. 1. Densities of non-Gaussian components. The datasets are: (a) 2D independent Gaussian
mixtures, (b) 2D isotropic super-Gaussian, (c) 2D isotropic uniform and (d) dependent 1D Lapla-
cian + 1D uniform
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Fig. 2. Boxplots of the error criterion E(Î, I). Algorithms are PP3, PPt, JADE and the NEW
method (from left to right)

our method has at least two advantages over JADE: (i) better performance for sub-
Gaussian data sets, and (ii) a theoretical guarantee in the general setting. Further re-
search should be done to prove global consistency of JADE in our model assumption.
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Abstract. In this paper we present a method of separating musical in-
strument sound sources from their monaural mixture, where we take the
harmonic structure of music into account and use the sparseness and the
overlapping NMF to select representative spectral basis vectors which
are used to reconstruct unmixed sound. A method of spectral basis selec-
tion is illustrated and experimental results with monaural instantaneous
mixtures of voice/cello and saxophone/viola, are shown to confirm the
validity of our proposed method.

1 Introduction

The nonnegative matrix factorization (NMF) [1] or its extended version, non-
negative matrix deconvolution (NMD) [2], was shown to be useful in polyphonic
music description [3], in the extraction of multiple music sound sources [2], and
in general sound classification [4]. On the other hand, a method based on multi-
ple cause models and sparse coding was successfully applied to automatic music
transcription [5]. Some of these methods regard each note as a source, which
might be appropriate for music transcription and work for source separation in
a very limited case.

In this paper we present a method for single channel polyphonic music sep-
aration, the main idea of which is to select a few representative spectral basis
vectors using the sparseness and the overlapping NMF [6], which are used to
reconstruct unmixed sound signals. We assume that the structure of harmonics
of a musical instrument approximately remains the same, even if it is played at
different pitches. This view allows us to reconstruct original sound using only a
few representative spectral basis, through the overlapping NMF. We illustrate
a method of spectral basis selection from the spectrogram of mixed sound and
show how these basis vectors are used to restore unmixed sound. Promising re-
sults with monaural instantaneous mixtures of voice/cello and saxophone/viola,
are shown to confirm the validity of our proposed method.

2 Overlapping NMF

Nonnegative matrix factorization (NMF) is a simple but efficient factorization
method for decomposing multivariate data into a linear combination of basis

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 157–162, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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vectors with nonnegativity constraints for both basis and encoding matrix [1].
Given a nonnegative data matrix V ∈ R

m×N (where Vij ≥ 0), NMF seeks a
factorization

V ≈WH, (1)

where W ∈ R
m×n (n ≤ m) contains nonnegative basis vectors in its columns and

H ∈ R
n×N represents the nonnegative encoding variable matrix. Appropriate

objective functions and associated multiplicative updating algorithms for NMF
can be found in [7].

The overlapping NMF is an interesting extension of the original NMF, where
transform-invariant representation and a sparseness constraint are incorporated
with NMF [6]. Some of basis vectors computed by NMF could correspond to
the transformed versions of a single representative basis vector. The basic idea
of the overlapping NMF is to find transformation-invariant basis vectors such
that fewer number of basis vectors could reconstruct observed data. Given a set
of transformation matrices, T =

{
T (1),T (2), . . . ,T (K)

}
, the overlapping NMF

finds a nonnegative basis matrix W and a set of nonnegative encoding matrix{
H(k)

}
(for k = 1, . . . ,K) which minimizes

J (W ,H) =
1
2

∥∥∥∥∥V −
K∑

k=1

T (k)WH(k)

∥∥∥∥∥
2

F

, (2)

where ‖ · ‖F represents Frobenious norm. As in [7], the multiplicative updating
rules for the overlapping NMF were derived in [6], which are summarized below.

Algorithm Outline: Overlapping NMF [6].

Step 1 Calculate the reconstruction: R =
∑K

k=1 T (k)WH(k).
Step 2 Update the encoding matrix by

H(k) ←H(k) �
W T

[
T (k)

]T

V

W T
[
T (k)

]T

R

, k = 1, . . . ,K, (3)

where � denotes the Hadamard product and the division is carried out in
an element-wise fashion.

Step 3 Calculate the reconstruction R again using the encoding matrix H(k)

updated in Step 2, as in Step 1.
Step 4 Update the basis matrix by

W ←W �
∑K

k=1

[
T (k)

]T

V
[
H(k)

]T

∑K
k=1

[
T (k)

]T

R
[
H(k)

]T
. (4)



On Spectral Basis Selection for Single Channel Polyphonic Music Separation 159

3 Spectral Basis Selection

The goal of spectral basis selection is to choose a few representative vectors from
V = [v1 · · · vN ] where V is the data matrix associated with the spectrogram
of mixed sound. In other words, each column vector of V corresponds to the
power spectrum of the mixed sound at time t = 1, . . . , N . Selected representative
vectors are fixed as basis vectors that are used to learn an associated encoding
matrix through the overlapping NMF with the sparseness constraint, in order to
reconstruct unmixed sound.

Our spectral basis selection method consists of two parts, which is summa-
rized in Table 1. The first part is to select several candidate vectors from V
using a sparseness measure and a clustering technique. We use the sparseness
measure proposed by Hoyer [8], described by

sparseness(v) =
√
m− (

∑
|vi|)/

√∑
v2

i√
m− 1

, (5)

where vi is the ith element of the m-dimensional vector v.

Table 1. Spectral basis selection procedure

Calculate the sparseness value of every input vector, t, using (5);
Normalize every input vector;
repeat until the number candidates < threshold or all input vectors are eliminated

Select a candidate with the highest sparseness value;
Estimate the fundamental frequency bin for each input vector;
Align each input vector such that its frequency bin location is the same as the candidate;
Calculate Euclidean distances between the candidate and every input vector;
Cluster input vectors using Euclidean distances;
Eliminate input vectors in the cluster which the candidate belongs to;

end (repeat)
repeat for every possible combination of candidates

Set all candidate vectors as input vectors;
Select a combination of candidates;
Learn a encoding matrix, through the overlapping NMF,

with fixing these selected candidates as basis vectors;
Compute the reconstruction error of the overlapping NMF;

end (repeat)
Select the combination of candidates with the lowest reconstruction error;

The first part of our spectral basis selection method starts with choosing a
candidate vector that has the largest sparseness values (see Fig. 1 (d)). Then
we estimate the location of fundamental frequency bin for each input vector,
which corresponds to the lowest frequency bin above the mean value. Each input
vector is aligned to the candidate vector such that the fundamental frequency
bin appears at the same location as the candidate vector. Euclidean distances
between these aligned input vectors and the candidate vectors are calculated and
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a hierarchical clustering method (or any other clustering methods) is applied
to eliminate whatever vectors belong to a group which the candidate vector
belongs to. This procedure is repeated until we choose a pre-specified number
of candidate vectors. Increasing this pre-specified number provides more feasible
candidate vectors, however, the computational complexity in the second part
increases. The repetition procedure produces several candidates, some of which
are expected to represent a original musical instrument sound in such a way that
a set of vertically-shifted basis restores the original sound.

The second part of our method is devoted for the final selection of representa-
tive spectral basis vectors from candidates obtained in the first part. Candidate
vectors are regarded as input vectors for the overlapping NMF. For every pos-
sible combination of candidates (for the case of 2 sources, 2 out of the number
of candidates), we learn an associated encoding matrix with selected candidates
fixed as basis vectors, and calculate the reconstruction error. Final representative
spectral basis vectors are the ones which give the lowest reconstruction error.
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Fig. 1. Spectrograms of original sound of voice and a single string of a cello are shown
in (a) and (b), respectively. Horizontal bars reflect the structure of harmonics. One
can see that every note is the vertically-shifted version of each other if their musical
instrument sources are the same. Monaural mixture of voice and cello is shown in (c)
where 5 candidate vectors selected by our algorithm in Table 1 are denoted by dotted or
solid vertical lines. Two solid lines represent final representative spectral basis vectors
which give the smallest reconstruction error in the overlapping NMF. Each of these two
basis vectors is a representative one for voice and a string of cello. Associated sparseness
values are shown in (d) where black dots on a graph are associated with the candidate
vectors. Unmixed sound is shown in (e) and (f) for voice and cello, respectively.
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4 Numerical Experiments

We present two simulation results for monaural instantaneous mixtures of: (1)
voice and cello; (2) saxophone and viola. We apply our spectral basis selection
method with the overlapping NMF to these two data sets. Experimental results
are shown in Fig. 1 and 2 where figure captions describe detailed results.

The set of transformation matrices, T , that we used, is

T =

{
T (k)

∣∣ T (k) =
k−m�−→
I , 1 ≤ k ≤ 2m− 1

}
, (6)

where I ∈ R
m×m is the identity matrix and

j�−→
I leads to the shift-up or shift-

down of row vectors of I by j, if j is positive or negative, respectively. After
shift-up or -down, empty elements are zero-padded.
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Fig. 2. Spectrograms of original sound of saxophone and viola are shown in (a) and
(b), respectively. Every note is artificially generated by changing the frequency of a
real sample sound, so that the spectral character of each instrument is constant in all
the variations of notes. Monaural mixture is shown in (c) where 5 selected candidate
vectors are denoted by vertical lines. Each of two solid lines among them represents final
representative spectral basis vector of each instrument. Associated sparseness values
are shown in (d) where black dots associated with the candidate vectors are marked.
Unmixed sound is shown in (e) and (f) for saxophone and viola, respectively.
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For the case where m = 3 and k = 2, T (2) and T (5) are defined as

T (2) =
2−3�−→
I =

⎡⎣0 0 0
1 0 0
0 1 0

⎤⎦ , T (5) =
5−3�−→
I =

⎡⎣0 0 1
0 0 0
0 0 0

⎤⎦ . (7)

Multiplying a vector by these transformation matrices, leads to a set of vertically-
shifted vectors.

5 Discussions

We have presented a method of spectral basis selection for single channel poly-
phonic music separation, where the harmonics, sparseness, clustering, and the
overlapping NMF were used. Rather than learning spectral basis vectors from
the data, our approach is to select a few representative spectral vectors among
given data and fix them as basis vectors to learn associated encoding variables
through the overlapping NMF, in order to restore unmixed sound. The success
of our approach lies in the assumption that the distinguished timbre of a given
musical instrument can be expressed by a transform-invariant time-frequency
representation, even though their pitches are varying. A string instrument has
multiple distinguished harmonic structures. In such a case, it is reasonable to
assign a basis vector for each string.
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Abstract. We present an algorithm for improving the accuracy of recurrent 
neural networks (RNNs) for time series forecasting. The improvement is 
achieved by combining a large number of RNNs, each of them is generated by 
training on a different set of examples. This algorithm is based on the boosting 
algorithm and allows concentrating the training on difficult examples but, 
unlike the original algorithm, by taking into account all the available examples. 
We study the behavior of our method applied on three time series of reference 
with three loss functions and with different values of a parameter. We compare 
the performances obtained with other regression methods. 

1   Introduction 

The reliable prediction of future values of real-valued time series has many important 
applications ranging from ecological modeling to dynamic system control passing by 
finance and marketing. Generally the characteristics of the phenomenon which gener-
ate the series are unknown. The most usually adopted approach to consider the future 
values ( )1ˆ +tx  consists in using a function which takes as input the recent history of 

the time series. Using a time window of fixed size proves however to be limiting in 
many applications.  

Ideally, for a given problem, the size of the time window should adapt to the con-
text. This can be accomplished by employing recurrent neural networks (RNNs) 
learned by a gradient-based algorithm [1]. To improve the obtained results, we may 
use a combination of models to obtain a more precise estimate than the one obtained 
by a single model. In the boosting algorithm, the possible small gain a “weak” model 
can bring compared to random estimate is boosted by the sequential construction of 
several such models, which concentrate progressively on the difficult examples of the 
original training set. The boosting [2] [3] [4] works by sequentially applying a classi-
fication algorithm to re-weighted versions of the training data, and then taking a 
weighted majority vote of the sequence of classifiers thus produced. Freund and 
Schapire in [3] outline their ideas for applying the Adaboost algorithm to regression 
problems; they presented the Adaboost.R algorithm that attacks the regression prob-
lem by reducing it to a classification problem.  
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Recently, a new approach to regressor boosting as residual-fitting was developed 
[7] [8]. Instead of being trained on a different sample of the same training set, as in 
previous boosting algorithms, a regressor is trained on a new training set having dif-
ferent target values (e.g. the residual error of the sum of the previous regressors). 
Before presenting our algorithm, let us mention the few existing applications of boost-
ing to time series modelling. In [9] a boosting method belonging to the family of 
boosting algorithms presented in [2] is applied to the classification of phonemes. The 
learners employed are RNNs, and the authors are the first to notice the implications 
the internal memory of the RNNs has on the boosting algorithm. A similar type of 
boosting algorithm is used in [10] for the prediction of a benchmark time series, but 
with MLPs as regressors. It constructs triplets of learners and shows that the median 
of the three regressors has a smaller error than the individual regressors. 

In this paper we focus on the definition of a boosting algorithm for improving the pre-
diction performance of RNNs. Our algorithm is defined in section 2. Section 3 is devoted 
to the study of the behavior of this algorithm applied on three different benchmarks.  

2   Recurrent Neural Networks with Boosting Algorithm 

The boosting algorithm employed should comply with the restrictions imposed by the 
general context of application. In our case, it must be able to work well when a  
 

Table 1. The boosting algorithm proposed for regression with recurrent neural networks 

1. Initialize the weights for the examples: ( ) QqD 11 = , and Q , the number of 

training examples. Put the iteration counter at 0: 0=n   
2. Iterate 

(a) increment n . Learn with BPTT [1] a RNN nh  by using the entire training 

set and by weighting the squared error computed for example q  with ( )qDn , 

the weight of example q  for the iteration n ; 

(b) update the weights of the examples: 
 (i) compute ( )qLn  for every Qq ,,1=  according to the loss function :  

( ) ( )( ) nqq
n

q
linear
n SyxyqL −= , ( ) ( ) ( ) 22

nqq

n

q

squared

n SyxyqL −=    

( ) ( ) ( )( )nqq

n

q

lexponentia

n SyxyqL −−−= exp1 , with    

( ) ( ) qq
n

q
q

n yxyS −= sup  ; 

 (ii) compute ( ) ( )
=

=
Q

q
nnn qLqD

1

ε  and ( ) nnn εεα −= 1  ; 

(iii) the weights of the examples become ( nZ  is a normalizing constant) 

( ) ( )
kQ

qpk
qD n

n +
⋅+

= +
+

1
1

1
 with ( ) ( ) ( )( )

n

qL
nn

n Z

qD
qp

n 1

1

−

+ =
α

 until 5.0<nε . 

3. Combine RNNs by using the weighted median. 
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limited amount of data is available and accept RNNs as regressors. We followed the 
generic algorithm of [5]. We had to decide which loss function to use for the regres-
sors, how to update the distribution on the training set and how to combine the result-
ing regressors. Our updates are based on the suggestion in [6], but we apply a linear 
transformation to the weights before employing them (see the definition of ( )qDn 1+  in 

the Table 1) in order to prevent the RNNs from simply ignoring the easier examples 
for problems similar to the sunspots dataset. Then, instead of sampling with replace-
ment according to the updated distribution, we prefer to weight the error computed for 
each example (thus using all the data points) at the output of the RNN with the distri-
bution value corresponding to the example.  

3   Experimental Results 

This set of experiments was carried out in order to explore the performance of the 
constructive algorithm and to study the influence of the parameter k  on its behavior. 
The boosting algorithm described was used with the learning algorithm Back-
Propagation Through Time (BPTT [1]) and evaluated on the sunspots time series and 
two Mackey-Glass time series (MG17 and MG30). In a previous paper [11], we gave 
some basic results on the first two series but with only one simulation for each test. 

We will now come back to a more detailed study of the behavior of the algorithm, 
providing average results and standard deviation which have been determined after 5 
trial runs for each configuration: (linear, squared or exponential loss functions; value 
of the parameter k ). We’ll also evoke extension of the range of values of k , which 
were due to the noticeably different results found on average. The error criterion used 
was the normalized mean squared error (NMSE).  

The employed architectures had a single input neuron, a single linear output neu-
ron, a bias unit and a fully recurrent hidden layer composed of neurons with tanh 
activation functions. For the sunspots dataset, we tested RNNs having 12 neurons in 
the hidden layer, and for the Mackey-Glass dataset 7 neurons. We compared the re-
sults given by our algorithm to other results in the literature (see [12] for more de-
tails).  

The sunspots dataset contains the yearly number of dark spots on the sun from 
1700 to 1979. The time series has a pseudo-period of 10 to 11 years. It is common 
practice to use as the training set the data from 1700 to 1920 and to evaluate the per-
formance of the model on two sets, 1921-1955 (test1) and 1956-1979 (test2). Test2 is 
considered to be more difficult because it has a larger variance. The Mackey-Glass 
time-series are generated by the following nonlinear differential equation: 

( ) ( ) ( )
( )τ

τ
−⋅+
−⋅⋅+⋅−=

tx

tx
tx

dt

tdx
101

2.0
1.0  (1) 

We consider here 17=τ  (MG17) and 30=τ  (MG30), the values which are usu-
ally retained. The data generated with ( ) 9.0=tx  for τ≤≤ t0 , is then sampled with a 

period of 6. We use the first 500 values of this series for the learning set and the next 
100 values for the test set. 
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Table 2. Best results (NMSE*103) 

Model Sunspots1 Sunspots2 
TAR 97 280 
MLP  86 350 
IIR MLP 97 436 
RNN/BPTT 84 300 
DRNN1 91 273 
DRNN2 93 246 
EBPTT 78 227 
CBPTT 92 251 
Boost.(sq., 5) 78 250 
Boost.(lin., 10) 80 270  

Model MG17 MG30 
Linear 269 324 
Polynomial 11.2 39.8 
RBF 10.7 25.1 
MLP 10 31.6 
FIR MLP 4.9 16.2 
TDFFN  0.8 _ 
DRNN 4.7 7.6 
RNN/BPTT 0.23 0.89 
EBPTT 0.13 0.05 
CBPTT  0.14 0.73 
Boosting (lin.,150) 0.13 0.45 
Boosting (sq., 100) 0.15 0.41  

Table 3. Best mean results (NMSE*103) 

Model Sunspots1 Sunspots2 
RNN/BPTT 102 371 
EBPTT 92 308 
CBPTT  94 281 
Boost.(sq., 20) 90 296 
Boost.(lin., 10) 80 314  

Model MG17 MG30 
RNN/BPTT 4.4 13 
EBPTT 0.62 1.84 
CBPTT  1.6 2.5 
Boosting (sq., 100) 0.16 0.45 
Boosting (sq., 200) 0.18 0.45  

Table 4. Standard deviations*103   

Model Sunspots1 Sunspots2 
RNN/BPTT 2.3 10 
EBPTT 0.9 4.6 
CBPTT  6.4 33.8 
Boost.(sq., 5) 9.4 34.1 
Boost.(lin., 10) 1.7 25.5  

Model MG17 MG30 
RNN/BPTT 3.8 41 
EBPTT 0,074 0.84 
CBPTT  2.0 1.6 
Boosting (sq., 100) 0.016 0.028 
Boosting (sq., 200) 0.025 0.014  

The number of weak learners in our experiments depends on the series and loss 
function used. For the sunspots series our algorithm develop around 9 weak learners 
with the linear and quadratic loss functions, and 36 weak learners with the exponen-
tial function. For the two series MG, we obtain around 26 networks with the linear 
function, 37 with the quadratic function and between 46 and 50 for the exponential 
function. 50 is the maximal number of networks we allow.  

The table 2 shows the best NMSE obtained by various models on the two test sets 
of sunspots and on the test sets of MG 17 and MG 30. To obtain the best results in 
this table, we choose the normalised best results from the 5 trials for each set of 
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parameters ( k , loss function). The best results reported in table 2 were obtained with 
( 5=k , square loss function) for the sunspots, with ( 150=k , linear loss function) for 
MG17 and with ( 100=k , square loss function) for MG30. These tables also show 
that the best results obtained with our boosting algorithm are close to the best results 
reported in the literature (a detailed description of the mentioned models in the tables 
can be found in [12]).  

To obtain the best mean results in the table 3, we take the normalised mean results 
of the 5 trials of each set of parameters, and then we choose the best results. 

Table 4 gives the standard deviations of the NMSE obtained in our experiments; 
this information was not available for all the models in the literature. We generally 
find that the standard deviation is about 10% of the average. For the sunspots time 
series (figure 1), the average error decreases from 5=k  to 20=k  and increases until 

150=k . The average error for MG17 on figure 2 decreases to 150=k  (the result is 
similar for MG30, the optimal value being 200=k ).    

 

Fig. 1. NMSE of the weighted median for 
different values of k  for sunspots 

 

 

Fig. 2. NMSE of the weighted median for 
different values of k  for MG17 

To better understand why performance depends on k  and why the behavior on the 
two datasets is different, we can notice that when 0=k , ( ) QqDn 11 =+ , and when 

0>>k , ( ) ( )qpqD nn 11 ++ ≈ . The relations used to calculate the values of ( )qpn 1+  are 

those of [6] for updating the distribution and can be very close to 0 for the easier ex-
amples. If 0>>k  the RNNs are in reality trained on the examples having big errors. 
These examples are very few and rather isolated for the sunspots dataset. The RNNs 
learn then poorly on this dataset. For low k , the examples have almost equal weights 
and boosting brings little improvement. We are currently trying to identify a simple 
method for adjusting k  according to the distribution of the errors of the first learner. 
The experiments we performed up to now do not allow us to distinguish between the 
linear and the squared loss functions for the updating of the example weights, but 
show that the exponential loss function is not suited to our algorithm. 
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The experimental results we obtained show that the boosting algorithm actually im-
proves upon the performance comparatively with the use of only one RNN. We com-
pared our results with the results obtained from other combination methods. This 
results obtained with our boosting algorithm are close to the best results reported in 
the literature. 

The evaluation on multi-step-ahead prediction is one of our further works on this 
algorithm. We are also searching for more rigorous accounts for the various choices 
incorporated in this boosting algorithm. 
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Abstract. Recurrent Neural Networks (RNNs) possess an implicit internal 
memory and are well adapted for time series forecasting. Unfortunately, the 
gradient descent algorithms which are commonly used for their training have 
two main weaknesses: the slowness and the difficulty of dealing with long-term 
dependencies in time series. Adding well chosen connections with time delays 
to the RNNs often reduces learning times and allows gradient descent algo-
rithms to find better solutions. In this article, we demonstrate that the principle 
of time delay learning by gradient descent, although efficient for feed-forward 
neural networks and theoretically adaptable to RNNs, shown itself to be diffi-
cult to use in this latter case. 

1   Introduction 

Recurrent Neural Networks (RNNs), which possess an internal memory owing to 
cycles in their connection graph, have interesting universal approximation capabilities 
for sequential problems (see [1] for example), comparable to the Feed-forward Neural 
Network (FNNs) ones for static problems. Most of the time they are associated to 
gradient based learning algorithms, requiring more computing time than the gradient 
based algorithms for FNNs with the same number of parameters. Moreover, they have 
difficulties in dealing with long-term dependencies in the data [2] [3]. 

An alternative is to use globally feed-forward architectures. They share the charac-
teristic of having been initially elaborated for using the error gradient back-
propagation of FNNs (some of which have an adapted version today [4]). Hence the 
Locally Recurrent Globally Feed-forward Networks [5] introduce particular neurons, 
with local feedback loops. In the most general form, these neurons feature delays in 
inputs as well as in their loops. All these architectures remain limited: hidden neurons 
are mutually independent and therefore, cannot pick up some complex behaviors 
which require the collaboration of several neurons of the hidden layer. In order to 
overcome this problem, a certain number of recurrent architectures have been sug-
gested (see [3] for a presentation). It has been shown that in practice the use of delay 
connections in these networks gives rise to a reduction in learning time [6] as well as 
improving the taking into account of long term dependencies [3] [7]. The resulting 
network is named Time Delay Recurrent Neural Networks (TDRNN). In this case, 
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unless to apply an algorithm for selective addition of connections with time delays 
[7], which improve forecasting performance capacity but at the cost of increasing 
computations, the networks finally retained are often oversized and use meta-
connections with consecutive delay connections, also named Finite Impulse Response 
(FIR) connections or, if they contain loops, Infinite Impulse Response (IIR) connec-
tions [5].  

Thus, the solution could be found in the learning of the connection delays them-
selves. [8] (see also [9]) have suggested, for a FNN that associate a delay to each 
connection, an algorithm based on the gradient which simultaneously adjusts weights 
and delays. We propose to adapt this technique to recurrent architecture. 

2   Learning of the Delays 

Considering a RNN in which two values are associated to each connection from a 
neuron j to a neuron i. These two values are an usual weight ijw  of the signal and a 

delay ijτ  which is a real value indicating the needed time for the signal to propagate 

through the connection. Note that this parameter is not the same as the maximal order 
of a FIR connection: indeed, when we consider a connection of delay ijτ , we do not 

have simultaneously 1−ijτ  connections with integer delays between 1 and ijτ . The 

neuron output ( )tsi   is given by: 

( ) ( )( )1−= tnetfts iii  with ( ) ( )
( )∈

−−=−
iPredj

ijjiji tswtnet 11 τ  (1) 

The values ( )1−− ijj ts τ  are obtained by applying a linear interpolation between 

the two nearest whole numbers of the delay ijτ  [8]. The set ( )iPred  contains, for each 

neuron i, the index of the incoming neurons ( ) ( ){ }ijijwNjiPred τ,∃∈= . Likewise, we 

have defined the successors of a neuron i: ( ) ( ){ }jijiwNjiSucc τ,∃∈= . 

We have adapted the BPTT algorithm [10] to this architecture with a simultaneous 
learning of weights and delays of the connections, inspired from [8]. Central idea of 
BPTT algorithm is to unfold in time the original RNN to obtain a l -layer feed-
forward neural network. This allows applying the well-known back-propagation 
learning algorithm. 

The variation of a delay ijτ  can be compute as the sum of the variations of this pa-

rameter copies  corresponding to the times from  1t  to lt . Then we add this variation 

to all copies of ijτ . We will only give here the demonstration of the learning of the 

delays as the weight one can easily be deducted from it. 
We note ( )tT  the set of neuron indices which have a desired output at time t, ( )td p  

the desired output of neuron p at this time and ( )ττ ijΔ  the copy of ijτ  for τ=t  in the 

unfold in time neural net which is virtually constructed with BPTT [10]. .  is the 

operator of upward roundness. 
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We apply a back-propagation of the gradient of the mean quadratic error ( )lttE ,1  

which is defined as the sum of the instantaneous errors  ( )te  from  1t  to lt : 
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We can write  ( ) ( ) ( ) ( ) ( ) ( )ττττττ ijiilijl netnetttEttE ∂∂•∂∂=∂∂ ,, 11 . With a first order 

approximation, ( ) ( ) ( ) ( )( )ijjijjijiji sswnet τττττττ −−−−≈∂∂ 1 . We expand 
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If neuron i belongs to the last layer ( 1−= ltτ ): 
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If neuron i belongs to the preceding layers: 
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As ( ) ( ) ( )111 +=+++ ττ∂ττ∂ jiijij wsnet , we obtain the final relations to learn the 

delay associated to each connection: 
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3   Experiments 

The experimental results we present here concern univariate regression, but our algo-
rithm is not limited to such problems. We applied our algorithm to RNNs having an 
input neuron, a linear output neuron, a bias unit and a fully recurrent hidden layer 
composed of neurons with a symmetric sigmoid as activation function. 10 experi-
ments were performed for every architecture, by randomly initializing the weights in 
[ ]3.0,3.0−  and the delays in [ ]10,0 . We employed two kinds of datasets: a natural 

one (sunspots [11]) and a synthetic one (Mackey-Glass [12]). The error criterion used 
was the normalized mean squared error (NMSE). 

Table 1. Results (NMSE) obtained by various 
models on the sunspots time series 
 

Table 2. Results (NMSE) obtained by various 
models on the MG17 time series 

Model Test1 Test2 
Carbon Copy 0.427 0.966 
TAR  0.097 0.280 
MLP 0.086 0.350 
IIR MLP 0.097 0.436 
RNN / BPTT 0.084 0.300 
DRNN1 0.091 0.273 
DRNN2 0.093 0.246 
RNN / CBPTT 0.092 0.251 
RNN / EBPTT 0.078 0.227 
Our algorithm 0.081 0.261  

Model NMSE 
Polynomial 11.2·10-3 
RBF 10.7·10-3 
MLP 10·10-3 
FIR MLP 4.9·10-3 
TDFNN [8] 0.8·10-3 
DRNN 4.7·10-3 
RNN/BPTT 0.23·10-3 
RNN/CBPTT  0.14·10-3 
RNN/EBPTT  0.13·10-3 
Our algorithm 0.15·10-3  

The Sunspots dataset contains the yearly number of dark spots on the sun from 
1700 to 1979. It is common practice to use as the training set the data from 1700 to 
1920 and to evaluate the performance of the model on two sets, 1921-1955 (test1) and 
1956-1979 (test2). Test2 is considered to be more difficult because it has a larger 
variance and is non-stationary. Table 1 compares the results obtained by various mod-
els applied to the two test sets of this benchmark (see [7] [13] for more details). Ta-
ble 1 shows that the result obtained by our algorithm on Test1 is close to the best 
results reported in the literature. The result for Test2 is close to the results obtained by 
networks with fixed delays (DRNN). Our results correspond to a three hidden neurons 
network.  

The Mackey-Glass time series [12] are generated by the following non-linear dif-
ferential equation: 

( ) ( ) ( )
( )τ

τ
−+

−
+−=

tx

tx
tx

dt

tdx
101

2.0
1.0  (10) 

We consider here 17=τ  (MG17), the value which is usually retained. The resulting 
time series exhibits then a chaotic behavior. The data is generated and then sampled 
with a period of 6, according to the common practice (see e.g. [14]). We use the first 
500 values for the learning set and the next 100 values for the test set. Table 2 gives 
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the results obtained with various models on the MG17 benchmark. The Time Delay 
FNN in [8] has a single input, 20 neurons in the hidden layer and one output neuron. 
The DRNN [15] has FIR connections of order 4 between the input and the hidden 
layer, FIR connections of order 2 between the 4 to 7 hidden neurons, and simple con-
nections to the output neuron. The results reported for CBPTT were obtained with 
RNNs having 6 hidden neurons, with 10 time-delayed connections. EBPTT gives the 
best results for the MG17 dataset with the same network. Several additional models 
applied to MG17 can be found in [16], some of them with better results than the men-
tioned models but obtained from a different dataset (number of data, sampling, …)  

The experiments show an occasionally unstable behavior of our algorithm: some 
learning attempts being soon blocked with high values of error. The internal state of 
the network (the set of neuron outputs belonging to the hidden layer) happens to be 
very sensitive to delay variation. The choice of the two learning steps, either for the 
weights or for connection delays, require a very precise tuning. We can mention that 
the value ranges of the two parameters are very different, typical values for the delays 
being above one. It is worth noticing that our results are not as good as those of the 
EBPTT algorithm which adds connections to a RNN without using a method directly 
based on an error gradient calculation. Despite those remarks, our algorithm has al-
ready performances near the best of other architectures and it seems to be promising. 
We are still working on his amelioration. 

4   Conclusion 

A recent type of neuron whose connections have a real value was adapted to recurrent 
networks. A new dedicated learning algorithm has been presented. The best results 
obtained from two forecast problems are encouraging but demonstrate a tricky con-
figuration and an unstable behavior of the algorithm. 

The architecture seems to bring additional power but to overcome the mentioned 
limitations, it remains to study an alternative to the use of the gradient calculation for 
the learning of the delays. A stochastic version is presently under consideration 

Moreover,  good results were obtained with the two constructive algorithms 
CBPTT and EBPTT thanks to the addition of time-delayed connections to RNNs. 
Those RNNs can simultaneously contain, between neurons, an usual connection and a 
delayed one. This allows us to consider an improvement of performances if we apply 
our algorithm on such architectures.  
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Abstract. This paper presents a new architecture of neural networks
for representing deterministic finite state automata. The proposed model
is a class of high-order recurrent neural networks. It is capable of repre-
senting FSA with the network size being smaller than the existing models
proposed so far. We also propose an identification method of FSA from
a given set of input and output data by training the proposed model of
neural networks.

1 Introduction

The problem of representing and learning finite state automata (FSA) with ar-
tificial neural networks has attracted a great deal of interest recently. Several
models of artificial neural networks for representing and learning FSA have been
proposed and their computational capabilities have been investigated [1,2,3,4,5].

In recent years, there have been increasing research interests of hybrid con-
trol systems, in which controlled objects are continuous dynamical systems and
controllers are implemented as discrete event systems. One of the most famil-
iar model representations of discrete event systems is a model representation
by using FSA. It has been strongly desired to develop an identification method
of unknown FSA from given input and output data. One of the promising ap-
proaches to the problem is to develop a method by using neural networks. The
problem that comes out first in the approach is to investigate what architectures
of neural networks are suitable for identification of FSA.

High-order neural networks (HONNs) which allow high-order nonlinear con-
nections among neurons have been recognized to possess higher capability of
nonlinear functions representations than the conventional sigmoidal neural net-
works. It is expected, therefore, that high-order neural networks having recurrent
connections, recurrent high-order neural networks (RHONNs), possess excellent
approximations capability of nonlinear dynamical systems [7,8].

We have already proposed an architecture of neural networks, which is a
class of recurrent neural networks (RNNs), for representing deterministic FSA
[6]. The proposed model is capable of representing FSA with the network size
being smaller than the existing models proposed so far. In this paper, we propose

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 181–189, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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another architecture of neural networks, which is a class of RHONNs. We also
propose an identification method of FSA from a given set of input and output
data by training the proposed neural networks. It is shown that the proposed
neural networks are easier to train because of less number of learning parameters.

2 Finite State Automata

In this paper we consider finite state automata (FSA) M defined by

M = (Q, q0, Σ,Δ, δ, ϕ) (1)

where Q is the set of state symbols: Q = {q1, q2, · · · , qr}, r is the number of
state symbols, q0 ∈ Q is the initial state, Σ is the set of input symbols: Σ =
{i1, i2, · · · , im}, m is the number of input symbols, Δ is the set of output sym-
bols: Δ = {o1, o2, · · · , ol}, l is the number of output symbols, δ: Q×Σ → Q is
the sate transition function and ϕ: Q×Σ → Δ is the output function.

We suppose that the FSA M operates at unit time intervals. Letting i(t) ∈ Σ,
o(t) ∈ Δ and q(t) ∈ Q be the input symbol, output symbol and state symbol
at time t, respectively, then the FSA M is described by the discrete dynamical
system of the form:

M : q(t+ 1) = δ(q(t), i(t)), q(0) = q0, o(t) = ϕ(q(t), i(t)) (2)

The objective of this paper is to discuss the problem of neural-network repre-
sentation and identification of the FSA described by (1) or (2). We first discuss
architecture of neural networks for representing the FSA.

3 Recurrent High-Order Neural Networks

We consider a general class of RHONNs in order to represent FSA. Figure 1
shows the schematic diagram of RHONN models. The network consists of neu-
ron units, connection units, external inputs and external outputs. Two types of
neurons are considered, dynamic neurons and static neurons. All the neurons
and the external inputs are connected through the connection units which allow
high-order nonlinear interactions.

Let Nd, Ns, M , L and K be the numbers of the dynamic neurons, the static
neurons, the high-order units, the external inputs and the external outputs ex-
isting in the network, respectively. The mathematical model of the dynamic
neurons is given by

vd
i (t+ 1) =

M∑
m=1

wd
imz

d
m(t) + θd

i , vd
i (0) = vd

i0, hd
i (t) = S(vd

i (t)) (3)

i = 1, 2, · · · , Nd, where zd
m(t), vd

i (t), hd
i (t) and θd

i are the input, the state, the
output and threshold value of the i-th dynamic neuron, respectively, and wd

im
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is the connection weight from the m-th input to the i-th dynamic neuron, and
S(·) is a nonlinear output function such as threshold or sigmoidal function. The
mathematical model of the static neurons is given by the following equations.

us
i (t) =

M∑
m=1

ws
imzm(t) + θs

i , hs
i (t) = S(us

i (t)), i = 1, 2, · · · , Ns (4)

where zs
m, us

i , h
s
i and θs

i are the input, the state, the output and the thresh-
old value of the i-th static neuron, respectively, and ws

im is the weight from
the m-th input to the i-th static neuron. The way of connections among the
neurons and the external inputs is determined by the connection units (high-
order units). Let s be a Nd + Ns + L dimensional vector defined by s =
[hd

1, h
d
2, · · · , hd

Nd
, hs

1, h
s
2, · · · , hs

Ns
, I1, I2, · · · , IL]T where I1, I2, · · · , IL are the ex-

ternal inputs. The model of the connection units is given by

zm(t) = Gm(s(t)), (m = 1, 2, · · · ,M) (5)

where Gm(s(t)) is defined by Gm :=
∏

j∈Jm
s

dj(m)
j . In the above equation zm

is the output of the m-th high-order unit, Jm is a subset of the index set
{1, 2, · · · , Nd + Ns + L} and dj(m) are nonnegative integers. Note that zm is
given to the static neurons and dynamic neurons as their inputs as shown in
(3) and (4). It can be seen from (3),(4) and (5) that the connections among
the neurons and the external inputs allow not only linear combinations but also
high-order product combinations. The external outputs Ok are expressed by

Ok(t) =
Nd∑
i=1

δd
kih

d
i (t) +

Ns∑
i=1

δs
kih

s
i (t) (k = 1, 2, · · · ,K) (6)

where δd
ki and δs

ki take values 1 or 0. If the output of the i-th dynamic (static)
neuron is connected to the k-th external output, δd

ki = 1 (δs
ki = 1), otherwise

δd
ki = 0 (δs

ki = 0).

O1I 1

I
L O K

Dynamic neuron Static neuron

High-order unit

Fig. 1. Recurrent high-order neural net-
works

Fig. 2. Recurrent high-order neural net-
works representing FSA
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4 Neural Network Architectures for Representing FSA

4.1 Recurrent Second-Order Neural Networks for Representing
FSA

There have been done several works on the representation of FSA with neural
networks or on investigation of relationship between neural network architectures
and FSA. A typical representative of neural network architectures for represent-
ing FSA is a class of second-order neural networks.

Let each state symbol qi be expressed by r dimensional unit basis vector, that
is q1 = (1, 0, · · · , 0), q2 = (0, 1, · · · , 0), · · · , qr = (0, 0, · · · , 1). Similarly let each
input symbol ii and each output symbol oi be expressed by m and l dimensional
unit basis vectors, respectively. With the use of these expression the functions δ
and ϕ in (2) can be represented by the product of the state q(t) and input i(t).
Then (2) can be rewritten as follows.

qi(t+ 1) =
m∑

l=1

il(t)
r∑

j=1

al
ijqj(t), ok(t) =

L∑
l=1

il(t)
N∑

j=1

clkjqj(t) (7)

where aij and ckj are parameters. From this equation, we can construct a neural
network which can represent FSA as follows. Consider the RHONNs described
by (3), (4), (5) and (6) where Nd = r,Ns = l,M = r × l, L = β, K = m
and s is defined by s = [hd

1, h
d
2, · · · , hd

Nd
, I1, I2, · · · , IL]T . Furthermore, in the

high order units (5), Jm,m = 1, 2, · · ·M are defined by J1 = {1, r + 1}, J2 =
{2, r + 1}, · · ·Jr = {r, r + 1}, Jr+1 = {1, r + 2}, Jr+2 = {2, r + 2}, · · · , J2r =
{r, r + 2}, · · · , Jrl−1 = {r − 1, r + l}, Jrl = {r, r + l} and dj(m) are chosen as
dj(m) = 1,m = 1, 2, · · ·M . In the external outputs (6) δd

ki and δs
ki are chosen

as δd
ki = 0, k = 1, 2, · · · ,K, i = 1, 2, · · · , Nd and δs

ki = 1, for i = k, δs
ki =

0 for i �= k, k = 1, 2, · · · ,K. The networks thus constructed are called recurrent
second-order neural networks (R2ONNs), because they only contain the second-
order (product) connections in their high-order units. It can be shown that the
R2ONNs can represent any FSA exactly by letting the states vd

i (t) of the dynamic
neurons, the external inputs Ii and the external outputs Ok be corresponding
to the states qj(t), the inputs il(t) and the outputs ok(t) of FSA (7). [3] and [5]
proposed similar architectures of neural networks, recurrent second-order neural
networks and show their capability of representing FSA.

4.2 Recurrent High-Order Neural Networks for Representing FSA

In the R2ONNs obtained in §4.1 or in [3] and [5], each state of FSA is rep-
resented by assigning one neuron individually. Then, as the number of states
of a target FSA increases, the number of neurons required for representing the
FSA increases, which makes it difficult to identify the FSA. We propose a new
architecture of neural networks for representing FSA.

We encode all the state symbols qi, input symbols ii and output symbols oi

of FSA as binary variables. Then q(t), i(t) and o(t) in (2) can be expressed as [6]:
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q(t)=(s1(t), s2(t), · · · , sα(t)) where si(t) ∈ {0, 1}, i(t) = (x1(t), x2(t), · · · , xβ(t))
where xi(t) ∈ {0, 1} and o(t) = (y1(t), y2(t), · · · , yγ(t)) where yi(t) ∈ {0, 1}. α,
β and γ are natural numbers, which are determined depending on r, m and l,
respectively, that is, α is the minimum natural number satisfying r ≤ 2α, β is
the minimum natural number satisfying m ≤ 2β and γ is the minimum natural
number satisfying l ≤ 2γ . By using these representations, we can transform (2)
into

M :
{
si(t+ 1) = δi(s1(t), · · · , sα(t), x1(t), · · · , xβ(t)) (i = 1, 2, · · · , α)

yi(t) = ϕi(s1(t), · · · , sα(t), x1(t), · · · , xβ(t)) (i = 1, 2, · · · , γ) (8)

where δi and ϕi are Boolean functions: δi : {0, 1}α+β → {0, 1} and ϕi :
{0, 1}α+β → {0, 1}. It is well known that any Boolean function can be expanded
into one of the canonical forms. We represent the Boolean functions δi and ϕi in
the principal disjunctive canonical form. For simplicity, we introduce new vari-
ables zi, i = 1, 2, · · · , n (n = α + β) defined by z1 = s1, z2 = s2, · · · , zα =
sα, zα+1 = x1, zα+2 = x2, · · · , zn = xβ . Let Z1(t), Z2(t), · · · , Z2n(t) be defined
by Z1(t) = z1(t) ∧ z2(t) ∧ · · · ∧ zn−1(t) ∧ zn(t), Z2(t) = z̄1(t) ∧ z2(t) ∧ · · · ∧
zn−1(t)∧ zn(t), · · · , Z2n(t) = z̄1(t)∧ z̄2(t)∧ · · · ∧ z̄n−1(t)∧ z̄n(t) which are called
the fundamental products of z1,z2, · · · , and zn. We can rewrite (8) as follows.

M : si(t+ 1) =
2n

∨
j=1

aijZj(t), yi(t) =
2n

∨
j=1

bijZj(t) (9)

where aij and bij are the coefficients of the Boolean functions δi and ϕi repre-
sented in the principal disjunctive canonical form and they take the values ’1’
or ’0’.

We now discuss the expression of logical operations in (9). Let ’true = 1’ and
’false = 0’ and define the function H(·) by H(x) = 1 for x ≥ 0 and H(x) =
0 for x < 0. Then the logical product: y = x1 ∧ x2 ∧ · · · ∧ xk is given by
y = x1x2 · · ·xk, the logical sum: y = x1 ∨ x2 ∨ · · · ∨ xk is given by y = H(x1 +
x2 + · · ·+ xk − γ) 0 < γ ≤ 1 and the not: y = x̄ is given by y = 1− x.

By using these expressions of the logical operations, (9) can be transformed
into the following equations without logical operations.

M :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
si(t+ 1) = H(

2n−1∑
j=1

a∗ijz
∗
j (t) + ai2n − γq

i ), si(0) = si0, i = 1, 2, · · · , α

yi(t) = H(
2n−1∑
j=1

b∗ijz
∗
j (t) + bi2n − γy

i ), i = 1, 2, · · · , γ

(10)
where z∗1(t) = z1(t)z2(t)z3(t) · · · zn(t), z∗2(t) = z2(t)z3(t) · · · zn(t), z∗3(t) = z1(t)
z3(t) · · · zn(t), · · · , z∗2n−1(t) = zn. a∗ij and b∗ij are integers, and γq

i and γy
i are real

numbers satisfying 0 < γq
i ≤ 1 and 0 < γq

i ≤ 1.
We now propose a new architecture of neural networks for representing FSA

M . The neural network is constructed based on the expression (10) as shown in
Fig. 2. Consider the RHONNs described by (3), (4), (5), and (6) where we let
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Nd = α, Ns = γ, M = 2n − 1 (n = α+ β), L = β, K = γ and S(x) = H(x). In
the high order units (5), s is defined by s = [hd

1, h
d
2, · · · , hd

Nd
, I1, I2, · · · , IL]T . For

each z∗m in (5), we define an index set J∗
m consisting of indexes of the elements of

the monomial, that is, J∗
1 = {1, 2, 3, · · · , n}, J∗

2 = {2, 3, · · · , n}, · · · , J∗
M = {n}

and we let Jm = J∗
m, 1, 2, · · · ,M and dj(m) = 1,m = 1, 2, · · ·M . In the external

outputs (6), δd
ki and δs

ki are chosen as δd
ki = 0, k = 1, 2, · · · ,K, i = 1, 2, · · · , Nd

and δs
ki = 1, for i = k, δs

ki = 0 for i �= k, k = 1, 2, · · · ,K. Note that the
RHONNs thus constructed contain the at most n-th order product connections
in their high order units. It can be shown that the RHONNs can represent any
FSA, by using the expression (10) and letting the states vd

i (t) of the dynamic
neurons, the external inputs Ii and the external outputs Ok be corresponding to
the states qj(t), the inputs il(t) and the outputs ok(t) of FSA.

5 Identification of FSA

5.1 Identification Method

In this section we discuss the identification problem of unknown FSA by using the
proposed architecture of neural networks, that is, the RHONNs. We formulate
the identification problem of FSA as follows. Given a set of data of input and
output sequences of a target FSA, determine values of the parameters of the
neural network such that its input and output relation becomes equal to that of
the FSA. In the identification problem of FSA it is natural to make the following
assumptions.

A1. The set of state symbols and the initial states of FSA are unknown.
A2. The state transition function δ and output function ϕ of FSA are unknown.
A3. The sets of input symbols Σ and output symbols Δ of FSA are known.
A4. A set of data of input sequences {i(t)} and the corresponding output se-

quences {o(t)} are available.

For the identification we can construct the RHONN in the manner discussed in
the previous section. Note that, β and γ can be uniquely determined since the
number of the input states and the output states of a target FSA are known,
on the other hand, α cannot be determined since the number of the states of
the FSA is not known. That is to say, the number of the static neurons Ns = γ,
the number of external inputs L = β and the number of the external outputs
K = γ in the RHONN can be determined uniquely, but the number dynamic
neurons Nd = α and the number of the high-order units M = 2n−1, (n = α+β)
cannot be uniquely determined. We provide the number of dynamic neurons (so
the number of the high order units) large enough so that Nd ≥ α of the target
FSA.

Define the performance index by J = 1
2

∑tf

t=0

∑K
k=1 |ok(t)−Ok(t)|2 where

Ok(t), t = 0, 1, 2, · · · , tf are the output sequences of the RHONN when input
sequences {i(t), t = 0, 1, 2, · · · , tf} are given to its external inputs: Il(t) = il(t).
The problem now is reduced to a learning problem of neural networks, that is to
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finding the value the parameters of the RHONN which minimize the performance
index J . Note that the nonlinear function S(x)(= H(x)) in the RHNN is not dif-
ferentiable, which implies that the gradient-based algorithms such as the steepest
descent method cannot be applied to the optimization problem. We replace the
nonlinear function of each neuron by a smooth sigmoidal function which can ap-
proximate it with reasonable accuracy and utilize the gradient-based algorithms.
The main problem associated with these algorithms is the computation of the
gradients ∂J/∂ω. The gradients can be calculated by deriving adjoint neural
networks of the RHONNs [8].

Note also that the initial values of the dynamic neurons vd
i (0) can not be given

a priori because of the assumption that the initial states of FSA are unknown.
Therefore we choose as the learning parameters not only the connection weights
and the threshold values but also the initial states of the dynamic neurons. In
the RHONN, the learning parameters are wd

im, θd
i , ws

im, θs
i and vd

i (0), the total
number of which is 2(α+β) × (α + β) + α. In the R2ONN in §4.1, the learning
parameters are wd

im, ws
im and vd

i (0), the total number of which is rm(r+ l) + r.
For example, consider FSA with |Σ| = 2 and |Δ| = 2. The number of parameters
in the RHONN is 9 for |Q| = 2, 26 for |Q| = 3 and 26 for |Q| = 4, on the other
hand, that in the R2ONN is 24 for |Q| = 2, 33 for |Q| = 3 and 60 for |Q| = 4.
It can be seen that the identifications with the RHONN require less number of
parameters, which becomes more remarkable as the number of the states of FSA
increases.

5.2 Numerical Experiment of Identification

Here we present experimental results of identification of FSA by the proposed
RHONNs. We have performed identification for three examples of FSA. The
first one is a simple FSA whose state transition diagram is shown in Fig. 3. This
FSA accepts the sequences consisting of only ’1’. The number of state symbols
of the FSA is one and Σ = Δ = {0, 1}. The second example is a FSA whose
state transition diagram is shown in Fig. 4, which accepts the sequence (10)∗.
The number of the state symbols of the FSA is three and Σ = Δ = {0, 1}. The
third one is a FSA whose state transition diagram is shown in Fig. 5. This FSA
accepts the sequences which do not include ’000’. The number of state symbols
of the FSA is four and Σ = Δ = {0, 1}.

q0
0 0/

1 0 0/,1/ 1

Fig. 3. Example 1: FSA ac-
cepting the sequences con-
sisting of only ’1’

q0

1 0/

0 0/

1 0/0/1

1 0 0/,

Fig. 4. Example 2: FSA ac-
cepting the sequence (10)∗

0 0/

0/1

0/1

11/

11/

q0

1 0 0/,

Fig. 5. Example 3: FSA ac-
cepting the sequences that
do not include ’000’



188 Y. Kuroe

For identification of these FSAs, we construct the RHONNs in the manner
discussed in §4. In all these examples we can choose L = β = 1 and K = γ = 1.
We have performed the identification experiments several times by changing the
number of dynamic neurons Nd = α (so the number of the high order units
M = 2n − 1, (n = α + β)). In the experiments we use the nonlinear function
S(x) = 1

1+exp(−50x) and utilize the quasi-Newton algorithm to search values of
the network parameters which minimize the performance index. It is known that
FSA with r state symbols is uniquely identified by using all input sequences of
length 2r − 1. We train the RNONN’s by using all sequences of length 2r − 1
as learning data. For each experiment by the RHONN with given α, several
learning (optimization) trials have been done by changing the initial values of
the learning parameters. Table 1 shows the minimum values of the performance
index J among these trials. For each experiment it has been checked that the
target FSA is successfully identified with the RHONNs. For comparison, similar
identification experiments have been done by using the R2ONNs. The results
are shown in Table 2. For each experiment it has been checked that the target
FSA is successfully identified by the neural networks. Note that the RHONN
with Nd = 3 can represent FSA with r ≤ 8, on the other hand, the R2ONN with
Nd = 5 can represent FSA with r ≤ 5. It can be seen from Tables 1 and 2 that
the performance of identification with the RHONNs is superior or equivalent to
that with the R2ONNs, with the RHONNs being smaller network size.

Table 1. Results of Identification of FSA by RHONN

the number of dynamic the minimum value of J
neurons in RHONN Example 1 Example 2 Example 3

Nd = 1 2.7734 × 10−20

Nd = 2 3.7408 × 10−25 40294 × 10−17 9.9975 × 10−17

Nd = 3 1.0122 × 10−15 1.4543 × 10−9 3.2567 × 10−10

Table 2. Results of Identification of FSA by R2ONN

the number of dynamic the minimum value of J
neurons in R2ONN Example 1 Example 2 Example 3

Nd = 2 4.3528 × 10−22

Nd = 3 5.4690 × 10−18 2.0818 × 10−15

Nd = 4 3.6260 × 10−17 1.3158 × 10−14 1.9092 × 10−14

Nd = 5 1.7123 × 10−10 2.1379 × 10−15 1.5884 × 10−15

6 Conclusions

This paper presented a new architecture of neural networks, RHONNs, for repre-
senting deterministic FSA. They consist of two types of neurons, static neurons
and dynamic neurons, and high order connection units. The proposed RHONN
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models are capable of learning and identifying FSA with the network size being
smaller than the existing models. It should be noted that the proposed identifi-
cation method of FSA is efficient and easy to implement because of less number
of learning parameters.
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Abstract. The paper deals with a discrete-time recurrent neural net-
work designed with dynamic neural models. Dynamics is reproduced
within each single neuron, hence the considered network is a locally re-
current globally feed-forward. In the paper, conditions for global stability
of the considered neural network are derived using the pole placement
and Lyapunov second method.

1 Introduction

Structures of discrete-time recurrent neural networks have been proved useful
in modelling and identification of dynamic processes. However, simulation re-
sults report that networks with locally recurrent architectures perform better
and converges faster that fully recurrent ones [1,2]. The paper is devoted to the
so called Locally Recurrent Globally Feed-forward (LRGF) networks [1,3]. Such
networks have a feed-forward multi-layer architecture and their dynamic prop-
erties are obtained using a specific kind of neuron models. The neural networks
considered are composed of neuron models with an Infinite Impulse Response
(IIR) filter [3,4]. Such networks can also be advantageous in terms of stability of
learning. In the paper, the global stability of the LRGF networks are derived by
using the pole placement for a network with a single hidden layer and by using
the global stability theorem of Lyapunov for a network with two hidden layers.

2 Dynamic Neural Networks

The topology of the neural network considered is analogous to the multi-layered
feed-forward one and dynamics is reproduced by so called dynamic neuron mod-
els. Such neural networks are called locally recurrent globally feed-forward. Dy-
namic properties of the model are achieved by introducing an Infinite Impulse
Response (IIR) filter into a neuron structure. Thus, the states of the i-th neuron
in the network can be described by the following state equation:

xi(k + 1) = Aixi(k) + W iu(k) (1)
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where xi(k) =∈ R
r is the state vector, W i = 1wi is the weight matrix (wi ∈ R

n,
1 ∈ R

r is the vector of ones), u(k) ∈ R
n is the input vector, n is the number of

inputs, and the state matrix Ai has the form:

Ai =

⎡⎢⎢⎣
−a1i −a2i . . . −ar−1i

−ari
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤⎥⎥⎦ (2)

Finally, the neuron output is described by:

yi(k) = f
(
g2i(bixi(k) + diu(k))− g1ig2i

)
(3)

where f(·) is a non-linear activation function, bi = [b1i . . . bri ] is the vector of
feed-forward filter parameters, di = [b0iw1 . . . b0iwn], g1i and g2i are the bias
and slope of the activation function, respectively.

2.1 State-Space Representation of the Network

One hidden layer network. Let us consider a discrete-time neural network with
n inputs and m outputs. A neural model with one hidden layer consisting of v
neurons with IIR filters of the order r is described by the following formulae:{

x(k + 1) = Ax(k) + Wu(k)
y(k) = Cf(G2 (Bx(k) + Du(k))−G2g1)T

(4)

where N = v × r represents a number of model states, x ∈ R
N is the state

vector, u ∈ R
n, y ∈ R

m – input and output vectors, respectively, A ∈ R
N×N is

the block diagonal state matrix (diag(A) = [A1, . . . , Av]), W ∈ R
N×n and C ∈

R
m×v are input and output matrices, respectively, B ∈ R

v×N is block diagonal
matrix of feed-forward filter parameters (diag(B) = [b1, . . . , bv]), D ∈ R

v×n

is the transfer matrix (D = [b01w
T
1 , . . . b0vwT

v ]T ), g1 = [g11 . . . g1v ]T denotes
the vector of biases, G2 ∈ R

v×v is the diagonal matrix of slope parameters
(diag(G2) = [g21 . . . g2v ] ) and f : R

v → R
v is nonlinear vector valued function.

Two hidden layers network. Let us consider a discrete-time dynamic neural
network with n inputs and m outputs. A neural model with two hidden layers
with v1 neurons in the first layer and v2 neurons in the second layer, each neuron
consists of r-th order IIR filter, is described as follows:{

x(k + 1) = g (x(k), u(k))
y(k) = h (x(k), u(k))

(5)

where g, h are nonlinear functions. Taking into account layered topology of the
network, one can decompose the state vector as follows x(k) = [x1(k) x2(k)]T ,
where x1(k) ∈ R

N1 (N1 = v1×r) represents states of the first layer, and x2(k) ∈
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R
N2 (N2 = v2 × r) represents states of the second layer, the state equation can

be rewritten in the form:

x1(k + 1) = A1x1(k) + W 1u(k) (6a)
x2(k + 1) = A2x2(k) + W 2f

(
G1

2(B
1x1(k) + D1u(k))−G1

2g
1
1)
)

(6b)

where u ∈ R
n, y ∈ R

m are inputs and outputs, respectively, matrices A1 ∈
R

N1×N1 , B1 ∈ R
v1×N1 , W 1 ∈ R

N1×n, D1 ∈ R
v2×n, g1

1 ∈ R
v1 , G1

2 ∈ R
v1×v1

have the form analogous to matrices describing network with one hidden layer,
A2 ∈ R

N2×N2 is the block diagonal state martix of the second layer (diag(A2) =
[A2

1, . . . , A
2
v2

]), W 2 ∈ R
N2×v1 is the weight matrix between the first and second

hidden layers. Finally, output of the model is represented by the equation:

y(k) = C2f
(
G2

2(B
2x2(k)+D2f

(
G1

2(B
1x1(k)+D1u(k))−G1

2g
1
1

)
−G2

2g
2
1

)
(7)

where C2 ∈ R
m×v2 is the output matrix, B2 ∈ R

v2×N2 is the block diagonal
matrix of the second layer feed-forward filter parameters, D2 ∈ R

v2×v1 is the
transfer matrix of the second layer, g2

1 ∈ R
v2 is the vector of the second layer

biases, G2
2 ∈ R

v2×v2 represents the diagonal matrix of the second layer activation
function slope parameters. Matrices B2, D2, g2

1 and G2
2 have the form analogous

to matrices of the first hidden layer.

3 Stability Analysis

One hidden layer network. It is well known that linear discrete time system is
stable iff all its poles zi are inside unit circle:

∀i |zi| < 1 (8)

As one can see in (4), the state equation in linear. Thus, the system (4) is stable iff
roots of the characteristic equation satisfy (8). In a general case, a characteristic
equation can has quite complex form and analytical computation of roots can
be extremely difficult. In a considered case hovewer, the state equation is linear
with the block-diagonal matrix A, what makes the consideration about stability
relatively easier. The determinant of a block-diagonal matrix can be represented
as a product of determinants of matrices placed on the main diagonal. Using
this property, the characteristic equation of (4) can be rewritten in the following
way:

v∏
i=1

det (Ai − Izi) = 0 (9)

where I ∈ R
r×r is the identity matrix, zi represents the poles of the i-th neuron.

Thus, from (9) one can determine poles of (4) solving a set of equations:

∀i det (Ai − Izi) = 0 (10)
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From above analysis one can conclude that poles of the i-th subsystem (i-th
dynamic neuron) can be calculated separately. Finally, it can be stated that
If all neurons in the networks are stable, the whole neural network model is
stable. If during training the poles will be kept inside unit circle, the stability
of the neural model will be guaranteed. The main problem now is how one can
elaborate a method of keeping poles inside unit circle during neural network
training. This problem can be solved by deriving a region of admissible values
of filter parameters [5].

Two hidden layers network. In this case the state equation has a nonlinear form.
From decomposed states equation (6) it is clearly seen, that states of the first
layer of the network are independent on the states of the second layer, and
have a linear form (6a). States of the second layer are described by nonlinearity
(6b). Let us observe once again that states of a neuron of the second layer are
independent on the states of other neurons the same layer. Follows this fact, (6b)
can be rewritten as follows:

x2
i (k+1)=A2

i x
2
i (k)+W 2

i f
(
G1

2(B
1x1(k)+D1u(k)−g1

1)
)

for i = 1, . . . , v2 (11)

Let Ψ = G1
2B

1 and s1 = G1
2D

1u(k) − G1
2g

1
2 where s1 can be regarded as

threshold or fixed input, then (11) takes the form

x2
i (k + 1) = A2

i x
2
i (k) + W 2

i f
(
Ψx1(k) + s1

)
(12)

using a linear transformation y1(k) = Ψx1(k) + s1, and y2(k) = x2
i (k) one

obtain an equivalent system:{
y1(k + 1) = ΨA1Ψ−y1 − ΨA1Ψ−s1 + s2

y2(k + 1) = A2
i y

2(k) + W 2
i f
(
y1(k)

) (13)

where Ψ− is a pseudoinverse of the matrix Ψ (e.g. in a Moore-Penrose sense)
and s2 = W 1u(k) is the threshold or fixed input. Let y∗ = [y1∗ y2∗]T be an
equilibrium point of the (13) (y∗ = f (y∗)). Introducing an equivalent coordinate
transformation z(k) = y(k)− y∗(k), the system (13) can be transformed to the
form: {

z1(k + 1) = ΨA1Ψ−z1(k)
z2(k + 1) = A2

i z
2(k) + W 2

i σ(z1(k))
(14)

where σ(z(k)) = f(z(k)+y∗(k))−f (y∗(k)). Substituting z(k) = [z1(k)z2(k)]T

finally one obtain
z(k + 1) = Aiz(k) +Wiσ(z(k)) (15)

where

Ai =
[

ΨA1Ψ− 0
0 A2

i

]
Wi =

[
0 0

W 2
i 0

]
(16)

In order to obtain stability conditions for the system (15), one use the second
Lyapunov method [6].
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Let V (z) = ‖z‖ be a Lyapunov function for the system (15). This function is
positive definite with minimum at x(k) = 0. The difference along the trajectory
of the system is given as follows:

ΔV (z(k)) = ‖z(k + 1)‖ − ‖z(k)‖ = ‖Aiz(k) +Wiσ(z(k))‖ − ‖z(k)‖
� ‖Aiz(k)‖+ ‖Wiσ(z(k))‖ − ‖z(k)‖

(17)

Using a property of an activation function ‖σ(z(k))‖ � ‖z(k)‖ [6], (17) can be
expressed as follows:

ΔV (z(k))�‖Ai‖‖z(k)‖+‖Wi‖‖z(k)‖−‖z(k)‖ � (‖Ai‖+‖Wi‖−1)‖z(k)‖ (18)

From (18) one can see that if

‖Ai‖+ ‖Wi‖ < 1 (19)

then ΔV (z(k)) is negative definite and system (15) is globally asymptotically
stable. It is easy to see that this result can be expanded to the entire network.
Thus, the system (6) is globally asymptotically stable if conditions

‖Ai‖+ ‖Wi‖ < 1 for i = 1, . . . , v2 (20)

are satisfied.

4 Experiment

The main objective of the experiment is to show that stability of the network
may have a crucial influence on training quality. The network with a single
hidden layer consisting of 3 dynamic neurons with second order IIR filters and
hyperbolic tangent activation functions has been trained off-line by using the
SPSA method [3] for 500 iterations using 100 learning patterns. The process to
be identified is a proces described in Experiment 4 in the outstanding paper of
Narendra and Parthasarathy [7]. The results of training are presented in Fig. 1.
Results for the unstable model are depicted in Fig.1 a), c) and e) whilst results
for the stable one in Fig. 1 b), d) and f), respectively. As one can observe,
training in both cases is convergent Fig.1 e) and f). However, the first model is
unstable (states are divergent - Fig. 1 a)) and generalization properties are very
poor (Fig. 1 c)). In turn, states of the stable neural model are depicted in Fig. 1
b) and testing of this network in Fig. 1 d). For this network modelling results are
much better. This simple experiment shows, that the stability problem is of a
crucial importance and should be taken into account during training, otherwise
the obtained model may be improper.

5 Concluding Remarks

The paper presents the stability conditions for locally recurrent globally feed-
forward neural networks composed of dynamic neuron models with IIR filters.
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Fig. 1. Result of the experiment

For networks with single hidden layer the stability considerations rely on the
classical stability theory for linear systems. In the case of networks with two
hidden layers the stability conditions were derived using the second Lyapunov
method. The further work will focus on extension of achieved results in order to
obtain feasible regions of the network parameters and on this basis elaborating
a training procedure which guarantee the stability of the network during training.
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Abstract. The paper proposes an implementation of the agent-based
population learning algorithm (PLA) within the cascade correlation (CC)
learning architecture. The first step of the CC procedure uses a standard
learning algorithm. It is suggested that using the agent-based PLA as
such an algorithm could improve efficiency of the approach. The paper
gives a short overview of both - the CC algorithm and PLA, and then ex-
plains main features of the proposed agent-based PLA implementation.
The approach is evaluated experimentally.

1 Introduction

In order to obtain good generalization performance when training a neural net-
work, it must have the right size. Networks that are too small cannot represent
the required function, while networks that are too large are prone to overfitting.
Apart from choosing the network architecture one has also to decide on learning
algorithm to be used for the network training. Commonly used gradient-based
algorithms face a danger of being caught in a local optimum. Besides, larger net-
works require a lot of computational time. Since choosing an architecture and a
learning algorithm are interrelated, it seems only logical to consider them simul-
taneously. The first who came up with such an idea were Fahlman and Lebiere
proposing the cascade correlation learning architecture [3], which in fact allows
for both i.e. building a network and training its neurons.

In this paper we propose developing a neural network architecture using the
cascade correlation (CC) procedure and applying the agent-based population
learning algorithm (PLA) as an embedded learning algorithm.

The paper is organized as follows. Sections 2 and 3 contain a short review of
the CC procedure and the PLA, respectively. Section 4 presents, in a more de-
tailed manner, the suggested agent-based PLA implementation. Section 5 gives
an overview of the computational experiment results. The experiment has been
carried with a view to validate the approach. Finally, in Section 5 some conclu-
sions are drawn and directions of further research are suggested.

2 The Cascade Correlation Algorithm

The Cascade Correlation approach is a simple and powerful method for train-
ing a neural network [3]. It belongs to a class of the supervised learning algo-
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rithms. The CC network determines its own size and topology starting with an
input/output layer and building a minimal multi-layer network by creating its
own hidden layer. The procedure is iterative and based on recruiting new units
according to the residual approximation error. Iterations involve:

- Training and adding hidden units one by one to tackle new tasks, hence
”Cascade ”,

- Maximizing the residual error. ”Correlation” between the new units and its
output is maximized,

- Input weights going into the new hidden unit become frozen (fixed).

CC combines two ideas - cascade architecture where hidden units are added
one at a time and frozen, and learning algorithm which trains and installs new
hidden units. The CC algorithm starts with a minimal network consisting of
an input and output layer. The network is trained with a learning algorithm
(i.e. gradient descent or some metaheuristic-based algorithm like simulating an-
nealing) until no significant error reduction can be observed. Hidden units are
added one by one to the network which is connected by all input units and to
every pre-existing hidden unit with all input weights of the hidden unit becoming
frozen. The cycle is repeated until desired performance is reached or no further
improvement is possible.

The CC has been used successfully in many real-life applications although
its potential problem is convergence to suboptimal local optimum solutions in
the correlation phase of network training [5].

3 Population Learning Algorithm

Population Learning Algorithm, introduced in [2], in contrast to many other
population-based methods, has been inspired by analogy to a social phenomenon
rather than to evolutionary processes.

In the PLA an individual represents a coded solution of the considered prob-
lem. Initially, a number of individuals, known as the initial population, is gen-
erated. Once the initial population has been generated, individuals enter the
first learning stage. It involves applying some, possibly basic and elementary,
improvement schemes. The improved individuals are then evaluated and better
ones pass to a subsequent stage. A strategy of selecting better or more promising
individuals must be defined and applied. In the following stages the whole cycle is
repeated. Individuals are subject to improvement and learning, either individu-
ally or through information exchange, and the selected ones are again promoted
to a higher stage with the remaining ones dropped-out from the process. At
the final stage the remaining individuals are reviewed and the best represents a
solution to the problem at hand.

The PLA can be also run as a parallel algorithm. The parallel PLA requires
a scheme for grouping individuals at various stages, and the respective rules for
carrying parallel computations. The parallel implementation can be based on in-
formation exchange between the individuals or groups of individuals during the



An Agent-Based PLA for the Cascade Correlation Learning Architecture 199

learning process. Potential benefits of the parallel PLA include a reduction of the
computation time and improvement of efficiency through better exploration of
the solution space and more effective avoidance of the local optima traps. Even
more flexibility offers the agent-based PLA, where multiple agents execute pop-
ulation learning schemes using identical or different learning and improvement
procedures and each taking care of a population of individuals. Agents act in
parallel and independently. A supervisory agent can be added to supervise and
coordinate information exchange between learning agents.

4 Agent-Based PLA Implementation

The paper investigates using an implementation of the agent-based population-
learning algorithm to train artificial neural networks with a CC architecture.
The approach has been motivated by promising results obtained when applying
the PLA to training MLP networks [1]. It was observed that using the PLA as a
training algorithm has some important advantages over standard gradient-based
methods. First of all, the PLA is less likely to get trapped in a local optimum
since it is operating on a set of solutions and not on a single solution. Second,
using the PLA does not place any constraints on the neuron transfer function,
whereas for standard back propagation methods this function must be differen-
tiable. Third, using the PLA does not require backward propagation of an error
signal. Hence, network topology does not impose any restrictions on the PLA
implementation. Advantages of the PLA are counter measured by one signifi-
cant drawback. Obtaining high quality results requires an initial population of
a substantial size, which, in turn, results in an excessive computation time. To
overcome the problem an agent-based approach with a set of training agents
managing a set of relatively small populations of solutions is suggested. Each
training agent is using an identical PLA scheme which has been implemented
basing on the following assumptions:

- An individual is a vector of real numbers from the predefined interval, each
representing a value of weight of the respective link between neurons in the
considered neural network,

- The initial population of individuals is generated randomly,
- There are five learning/improvement procedures - standard mutation, local

search, non-uniform mutation, gradient mutation and application of the gra-
dient adjustment operator. Number of iterations for each procedure is set by
the respective agent,

- There is a common selection criterion for all learning stages. At each stage,
individuals with fitness below the current average are rejected.

In addition to training agents there is also a supervisory agent performing
two main tasks. The first is the construction of the neural network architecture
and the second - is the coordination of information exchange between training
agents.

Supervisor role is to initiate a neural network consisting of input and output
layers. The number of neurons in each layer is equal to the number of attributes
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characterizing data elements from the training set. Within the first learning cy-
cle, such a network is trained to minimize the classification error. Training is
based on the earlier described PLA scheme. Next, candidate neurons are inde-
pendently trained by learning agents and the respective values of their input
weights are established using again the same PLA structure. The number of
candidate neurons determines the number of learning agents used. This time,
however, optimization criterion is the value of the covariance calculated for each
candidate neuron. Candidate with the highest covariance value is selected and
added to the network. Following it, values of all inputs leading to neurons in
the output layer are established. To do it agents use only the gradient adjust-
ment procedure, which is the last one from the earlier proposed PLA. The initial
population of individuals is then generated by producing multiple copies from
a template which in this case is a vector of network weights produced at the
previous stage. Population members are then randomly diversified. Weights of
inputs to the output layer neurons are generated randomly according to the uni-
form distribution from the interval (0,−K), whereK is the maximum covariance
obtained at the previous stage. The method of initializing values of the hidden
unit input connections is adopted from [5].

Training neural network of the CC architecture is performed by the Cascade-
PLA which is an agent based software environment managing and performing
the above described training cycles consisting of candidate neurons training and
determining values of input weights for the output layer neurons in accordance
with the above described procedure, until some stopping criterion is met. General
idea of the Cascade-PLA is shown in Fig. 1.

Fig. 1. General idea of the Cascade-PLA multi-agent environment

As it can be seen the proposed solution belongs to the class where each
agent manages a group of individuals. An agent is represented by a code, which
is executed in the parallel environment and the multi-agent system is imple-
mented as a set of interacting and co-operating training agents. Interaction and
co-operation is controlled by the supervisory agent. Supervisory agent manages
communication flow, sets work parameters of training agents, initiates execu-
tion of tasks by training agents, receives solution values at each computation
stage from each agent, compares solutions and chooses the best one, sends best
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solutions to agents, stops computations and decides on adding a hidden layer
neuron to the network under development. A training agent executes training
procedures set by the supervisory agent, sends solution values to the supervisory
agent and modifies the population of solutions by replacing the worst individual
by currently the best one.

5 Computational Experiment Results

The proposed environment has been used to train the CC architecture neural
networks applied to solving two popular benchmarking classification problems
- Cleveland heart disease (303 instances, 13 attributes, 2 classes) and Credit
approval (690, 15, 2). Both datasets were obtained from UCI Machine Learn-
ing Repository [4]. Experiments have been preceded by data cleaning and data
normalisation procedures.

Computational experiment carried to evaluate the proposed implementation
has been based on the correct classification ratio for the 10-cross-validation ap-
proach. Each benchmarking problem has been solved 30 times and the reported
values of the quality measures have been averaged over all runs. The resulting
accuracy of classification for the Credit problem was 85.1% with 18± 11 hidden
neurons and 87.6% with 10± 2 hidden units for the Heart problem. In Table 1
these results are compared with other reported in the literature.

Table 1. Cascade-PLA versus the reported accuracy of training algorithms (source
for the best reported: http://www.phys.uni.torun.pl/kmk/projects/datasets.html and
http://www.phys.uni.torun.pl/kmk/projects/datasets-stat.html)

Credit Heart
Approach Literature

reported accu-
racy (%)

Accuracy
of cascade-
PLA (%)

Literature
reported accu-
racy (%)

Accuracy
of cascade-
PLA (%)

MLP+PLA 86.6 [1] 85.1 86.5 [1] 87.6
MLP+BP 84.6 81.3
C 4.5 85.5 77.8
CART 85.5 80.8
kNN 86.4 85.1

To better evaluate the agent-based Cascade-PLA it has been decided to de-
velop the Cascade Correlation network architecture trained by a standard back
propagation algorithm (CC). Additionally, a non-cascade MLP network trained
by a standard back propagation algorithm (BackPro) has been also developed.
Its architecture has been determined by a trial and error procedure. The results
obtained by applying these algorithms using identical hardware platform are
shown in Table 2.

All compared algorithms assume a sigmoid activation function with β = 1.
The Cascade-PLA employed 5 learning agent each managing 10 individuals and
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Table 2. Cascade-PLA versus the computational experiments results of CC and Back-
Pro

Problem Accuracy (%) Training time (sec.)
cascade-PLA CC BackPro cascade-PLA CC BackPro

Credit 85.1 82.6 81.2 246 377 580
Heart 87.6 81.8 76.4 108 87 332

executing 60 training procedure iterations. The CC algorithm generated results
with 7± 2 hidden neurons for Heart problem and 12± 4 hidden neuron units for
Credit problem. In case of BackPro the network structure was (15, 15, 1) and
(13, 13, 1) for Credit and Heart problems, respectively. BackPro stopped after
5000 epochs.

6 Conclusion

It can be concluded that the proposed agent-based population learning algo-
rithm is a successful and, possibly, a competitive tool as applied to training the
cascade correlation architecture neural networks. Future research should concen-
trate on finding critical features of the proposed agent-based environment and
on developing and implementing within such an environment even more effective
training procedures.
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Abstract. Reinforcement learning agents explore their environment in order to 
collect reward that allows them to learn what actions are good or bad in what 
situations. The exploration is performed using a policy that has to keep a bal-
ance between getting more information about the environment and exploiting 
what is already known about it. This paper presents a method for guiding explo-
ration by pre-existing knowledge expressed as heuristic rules. A dual memory 
model is used where the value function is stored in long-term memory while the 
heuristic rules for guiding exploration act on the weights in a short-term mem-
ory. Experimental results from a grid task illustrate that exploration is signifi-
cantly improved when appropriate heuristic rules are available. 

1   Introduction 

Supervised and unsupervised learning construct models that represent training sam-
ples given by a “teacher” as well as possible. Reinforcement learning (RL) methods 
differ from these learning methods because the RL agent has to explore its environ-
ment by itself and collect training samples. Initially the agent has to take actions 
without knowing how good or bad they are, which may be known only much later 
when a reward signal is provided. The agent takes actions following a policy, usually 
referred to by the symbol π that should make it explore the environment efficiently 
enough to learn at least a near-optimal policy.  

This paper presents a new method for using pre-existing knowledge for state-space 
exploration. It uses a dual memory model where a so-called long-term memory is 
used for action-value learning and a short-term memory is used for modifying action 
selection by heuristic rules. Experimental results with simple heuristic rules show that 
it is possible to converge to a good policy with less exploration than with some well-
known methods.  

After this introduction, the most relevant RL methods to the scope of this paper are 
described in Section 2. Section 3 presents methods to guide exploration, while Section 
4 shows comparative test results for grid world tasks, followed by conclusions. 

2   Reinforcement Learning Principles 

One of the main domains treated by RL is Markov Decision Processes (MDPs). A 
(finite) MDP is a tuple M=(S,A,T,R), where: S is a finite set of states; A = {a1, …, ak} 
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is a set of k ≥ 2 actions; T = [Psa(·) | s ∈ S, a ∈ A} are the next-state transition prob-
abilities, with Psa(s’) giving the probability of transitioning to state s’ upon taking 
action a in state s; and R specifies the reward values given in different states s ∈ S. 
RL methods try to learn a value function that allows them to predict future reward 
from any state when following a given action selection policy π. Value functions are 
either state-values (i.e. value of a state) or action-values (i.e. value of taking an action 
in a given state). Action-values are denoted Q(s,a), where a ∈ A. 

The currently most popular RL methods are so-called temporal difference (TD) 
methods. Q-learning is a TD control algorithm that updates action values according to  

( ) ( ) )(,),(max, 111 seasQasQrasQ tttt
a

ttt +++ −+=Δ γβ  (1) 

where Q(st, at) is the value of action a in state s at time t, β is a learning rate, rt+1 is the 
immediate reward and γ is a discount factor that determines to what degree future 
rewards affect the value. The max-operator signifies the greatest action value in state 
st+1. et+1(s) is an eligibility trace that allows rewards to be propagated back to preced-
ing states.  

Exploration of the state space is performed by undirected or directed exploration 
methods [3]. Undirected exploration methods do not use any task-specific information, 
e.g. ε-greedy exploration (take greedy action with probability (1-ε) and an arbitrary 
action with probability ε) and Boltzmann action selection (selection probabilities pro-
portional to action values).  Directed exploration methods use task-specific knowledge 
for guiding exploration in such a way that the state space would be explored more 
efficiently. Counter-based methods direct exploration towards states that were visited 
least frequently in the past, recency-based exploration prefers states that were visited 
least recently while other directed exploration methods use confidence estimates for 
the current value function [2]. The well-known technique optimistic initial values uses 
initial value function estimates that are bigger than the expected ones, therefore privi-
leging unexplored actions (and states). Initializing action values to zero and giving 
negative reward for every action are often used to implement this technique [1].  

3   SLAP Reinforcement and the BIMM Network 

This section describes the bi-memory model (BIMM) that uses a short-term memory 
(STM) for controlling exploration and a long-term memory (LTM) for action-value 
learning. Both memories use linear function approximation by the one-layer Adaline 
artificial neural net (ANN) [4] but any function approximator could be used for both 
STM and LTM. Weights are stored in a two-dimensional matrix of size P×N, where P 
is the number of actions and N is the number of state variables. If only one state vari-
able is allowed to be one while all others are zero this representation is identical to the 
lookup-table representation usually used in discrete RL tasks. A major advantage of 
using a function approximator approach over lookup-tables is that they can handle 
continuous-valued state variables. BIMM outputs are calculated according to  
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where aj(s) is the estimated action-value and K0 and K1 are positive constants that 
control the balance between exploration and exploitation as in [2]. ltwi,j is the LTM 
weight and stwi,j is the STM weight for action neuron j and input i. Q-learning or 
some other action-value learning method can be used to update LTM weights by re-
placing Q with ltw in equation (1). STM is an exploration bonus that decreases or 
increases the probability of an action being selected in a given state and whose influ-
ence on action selection is determined by the value of K1. In the tests performed in 
this paper, action probabilities are only decreased by the SLAP (Set Lower Action 
Priority) method according to heuristic rules (see test section). SLAP updates STM 
weights using the Widrow-Hoff rule with the target value 

aj’(s)= amin(s) – margin (3) 

where amin(s) is the smallest aj(s) value in state s1. Only STM weights are modified by 
the Widrow-Hoff rule, which becomes  

ijjji
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ji saastwstw )'(,, −+= α  . (4) 

where α is the learning rate The new activation value is 
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where we can see that setting α to 1/(Σsi
2K1) guarantees that aj

new will become aj’ in 
state s after SLAPing action j. This is a generalization of the well-known Normalized 
Least Mean Squares (NLMS) method, so from now on α will systematically refer to 
αnorm in BIMM. In stochastic tasks, α should be inferior to 1/(Σsi

2K1) because even the 
optimal action may not always be successful, so immediately making it the least at-
tractive is not a good idea. A general algorithm for using SLAP in a learning task is 
given in Fig. 1. 

Initialize parameters 
REPEAT (for each episode) 
  s ← initial state of episode 
  REPEAT (for each step in episode) 
    a  ←  action given by π for s  
    Take action a, observe next state s’ 
    SLAP “undesired” actions 
    Update action-value function in LTM 
    s ← s’ 

Fig. 1. General algorithm for using SLAP in typical RL task 

                                                           
1  The margin should have a “small” value that ensures that an action that is repeatedly 

SLAPed will eventually have the lowest action value. 0.1 has been used in all tests. 
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3.3   Increasing Exploration 

As shown for the experimental tasks in section 4, heuristic rules can make exploration 
faster but they may not guarantee a sufficient exploration of the state space. Using an 
undirected exploration method in addition to the heuristic rules can compensate for 
this. In the tests reported in this paper, STM weights have been initialized to random 
values in the interval [0,1) while LTM weights are initialized to zero. Therefore ac-
tions will be selected in a random order as long as LTM weights remain zero and no 
action has been SLAPed. When LTM weights become none-zero, the degree of ran-
domness depends on the value of K1. Setting K1 to a small value will give no or little 
randomness (10-6 has been used in the tests of section 4) while a greater value will 
give more randomness. In deterministic tasks it is easy to show that setting K1 = 1.0 
and always SLAPing the greedy action from equation (2) will perform a depth-first 
search of the state space.  

4   Experimental Results 

This section compares different methods on a typical maze task (Fig. 2) with four 
possible actions. Both deterministic and stochastic state transition rates 0.2 and 0.5 
(the probability of another direction being taken than the intended one) are tested.  

 

Fig. 2. Maze. Agent is in start state (lower right corner), terminal state in upper left corner  

The compared methods are: 1) Q: ε-greedy exploration, zero initial Q-values, 
r = 1.0 at terminal state and zero for all other state transitions; 2) OIV: optimistic 
initial values, zero initial Q-values, r = 0.0 at terminal state and r = -1.0 for all other 
state transitions; 3) BIMM: zero initial Q-values (LTM weights), r = 1.0 at goal and 
zero for all other state transitions and 4) CTRB: counter-based exploration, zero initial 
Q-values, r = 1.0 at goal and zero for all other state transitions. Q-learning without 
eligibility traces is used by all methods for action-value learning. Learning parameters 
are indicated in Table 1. In deterministic tasks β = 1 is always the best learning rate 
for Q-learning [1].  

The counter-based exploration bonus is implemented as  
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where cnt(s,a) is the counter for action a in state s and cnt(s)min and cnt(s)max are the 
smallest and greatest counter values for all actions in state s. Counter values and 
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BIMM STM weights are reset before beginning a new episode. SLAP was used ac-
cording to the following rules when entering a new state and before taking the next 
action: 1) SLAP the “inverse” action and 2) if the new state is already visited during 
the episode, SLAP action with the biggest value aj(s) in equation (2) for the new state. 
For BIMM, using ε-greedy exploration in the deterministic task converged to a better 
policy than when using a “high” K1-value (e.g. 0.1). In the stochastic tasks such sup-
plementary exploration was not needed. Parameter values are indicated in Table 1. 

Table 1. Parameter values used in grid world tests. K1 = 10-6 for BIMM in all tasks. All 
parameters not indicated here were set to zero. 

Agent Q, 
γγγγ=0.95

OIV BIMM, γγγγ=0.95 CTRB, γγγγ=0.95

Task β ε β γ α β ε β  K1

Deterministic 1 0.1 1 1 0.1 1 0.1 1 0.1 
Stochastic, 0.2  0.1 0.1 0.5 0.95 0.2 0.5 0.0 0.5 0.01 
Stochastic, 0.5  0.1 0.1 0.5 0.95 0.1 0.5 0.0 0.5 0.01 
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Fig. 3. Maze results as average number of steps per episode. Stochastic transition rate and the 
number of agent runs used for calculating the average number of steps are indicated at the top 
of each graph. 

All agents performed 250 episodes. After 200 episodes actions were selected 
greedily using the learned action-values by setting ε and K1 to zero for all agents. 
From Fig. 3 it is clear that BIMM converges towards a “good” policy after less explo-
ration than Q- and CTRB-agents. Only the OIV agent can compete in the beginning of 
exploration but it converges very slowly. With stochastic transitions OIV fails to 
converge due to the increased probability of cycles during exploration, which causes 
the action-values to be continually modified due to the negative step reward.  

As indicated by the first column in Table 2, on the first episode BIMM agents 
reach the terminal state faster than all other agents. BIMM also represents the best 
compromise between how good the “converged” policy is and how much exploration 
is needed. BIMM has the best converged policy or is very close to it in all tasks while 
using the smallest total number of steps in both stochastic tasks.  
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Table 2. Maze results. Numbers are averages from 50 agents runs, indicated as 
Q/OIV/BIMM/CTRB. Steps with “converged” policy are averages of episodes 241-250. 
STR: stochastic transition rate. 

Task Steps first episode Steps conv. policy Total nbr. of steps 
Deterministic 1160/438/263/654 18.0/18.0/18.0/18.2 17700/7070/7380/10600 
STR 0.2 1700/571/335/871 24.0/26.7/24.4/25.1 20300/13600/9730/15600 
STR 0.5 1610/937/798/1250 45.2/50.7/44.3/46.1 26100/26400/21300/25800 

5   Conclusions 

The results show that with appropriate heuristic rules for guiding exploration, BIMM 
and SLAP can improve exploration both in deterministic and stochastic environments. 
BIMM agents only use their own general domain knowledge, which makes them 
interesting compared with methods like reward shaping that usually require a priori 
knowledge about the task itself and easily lead to sub-optimal solutions.  
Even though only a grid world task is used in this paper, BIMM and SLAP are also 
applicable to tasks involving continuous-valued state variables. Such tasks are a sub-
ject of current and future research. 
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Abstract. In the framework of reinforcement learning, an agent learns an opti-
mal policy via return maximization, not via the instructed choices by a supervisor.
The framework is in general formulated as an ergodic Markov decision process
and is designed by tuning some parameters of the action-selection strategy so
that the learning process eventually becomes almost stationary. In this paper, we
examine a theoretical class of more general processes such that the agent can
achieve return maximization by considering the asymptotic equipartition prop-
erty of such processes. As a result, we show several necessary conditions that the
agent and the environment have to satisfy for possible return maximization.

1 Introduction

Reinforcement learning (RL) [1, 2] is an effective framework to comprehensively de-
scribe a decision-making process that consists of interactions between an agent and an
environment. One of the outstanding features of the framework is that the agent learns
an optimal policy via return maximization (RM), not via the right choices indicated
by a supervisor. The RL process is usually formulated as an ergodic Markov decision
process (MDP) [1, Section 3] [2, Section 3.6], and is designed by tuning some para-
meters of the action-selection (AS) strategy [1, Section 2.2] [2, Sections 2.2 and 2.3]
so that the learning process eventually becomes almost stationary. This leads us to the
question of whether we indeed need the Markov property, stationary property, and er-
godicity for RM, and further, to the question of what conditions are the least needed for
RM in arbitrary general processes. The aim of this paper is to shed further light onto
a theoretical class of processes so that RM can be achieved by showing several con-
ditions for the agent and the environment. Considering such a class is meaningful, in
particular, when we apply the framework to practical applications such as mechanical
robot-learning in the real world, because some of the processes of the applications are
not strictly Markovian, stationary, and/or ergodic. The results derived later enable us
to judge whether the RL framework is suitable for the environment of a treating appli-
cation. They also provide the necessary conditions that the policy of the agent has to
satisfy for RM when it is suitable.

The organization of this paper is as follows. In Section 2 we extend the framework
of RL to treat an arbitrary general process and introduce key properties to explore the
processes. Section 3 describes the main results of this paper. Finally, we give conclu-
sions in Section 4.
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2 Extension of Reinforcement Learning Framework

We concentrate on the discrete-time single-agent decision process with discrete states,
actions, and rewards in this paper. We denote the finite set of states, actions, and rewards
by S � {s1, s2, . . . , sI}, A � {a1, a2, . . . , aJ}, and �0 � {r1, r2, . . . , rK} ⊂ �. For
notational simplicity, let Z � S × A × �0. Let s(t), a(t), and r(t) be the stochastic
variables of state, action, and reward at time step t, respectively. The MDP is the most
popular process in the field of RL to describe the framework of interactions between an
agent and the environment. The processes are determined by the two probability dis-
tributions; the agent’s policy {P (a(t) = aj |s(t) = si)} and the state-transition prob-
abilities {P (s(t + 1) = si′ , r(t + 1) = rk|s(t) = si, a(t) = aj)} of the environment,
and are actually time-varying because the agent usually improves the policy by updat-
ing both the estimates of the value-function [2, Section 3.7] and the parameter of the
AS strategy after every state-transition. However, to guarantee the convergence of the
estimates to the expected ones and to simplify the analysis of the process, we often as-
sume that the MDP satisfies ergodicity and that the time-evolutions of the estimates and
the parameter are sufficiently slow so that we can deal with the MDP as a stationary
one [3, Chapter 2] [4,5]. In this section, we extend the framework based on the MDP to
treat an arbitrary general process.

The agent improves the policy via RM by observing each element of the empirical
sequence, s(1), a(1), s(2), r(2), a(2), . . ., which is generated one-by-one from an ar-
bitrary general process. For example, consider non-Markovian, non-stationary, and/or
non-ergodic processes. Now we consider the empirical sequence of n time steps,

s(1), a(1), s(2), r(2), a(2), . . . , s(n), r(n), a(n), r(n + 1).

For notational convenience, let r(n + 1) = r(1), and let x = {s(t), a(t), r(t)}n
t=1

denote the empirical sequence of n time steps, hereafter. Let us describe a probability
measure under which an empirical sequence occurs. The probability measure does not
needed to satisfy any constraints. Since the policy of the agent is determined by the
estimates of the value-function and the parameters of the action-selection strategy, the
probability measure depends on just the time-evolution of the two factors. We use Q

(t)
ij

to express the estimate of the value-function with respect to (si, aj) ∈ S × A at time
step t. We define an event ω � {θt|t = 1, 2, . . . , n} ∈ Ωn, where θt � (Qt, βt) is a

pair of an I × J matrix Qt �
{
Q

(t)
ij

}
and the parameter βt of the softmax method [2,

Section 2.3] at time step t. The definition of event for other AS strategies is virtually the
same. Let Ωn denote the entire set of possible events, in other words, the sample space
of events. Let y be an arbitrary probability measure of the measurable space ofΩn such
that

∫
Ωn

dy(ω) = 1 holds (alternatively, written as
∫

Ωn
y(dω) = 1). We assume that

for all n the probability PZn
ω
(x) for x ∈ Zn is a measurable function of ω. To put

it simply, PZn
ω
(x) implies the probability that an empirical sequence x ∈ Zn occurs

under a history ω up to the time step n. Then, the probability PZn(x) for x ∈ Zn is
given by a mixed source, defined as

PZn(x) =
∫

Ωn

PZn
ω
(x)dy(ω). (1)
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This is the probability that should be considered in order to analyze general processes
of RL. Henceforth, we call a process given by (1) a general process. The entropy of
PZn(x) is written as

H(PZn) =
∑

x∈Zn

PZn(x) log
1

PZn(x)
. (2)

Also, the entropy H(PZn
ω
) with respect to PZn

ω
(x) for any ω is described in the same

way.

Remark 1 (Stationary and ergodic process). If the process is stationary and ergodic,
then the entropy rate limn→∞ H(PZn)/n has a fixed point and it satisfies

lim
n→∞

1
n

log
1

PZn(x)
= lim

n→∞

1
n

H(PZn), (3)

with probability one. Obviously, this equation similarly holds when the process is
asymptotically mean stationary, defined in [6]. For proofs, see [7].

Let us introduce the following notions that play a fundamental role in later discussions.

Definition 1 (Limit superior and inferior in probability [8]). For an arbitrary se-
quence of real-valued random variables {Zn}∞n=1,

p-limsup
n→∞

Zn � inf
{

b
∣∣∣ lim

n→∞
Pr(Zn > b) = 0

}
, (4)

p-liminf
n→∞

Zn � sup
{

b
∣∣∣ lim

n→∞
Pr(Zn < b) = 0

}
. (5)

Using these notions, we define

H(PZ∞) � p-limsup
n→∞

1
n

log
1

PZn(x)
, (6)

and

H(PZ∞) � p-liminf
n→∞

1
n

log
1

PZn(x)
. (7)

In the same manner, we define H(PZ∞
ω

) and H(PZ∞
ω

) for any ω.

Example 1 (General process). In a general process, the quantity

lim
n→∞

1
n

log
1

PZn(x)
, (8)

has a spectrum that ranges between H(PZ∞) and H(PZ∞) (but in general does not have
a fixed point). For example, consider

PZn(x) = PZn
ω1

(x)y(ω1) + PZn
ω2

(x)y(ω2), where y(ω1) + y(ω2) = 1, (9)

where PZn
ω1

and PZn
ω2

are also the probability measures of a general process. Then, the
probability density of (8) given by (9) is illustrated in Figure 1. The probability density
of 1

n log 1
PZn (x) is called the entropy spectrum [8, Section 1.3].
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3 Main Results

First, we introduce the following key properties to explore learning mechanisms in gen-
eral processes.

Definition 2 (Strong converse property [8]). If the equation

H(PZ∞) = H(PZ∞), (10)

holds, this is called the strong converse property.

Definition 3 (Asymptotic equipartition property [9]). If for all δ > 0, as n → ∞

P (Bn(δ)) → 0, P (Sn(δ)) → 0, (11)

where the subsets of atypically big and atypically small probability masses are denoted
by

Bn(δ) = {x ∈ Zn|PZn(x) ≥ exp(−(1− δ)H(PZn))} , (12)

Sn(δ) = {x ∈ Zn|PZn(x) ≤ exp(−(1 + δ)H(PZn))} , (13)

respectively, then this is called the asymptotic equipartition property (AEP).

The strong converse property and the AEP are equivalent under a certain assumption.
In fact, the following theorem holds.

Theorem 1 ( [9]). If Z is finite and limn→∞ H(PZn)/n exists and is positive, Defini-
tion 2 is equivalent to Definition 3.

Now we are in a position to clearly describe the situation of RM. We give the defi-
nition of RM in the same way as [5].

Definition 4 (Return Maximization). We denote a proper subset of best sequences by

X †
n ⊆ {x ∈ Zn| the empirical distribution of x yields a maximal expected return.} .

(14)
Also, we define the typical set as

Cn(δ) � {x ∈ Zn|x /∈ Bn(δ), x /∈ Sn(δ)} , (15)

for all δ. Then, RM means that X †
n ⊂ Cn(δ) and then X †

n = Cn(δ) as n → ∞.

Note that P (Cn(δ)) → 1 in probability as n → ∞. In short, RM corresponds to the
situation where the typical set Cn(δ) includes the subset X †

n by a learning algorithm as
n → ∞ and the AEP holds for the empirical sequences; otherwise the subset cannot
have an arbitrarily high probability. Note that the learning algorithm consists of methods
to update the estimates of the value-function such as temporal difference method and
to tune the parameter of AS strategies. Figure 2 shows the relationship between the
AEP and RM. Incidentally, if the definition of RM does not require giving probability
one for the subset, it allows a pointless learning algorithm that sometimes obtains the



Stochastic Processes for Return Maximization in Reinforcement Learning 213

ω1

ω2

H(PZ∞) H(PZ∞)

H(PZ∞
ω1

) H(PZ∞
ω1

)

H(PZ∞
ω2

) H(PZ∞
ω2

)

Fig. 1. Entropy spectrum when n → ∞.
The horizontal axis expresses the value of
limn→∞ 1

n
log 1

PZn (x)
.

AEP holds

RM

Fig. 2. Relationship between the AEP and RM
in a general process. The AEP is a necessary
condition for RM.

optimal policy unexpectedly and by luck, but does not guarantee the achievement of
the optimal policy mathematically even under proper conditions. Hence, RM should be
defined such that the probability of the subset goes to one in probability.

We show that RM can be performed with a positive probability in general processes
by examining what conditions are required to establish the AEP in general processes.
The following definitions are necessary condition of the learning process of the agent.

Definition 5 (Coincidence in inf- and sup-entropy spectrum). If for all ω, ω′ ∈ Ω∞
such that y(ω) > 0 and y(ω′) > 0, the following equations

H(PZ∞
ω

) = H(PZ∞
ω′ ), H(PZ∞

ω
) = H(PZ∞

ω′ ), (16)

are satisfied, then this is called the coincidence in inf- and sup-entropy spectrum.

The processes that satisfy Definition 5 are in a much wider class of processes than sta-
tionary and ergodic ones. Then, the following definition is the condition for the behavior
of the environment.

Definition 6 (Strong converse property for ω). If for all ω ∈ Ω∞ such that y(ω) > 0,
the equation

H(PZ∞
ω

) = H(PZ∞
ω

), (17)

holds, then this is called the strong converse property for ω.

Definition 6 allows a wider class of environments than stationary environments; for ex-
ample, asymptotically mean stationary environments. Intuitively speaking, Definition 6
holds in such environments that the probability density of 1

n log 1
PZn

ω
(x) oscillates with

respect to n but converges to a fixed point as n → ∞.

Theorem 2 (Direct and converse theorems). Assume that Z is finite and limn→∞
H(PZn)/n exists and is positive. Then, if Definitions 5 and 6 are satisfied, the AEP in
Definition 3 holds. Conversely, if the AEP in Definition 3 holds, then Definitions 5 and 6
are satisfied. Therefore, when Z is finite and limn→∞ H(PZn)/n exists and is positive,
the AEP in Definition 3 is equivalent to Definitions 5 and 6.
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Proof. First, we prove the direct part of Theorem 2. From [8, Chapter 1],

H(PZ∞) = sup
ω∈Ω∞:y(ω)>0

H(PZ∞
ω

), (18)

H(PZ∞) = inf
ω∈Ω∞:y(ω)>0

H(PZ∞
ω

). (19)

By Definition 5, for every ω ∈ Ω∞ such that y(ω) > 0 these equations become

H(PZ∞) = H(PZ∞
ω

), H(PZ∞) = H(PZ∞
ω

), (20)

respectively. Then, from Definition 6, Definition 2 holds. Therefore, if Definitions 5 and
6 are satisfied, Definition 3 holds because of Theorem 1.

Next, we prove the converse part of Theorem 2. Recall that (19) and (18) hold. Since
H(PZ∞

ω
) and H(PZ∞

ω
) exist between H(PZ∞) and H(PZ∞) for any ω ∈ Ω∞ such that

y(ω) > 0, Definition 2 yields

H(PZ∞) = H(PZ∞
ω

) = H(PZ∞
ω′ ) = H(PZ∞

ω′ ) = H(PZ∞
ω

) = H(PZ∞). (21)

Hence, if Definition 3 holds, Definitions 5 and 6 are satisfied.

4 Conclusions

The framework of RL has been extended to treat an arbitrary general process. We dis-
cussed that RM can be performed with a positive probability in such processes that
Definitions 5 and 6 hold. Such processes are in general non-Markovian, non-stationary,
and/or non-ergodic. Also, these definitions show the conditions necessary for the policy,
and for the state-transition probabilities of the environment.
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Abstract. In this paper, we introduce costs in the framework of information max-
imization and try to maximize the ratio of information to its associated cost. We
have shown that competitive learning is realized by maximizing mutual infor-
mation between input patterns and competitive units. One shortcoming of the
method is that maximizing information does not necessarily produce represen-
tations faithful to input patterns. Information maximizing primarily focuses on
some parts of input patterns used to distinguish between patterns. Thus, we in-
troduce the ratio of information to its cost that represents distance between in-
put patterns and connection weights. By minimizing the ratio, final connection
weights reflect well input patterns. We applied unsupervised information maxi-
mization to a voting attitude problem and supervised learning to a chemical data
analysis. Experimental results confirmed that by minimizing the ratio, the cost is
decreased with better generalization performance.

Keywords: mutual information maximization, competitive learning, winner-take-
all, Gaussian, generalization, ratio, cost, supervised learning.

1 Introduction

In this paper, we introduce costs in the framework of information maximization. The
new method can increase information content while minimizing the corresponding cost.
The new method can contribute to neural computing from two perspectives: (1) this is a
new type of information-theoretic competitive learning in which competition is realized
by maximizing mutual information between input patterns and competitive units and (2)
the ratio of information to the cost is maximized to produce faithful representations.

First, this is a new type of information-theoretic method to realize competition.
Information-theoretic methods have been applied to competitive learning and self –
organizing maps. For example, van Hulle [1] attempted to use entropy maximization
for realizing equiprobabilistic outputs and to solve the fundamental problems of com-
petitive learning such as dead neurons and dependency on initial conditions [2], [3],
[4], [5], [6], [7], [8], [9], [10]. On the other hand, Linsker tried to use a more direct
method to maximize mutual information. He assumed that living systems should pre-
serve as much information as possible in every stage of processing. However, it seems
to us that his method could not give clear rules to maximize mutual information, and
their validity may be confined to simple artificial data [11], [12], [13]. Our method here

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 215–222, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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proposed is one that maximizes mutual information directly [14], [15], [16], [17]. Con-
tray to Linsker’s formulation, our method is simple and powerful enough to be applied
to practical problems. In our method, competitive unit outputs are computed directly by
using a Gaussian function of distance between input patterns and connection weights.
Then, information is directly maximized by using the ordinary update rules.

Second, we introduce the ratio of information to the cost. A cost function is intro-
duced in our framework of information maximization to produce representations more
faithful to input patterns. We have observed that connection weights by conventional
competitive learning and our information-theoretic method are sometimes different
from each other. By examining carefully a mechanism of information maximization,
we find that information maximization focuses upon some parts of input patterns that
are necessary to distinguish between patterns. On the other hand, conventional com-
petitive learning imitates input patterns as much as possible. Information maximization
focuses on some parts of input patterns at the expense of imitating input patterns. At this
stage, to incorporate the property of conventional competitive learning in the framework
of information maximization, we introduce a cost function that measures how much
connection weights are similar to input patterns. The cost is actually average distance
between input patterns and connection weights. By minimizing the cost, connection
weights become similar to input patterns. For minimizing the cost and maximizing in-
formation, we introduce the ratio of information to the cost, and we try to maximize
this ratio. Thus, it is possible to maximize information, while keeping representations
faithful to input patterns.

2 Cost Minimization and Information Maximization

2.1 Unsupervised Information Maximization

We consider information content stored in competitive unit activation patterns. For this
purpose, let us define information to be stored in a neural system. Information stored in
a system is represented by decrease in uncertainty [18]. Uncertainty decrease, that is,
information I , is defined by

I = −
∑
∀j

p(j) log p(j) +
∑
∀s

∑
∀j

p(s)p(j | s) log p(j | s), (1)

where p(j), p(s) and p(j|s) denote the probability of firing of the jth unit, the proba-
bility of the sth input pattern and the conditional probability of firing of the jth unit,
given the sth input pattern, respectively. Let us define a cost function

C =
∑
∀s

p(s)
∑
∀j

p(j | s)Cs
j , (2)

where Cs
j is a cost of the jth unit for the sth input pattern. Thus, we must maximize the

ratio R of information to the cost

R =
−
∑

∀j p(j) log p(j) +
∑

∀s

∑
∀j p(s)p(j | s) log p(j | s)∑

∀s p(s)
∑

∀j p(j | s)Cs
j .

(3)
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Fig. 1. A network architecture for information maximization

Let us present update rules to maximize the ratio in neural networks. As shown
in Figure 1, a network is composed of input units xs

k and competitive units vs
j . The

jth competitive unit receives a net input from input units, and an output from the jth
competitive unit can be computed by

vs
j = exp

(
−
∑L

k=1(x
s
k − wjk)2

2σ2

)
, (4)

where L is the number of input units, wjk denote connections from the kth input unit to
the jth competitive unit and σ controls the width of the Gaussian function. The output is
increased as connection weights are closer to input patterns. The conditional probability
p(j | s) is computed by

p(j | s) =
vs

j∑M
m=1 v

s
m

, (5)

whereM denotes the number of competitive units. Since input patterns are supposed to
be given uniformly to networks, the probability of firing of the jth competitive unit is
computed by

p(j) =
1
S

S∑
s=1

p(j | s). (6)

Information I is computed by

I = −
M∑

j=1

p(j) log p(j) +
1
S

S∑
s=1

M∑
j=1

p(j | s) log p(j | s). (7)
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A cost function is computed by

C =
1
S

S∑
s=1

M∑
j=1

p(j | s)
L∑

k=1

(xs
k − wjk)2. (8)

Thus, we must maximize the following function:

R =
−
∑M

j=1 p(j) log p(j) + S−1
∑S

s=1

∑M
j=1 p(j | s) log p(j | s)

S−1
∑S

s=1

∑M
j=1 p(j | s)

∑L
k=1(x

s
k − wjk)2

. (9)

Differentiating information with respect to input-competitive connectionswjk , we have

Δwjk = − β

SCσ2

S∑
s=1

(
log p(j)−

M∑
m=1

p(m | s) log p(m)

)
p(j | s)(xs

k − wjk)

+
β

SCσ2

S∑
s=1

(
log p(j | s)−

M∑
m=1

p(m | s) log p(m | s)
)
p(j | s)(xs

k − wjk)

− βI

Sσ2C2

(
L∑

k=1

(xs
k − wjk)2 −

M∑
m=1

p(m | s)
L∑

k=1

(xs
k − wjk)2

)
·

p(j | s)(xs
k − wjk) +

2βI
SC2

S∑
s=1

p(j | s)(xs
k − wjk), (10)

where β is the learning parameter.

2.2 Extension to Supervised Learning

Unsupervised information maximization can easily be transformed into supervised
learning by adding an output layer. In the output layer, errors between targets and out-
puts are minimized. The outputs from the output layer are computed by

Os
i =

M∑
j=1

Wijp(j|s), (11)

where Wij denote connection weights from the jth competitive unit to the ith output
unit. Errors between targets and outputs can be computed by

E =
1
2

S∑
s=1

N∑
i=1

(T s
i −Os

i )
2
, (12)

where T s
i denote targets for output units Os

i and N is the number of output units. This
linear equation is directly solved by using the pseudo-inverse of the matrices of compet-
itive unit outputs. Following the standard matrix notation, we suppose that W and T de-
note the matrices of connection weights and targets and P† shows the pseudo-inverse of
the matrix of competitive unit activations. Then, we can obtain final connection weights
by W = P†T.
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Fig. 2. Experimental results for the voting attitude problem: Figure (a), (b) and (c) show infor-
mation as a function of the number of epochs, the cost as a function of the number of epochs and
error comparison by three methods, respectively

3 Voting Attitude

In this experiment, we used the voting attitude data from the machine learning data
base1. The data set includes votes for each of the U.S. House of Representatives Con-
gressmen on the 16 key votes. The number of input patterns was 435. The half of this
data was training patterns, and the remaining one was used as a test data set. The number
of input units is 16, and the number of competitive unit is two.

Figure 2(a) shows information as a function of the number of epochs by information
maximization with costs. Information is rapidly increased from around the 50th epoch
and reaches the ninety percent of a maximum point. Figure 2(b) shows the cost as a
function of the number of epochs. The cost is also decreased rapidly from around the
50th epoch. Figure 2(c) shows training and generalization errors by three methods2. By

1 http://www1.ics.uci.edu/ mlearn/MLRepository.html
2 We did experiments ten times with ten different initial conditions and ten different sets of

training and test data, and averaged the results. The results were obtained when the generaliza-
tion error was the lowest. Competitive learning was performed by using Matlab package with
default parameter values except the number of epochs.
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using standard competitive learning, the training error is 0.126, and the generalization
error is 0.110. By maximizing information, we have the same training errors, but the
generalization error is slightly increased to 0.117. By information maximization with
costs, the training error is 0.123, but the generalization error is the lowest, that is, 0.108.
These results show that information can be maximized and simultaneously the cost can
be decreased significantly and that generalization performance could be improved by
introducing the cost.

4 Chemical Data Analysis

In this experiment, we extend our method to supervised learning by adding an output
layer as shown in Figure 1. We employed electron affinity of each atoms, calculated
solvation free energy (dG), and estimated hydrophobic property (LogP) as an input
data set of each unit to predict cancer drug resistance ratio [19] that was measured
by biochemical experiments. The numbers of input and output unit are nine and one,
respectively. Because the number of input patterns is just ten, we used the one-leave-out
cross validation. As already mentioned in the previous section, we directly solved linear
equations for the output layer to obtain connection weights to output units.

Figure 3 shows generalization errors by information maximization, information
maximization with costs and by standard BP. As can be seen in the figure, general-
ization errors are overwhelmingly large by standard BP for any number of competitive
units. The best generalization performance can be obtained by information maximiza-
tion with costs when the number of competitive units is 34.
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Fig. 3. Generalization as a function of the number of epochs by three methods: information
maximization, information maximization with costs and BP
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5 Conclusion

In this paper, we have introduced the ratio of information to its cost in the framework
of information maximization. By minimizing the ratio, information can produce more
faithful representations with better generalization performance. Though our method
has shown fairly good experimental results, we can point out several problems for the
present method to be more practically applicable. First, we maximize the ratio of infor-
mation to its cost. However, it is better to evaluate more exactly relations between infor-
mation and its cost. Second, we have shown that generalization errors are significantly
improved by our method. However, relations between information and generalization
remain obscure at the present stage of research. We need to examine the relations more
explicitly. Third, as mentioned in the main text, the parameter δ controls the Gaussian
width, and is directly related to a process of information maximization. Thus, more
subtle analysis of the relations should be needed. Though some improvement must be
needed for practical applications, it is certain that our new method can open up a new
perspective in neural networks.
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Abstract. We present the first class of mathematically rigorous, gen-
eral, fully self-referential, self-improving, optimal reinforcement learn-
ing systems. Such a system rewrites any part of its own code as soon
as it has found a proof that the rewrite is useful, where the problem-
dependent utility function and the hardware and the entire initial code
are described by axioms encoded in an initial proof searcher which is also
part of the initial code. The searcher systematically and efficiently tests
computable proof techniques (programs whose outputs are proofs) until
it finds a provably useful, computable self-rewrite. We show that such a
self-rewrite is globally optimal—no local maxima!—since the code first
had to prove that it is not useful to continue the proof search for alter-
native self-rewrites. Unlike previous non-self-referential methods based
on hardwired proof searchers, ours not only boasts an optimal order of
complexity but can optimally reduce any slowdowns hidden by the O()-
notation, provided the utility of such speed-ups is provable at all.

1 Introduction and Outline

Traditional reinforcement learning (RL) algorithms [6] are hardwired. They are
designed to improve some limited type of policy through experience, but are
not part of the modifiable policy, and cannot improve themselves. Humans are
needed to create new / better RL algorithms and to prove their usefulness under
appropriate assumptions.

Let us eliminate the restrictive need for human effort in the most general way
possible, leaving all the work including the proof search to a system that can
rewrite and improve itself in arbitrary computable ways and in a most efficient
fashion. To attack this “Grand Problem of Artificial Intelligence,” we introduce
a novel class of optimal, fully self-referential [3] general problem solvers called
Gödel machines [11,10]. They are universal RL systems that interact with some
(partially observable) environment and can in principle modify themselves with-
out essential limits besides the limits of computability. Their initial RL algorithm
is not hardwired; it can completely rewrite itself, but only if a proof searcher
embedded within the initial algorithm can first prove that the rewrite is useful,
given a formalized utility function reflecting expected rewards and computation

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 223–233, 2005.
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time. We will see that self-rewrites due to this approach are actually globally
optimal (Theorem 1, Section 4), relative to Gödel’s well-known fundamental re-
strictions of provability [3]. These restrictions should not worry us; if there is no
proof of some self-rewrite’s utility, then humans cannot do much either.

The initial proof searcher is O()-optimal (has an optimal order of complexity)
in the sense of Theorem 2, Section 5. Unlike Hutter’s hardwired systems [5]
(Section 2), however, a Gödel machine can further speed up its proof searcher
to meet arbitrary formalizable notions of optimality beyond those expressible in
the O()-notation. Our approach yields the first theoretically sound, fully self-
referential, optimal, general reinforcement learners.
Outline. Section 2 presents basic concepts, relation to previous work, and lim-
itations, Section 3 the essential details of a self-referential axiomatic system,
Section 4 the Global Optimality Theorem 1, and Section 5 the O()-optimal
(Theorem 2) initial proof searcher.

2 Basic Overview and Relation to Previous Work and
Limitations

Notation and Set-Up. Unless stated otherwise or obvious, throughout the
paper newly introduced variables and functions are assumed to cover the range
implicit in the context. B denotes the binary alphabet {0, 1}, B∗ the set of
possible bitstrings over B, l(q) denotes the number of bits in a bitstring q; qn
the n-th bit of q; λ the empty string (where l(λ) = 0); qm:n = λ if m > n and
qmqm+1 . . . qn otherwise (where q0 := q0:0 := λ).

Our hardware (e.g., a universal or space-bounded Turing machine or the
abstract model of a personal computer) has a single life which consists of discrete
cycles or time steps t = 1, 2, . . .. Its total lifetime T may or may not be known
in advance. In what follows, the value of any time-varying variable Q at time t
will be denoted by Q(t).

During each cycle our hardware executes an elementary operation which
affects its variable state s ∈ S ⊂ B∗ and possibly also the variable environmental
state Env ∈ E . (Here we need not yet specify the problem-dependent set E).
There is a hardwired state transition function F : S × E → S. For t > 1,
s(t) = F (s(t−1), Env(t−1)) is the state at a point where the hardware operation
of cycle t−1 is finished, but the one of t has not started yet. Env(t) may depend
on past output actions encoded in s(t − 1) and is simultaneously updated or
(probabilistically) computed by the possibly reactive environment.

At any given time t (1 ≤ t ≤ T ) the goal is to maximize future success or
utility. A typical “value to go” utility function (to be maximized) is of the form
u(s, Env) : S × E → R, where R is the set of real numbers:

u(s, Env) = Eμ

[
T∑

τ=time

r(τ)

∣∣∣∣∣ s, Env

]
, (1)

where r(t) is a real-valued reward input (encoded within s(t)) at time t, Eμ(· | ·)
denotes the conditional expectation operator with respect to some possibly un-
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known distribution μ from a set M of possible distributions (M reflects whatever
is known about the possibly probabilistic reactions of the environment), and the
above-mentioned time = time(s) is a function of state s which uniquely identi-
fies the current cycle. Note that we take into account the possibility of extending
the expected lifespan through appropriate actions.

Basic Idea. Our machine becomes a self-referential [3] Gödel machine by load-
ing it with a machine-dependent, particular form of self-modifying code p. The
initial code p(1) at time step 1 includes a (typically sub-optimal) problem solv-
ing subroutine for interacting with the environment, such as Q-learning [6], and
a general proof searcher subroutine (Section 5) that systematically makes pairs
(switchprog, proof) until it finds a proof of a target theorem which essentially
states: ‘the immediate rewrite of p through current program switchprog on the
given machine implies higher utility than leaving p as is’. Then it executes switch-
prog, which may completely rewrite p, including the proof searcher. Section 3
will explain details of the necessary initial axiomatic system A encoded in p(1).

The Global Optimality Theorem (Theorem 1, Section 4) shows this self-
improvement strategy is not greedy: since the utility of ‘leaving p as is’ implicitly
evaluates all possible alternative switchprogs which an unmodified p might find
later, we obtain a globally optimal self-change—the current switchprog repre-
sents the best of all possible relevant self-changes, relative to the given resource
limitations and initial proof search strategy.

Proof Techniques and an O()-optimal Initial Proof Searcher. Section 5
will present an O()-optimal initialization of the proof searcher, that is, one with
an optimal order of complexity (Theorem 2). Still, there will remain a lot of room
for self-improvement hidden by the O()-notation. The searcher uses an online
extension of Universal Search [7] to systematically test online proof techniques,
which are proof-generating programs that may read parts of state s (similarly,
mathematicians are often more interested in proof techniques than in theorems).
To prove target theorems as above, proof techniques may invoke special instruc-
tions for generating axioms and applying inference rules to prolong the current
proof by theorems. Here an axiomatic system A encoded in p(1) includes ax-
ioms describing (a) how any instruction invoked by a program running on the
given hardware will change the machine’s state s (including instruction pointers
etc.) from one step to the next (such that proof techniques can reason about
the effects of any program including the proof searcher), (b) the initial program
p(1) itself (Section 3 will show that this is possible without introducing circu-
larity), (c) stochastic environmental properties, (d) the formal utility function
u, e.g., equation (1). The evaluation of utility automatically takes into account
computational costs of all actions including proof search.

Hutter’s Previous Work. Hutter’s non-self-referential but still O()-optimal
‘fastest’ algorithm for all well-defined problems Hsearch [4] uses a hardwired
brute force proof searcher. Assume discrete input/output domainsX/Y , a formal
problem specification f : X → Y (say, a functional description of how integers
are decomposed into their prime factors), and a particular x ∈ X (say, an integer
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to be factorized). Hsearch orders all proofs of an appropriate axiomatic system
by size to find programs q that for all z ∈ X provably compute f(z) within time
bound tq(z). Simultaneously it spends most of its time on executing the q with
the best currently proven time bound tq(x). It turns out that Hsearch is as
fast as the fastest algorithm that provably computes f(z) for all z ∈ X , save
for a constant factor smaller than 1 + ε (arbitrary ε > 0) and an f -specific but
x-independent additive constant [4]. This constant may be enormous though.

Hutter’s Aixi(t,l) [5] is related. In discrete cycle k = 1, 2, 3, . . . of Aixi(t,l)’s
lifetime, action y(k) results in perception x(k) and reward r(k), where all quan-
tities may depend on the complete history. Using a universal computer such as
a Turing machine, Aixi(t,l) needs an initial offline setup phase (prior to interac-
tion with the environment) to examine all proofs of length at most L, filtering
out those that identify programs (of maximal size l and maximal runtime t per
cycle) which not only could interact with the environment but which for all
possible interaction histories also correctly predict a lower bound of their own
expected future reward. In cycle k, Aixi(t,l) then runs all programs identified in
the setup phase (at most 2l), finds the one with highest self-rating, and executes
its corresponding action. The problem-independent setup time (where almost all
of the work is done) is O(L · 2L). The online time per cycle is O(t · 2l). Both are
constant but typically huge.

Advantages and Novelty of the Gödel Machine. There are major differ-
ences between the Gödel machine and Hutter’s Hsearch [4] and Aixi(t,l) [5],
including:

1. The theorem provers of Hsearch and Aixi(t,l) are hardwired, non-self-
referential, unmodifiable meta-algorithms that cannot improve themselves.
That is, they will always suffer from the same huge constant slowdowns
(typically � 101000) buried in the O()-notation. But there is nothing in
principle that prevents our truly self-referential code from proving and ex-
ploiting drastic reductions of such constants, in the best possible way that
provably constitutes an improvement, if there is any.

2. The demonstration of the O()-optimality of Hsearch and Aixi(t,l) depends
on a clever allocation of computation time to some of their unmodifiable
meta- algorithms. Our Global Optimality Theorem (Theorem 1, Section 4),
however, is justified through a quite different type of reasoning which indeed
exploits and crucially depends on the fact that there is no unmodifiable
software at all, and that the proof searcher itself is readable and modifiable
and can be improved. This is also the reason why its self-improvements can
be more than merely O()-optimal.

3. Hsearch uses a “trick” of proving more than is necessary which also dis-
appears in the sometimes quite misleading O()-notation: it wastes time on
finding programs that provably compute f(z) for all z ∈ X even when the
current f(x)(x ∈ X) is the only object of interest. A Gödel machine, how-
ever, needs to prove only what is relevant to its goal formalized by u. For
example, the general u of eq. (1) completely ignores the limited concept
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of O()-optimality, but instead formalizes a stronger type of optimality that
does not ignore huge constants just because they are constant.

4. Both the Gödel machine and Aixi(t,l) can maximize expected reward
(Hsearch cannot). But the Gödel machine is more flexible as we may plug in
any type of formalizable utility function (e.g., worst case reward), and unlike
Aixi(t,l) it does not require an enumerable environmental distribution.

Limitations. The fundamental limitations are closely related to those first iden-
tified by Gödel’s celebrated paper on self-referential formulae [3]. Any formal
system that encompasses arithmetics (or ZFC etc) is either flawed or allows
for unprovable but true statements. Hence even a Gödel machine with unlimited
computational resources must ignore those self-improvements whose effectiveness
it cannot prove, e.g., for lack of sufficiently powerful axioms in A. In particular,
one can construct pathological examples of environments and utility functions
that make it impossible for the machine to ever prove a target theorem. Com-
pare Blum’s speed-up theorem [1] based on certain incomputable predicates.
Similarly, a realistic Gödel machine with limited resources cannot profit from
self-improvements whose usefulness it cannot prove within its time and space
constraints. Nevertheless, unlike previous methods, it can in principle exploit
at least the provably good speed-ups of any part of its initial software, includ-
ing those parts responsible for huge (but problem class-independent) slowdowns
ignored by the earlier approaches [5].

3 Essential Details of One Representative Gödel Machine

Theorem proving requires an axiom scheme yielding an enumerable set of ax-
ioms of a formal logic system A whose formulas and theorems are symbol strings
over some finite alphabet that may include traditional symbols of logic (such
as →,∧,=, (, ), ∀, ∃, . . ., c1, c2, . . . , f1, f2, . . .), probability theory (such as E(·),
the expectation operator), arithmetics (+,−, /,=,

∑
, <, . . .), string manipula-

tion (in particular, symbols for representing any part of state s at any time,
such as s7:88(5555)). A proof is a sequence of theorems, each either an axiom or
inferred from previous theorems by applying one of the inference rules such as
modus ponens combined with unification, e.g., [2].

The remainder of this paper will omit standard knowledge to be found in
any proof theory textbook. Instead of listing all axioms of a particular A, we
will focus on the novel and critical details: how to overcome problems with self-
reference and how to deal with the potentially delicate online generation of proofs
that talk about and affect the currently running proof generator itself.

Proof Techniques. Brute force proof searchers (used in Hutter’s Aixi(t,l) and
Hsearch) systematically generate all proofs in order of their sizes. To produce a
certain proof, this takes time exponential in proof size. Instead our O()-optimal
p(1) will produce many proofs with low algorithmic complexity [7] much more
quickly. It systematically tests (see Section 5) proof techniques written in uni-
versal language L implemented within p(1). A proof technique is composed of
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instructions that allow any part of s to be read, such as inputs x, or the code of
p(1). It may write on sp, a part of s reserved for temporary results. It also may
rewrite switchprog, and produce an incrementally growing proof placed in the
string variable proof stored somewhere in s. proof and sp are reset to the empty
string at the beginning of each new proof technique test. Apart from standard
arithmetic and function-defining instructions [9] that modify sp, the program-
ming language L includes special instructions for prolonging the current proof
by correct theorems, for setting switchprog, and for checking whether a provably
optimal p-modifying program was found and should be executed now. Certain
long proofs can be produced by short proof techniques.

The nature of the five proof-modifying instructions below (there are no oth-
ers) makes it impossible to insert an incorrect theorem into proof, thus trivializing
proof verification:

1. get-axiom(n) takes as argument an integer n computed by a prefix of the
currently tested proof technique with the help of arithmetic instructions
such as those used in previous work [9]. Then it appends the n-th axiom (if
it exists, according to the axiom scheme below) as a theorem to the current
theorem sequence in proof. The initial axiom scheme encodes:

(a) Hardware axioms describing the hardware, formally specifying how
certain components of s (other than environmental inputs) may change
from one cycle to the next. For example, the following axiom could de-
scribe how some 64-bit hardware’s instruction pointer stored in s1:64 is
continually increased by 64 as long as there is no overflow and the value
of s65 does not indicate that a jump to some other address should take
place:

(∀t∀n : [(n < 264−1)∧(n > 0)∧(t > 1)∧(t < T )∧(string2num(s1:64(t)) = n)

∧(s65(t) = ‘0’)] → (string2num(s1:64(t + 1)) = n + 1))

Here the semantics of used symbols such as ‘(’ and ‘>’ and ‘→’ (im-
plies) are the traditional ones, while ‘string2num’ symbolizes a function
translating bitstrings into numbers. It is clear that any abstract hardware
model can be fully axiomatized in a similar way.

(b) Reward axioms defining the computational costs of any hardware
instruction, and physical costs of output actions (e.g., control signals
encoded in s(t)). Related axioms assign values to certain input events
(encoded in s) representing reward or punishment (e.g., when a Gödel
machine-controlled robot bumps into an obstacle). Additional axioms
define the total value of the Gödel machine’s life as a scalar-valued func-
tion of all rewards (e.g., their sum) and costs experienced between cycles
1 and T , etc.

(c) Environment axioms restricting the way the environment will pro-
duce new inputs (encoded within certain substrings of s) in reaction
to sequences of outputs encoded in s. For example, it may be known
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in advance that the environment is sampled from an unknown proba-
bility distribution that is computable, given the previous history [12,5].
Or, more restrictively, the environment may be some unknown but de-
terministic computer program sampled from the Speed Prior [8] which
assigns low probability to environments that are hard to compute by
any method. Or the interface to the environment is Markovian, that
is, the current input always uniquely identifies the environmental state
[6]. Even more restrictively, the environment may evolve in completely
predictable fashion known in advance. All such prior assumptions are
perfectly formalizable in an appropriate A (otherwise we could not write
scientific papers about them).

(d) Uncertainty axioms; string manipulation axioms: Standard ax-
ioms for arithmetics and calculus and probability theory and statistics
and string manipulation that (in conjunction with the environment ax-
ioms) allow for constructing proofs concerning (possibly uncertain) prop-
erties of future values of s(t) as well as bounds on expected remaining
lifetime / costs / rewards, given some time τ and certain hypothetical
values for components of s(τ) etc.

(e) Initial state axioms: Information about how to reconstruct the initial
state s(1) or parts thereof, such that the proof searcher can build proofs
including axioms of the type

(sm:n(1) = z), e.g. : (s7:9(1) = ‘010’).

Here and in the remainder of the paper we use bold font in formulas
to indicate syntactic place holders (such as m,n,z) for symbol strings
representing variables (such as m,n,z) whose semantics are explained in
the text (in the present context z is the bitstring sm:n(1)).

Note that it is no fundamental problem to fully encode both
the hardware description and the initial hardware-describing p within p
itself. To see this, observe that some software may include a program
that can print the software.

(f) Utility axioms describing the overall goal in the form of utility function
u; e.g., equation (1).

2. apply-rule(k, m, n) takes as arguments the index k (if it exists) of an
inference rule such as modus ponens (stored in a list of possible inference rules
encoded within p(1)) and the indices m,n of two previously proven theorems
(numbered in order of their creation) in the current proof. If applicable, the
corresponding inference rule is applied to the addressed theorems and the
resulting theorem appended to proof. Otherwise the currently tested proof
technique is interrupted. This ensures that proof is never fed with invalid
proofs.

3. set-switchprog(m,n) replaces switchprog by sp
m:n, provided that sp

m:n is
indeed a non-empty substring of sp, the storage writable by proof techniques.

4. ♠ state2theorem(m, n) takes two integer arguments m,n and tries to
transform the current contents of sm:n into a theorem of the form

(sm:n(t1) = z), e.g. : (s6:9(7775555) = ‘1001’),
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where t1 represents a time measured (by checking time) shortly after
state2theorem was invoked, and z the bistring sm:n(t1) (recall the special
case t1 = 1 of Item 1e). So we accept the time-labeled current observable
contents of any part of s as a theorem that does not have to be proven in an
alternative way from, say, the initial state s(1), because the computation so
far has already demonstrated that the theorem is true.

We must avoid inconsistent results through parts of s that change while be-

ing read. For example, the present value of a quickly changing instruction pointer

IP (continually updated by the hardware) may not be directly observable without

changing the observable itself: the execution of the reading subroutine itself will

already modify IP many times. So state2theorem first uses some fixed protocol to

check whether the current sm:n is readable at all or whether it might change if it

were read by the remaining code of state2theorem. If so, or if m, n, are not in the

proper range, then the instruction has no further effect.

5. ♠ check() verifies whether the goal of the proof search has been reached.
First it tests whether the last theorem (if any) in proof has the form of a
target theorem. A target theorem states that given the current axioma-
tized utility function u (Item 1f), the utility of a switch from p to the current
switchprog would be higher than the utility of continuing the execution of
p (which would keep searching for alternative switchprogs). Target theorems
are symbol strings (encoded in s) of the (decoded) form

(u[s(t1)⊕ (switchbit(t1) = ‘1’), Env(t1)] >

u[s(t1)⊕ (switchbit(t1) = ‘0’), Env(t1)]) (2)

where the variable t1 (represented by syntactic place holder t1) stands for
a time step, while all other symbols belong to the alphabet of the theorem-
proving calculus, that is, the set of possible target theorems is parame-
terized only by t1. Here the calculus should permit the notation s(t1) ⊕
(switchbit(t1) = ‘b’) as a shortcut for the state obtained when we replace
switchbit(t1), the true value of the variable bit switchbit (encoded in s) at
time t1, by b ∈ {0, 1}. This will facilitate the formulation of theorems that
compare values conditioned on various alternative hypothetical properties
of s(t1). (Note that s(t1) may be only partially known by the current proof
technique even in environments where s(t1) and switchbit(t1) are fully pre-
determined for all valid t1.)

The purpose of introducing t1 is to deal with hardware-specific temporal
delays that may be involved in checking and switching—it may take a signif-
icant amount of time to match abstract symbol strings found during proof
search to the Gödel machine’s real current state. If a target theorem has been
found, check() uses a simple prewired subroutine to check whether there is
enough time left to set variable switchbit (originally 0) to 1 before the con-
tinually increasing time will equal t1. If this subroutine returns a negative
result, check() exits. Otherwise it sets switchbit := 1 (there is no other way of
changing switchbit). Then it repeatedly tests time until time > t1, to make
sure the condition of formula (2) was fulfilled at t1. Then it transfers control
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to switchprog (there is no other way of calling switchprog). The switchprog
may subsequently rewrite all parts of s, excluding hardware-reserved parts
such as time and x, but including p.

Note that a proof technique does not necessarily have to compute the true
expected utilities of switching and not switching—it just needs to determine
which is higher. For example, it may be easy to prove that speeding up a
subroutine of the proof searcher by a factor of 2 will certainly be worth the
negligible (compared to lifetime T ) time needed to execute the subroutine-
changing algorithm, no matter what is the precise utility of the switch.

The axiomatic systemA is a defining parameter of a given Gödel machine.
Clearly, A must be strong enough to permit proofs of target theorems. In
particular, the theory of uncertainty axioms (Item 1d) must be sufficiently
rich. This is no fundamental problem: we simply insert all traditional axioms
of probability theory.

4 Global Optimality Theorem

Intuitively, at any given time p should execute some self-modification algorithm
only if it is the ‘best’ of all possible self-modifications, given the utility function,
which typically depends on available resources, such as storage size and remain-
ing lifetime. At first glance, however, target theorem (2) seems to implicitly talk
about just one single modification algorithm, namely, switchprog(t1) as set by
the systematic proof searcher at time t1. Isn’t this type of local search greedy?
Couldn’t it lead to a local optimum instead of a global one? No, it cannot,
according to the global optimality theorem:

Theorem 1 (Globally Optimal Self-Changes, given u and A encoded
in p). Given any formalizable utility function u (Item 1f), and assuming consis-
tency of the underlying formal system A, any self-change of p obtained through
execution of some program switchprog identified through the proof of a target
theorem (2) is globally optimal in the following sense: the utility of starting the
execution of the present switchprog is higher than the utility of waiting for the
proof searcher to produce an alternative switchprog later.

Proof. Target theorem (2) implicitly talks about all the other switchprogs that
the proof searcher could produce in the future. To see this, consider the two
alternatives of the binary decision: (1) either execute the current switchprog (set
switchbit = 1), or (2) keep searching for proofs and switchprogs (set switchbit
= 0) until the systematic searcher comes up with an even better switchprog. Ob-
viously the second alternative concerns all (possibly infinitely many) potential
switchprogs to be considered later. That is, if the current switchprog were not the
‘best’, then the proof searcher would not be able to prove that setting switch-
bit and executing switchprog will cause higher expected reward than discarding
switchprog, assuming consistency of A. Q.E.D.
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5 Bias-Optimal Proof Search (BIOPS)

Here we construct a p(1) that is O()-optimal in a certain limited sense to be
described below, but still might be improved as it is not necessarily optimal in
the sense of the given u (for example, the u of equation (1) neither mentions nor
cares for O()-optimality). Our Bias-Optimal Proof Search (BIOPS) is essentially
an application of Universal Search [7] to proof search. Practical extensions [9]
of Universal Search have been applied to offline program search tasks where the
program inputs are fixed such that the same program always produces the same
results. In our online setting, however, BIOPS has to take into account that the
same proof technique started at different times may yield different proofs, as it
may read parts of s (e.g., inputs) that change as the machine’s life proceeds.

BIOPS starts with a probability distribution P (the initial bias) on the proof
techniques w that one can write in L, e.g., P (w) = K−l(w) for programs com-
posed from K possible instructions [7]. BIOPS is near-bias-optimal [9] in the
sense that it will not spend much more time on any proof technique than it
deserves, according to its probabilistic bias, namely, not much more than its
probability times the total search time:

Method 51 (BIOPS). In phase (i = 1, 2, 3, . . .) Do:

For all self-delimiting [7] proof techniques w ∈ L satisfying P (w) ≥ 2−i

Do:
1. Run w until halt or error (such as division by zero) or 2iP (w) steps

consumed.
2. Undo the effects of w on sp (does not cost significantly more time

than executing w).

A proof technique w can interrupt Method 51 only by invoking instruction
check() (Item 5), which may transfer control to switchprog (which possibly even
will delete or rewrite Method 51). Since the initial p runs on the formalized hard-
ware, and since proof techniques tested by p can read p and other parts of s,
they can produce proofs concerning the (expected) performance of p and BIOPS
itself. Method 51 at least has the optimal order of computational complexity in
the following sense.

Theorem 2. If independently of variable time(s) some unknown fast proof tech-
nique w would require at most f(k) steps to produce a proof of difficulty measure
k (an integer depending on the nature of the task to be solved), then Method 51
will need at most O(f(k)) steps.

Proof. It is easy to see that Method 51 will need at most O(f(k)/P (w)) =
O(f(k)) steps—the constant factor 1/P (w) does not depend on k. Q.E.D.

Note again, however, that the proofs themselves may concern quite different,
arbitrary formalizable notions of optimality (stronger than those expressible in
the O()-notation) embodied by the given, problem-specific, formalized utility
function u. This may provoke useful, constant-affecting rewrites of the initial
proof searcher despite its limited (yet popular and widely used) notion of O()-
optimality.
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6 Conclusion

The initial software p(1) of our machine runs an initial problem solver (e.g., one
of Hutter’s approaches [5] which have at least an optimal order of complexity).
Simultaneously, it runs an O()-optimal initial proof searcher using an online
variant of Universal Search to test proof techniques, which are programs able to
compute proofs concerning the system’s own future performance, based on an
axiomatic system A encoded in p(1), describing a formal utility function u, the
hardware and p(1) itself. If there is no provably good, globally optimal way of
rewriting p(1) at all, then humans will not find one either. But if there is one,
then p(1) itself can find and exploit it. This approach yields the first class of
theoretically sound, fully self-referential, optimal, general RL machines.

After the theoretical analysis above, one practical question remains: to build
a particular, especially practical Gödel machine with small initial constant over-
head, which generally useful theorems should one add as axioms to A (as initial
bias) such that the initial searcher does not have to prove them from scratch?
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Abstract. A common assumption in supervised learning is that the
training and test input points follow the same probability distribution.
However, this assumption is not fulfilled, e.g., in interpolation, extrapo-
lation, or active learning scenarios. The violation of this assumption—
known as the covariate shift—causes a heavy bias in standard general-
ization error estimation schemes such as cross-validation and thus they
result in poor model selection. In this paper, we therefore propose an al-
ternative estimator of the generalization error. Under covariate shift, the
proposed generalization error estimator is unbiased if the learning target
function is included in the model at hand and it is asymptotically unbi-
ased in general. Experimental results show that model selection with the
proposed generalization error estimator is compared favorably to cross-
validation in extrapolation.

1 Introduction

Let us consider a regression problem of estimating an unknown function f(x)
from training examples {(xi, yi) | yi = f(xi)+εi}n

i=1, where {εi}n
i=1 are i.i.d. ran-

dom noise with mean zero and unknown variance σ2. Using a linear regression
model

f̂(x) =
p∑

i=1

αiϕi(x), (1)

where {ϕi(x)}p
i=1 are fixed linearly independent functions and α =

(α1, α2, . . . , αp)
 are parameters, we would like to learn the parameter α such
that the squared test error expected over all test input points (or the generaliza-
tion error) is minimized. Suppose the test input points independently follow a
probability distribution with density pt(x) (> 0). Then the generalization error
is expressed as

J =
∫ (

f̂(x)− f(x)
)2

pt(x)dx. (2)
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A common assumption in this supervised learning is that the training input
points {xi}n

i=1 independently follow the same probability distribution as the
test input points [4]. However, this assumption is not fulfilled, for example, in
interpolation or extrapolation scenarios: only few (or no) training input points
exist in the regions of interest, implying that the test distribution is significantly
different from the training distribution. Active learning also corresponds to such
cases because the locations of training input points are designed by users while
test input points are provided from the environment [1]. The situation where the
training and test distributions are different is referred to as the situation under
the covariate shift [3] or the sample selection bias [2]. Let px(x) (> 0) be the
probability density function of training input points {xi}n

i=1. An example of an
extrapolation problem where px(x) �= pt(x) is illustrated in Figure 1.

When px(x) �= pt(x), two difficulties arise in a learning process. The first
difficulty is parameter learning. The ordinary least-squares learning, given by

min
α

[
n∑

i=1

(
f̂(xi)− yi

)2
]

, (3)

tries to fit the data well in the region with high training data density. This implies
that the prediction can be inaccurate if the region with high test data density
has low training data density. Theoretically, it is known that when the training
and test distributions are different and the true function is unrealizable (i.e.,
the learning target function is not included in the model at hand), least-squares
learning is no longer consistent (i.e., the learned parameter does not converge
to the optimal one even when the number of training examples goes to infinity).
This problem can be overcome by using a least-squares learning weighted by the
ratio of test and training data densities1 [3].

min
α

[
n∑

i=1

pt(xi)
px(xi)

(
f̂(xi)− yi

)2
]
. (4)

A key idea of this weighted version is that the training data density is adjusted to
the test data density by the density ratio, which is similar in spirit to importance
sampling. Although the consistency becomes guaranteed by this modification,
the weighted least-squares learning tends to have large variance. Indeed, it is no
longer asymptotically efficient even when the noise is Gaussian. Therefore, in
practical situations with finite samples, a stabilized estimator, e.g.,

min
α

[
n∑

i=1

(
pt(xi)
px(xi)

)λ (
f̂(xi)− yi

)2
]

for 0 ≤ λ ≤ 1 (5)

would give more accurate estimates. The learned parameter α̂λ obtained by
the weighted least-squares learning (5) is given by α̂λ = Lλy, where Lλ =
(X
DλX)−1X
Dλ, Xi,j = ϕj(xi), D is the diagonal matrix with the i-th
diagonal element pt(xi)/px(xi), and y = (y1, y2, . . . , yn)
. Note that λ = 0
1 In theory, we assume that px(x) and pt(x) are known. Later in experiments, they

are estimated from the data and we evaluate the practical usefulness of the theory.
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Fig. 1. An illustrative example
of extrapolation by fitting a lin-
ear function f̂(x) = α1 + α2x.
[Left column]: The top graph
depicts the probability density
functions of the training and test
input points, px(x) and pt(x).
In the bottom three graphs, the
learning target function f(x) is
drawn by the solid line, the
noisy training examples are plot-
ted with ◦’s, a learned function
f̂(x) is drawn by the dashed line,
and the (noiseless) test examples
are plotted with ×’s. Three dif-
ferent learned functions are ob-
tained by weighted least-squares
learning with different tuning
parameter λ. λ = 0 corresponds
to the ordinary least-squares
learning (small variance but
large bias), while λ = 1 gives a

consistent estimate (small bias but large variance). With finite samples, an intermediate
λ, say λ = 0.5, often provides better results. [Right column]: The top graph depicts the
mean and standard deviation of the generalization error over 300 independent trials,
as a function of λ. The middle and bottom graphs depict the means and standard
deviations of the estimated generalization error obtained by the standard 10-fold cross-
validation (10CV) and the proposed method. The dotted lines are the mean of the
true generalization error. 10CV is heavily biased because of px(x) 	= pt(x), while the
proposed estimator is almost unbiased with reasonably small variance.

corresponds to the ordinary least-squares learning (3), while λ = 1 corresponds
to consistent weighted least-squares learning (4). Thus, the parameter learning
problem is now relocated to the model selection problem of choosing λ.

However, the second difficulty when px(x) �= pt(x) is model selection it-
self. Standard unbiased generalization error estimation schemes such as cross-
validation are heavily biased, because the generalization error is over-estimated
in the high training data density region and it is under-estimated in the high
test data density region.

In this paper, we therefore propose a new generalization error estimator.
Under covariate shift, the proposed estimator is proved to be exactly unbiased
with finite samples in realizable cases and asymptotically unbiased in general.
Furthermore, the proposed generalization error estimator is shown to be able to
accurately estimate the difference of the generalization error, which is a useful
property in model selection.

For simplicity, we focus on the problem of choosing the tuning parameter λ
in the following. Note, however, that the proposed theory can be easily extended
to general model selection of choosing basis functions or regularization constant.
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2 A New Generalization Error Estimator

Let us decompose the learning target function f(x) into f(x) = g(x) + r(x),
where g(x) is the orthogonal projection of f(x) onto the span of {ϕi(x)}p

i=1

and the residual r(x) is orthogonal to {ϕi(x)}p
i=1, i.e.,

∫
r(x)ϕi(x)pt(x)dx = 0.

Since g(x) is included in the span of {ϕi(x)}p
i=1, it is expressed by g(x) =∑p

i=1 α∗
i ϕi(x), where α∗ = (α∗

1, α
∗
2, . . . , α

∗
p)


 are unknown optimal parameters.
Let U be a p-dimensional matrix with the (i, j)-th element U i,j =∫

ϕi(x)ϕj(x)pt(x)dx, which is assumed to be accessible in the current setting.
Then the generalization error J is expressed as

J(λ) =
∫

f̂λ(x)2pt(x)dx− 2
∫

f̂λ(x)f(x)pt(x)dx +
∫

f(x)2pt(x)dx

= 〈U α̂λ, α̂λ〉 − 2〈Uα̂λ, α∗〉+ C, (6)

where C =
∫

f(x)2pt(x)dx. In Eq.(6), the first term 〈U α̂λ, α̂λ〉 is accessible and
the third term C does not depend on λ. Therefore, we focus on estimating the
second term “−2〈Uα̂λ, α∗〉”.

Hypothetically, let us suppose that the following two quantities are available.

(i) A matrix Lu which gives a linear unbiased estimator of the unknown true
parameter α∗: EεLuy = α∗, where Eε denotes the expectation over the noise
{εi}n

i=1.
(ii) An unbiased estimator σ2

u of the noise variance σ2: Eεσ
2
u = σ2.

Note that Lu does not depend on Lλ. Then it holds that

Eε〈U α̂λ, α∗〉 = 〈EεULλy, EεLuy〉 = Eε[〈ULλy, Luy〉 − σ2
utr(ULλL


u )], (7)

which implies that we can construct an unbiased estimator of Eε〈U α̂λ, α∗〉 if Lu

and σ2
u are available. However, in general, neither Lu nor σ2

u may be available.
So we use the following approximations instead:

L̂u = (X
DX)−1X
D and σ̂2
u = ‖Gy‖2/tr(G), (8)

where G = I −X(X
X)−1X
. Actually, L̂u corresponds to Eq.(4), which im-
plies that L̂u exactly fulfills the requirement (i) in realizable cases and asymptot-
ically satisfies it in general [3]. On the other hand, it is known that the above σ̂2

u

exactly fulfills the requirement (ii) in realizable cases [1]. Although, in unrealiz-
able cases, σ̂2

u does not satisfy the requirement (ii) even asymptotically, it turns
out that the asymptotic unbiasedness of σ̂2

u is not needed in the following.
Based on the above discussion, we define the following estimator Ĵ of the

generalization error J .

Ĵ(λ) = 〈ULλy, Lλy〉 − 2〈ULλy, L̂uy〉+ 2σ̂2
utr(ULλL̂



u ). (9)

Let Bε be the bias of Ĵ : Bε = Eε[Ĵ − J ] + C. Then we have the following
theorem (proof is omitted because of lack of space).

Theorem 1 If r(xi) = 0 for i = 1, 2, . . . , n, Bε = 0. If δ = max{|r(xi)|}n
i=1 is

sufficiently small, Bε = O(δ). If n is sufficiently large, Bε = Op(n− 1
2 ).
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This theorem implies that, except for the constant C, Ĵ is exactly unbiased
if f(x) is strictly realizable, it is almost unbiased if f(x) is almost realizable,
and it is asymptotically unbiased in general. We can also prove that the above Ĵ
can estimate the difference of the generalization error among different models.
However, because of lack of space, we omit the detail.

3 Numerical Examples

Figure 1 shows the numerical results of an illustrative extrapolation problem.
The curves in the right column show that the proposed estimator gives almost
unbiased estimates of the generalization error with reasonably small variance
(note that the target function is not realizable in this case).

We also applied the proposed method to Abalone data set available from the
UCI repository. It is a collection of 4177 samples, each of which consists of 8 input
variables (physical measurements of abalones) and 1 output variable (the age of
abalones). The first input variable is qualitative (male/female/infant) so it was
ignored, and the other input variables were normalized to [0, 1] for convenience.
From the population, we randomly sampled n abalones for training and 100
abalones for testing. Here, we considered a biased sampling: the sampling of
the 4-th input variable (weight of abalones) has negative bias for training and
positive bias for testing. That is, the weight of training abalones tends to be small
while that for the test abalones tends to be large. We used multi-dimensional
linear basis functions for learning. Here we suppose that the test input points
are known (i.e., the setting corresponds to transductive inference [4]) and the
density functions px(x) and pt(x) were estimated from the training input points
and test input points, respectively, using a kernel density estimation method.
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Fig. 2. Extrapolation of the 4-th variable in the Abalone dataset. The mean of each
method is described. Each column corresponds to each n.
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Table 1. Extrapolation of the 4-th variable (left) or the 6-th variable (right) in the
Abalone dataset. The mean and standard deviation of the test error obtained with
each method are described. The better method and comparable one by the t-test at
the significance level 5% are described with boldface.

n Ĵ 10CV
50 11.67± 5.74 10.88±5.05
200 7.95± 2.15 8.06±1.91
800 6.77± 1.40 7.23± 1.37

n Ĵ 10CV
50 10.67±6.19 10.15± 4.95
200 7.31±2.24 7.42± 1.81
800 6.20±1.33 6.68± 1.25

Figure 2 depicts the mean values of each method over 300 trials for n =
50, 200, and 800. The error bars are omitted because they were excessive and
deteriorated the graphs. Note that the true generalization error J is calculated
using the test examples. The proposed Ĵ seems to give reasonably good curves
and its minimum roughly agrees with the minimum of the true test error. On
the other hand, irrespective of n, the minimizer of 10CV tend to be small.

We chose the tuning parameter λ by each method and estimated the age of
the test abalones by using the chosen λ. The mean squared test error for all test
abalones were calculated, and this procedure was repeated 300 times. The mean
and standard deviation of the test error of each method are described in the left
half of Table 1. It shows that Ĵ and 10CV work comparably for n = 50, 200,
while Ĵ outperforms 10CV for n = 800. Hence, the proposed method overall
compares favorably to 10CV.

We also carried out similar simulations when the sampling of the 6-th input
variable (weight of gut after bleeding) is biased. The results described in the
right half of Table 1 showed similar trends to the previous ones.

4 Conclusions

In this paper, we proposed a new generalization error estimator under covariate
shift. The proposed estimator is shown to be unbiased with finite samples in
realizable cases and asymptotically unbiased in general. Experimental results
showed that model selection with the proposed generalization error estimator is
compared favorably to the standard cross-validation in extrapolation scenarios.
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Abstract. We consider the practical advantage of the Bayesian ap-
proach over maximum a posteriori methods in its ability to smoothen
the landscape of generalization performance measures in the space of
hyperparameters, which is vitally important for determining the optimal
hyperparameters. The variational method is used to approximate the in-
tractable distribution. Using the leave-one-out error of support vector
regression as an example, we demonstrate a further advantage of this
method in the analytical estimation of the leave-one-out error, without
doing the cross-validation. Comparing our theory with the simulations on
both artificial (the “sinc” function) and benchmark (the Boston Housing)
data sets, we get a good agreement.

1 Introduction

Bayesian approaches provide a unified framework for probabilistic inference [1].
Compared with other heuristic or maximum a posteriori (MAP) approaches,
they make explicit the models of priors and noises underlying the data, thus
avoiding the overfitting of data and facilitating the natural development in anal-
yses and model selection [2]. However, since Bayesian approaches analyse a dis-
tribution of models explaining the data, in contrast to MAP approaches which
only considers the most likely one, the computational intractability increases. To
deal with this problem, variational methods have become popular recently [3].

In this paper, we consider a practical advantage of the Bayesian approach
over MAP methods, namely, its ability to smoothen the landscape of generaliza-
tion performance measures in the space of hyperparameters. This smoothness is
vitally important when the hyperparameters are tuned to search for their opti-
mal choices. The generalization performance measures may refer to the marginal
likelihood, cross-validation error, bootstrap error, or leave-one-out (LOO) error.
Since these measures are estimated empirically from the example sets of finite
sizes, changes in the relative weights of individual examples often roughen the
landscape of the hyperparameters. This problem is particularly relevant to the
recently popular Support Vector Machines [4].
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On the other hand, the Bayesian formulation considers a distribution of mod-
els, whose relative weights can be controlled by a temperature hyperparameter.
At a “low temperature”, one recovers the MAP formulation, while “high tem-
perature” corresponds to uniform distributions of the models. Hence, when the
temperature increases, the landscape of the performance measures smoothens.
The variational approach is used to overcome the increased intractability.

We will mention an additional advantage of the variational Bayesian ap-
proach, namely, the reduced computational complexity through analytical esti-
mation of the generalization performance measures [5,6]. Consider the example
of Support Vector Machines. Some empirical suggestions for model selection have
been given [7,8]. Theoretical bounds on the risk were also used [9,10,11]. However,
the general applicability of these methods remain to be studied. In practice, one
of the commonly used methods is resampling, such as cross-validation [12,13],
but it is usually computationally expensive. Using the variational Bayesian ap-
proach described in this paper, the LOO error can be estimated analytically,
without having to go through the cumbersome process of actual LOO validation.
Furthermore, the formulation of the LOO error is simpler than the variational
replica approach of the bootstrap error [14]. We compare our analytical approx-
imations with computer simulations for both artificial and benchmark datasets.
The results show good agreement.

2 The Bayesian Model and the Variational Method

In the Bayesian approach [1], we consider a probabilistic model explaining a
dataset D. The model is described by a set of parameters θ, whose prior dis-
tribution is P (θ). The process of generating the dataset from the parameters
is described by the likelihood P (D|θ). For a dataset of N independent train-
ing examples Di (i = 1, · · · , N), the likelihood can be factorized as P (D|θ) =∏N

i=1 P (Di|θ). According to Bayes’ theory, the posterior probability of the model
θ is then P (θ|D) = P (D|θ)P (θ)/P (D), where P (D) =

∫
dθ P (D|θ)P (θ).

We consider prior and the likelihood distributions expressed in the expo-
nential form, P (θ) ∝ exp[−βV (θ)] and P (Di|θ) ∝ exp[−βU(Di, θ)], where β is
an inverse temperature parameter. Then, the posterior probability of the model
is P (θ|D) = exp(−βH)/Z, where H = V (θ) +

∑
i U(Di, θ) is the regularized

risk function, and Z ≡ P (D) =
∫
dθ exp(−βH) is the marginal likelihood. So,

maximizing the posterior with respect to θ is equivalent to minimizing H . The
Bayesian average of an arbitrary quantity A is then 〈A〉 =

∫
dθ A exp(−βH)/Z.

In statistical mechanics, the marginal likelihood is called the partition function,
and its logarithm is related to the free energy by F = − lnZ/β.

In general, the computation of the marginal likelihood is intractable. So, the
variational approach is considered. We approximate the posterior probability by
a tractable distribution, P0(θ) = exp(−βH0)/Z0. Then, the free energy can be
written as F = − lnZ0/β−ln〈exp[−β(H−H0)]〉0/β, where 〈· · ·〉0 denotes average
over the distribution P0. Since 〈expx〉 ≥ exp〈x〉, we have F ≤ − lnZ0/β+ 〈H −
H0〉0 ≡ Fvar, Our objective is then to find an approximated H0 such that the
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variational free energy Fvar is minimized in a family of tractable distributions,
hoping that the optimized model can capture the essence of the true model.

In the following, we will use the support vector regression (SVR) as an ex-
ample, and introduce a mean-field approximation as the candidate distribution.
The probabilistic model of SVR deals with a fixed set of data D = {xi, yi}N

i=1,
where xi is the input vector of the ith example, and yi is the output. The input
x is first mapped into a feature space, which usually has a higher dimension
than the input space. We denote the map as g(x). Then the linear model in the
feature space is given by f(x) = w · g(x) + b, where w is the weight vector and
b is the bias. Thus, the set of parameters {θ} of the model refers to {w, b}.

In SVR, V and U in the exponential arguments of the prior P (w, b) and
the likelihood P (yi|xi;w, b) take the forms V (w, b) = w2/2 and U(x, y, f) =
Cmax(0, |f − y| − ε) respectively, where U(x, y, f) is the linear ε-insensitive loss
function. The regularized risk function is then H = w2/2+

∑N
i=1 U(xi, yi, f(xi)).

Adopting the variational approach, we propose a mean-field variational distribu-
tion decribed by H0 = w2/2 +

∑N
i=1 U0(xi, yi, f(xi)), where U0(xi, yi, f(xi)) =

q̂i[w · g(xi)]2/2− r̂i[w · g(xj)] + ŝb2/2− t̂b. In contrast with the usual quadratic
expression of H0 in terms of the biased fields f(xi) [14], we have omitted the
cross-terms between w · g(xi) and b. This simplifies the analysis considerably,
and the results are invariant in the limit when the bias is self-averaging. Min-
imizing Fvar leads us to a set of variational equations involving the variational
parameters q̂i, r̂i, ŝ and t̂, and the distribution P0(w, b) is completely spec-
ified. The estimates of the data, described by the moments Ri ≡ 〈w · gi〉0,
Qij ≡ 〈[w · g(xi)][w · g(xj)]〉0 − RiRj , B ≡ 〈b〉0, and S ≡ 〈b2〉0 − B2 can be
expressed in terms of the variational parameters [15]. In particular, we find

〈f(xi)〉0 =
∑

j

Kijαj +B, αi ≡ −
∫
DX U ′(xi, yi, Ri +B+X

√
Qii + S), (1)

whereDX ≡ dX exp(−X2/2)/
√

2π is the Gaussian measure, and the prime in U ′

represents the derivative of U with respect to X . Kij ≡ K(xi,xj) ≡ g(xi) ·g(xj)
is the kernel. For an arbitrary input x, the regression estimate has the form
〈f(x)〉0 = 〈w · g(x) + b〉0 =

∑N
i=1 αiK(xi,x) +B.

It is instructive to compare our approach with the standard SVR, which can
be obtained in a MAP approach [4]. There, the regression problem is to find
a function f̄(x) that maximizes the posterior. After dual transformation, the
solution reads f̄(x) =

∑N
i=1 ᾱiK(xi,x) + B̄, where the dual variables ᾱi satisfy

−C ≤ ᾱi ≤ C and
∑

i ᾱi = 0. The example i is called a support vector (non-
support vector) if ᾱi �= 0 (ᾱi = 0). For support vectors, we have |f̄(xi)− yi| ≥ ε,
while for non-support vectors |f̄(xi)− yi| < ε. This result is identical to that of
the Bayesian approach, when the temperature β−1 approaches zero, causing the
variance Qii + S of the Gaussian noise in αi to vanish.

Figure 1 shows the regression results of both the standard maximum-likeli-
hood SVR and our variational Bayesian method. Here, we use an artificial data
set, in which 500 examples are generated from sinc(x) = (sinπx)/(πx), and a
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Fig. 1. Comparison of variational approach with the MAP approach. (a) The regression
results. (b) The relation between the parameters αi and the estimated function f(xi).
The parameters are C = 3.0, ε = 0.5, and l = 1.0.

Gaussian noise with mean 0 and standard deviation 0.5 is added to the out-
put. The radial-basis-function (RBF) kernel, K(x,x′) = exp(−||x−x′||2/2l2), is
used for the regression. The two regression curves in Fig. 1(a) are very close to
each other. So, the variational Bayesian method is a very good approximation of
the standard SVR. Figure 1(b) illustrates the relation between αi and the esti-
mated function f(xi). The smoothened corners of the variational Bayesian result
indicate the effects of Gaussian noise inherent in the Bayesian distribution.

LOO error εLOO is an unbiased estimate of the generalization error. It is the
average error of examples, obtained by removing an example from the training
data one at a time, and measuring the error of that example. Hence we have
εLOO ≡

∑N
i=1[〈f(xi)〉\i−yi]2/N, where the superscript \i represents expressions

evaluated when example i is removed from the training data. In the variational
Bayesian approach, we have 〈f(xi)〉\i

0 = 〈[w ·g(xi)+b]eβU0(f(xi))〉0/〈eβU0(f(xi))〉0
= 〈f(xi)〉0−αi/[(βQii)−1−uii], where uii =

∫
DXU ′′(xi, yi, Ri+B+X

√
Qii + S).

We note that this result is similar to that in [5], which applies to the MAP
solution, whereas the present result extends to the Bayesian approach. So, the
estimated LOO error becomes

εestLOO =
1
N

N∑
i=1

[〈f(xi)〉\i
0 −yi]2 =

1
N

N∑
i=1

[
〈f(xi)〉0 −

αi

(βQii)−1 − uii
− yi

]2

. (2)

This shows that the LOO error can be estimated without having to go through
the Bayesian learning process for leaving out each example.

In order to test our theory, both artificial (“sinc” function) and benchmark
(Boston Housing) data sets are used. The Boston Housing data set has 506
examples and the input dimension is 13. Before we do the test, each component
of the input vectors is normalized to zero mean and unit variance. The choice
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Fig. 2. The dependences of the leave-one-out error on the kernel width l for (a) the
“sinc” data set, and (b) the Boston Housing data set. The other hyperparameters are
C = 3.0 and ε = 0.5 in (a), and C = 100.0 and ε = 2.0 in (b).

of the parameter C follows those of [7,8]. While the results are sensitive to the
choice of the parameter ε, we have fixed its value to make the demonstration of
the principles more transparent. For both data sets, we use the RBF kernel and
calculate the LOO error for different kernel widths l.

In Fig. 2, we present the estimated LOO error calculated by Eq. (2) as a
function of the kernel width l, and the simulation curve of the standard SVR
by cross-validation. For the latter, the curve is rough due to the leaping of the
number of support vectors when the hyperparameter is changed. The roughness
of the curve shows that it is easy to get trapped at local minima in the search
for the optimal value of l. In contrast, the theoretical curves are much smoother
for sufficiently high temperature. Furthermore, we find that the theoretical LOO
estimate can be varied by tuning β. When β decreases, the rough behavior of
the estimate smooths out, and the profile is rather insensitive to the choice of β.

3 Conclusions

We have presented a method to estimate the LOO averages of SVRs using a
variational Bayesian approach. We take advantage of the Bayesian framework
to get the smoothness of the error curves, and use the variational approach to
estimate the LOO averages analytically. The comparison between our theory and
the numerical experiments shows that our method works very well and fast for
both yielding a regression estimate close to the standard SVR and finding the
optimal hyperparameters with minimum generalization error.

There are other techniques for searching the optimal generalization perfor-
mance, such as maximizing the marginal likelihood. As long as these techniques
are based on data sets of finite size, they will be prone to the roughness problem
as described here. Nevertheless, we find that the variation approach continue to
produce good results [15].
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The remaining issue is the determination of the maximum value of β above
which the roughness characteristic of the standard SVR reappears. This is a topic
for further study. Nevertheless, we have shown that as long as β is sufficiently
small, the LOO error remains smooth.
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Abstract. Nonlinear diffusion filtering presents a way to define and it-
erate Gaussian process regression so that large variance noise can be
efficiently filtered from observations of size n in m iterations by perform-
ing approximately O(mn) number of multiplications, while at the same
time preserving the edges of the signal. Experimental evidence indicates
that the optimal stopping time exist and the steady state solutions ob-
tained by setting m to an arbitrarily large number are suboptimal. This
work discusses the Bayesian evidence criterion, gives an interpretation to
its basic components and proposes an alternative, simple optimal stop-
ping method. A synthetic large-scale example indicates the usefulness of
the proposed stopping criterion.

1 Introduction

Regression by means of nonlinear diffusion filtering [10] is fast and scales well
with increasing input dimensionality. It becomes an especially useful alterna-
tive to neural networks and kernel machines when filtering long discontinuous
oscillatory signals hidden in noise. The key feature of the diffusion filtering is
that the optimal solution emerges long before the steady state. However, sensible
probabilistic criteria for choosing the optimal stopping time are lacking.

This problem can be partially circumvented by putting nonlinear diffusion
filtering into Bayesian Gaussian process (GP) regression framework [5]. This
work further develops a kernel-based method for edge-preserving filtering when
the number of discontinuities and the approximate intervals of their locations
are not available. This comes in contrast to various extensions of Bayesian GP
regression whose kernels have explicit parametric forms and where the locations
of discontinuities are considered as hyperparameters [4]. We show how the non-
linear diffusion filtering defines the Gaussian process kernel in a data-dependent
way, state several interpretations of the Bayesian evidence in the case of dynamic
GP regression model, and examine a particular stopping criterion suitable for
large-scale GP regression.

For this purpose, we first give a brief summary of the GP approach to dif-
fusion filtering in Section 2. Several interpretations of the Bayesian evidence
and the connection to Jacobi’s conjugate point theory are briefly stated in Sec-
tion 3. A large-scale numerical example with a discussion concludes our study
in Section 4.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 247–252, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Nonlinear Diffusion as Gaussian Process Regression

Consider that we are given n noisy scalar observations y(x1), . . . , y(xn) which are
specified at locations xi ∈ d. Let the observations represent a true signal which
has Heaviside-type discontinuities and is corrupted by an additive Gaussian noise
of variance comparable to the range of the signal.

A variety of practical ways to solve the problem of recovering the signal from
its noisy observations can be seen in GP regression models equipped with the
Bayesian evidence maximization [3]. If we gather noisy observations into a single
vector y ∈ n, then the corresponding solution vector u ∈ n at the same
spatial locations can be found according to

u∗ = arg min
u

( 1
θ∗0
||y − u||2︸ ︷︷ ︸

‘loglikelihood’

+uT K−1
θ∗ u︸ ︷︷ ︸

‘logprior’

)
= Kθ∗(Kθ∗ + θ∗0I)

−1︸ ︷︷ ︸
‘posterior filter’

y, (1)

θ∗ = arg min
θ

( 1
θ0

[||y − u∗||2 + uT (y − u∗)]︸ ︷︷ ︸
‘log of best fit likelihood’

+ ln[(2πθ0)n det(Kθ + θ0I)]︸ ︷︷ ︸
‘log of Occam factor’

)
. (2)

The symmetric positive-definite matrix Kθ is usually postulated via a kernel
(covariance) function [Kθ]ij = kθ(xi,xj) which amplifies slowly varying compo-
nents of the signal. The kernel depends on a few hyperparameters θ. In the case
of the regression with a single optimal hyperparameter vector it can be chosen
to maximize the Bayesian evidence criterion whose doubled negative logarithm
is given by Eq. (2). We note that in the GP regression literature the logarithm of
the best fit likelihood is usually written in an equivalent form yT (Kθ + θ0)−1y.

The problem is that Gaussian, Brownian motion and alike kernels blur the
edges of a signal. In a one-dimensional case, the two-sided exponential kernel
would be a much more efficient candidate as it would result in a tridiagonal
inverse K−1

θ [8], but the problem of the edge-preserving filtering demands kernels
with discontinuities [4]. In general, it is hard to choose a parametric form of
a kernel so that the location of a discontinuity, viewed as a hyperparameter,
would have a unimodal posterior density. In other words, Eq. (2) is plagued to
possess multiple minima. However, we believe the problem of the edge-preserving
filtering can be solved with a single optimal hyperparameter regression within
Bayesian evidence maximization.

A general principle of the edge-preserving filtering can be informally stated
as ‘iteratively average where a current estimate of a signal’s gradient is small’. In
the case of a one-dimensional domain x ∈ Ω ≡ [0, 1] this idea can be implemented
by solving the regularization problem

u∗k = arg inf
u

( ∫
Ω

[2τg(uk−1)(∂xu)2 +u2 +(u−uk−1)2]dx
)

s.t. bound. cond. (3)

for uk, k = 0, 1, . . . ,m, where uk ≡ u(x, kτ) and u(x, 0) ≡ y. Eq. (3) represents
an implicit Euler time stepping of the nonlinear diffusion filtering with time



Jacobi Alternative to Bayesian Evidence Maximization in Diffusion Filtering 249

increment τ [10,1,5]. Aside from its obvious classical meaning, Eq. (3) has yet
another, rather difficult to see, interpretation. When defined on an unbounded
domain x ∈ 1 with g(uk−1) = const and the constraint u > 0, it minimally
transports uk to uk−1 while maximizing the differential entropy of u viewed as
a density function [7].

The weighting function should give higher penalties to larger absolute values
of derivative estimates [10]:

g(u) ≡ 1− e−c( ∂xuσ
λ )−s

. (4)

Here the time-dependent signal u is passed through a Gaussian filter resulting in
the signal uσ, whose spatial derivative’s value is denoted by ∂xuσ. The constant
c can always be chosen beforehand so that the diffusion of the original noisy
signal y takes place only in low derivative regions where |∂xuσ| < λ [1]. The
even number s ≥ 2 denotes the sharpness of the nonlinearity.

An implementation example of Eq. (3) can be written for the discrete domain
x = 0, h, . . . , 1 by approximating the derivatives with their first order finite
differences. If we assume reflecting boundary conditions ∂nu|Ω = 0 and define
the tridiagonal matrix

[Bk]ij =

{
1 + τ

h(gi−1 + gi+1) if |i− j| = 0,
− τ

h (gi) if |i− j| = 1,
(5)

then Eq. (3) in the discrete space reduces to the matrix-vector product uk =
B−1

k uk−1 with u0 = y. Tridiagonal matrices can be inverted by applying Thomas
algorithm [10]. Such a process is very efficient as it requires only O(n) number
of multiplications to perform a single inversion. This comes in contrast to the
inversion in Eq. (1), which in the case of a GP model with Gaussian kernel
requiresO(n2) . . . O(n3) multiplications. The structure of the matrix Bk depends
on the boundary conditions, while the values of its elements depend on the
discrete space and time step sizes h and τ . Eq. (5) introduces o(h) approximation
whereas the stability of the time stepping according to Eq. (3) holds for all step
sizes τ > 0.

In spite of efficiency, nonlinear diffusion lacks systematic criteria in choosing
the nonlinear diffusivity parameters λ and σ and, most importantly, the ter-
mination step number m. This problem can be partially solved if we consider
diffusion filtering as a GP regression with the covariance matrix [5]

Kθ ≡ θ20(B1 ·B2 · · ·Bm − I)−1. (6)

The matrix Kθ determines spatial covariance between any two points of the
nonlinear diffusion outcome and in the case of nonlinear diffusivity, presented
in Eq. (4), attains the form of step-like functions [5]. This GP model is suitable
to large-scale applications. Given that hyperparameters are known, only storage
and inversion of tridiagonal matrices are required to perform the regression. At
the same time, the covariance matrix of the final diffusion result is not restricted
to lie in the subspace of the tridiagonal inverses.
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3 Optimal Stopping with Jacobi Criterion

Given the hyperparameters θ, solving Eq. (1) with the covariance matrix de-
fined by Eq. (6) is a very efficient process. However, this does not hold for the
logevidence criterion stated in Eq. (2). In what follows, we attempt to alleviate
this difficulty when determining the optimal diffusion stopping iteration m. Let
us denote the shortcut B1:k = B1 ·B2 · · ·Bk and rewrite Eq. (2) for the stopping
iteration m:

m = arg min
k

(
ln
(
(2πθ0)n

√
|B1:k|
|B1:k − I|

)
︸ ︷︷ ︸

‘compressibility’

+
1
θ0

uT
k B1:k

’noise’︷ ︸︸ ︷
(y − uk)︸ ︷︷ ︸

‘temporal decorrelation’

)
. (7)

As can be seen, logevidence of the ‘dynamic GP’ model comprises two terms.
The determinants in the first term can be viewed as functions whose argument is
the observation vector y. When integrated over any initial region of uncertainty
in the space y ∈ n, they represent uncertainty volumes at time k, driven by
diffusion Eq. (3) with the norm term u2 and without it. A starting point for
a more detailed analysis could be the application of the Abel-Liouville-Jacobi-
Ostrogradskii idenity [6], but these determinants are hard to estimate when
n > 103 because the sparsity of the matrix B1:k decreases with each iteration:
B1 is tridiagonal, B2 will be pentadiagonal, etc. If the matrix B were diagonal,
the second term, namely the best-fit likelihood, would equal to zero whenever
the optimal model output is orthogonal to the ‘noise term’ y − um. In the case
of a small variance θ0, this criterion can indeed be close to the heuristic stopping
based on decorrelation of the model output and noise, clf. [5].

As it is difficult to implement the criterion in Eq. (7) in the large-scale prob-
lem, it becomes rather handy to consider that uk+1 is always ‘less noisy’ than uk,
and view a single iteration of Eq. (3) as a temporal GP regression with Kθ de-
fined as in Eq. (6) with B ≡ Bk. In this case, both terms are easier computable.
The Jacobi theory on conjugate points in the calculus of variations yields the
following, rather surprising, result [2]:

ln det(Bk)− ln det(Bk − I) = ln z(1)− ln z̃(1), (8)

where z(1) solves a complete Jacobi equation of the functional in Eq. (3):

∂x[τg∂xz] = z, z(0) = 0, ∂xz(0) = 1, (9)

and z̃(1) is a solution which excludes the quadratic term u2 in Eq. (3):

∂x[τg∂xz̃] = 0, z̃(0) = 0, ∂xz̃(0) = 1. (10)

Due to the space limits we exclude derivation. Essential steps in obtaining this
result can be found in [2,9]. Intuitively, the functions z(x) and z̃(x) measure the
ellipticity of the functional in Eq. (3) with and without the term u2. Eqs. (9)
and (10) then indicate that when performing evidence maximizing iteration of
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the nonlinear diffusion filtering, ‘temporal model complexity’ is the difference
between the ellipticity of a complete functional in Eq. (3) and its degenerate
counterpart which does not constrain the Euclidean norm of the filtered signal.
Eqs. (9) and (10) reduce to non-integrable in quadratures Riccati equations, but
solving a one-dimensional ordinary differential equation numerically does not
present difficulties in the case of large n [6].

The importance of this result to practice lies in the following observation:
the ‘compressibility’ term in Eq. (7), when evaluated by using Bk rather than
B1:k, always decreases, and the time it reaches the steady state correlates with
the optimal stopping time. We call the expression in Eq. (8) the Jacobi criterion
and will test it in the next section.

Notice that the maximal value of the best-fit likelihood in the case of a
single iteration with p = const is attained when the frequency spectrum of the
model output is orthogonal to the noise spectrum. In other words, the tridiagonal
matrix B = Bk is diagonal in the discrete cosine transform basis [8].

4 Numerical Example and Discussion

We create a numerical example from a telecommunication setting, where a dis-
continuous signal is distorted with additive Gaussian noise of very large variance
θ20 = 1. Due its discontinuous nature, the signal can still be reliably recovered.
Fig. 1 shows the noisy observations and the filtered signal, which closely matches
its true counterpart. This result was obtained by employing the Jacobi criterion
to optimally stop the diffusion filtering, which happened after four iterations. The
result also supports that the implicit time stepping with very large step sizes can
be used to filter signals without distorting the diffusion outcome. Fig. 2 indicates
that the time when the criterion ln z(1)− ln z̃(1) reaches its steady state corre-

Fig. 1. Restoring a discontinuous signal of 30000 samples distorted by very large values
of additive Gaussian noise. The result of the optimally stopped nonlinear diffusion
filtering closely matches the true signal.
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Fig. 2. Time evolution of (a) the Jacobi criterion ln z(1) − ln z̃(1), and (b) the mean
of squared errors between the true signal and the diffusion outcome. Notice that the
Jacobi criterion optimally stops the diffusion independently of the time step size τ .

lates with the time when the mean squared error between the true and filtered
signals reaches its minimum.

In conclusion, we would like to note that in case when the number of dis-
continuities and their approximate location intervals are known, various kernel
functions can be explicitly constructed and the discontinuous regression is likely
to outperform the nonlinear diffusion, especially at larger noise variances. How-
ever, multiple maxima in the Bayesian evidence criterion would be unavoidable
even if such explicit knowledge were available.
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Abstract. We treat Bayesian neural networks adapted to changes in
the ratio of prior probabilities of the categries. If an ordinary Bayesian
neural network is equipped with m − 1 additional input units, it can
learn simultaneously m distinct discriminant functions which correspond
to the m different ratios of the prior probabilities.

1 Introduction

We propose an algorithm for Bayesian learning of neural networks which can
learn several discriminant functions simultaneously. It is useful when the ratio of
prior probabilities changes depending on the situation but the state-conditioned
probability distributions are not changed. For simplicity, we present the details in
the case of two categories and m situations in this paper. The algorithm, however,
can be extended to multiple categories. The point of this paper is to remark that
the discriminant functions are differ only by constants in the distinct situations.
If an ordinary Bayesian neural network is equipped with m− 1 additional linear
input units, it can learn all the m distinct discriminant functions. The main part
of the network learns the discriminant function at one of the situations, and the
additional part modifies it for other m− 1 situations.

The proposed neural network has a relatively minimal number of units.
Though Funahashi’s network for the case of normal state-conditioned distrib-
utions is considered as a Bayesian neural network having rather a small number
of units [2], our network has half the number of hidden layer units in compari-
son to his. Our network has direct connections between the input units and the
output unit.

The phrase ”Bayesian learning” may be somewhat confusing. Unlike [7], our
theory is based on the traditional theory on Bayesian neural networks [2,4,5,6,8].
The simple case of the approximation theory in [3] is used. Our terminology is
mainly drawn from [1]. Two simple simulations are presented in Section 5 to
show how the algorithm works.
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2 Discriminant Functions

Suppose that there are two categories Θ = {θ1, θ2} and several situations Γ =
{γ1, · · · , γm} of the source of observables x ∈ Rd. Further suppose that the ratio
of the prior probabilities Pk(θ1)/Pk(θ2), 1 ≤ k ≤ m, depends on the situation
but the state-conditioned probability distributions P (x|θi) are common. We treat
the cases where P (x|θi), i = 1, 2, are one of familiar probability distributions
of the exponential family such as the normal, binomial, multinomial, Poisson,
exponential and other distributions. Then, the log ratio log p(x|θ1)

p(x|θ2)
is a polynomial

of low degree. Hence, the log ratios of the posterior probabilities

gk(x) = log
Pk(θ1|x)
Pk(θ2|x)

= log
Pk(θ1)
Pk(θ2)

+ log
p(x|θ1)
p(x|θ2)

, k = 1, · · · , m, (1)

are also polynomials of low degree. It is well know that the log ratio can be a
dicriminant function because gk(x) > 0 implies Pk(θ1|x) > Pk(θ2|x). If P (x|θi)
are normal then the log ratio is a quadratic function, and if it is some of other
distributions mentioned above the log ratio is a linear function.

In the case of the two categories, the posterior probability at the state γk is

Pk(θ1|x) =
Pk(θ1|x)

Pk(θ1|x) + Pk(θ2|x)
= σ

(
log

Pk(θ1|x)
Pk(θ2|x)

)
= σ(gk(x)), (2)

where σ(t) = (1 + e−t)−1. Hence, if the inner potential of the output unit can
approximate polynomials of low degree and its activation function is the logistic
function σ, its outputs can approximate the posterior probability [2]. The poste-
rior probability Pk(θ1|x) = σ(gk(x)) can also be a discriminant function as the
logistic function is strictly monotone increasing.

If the p(x|θi) are the multinomial distribution n!
x1!···xd!p

x1
i1 · · · p

xd

id , the log ratio
(2) is a linear function

log
Pk(θ1)
Pk(θ2)

+ log
p11

p21
· x1 + · · ·+ log

pd1

pd2
· xd. (3)

If the p(x|θi) are normal N(μi, Σi) with distinct covariance matrices then the
log ratio (2) is a quadratic function

log
Pk(θ1)
Pk(θ2)

− 1
2

log
|Σ1|
|Σ2|

− 1
2
{(x−μ1)tΣ−1

1 (x−μ1)−(x−μ2)tΣ−1
2 (x−μ2)}. (4)

3 Bayesian Neural Network

The training set is a sequence of triplets (x, γ, θ) ∈Rd×Γ×Θ. The trained neural
network receives pairs (x, γ). Let F (x, γ, w) denote the output of the neural
network, where w is the weight vector, and let ξ(x, γ, θ) be a function on Rd ×
Γ ×Θ. Let E[ξ(x, γ, ·)|x] and V [ξ(x, γ, ·)|x] be the conditional expectation and
variance of ξ(x, γ, θ). Set pk(x) = ΣiPk(θi)p(x|θi). Let qk be the probability of
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the situation γk: Σkqk = 1. The proof of the proposition below is a modification
of that for the simpler case in [8].

Proposition 1. Set

E(w) =
m∑

k=1

qk

∫
Rd

2∑
j=1

(F (x, γk, w)− ξ(x, γk, θj))2Pk(θj)p(x|θj)dx. (5)

Then,

E(w) =
m∑

k=1

qk

∫
Rd

(F (x, γk, w) − E[ξ(x, γk, ·)|x])2pk(x)dx

+
m∑

k=1

qk

∫
Rd

V [ξ(x, γk, ·)|x]pk(x)dx. (6)

If ξ(x, γk, θ1) = 1 and ξ(x, γk, θ2) = 0, then E[ξ(x, γk, ·)|x] = Pk(θ1|x).
Hence, when E(w) is minimized, the output F (x, γk, w) is expected to approxi-
mate Pk(θ1|x). Accordingly, learning of the network is carried out by minimizing

En(w) =
1
n

n∑
t=1

(F (x(t), γ(t), w)− ξ(x(t), γ(t), θ(t)))2. (7)

This method of training has actually been stated by several authors [2,4,5,6,8,9].

4 Construction of Neural Network

We show below that a neural network having a small number of units, when
ideally trained, can approximate the discriminant function σ(gk(x)) receiving
a pair (x, γ). For the proofs of the lemma and corollary below, the inclusions
tn ∈ Lp(R, ν) and |x|2 ∈ Lp(Rd, ν) are essential respectively [3,5].

Lemma 2. Let ν be a probability measure on R. If tn ∈ Lp(R, ν), 1 ≤ p < ∞,
φ ∈ Cn(R) and φ(i), 0 ≤ i ≤ n, are bounded, then, for any ε > 0, there exists
δ > 0 for which

‖ 1
n!

φ(n)(0)tn − 1
δn

φ(δt) −
n−1∑
i=0

φ(i)(0)(δt)i‖Lp(R,ν) < ε. (8)

Corollary 3. Let ν and Q be a probability measure and a quadratic form on Rd.
If |x|2 ∈ Lp(Rd, ν), 1 ≤ p < ∞, φ ∈ C2(R) and φ(j), j = 0, 1, 2, are bounded,
then, for any ε > 0, there exist vectors wi ∈ Rd and constants ai, 0 ≤ i ≤ d, for
which

‖Q(x)− Q̄(x)‖Lp(Rd,ν) < ε, (9)
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where

Q̄(x) =
d∑

i=1

aiφ(wi · x) + w0 · x + a0. (10)

If gm(x) defined by (1) is linear as in the case of (3), it is equale to

w · x + a0, w ∈ Rd, a0 ∈ R. (11)

with constants optimally adjusted. This can be exactly realized by the sum of
the outputs of the main part units (large circles) of the network in Fig.1a. If
gm(x) is quadratic as in the case of (4), then it can be approximated by (10) in
the sense of Lp(Rd, ν) which can be realized by the sum of the outputs of the
main part units (large circles) of the network in Fig.1b.

The neural networks have additional parts (small circles) respectively. Its role
is to approximate the differences u(k) = gk(x)− gm(x), k = 1, · · · , m. The infor-
mation on the situation is fed into the additional part as a vector (s1, · · · , sm−1).
In the k-th situation, k < m, sk = 1 and other elements are zero, and in the m-th
situation the entire vector is zero. If the connection weight between the k-th ad-
ditional input unit and the output unit is equal to the difference gk(x)− gm(x),
then the sum (the inner potential of the output unit) of the inputs to the output
unit from the two parts approximates the discriminant functions:

gk(x) = gm(x) + u(k) = log
Pk(θ1|x)
Pk(θ2|x)

, k = 1, · · · , m− 1. (12)

Fig. 1a. 1b.

5 Training and Simulations

Since the training is carried out by (7), the activation function of the output
unit must be the logistic function. In accordance with (12), we divide the inner
potential of the output unit into two components G(x, w) and U(k, w). They



Bayesian Learning of Neural Networks 257

are the inputs from the main and additional parts of the network respectively.
Then,

En(w) =
1
n

n∑
t=1

{σ(G(x(t), w) + U(k(t), w)) − ξ(x(t), k(t), θ
(t)
j )}2. (13)

It can be seen from this equation that the main part of the network, (responsible
for G(x(t), w), is trained on each arrival of a training triplet (x(t), k(t), θ

(t)
j ), but

the connection weights of the additional part (responsible for U(x(t), w) are
trained separately.

We present two simple examples of simulations to show that the theoretically
obtained algorithm works well. To this end, simple examples may be enough. The
examples used for illustrations involve only two categories with two situations.
The activation functions of the output unit and the hidden layer units are the
logistic function and the input units are linear. The network was trained with a
sequence of 1000 triplets (x, γ, θ). It is a mixture of triplets generated in the two
situations having even probabilistic chances of generating a signal. Fig. 2a, 3a
are the state-conditioned probabilities, Fig. 2b, 3b are the exact posterior prob-
abilities Pk(θ1|x) = σ(gk(x)), k = 1, 2, of the category 1 theoretically obtained
and Fig. 2c,3c are their approximations obtained by simulations. If we artificially
adjust the connection weights the discriminant functions can be approximated

Fig. 2a. 2b. 2c.

Fig. 3a. 3b. 3c.
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with any level of accuracy. The prior probabilities of the first and second cate-
gories are 0.7 and 0.3 in the situation 1, and 0.3 and 0.7 in the situation 2. The
capabilities of the networks were tested by distinct 1000 signals (x, γ).

In the first example, the state-conditioned probability distributions are bino-
mial, B(9, 0.4) and B(9, 0.6), as illustrated in Fig. 2a. This is the case where the
log ratio of the posterior probabilities is linear. The discriminant functions ob-
tained by simulations are slightly distinct from those theoretically obtained. But
the classification capability of the trained network was exactly the same as the
theoretical discriminant functions gk(x). Since the observable are integer-valued,
a small deviation of the approximated discriminant function does not affect the
decision.

In the second example, the state-conditioned probability distributions are nor-
mal, N(−0.8, 1.2) and N(0.8, 0.8), as illustrated in Fig. 3a. In this case the log
ratio is a quadratic function. The training sequence was constructed randomly
but it was a little biased. Among 1000 observables, there was only one x greater
than 3, though theoretically 4 observables are expected. The approximations
of the discriminant functions obtained by simulations are also slightly deviated
from theoretical ones for x, |x| > 2. This is because the density of training sig-
nals is low in that domain. In spite of this deviation, the decisions of categories
for 970 observables coincide with the theoretical decision. The deviation of the
curve in the area |x| > 2 does not necessarily imply a great statistical L2 error,
because the probability density in the domain is low.

6 Discussions

Thus a single Bayesian neural network, with a simple additional structure, can
be used in several situations. The discriminant function is divided into two parts,
gk(x) = gm(x) + u(k). The main part of the network is trained to approximate
gm(x) with the whole sequence of teaching signals, and the respective units of the
additional part to approximate the constants u(k), k = 1, · · · , m−1, respectively
with the small numbers of signals generated at the respective situations. Since
training of the main part is harder, this method of learning is reasonable. We can
replace the additional input (s1, · · · , sm−1) by a scalar input, say k ∈ {1, · · · , m},
using an additional structure which can be trained to realize the function u(k)
with u(m) = 0. The idea of this paper may be extended to the case where the
conditional distributions depend on the situation, if they can be separated into
a common main part and the individual simple parts respectively.

This paper is written assuming that the number of the categories is two.
However, using the method stated in [5], the number of categories can be in-
creased with any restriction. The number of the units of the neural network is
the minimum or close to the minimum. In the case of statistical learning, the
generalization capability of the network is particularly important. Too many
units adversely affect the generalization capability. Our network with minimal
number of units may be more suitable for statistical learning.
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Abstract. This paper describes a new data mining algorithm to learn Bayesian 
networks structures from incomplete data based on extended Evolutionary pro-
gramming (EP) method and the Minimum Description Length (MDL) principle. 
This problem is characterized by a huge solution space with a highly multimo-
dal landscape. The algorithm presents fitness function based on expectation, 
which converts incomplete data to complete data utilizing current best structure 
of evolutionary process. The algorithm adopts a strategy to alleviate the undu-
late phenomenon. Aiming at preventing and overcoming premature conver-
gence, the algorithm combines the niche technology into the selection mecha-
nism of EP. In addition, our algorithm, like some previous work, does not need 
to have a complete variable ordering as input. The experimental results illustrate 
that our algorithm can learn a good structure from incomplete data. 

1   Introduction 

The Bayesian belief network is a powerful knowledge representation and reasoning 
tool under conditions of uncertainty. Recently, learning the Bayesian network from a 
database has drawn noticeable attention of researchers in the field of artificial intelli-
gence. To this end, researchers developed many algorithms to induct a Bayesian net-
work from a given database [1], [2], [3], [4], [5], [6]. 

Very recently, researchers have begun to tackle the problem of learning the net-
work from incomplete data. A major stumbling block in this research is that when in 
closed form expressions do not exist for the scoring metric used to evaluate network 
structures. This has led many researchers down the path of estimating the score using 
parametric approaches such as the expectation-maximization (EM) algorithm [7]. 
However, it has been noted [7] that the search landscape is large and multimodal, and 
deterministic search algorithms find local optima. An obvious choice to combat the 
problem is to use a stochastic search method.  

This paper developed a new data mining algorithm to learn Bayesian networks 
structures from incomplete data based on extended Evolutionary Programming (EP) 
method and the Minimum Description Length (MDL) principle. The algorithm pre-
sents fitness function by using expectation, which converts incomplete data to com-
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plete data utilizing current best structure of evolutionary process. The algorithm 
adopts a strategy to alleviate the undulate phenomenon. Another important character-
istic of our algorithm is that, in order to preventing and overcoming premature con-
vergence, we combine the niche technology [8] into the selection mechanism of EP. 
Furthermore, our algorithm, like some previous work, does not need to impose the 
restriction of having a complete variable ordering as input. 

We’ll begin by briefly introducing Bayesian network and MDL principle. Next we 
will introduce the extended EP method. In section 4, we will describe the algorithm 
based on the extended EP method and the MDL metric. In the end, we will conduct a 
series of experiments to demonstrate the performance of our algorithm and sum up the 
whole paper in section 5 and 6, respectively. 

2   Bayesian Networks and MDL Metric 

2.1   Bayesian Networks 

A Bayesian network is a directed acyclic graph (DAG), nodes of which are labeled 
with variables and conditional probability tables of the node variable given its parents 
in the graph. The joint probability distribution (JPD) is then expressed by the formula: 

))(|(),,(
1

1 ii
ni

n xxPxxP πΠ
=

=  (1) 

where )( ixπ is the configuration of iX ’s parent node set )( iXΠ .   

2.2   The MDL Metric 

The MDL metric [9] is derived from information theory and incorporates the MDL 
principle. With the composition of the description length for network structure and the 
description length for data, the MDL metric tries to balance between model accuracy 
and complexity. Using the metric, a better network would have a smaller score. Simi-
lar to other metrics, the MDL score for a Bayesian network, S , is decomposable and 
could be written as in equation 2. The MDL score of the network is simply the sum-

mation of the MDL score of )( iXΠ  of every node iX  in the network. 
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i
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According to the resolvability of the MDL metric, equation 2 can be written when 
we learn Bayesian networks form complete data as follow: 
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Where N  is population size. 
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The problem of learning Bayesian networks from incomplete data is much more 
difficult than for learning from complete data because the MDL metric no longer 
resolves into formula 3. 

3   The Extended EP Method 

Although EP was first proposed as an evolutionary algorithm to artificial intelligence, 
it has been recently applied to many numerical and combinatorial optimization prob-
lems successfully. 

EP applies mutation operators. We can know by father analyzing EP that the 
mutation operation modifies aspects of the parent randomly according to a statis-
tical distribution. So the mutation operation can not only provide evolutionary 
chance for the individuals, but also produce the undulate phenomenon. The algo-
rithm adopts a strategy to alleviate the undulate phenomenon. We examine the 
offspring after finishing mutation operation. If the fitness of the offspring indi-
vidual is not as good as the parent, we can consider that the evolutionary process 
produce a serious undulate phenomenon. Then, the parent will instead of the off-
spring to compete. 

A niche is a stable sub-population of competing prototypes sharing the same envi-
ronmental resources. The niche technology is a mature effective and important 
method of keeping population variety. So the niche technology can prevent and over-
come premature convergence effectively. The niche technology has three selection 
methods, which are preselection, crowding and sharing.  

We combine the niche technology (crowding) into the selection mechanism of 
EP and put the new selection process in force to keep population variety and pre-
vent premature convergence after learning the characteristics of the niche tech-
nology.  

Define the standard Euclidean distance for the two random individuals 

),( 11 ηx , ),( 22 ηx , 

= −
−
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n
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The selection method of niche-EP is as follows. For each selected individual, q  
individuals compare with it. If the standard Euclidean distance S for the selected 
individual and the certain individual of the q  individuals is less than the constant 
dist , the two individuals do not compare with each other. Then for the certain 
individual, it loses a “win”. Those individuals which are correspondingly dense are 
reduced the times of “win” and the livability in the offspring by using niche-EP. 
This method has no influence on other individuals. It can keep multi-niche and 
population variety. So it can also prevent premature convergence. 
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4   Learning Bayesian Network from Incomplete Data 

The algorithm we propose is shown below. 

1. Set to 0. 
2. Create an initial population, Pop(t), of PS random DAGs. The initial popula-

tion size is PS. 
3. Convert incomplete data to complete data utilizing a DAG of the initial popu-

lation randomly 
4. Each DAG in the population Pop(t) is evaluated using the MDL metric. 
5. While t is smaller than the maximum number of generations G 

a) Each DAG in Pop(t) produces one offspring by performing mutation op-
erations. If the offspring has cycles, assign a poor fitness. If choices of 
set of edges exist, we randomly pick one choice. 

b) The DAG in Pop(t) and all new offspring are stored in the intermediate 
population Pop’(t).The size of Pop’(t) is 2*PS. If the fitness of the off-
spring individual is not as good as the parent, the parent will instead of 
the offspring to compete.  

c) Conduct a number of pair-wise competitions over all DAGs in Pop’(t). 
Then perform selection operations according to Section 3. 

d) Select PS DAGs with the highest scores from Pop’(t) and store them in 
the new population Pop(t+1). 

e) Remain the best individual and convert incomplete data to complete data. 
f) Increase t by 1 

6. Return the DAG with lowest MDL metric found in any generation of a run as 
the result of the algorithm. 

5   Experimental Results and Analyses 

We have conducted a number of experiments to evaluate the performance of our algo-
rithm. The learning algorithms take the data set only as input. The data set is derived 
from ALARM network (http://www.norsys.com/netlib/alarm.htm).   

Firstly, we generate 5,000 cases from this structure and learn a Bayesian network 
from the data set ten times. Then we select the most perfect network structure as the 
final structure. We also compare our algorithm with a classical GA algorithm. The 
algorithms run without missing data. The MDL metric of the original network struc-
tures for the ALARM data sets of 5,000 cases is 81,219.74. 

The population size PS is 30 and the maximum number of generations is 5,000. We 
employ our learning algorithm to solve the ALARM problem. The value of q is set to 

be 5. We also implemented a classical GA to learning the ALARM network. The one-
point crossover and mutation operations of classical GA are used. The crossover 

probability cp  is 0.9 and the mutation probability mp  is 0.01. The MDL metric for 

our learning algorithm and the classical GA are delineated in Figure 1. 
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Fig. 1. The MDL metric for the ALARM network 

From Figure 1, we see that the value of the average of the MDL metric for ex-
tended EP is 81258.9 and the value of the average of the MDL metric for the GA is 
8,1789.4. We find our learning algorithm evolves good Bayesian network structures 
at an average generation of 4187.5. The GA obtains the solutions at an average gen-
eration of 4495.4. Thus, we can conclude that our learning algorithm finds better 
network structures at earlier generations than the GA does. Our algorithm can also 
prevent and overcome the premature convergence. 

Our algorithm generates 1000, 10000 cases from the original network for training 
and testing. The algorithm runs with 10%, 20%, 30%, and 40% missing data. The 
experiment runs ten times for each level of missing data. Using the best network from 
each run we calculate the log loss. The log loss is a commonly used metric appropri-
ate for probabilistic learning algorithms. Figure 2 shows the comparison of log loss 
between our algorithm and Friedman (1998b) [10]. 

As can be seen from figure 2, the algorithm finds better predictive networks at 
10%, 20%, 30%, and 40% missing data than Friedman (1998b) does. 

 

Fig. 2. The Comparison of log loss 
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6   Conclusions 

In this paper we describe a novel evolutionary algorithm for learning Bayesian net-
works from incomplete data. This problem is extremely difficult for deterministic 
algorithms and is characterized by a large, multi-dimensional, multi-modal search 
space. The experimental results show that our learning algorithm can learn a good 
structure from incomplete data. 
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Abstract. We present a Bayesian approach to ordinal regression. Our
model is based on a hierarchical mixture of experts model and performs
a soft partitioning of the input space into different ranks, such that
the order of the ranks is preserved. Experimental results on benchmark
data sets show a comparable performance to support vector machine and
Gaussian process methods.

1 Introduction

Many applications in Machine Learning require the prediction of ordered cate-
gories, and thereby ask of us to bridge the gap between regression and classi-
fication problems. Ordinal regression, or ranking, often arise when a judgment
of preference is made. In collaborative filtering, for example, we seek to predict
a consumer’s rating of a novel item on an ordinal scale such as good > average
> bad, using past ratings of similar items. The problem shares properties with
classification since the targets are discrete and finite, but also with regression
estimation by the existence of an ordering in the target space.

In this paper we adopt a Bayesian approach to the ordinal regression problem,
based on the hierarchical mixture of experts (HME) model (Jordan & Jacobs,
1994; Waterhouse et al. 1996). The HME model consists of a hierarchy of ‘ex-
perts’, where each expert models some data-generating process on a subset of
the data. We simplify each expert to an indicator function, such that an expert
is responsible for labeling a pattern with a certain rank on a subset of the input
space. The ordering of the targets is imposed by a left-to-right assignment of
ranks to experts in a binary HME tree.

2 Learning From Examples

We are given a data set D of independent and identically distributed examples of
real-valued input vectors X = {xn}N

n=1 and corresponding targets y = {yn}N
n=1.

The targets come from a space Y consisting of a finite number of ranks, Y =
{1, . . . , R}>. The subscript > denotes that there is an ordering between the
ranks, and can be interpreted as ‘preferred to’. For simplicity we use integers to
indicate the ordered set of ranks, but any labels will do. Given a new example
x∗ and the observed data, we wish to determine the probability distribution of
its rank, P (y∗ = r|x∗,D).

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 267–272, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. A binary mixture of experts tree for
ordinal regression. The expert (leaf) nodes
are indicator functions, each responsible for
labeling one possible rank. Here 1A is one
if A is true, and zero otherwise. The gating
nodes indicate the probability of following
the left—or conversely right—branch down
the tree to a rank. The structure of the
HME tree, with a left-to-right assignment
of ranks to the ‘experts’, encapsulates the
ordinal regression problem.

3 Hierarchical Mixture of Experts for Ordinal Regression

We formulate the distribution of the ordinal target variables with a binary mix-
ture of experts tree. Figure 1 illustrates such a tree, where the leaves, called
‘experts’, are component distributions of the targets. The non-leaf nodes, called
‘gates’, form coefficients that mix the experts. Each gate is conditioned on an
input variable and indicates the probability of following its left—or conversely
right—branch down the tree; consequently the gates perform a soft partitioning
of the input space. This soft partitioning is used as our ordinal regression model.

We associate a binary variable zi with each gate, and set it to one if the left
branch is followed from the ith gate. The parameters of the model are the real-
valued weight vectors of the gates, which we indicate with W = {wi}I

i=1. The
experts are labeled with discrete labels 1, . . . , R, and we require the experts to be
indicator functions. Hence, given expert r, the probability that it labeled (x, y)
is one if y = r, and zero otherwise. With a left-to-right assignment of ranks
to the experts, the structure of the HME tree and the resulting partitioning
of the input space impose a natural ordering on the targets. In this paper we
restrict ourselves to complete binary trees, although a more judicious choice of
tree structure, based on evidence maximization, can be made.

The probability of y having rank r, given x, is equal to the probability that
expert r was responsible for generating the target. Equivalently it is equal to the
probability of correctly setting the binary indicator variables zi to form a path
from the root to the rth ‘expert’,

P (y = r|x,W) =
∏

i:root→r

P (zi|x,wi). (1)

We use notation i : root→ r to indicate that the product is taken over the gates
on the unique path from the root to the rth expert, and note that summing
(1) over all ranks give unity. By defining σ(a) = 1/(1 + e−a), the probability of
following the left branch from the ith gate is

P (zi = 1|x,wi) = σ(w

i x).
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Throughout this paper, we implicitly augment input vectors with a bias clamped
at 1. From (1), the likelihood of observing the entire data set is

P (D|W) ≡ P (y|X,W) =
N∏

n=1

∏
i:root→yn

P (zin|xn,wi). (2)

3.1 The Posterior

A probabilistic formulation—often prone to overfitting, as in the familiar case
of supervised learning—can be found by maximizing the likelihood (2) with
respect to the model parameters W. We rather use the usual Bayesian approach
of making predictions by computing the expected value of P (y∗ = r|x∗,W)
for a new example x∗ with respect to the posterior distribution of W. For the
purpose of obtaining this posterior distribution from Bayes’ theorem, we place
a Gaussian prior on each gate’s parameter vector,

p(wi|αi) =
(αi

2π

)d/2

exp
{
− αi

2
w


i wi

}
,

and combine it with the likelihood (2), normalized by the evidence. The hyper-
parameter αi controls the width of the prior.

The weight vector of gate i, conditioned on the observed data, is independent
of the parameters of the other gates, and only dependent on the examples that
were labeled by its left and right subtrees. As a notational convenience, let Ti

indicate the set of experts that are leaves in the subtree with gate i as root. Define
Di to be the subset of examples associated with Ti. From Bayes’ theorem, the
posterior distribution of each gate’s parameters is

p(wi|Di, αi) =
P (Di|wi)p(wi|αi)

p(Di|αi)
(3)

∝
∏

n:yn∈Ti

σ(w

i xn)zin(1− σ(w


i xn))1−zin exp
{
− αi

2
w


i wi

}
. (4)

The full posterior is simply the product over all individual gate posterior distri-
butions, p(W|D,α) =

∏I
i=1 p(wi|Di, αi).1

3.2 Inference

To determine the rank of a new example x∗, we marginalize over the posterior
distribution of the weights, given the observed data:

P (y∗ = r|x∗,D,α) =
∫
P (y∗ = r|x∗,W) p(W|D,α) dW

=
∏

i:root→r

∫
P (zi|x∗,wi) p(wi|Di, αi) dwi. (5)

1 Ideally we want p(W|D) =
∫

p(W|D, α)p(α|D) dα, a matter that we shall touch on
in Section 3.3.
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Fig. 2. An example showing four ranks. Shown from left to right is the expected rank;
most probable rank; posterior probabilities of ranks 1 to 4.

Figure 2 illustrates a toy problem with four ranks, and the respective posterior
probabilities of each rank.

It is not possible to perform the integration in (5) analytically, so we make a
Laplace approximation (MacKay, 1992) to each p(wi|Di, αi). Laplace’s method
involves a quadratic approximation of the log-posterior around its mode: the
negative logarithm of the posterior (3) is maximized over wi to give the most
probable weight vector wMPi

. We find wMPi
by setting the first derivative of

− ln p(wi|Di, αi) to zero and solving with a standard Newton-Raphson method.
The second-order Taylor expansion of − ln p(wi|Di, αi) around its maximum
wMPi

allows us to approximate the posterior with a Gaussian distribution with
mean wMPi

and variance-covariance matrix A−1
i . Here Ai is the Hessian, the

matrix of second derivatives −∇2 ln p(wi|Di, αi) evaluated at the most probable
parameter values wMPi

. This leads to an approximation of (5) with

P (y∗ = r|x∗,D,α) !
∏

i:root→r

∫
P (zi|x∗,wi) Normal(wi;wMPi

,A−1
i ) dwi. (6)

The probability P (zi = 1|x∗,wi) = σ(w

i x∗) has a linear dependence on the

weight parameter through the scalar ai = w

i x∗, and hence the dimensionality

of the integral can be reduced by finding the probability density p(ai|x∗,D) =
1/
√

2πs2i ·exp{−(ai−aMPi)
2/2s2i } with the mean and variance given by aMPi =

w

MPi

x∗ and s2i = x

∗ A−1

i x∗ respectively. The marginalized output, where each
of the integrals in the product (6) is effectively P (zi|x∗,Di, αi), is therefore

P (zi = 1|x∗,Di, αi) = ψ(aMPi
, s2i ) ≡

∫
σ(ai) Normal(ai; aMPi

, s2i ) dai.

The integral of a sigmoid times a Gaussian is approximated by ψ(aMPi , s
2
i ) !

σ(κ(s2i ) · aMPi
), with κ(s2i ) = 1/

√
1 + πs2i /8 (MacKay, 1992), so that we make

a final prediction with

P (y∗ = r|x∗,D,α) !
∏

i:root→r

σ(κ(s2i ) · aMPi
).

3.3 Finding Values for Hyperparameters α

The preferred Bayesian treatment for hyperparameters such as α is to integrate
them out of any predictions with p(wi|Di) =

∫
p(wi|Di, αi)p(αi|Di) dαi. We
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will assume rather that the hyperparameter posterior p(αi|Di) is sharply peaked
around its most probable value αMPi

, so that p(wi|Di) ! p(wi|Di, αMPi
). The

hyperparameters which maximize the posterior p(αi|Di) need to be found; by
assuming a non-informative hyperprior over αi, this task amounts to maximizing
the likelihood term (or evidence: the denominator in (3)). The log of the evidence
as a function of αi is ln p(Di|αi) = d

2 lnαi−αi

2 w

MPi

wMPi− 1
2 ln |Ai|+c. Following

MacKay (1992), maximizing the log-evidence with respect to αi leads to αMPi
=

(d − αiTrace(A−1
i ))/w


MPi
wMPi

, which we use as a re-estimation formula for
αi. The Hessian and most probable weights are recomputed, and the process
repeated until convergence of αi.

3.4 Nonlinear Decision Boundaries

Nonlinearity is introduced to the model with a fixed set of basis functions, and
we replace w
x by

∑M
m=1 wmφm(x) = w
φ(x). For simplicity, we let the basis

functions be shared over all the gates. For practical results, we use radial basis
functions, φm(x) = exp{− 1

2h2 ‖x − μm‖2}, and keep one basis function fixed
at unity (the bias). The basis function centres are set by a k-means clustering
on each rank. The M basis functions used in each gate are the collection of
all basis functions over the ranks. The width h of the basis functions is set to
twice the average spacing between the cluster centres. We defer other methods
of implementing the gates to Sec. 5.

4 Experimental Results

The proposed HME approach to ordinal regression was evaluated on benchmark
data sets from Chu & Ghahramani (2004), who have discretized the targets from
the data sets, normally used for metric regression, into 5 and 10 ordinal ranks
using equal-length binning. The data were partitioned into training and test sets,
with a repartitioning performed 20 times on each data set.2

We evaluate the accuracy by taking the most likely rank as the predicted
rank ŷn, and comparing it to the true rank yn. If there are N ′ elements in the
test set, the mean zero-one error averages the number of incorrect predictions
with 1

N ′
∑N ′

n=1 1ŷn �=yn . For the nonlinear case we added 10 basis functions per
rank to the set of basis functions used. Table 1 shows the averages over 20 trials,
along with the standard deviation. The first three columns are taken from Chu
& Ghahramani (2004), who have compared Gaussian processes with Gaussian
basis functions to the support vector machine (SVM) approach of Shashua &
Levin (2003). Both a MAP estimation with Laplace approximation (MAP) and
Expectation Propagation algorithm with variational bound (EP) was used as
inference techniques to implement the Gaussian process. The HME model with
both linear and nonlinear gates gives comparable performance.

2 The datasets and partitions are downloadable from www.gatsby.ucl.ac.uk/∼chuwei/
ordinalregression.html.
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Table 1. The test results of five algorithms. The data sets used, with (attributes,
training instances, test instances), are Di. Diabetes (2, 30, 13); Py. Pyrimidines (27,
50, 24); Tr. Triazines (60, 100, 86); Wi. Wisconsin Breast Cancer (32, 130, 64); St.
Stocks Domain (9, 600, 350); Ab. Abalone (8, 1000, 3177).

Mean zero-one error (5 equal-length bins)
Data SVM GP (MAP) GP (EP) HME (linear) HME (nonlinear)
Di. 57.31±12.09% 54.23±13.78% 54.23±13.78% 51.54±6.16% 57.69±15.28%
Py. 41.46±8.49% 39.79±7.21% 36.46±6.47% 46.25±8.32% 47.71±8.16%
Tr. 54.19±1.48% 52.91±2.15% 52.62±2.66% 56.80±8.50% 55.12±4.55%
Wi. 70.78±3.73% 65.00±4.71% 65.16±4.65% 74.61±4.83% 68.36±2.91%
St. 10.81±1.70% 11.99±2.34% 12.00±2.06% 19.26±1.80% 14.43±2.16%
Ab. 21.58±0.32% 21.50±0.22% 21.56±0.36% 21.91±0.30% 21.91±0.30%

Mean zero-one error (10 equal-length bins)
Di. 90.38±7.00% 83.46±5.73% 83.08±5.91% 76.54±7.27% 80.77±9.50%
Py. 59.37±7.63% 55.42±8.01% 54.38±7.70% 64.79±8.60% 60.83±9.21%
Tr. 67.91±3.63% 63.72±4.34% 64.01±3.78% 68.37±5.65% 69.30±4.37%
Wi. 85.86±3.78% 78.52±3.58% 78.52±3.51% 88.75±4.11% 79.53±4.53%
St. 17.79±2.23% 19.90±1.72% 19.44±1.91% 32.00±3.82% 23.87±2.24%
Ab. 44.32±1.46% 42.60±0.91% 42.27±0.46% 43.14±0.52% 42.56±1.27%

5 Conclusion and Future Work

We have described a novel Bayesian approach to ordinal regression, based on a
hierarchical mixture of experts tree. The model was made analytically tractable
with a Laplace approximation to the parameter posterior: future work will in-
volve using Markov-chain Monte Carlo methods to average (integrate) predic-
tions over the posterior distribution. The gates can equally well be impemented
with Gaussian processes, a matter worthy of investigation.

Ulrich Paquet is supported by a Commonwealth Scholarship, and expresses his
thanks to the Commonwealth Scholarship Commission. Andrew Naish-Guzman
holds a Millennium Scholarship.
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Abstract. A novel predictor for traffic flow forecasting, namely spatio-
temporal Bayesian network predictor, is proposed. Unlike existing meth-
ods, our approach incorporates all the spatial and temporal information
available in a transportation network to carry our traffic flow forecasting
of the current site. The Pearson correlation coefficient is adopted to rank
the input variables (traffic flows) for prediction, and the best-first strat-
egy is employed to select a subset as the cause nodes of a Bayesian net-
work. Given the derived cause nodes and the corresponding effect node
in the spatio-temporal Bayesian network, a Gaussian Mixture Model is
applied to describe the statistical relationship between the input and
output. Finally, traffic flow forecasting is performed under the criterion
of Minimum Mean Square Error (M.M.S.E.). Experimental results with
the urban vehicular flow data of Beijing demonstrate the effectiveness of
our presented spatio-temporal Bayesian network predictor.

1 Introduction

Short-term traffic flow forecasting, which is to determine the traffic volume in
the next time interval usually in the range of five minutes to half an hour, is an
important issue for the application of Intelligent Transportation Systems (ITS)
[1]. Up to the present, some approaches ranging from simple to elaborate on this
theme were proposed including those based on neural network approaches, time
series models, Kalman filter theory, simulation models, non-parametric regres-
sion, fuzzy-neural approach, layered models, and Markov Chain models [1]∼[8].
Although these methods have alleviated difficulties in traffic flow modelling and
forecasting to some extent, from a careful review we can still find a problem,
that is, most of them have not made good use of spatial information from the
viewpoint of networks to analyze the trends of the object site. Though Chang
et al utilized the data from other roadways to make judgmental adjustments,
the information was still not used to its full potential [9]. Yin et al developed a
fuzzy-neural model to predict the traffic flows in an urban street network whereas
it only utilized the upstream flows in the current time interval to forecast the
selected downstream flow in the next interval [7].

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 273–278, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The main contribution of this paper is that we proposed an original spatio-
temporal Bayesian network predictor, which combines the available spatial in-
formation with temporal information in a transportation network to implement
traffic flow modelling and forecasting. The motivation of our approach is very
intuitive. Although many sites may be located at different even distant parts
of a transportation network, there exist some common sources influencing their
own traffic flows. Some of the distributed sources include shopping centers, home
communities, car parks, etc. People’s activities around these sources usually obey
some consistent laws in a long time period, such as the usually common work-
ing hours. To our opinion, these hidden sources imply some information useful
for traffic flow forecasting in different sites. Therefore, construct a causal model
(Bayesian network) among different sites for traffic flow forecasting is reasonable.
This paper covers how to use the information from a whole transportation net-
work to design feasible spatio-temporal Bayesian networks and carry our traffic
flow forecasting of the object sites. Encouraging experimental results with real-
world data show that our approach is rather effective for traffic flow forecasting.

2 Methodology

In a transportation network, there are usually a lot of sites (road links) related
or informative to the traffic flow of the current site from the standpoint of causal
Bayesian networks. However, using all the related links as input variables (cause
nodes) would involve much irrelevance, redundancy and would be prohibitive for
computation. Consequently, a variable selection procedure is of great demand.
Up to date many variable selection algorithms include variable ranking as a
principal or auxiliary selection mechanism because of its simplicity, scalability,
and good empirical success [10]. In this article, we also adopt the variable ranking
mechanism, and the Pearson correlation coefficient is used as the specific ranking
criterion defined for individual variables.

2.1 Variable Ranking and Cause Node Selection

Variable ranking can be regarded as a filter method: it is a preprocessing step,
independent of the choice of the predictor [11]. Still, under certain independence
or orthogonality assumptions, it may be optimal with respect to a given predictor
[10]. Even when variable ranking is not optimal, it may be preferable to other
variable subset selection methods because of its computational and statistical
scalability [12]. This is also the motivation of our using the best-first search
strategy to select the most relevant traffic flows from the ranking result as final
cause nodes of a Bayesian network.

Consider a set of m samples {xk, yk}(k = 1, ...,m) consisting of n input
variable xk,i(i = 1, ..., n) and one output variable yk. Variable ranking makes
use of a scoring function S(i) computed from the value xk,i and yk(k = 1, ...,m).
By convention, we assume that a high score is indicative of a valuable variable
and that we sort variables in decreasing order of S(i). Furthermore, let Xi denote
the random variable corresponding to the ith component of input vector x, and Y
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denote the random variable of which the outcome y is a realization. The Pearson
correlation coefficient between Xi and Y can be estimated by:

R(i) =
∑m

k=1(xk,i − xi)(yk − y)√∑m
k=1(xk,i − xi)2

∑m
k=1(yk − y)2

(1)

where the bar notation stands for an average over the index k [10].
In this article, we use the norm |R(i)| as a variable ranking criterion. After

the variable ranking stage, a variable selection (cause node selection) process
is adopted to determine the final cause nodes (input variables) for predict the
effect node (output). Here we use the best-first search strategy to find the cause
nodes as the first several variables in the ranking list because of its fastness,
simplicity and empirical effectiveness.

2.2 Flow Chart for Traffic Flow Forecasting

Given the derived cause nodes and the effect node in a Bayesian network, we
utilize the Gaussian Mixture Model (GMM) and the Competitive EM (CEM) al-
gorithm to approximate their joint probability distribution. Then we can obtain
the optimum prediction formulation as an analytic solution under the M.M.S.E.
criterion. For details about the GMM, CEM algorithm and the prediction for-
mulation, please refer to articles [8][13][14].

Now we describe the flow chart of our approach for traffic flow forecasting.
First the data set is divided into two parts, one serving as training set for input
variable (cause node) selection and parameter learning, and the other test set.
The flow chart can be given as follows: 1) Choose an object road site whose
traffic flow should be forecasted (effect node) and collect all the available traffic
flows in a traffic network as the original input variables; 2) Compute the Pearson
correlation coefficients between the object traffic flow (effect node) and the input
variables on the training set with different time lags respectively, and then select
several most related variables in the ranking list as the final cause nodes of the
spatio-temporal Bayesian network; 3) Derive the optimum prediction formula-
tion using GMM and CEM algorithm detailed in articles [8][14]; 4) Implement
forecasting on the test set using the derived formulation.

Conveniently, the flow chart can be largely reduced and for real-time utility
when forecasting a new traffic flow, because the cause node selection and the
prediction formulation need only be computed one time based on the historical
traffic flows (learning stage), and thus can be derived in advance.

3 Experiments

The field data analyzed in this paper is the vehicle flow rates of discrete time
series recorded every 15 minutes along many road links by the UTC/SCOOT
system in Traffic Management Bureau of Beijing, whose unit is vehicles per hour
(veh/hr). Fig. 1 depicts a real patch used to verify our proposed predictor. The
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Fig. 1. The analyzed transportation network

raw data for utility are of 25 days and totally 2400 sample points taken from
March, 2002. To validate our approach, the frist 2112 points (training set) are
employed to carry out input cause node selection and to learn parameters of the
spatio-temporal Bayesian network, and the rest (test set) are employed to test
the forecasting performance.

In addition, we utilize the the Random Walk method and Markov Chain
method as base lines to evaluate our presented approach [8]. Random Walk is
a classical method for traffic flow forecasting. Its core idea is to forecast the
current value using its last value, and can be formulated as:

x̂(t+ 1) = x(t) . (2)

Markov Chain method models traffic flow as a high order Markov chain. It has
shown great merits over several other approaches for traffic flow forecasting [8].
In this paper the joint probability distribution for the Markov Chain method is
also approximated by the GMM whose parameters are estimated through CEM
algorithm. The number of input variables is also taken as 4 (same as in [8])
for each object site in our approach. This entire configuration is to make an
equitable comparison as much as possible. Now the only difference between our
Bayesian network predictor and the Markov Chain method is that we utilize the
whole spatial and temporal information in a transportation network to forecast
while the latter only uses the temporal information of the object site.

We take road link Gd as an example to show our approach. Gd represents the
vehicle flow from upstream link F to downstream link G. All the available traffic
flows which may be informative to forecast Gd in the transportation network
includes {Ba,Bb,Bc, Ce, Cf, ...,Ka,Kb,Kc,Kd}. Considering the time factor,
to forecasting the traffic flow Gd(t) (effect node), we need judge the above sites
with different time indices, such as {Ba(t− 1), Ba(t− 2), ..., Ba(t− d)}, {Bb(t−
1), Bb(t−2), ..., Bb(t−d)}, etc. In this paper, d is taken as 100 empirically. Four
most correlated traffic flows which are selected with the correlation variable
ranking criterion and the best-first strategy for five different object traffic flows
and the corresponding correlation coefficient values are listed in Table 1.
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Table 1. Four most correlated traffic flows for five object traffic flows

Object traffic flows Strongly correlated traffic flows (cause nodes)
Ch(t) Bc(t − 1) Hl(t − 1) Ch(t − 1) Fe(t − 3)

0.971 0.968 0.967 0.966
Dd(t) Dd(t − 1) Ch(t − 1) Bc(t − 1) Hl(t − 2)

0.963 0.961 0.959 0.959
Fe(t) Fe(t − 1) Ba(t − 1) Fe(t − 2) Fe(t − 96)

0.983 0.978 0.964 0.961
Gd(t) Gd(t − 1) Fh(t − 1) Hl(t − 1) Fe(t − 1)

0.967 0.962 0.962 0.957
Ka(t) Hi(t − 1) Cf(t − 1) Ka(t − 1) Bb(t − 2)

0.967 0.967 0.967 0.966

Table 2. A performance comparison of three methods for short-term traffic flow fore-
casting of five different road links

Methods Ch Dd Fe Gd Ka
Random Walk 79.85 70.99 157.60 177.57 99.20
Markov Chain 68.51 66.15 122.65 151.31 80.46
Spatio-Temporal Bayesian Network 65.95 57.46 115.07 141.37 73.02

With the selected cause nodes (input traffic flows), we can approximate the
joint probability distribution between the input and output with GMM, then
derive the optimum prediction formulation for road link Gd. In addition, we
also conducted experiments on four other traffic flows. Table 2 gives the fore-
casting errors denoted by Root Mean Square Error (RMSE) of all the five road
links through Random Walk method, Markov Chain method and our predictor.
In the same column of Table 2, the smaller RMSE corresponds to the better
forecasting accuracy. From the experimental results, we can find the significant
improvements of forecasting capability brought by the spatio-temporal Bayesian
network predictor which integrates both spatial and temporal information for
forecasting.

4 Conclusions and Future Work

In this paper, we successfully combine the whole spatial with temporal informa-
tion available in a transportation network to carry out short-term traffic flow
forecasting. Experiments show that distant road links in a transportation net-
work can have high correlation coefficients, and this relevance can be employed
for traffic flow forecasting. This knowledge would greatly broaden people’s tradi-
tional knowledge about transportation networks and the transportation forecast-
ing research. Many existing methods can be illuminated and further developed
on the scale of a transportation network. In the future, how to extend the pre-
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sented spatio-temporal Bayesian network predictor to forecast traffic flows in
case of incomplete data would be a valuable direction.
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Abstract. In many data mining applications, the data manifold is of
lower dimension than the dimension of the input space. In this paper, it is
proposed to take advantage of this additional information in the frame of
variational mixtures. The responsibilities computed in the VBE step are
constrained according to a discrepancy measure between the Euclidean
and the geodesic distance. The methodology is applied to variational
Gaussian mixtures as a particular case and outperforms the standard
approach, as well as Parzen windows, on both artificial and real data.

1 Introduction

Finite mixture models [1] are commonly used for clustering purposes and mod-
eling unknown densities. Part of their success is due to the fact that their pa-
rameters can be computed in an elegant way by the expectation-maximization
algorithm (EM) [2]. Unfortunately, it is well known that mixture models suffer
from an inherent drawback. EM maximizes iteratively the data log-likelihood,
which is an ill-posed problem that can lead to severe overfitting; maximizing the
likelihood may result in setting infinite probability mass on a single data point.

Among others, the variational Bayesian framework was introduced in order
to avoid this problem [3]. In variational Bayes (VB) a factorized approximation
of the joint posterior of the latent variables and the model parameters is used
in order to compute a variational lower bound on the marginal data likelihood.
In addition, VB allows determining the optimal number of components in the
mixture by comparing the value of this variational lower bound. In [4] a variant
was proposed to perform automatic model selection.

Recently, manifold Parzen [5] was introduced in order to improve nonpara-
metric density estimation when the data is lying on a manifold of lower dimen-
sionality than the one of the input space. In this paper, a related technique for
variational mixtures is proposed by constraining the responsibilities according
to the mismatch between the Euclidean and the geodesic distance. The key idea
is to favor the directions along the manifold when estimating the unknown den-
sity, rather than wasting valuable density mass in directions perpendicular to the
manifold orientation. The approach is applied to VB Gaussian mixtures as a par-
ticular case. Manifold constrained variational Gaussian mixtures (VB-MFGM)
are compared experimentally to standard VB-FGM and standard Parzen.
� C.A. is supported by the European Commission project IST-2000-25145.
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2 Variational Bayes for Mixtures Models

Let X = {xn}N
n=1 be an i.i.d. sample, Z = {zn}N

n=1 the latent variables asso-
ciated to X and Θ = {θm}M

m=1 the model parameters, M being the number of
mixture components. Finite mixture models are latent variable models in the
sense that we do not know by which component a data sample was generated.
We may thus associate to each data sample xn a binary latent vector zn, with
latent variables znm ∈ {0, 1} that indicate which component has generated xn

(znm = 1 if xn was generated by component m and 0 otherwise).
In Bayesian learning, both the latent variables Z and the model parameters

Θ are treated as random variables. The quantity of interest is the marginal data
likelihood, also called incomplete likelihood (i.e. of the observed variables only).
For a fixed model structure HM , it is obtained by integrating out the nuisance
parameters Z and Θ:

p(X |HM ) =
∫

Θ

∫
Z

p(X,Z,Θ|HM )dZdΘ . (1)

This quantity is usually untractable. However, for any arbitrary density q(Z,Θ)
a lower bound on p(X |HM ) can be found using Jensen’s inequality:

log p(X |HM ) ≥
∫

Θ

∫
Z

q(Z,Θ) log
p(X,Z,Θ|HM )

q(Z,Θ)
dZdΘ (2)

= log p (X |HM )−KL [q(Z,Θ)||p (Z,Θ|X,HM )] , (3)

where KL[·] is the Kullback-Leibler (KL) divergence. It is easily seen from (3)
that the equality holds when q(Z,Θ) is equal to the joint posterior p(Z,Θ|X,HM).

In VB, the variational posterior approximates the joint posterior by assuming
the latent variables and the parameters are independent:

p(Z,Θ|X,HM ) ≈ q(Z,Θ) = q(Z)q(Θ) . (4)

By assuming this factorization, the lower bound (2) on the marginal likelihood
is tractable and the gap between both can be minimized by minimizing the KL
divergence between the true and the variational posterior. Setting the derivatives
of KL with respect to q(Z) and q(Θ) to zero results in an EM-like scheme [6]:

VBE step : q(Z) ∝ exp (EΘ{log p(X,Z|Θ,HM )}) . (5)
VBM step : q(Θ) ∝ p(Θ|HM ) exp (EZ{log p(X,Z|Θ,HM )}) . (6)

In these equations EΘ{·} and EZ{·} denote respectively the expectation with
respect to Θ and Z, and p(X,Z|Θ,HM ) is the complete likelihood (i.e. of the
observed and unobserved variables). Note also that the prior p(Θ|Hm) on the
parameters appears in (6). If we choose p(Θ|Hm) conjugate1 to the exponen-
tial family, learning in the VB framework consists then simply in updating the
parameters of the prior to the parameters of the posterior.
1 The prior p(Θ) is said to be conjugate to r(Θ) if the posterior q(Θ) is of the same

form as p(Θ), that is q(Θ) ∝ p(Θ)r(Θ). In (6), r(Θ) is of the exponential family.
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Since sample X is i.i.d., the posterior q(Z) factorizes to
∏

n q(zn). Fur-
thermore, in the case of mixture models q(zn) factorizes as well, such that
q(Z) =

∏
n

∏
m q(znm). The resulting VBE step for mixture modes is:

q(znm) ∝ exp (Eθm{log p(xn, zn|θm,HM )}) , (7)

where Eθm{·} is the expectation with respect to θm. As in EM, the quantities
computed in the VBE step are the responsibilities, each of them being propor-
tional to the posterior probability of having a componentm when xn is observed.

3 Manifold Constrained Mixtures Models

Nonlinear data projection techniques [7,8] aim at finding the lower dimensional
data manifold (if any) embedded in the input space and at unfolding it. A central
concept is the geodesic distance, which is measured along the manifold and not
through the embedding space, akin the Euclidean distance. The geodesic distance
thus takes the intrinsic geometrical structure of the data into account.

Data Manifold. Consider two data points xi and xj on the multidimensional
manifoldM of lower dimensionality than the one embedding space. The geodesic
distance between xi and xj is defined as the minimal arc length in M connect-
ing both data samples. In practice, such a minimization is untractable. However,
geodesic distances can easily be approximated by graph distances [9]. The prob-
lem of minimizing the arc length between two data samples lying on M reduces
to the problem of minimizing the length of path (i.e. broken line) between these
samples, while passing through a number of other data points of M. In order
to follow the manifold, only the smallest jumps between successive samples are
permitted. This can be achieved by using either the K-rule, or the ε-rule. The
former allows jumping to the K nearest neighbors. The latter allows jumping to
samples lying inside a ball of radius ε centered on them. Below, we only consider
the K-rule as the choice for ε is more difficult in practice.

The data and the set of allowed jumps constitute a weighted graph, the
vertices being the data, the edges the allowed jumps and the edge labels the
Euclidean distance between the corresponding vertices. In order to be a distance,
the path length (i.e. the sum of successive jumps) must satisfy the properties of
non-negativity, symmetry and triangular inequality. The first and the third are
satisfied by construction. Symmetry is ensured when the graph is undirected.
For the K-rule, this is gained by adding edges as follows: if xj belongs to the K
nearest neighbors of xi, but xi is not a neighbor of xj then the corresponding
edge is added. Besides, extra edges are added to the graph in order to avoid
disconnected parts. For this purpose a minimum spanning tree [10] is used.

The only remaining problem for constructing the distance matrix of the
weighted undirected graph is to compute the shortest path between all data
samples. This is done by repeatedly applying Dijkstra’s algorithm [11], which
computes the shortest path between a source vertex and all other vertices in a
weighted graph provided the labels are non-negative (which is here the case).
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Manifold Constrained VBE step. Let us denote the Euclidean and graph
distances (i.e. approximate geodesic distances) between sample xn and the com-
ponent center μm by δe(xn,μm) and δg(xn,μm) respectively. The exponential
distribution E(y|η, ζ) = ζ−1 exp {−(y − η)/ζ} is suitable to measure the discrep-
ancy between both distances by setting η to δe(xn,μm)2 and y to δg(xn,μm)2,
since δe(xn,μm) ≤ δg(xn,μm). The manifold constrained responsibilities are
obtained by penalizing the complete likelihood by the resulting discrepancy:

q′(znm) ∝ exp
(
Eθm{log p(xn, zn|θm,HM )E(δg(xn, μm)2|δe(xn, μm)2, ζ = 1)})

≈ q(znm) exp
(
δe(xn, αm)2 − δg(xn, αm)2

)
, (8)

where it is assumed that the variance of μm is small and αm = Eθm
{μm}. Choos-

ing ζ equal to 1 leaves the responsibility unchanged if both distances are iden-
tical. However, when the mismatch increases, q′(znm) decreases, which means
that it is less likely that xn was generated by m because the corresponding
geodesic distance is large compared to the Euclidean distance. This results in a
weaker responsibility, reducing the influence of xn when updating the variational
posterior of the parameters of m in the VBM step.

4 Manifold Constrained Variational Gaussian Mixtures

In this section, the manifold constrained variational Bayes machinery is applied
to the Gaussian mixture case. A finite Gaussian mixture (FGM) [1] is a linear
combination ofM multivariate Gaussian distributions with means {μm}M

m=1 and
covariance matrices {Σm}M

m=1: p̂(x) =
∑M

m=1 πmN (x|μm,Σm), with x ∈ R
d.

The mixing proportions {πm}M
m=1 are non-negative and must sum to one. Their

conjugate prior is a Dirichlet p(π1, ..., πM ) = D(π1, ..., πM |κ0) and the conju-
gate prior on the means and the covariance matrices is a product of Normal-
Wisharts p(μm,Σm) = N (μm|α0,Σm/β0)W

(
Σ −1

m |γ0,Λ0

)
. The variational

posterior factorizes similarly as the prior and is of the same functional form.
The posterior on the mixture proportions q(π1, ..., πM ) are jointly Dirichlet
D(π1, ..., πM |κ1, ..., κm) and the posterior on the means and the covariance ma-
trices q(μm,Σm) are Normal-Wishart N (μm|αm,Σm/βm)W

(
Σ −1

m |γm, Λm

)
.

Training Procedure. The parameters of manifold constrained variational
Gaussian mixtures (VB-MFGM) can be learnt as follows:
1. Construct the training manifold by the K-rule and compute the associated

distance matrix δg(xi,xj) by Dijkstra’s shortest path algorithm.
2. Repeat until convergence:

Update the distance matrix of the expected component means.
Find for each αm the K nearest training samples {xk}K

k=1 and compute
its graph distances to all training data: δg(xn,αm) = mink{δg(xn,xk)+
δe(xk,αm)}.

VBE step. Compute the manifold constrained responsibilities using (8):

q′(znm) ∝ π̃mΛ̃ 1/2
m exp

{
−γm

2
(xn − αm)T Λm (xn − αm) − d

2βm

}
× exp

{
δe(xn, αm)2 − δg(xn, αm)2

}
, (9)
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where log π̃m ≡ ψ(κm) − ψ (
∑

m κm) and log Λ̃m ≡
∑d

i=1 ψ
(

γm+1−i
2

)
+

d log 2− log |Λm|, with ψ(·) the digamma function.
VBM step. Update the variational posteriors by first computing the fol-

lowing quantities:

μ̄m =
∑

n q′(znm)xn∑
n q′(znm)

, Σ̄m =
∑

n q′(znm)C(xn, μ̄m)∑
n q′(znm)

, π̄m =
∑

n q′(znm)
N

,

where C(xn, μ̄m) = (xn − μ̄m) (xn − μ̄m)T. Next, update the parame-
ters of the posteriors:

αm =
Nπ̄mμ̄m + β0α0

βm
, βm = Nπ̄m + β0 , γm = Nπ̄m + γ0 , (10)

Λ −1
m = Nπ̄mΣ̄m +

Nπ̄mβ0C(μ̄m, α0)
βm

+ Λ −1
0 , κm = Nπ̄m + κ0 . (11)

The computational overhead at each iteration step is limited with respect to
standard VB-FGM, as the number of components in the mixture is usually small
and updating δg(xn,αm) does not require to recompute δe(xi,xj).

5 Experimental Results and Conclusion

In order to asses the quality of the density estimators the average negative
log-likelihood of the test set {xq}Nt

q=1 is used: ANLL = − 1
Nt

∑Nt

q=1 log p̂(xq).
In the following, VB-MFGM is compared to standard VB-FGM and standard
nonparametric density estimation (Parzen) [12] on artificial and real data.

The first example is presented for illustrative purposes. The data samples
are generated from a two dimensional noisy spiral: x1 = 0.04t sin t + ε1 and
x2 = 0.04t cos t + ε2, where t follows a uniform U(3, 15) and ε1, ε2 ∼ N (0, .03)
is zero-mean Gaussian noise in each direction. The training, validation and test
sets have respectively 300, 300 and 10000 samples. The optimal parameters are
M = 15 andK = 5. The estimators are shown in Figure 1. On the one hand, VB-
MFGM avoids manifold related local minima in which standard VB-FGM may
get trapped into by forcing the expected component centers to move through
the training manifold and the covariance matrices to be oriented along it. On
the other hand, VB-MFGM clearly produces smoother estimators than Parzen.

In order to asses the performance of VB-MFGM on a real data set, the density
of the Abalone2 data is estimated after normalization. Note that the information
regarding the sex is not used. The available data is divided in 2500 training, 500
validation, and 1177 test points. The optimal parameters areM = 7 andK = 20.
The optimal width of the Gaussian kernel in Parzen is 0.17. The ANLL of test
set for Parzen windows, VB-FGM and VB-MFGM are respectively 2.49, 0.84
and 0.37. Remark that the improvement of VB-MFGM compared to VB-FGM
is statistically significant (the standard error of the ANLL is 0.025).

2 The Abalone data is available from the UCI Machine Learning repository:
htttp://www.ics.uci.edu/ mlearn/MLRepository.html.
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(a) Learn. Manif. (b) VB-MFGM (-.50). (c) VB-FGM (-.45). (d) Parzen (-.48)

Fig. 1. Training manifold of a noisy spiral, as well as the VB-MFGM, the standard
VB-FGM and the Parzen window estimator. For each one, the ANLL of the test set is
between parentheses (and the best is underlined).

Conclusion. The knowledge that the data is lying on a lower dimensional man-
ifold than the dimension of the embedding space can be exploited in the frame of
variational mixtures. By penalizing the complete data likelihood, the responsi-
bilities (VBE step) are biased according to a discrepancy between the Euclidean
and the geodesic distance. Following this methodology, manifold constrained
variational Gaussian mixtures (VB-MFGM) were constructed. It was demon-
strated experimentally that the resulting estimators are superior to standard
variational approaches and nonparametric density estimation. In the future, we
plan to investigate alternative mismatch measures.

References

1. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York, NY. (2000)
2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete

data via the EM algorithm (with discussion). J. Roy. Stat. Soc., B 39 (1977) 1–38.
3. Attias, H.: A variational bayesian framework for graphical models. In Solla, S.,

Leen, T., Mller, K.R., eds.: NIPS 12. MIT Press. (1999)
4. Corduneanu, A., Bishop, C.M.: Variational bayesian model selection for mixture

distributions. In Jaakkola, T., Richardson, T., eds.: AISTATS 8, Morgan Kaufmann
(2001) 27–34.

5. Vincent, P., Bengio, Y.: Manifold Parzen windows. In S. Becker, S.T., Obermayer,
K., eds.: NIPS 15. MIT Press (2003) 825–832.

6. Beal, M.J.: Variational Algorithms for Approximate Bayesian Inference. PhD
thesis, University College London (UK). (2003)

7. Lee, J.A., Lendasse, A., Verleysen, M.: Nonlinear projection with curvilinear dis-
tances: Isomap versus Curvilinear Distance Analysis. Neucom 57 (2003) 49–76.

8. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290 (2000) 2319–2323.

9. Bernstein, M., de Silva, V., Langford, J., Tenenbaum, J.: Graph approximations to
geodesics on embedded manifolds. Techn. report Stanford University, CA. (2000)

10. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River,
NJ. (1996)

11. Dijkstra, E.W.: A note on two problems in connection with graphs. Num. Math.
1 (1959) 269–271.

12. Parzen, E.: On estimation of a probability density function and mode. Ann. Math.
Stat. 33 (1962) 1065–1076.



Handwritten Digit Recognition with
Nonlinear Fisher Discriminant Analysis�

Pietro Berkes

Institute for Theoretical Biology, Humboldt University Berlin,
Invalidenstraße 43, D - 10115 Berlin, Germany

p.berkes@biologie.hu-berlin.de

http://itb.biologie.hu-berlin.de/~berkes

Abstract. To generalize the Fisher Discriminant Analysis (FDA) al-
gorithm to the case of discriminant functions belonging to a nonlinear,
finite dimensional function space F (Nonlinear FDA or NFDA), it is suf-
ficient to expand the input data by computing the output of a basis of
F when applied to it [1,2,3,4]. The solution to NFDA can then be found
like in the linear case by solving a generalized eigenvalue problem on the
between- and within-classes covariance matrices (see e.g. [5]). The goal of
NFDA is to find linear projections of the expanded data (i.e., nonlinear
transformations of the original data) that minimize the variance within
a class and maximize the variance between different classes. Such a rep-
resentation is of course ideal to perform classification. The application
of NFDA to pattern recognition is particularly appealing, because for a
given input signal and a fixed function space it has no parameters and
it is easy to implement and apply. Moreover, given C classes only C − 1
projections are relevant [5]. As a consequence, the feature space is very
small and the algorithm has low memory requirements and high speed
during recognition.

Here we apply NFDA to a handwritten digit recognition problem us-
ing the MNIST database, a standard and freely available set of 70,000
handwritten digits (28 × 28 pixels large), divided into a training set
(60,000 digits) and a test set (10,000 digits). Several established pattern
recognition methods have been applied to this database by Le Cun et
al. [6]. Their paper provides a standard reference work to benchmark
new algorithms.

We perform NFDA on spaces of polynomials of a given degree d,
whose corresponding basis functions include all monomials up to order
d in all input variables. It is clear that the problem quickly becomes
intractable because of the high memory requirements. For this reason, the
input dimensionality is first reduced by principal component analysis. On
the preprocessed data we then apply NFDA by expanding the training
patterns in the polynomial space and solving the linear FDA eigenvalue
problem. As mentioned above, since we have 10 classes we only need
to compute the first 9 eigenvectors. Since the within-class variance is
minimized, the patterns belonging to different classes tend to cluster in

� This work has been supported by a grant from the Volkswagen Foundation.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 285–287, 2005.
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Table 1. Performance comparison Error rates on test data of various algorithms.
All error rates are taken from [6].

METHOD % ERRORS
Linear classifier 12.0
K-Nearest-Neighbors 5.0
1000 Radial Basis Functions, linear classifier 3.6
Best Back-Propagation NN 2.95

(3 layers with 500 and 150 hidden units)

Reduced Set SVM (5 deg. polynomials) 1.0
LeNet-1 (16 × 16 input) 1.7
LeNet-5 0.95
Tangent Distance (16 × 16 input) 1.1

Nonlinear Fisher Discriminant Analysis 1.5
(3 deg. polynomials, 35 input dim)

the feature space when projected on the eigenvectors. For this reason we
classify the digits with a simple method such as Gaussian classifiers.

We perform simulations with polynomials of degree 2 to 5. With poly-
nomials of degree 2 the explosion in the dimensionality of the expanded
space with increasing number of input dimensions is relatively restricted,
so that it is possible to use up to 140 dimensions. With higher order
polynomials one has to rely on a smaller number of input dimensions,
but since the function space gets larger and includes new nonlinearities,
one obtains a remarkable improvement in performance. The best perfor-
mance is achieved with polynomials of degree 3 and 35 input dimensions,
with an error rate of 1.5% on test data. This error rate is comparable to
but does not outperform that of the most elaborate algorithms (Table 1).
The performance of NFDA is however remarkable considering the sim-
plicity of the method and the fact that it has no a priori knowledge on
the problem, in contrast for example to the LeNet-5 algorithm [6] which
has been designed specifically for handwritten character recognition. In
addition, for recognition, NFDA has to store and compute only 9 func-
tions and has thus small memory requirements and a high recognition
speed.

It is also possible to formulate NFDA using the kernel trick, in which
case one can in principle use function spaces of infinite dimensionality
[1,2,3,4]. However, the limiting factor in that formulation is the number of
training patterns, which makes it not realistic for this application. The
performance of NFDA could be further improved using for example a
more problem-specific preprocessing of the patterns (e.g., by increasing
the size of the training set with new patterns generated by artificial
distortion of the original one), boosting techniques, or mixture of experts
with other algorithms [5,6].

Keywords: nonlinear fisher discriminant analysis, pattern recognition,
digit recognition, feature extraction.
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Separable Data Aggregation in Hierarchical Networks of 
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Abstract. In this paper we consider principles of such data aggregation in 
hierarchical networks of formal neurons which allows one to preserve the 
separability of the categories. The postulate of the categories separation in the 
layers of formal neurons is examined by means of the concept of clear and 
mixed dipoles. Dependence of separation of the categories on the feature 
selection is analysed. 

Keywords: Multilayer perceptrons, dipolar neural models, linear separability, 
feature selection. 

1   Introduction 

Hierarchical networks of formal neurons are often called multilayer perceptrons [1]. 
There are still unresolved fundamental questions related to hierarchical networks of 
formal neurons [2]. For example, the problem of determining the structure 
(architecture) of such neural networks is still open. 

A basic principle of optimising the neural structure of networks can be based on 
the postulate of separable data aggregation [3]. The separable layer of formal neurons 
preserves the separation of feature vectors belonging to different learning sets 
(categories). The ranked and the dipolar strategies of the designing of separable layers 
of formal neurons have been proposed ([3], [4]). These strategies have been 
implemented through the minimisation of the convex and piecewise linear (CPL) 
criterion functions.  

The problem of aggregation of different streams of data by separated sublayers of 
formal neurons is considered in this paper. Such data streams could be viewed as 
generated from different sources and represented as data submatrices in different 
feature subspaces. Multisource data aggregation could be carried out by applying a 
dipolar approach in particular feature subspaces. 

2   Separability of Learning Sets 

Let us assume that the objects’ Oj (j = 1,….,m) descriptions stored in a given database 
are represented as the so called feature vectors xj = [xj1,.....,xjn]

T, or as points in the n-

                                                           
1  This work was partially supported by the  W/II/1/2005 and SPB-M (COST 282) grants from 

the Białystok University of Technology and by the 16/St/2005 grant from the Institute of 
Biocybernetics and Biomedical Engineering PAS.  
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dimensional feature space F[n]. The components (features) xi (xi∈F[n]) of the vector 
x are numerical results of a variety of examinations of a given object O. The feature 
vectors x can be of mixed, qualitative-quantitative type (xi∈{0,1} or xi ∈ R).  

We assume that the database contains the descriptions xj(k) of m objects Oj(k)  
(j = 1,......,m) labelled in accordance with their category (class) ωk (k = 1,….,K). The 
learning set Ck contains mk  feature vectors xj(k) assigned to the k-th category ωk 

Ck =  {xj(k)}   (j ∈ Ik) (1) 

where Ik is the set of indices j of the feature vectors xj(k) belonging to the class ωk. 

Definition 1: The learning sets Ck (1) are separable in the feature space F[n], if they 
are disjoined in this space (Ck ∩ Ck' = ∅, if k ≠ k'). It means that the feature vectors 

xj(k) and xj'(k′)  belonging to different learning sets Ck and Ck' cannot be equal: 

 (k ≠ k')  (∀j ∈ Ik) and  (∀j′∈ Ik')    xj(k) ≠ xj'(k′) (2) 

We are also considering the separation of the sets Ck (1) by the hyperplanes  
H(wk,θk) in the feature space F[n]  

H(wk,θk) = {x: (wk)
Tx =  θk}. (3) 

where wk = [wk1,....,wkn]
T∈ Rn is the weight vector, θk∈ R1 is the threshold, and 

(wk)
Tx is the inner product.  

Definition 2: The learning sets (1) are linearly separable in the n-dimensional feature 
space F[n] if each of the sets Ck can be fully separated from the sum of the remaining 
sets Ci by some hyperplane H(wk,θk) (3): 

(∀k ∈ {1,...,K})  (∃ wk,θk)  (∀xj(k)∈ Ck)   (wk)
Txj(k)  > θk. 

                         and  (∀xj(k)∈ Ci, i ≠ k)  (wk)
Txj(k) < θk 

(4) 

In accordance with the relation (4), all the vectors xj(k) belonging to the learning 
set Ck are situated on the positive side ((wk)

Txj(k) > θk) of the hyperplane H(wk,θk) (3) 
and all the feature vectors xj(i) from the remaining sets Ci are situated on the negative 
side ((wk)

Txj(k) < θk) of this hyperplane. 
The linear separability of the learning sets Ck (1) may result from the linear 

independence of the feature vectors xj(k) [5]:   

Remark 1: If m feature vectors xj(k) constituting the learning sets Ck (1) are linearly 
independent in a given feature space F[n], then these sets are linearly separable (4).   

Remark 2: If m feature vectors xj(k) (j∈Iind) are linearly independent in the n-
dimensional feature space F[n], and m ≤ n, then there exists at least one such feature 
subspace Fk[m-1] of dimension m – 1, that the augmented feature vectors yj[m] = 
[xj[m-1]T,1]T (xj[m-1] ∈ Fk[m-1]) are linearly independent. 

The reduced feature vectors xj[m-1] belonging to the feature subspace Fk[m-1] 
(xj[m-1] ∈ Fk[m-1]) are obtained from the vectors xj(k) by neglecting identical (n – m 
+1) features xi The learning sets Ck[m-1] (1) composed of the vectors xj[m-1] are 
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linearly separable (4) in the feature subspace Fk[m-1]. A quality of the feature 
subspaces Fk[m-1] assuring the linear separability can be determined by taking into 
account additional properties of the separating hyperplanes H(wk,θk) (3). Such an 
additional property can be directed at separating hyperplanes H(wk,θk) (3) with the 
maximal margin, similarly as it is done in the Support Vector Machines approach [6].  

The feature selection problem aimed at finding optimal feature subspaces Fk[m-1] 
and separating hyperplanes H(wk

∗[m-1],θk
∗) (3) can be formulated and solved without 

exhaustive search among feature subsets on the base of minimisation of the convex 
and piecewise linear (CPL) criterion functions [5]. 

3   Layers of Formal Neurons 

The formal neuron NF(w,θ) can be defined by the  activation function rt(w,θ; x)   

 1       if      wTx  ≥   θ   
           

    r  = rt(w,θ; x) =  

 0       if      wTx  <   θ   

(5) 

where w = [w1,....,wn]
T∈ Rn is the weight vector, θ∈ R1 is the threshold, and r is the 

output signal. 
The layer of L formal neurons NF(wk,θk) transforms feature vectors x into the 

output vectors r = [r1,.....,rL]T with L binary components ri ∈ {0,1} which are 
determined by the equation  ri =  rt(wi,θi;x) (8): 

r =  r(W;x)  =  [rt(w1,θ1;x),......., rt(wL,θL;x)]T (6) 

where W = [w1
T, θ1,......., wL

T,  θL]T is the vector of the layer parameters. 
The  transformed learning sets C′k (1) are constituted by the vectors rj(k) 

C′k =  {rj(k)}   (j∈ Ik)     (7) 

where rj(k) =  r(W;xj(k)) (6). 
We are examining such properties of the transformation (6) which assure the 

separability (2) or the linear separability (4) of the transformed sets C′k (7). Such a 
property can be achieved through the separation of dipoles [3].  

Definition 3: A pair of different feature vectors (xj(k),xj'(k')) (xj(k) ≠ xj'(k')) constitutes 

a mixed dipole if and only if these vectors belong to different classes ωk (k ≠ k'). 
Similarly, a pair of different feature vectors from the same class ωk constitutes the 
clear dipole (xj(k),xj'(k)). 

Definition 4: The formal neuron NF(wk,θk) (5) separates the dipole (xj(k),xj'(k')) if 

only one feature vector (xj(k),xj'(k')) from this pair activates (rk = rt(wk,θk;x) = 1) this 

neuron. 
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Lemma 1: The necessary and sufficient conditions for separability (Def. 1) of the 
transformed sets C′1 (7) by the layer (7) is the separation of each mixed dipole 
(xj(k),xj'(k')) by at least one neuron NF(wk,θk) of this layer. [3]. 

In order to increase the generality of the designed neural layers, the following 
postulates have been proposed and implemented as a multistage procedure [3]. 

Dipolar Designing Postulate: The hyperplane H(wl,θl) (3) designed during the l-th 
stage should separate the highest possible number of mixed and still undivided 
dipoles (xj(k),xj'(k')) and, at the same time, the lowest possible number of the clear 

dipoles (xj(k),xj'(k)) should be divided. 

Ranked Designing Postulate: The hyperplane H(wl,θl) (3) designed during the l-th 
stage should separate ((wl)

Txj(k) > θl) as many  feature vectors xj(k) as possible  from 
one set Ck[l] under the condition that no vector xj'(k') from the remaining sets Ck'[l] is 

separated. 

The symbol Ck[l] used in the above postulate denotes the learning set Ck (1) after 
neglecting such feature vectors xj(k) which have been separated by the hyperplanes 
H(wl,θl) (3) during the previous l - 1 steps. The designing procedure is stopped during 
the L-th step when all the sets Ck[L] become empty.  

Lemma 2: The layer of L formal neurons NF(wl,θ l) (5) designed in accordance with 
the ranked postulate produces such sets C′k (7) which are linearly separable (4). [4] 

The procedure of the separable layer designing can be based on a sequence of 
minimisation of the dipolar or the ranked criterion functions Ψk(w,θ), which belong to 
the family of the convex and piecewise linear (CPL) criterion function [3], [4]. The 
parameters (wk

∗,θk
∗) constituting the minimum of the function Ψk(w,θ) define the k-th 

neuron NF(wk
∗,θk

∗) (9) of the layer and the separating hyperplane H(wk
∗,θk

∗) (3). The 
criterion functions Ψk(w,θ) can be specified in accordance with one of the above 
postulates. 

4   Decomposition of the Feature Space  

Let us consider a decomposition of the feature space F[n] into a number L of 
disjoined feature subspaces Fi[ni] of dimensionality ni. 

F[n]  = F1[n1] ∪ F2[n2] ∪......∪ FL[nL] (8) 

where n = n1 + n2 +......+ nI, and Fi[ni]∩ Fi '[ni'] = ∅ if i ≠ i'.   

The learning sets Ck (1) can be decomposed in accordance with the above principle.  

Ck[ni] =  {xj(k[ni])}   (j∈ Ik) (9) 

where Ck[ni] is obtained from the learning sets Ck (1) by neglecting such features xi 
which do not belong to the subspace Fi[ni] (xi∉Fi[ni]).  



 Separable Data Aggregation in Hierarchical Networks 293 

The data sets Ck[ni] can be seen as different representations of the objects Oj(k) (1) 
in particular feature subspaces Fi[ni].  The reduction of the feature space F[n] into the 
subspace Fi[ni] can result in the deprivation of the learning sets Ck (1) or the dipoles 

separability (2). The separability of the mixed dipole (xj(k[ni]),xj'(k'[ni])) in the 

subspace Fi[ni] results in the separabilty of the dipole (xj(k),xj'(k')) in the feature space 

F[n], but there is no reverse implication: 

(xj(k[ni]) ≠ xj'(k'[ni]))  (xj(k) ≠ xj'(k′)) (10) 

Definition 5: The i-th sublayer of formal neurons NFi(wk[ni],θk) is separable in the 
feature subspace Fi[ni], if and only if each dipole (xj(k[ni]),xj'(k'[ni])) (xj(k[ni]) ≠ 

xj'(k'[ni])) is separated (Def. 4) by at least one neuron NFi(wk[ni],θi). 

Let us consider for a moment the transformation rj(k[ni]) = ri(Wi;xj(k)) (7) of the 
vectors xj(k[ni]) in the feature subspace Fi[ni] (9) by a separable sublayer of formal 
neurons NFi(wk[ni],θk). As a result, the feature vectors xj(k) have the below forms.   

x'j(k)  =  [xj(k[n1])
T,....., ri(Wi;xj(k))T, ......., xj(k[nL])T] T    (11) 

The sufficient conditions for separability (2) of the sets C′k= {x'j(k)} of  the vectors 
x'j(k) (11) can be based on the separability of the neural layer in the subspace Fi[ni]. 

5   Separable Data Aggregation  

Separable data aggregation could be a primary goal in designing successive layers of 
a hierarchical network. Data aggregation means here decreasing the number of 
different feature vectors rj(k) (6) resulting from the transformation by the neuronal 
layer. The transformation (6) aggregates the number of the feature vectors xj(k) (1) 
into one output vector rj. We assume here that the different indices n and n′ (n ≠ n′) 
are related to different output vectors rn and rn′.  

(n ≠ n')     rn  ≠  rn′   (12) 

Let us introduce the concept of the active fields Sn in order to characterise the 
aggregation  properties [4]. Each active field Sn is a convex polyhedron with the walls 
defined by the hyperplanes H(wk,θk) (3). 

Definition 6:  The n-th active field Sn of the neural layer (6) is constituted by such 
feature vectors x which are transformed (integrated ) in one output vector rn (rn ≠ 0) .  

S n = S(W, rn)  = {x:  r(W, x) = rn} (13) 

Definition 7: The clear active field Sn contains the labelled feature vectors xj(k) 
belonging to only one learning set Ck (1). The mixed active field Sn contains the 
labelled feature vectors xj(k) belonging to more than one learning set Ck (1). 
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Remark 3: The layer of L formal neurons NF(wk,θk) (9) is separable if each active 
field Sn of this layer is clear and each labelled vector xj(k) belongs to some set  (13).   

The following relation is fulfilled between the active fields Sn[l] (13) in the 
hierarchical network of two successive layers of formal neurons NF(wk,θk) (9) [4]    

Sn[l]  =   ∪  Sn’ [l-1]  
  n’∈ I(l,n) 

(14) 

where I(l,n) is the set of indices n′ of such active fields Sn′[l′-1] of the previous, (l–1)-
th layer, which are aggregated in one field Sn[l] of the l – th layer. 

6   Concluding Remarks 

As it follows from the relation (14), an increase in the number of layers in a 
hierarchical network should result in a summation (aggregation) of some active fields 
Sn (13) and in a decrease in the number of different output vectors rn (12). The 
principles sketched out in this paper are aimed at designing separable layers of formal 
neurons with clear active fields Sn[l] (13). Relatively large clear fields Sn[l] give a 
chance for obtaining a separable layer with large generalisation power. In order to 
increase generalisation power, a given neural layer should aggregate the possibly 
greatest number of clear dipoles (xj(k),xj'(k)) under the condition of separating a 

sufficiently high fraction of the mixed dipoles (xj(k),xj'(k')) [3].  

Designing neural layers should be related to the problems of feature space 
decomposition and reduction of dimensionality. If the number of the independent 
feature vectors xj(k) used by the neural sublayer (6) is equal to m, then there is no 
need for a dimensionality grater than m–1 in the feature space of this layer [5].          
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Abstract. It is widely believed in the pattern recognition field that the number 
of examples needed to achieve an acceptable level of generalization ability de-
pends on the number of independent parameters needed to specify the network 
configuration. The paper presents a neural network for classification of high-
dimensional patterns. The network architecture proposed here uses a layer 
which extracts the global features of patterns. The layer contains neurons whose 
weights are induced by a neural subnetwork. The method reduces the number of 
independent parameters describing the layer to the parameters describing the 
inducing subnetwork. 

1   Introduction 

The great potential of the neural networks is most frequently used in pattern  recogni-
tion. The most challenging problem here is achieving the proper  generalization. 
Typical images and time-series are usually large, often with several hundred vari-
ables. Fully connected, unrestricted networks do not work well as far as recognizing 
such large patterns is concerned. 

The number of examples needed to achieve an acceptable level of generalization  
ability is dependent on the intrinsic entropy of the chosen architecture, and can be  
decreased by reducing the number of independent parameters needed to specify the 
network configuration. One of the ways to improve generalization is a reduction of  
the network structure on the base of a pruning algorithm (e.g. the Optimal Brain  
Damage [7]).  

Another deficiency of the fully-connected architectures is that the topology of the  
inputs is entirely ignored. In fact, images have a strong 2D structure, while time-series 
have a strong 1D structure. Pixels, or variables, spatially or temporally adjacent are 
correlated.  

The application of a specialized network architecture, instead of a fully-connected 
net, can reduce the number of free parameters. 

There are many papers that propose specialized network architectures for the  rec-
ognition of large patterns. Convolutional networks, for instance, use the techniques of 
local receptive fields and shared weights. These networks extract and combine  local 
features of pattern [4,5]. Principal component analysis transforms a number of corre-
lated variables into a smaller number of uncorrelated variables called principal com-
ponents and is frequently adopted for dimensionality reduction [1]. 
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The idea that has been followed in the IWANN is based on the invention of  dy-
namically-calculated weights, which results in giving the individual neurons the abil-
ity to transform large patterns, using only a limited number of parameters describing 
their connection weights. The proposed network architecture extracts and transforms 
the global features of the patterns. 

2   Network Architecture 

The IWANN network makes use of dynamically-calculated connection weights. As  a 
result, the number of parameters describing neural network connections is reduced. 

 

Fig. 1. Induced weights network scheme 

The input layer of the network proposed can be one- or multidimensional, and every 
neuron in this layer is described by its geometric position.  

The layer is a data source for the induced weights layer. It contains radial basis  
neurons which apply the Gaussian transformation function. The input of this radial 
basis transformation function is the Euclidean distance between the input vector and 
the vector of weights calculated by the inducing subnetwork, multiplied by the bias.  
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where, )1(
iy output of the i-th neuron in induced weights layer, ()ϕ  Gaussian  trans-

formation function, )1(
ib bias of neuron, )(M

jiy output of neuron in output (M-th) layer 

of inducing network equal to the weight of the j-th input of the i-th neuron of the  in-

duced layer, and ( )o
jy output of j-th input neuron – network input. 

The task of the inducing neural subnetwork consists in positioning of high-
dimensional centers. The inducing network is a multilayer perceptron: 
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where,  )(m
jiy  output of i-th neuron in the m-th layer for j-th network input, ( )m

ikw  

weight of the k-th input of the i-th neuron in m-th layer. 
The number of neurons in the inducing network output layer is equal to the number 

of neurons in the induced weights layer. Geometrical positions of neurons in the input 
layer are introduced to the input layer of the inducing neural network: 

jkjky χ=)0(      (3) 

where, )0(
jky value of inducing network k-th input, jkχ - k-th coordinate of j-th input 

neuron 
The inducing network calculates connection weights between every neuron in the  

induced and input layer by using coordinates’ values of the input neurons. 
Remaining output layers of the IWANN network are perceptron layers: 
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where, )(m
iy output i-th neuron from m-th layer (m>1), ( )m

ikw  weight of the k-th input 

of the i-th neuron from m-th layer. 
The similar idea is used in the mixture of experts model, were weights of the gating 

function depend on the output of the gating network [2,3]. However, in the ME  algo-
rithm, the input of gating network are the global network inputs’ values and not geo-
metrical coordinates of these inputs. Furthermore, the gating function is a linear or 
non-linear weight function, while the induced layer uses a distance function. 

3   Learning Algorithm 

We can express the training error E as a function (5). If the transformation functions 
used in the network are continuous and differentiable, it is possible to calculate  de-
rivatives of this error function. Therefore, the proposed network can trained with the 
use of gradient learning methods. 
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where, id  and ( )M
iy   are the target and output values for training example. 

The gradient of the error function specifies the vector in whose direction the great-
est increase in E can be obtained. Our aim is to calculate the partial derivatives of er-
ror function for each weight of the network. The algorithm to calculate the error  de-
rivatives for perceptron output layers is well-known:   
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where, )(m
iδ signal error of i-th neuron in m-th perceptron layer, )1( +m

kδ signal  error 

of k-th neuron in next layer, )1( +m
kiw connection weight between i-th neuron in current 

layer and k-th neuron in the next layer, )(m
ikw weight of the i-th input of the k-th   neu-

ron in the current layer, ( )1−m
ky output of neuron in the previous layer. 

Applying the algorithm, we can obtain signal errors for the neurons of the induced 
layer, and the derivatives for biases of these neurons: 
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The values of signal error may be used to calculate errors of neurons in the output 
layer of the inducing network.  They have to be calculated individually for every j-th 
input of the induced layer: 
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Signal errors of neurons in the remaining layers are calculated by using the same 
backpropagation method as in (6). 

The derivatives for the weights of a neuron of the inducing network are the sums of 
the derivatives calculated for every j-th input of the network: 
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Owing to the evaluation of these derivatives, various gradient-based optimization 
methods can be utilized (e.g. QuickProp, RPROP).  
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4   Experiments 

The proposed neural network was applied to classification of one- and  two-
dimensional patterns. The first dataset consisted of 200 artificially generated  one-
dimensional patterns of size 100. These data were evenly divided into the training and 
test sets. The dataset contained four classes of patterns. Figure 2a shows examples of 
patterns in the dataset. 

 

 

Fig. 2.  Classes of patterns in dataset 1 (a) and dataset 2 (b) 

The base patterns were randomly scaled (60÷140%), translated horizontally (±25) 
and vertically (±0.25).  

The architecture of the neural network consisted of an induced layer with 4 neu-
rons and an output perceptron layer with 4 neurons. The inducing subnetwork was  a 
multilayer perceptron. This neural network consisted of three layers and the number 
of  neurons in the hidden layer was 10. The error function was minimized by the 
RPROP method [6]. The training was stopped after 340 epochs.  At the end of the 
training, the mean square error was 0.0022 and the percentage of wrong classifica-
tions was below 1%.  Results of a classic multilayer perceptron with the optimized 
structure (100x20x4) were 0.0352 (MSE) and 16% (wrong classifications). 

The second dataset consisted of 200 two-dimensional patterns of size 50x50. The  
patterns were evenly divided into the six classes and into the training and test datasets.  

Figure 4b contains examples of patterns in the six classes. The base patterns were 
randomly transformed by rotation (±5°) and translation of polygons vertexes (±5 pix-
els). Uniformly distributed random noise was introduced to patterns at the level of 
20%.  

The network consisted of the induced layer with 10 neurons, the output layer with 
6 neurons and the inducing subnetwork with 25 neurons in the hidden layer. 

The network was trained by the RPROP method [6]. After 1230 epochs the mean 
square error was 0.0034 and the percentage of wrong classifications was  equal to 3%. 
Results of the multilayer perceptron (2500x40x6) were 0.1134 and 41%. 
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5   Conclusions 

The experiments described in this paper show that the IWANN network is a suitable 
model for the classification of large patterns.  The presented algorithm may be of 
great help to the network designers in their time-consuming task of preprocessing the 
patterns.  The method reduces the number of independent parameters of the induced 
layer to the parameters describing the biases of neurons in this layer and parameters 
describing the inducing subnetwork. Owing to this, it is possible to obtain satisfactory 
results of classification for high-dimensional patterns with the help of a limited  num-
ber of learning examples. 
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D-23538 Lübeck, Germany
martinetz@informatik.uni-luebeck.de

http://www.inb.uni-luebeck.de

Abstract. The well-known MinOver algorithm is a simple modification of the
perceptron algorithm and provides the maximum margin classifier without a bias
in linearly separable two class classification problems. DoubleMinOver as a slight
modification of MinOver is introduced, which now includes a bias. It is shown
how this simple and iterative procedure can be extended to SoftDoubleMinOver
for classification with soft margins and with kernels. On benchmarks the ex-
tremely simple SoftDoubleMinOver algorithm achieves the same classification
performance with the same computational effort as sophisticated Support-Vector-
Machine software.

1 Introduction

The Support-Vector-Machine (SVM) [1], [2] has been applied very successfully and
become a standard tool in classification and regression tasks (e.g. [3], [4], [5]). A major
drawback, particularly for industrial applications where easy and robust implementa-
tion is an issue, is the large Quadratic-Optimization problem which has to be solved.
The users have to rely on existing software packages, which are hardly comprehensive
and, in some cases at least, error-free. This is in contrast to most Neural Network ap-
proaches, where learning has to be simple and incremental almost by definition. The
pattern-by-pattern nature of learning in Neural Networks usually leads to simple train-
ing procedures which can easily be implemented. It is desirable to have similar training
procedures also for the SVM.

Several approaches for obtaining more or less simple incremental training proce-
dures for the SVM have been introduced so far [6], [7], [8], [9]. We want to men-
tion in particular the Kernel-Adatron by Friess, Cristianini, and Campbell [6] and the
Sequential-Minimal-Optimization algorithm (SMO) by Platt [7]. The SMO algorithm
by Platt is the most widespread iterative training procedure for SVMs. It is fast and ro-
bust, but it is still not yet of a pattern-by-pattern nature and not yet as easy to implement
as one is used from Neural Network approaches.

Therefore, in this paper we will revisit and extend the MinOver algorithm which
was introduced by Krauth and Mézard [10] for constructing synaptic weight matrices
of optimal stability in spin-glass models of Neural Networks. It is well-known that Mi-
nOver yields the maximum margin hyperplane without a bias in linearly separable clas-
sification problems. We will reformulate MinOver. In this reformulation the MinOver
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c© Springer-Verlag Berlin Heidelberg 2005
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algorithm is a slight modification of the perceptron learning rule and could hardly be
simpler. Then we extend MinOver to DoubleMinOver which remains as simple as Min-
Over but now provides the maximum margin solution also for linear classifiers with a
bias. Then we will show how DoubleMinOver can be extended to SoftDoubleMinOver
for classification with soft margins and with kernels. SoftDoubleMinOver yields solu-
tions also in case the classification problem is not linearly separable. Finally, we will
present results and comparisons on standard benchmark problems.

2 The DoubleMinOver Algorithm

Given a linearly separable set of patterns xi ∈ R
D, i = 1, . . . , N with corresponding

class labels yi ∈ {−1, 1}. We want to find the hyperplane which separates the patterns
of these two classes with maximum margin. The hyperplane for classification is deter-
mined by its normal vector w ∈ R

D and its bias b ∈ R. It achieves a separation of the
two classes, if

yi(wT xi − b) > 0 for all i = 1, . . . , N

is valid. The margin Δ of this separation is given by

Δ(w, b) = min
i

[yi(wT xi − b)/||w||].

Maximum margin classification is given by the w∗, ||w∗|| = 1 and b∗ for which
Δ(w∗, b∗) = Δ∗ becomes maximal.

A simple and iterative algorithm which provides the maximum margin classification
in linearly separable cases is the well-known MinOver algorithm introduced by [10] in
the context of constructing synaptic weight matrices of optimal stability in spin-glass
models of Neural Networks. However, it only provides the maximum margin solution
if no bias b is included. The MinOver algorithm yields a vector wt which converges
against the maximum margin solution with increasing number of iterations t. This is
valid as long as a full separation, i.e. a Δ∗ > 0, exists. The MinOver algorithm works
like the perceptron algorithm, with the slight modification that with each training step t
the pattern xmin(t) out of the training set T = {xi|i = 1, . . . , N} with the worst, i.e.
the minimum distance (overlap) yiwT xi is chosen (b = 0). Hence, the name MinOver.

We now modify MinOver such that a bias b can be included. For this purpose we
divide T into the set T + of patterns with class label yi = +1 and the set T − of patterns
with class label yi = −1. Then, instead of looking for the pattern with minimum dis-
tance on T , we look for the pattern xmin+(t) with minimum distance yi(wT xi − b) on
T + and for the pattern xmin−(t) with minimum distance yi(wT xi − b) on T −. Hence,
the name DoubleMinOver.

With tmax as the number of desired iterations, DoubleMinOver works like follows:

0. Set t = 0, choose a tmax, and set wt=0 = 0.
1. Determine the xmin+(t) ∈ T + and the xmin−(t) ∈ T − which minimize yiwT

t xi

on T + and T −, respectively.
2. Set wt+1 = wt + xmin+(t)− xmin−(t).
3. Set t = t+ 1 and go to 1.) if t < tmax.
4. Determine xmin+ and xmin− according to 1. and set b=1

2 wT
tmax

(xmin+ + xmin−).
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2.1 On the Convergence of DoubleMinOver

For a given w, the margin Δ(w, b) is maximized with the b(w) for which the margin
to both classes is equal, i.e., for which

min
xi∈T +

[yi(wT xi − b(w))] = min
xi∈T −

[yi(wT xi − b(w))]

is valid. This leads to the expression of step 4. for the bias

b(w) =
1
2

(
min

xi∈T +
yiwT xi − min

xi∈T −
yiwT xi

)
=

1
2
(
wT xmin+ + wT xmin−

)
; .

We now have to look for the w which maximizes Δ(w) = Δ(w, b(w)). We obtain

Δ(w) = min
xi∈T

yi(wT xi − b(w))
||w|| = min

xi∈T +

wT xi − b(w)
||w|| = min

xi∈T −

−wT xi + b(w)
||w||

=
1
2

(
min

xi∈T +

wT xi

||w|| − max
xi∈T −

wT xi

||w||

)
.

With
Z =

{
zij = xi − xj ; |; ∀ (i, j) : xi ∈ T +, xj ∈ T −}

we obtain

Δ(w) =
1
2

min
zij

wT zij

||w|| ; .

In this formulation we can directly apply theO(t−1/2) convergence proofs for MinOver
in [10] or [11]. For both methods in fact even a O(t−1) convergence is valid [11].

2.2 DoubleMinOver in Its Dual Formulation and with Kernels

The vector wt which determines the dividing hyperplane is given by

wt =
t−1∑
τ=0

(xmin+(τ) − xmin−(τ)) =
∑
xi∈T

yini(t)xi

with ni(t) ∈ N0 as the number of times each xi has been used for training up to
step t.

∑
xi∈T ni(t) = 2t is valid. In this dual formulation the training step of the

DoubleMinOver algorithm simply consists of searching for xmin+(t) and xmin−(t) and
increasing their corresponding ni by one.

In the dual representation the inner product wT x can be written as

wT x =
∑
xi∈T

yinixT
i x; . (1)

If the input patterns x ∈ R
D are transformed into another (usually higher dimensional)

feature space by a transformation Φ(x), DoubleMinOver can work with the Kernel
K(x,x′) = Φ(x)T Φ(x′) instead of the usual inner product. At each step of the algo-
rithm where wT xi occures one then uses

wT Φ(xi) =
∑
xj∈T

yjnjK(xj ,xi) = yih (xi) ; . (2)
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3 SoftDoubleMinOver

So far linear separability of the patterns was required. Since this is not always the case,
the concept of a ”soft margin” was introduced in [1], [2]. With a soft margin training
patterns are allowed to be misclassified for a certain cost. With DoubleMinOver we can
easily realize a 2-norm soft margin.

In Cristianini and Shawe-Taylor [12] it is shown that solving the 2-norm soft margin
classification problem within a feature space implicitly defined by a kernel K(x,x′) is
equivalent to solving the hard margin problem within a feature space defined by a kernel
K̂(x,x′) for which K̂(xi,xj) = K(xi,xj)+C−1δij is valid for each xi,xj ∈ T , with
δij as the Kronecker δ which is 1 for i = j and 0 otherwise. Within the feature space
defined by K̂(x,x′) the training data are linearly separable by construction. The scalar
parameter C determines the ”hardness” of the margin. The smaller C, the softer the
margin. For C →∞ we obtain the dual formulation of DoubleMinOver (hard margin).

The SoftDoubleMinOver algorithm in its dual formulation and with kernels then
works like follows:

0. Set t = 0, choose a tmax, and set ni = 0 for i = 1, . . . , N .
1. Determine xmin+(t) ∈ T + and xmin−(t) ∈ T − which minimize

ĥ (xi) = yi

∑
xj∈T

yjnj

(
K(xj ,xi) +

δij
C

)
=
ni

C
+ h (xi)

on T + and T −, respectively.
2. Increase the nmin+ and nmin− of xmin+ and xmin− by one, respectively.
3. Set t = t+ 1 and go to 1.) if t < tmax.

4. Determine xmin+ and xmin− according to 1. and set b =1
2

(̂
h (xmin+)−ĥ (xmin−)

)
.

Having determined the ni and b via SoftDoubleMinOver, the class assignment of a new
pattern x takes place, of course, based on the original kernel. The decision depends on
whether ∑

xi∈T
yiniK(xi,x)− b

is larger or smaller than zero.

4 Experimental Results on Benchmark Problems

To validate and compare the performance of SoftDoubleMinOver1 we tested it on a
number of common classification benchmark problems. The classification benchmarks
stem from the UCI2, DELVE3 and STATLOG4 [13] collection. We compare our results

1 A SoftDoubleMinOver package is available at http://www.inb.uni-luebeck.de/maxminover
2 UCI Repository: http://www.ics.uci.edu/∼mlearn/MLRepository.html
3 DELVE Datasets: http://www.cs.utoronto.ca/∼delve/index.html
4 STATLOG Datasets: http://www.niaad.liacc.up.pt/statlog/index.html
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Table 1. Classification results obtained with SoftDoubleMinOver on standard benchmarks. For
comparison the results obtained with the C-SVM Implementation of the OSU-SVM Toolbox and
those reported in the Fraunhofer benchmark repository are listed.

C2-SDMO OSU-SVM Reference
Benchmark #TR #TE Seconds/Iter. ERR Seconds ERR ERRREF

banana 400 4900 ; 0.030/200 11.6 ± 0.83 0.031 10.4 ± 0.46 12.0 ± 0.66
br-cancer 200 77 ; 0.019/100 27.1 ± 4.96 0.012 28.2 ± 4.62 26.0 ± 4.74
diabetis 468 300 ; 0.060/300 23.3 ± 1.78 0.065 23.1 ± 1.82 24.0 ± 1.73
fl-solar 666 400 ; 0.148/300 32.4 ± 1.80 0.229 32.3 ± 1.82 32.0 ± 1.82
german 700 300 ; 0.142/200 24.1 ± 2.67 0.177 24.0 ± 2.17 24.0 ± 2.07
heart 170 100 ; 0.010/100 15.5 ± 3.22 0.006 15.2 ± 3.21 16.0 ± 3.26
image 1300 1010 ; 0.811/2000 13.1 ± 4.33 0.812 9.8 ± 0.62 3.0 ± 0.60
ringnorm 400 7000 ; 0.030/300 2.6 ± 0.41 0.021 2.5 ± 0.38 1.7 ± 0.12
splice 1000 2175 ; 0.615/500 16.1 ± 0.65 0.654 14.9 ± 0.78 11.0 ± 0.66
titanic 150 2051 ; 0.034/1500 22.4 ± 0.96 0.013 22.3 ± 1.04 22.0 ± 1.02
waveform 400 4600 ; 0.047/300 11.4 ± 0.59 0.045 10.7 ± 0.53 10.0 ± 0.43
thyroid 140 75 ; 0.004/200 4.2 ± 2.40 0.003 4.1 ± 2.42 4.8 ± 2.19
twonorm 400 7000 ; 0.057/200 2.4 ± 0.13 0.033 2.4 ± 0.14 3.0 ± 0.23
#Tr : number of training data, #Te : number of test data

with those reported in the SVM-benchmark repository of the Fraunhofer Institute5 and
results we obtained with the C-SVM of the OSU-SVM Matlab Toolbox6 that is based
on SMO [7].

Each result reported in the benchmark repository of the Fraunhofer Institute is based
on 100 different partitionings of the respective benchmark problem data into training
and test sets (Except for the splice and image benchmark which consist of 20 partition-
ings). For classification they used the standard C-SVM with RBF-kernels. The reported
classification result is the average and standard deviation over all 100 realizations. Each
partitioning is available from this repository.

Table 1 lists the average classification errors we obtained with SoftDoubleMinOver
and the OSU-SVM on the different benchmark problems. We used the default param-
eter settings of the OSU-SVM Toolbox. As the Fraunhofer Institute we used RBF-
kernels, and we took their kernel widths γ. The C values in SoftDoubleMinOver and
the OSU-SVM where chosen such that the minimum error is obtained. On all bench-
marks the simple SoftDoubleMinOver is as fast as and achieves results comparable
to those of the OSU-SVM and those reported in the Fraunhofer benchmark reposi-
tory. Only a few training steps are necessary. On the ”ringnorm”, the ”image” and the
”splice” benchmark both the OSU-SVM as well as SoftDoubleMinOver are worse than
the Fraunhofer reference. By either performing more iterations for SoftDoubleMinOver
or tweeking the parameters of the OSU-SVM one can, of course, obtain comparable re-
sults for these benchmarks, too.

5 Benchmark Repository: http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
6 OSU SVM Classifier Toolbox: http://www.ece.osu.edu/∼maj/osu svm/
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5 Conclusions

The main purpose of this paper is to present a very simple, incremental algorithm which
solves the maximum margin classification problem with or without kernels and with or
without a soft margin. SoftDoubleMinOver as an extension of MinOver learns by sim-
ply iteratively selecting patterns from the training set. Based on previous work it can
be shown that SoftDoubleMinOver converges like O(t−1) to the exact solution, with
t as the number of iteration steps. The incremental nature of the algorithm allows one
to trade-off the computational time and the precision of the obtained hyperplane. The
computational effort increases only linearly with the number of training patterns N .
For the similar Kernel-Adatron the computational effort increases with N2, however,
the Kernel-Adatron also converges exponentially with t. SoftDoubleMinOver is ad-
vantegoeus particularly for large training sets. In experiments on standard benchmark
problems SoftDoubleMinOver achieves a performance comparable to the widespread
OSU-SVM which is based on the SMO-algorithm. However, SoftDoubleMinOver as
a ”three-liner” is much easier to implement, and with its pattern-by-pattern nature it
might be a good starting point for a real on-line learning procedure for maximum mar-
gin classification.
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Abstract. We present a novel approach to two-class classification, in
which a classifier is parameterised in terms of a distribution over exam-
ples. The optimal distribution is determined by the solution of a linear
program; it is found experimentally to be highly sparse, and to yield a
classifier resistant to noise whose error rates are competitive with the
best existing methods.

1 Introduction

Many classification algorithms associate a weight with each element of the train-
ing set. In support vector machines, these weights are Lagrange multipliers in
a quadratic optimisation problem; when set correctly, they define a separating
hyperplane in the kernel-induced feature space (Schölkopf et al. (1999)). The
relevance vector machine (Tipping (2001)) places a Gaussian of constant width
over every data point and, in a Bayesian setting, assigns a weight to each such
basis function. By an explicit assumption on the form of the solution, the dis-
tribution of weights is encouraged to be sparse. Boosting methods, in contrast,
work iteratively and update the weights in response to each hypothesis chosen
by a so-called weak learner (Freund and Schapire (1995)). An example’s weight
is related to the frequency with which it has been misclassified; by appropriate
reweighting of the data, boosting algorithms encourage the weak learner to ex-
plore advantageous regions of hypothesis space. While studying the behaviour of
boosting when applied to a simple weak learner, we observed the approximate
convergence of the example weights, and the correlated convergence of the de-
cision boundary. This observation motivated the idea that a fixed distribution
over examples may be capable of inducing a useful distribution over the class
of functions available to the weak learner. In this work, we show how a novel
interpretation of example weights may indeed yield a sensible distribution over
hypotheses. The optimal weight assignment is given by the solution of a linear
program, and we show that the predictions of this distributed classifier may then
be evaluated efficiently. Preliminary results indicate our algorithm is stable in
noisy conditions, and performs competitively with the best existing methods. It
also yields sparse solutions, in that many examples are given weights equal to or
very close to zero. The relevance vector machine also exhibits this property, but is
computationally more involved than our approach, and shows greater sensitivity
to its parameters’ settings (in particular, to the width of the Gaussians).

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 307–312, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Interpretation of Weights

Let us formalise the problem. We have a data set D = {(xi, yi)}m
i=1, where

xi ∈ X and yi ∈ Y = {±1}, a distribution over examples di, such that ‖d‖1 = 1
and di ≥ 0, and also a basis class of hypotheses H with an associated measure,
allowing us to place over it a distribution p(h). We will find that even for uniform
p(h), a novel interpretation of d has the potential to yield a distribution over H
that corresponds to a complex classifier.

Consider the following scheme for classifying a new point x ∈ X . We draw
examples fromD according to the probability vector d; for each labelled example
(xi, yi) selected, we sample a hypothesis from H according to p(h : h(xi) = yi),
and evaluate h(x). If we sum many such classifications and normalise the result,
the final output will tend to

Fd(x) =
m∑

i=1

di

∫
I[h(xi) = yi]h(x)dp(h)

= E(xi,yi)∼d

[
Eh:h(xi)=yi

[h(x)]
]
. (1)

Assume that p(h) is symmetric with respect to the two classes; that is, we have
p(h(x) = 1) = p(h(x) = −1) for all x. We may now classify x:

Fd(x) =
m∑

i=1

di

∫
I[h(xi) = yi]h(x)dp(h)

=
m∑

i=1

di

(∫
I[h(x) = h(xi) = yi]yidp(h)−

∫
I[h(x) �= h(xi) = yi]yidp(h)

)

=
m∑

i=1

diyi

(∫
I[h(xi) = yi]dp(h)− 2

∫
I[h(x) �= h(xi) = yi]dp(h)

)

=
m∑

i=1

diyi

(
1
2
−
∫

I[h(x) �= h(xi)]dp(h)
)
, (2)

where in the last line we have used the symmetry of p(h). We note that in (2),
the final bracketed expression is a kernel function; its value is related to the
probability that an arbitrary hypothesis drawn from p(h) will have equal sign at
x and xi.

2.1 Assignment of Weights

Write the margin of the classifier on each element of the training set as a vector:

[yjFd(xj)]
m
j=1 =

[
yj

m∑
i=1

diyi

(
1
2
−
∫

I[h(xj) �= h(xi)]p(h)dh
)]m

j=1

= d
Q, (3)
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where

Qij = yiyj

(
1
2
−
∫

I[h(xj) �= h(xi)]p(h)dh
)
.

Q is symmetric; we have also Qii = 1
2 for all i. The linear formulation (3) allows

us to find suitable weights by solving a linear program. For example, we can
choose weights that maximise the minimum margin over the training set:

max
d,γ

γ

subject to yiFd(xi) ≥ γ for i = 1 . . .m
di ≥ 0 and ‖d‖1 = 1.

Alternatively, we can introduce a parameter C > 0 and slack variables ξ to allow
a small number of misclassifications:

max
d,ξ,γ

γ − C
m∑

i=1

ξi

subject to yiFd(xi) ≥ γ − ξi for i = 1 . . .m
di ≥ 0 and ‖d‖1 = 1
ξi ≥ 0.

(4)

In either case, the final classifier is given by sgn(Fd(x)).
Optimisation with respect to the l1 norm has been investigated in the context

of support vector machines by Bradley and Mangasarian (1998) and Zhu et
al. (2003). They both observe that when used as a regulariser, it generally favours
sparser solutions than the l2 norm. However, the latter is prevalent since it is
more amenable when applied to infinite feature spaces. In some sense our method
borrows from both schemes, by fitting a model which corresponds implicitly to
an infinite set of basis functions, but which also allows the sparsity-inducing l1
constraint on the model coefficients. The nature of this model is such that we
cannot form an arbitrary finite or infinite linear combination of basis functions;
however, we will see that even a coarse approximation is capable of excellent
performance.

3 Implementation

To construct the matrix Q, we need to choose H and p(h), and thus determine∫
I[h(xi) �= h(xj)]dp(h) for i, j = 1, 2, . . . ,m. (5)

In the following analysis, we restrict our attention to the two-dimensional case,
and fix H to be linear halfspaces in R

2. Extending these concepts to higher
dimensions and further classes is deferred to future work.

Without loss of generality, let the mean of the data be at the originO = (0, 0),
and let all training coordinates lie in the region [−R,R]2. All hypotheses h ∈ H,
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with the exception of those that pass through the origin, may be paramaterised
by a pair (r, s) ∈ (R2, {±1}). The coordinate r indicates the closest point on the
line to O, while the sign term s defines the classification of the origin. Let us
now define the measure p(h) on H by placing a uniform distribution over r in
the range [−R,R]2, and assigning equiprobably s = 1 or s = −1.

In order to calculate (5), we must find the expected proportion of hypotheses
discriminating between xi and xj . With the preceding assumptions, we may now
consider (5) as the volume of parameter spaceH′ ⊆ H, in which h(xi) �= h(xj)⇔
h ∈ H′. The situation is illustrated in Figure 1. We note that, for a given pair
(r, s), if the hypothesis parameterised by (r, s) satisfies this property, so also will
that parameterised by (r,−s).

Fig. 1. Visualisation of (5). The shaded re-
gion parameterises hypotheses h ∈ H′ ⊆ H
for which h(x1) 	= h(x2) ⇔ h ∈ H′. Two
hypotheses are shown, h1 and h2, parame-
terised by r1 and r2 respectively. Indepen-
dently of s, h1 ∈ H′ discriminates between
x1 and x2, while h2 	∈ H′ classifies the two
examples identically.

For a point x ∈ X , write the circular region parameterising hypotheses that
discriminate between x and O as ©x. Now,∫

I[h(xi) �= h(xj)]dp(h) ∝
∣∣©xi \©xj

∣∣+ ∣∣©xj \©xi

∣∣
=
∣∣©xi

∣∣+ ∣∣©xj

∣∣− 2
∣∣©xi ∩©xj

∣∣ . (6)

It can be shown that the area of intersection
∣∣©xi ∩©xj

∣∣ is given by

1
2

(
‖xi‖2(θi − sin θi) + ‖xj‖2(θj − sin θj)

)
,

where θi (θj) is the angle subtended at the centre of©xi (©xj ) by radii extending
to the two points of intersection. Using (6), define

A(xi, xj) = ‖xi‖2 (π − θi + sin θi) + ‖xj‖2 (π − θj + sin θj) ,

so that

Qij = yiyj

(
1
2
− 1

4R2
A(xi, xj)

)
. (7)
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4 Results

Results were obtained for two benchmark data sets: Ripley’s mixture of Gaus-
sians (Ripley (1996)) consists of 250 training examples and 1000 test examples;
the Banana set1 consists of 100 realisations of 400 training examples and 4900
test examples. Both are two-dimensional. We chose the parameter C on the Rip-
ley set by examining the decision boundary for a variety of choices, and selecting
the one with qualitatively best fit; this was found to be C = 0.009. For the Ba-
nana benchmark, we split the training set into equal subsets for training and
validation, to find the optimal C ∈ {0.01, 0.012, . . . , 0.02}. In each case, we used
the formulation (7), and set R = 5.

On Ripley’s set, the test error was 8.6%. This compares favourably with
existing methods: using an SVM, Ripley achieved 10.6%, while Tipping’s RVM
achieved 9.3%.2 The Bayes rate is around 8%. Over the first ten realisations of
the Banana set, our method achieved a mean test error of 10.9%; the support and
relevance vector machines obtained error rates of 10.9% and 10.8% respectively.3

The decision boundary we obtained on the Ripley set is illustrated in Figure 2.
The training data are shown, together with surrounding circles, each of whose
radii is proportional to the weight of the associated data point. It is interesting
to observe that many components of this distribution are equal to or close to
zero, and that the heavily weighted examples tend to be some distance from the
decision boundary. The SVM solution to this problem used 38 support vectors,
while the RVM solution used 4 relevance vectors; our solution places non-zero
weight on 8 examples.

Fig. 2. The decision boundary obtained on Ripley’s training set by solving (4) with
C = 0.009. Data points with non-zero weight assignment have been circled; the radius
of the circle is proportional to the example’s weight.

1 Available from http://ida.first.fhg.de/projects/bench/benchmarks.htm.
2 Results from Bishop and Tipping (2003).
3 Results from Tipping (2001).
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5 Conclusions

We have shown how a simple sampling scheme for classification and a novel
interpretation of weighted examples induces a distribution over a basis class of
hypotheses. We have evaluated the predictions of this distributed classifier for an
optimal weighting of the training set, and found these predictions to be resistant
to overfitting. Our method has certain advantages: the weight assignment can be
determined easily by solving a linear program, with a single parameter defining
the degree to which misclassifications are tolerated; the weight vector is experi-
mentally found to be sparse when the solution has not overfit; new classifications
are then possible in time O(m′), where m′ ≤ m is the number of examples in
the training set with non-zero weight. We have observed also that our “support
vectors” lie away from the decision boundary and tend to be fewer in number
than for the standard SVM solution.

The development of a rigorous explanation for our algorithm’s strong per-
formance is an area of active research. In particular, we have recently extended
the concepts of Section 3 to allow data of arbitrary dimensionality. We hope to
present the results of this work in a future publication.
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Abstract. In this paper the ability of the functional networks approach
to solve classification problems is explored. Functional networks were
introduced by Castillo et al. [1] as an alternative to neural networks. They
have the same purpose, but unlike neural networks, neural functions are
learned instead of weights, using families of linear independent functions.
This is illustrated by applying several models of functional networks to
a set of simulated data and to the well-known Iris data and Pima Indian
data sets.

1 Introduction

Classification involving two classes often appear in real-life. The problem consists
of discovering a function f of a vector of predictors X = (X1, X2, . . . , Xk) which
allows us to classify an individual, such that X1 = x1, X2 = x2, . . . , Xk = xk, in
one of the two classes, represented by a binary response variable Y .

Classical statistical techniques propose f to be a linear classification function
obtained via logistic regression or discriminant analysis. More general functions
are considered when using generalized additive models, neural networks or other
nonparametric methods (see, for example, [3] and the references therein).

In this paper, we propose some nonlinear functions based on functional net-
works models to determine f . It can be estimated using the appropriate learning
procedures usually used in this setting. This approach is introduced in Section
2. In Section 3 we investigate the performance of the proposed method using a
simulated and two real-life data sets. Finally, a summary and some concluding
remarks are given in Section 4.

2 Functional Networks

In this paper we propose two functional network models to approximate f(X):

1. The Generalized Associativity model which leads to the additive model

f(X1, . . . , Xk) = h1(X1) + h2(X2) + . . .+ hk(Xk), (1)

(see Castillo et al. [1] for further details). The corresponding functional net-
work is shown in Figure 1.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 313–318, 2005.
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Fig. 1. Functional network representing the additive model

2. The Separable model which considers a more general form for f

f(X1, . . . , Xk) =
q1∑

r1=1

. . .

qk∑
rk=1

cr1...rk
φr1(X1) . . . φrk

(Xk), (2)

where cr1...rk
are unknown parameters and the sets of functions Φs =

{φrs(Xs), rs = 1, 2, . . . , qs}, s = 1, 2, . . . , k, are linearly independent. An
example of this functional network for k = 2 and q1 = q2 = q is shown in
Figure 2.
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Fig. 2. The functional network for the separable model with k = 2 and q1 = q2 = q

Equations (1) and (2) are functional equations since their unknowns are func-
tions. Their corresponding functional networks are the graphical representations
of these functional equations. Note that the graphical structure is very similar
to a neural network.

Our problem consists of learning from data

1. h1, h2, . . . , hk in (1) and
2. cr1...rk

in (2).

In order to obtain h1, h2, . . . , hk in (1), we approximate each hi(xi) by a linear
combination of linearly independent functions φij , that is,

hi(xi) !
qi∑

j=1

aijφij(xi) (3)

and the problem is reduced to estimate the parameters aij , ∀i, j.
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The sets of linearly independent functions used in equations (2) and (3) can
be some of the following:

1. Polynomial family:
Φ = {1, x, x2, . . . , xq} (4)

2. Exponential family:

Φ = {1, ex, e−x, e2x, e−2x, . . . , eqx, e−qx} (5)

3. Fourier series family:

Φ = {1, sinx, cos x, sin(2x), cos(2x), . . . , sin(qx), cos(qx)}. (6)

Finally, we choose the least squares criterion to estimate the parameters, but
the additive model requires to add some constrains to guarantee uniqueness (see
Castillo et al. [1] for further details). The main advantage is that least squares
criterion leads to solve a linear system of equations in both cases.

3 Examples

In this section we apply the proposed functional networks approach to a set of
simulated data and to the well-known Iris data and Diabetes in Pima Indian data
sets. In order to analyze the performance of the technique we divide randomly
both sets in a training data set and a test data set. The training set is used to
learn the classification function and the test set is used to compute test error.

A model selection method is also needed. In both examples we use the ex-
haustive method, i.e., all possible models are investigated in order to gain some
understanding of the performance of our proposed technique.

3.1 Simulated Data

This data set consists of a random sample of size 100 generated using two ex-
planatory variables X1 and X2, independent and uniformly distributed, with a
classification function

f(X1, X2) = 0.1 ∗ exp(X1) +X2.

Figure 3 shows the scatter plot of X2 versus X1 and the class each pair belongs
to. The obtained model using the Additive functional network model with the
set of linearly independent functions Φ = {1, x, exp(x), exp(2x), exp(3x)} is

y = 0.0389 + 0.0893 ∗ exp(x1) + 0.9924 ∗ x2, (7)

with training error equal to 0.0360 and test error equal to 0.0166. The well
classified observation rates for training and test data sets are 85% and 80%,
respectively. Figure 4 shows the training and test data sets against the predicted
probabilities.
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Fig. 4. Training and test data sets against the predicted probabilities

3.2 The Iris Data Set

The well-known Iris data set consists of 150 random samples of flowers from the
iris species setosa, versicolor, and virginica, (which is available at the UCI ML
Repository database [5]). From each species there are 50 observations for sepal
length, sepal width, petal length, and petal width, measured in centimeters.

Even though flowers are classified in three classes in this data set, as a first
approximation, we consider a bivariate response variable taking into account if
flowers belong to the iris species setosa or not. We know that this class is linearly
separable.

In order to approximate the classification function we will use:

1. The Additive functional network model using the polynomial, exponential
and Fourier families of linearly independent functions, and

2. The Separable functional network model using the polynomial family.

The training and test errors are showed in Table 1. Since setosa class is separable,
the accuracy for both training and test data sets is 100%.

Now, we repeat the same experiment taking into account if flowers belong
to the iris species versicolor or not. It is a non separable class, however all the
functional network models provide good levels of accuracy for the training and
test data sets as is shown in Table 2.
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Table 1. Training and test errors for the classification of Iris data set considering the
two classes setosa-non setosa

Training Error Test Error

Additive Polynomial 0.0058 0.0233

Additive Exponential 0.0182 0.0276

Additive Fourier 0.0092 0.0236

Separable Polynomial 0.0126 0.0227

Table 2. Training and test errors for the classification of Iris data set considering the
two classes versicolor-non versicolor

Tra. Error Tra. Accuracy Test Error Test Accuracy

Additive Polynomial 0.0354 95% 0.1053 94%

Additive Exponential 0.0280 94% 0.1122 92%

Additive Fourier 0.3350 93% 0.1088 94%

Separable Polynomial 0.2552 93% 0.0969 98%

3.3 Diabetes in Pima Indians

A population of women who were at least 21 years old, of Pima Indian heritage
and living near Phoenix, Arizona, was tested for diabetes according to World
Health Organization criteria. The data were collected by the US National In-
stitute of Diabetes and Digestive and Kidney Diseases. This data set, which is
available in the UCI machine-learning database collection [5], is profusely ana-
lyzed in Ripley [4] by means of different classical classification techniques. To
carry out a comparison between functional networks and the results provide by
Ripley [4], we have selected the same training and test sets: a random training
set of size 200 and a test set of size 332. Serum insulin variable and incomplete
records have been omitted.

The results reported by Ripley [4] show a best rate error around 20% which
is attained using standard linear discrimination and simple logistic regression
models. A neural network with one hidden gives a error rate of 21%. Other
classification tools as multivariate adaptative Regression Splines (MARS) or
Projection Pursuit Regression (PPR) give a 23.4% error rate on the test set.

We have applied several functional networks models obtaining similar error
rates similar than those provided in [4]. For example, the additive functional
network model combining the polynomial and Fourier families of linearly inde-
pendent functions: {1, x, sin(x)} gives a training error rate of 20.5% and a test
error rate of 22.3%. The obtained model is:

y = 2.1123−0.0231x1−0.0071x2−0.0145x5+0.0574 sin(x5)−0.3510x6−0.0096x7.
(8)
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4 Conclusions

In this paper we propose a new method based on functional networks to solve
two-class classification problems. Two nonlinear functional network models are
proposed to obtain the classification function. The main advantage of working
with this kind of models is that the learning procedure is based on solving a
linear system of equations.

On the one hand, the performance of the proposed method is investigated
using a simulated example in which the classification function is nonlinear in the
variables. The method provides the true classification function and high rates of
well classified observations for both training and test data sets.

On the other hand, the well-known Iris data set is used to illustrate the
performance of the proposed method when, (1) a separable class (setosa-non
setosa), and (2) a non separable class (versicolor-non versicolor) are considered.
For the first case, 100% of accuracy is obtained with all of the proposed models.
For the second case, good levels of accuracy for both training and test data sets
are also provided by all of the proposed models.

Furthermore, we have applied our methods to the Diabetes Indian Pima
obtaining similar results that those provided by Ripley when using several well-
known classification techniques.

These are some promising preliminar experiences in working with functional
networks for classification problems. Much work must be made in order to asses
the performance of our method. In the future, we will explore the ability of the
models in discovering nonlinear classification functions and a deeper comparison
study with more examples will be addressed.
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Abstract. This paper describes a project in progress, a modular envi-
ronment for a-life experiments. The main purpose of the project is to
design a neural architecture that would allow artificial creatures (biots)
to learn to perform certain simple tasks within the environment, having
to deal with only the information they can gather during exploration
and semi-random trials. That means that the biots are given no explicit
information about their position, distance from surrounding objects or
even any measure of progress in a task. Information that a task has been
started and either accomplished or failed is to be the only reinforcement
passed to the learning process.

1 Introduction

The model we use in the project involves an agent (agents) exploring an unknown
environment. When the agent notices an object of interest, a “game” starts and
all actions taken by the agent are regarded as moves within the game. If the game
is won, e.g. the object of interest happens to be food and the agent succeeds in
eating it, the agent remembers the steps that led to success.

This bears certain similarity to how simple organisms explore their surround-
ing. When exposed to unknown stimuli, they probe the environment and remem-
ber the effects of their actions, making their movements more defined and precise,
as they depend more on previous experience and less blind trials.

2 The Underlying Idea

As a biot explores its world, input from the sensors comes as a vector of activation
values. The biot makes a decision, which is represented as a vector of motor
(effector) activation. The two vectors create a state-action pair that is used in
the learning process as a description of a single step.

The exploration process needs to be a mixture of random movement (i.e.
when no object of interest is within sensor range or the current situation is
new to the biot) and repetition of previously remembered movements with some
degree of innovation and generalization when sensor input is similar to something
the biot had encountered earlier.

Although Boltzmann machines are often criticized for low effectivity, they
have certain features that seem to be perfect for this project. An untrained Boltz-
mann machine, with randomized weights, generates state-action pairs that result
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in a random walk. The weight relaxation procedure can be longer or shorter and
depends on a modifiable temperature parameter. This allows for controlling the
biots’ “temper”, making them either slow and thorough or rapid and innovative
(or simply dumb). On the other hand, the temperature and relaxation length
are extra parameters that have to be balanced.

Boltzmann machines are good for implementing content-addressed memory
[3] and their limitation to second-order statistics can be an issue when it comes
to more complex tasks, but allows for simplifying (generalizing) data given as a
set of state-action vectors into a set of rules, associations between sensors and
motors.

3 The Simulated World

The simulated environment the biots inhabit is a two-dimensional area filled
with different active (or inactive) objects such as walls or food and the biots
themselves, represented by insect-like symbols.

We designed the physics of the simulation ground as a simplified implemen-
tation of newtonian physics with collision detection dependent on the type of
colliding objects and momentum for movement and rotation of biots.

4 The Biots

The purpose of the biots is to undergo individual development by changing their
preferred actions accordingly to information gathered during interaction with
the environment and other biots. The simulation allows for differentiating the
biots, giving them different anatomies - different sets of sensors, motors and
visual appearance, but also setting them to perform different tasks.

Fig. 1. Screenshot from the project. Two biots competing in a ”finding food” task.
Sensor ranges are marked with circles. Biots leave trail marks to show their position
in time.
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4.1 The Sensors

A sensor is an abstract mechanism that can be probed by the biot for its acti-
vation. This way, biots can have sensors as simple as constant sensors, having a
fixed activation value, or as complex as environment sensors.

Environment sensors are designed to activate when an object (or another
biot) is close to their owner. An environment sensor has a finite range (r) and
a center point, represented with radial coordinates centered in the center of the
biot’s body (α, d). The value of the activation depends on the distance of the
object from the sensor center point. An environment sensor can be specialized
in detecting only one type of objects, e.g. food.

4.2 The Motors

Motors (effectors) can either move the biot (forward or backward) or make it
turn. Each motor has a set force (γ) it applies to the biot when fully activated
and a minimum neural signal needed to activate it. The overall activation of the
motor is a product of the maximum force of the motor (γ) and activation of its
assigned neuron (act), provided that act > actmin, where actmin is the minimum
activation value needed, zero otherwise. Although the network in the brain is
bipolar, it is assumed throughout the implementation that actmin > 0.

4.3 The Instinct

The role of the instinct is to inform the brain that a game has started or fin-
ished and if the game was won or not. It can also dynamically modify certain
parameters of the brain, such as relaxation time, temperature or learning rate.
We made sure the instinct mechanism had no direct impact on motors and was
deprived of any complex calculation, as it would undermine the premise of the
project. For example - the instinct mechanism is informed that a food piece is
in sight, but not which sensor sensed the piece or even what was the value of
activation of that sensor.

4.4 The Brain

The biot brain, as mentioned earlier, is a Boltzmann machine. Its visible layer (or
visible subset of neurons) reflects the state-action vector while the hidden layer
is used to boost the calculating ability of the network beyond the second-order
statistics within the visible layer.

We have dropped traditional Boltzmann Machines in favor of Continuous
Boltzmann Machines in early stages of the project. Precise restoration of re-
membered patterns is less important than the ability for the biot to vary the
strength of impulses sent to motors, making the biot’s motion more precise and
fluent. A continuous decision making unit can also use less sensors, as they too
can provide a spectrum of activation values relating to distance, size or number
of sensed objects.

Neuron activations change asynchronously, with gaussian noise added to each
neuron:

sj = σ((
∑

i

wijsi + N(0, 1)β) · aj)
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where σ is the tanh sigmoid function, wij is the weight between ith and jth
neuron, β is a noise ratio factor (relating to temperature in non-continuous
models) and aj is the jth neuron’s own transfer function slope.

5 The Learning Process

The learning process takes place only during “game” mode. From the start to
the end of a game, vectors composed of sensory input and effector activations
(state-action pairs) are being stored in a static array that serves a purpose similar
to short-term memory. This way, the array contains a verbatim record of each
step taken by the biot between key events - one that had started the game and
another one that meant the biot’s success or failure.

After a biot wins a game, the contents of the short-term memory are treated
as learning data for the Boltzmann Machine. The vectors are not evaluated for
relevance to the overall strategy with the exception that the common weight of
all vectors within a game linearly depends on the length of the game, favoring
shorter games and strategies giving results more quickly.

5.1 The Experiment

The biots were equipped with two long range environmental sensors side by side,
dubbed eyes, one environment sensor in front, corresponding to the sense of smell
and a short range sensor directly in front of the biot, which we called mouth for
more than one reason. All sensors were set to detect food and only food.

The biots entered in-game mode when any of their sensors sensed food and
exited the mode when the food was either eaten or lost from within the sensor
range. The biots had to learn to “aim” at food, whether approaching it from left
or right. Food grew back at the same rate as it was eaten and the pieces formed
a line, so that a well trained biot could follow it indefinately.

5.2 Two Learning Algorithms

Two algorithms were tried in different stages of development of the project.
The first one was a mixture of Hebbian learning within the visible layer and a

simplified MCD learning[5] between the visible layer and the hidden layer. Gibbs
probing was short and slope factors (aj) were set to be constant during training.

All sensor input was duplicated with a one-step time shift - the input from
the previous move was given together with the current input. This method gave
visual effects relatively quickly and accurately as biots devised a tendency to
aim, stop and jump forward at food. This was most probably due to the Heb-
bian learning of the visible layer, which allowed the network to ‘discover’ basic
dependencies between sensors and motors: if you see food on the left, turn left.
Unfortunately, after some time, biots started to move in circles. This is only
understandable. As each food piece that was eaten was immediately replaced by
another one somewhere in the ground, it made sense to move in circles, and make
jumps every now and then. This strategy is often utilized by mushroom pickers.
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At the same time, the biots were losing their ability to aim, missing food many
times before finally catching a piece. Whether we can count this as a success of
the network in finding a strategy that satisfied the premise of the experiment
or an unwanted effect caused by an anomaly is a matter of discussion. Simply
speaking, the biots had managed to find a ‘cheat mode’.

An interesting phenomenon that accompanied this experiment was that when
a biot had found food when moving backwards (which they did quite often at
first, before the first learning), it started moving backwards as it was the only
way of finding food it ‘knew’.

The second algorithm we tried was a full implementation [4] of the MCD rule
[2] with no connections within the visible layer, no duplication of sensory input
and an extra modification in order to prevent the fore-mentioned phenomena.
In order for a biot to eat a food piece, it had to be placed within the range of
the mouth sensor. This made the task a little harder, preventing the ‘mushroom
picker’ cheat (any such strategy would be much less efficient than aiming here)
and making it less probable for the biot to find food while moving backwards,
as backward jumps were much shorter than the size of the biot’s body. Also, to
provide a comparison, a wandering biot was introduced - a biot with its brain
replaced by a generator of random neural activations.

We observed the visual effects of stopping, aiming and eating, but they were
no longer as apparent as previously (especially stopping) nor did they appear as
quickly. This architecture seemed to be more disturbed by noise as biots could
switch back and forth between aiming accurately and completely ignoring food.

When we introduced a quantative measure of effectivity ratio, more phe-
nomena emerged. It soon turned out that the randomly moving biot was quite
capable of finding food by pure chance, while the biot depending on the output
of its neural network made many wrong moves. The wanderer biot would just
attack a cluster of food pieces, missing most, but eating a fair amount, while
the eater biot kept losing points by botching attempts, making sudden turns in
the worst possible moments. Although the effectivity of the eater tended to be
bigger throughout the simulation, the wanderer had more successful ‘meals’ in
a unit of time.

Also, the measure, described by the following formula:

effectivity =
wins

wins + loses

turned out to be greatly dependent on seemingly irrelevant factors such as dis-
tance of food pieces from each other, precise placement and range of sensors and
motor parameters.

A trial-and-error modification of motor parameters allowed increasing the
eater biot’s effectivity. Most importantly, both biots were given a forward effector
that required a strong neural activation, but caused long jumps when activated.
The normal forward motor was weakened, threshold was slightly increased for
rotation motors, while their strength was decreased.

The new effector configuration slowed down the random biot and increased
the smart biot’s precision, as it managed to control the jumping effector. In
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simulations involving three biots capable of learning and one random biot, the
smart biots ‘win’ one in four games (as opposed to around one in six for the
random biot), but their speed (as in number of pieces eaten per unit of time) is
at least twice the speed of the random biot.

6 Possible Future Development and Conclusion

The project is in progress and subsequent experiments suggest various directions
of future development. In earlier stages, a selection scheme was used to determine
an optimal placement of sensors for the eating task. We plan to explore the area
further - having the biots evolve optimal anatomies and learning parameters,
but disallowing genetic programming to interfere with the learning process itself
- i.e. each new biot is to learn from its own experience.

Other learning algorithms[6], are being taken into consideration. The problem
stated in the project is specific and it is apparent that methods commonly used
in training Boltzmann machines as associative memory might not apply here.

Finally, it is a priority to establish a method for training biots to not only pur-
sue targets, but also actively avoid obstacles and danger, expanding the number
of possible tasks biots might perform.
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Abstract. The literature suggests that an ensemble of classifiers out-
performs a single classifier across a range of classification problems. This
paper investigates the application of an ensemble of neural network clas-
sifiers to the prediction of potential defaults for a set of personal loan
accounts drawn from a medium sized Australian financial institution.
The imbalanced nature of the data sets necessitates the implementation
of strategies to avoid under learning of the minority class and two such
approaches (minority over-sampling and majority under-sampling) were
adopted here. The ensemble out performed the single networks irrespec-
tive of which strategy was used. The results also compared more than
favourably with those reported in the literature for a similar application
area.

Keywords: neural network ensembles, minority over-sampling, majority
under-sampling, loan default, arrears management.

1 Introduction

Authorised Deposit-Taking Institutions (ADIs) are corporations that are autho-
rised under the Australian Banking Act (1959) to invest and lend money. ADIs
include banks, building societies and credit unions. ADIs generate a large part
of their revenue through new lending or extension of existing credit facilities as
well as investment activities. The work described here focuses on lending, in par-
ticular the creation and management of customer personal loan accounts. The
development of credit scoring models to aid in loan approval is well established.
Traditionally these have been statistically based[9,11] although more recently ar-
tificial neural network approaches have attracted some research interest[4,13,15].
However there has been less work in the management of existing accounts. Sub-
stantial amounts of money are spent on recovery of defaulted loans, which could
be significantly decreased by having the option of tracking a high default risk
borrowers’ repayment performance. This is sometimes referred to as arrears or
collections management.

This is essentially a classification problem. Loan accounts could be classified
as high or low risk depending on the risk of the customer not meeting their

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 325–330, 2005.
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repayment committments. Multi-layer artificial neural networks can be consid-
ered as non-linear classifiers and, given their success in credit scoring, may be of
use in identifying high risk accounts. A recent study[2] compared a neural net-
work approach to the prediction of early repayment and loan default with more
traditional approaches. The results were promising and suggested that a neural
network approach outperformed the traditional approaches, particular for the
prediction of early repayment.

The research reported here focuses only loan default and applies an ensemble
as well as a single classifier approach. The data used is real life data sourced from
a medium sized Australian bank and includes a low proportion of bad accounts.
The paper is organised as follows: Section 2 provides a brief overview of en-
sembles and classifiers, section 3 discusses the data used in more detail and the
experiments conducted, and section 4 discusses the experimental results. The
paper concludes with a discussion of possible areas for future work that arise
from the results presented here.

2 Classifiers and Ensembles

In simplest terms, a classifier divides examples into a number of categories. Clas-
sifiers may be trained on a data set and then tested on unseen data to determine
their generalisation capabilities. Typically training uses a supervised learning
approach i.e the target class is known for both the training and testing data.
It has been shown that the use of an ensemble, rather than a single classifier,
significantly improves classification performance [5,8,16]. Ensembles are partic-
ularly useful for classification problems involving large data sets[3] and can be
constructed and combined in various ways[5,14].

Each member of the ensemble could be trained and tested on a subset of the
total data set. This approach works well for unstable learning algorithms such as
those used by artificial neural networks[5]. Several methods are available for the
selection of these subsets. They can simply be selected at random (with or with-
out replacement). The data set could be divided into a series of disjoint subsets
and the training sets could be formed by leaving out one or more of the subsets,
which might be reserved for testing. In these situations the ensemble members
are trained independently of each other[10]. Another approach is to use a boost-
ing algorithm such as the ADABOOST algorithm[6] which builds the ensemble
by using datasets formed by focusing on misclassified examples. Ensembles can
also be constructed using subsets of the input attributes. This approach is par-
ticularly useful when there is some redundancy amongst the inputs. In situations
where there are many target classes ensemble members can be constructed using
a reduced set. The number of target classes can be reduced combining several
together. Whatever methods are choosen for ensemble construction the designer
should ensure that there is diversity amongst individual ensemble members.

There are several ways of combining or fusing the decision of each individual
classifier into one final ensemble decision. The simplest is to use an unweighted
voting system where it is assumed that the relative importance of each individual
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decision is the same. If this is not the case then appropriate weightings could be
introduced. A discussion of the possibilities can be found in [5,14] and examples
of ensemble application areas in [1,12,17].

3 Experimental Work

The networks were developed using personal loan accounts created in May 2003.
The observation point was 12 months later i.e May 2004. This was considered
sufficient time before a realistic assessment of their performance could be made
(Fig. 1). The networks were trained to classify whether an account was likely to

12 Months

1/05/2003 31/05/2003
OBSERVATION POINT

31/05/2004

1 Month

OUTCOME PERIODSAMPLE WINDOW

Fig. 1. Data Selection

lapse into arrears or remain healthy. An account was considered in arrears (i.e.
‘bad’) if, at the observation point, the contractual repayment obligations had
not been met. Otherwise it was considered not in arrears, or ‘good’. The data
set totalled 1534 accounts consisting of 1471 ‘good’ examples and 63 ‘bad’ ex-
amples. The imbalanced nature of the data set was typical across the unsecured
loan accounts of the financial institution involved.

23 input attributes were used of which 22 were collected at the time of loan
approval and one during the outcome period, reflecting the loan performance.
Of these 17 were continuous and 6 discrete. There was no significant correlation
between any of the input attributes and the target class except for that collected
during the outcome period and even in this case it was weak. The continuous at-
tributes were linearly scaled from 0 to 1 and the discrete attributes were widened
and represented as a suitable vector. There was little missing data. There were
two target classes. All networks used 46 input neurons and one output neuron.
The number of hidden layers and hidden layer neurons varied, depending on the
experimental results. The networks were developed using the publically avail-
able neural network software NevProp and trained using the quickprop learning
algorithm.

The literature suggests that networks trained on imbalanced data sets of the
type used here tend to learn the majority class at the expense of the minority
one[7]. A series of preliminary experiments using single networks trained, tested
and validated on sets containing a ratio of good to bad examples equal to that
in the original data set confirmed this. In arrears management it is important
that the classifiers predict well the minority class (i.e. the ‘bad’ accounts). Sev-
eral strategies have been suggested to overcome the data imbalance[7] and two
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(a single minority over-sampled network and an ensemble of majority under-
sampled networks) were used here.

For the minority over-sampled network all majority class examples were re-
tained and the data set was enlarged by sampling each minority class example
five times. For each ensemble member all minority class examples were retained
and a subset of the majority class, drawn at random, was added. Seven such
data sets were created.

In all cases the data sets were subdivided into a training, a testing and a
validation set. The proportion of ‘good’ to ‘bad’ accounts was 2:1 in each set.
Multiple experiments were run to determine the best performing network based
on testing set performance, particularly on the classification of ‘bad’ examples.
A validation set was used to provide an estimation of performance on unseen
data in the development data set.

4 Experimental Results and Discussion

The training, testing and validation performance of each individual network on
the May 2003−2004 data is shown in table 1. The minority-oversampled network
out performed all individual ensemble members, particularly in the classification
of the ‘bad’ accounts. This is not surprising as the proportion of training and
testing examples to the total available examples used during the development
of this network was greater than that for the development of each ensemble
member.

Table 1. Individual network performance on development (May 2004) data

Ensemble Testing % Validation %
member good bad good bad

#1 95 85 88.5 84.6
#2 92.5 80 96 61.5
#3 85 85 57.7 84.6
#4 60 85 88.5 69
#5 85 80 80.8 80
#6 90 80 88.5 80
#7 80 90 65.4 61.5

minority-oversampled 95 100 93 100
network

The trained ensemble and minority-oversampled networks were then applied
to unseen data viz: personal accounts from June, Nov and Dec 2003−2004 (table
2). The proportion of ‘good’ to ’bad’ accounts in these sets was similar to that
in the development data set. A simple non-weighted majority voting system was
used to determine ensemble performance. The ensemble clearly outperformed the
minority-oversampled network in the classification of both ‘good’ and ’bad’ ac-
counts across the three data sets. It also outperformed the average performance
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of each individual ensemble member. These averages are also shown in the table.
These results support the literature observation that the classification perfor-
mance of an ensemble is superior to that of a single network (in this case that
of both a minority-oversampled and a majority-undersampled network)[5,8,16].

The ensemble results also compare more than favourably with those in the
analagous part of the study reported in [2]. In this case single networks were
used to predict personal loan default after 12 months for a set of accounts from
a U.K. financial institution. The minority class (loan default) was over-sampled
and the input attributes, although less numerous, were similar to ones used here.
The trained network yielded a classification accuracy of 78.8% overall (87.4 %
on the good accounts, but only 33 % on the default accounts).

Table 2. Performance of the ensemble and the minority-oversampled network on unseen
data

Observation point June 2004 Nov 2004 Dec 2004
good bad good bad good bad

ensemble 97.6 100 89 85 94.3 91.3
minority-oversampled 83.7 91.7 72.5 63.8 75.7 78.8

network
ensemble member

(average) (84.8) (89.9) (77.7) (71.8) (80.7) (78.8)

5 Conclusion and Future Work

Arrears management involves identifying and tracking high risk customer loan
accounts. An ensemble of neural network classifiers shows promise as an accu-
rate classifier for predicting potential personal loan defaults. The results reported
here illustrate that ensembles outperform single networks, even when the data
set is under or over-sampled. Future work includes the application of these ap-
proaches to the construction of systems that investigate the effectiveness of the
loan approval process. This may include the identification of rejected loan appli-
cations that would possibly not default. Finally the development of single and
ensembles of rule based classifiers, in an effort to supply a classification expla-
nation for unsecured lending such as personal loan and credit card accounts, is
another possible area for future research.
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Abstract. The paper presents methods of classification based on a sequence of 
feature vectors extracted from signal generated by the object. The feature vec-
tors are assumed to be probabilistic independent. Each feature vector is sepa-
rately classified by a multilayer perceptron giving a set of local classification 
decisions. This set of statistical independent decisions is a base for a global 
classification rule. The rule is derived from statistical decision theory. Accord-
ing to it, an object belongs to a class for which product of corresponding neural 
network outputs is the largest. The neural outputs are modified in a way to pre-
vent them vanishing to zero. The performance of the proposed rule was tested 
in an automatic, text independent, speaker identification task. Achieved results 
are presented. 

1   Introduction 

The subject of the paper is an object classification based on signals incoming in time. 
The real examples of such problem are speaker recognition, recognition of vehicles 
based on acoustic signals or recognition of vehicles based on seismic signals. The 
framework of the classification problem with predefined classes is as follows. Certain 
objects are to be classified as coming from one of a fixed number of classes. Each 
object gives rise to certain measurements (signal), which could be interpreted as a 
change of some physical parameter in time. The aim is to classify the object based on 
measured signal to a given group. One solution of such problem could be a so called 
long period recognition, which is based on estimating some parameters for long peri-
ods of signal. However, we want to focus on the other approach. Like in the classical 
object recognition we have a pre-processing method which extracts feature vectors 
from short parts of signal. For each feature vector, representing a short part of signal, 
we have a classifier - multilayer perceptron [4,11], which generates classification 
answers. The goal of the paper is to develop the rule which will integrate answers 
from neural network classifier for n consecutive feature vectors and make a global 
sequential classification. Moreover, we assume that feature vectors could be treated as 
realizations of probabilistic independent random variable. 

The problem of making a global decision base on a set of local and statistical inde-
pendent classifications was studied for the long time. In case of pattern recognition it 
is known as classifier combination (a good review could be found in [10]). The most 
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common methods includes voting classification [2], the mean rule [7,8], product rule 
[3], max, min rule [9] or Dempster-Shafer theory [1]. 

In this paper we will use very similar techniques, but we will apply it to a slightly 
different task. In most of the applications of classifier combination methods, the clas-
sification is based on one feature vector with different kind of classifiers or on differ-
ent feature representations of the same input signal. However, in the analyzed in this 
paper independent, speaker recognition task [14] we will have one classifier with 
consequent inputs for different parts of speech signal. 

2   Sequential Decision Schema 

Assume that we have some objects from one of 1,...,K classes described by a feature 

vector x (belonging to the ℜd space). The process of classification could be under-
stood as taking one of K possible decisions, i.e. the classificatory is a function c(x), 
which has values in set 1…,K. Assuming that 'a posteriori' probabilities of the classes, 
i.e. conditional probabilities that a given object belongs to a given class under obser-
vation x, are known  (denote it as  Pr(k|x) ), optimal (minimum-error-rate) Bayes 
theory classifier[4] is based on selection of a class for which the probability Pr(k|x) is 
the largest. If we assume that the prior probabilities (probabilities that an example is 
drawn from a given class) are equal, the 'a posteriori' probabilities of the classes could 
be simply calculated based on probability density function for each class (denote it by 
fk(x)): 
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2.1   Sequential Classification for Probabilistic Independent Feature Vectors 

As it was stated in the introduction, we focused in this paper on a case when a se-
quence of feature vector is probabilistic independent. Therefore, the overall probabil-
ity density for a given class under a sequence of observations x1,x2,…, xn could be 
calculated by multiplying probability densities for each feature vector xi . Therefore, 
based on (2), the optimal Bayes classifier for the sequence of probabilistic independ-
ent feature vector is equal to: 
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2.2   Multilayer Perceptron Multiplication Rule 

It is a well known fact, for example in [12], that when a multilayer perceptron is 
trained in order to minimize the mean square error between the target and the network 
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outputs, it provides after learning estimates of the 'a posteriori' probabilities of the 
classes. Therefore, the outputs of multilayer perceptron (denote is as Fk(x)) could 
substitute the ‘a posteriori’ probabilities in equation (1) giving a relation between 
probability density functions for each class and multilayer perceptron outputs: 
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Substituting it into equation (3) one could achieve: 

⋅=

⋅=

∏∏

∏

= ==∈

= =∈

n

i

K

l
il

n

i
ik

Kk

n

i

K

l
ilik

Kk
n

fF

fFc

1 11),..,1(

1 1),..,1(
21

)()(maxarg

)()(maxarg  )...,(

xx

xxxxx

 

(5) 

Since the second factor in multiplication inside argmax operator is equal for all k 
classes, resulting multilayer perceptron sequential classification rule is: 

∏
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3   Speaker Identification Test Bed 

Presented in the previous chapter sequential classification rule (6) and its modification 
(described in next chapters) have been tested on a closed set, text independent, 
speaker identification task. The population of speakers consists of 15 persons. Each 
person produced a set of three 10s utterance of text. Text consisted of freely spoken 
sentences in Polish language [13]. 

The main assumption of this paper is that feature vectors are probabilistic inde-
pendent. Therefore, we have used special way of pre-selecting input data [13]. The 
method is based on selecting only some parts of speech signal (we called it speech 
events) which are in most cases vowels. Around 95% of speech events lay in the mid-
dle of vowels [14]. The sequence of vowels in a freely spoken speech could be treated 
as a statistical independent, so the feature vectors calculated based on speech signal 
around these vowels too. 

Next, each of selected speech event was preprocessed to achieve feature vectors 
which are inputs to the multilayer perceptron. The pre-processing was developed on 
the basis of empirical studies of the human ear. The short-time spectra from a conven-
tional form was converted to perceptual domain.  Finally, the logarithm perceptually 
spectrum was cosine transformed to produce the cepstral coefficients [13]. In per-
formed experiments 14 cepstral coefficients were used to form the feature vector. 

4   Classification Results 

The multilayer perceptron with 14 input neurons which correspond to cepstral coeffi-
cients, 17 hidden layer neurons and 15 output neurons (corresponding to 15 speakers- 
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classes) was used. The number of neurons in the hidden layer was chosen experimen-
tally. Such network produces the best results and enlarging number of neurons in the 
hidden layer did not give any improvement. The tan-sigmoid was used as a transfer 
function in the hidden layer and log-sigmoid in the output layer. The network was 
trained using the Levenberg-Marquardt algorithm [4].  

The network gives 60.1% of correct classification for one feature vector for the test 
set. Next, we used the algorithm (6). The achieved results, i.e. percent of correct rec-
ognition, for consecutive features vectors are presented in Table 1, row i. We have 
found the results not satisfying. As expected, taking into consideration larger number 
of analyzed feature vectors (i.e. longer text for classification) gives better recognition 
results, but only for the number of feature vectors not larger then 5.  

5   Multilayer Perceptron Summation Rule 

The failure of the theoretical multiplication rule (6) in a real sequential recognition 
task resulted in a search for the other method. In many papers (for example [15]), the 
sequential recognition using multilayer perception is based on a simple summation 
rule.  According to it, the analyzed sequence of feature vectors belongs to a class for 
which the sum of corresponding neural outputs is the largest, i.e.: 
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The rule is equivalent to a mean rule [8], i.e. a weighted average of the outputs of 
the individual classifiers or an averaged Bayes classifier [16]. It could be also derived 
from the assumption that the ‘a posteriori’ probability for the sequence of feature 
vector is a mixture of ‘a posteriori’ probabilities of each feature vector. Therefore, it 
is similar to mixture model approach of probability density estimation (i.e. [4]). The 
achieved results are presented in Table 1, row ii. 

Table 1. Percent of correct recognition in a function of number of feature vectors for different 
sequential recognition algorithms: i – multiplication rule (6), ii – summation rule (7), iii - mul-
tiplication rule with added threshold (8), iv - multiplication rule with max operator (9) 

Number of consecutive feature vectors 
Rule 2 3 4 5 6 7 8 9 10 11 

i  70.2 75.4 76.5 76.6 76.4 75.0 74.3 73.7 71.7 70.1 
ii 74.1 82.4 87.1 90.8 92.3 94.6 95.7 96.7 97.7 98.1 
iii 75.2 83.3 88.0 91.5 94.0 95.6 96.8 97.8 98.3 98.8 
iv 74.4 83.2 88.3 91.6 94.1 95.6 96.7 97.7 98.4 98.8 

6   Multiplication Rule with Modified Neuron Outputs 

The success of the summing rule, and the failure of the multiplication rule in the ref-
erence speaker identification task raises the question why multiplication rule with 
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better theoretical background is not working. We have analyzed the neural network 
outputs and found that these values sometimes are equal to zero even for neurons 
corresponding to the correct class. Multiplication of the neuron outputs by zero value 
in (6) makes the correct recognition impossible. A class for which only one neuron 
output value for any analyzed feature vector is equal to zero has no chance to be se-
lected as a correct class. Therefore, we propose two modifications of multiplication 
rule which prevent the neuron outputs vanishing to zero. It could be done simply by 
adding to all neuron outputs a small constant value (mark it by θ): 
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The results of multiplication rule with added threshold in the reference speaker 
recognition task are presented in Table 1, row iii. The value of threshold was selected 
experimentally. The achieved results are better then in case of summing rule. 

The other way of preventing neuron outputs from vanishing to zero is to use max 
operator which selects the larger value from the neuron output or some small thresh-
old: 

( )∏
=∈

=
K

i
il

Kl
n Fc

1),..,1(
21 ),(maxmaxarg  )...,( θxxxx . 

(9) 

Resulting multiplication rule with max operator gives very similar results to the 
above rule (8). These results could be found in Table 1, row iv. 

7   Conclusion and Further Work 

We have presented methods of integration of multilayer perceptron outputs to allow 
the classification of an object based on a sequence of feature vectors. The sequential 
recognition rule was derived using statistical decision theory (chapter 2) and resulting 
method, after some heuristic modification (chapter 6), was applied to the speaker 
identification task. The achieved results are quite good. As expected, taking into con-
sideration larger number of feature vectors (longer text) gives better classification 
results. The result for 11 consecutive feature vectors, approximately 1.4s of text, is 
98.8% of correct classifications, when the result for one feature vector was 60.1%. 

The presented sequential rule deduction and achieved experimental results rise 
several questions. Firstly, there is a need to verify the assumption that the feature 
vectors are probabilistic independent. We compared the classification results achieved 
for original sequence of feature vectors with results for the shuffled sequence. They 
differ in average 1.4%. Therefore, the assumption seems to be justified.  However, 
more formal way, i.e. applying a statistical test for verification independence in time 
series, is required. We plan to use independence tests based on BDS statistics [5,6]. 
However, these methods were developed for univariate data and needs some modifi-
cation to be used for the sequence of multivariate feature vectors. 
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Secondly, it would very useful to have some methods for setting the optimal values 
of thresholds in rules described by equations (8) and (9). Not just a simple empirical 
method - look which values give the best results.  
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Abstract. We propose a novel probabilistic model for constructing a
multi-class pattern classifier by weighted aggregation of general binary
classifiers including one-versus-the-rest, one-versus-one, and others. Our
model has a latent variable that represents class membership probabili-
ties, and it is estimated by fitting it to probability estimate outputs of
binary classfiers. We apply our method to classification problems of syn-
thetic datasets and a real world dataset of gene expression profiles. We
show that our method achieves comparable performance to conventional
voting heuristics.

1 Introduction

Pattern classification methods that have been studied in the field of machine
learning can be categorized into two. Those of one type have applicability to
multi-class classification problems as well as binary classification problems –
such as K nearest neighbours method [1], parametric mixture models [2], and
Naive Bayes method. On the other hand, those of the other type have been
developed in particular for binary classification problems. The most popular one
is Support Vector Machine (SVM) [3] which tries to find the optimal hyperplane
that separates samples of two classes with a maximum margin.

When applying a method belonging to the latter type to multi-class (M
classes) classification problems, we need some devices; the following voting
heuristics are frequently used: 1) prepare a set of M binary classifiers, each
of which separates one class from the other classes (1–R), then a class is decided
by voting the outputs of probability estimates derived by M binary classifiers
[4]; and 2) prepare a set ofM(M−1)/2 binary classifiers, each of which separates
one from another class (1–1), then a class is decided by a vote done by them
[5][6].

Although the voting methods have weak theoretical background, they demon-
strate fairly good performance for problems in which a binary classification sub-
problem is well performed by a binary classifier like SVM. However, which is
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better to use 1–1 or 1–R is still an unknown problem. A previous study [7] eval-
uated various methods for multi-class classification problems by using several
published datasets of gene expression pattern vectors. They found that SVM-
based methods showed overwhelming performance in most cases, but also how
to choose a set of binary classifiers was problem-specific.

In this study, we propose a statistical framework for obtaining optimal de-
cision with aggregation of binary classifiers including not only 1–R and 1–1
but also others such as 1–2 and 2–2, in classification problems for more than
two classes. Especially when the number of classes is not large, a simple vot-
ing procedure like 1–R or 1–1 has no plausibility, and any combination can be
considered. To deal with this problem, we propose a probabilistic model for ag-
gregating binary classifiers, in which we assume class membership probabilities
of each data point are consistent with set of class membership probabilities of
arbitrary binary classifications. This model exhibits a natural voting mechanism
by the classifiers.

2 Probabilistic Model of Combining Binary Classifiers

There are N observations L = {x(n), t(n)}1:N ,x(n) ∈ RD, t(n) ∈ C, where x(n)

and t(n) are the pattern vector and the true class label, respectively, of the n-th
sample. C ≡ {1, 2, . . . ,M} is a set of M class labels. The objective of a multi-
class pattern classification is to predict the class label of an unknown test pattern
vector based on the training dataset L.

2.1 Unit Binary Classifiers and Class Probability Estimates

We decompose an M -class classification problem into all possible binary classi-
fication problems by drawing two subsets of class labels, l and m (l,m ∈ 2̃C , l ∩
m = ∅), without overlapping, from the label’s power set: 2̃C ≡ 2C − {∅, C} =
{{1}, {2}, . . . , {1, 2}, . . . , {1, 2, 3}, . . . , }. We call a pair of label subsets a “tar-
get”, represented by [l

∣∣m] ∈ B, where B is a set of targets. We also consider
some types for the set of targets B. Those are:

Type 1–1 One to one, i.e., B11 = B1,1

Type 1–R One to the rest, i.e., B1R = B1,M−1

Type 1–A One to a subset in the rest, i.e., B1A =
⋃M−1

i=1 B1,i

Type A–A All possible pairs of subsets without overlapping, i.e.,

BAA =
⋃�M/2�

j=1

(⋃M−1
i=j Bj,i

)
where Bj,i ≡ {[l|m] | l,m ∈ 2̃C , l ∩m = ∅,#l = j,#m = i}, and #l and #m are
the numbers of class labels in the subsets l and m, respectively, and '·( denotes
the floor integer.

Provided that we have a discriminant function fL
[l|m](x) ∈ R on a target

[l|m], of a binary classification algorithm trained with learning dataset L. Let
q[l|m](x) = Pr

(
t ∈ l|fL

[l|m](x), t ∈ l ∪m
)

be the class membership probability
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after applying a specific method to the discriminant function value; in this study,
we use 1-D logistic regression [8] for this conversion.

2.2 Class Probabilities

Let pi(x) = Pr (t = i|x) ∈ [0, 1],
∑

i∈C pi(x) = 1 describe the membership prob-
ability of a pattern vector x to a class label i. We also define the member-
ship probability vector of whole class labels as p(x) = {pi(x)}i∈C . The mem-
bership probability of x to an arbitrary set of class labels l ∈ 2̃C , pl(x), is
given by pl(x) =

∑
i∈l pi(x). If we know p(x), the x’s class label is decided as

t̂ = argmaxi∈C pi(x); this decision is Bayes optimal if pi(x) gives the posterior
probability of the class label i.

2.3 Probabilistic Model of Binary Classifications

In reality, we do not know the true posterior probability p(x), but have a set of
class membership probabilities q(x) = {q[l|m](x)}[l|m]∈B, corresponding to the
set of binary classifiers, B. The problem here is to set p(x) so as to show the best
fit to q(x). Given a true p(x), the true class probability of binary classification
on target [l|m], π[l|m](x) = Pr (t ∈ l|x, t ∈ l ∪m) is given by

π[l|m] =
pl

pl + pm
. (1)

For simplicity, we omit the argument (x) in the followings. Then, our objective is
to obtain a p so that π̂ ≡ {π̂[l|m]}[l|m]∈B shows the best correspondence with q.
To do this, we use the Kullback-Leibler divergence as similarity measure between
q and π(p), and maximize

L0(p) ≡ −KL(q; π(p))

= −
∑

[l|m]∈B

{
q[l|m] ln

q[l|m]

π[l|m]
+ (1 − q[l|m]) ln

1− q[l|m]

1− π[l|m]

}
, w.r.t. p. (2)

In addition, we introduce a Dirichlet prior p ∼ Dir(γ0) to (2) for regularization
where γ0 is the hyper parameter, then we have a modified objective function:

L1(p) =
∑

[l|m]∈B

{
q[l|m] ln pl + q[m|l] ln pm − ln(pl + pm)

}
+
∑
i∈C

γ0 ln pi +R, (3)

where R is a constant depending on q. In the experiments in the later section,
we set γ0 = 1. The objective function (3) is maximized with respect to p under
the condition

∑
i∈C pi = 1; this optimization can be performed by the Lagrange

method. This model and method are an extension of the Bradley-Terry model for
paired (one to one) comparisons [9] and the multi-class classification method by
pairwised coupling of probability estimates [5] to for any possible pairs. We call
this new probabilistic approach to optimize the membership probability vector
p the Optimization of class probabilities (OPT) method.
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3 Estimate Class Probabilities Based on Heuristics

To evaluate our proposed method, we use two ways to calculate class probabilities
based on existing simple voting heuristics and a modification of it.

Single Summation Method. In the simplest heuristics called Single Summation
(SIS) method [4][10], the class probability is given as pi =

{∑
[l|m]∈B s.t. l=i

q[l|m] +
∑

[l|m]∈B s.t. m=i q[m|l])
}
/Z, where Z is a normalization term: Z =∑

i∈C pi. This heuristics sums up probability estimate of binary classification
on each target whose subclass has a single class label: q[l|m], where #l = 1 and
#m = 1.

Shared Summation Method. We here propose another heuristics called Shared
Summation (SHS). In SHS, if a target subclass consists of multiple class labels,
the probability estimate output is distributed equally to every class label in the
subclass. This allows sets of targets such as B22 to join in voting. In contrast,
such a target cannot be used in SIS. The class membership probability by SHS
is given by pi =

{∑
[l|m]∈B s.t. i∈l q[l|m]/#l +

∑
[l|m]∈B s.t. i∈m q[m|l]/#m

}
/Z,

where Z is a normalization term similar to the above.

4 Experiments

4.1 Application to Synthesized Dataset

In order to examine the performance of our OPT method, we first prepared a
synthesized dataset; the true distribution was a mixture of four 2-D Gaussians
(Fig. 1), consisting of four classes, from which 20×4 = 80 training data and 40×
4 = 160 test data were generated. We compared the classification performances
of each combination of the three voting procedures (OPT, SHS, and SIS) and
four types of targets (1–1, 1–R, 1–A and A–A). In this experiment, we used an
SVM with a linear kernel K(x,x′) = xT x′ as a binary classifier. Table 1 shows
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Fig. 1. Synthesized dataset. The left panel represents training data and the true prob-
ability distribution. The right panel represents the Bayes optimal decision boundaries
of the four classes based on the true distribution.
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Table 1. Classification accuracy of the synthesized data

OPT SHS SIS
1–R 0.794 0.787 0.806
1–1 0.819 0.800 0.825
1–A 0.812 0.812 0.812
A–A 0.812 0.812 N/A

the classification result for the test dataset. In each entry, the value represents
the classification accuracy.

The binary results show that our OPT method has comparable or even better
performance than SHS and SIS, with an exceptional case for 1–R; in 1–R, the
high accuracies by SHS and SIS are due to the large number of indeterminate
samples. In addition, we can see that the performance of the combination of
either of OPT and SHS, and A–A is fairly good; although the A–A combines a
lot of classifiers, its performance is better than the conventionally-used 1–R and
1–1, and such a higher-order combination is naturally done by our OPT method.

4.2 Application to a Gene Expression Dataset

As an application to a realistic problem, our method was applied to a tumor
classification problem using gene expression profiling data. We used a dataset
of gene expressions from four classes (FA, FC, N and PC) of thyroid cancer:
119 training samples consisted of 41 FA, 20 FC, 28 N, and 30 PC, and 49 test
samples consisted of 17 FA, 8 FC, 12 N, and 12 PC. Each gene expression was a
vector of log-expression ratios of 2,000 genes. We used weighted voting [11][12],
a kind of linear discriminator after the gene selection based on the statistical
test using signal-to-noise ratio, as a binary classifier, because it has often been
used in the field of gene expression analyses. We set the significant level p in the
gene selection to 0.001.

Table 2 shows the accuracy by each combination (left part: leave-one-out
(LOO) accuracy, right part: test dataset accuracy). From these results, we can
see that the accuracies are higher by using a higher-order combination (1–A and
A–A) than those by the conventionally-used combination (1–R and 1–1). If we
can use classifiers of higher-order combination, the performance does not depend
on the combination way, i.e., OPT and SHS show comparable results. SIS may

Table 2. Classification accuracy of the gene expression dataset

LOO accuracy test dataset accuracy
OPT SHS SIS OPT SHS SIS

1–R 0.765 0.765 0.765 0.816 0.816 0.816
1–1 0.782 0.782 0.782 0.816 0.816 0.816
1–A 0.798 0.798 0.798 0.857 0.857 0.857
A–A 0.807 0.807 N/A 0.857 0.857 N/A
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be inferior to OPT or SHS when the A–A combination shows the best perfor-
mance. As for the reason why the results by 1–A and A–A are the same in the
independent test case, we consider the classification accuracy has been saturated
with 1–A, and additional classifiers in A–A are no more necessary. As a conse-
quence, we have found that there are cases in which a higher-order combination
like A–A shows the best performance, and our OPT method shows comparable
classification accuracies with the heuristic voting methods, SHS and SIS. SIS is
not good, because it cannot deal with higher-order combination (A–A).

5 Conclusion

In this article, we proposed a probabilistic model of binary classifiers for construct-
ing a multi-class classifier, and its estimation method. We showed that our method
achieves comparable performance to the heuristics voting methods. We found that
there are cases in which higher-order combination of binary classifiers shows the
best accuracy, and in such cases, our probabilistic approach to constructing a
multi-class classifier exhibits a natural model for the vote by the classifiers. Al-
though the eligibility of each classifier is fixed in this study, its tuning can be done
in the framework of probabilistic inference, which is our near future work.
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Abstract. This work describes the model of random subspace classifier and 
provides benchmarking results on the ELENA database. The classifier uses a 
coarse coding technique to transform the input real vector into the binary vector 
of high dimensionality. Thus, class representatives are likely to become linearly 
separable. Taking into account the training time, recognition time and error rate 
the RSC network in many cases surpasses well known classification algorithms. 

1   Introduction 

The random subspace classifier is a generalized version of random threshold classifier, 
originally suggested in [1]. The model change makes the classifier more competitive 
when the number of input parameters and training set size increase. An interesting com-
parative analysis of the coarse coding schemes is provided in [2]. The main advantage 
of RSC scheme, especially in comparison with one-threshold schemes, is the ability to 
control the density of binary representation, which allows to regulate informational 
properties of binary images like correlation, Hamming distance etc. Besides, this 
scheme allows an effective transformation of multidimensional real data into the binary 
representation for use e.g. in associative-projective neural networks [3]. The classifier 
can be considered as a discrete counterpart of the RBF network. The RSC description 
presented below is used for probabilistic analysis provided in [4]. 

2   Classifier Architecture 

The classifier is designed for the classification of points located within n -
dimensional unit cube. Any classification task can be transformed to the classification 
within a unit cube using the linear transformation. The random subspace classifier, 
which scheme is shown in the Fig. 1 below, has four neuron layers. The first three 
layers, i.e. neurons l  and h , layer A  and layer B  make a non-linear transformation 
of input real vector into the high-dimensional binary vector. The last two neuron lay-
ers B  and C  represent usual perceptron with synapse matrix W . Sometimes, the 
binary layer B  is referred as hidden layer. 

Let’s designate the number of neurons in the layer B  as N . Each j -th neuron in 

this layer represents a group of neurons jG . This group also contains corresponding 
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afferent neurons in layers l , h  and A , see Fig. 1. Each group of neurons use some 
η  different components of the input real vector, where n≤≤ η1 . The components to 

be selected are determined by the index ),( jiϕ , where the function ϕ  has values in 

the range from 1  to n . Here i  is an index of a component within the group, it 
changes from 1 to η , j  is a group index and changes from 1  to N . 

Let ),,( 1 nxx=x  is the network input vector. Each component of the input vector 

with index ),( jiϕ  is submitted to threshold neurons ijl  and ijh . The output signal of 

neuron ijl  has the value 1 in the case the input signal is greater than the threshold value 

ijl . In other cases the output of neuron ijl  is equal to 0. Similarly, the output signal of 

neuron ijh  has the value 1 only in the case it’s input signal is not less than ijh . Further, 

output signal of the neuron ijA  has the value 1 when the neuron ijl  fires and the neu-

ron ijh  has zero output. In all other cases the output of neuron ijA  is 0. In other words, 

the neuron ijA  fires only in the case the following condition holds ijjiij hxl << ),(ϕ . 

The layer B  neurons also may have only 1 or 0 as the output value. The neuron jB  

fires only in the case all afferent neurons ijA  fire, i.e. under condition  

ijjiij hxli <<∈∀ ),(   : ,,1 ϕη . (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Random subspace classifier scheme 
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In fact, the last condition means that the neuron jB  fires when the input point is 

located within the space area, limited by hyperplanes ijji lx =),(ϕ  and ijji hx =),(ϕ . 

These hyperplanes are defined for all values of index η,,1=i . The postsynaptic 

potentials of layer C  neurons are determined according to the following formula: 

=
=

N

j
jkjk BWu

1

. (2) 

As soon as the output values of layer B  neurons are calculated, it’s possible to obtain 
the required potentials. The synapse weights kjW , and thereby potentials ku , are 

represented by integer values due to the training rules provided below. Finally, the 
layer C  neuron with maximum postsynaptic potential defines the class, which the 
classifier refers the input vector to. 

3   Generating Classifier Structure 

Before training the network, it’s needed to generate the classifier structure, which 
includes subspace index ),( jiϕ  and threshold values ijl  and ijh  for neurons of the 

first layer. Originally, the random threshold classifier was suggested as a special case 
of this model when n=η  and iji =),(ϕ . The generalization was done in order to 

obtain better performance in the case of high-dimensional data. Particularly, when the 
space dimension is increasing and n=η , the probability that the layer B  neuron fires 

is approaching to zero. 
Each value ),( jiϕ  is generated as an independent random variable, which can 

have integer values in the range n,,1  with equal probability. There is a restriction, 
that the values ),( jiϕ  should be different within the same group, i.e. for the particular 

value of j . This selection is useful for the applications and is easy to program. Usu-

ally, the subspace index values can be considered as independent variables. 
The classifier structure also depends on two parameters 1δ  and 2δ , which should 

be defined in advance, and should satisfy the following conditions: 20 δ< , 

210 δδ ≤≤ . The threshold values are calculated as 

ijijijl ζξ −= , ijijijh ζξ += , (3) 

where the center ijξ  is random variable with uniform distribution in the range 

]1,[ 22 δδ +− , and half-width ijζ  is the random variable with uniform distribution in 

],[ 21 δδ . It’s interesting to compare different approaches for the calculation of the 

threshold values. All variables ijξ  and ijζ  are independent, hence random variables 

ijl  and ijh , which have different index pairs, are also independent. 

The algorithm suggested for the calculation of threshold values in [1] is somewhat 
different from the described above. Particularly, the following formulas are proposed: 

),0max( ijijijl ωυ −= , )1,min( ijijijh ωυ += . (4) 
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Here ijυ  are independent and uniformly distributed in [0,1], ijω  are independent and 

uniformly distributed in ],0[ 2δ . The approach, suggested in this article, insures that 

all points in the range [0,1] have equal probability to be located within the interval 
),( ijij hl . Thus, the classifier sensitivity is equal for all points of the unit hypercube. 

At the same time, the presence of threshold values outside the range [0,1] gives the 
opportunity to classify points outside the hypercube. This feature should be useful for 
classifier applications. However, in comparison with the algorithm suggested in [1], 
this approach requires a little more memory for subspace index values ),( jiϕ , assum-

ing the average threshold density is equal in [0,1]. 
Thus, the classifier architecture depends on four parameters N , 1δ , 2δ  and η . 

The input and output dimensionalities n  and m  are defined by the task to be solved. 
The greater the hidden layer size N  the better fitting abilities will be provided by the 
neural network. Usually this parameter should be selected according to the resource 
limitations of the computing system. The typical RSC application has tens of thou-
sands neurons in the hidden layer. As shown in [4], for most classifier applications the 
selection of 5.021 ==δδ  should be close to optimal. The subspace parameter η  

should be determined empirically for the particular input data distribution. However, 
in many cases the selection of 5,4,3=η  should be good enough. 

4   Network Training 

Initially, all synapse weights kjW  have zero values. For each vector from the training 

set, it’s needed to find the class, which the classifier refers the input vector to. Rein-
forcement of connections kjW  is done in the case of misclassifications. Let t  is an ac-

tual class number, and f  is a class number, determined by the classifier. In this case, 

for all values of Nj ,,1= , weights  should be recalculated according to formulas 

jtjtj BWW +=′ , )0,max( jfjfj BWW −=′ . (5) 
Another option is to use the rule “with penalty”, where negative weights are allowed 
and the calculations are as follows: 

jtjtj BWW +=′ , jfjfj BWW −=′ . (6) 
Usually, the first rule provides better success rate on the test set, while the second 
assures faster convergence. The training procedure is usually repeated until the con-
vergence process is complete, i.e. misclassifications are absent for the whole training 
set. Sometimes, the training is performed some particular number of epochs. In any 
case the final synapse matrix W  depends on the order of vectors in the training set. 

5   Generating Sensitive Structure 

In the basic classifier model the thresholds have a uniform distribution, while the 
actual input data usually do not. In this case the classifier provides relatively fine 
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presentation for regions with low probability density and relatively poor presentation 
for regions with a high density. Let’s consider one particular component of the input 
real vector. It is possible to improve RSC performance by generating threshold values 
with the density proportional to the vector component probability density. Usually the 
only information about the input set distribution is the input set itself. Let’s denote the 
i -th component of the j -th vector as ijx , and L – the size of the training set. In this 

case the probability density of the i -th component could be well approximated e.g. 
by the following function: 

=
−

−

+
=

L

j
xxL

xxL

i ij

ij

e

e
x

1
2)(

)(

)1(
)(ψ . (7) 

Such approximation of the probability distribution is similar to the method employed 
for probabilistic neural networks [5]. The probability function of this distribution is 
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−
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1

1
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As shown in [4], in order to obtain thresholds satisfying the required distribution, 
it’s needed to generate them using the usual procedure in one space 'X  and then 
transform values into required space X  using the inverse transform function 

)'(1 xF − . The classifier structure obtained using this transformation will be referred 

as sensitive. 

6   Testing on ELENA Classification Database 

Enhanced Learning for Evolutive Neural Architecture project is presented in [6,7]. 
Each dataset provided with detailed description of properties like number of samples, 
fractal dimensionality, inertia of principal components, confusion matrix etc. 

The RSC network had the following configuration: number of groups 32768=N , 
subspace parameter ),3min( n=η , half-width parameters 5.021 ==δδ . The error rate 

for each dataset was estimated using the results of five independent experiments. In 
order to reduce the bias provided by particular sample distribution, each time the 
dataset was rotated by moving the first 20% of samples to the end of the dataset. The 
first half of the resulting set was used as the training set, while the second half – as the 
test set. The classifier had the sensitive structure generated using the training set only. 

The datasets Clouds, Concentric and Gaussian were artificially generated, so the 
probability density distributions and Bayesian decision are available. The real datasets 
Iris, Phoneme, Satimage and Texture were obtained from different application areas 
and the underlying distributions are not known. The real datasets were preprocessed, 
in particular, CR designates the centering to zero mean and reducing to unit variance, 
PCA – principal component analysis applied to the CR dataset, DFA – discriminant 
factorial analysis applied to the PCA dataset. The experimental results are presented 
in the Table 1. The approximate error rates for classifiers KNN, MLP and IRVQ in 
their best configurations [6,7] are presented for comparison purposes. 
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Table 1. Error rates and average number of epochs for RSC on ELENA datasets 

RSC KNN MLP IRVQ Dataset n m 
Min. Average Max. Epochs Average 

Clouds 2 2 13.04 14.25 15.44 1696 11.8 12.2 11.7 
Concentric 2 2 0.64 1.17 1.60 75.8 1.7 2.8 1.5 
Gaussian 2D 2 2 33.56 35.67 37.76 2993 27.4 26.8 27.2 
Gaussian 3D 3 2 28.60 29.42 30.60 468.4 22.2 22.4 22.6 
Gaussian 4D 4 2 23.44 24.34 24.64 248.6 19.4 19.5 18.5 
Gaussian 5D 5 2 19.00 19.79 21.00 171.6 17.7 17.4 15.3 
Gaussian 6D 6 2 17.36 17.74 18.36 116.8 16.8 16.4 13.5 
Gaussian 7D 7 2 14.36 15.30 16.68 102.0 15.9 15.3 11.5 
Gaussian 8D 8 2 12.96 13.60 14.40 80.4 16.1 14.5 9.9 
Iris 4 3 1.33 4.53 8.00 5.4 n/a n/a n/a 
Iris CR 4 3 2.67 4.53 6.67 6.6 4.0 4.3 6.7 
Iris PCA 4 3 4.00 8.27 12.00 4.2 n/a n/a n/a 
Phoneme 5 2 12.47 12.89 13.58 207.2 12.3 n/a n/a 
Phoneme CR 5 2 11.88 12.50 13.40 184.4 12.3 16.3 16.4 
Phoneme PCA 5 2 12.66 13.18 14.43 221.8 n/a n/a n/a 
Satimage 36 6 9.73 10.15 10.60 82.4 n/a n/a n/a 
Satimage CR 36 6 9.42 9.95 11.04 86.0 9.9 12.3 11.4 
Satimage PCA 18 6 11.04 11.77 13.15 42.2 9.6 11.6 11.4 
Satimage DFA 5 6 12.15 13.31 13.86 150.0 n/a 11.8 11.4 
Texture 40 11 1.60 1.82 2.04 19.0 n/a n/a n/a 
Texture CR 40 11 1.24 1.84 2.44 20.4 1.9 2.0 3.1 
Texture PCA 18 11 0.87 1.29 1.64 11.2 2.0 1.2 3.0 
Texture DFA 10 11 0.55 0.88 1.20 10.0 0.4 1.4 0.4 

7   Discussion 

The RSC network provides good or sometimes the best results on real databases, 
comparing to the seven classifier models considered in [6,7]. Also RSC gives the best 
error rate on the Concentric dataset. The results for Clouds and Gaussian datasets, 
which have highly overlapping probability densities are poor. Despite the Bayesian 
decision surface is simple, the early stopping on average does not provide better re-
sults. However, the relative error rates for Gaussian datasets become better with in-
creasing input space dimensionality. Only two classifiers exceed RSC for Gaussian 
8D. The classifier performance may be improved by adjusting it’s configuration pa-
rameters for the particular classification task. 

References 

1. Kussul, E.M., Baidyk, T.N., Lukovich, V.V., Rachkovskij, D.A.: Adaptive high perform-
ance classifier based on random threshold neurons. Cybernetics and Systems’94, Ed. R. 
Trappl. Singapore: World Scientific Publishing Co. Pte. Ltd., (1994) 1687-1695 

2. Kussul, E.M., Rachkovskij, D.A., Wunsch, D.C.: The random subspace coarse coding sche-
me for real-valued vectors. Proc. Int. Joint Conf. Neural Networks 1999, Vol. 1, 450-455 



 Evaluating Performance of Random Subspace Classifier 349 

3. Rachkovskij, D.A., Kussul, E.M.: Binding and normalization of binary sparse distributed 
representations by context-dependent thinning. Neural Computation, Vol. 13, n. 2, (2001) 
411-452 

4. Zhora, D.V.: Random threshold classifier functioning analysis. Cybernetics and System 
Analysis, Vol. 3, Kiev (2003) 72-91, in Russian. Available: http://rsc.netfirms.com/ 

5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. 2-nd ed. Wiley Interscience 
(2000) 654 

6. Aviles-Cruz, C., Guérin-Dugué, A., Voz, J.L., Van Cappel, D.: Databases, Enhanced Learn-
ing for Evolutive Neural Architecture. Tech. Rep. R3-B1-P, INPG, UCL, TSA (1995) 47. 
Available: http://www.dice.ucl.ac.be/neural-nets/Research/Projects/ELENA/elena.htm 

7. Blayo, F., Cheneval, Y., Guérin-Dugué, A., Chentouf, R., Aviles-Cruz, C., Madrenas, J., 
Moreno, M., Voz, J.L.: Benchmarks, Enhanced Learning for Evolutive Neural Architecture. 
Tech. Rep. R3-B4-P, INPG, EERIE, EPFL, UPC, UCL (1995) 114 



W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 351 – 357, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A New RBF Neural Network Based Non-linear 
Self-tuning Pole-Zero Placement Controller 

Rudwan Abdullah, Amir Hussain, and Ali Zayed 

Department of Computing Science and Mathematics, 
University of Stirling, FK9 4LA, Scotland 
{raa, ahu, asz}@cs.stir.ac.uk 

Abstract. In this paper a new self-tuning controller algorithm for non-linear 
dynamical systems has been derived using the Radial Basis Function Neural 
Network (RBF). In the proposed controller, the unknown non-linear plant is 
represented by an equivalent model consisting of a linear time-varying sub-
model plus a non-linear sub-model. The parameters of the linear sub-model are 
identified by a recursive least squares algorithm with a directional forgetting 
factor, whereas the unknown non-linear sub-model is modelled using the (RBF) 
network resulting in a new non-linear controller with a generalised minimum 
variance performance index. In addition, the proposed controller overcomes the 
shortcomings of other linear designs and provides an adaptive mechanism 
which ensures that both the closed-loop poles and zeros are placed at their pre-
specified positions. Example simulation results using a non-linear plant model 
demonstrate the effectiveness of the proposed controller. 

1   Introduction 

During the past three decades, a great deal of attention has been paid to the problem of 
designing pole-placement controllers and minimum variance controllers[1, 2, 3]. 
Various self-tuning controllers based on classical pole-placement and minimum 
variance ideas have been developed and employed in real applications, e.g. [1, 2, 3, 4]. 

Comparatively, only little attention has been given to zeros since they are 
considered to be less crucial than poles. Most of the previous discussions on zeros are 
centred around the choice of the sampling time so that the resulting system is 
invertible. However, it is important to note that zeros may be used to achieve better 
set point tracking [5], and they may also help reduce the magnitude of the control 
action [6]. 

In this paper a control algorithm is proposed which builds on the works of Zayed et 
al. [7, 8] and Zhu and Warwick [4]. In the proposed controller an unknown non-linear 
plant is represented by an equivalent model consisting of a linear time-varying sub-
model plus a non-linear sub-model. Models of this type have previously been shown 
to be particularly useful in an adaptive pole-placement based control framework by 
Zhu and Warwick [4]. In this work, following [7, 8] the non-linear controller is 
designed to  incorporate a zero-pole placement structure, in which the parameters of 
the linear sub-model are identified by a standard recursive algorithm. The non-linear 
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sub-model is now detected using a Radial-Basis Function neural network since the 
RBF network is more capable of implementing arbitrary nonlinear transformations of 
the input space [9]. 

The paper is organised as follows: the derivation of the control law is discussed in 
section 2. In section 3, a simulation case study is carried out in order to demonstrate 
the effectiveness of the proposed controller. Finally, some concluding remarks are 
presented in section 4. 

2   Derivation of the New Control Law 

In deriving the control law it is considered that the plant being investigated can be 
described by: [4] 

 

),()()()()( ,0
11 UYftuzBztyzA t

k += −−− .                                  (1) 
 

Where )(ty  and )(tu  are respectively the measured output and the control input at 

the sampling instant t , 1=k is the integer-sample dead time of the process, and 
),(,0 UYf t  is potentially a nonlinear function, where the length of its inputs Y and U 

depend on the order of the plant model. Therefore the equivalent model is a 
combination of a linear time varying sub-model plus a non-linear sub-model as shown 

in figure(1). The polynomials )( 1−zA  and )( 1−zB  are respectively of orders an  and 

bn . The polynomial )( 1−zA  is assumed to be monic. In what follows, the 1−z  

notation will be omitted from the various polynomials to simplify the presentation. 
The generalised minimum variance controller minimises the following cost 

function: 
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Where )(tw  is the set point and ),( 1−zP  )( 1−zQ , )( 1−zR  and )( 1−z H  are user-

defined transfer functions in the backward shift operator 1−z . {.}E  is the expectation 

operator. 
The control law which minimises J  is [8]: 
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dpn  is the order of dP . 

The polynomials E′  and F ′  are obtained by solving the least square identity  
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Equation (3) can also be expressed as: 
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'R , q  and 'H  are still user defined transfer functions since they depend on the 

transfer functions R , Q  and H , respectively.  

We further assume that q can also be expressed as [7, 8]: 
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2.1   Pole Zero-Placement Design  

If we substitute for )(tu  given by equation (5) into the process model given by 

equation (1) and make use of equations (6) and (7), we obtain [7, 8] 
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It is obvious from equation (8) that at steady state the output )(ty  equals the constant 

reference command )(tw  when: 
 

 
1

''

=
=

z
FR  and )1( 1' −−=Δ= zH .                                   (9) 

 

If we assume BqB d=  and AA Δ= , then equation (8) becomes: 
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We can now introduce the identity: 
 

T)BFzA(q k
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Where T  and dq  are respectively the desired closed loop poles and zeros, and nq is the 

controller polynomial. For equation (11) to have a unique solution, the order of the 
regulator polynomials and the number of the desired closed loop poles have to be [7, 8]: 
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Where ,an  ,bn  
dqn  and 

nqn  are the orders of the polynomials ,A ,B  dq and 

,nq respectively, Tn  and k  denote the number of desired closed loop poles and the 

time delay. Also, bqb nnn
d

+=  and .1+= aa nn  

The pole-zero placement can be achieved by assuming that: 
 

nqq Δ=  and 1''
0
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Where dq  is the desired closed loop zeros. 

By using (5), (6) and (13) the closed loop system becomes: 
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Now we can introduce the identity: 
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It is obvious that the order of the polynomial nq  becomes: 
 

 1−+= knn bqn
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It is clear from equation (14) and (15) that both closed loop poles and zeros are now at 
their desired positions. 

As can be seen in figure (1), a recursive least squares algorithm is initially used to 
estimate the parameters A and B (equation (1)) of the linear sub-model. Then an 
Radial-Basis Function (RBF) neural network is used to approximate the non-linear 
sub-model

tf ,0
.  

The desired non-linear output function )(~ tx  is detected as follows:  
 

)(ˆ)()()(~)()(~ tttytytytx T θϕ−=−= .                           (17) 
 

where θ̂  is the parameter vector, mℜ∈ϕ  is the data factor and )(~ ty is the output of 

the RLS estimator. In equation (17), the output )(~ tx is considered as the target output 

for the RBF network, as shown in figure(1) and equation (19).  The actual output of 
the nonlinear RBF-based sub-model tf ,0  is achieved using a multivariate Gaussian 

function incorporating Delta rule to update the hidden layer weights. Equations 
(18-21) illustrate the online learning procedure of the neural network 
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Where jw  is the hidden layer weights, β  is  the output layer threshold, wδ  is the 

change in weights, η  is the learning rate, ix  is the inputs, i
jc is the mean, 

ba nnl += , and jg  is the output of the hidden layer. The variance of the Gaussian 

units i
jσ  is dependent on the input dimension because the RBF inputs are scaled 

differently [10].  
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3   Simulation Results 

The objective of this section is to study the performance and the robustness of the 
closed loop system using the technique proposed in section 2.1. A simulation case 
study will be carried out in order to demonstrate the ability of the proposed algorithm 
to locate the closed-loop poles and zeros at their desired locations under set point 
changes. The simulation example was performed over 600 samples with the set point 
changing every 100 sampling instants. 

Consider the following second-order non-minimum phase and unstable process 
treated previously by Zhu and Warwick [4].  The set point changes from 10 to 20. 
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The desired closed loop poles polynomial and zeros were selected as follows: 
165.01 −−= zT  and 17.01 −+= zqd . In order to see clearly the effect of the zeros in 

the performance of the closed loop system, the controller is arranged to work as either 
a pole-placement or pole-zero placement controller as follows: 

a) From (0th up to 250th sampling time) only the pole placement controller is on-line. 
b) The pole-zero placement controller is switched on from (251st to 600th sampling 
time). The output and the control input are shown in the figures (3a) and (3b).  
 

 

 

Fig. 3a. The output signal                               Fig. 3b. The control input signal 

It is clear from the figures (3a) and (3b) that, the transient response is shaped by the 
choice of the polynomial T  and ensures steady state error to zero. It is also obvious 
that excessive control action, which resulted from set-point changes, is tuned after 
using zero-pole placement from the sampling interval 251, onwards. 

4   Conclusions 

In this paper, an algorithm to extend the generalised minimum variance stochastic 
self-tuning controller for non-linear plants has been proposed incorporating the (RBF) 
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network. The unknown non-linear plant is represented by an equivalent model 
composed of a simple linear sub-model plus a non-linear sub-model. The parameters 
of the linear sub-model are identified by a standard recursive least squares algorithm, 
whereas the non-linear sub-model is approximated using RBF neural network. The 
resulting self-tuning controller provides an adaptive mechanism, which ensures that 
both the closed loop poles and zeros are located at their pre-specified positions. The 
design was successfully tested on simulated non-linear model. The results presented 
here indicate that the controller tracks set point changes with the desired speed of 
response, penalises the excessive control action, and can deal with non-minimum 
phase systems. The transient response is shaped by the choice of the pole 

polynomial )( 1−zT , while the zero polynomial )( 1−zqd  can be used to reduce the 

magnitude of control action or to achieve better set point tracking [7, 8]. In addition, 
the controller has the ability to ensure zero steady state error. 

In future work, closed loop stability analysis will be carried out and the 
performance of the RBF based pole-zero placement controller need to be compared 
with other linear and non-linear neural network based controllers. 
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Abstract. This paper presents an application of the Levenberg-Marquardt algo-
rithm to on-line modelling of a variant system. Because there is no iterative ver-
sion of the Levenberg-Marquardt algorithm, a batch version is used with a double
sliding window and Early Stopping to produce models of a system whose poles
change during operation. The models are used in a Internal Model Controller to
control the system which is held functioning in the initial phase by a PI controller.

1 Introduction

On-line learning is usually required for time-variant systems. Most real systems vary
slowly because of the degradation of their components. Nevertheless, in the present
work it has been decided to use an artificial system that has an abrupt change in its
characteristics, namely the position of its poles.

On-line learning usually requires an iterative algorithm. For the
Levenberg-Marquardt algorithm a true iterative version hasn’t been proposed yet, so
the present work uses this algorithm in a batch version through the use of a double
sliding window with Early Stopping.

The difficulties of implementing the algorithm in an iterative version come from
computing the derivatives for the Hessian matrix, inverting it and computing the region
for which the approximation contained in the matrix is valid (the trust region).

The solution proposed is tested with a cruise control system with variant charac-
teristics. The location of the pole changed in the middle of the experiment to test the
capabilities of adaptation of the solution proposed.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 359–364, 2005.
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2 Review of the Algorithm

In this section, a short review of the Levenberg-Marquardt algorithm is done to en-
able easier perception of the problems found in the on-line implementation. Equation
1 shows the updating rule for the algorithm where xk is the current iteration, v(x) is
the error between the output obtained and the pretended output, J(xk) is the Jacobian
of the system at iteration k and 2.JT (xk).J(xk) + μkI is the Hessian matrix approx-
imation used, where I is the identity matrix and μk is a value (that can be changed in
each iteration) that makes the approximation positive definite and therefore allowing its
inversion.

)xk = −
[
2.JT (xk).J(xk) + μkI

]−1
.2.JT (xk).v(xk) (1)

The Levenberg-Marquardt algorithm is due to the independent work of both authors
in [1] and [2].

The parameter μk is the key of the algorithm since it is responsible for stability
(when assuring that the Hessian can be inverted) and speed of convergence. It is there-
fore worth to take a closer look on how to calculate this value.

The modification of the Hessian matrix will only be valid in a neighbourhood of the
current iteration. This corresponds to search for the correct update of the next iteration
xk+1 but restricting this search to |x− xk| � δk.

There is a relationship between δk and μk since raising μk makes the neighbourhood
δk diminish [3]. As an exact expression to relate these two parameters is not available,
many solutions have been developed.The one used in the present work was proposed
by Fletcher [3] and uses the following expression:

rk =
VN (xk)− VN (xk + pk)
VN (xk)− Lk(xk + pk)

(2)

to obtain a measure of the quality of the approximation. Here VN is the function to be
minimized, Lk is the estimate of that value calculated from the Taylor series of second
order and pk is the search direction, in the present situation, the search direction given
by the Levenberg-Marquardt algorithm.

The value of rk is used in the determination of μk in an iterative way[3]

3 On-line Version

As pointed out before, the difficulties come from computing the derivatives for the
Hessian matrix, inverting this matrix and computing the trust region, the region for
which the approximation contained in the calculation of the Hessian matrix is valid.

In the literature, some attempts to build on-line versions can be found, namely the
work done by Ngia [4] developing a modified iterative Levenberg-Marquardt algorithm
which includes the calculation of the trust region and the work in [5] which implements
a Levenberg-Marquardt algorithm in sliding window mode for Radial Basis Functions.

3.1 A Double Sliding Window Approach with Early Stopping

In the present work two sliding windows are used, one for the training set and another
for the evaluation set with all the data being collected on-line. The Early Stopping tech-
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nique [6], [7] is used for avoiding the overfitting problem because it is almost mandatory
to employ a technique to avoid overtraining when dealing with systems that are subject
to noise. The Early Stopping technique consists of stopping training when the test er-
ror starts to increase with the training iterations and was chosen because it has less
computational burden then other solutions.

The use of two sliding windows will introduce some difficulties since both data
sets will be changing during training and evaluation phases. For these two windows it is
necessary to decide their relative position. In order to be able to perform Early Stopping
in a valid way, it was decided to place the windows in a way that the new samples will
go into the test window and the samples that are removed from the test set will go in to
the training set.

The procedure used for the identification of the direct model on-line is represented
in figure 1.

Training stars before collecting all the samples for both windows to save some time.
For stability the test window has always the same size while the training window is
growing in the initial phase.

The windows may not change in each training iteration since all the time between
sampling is used for training which may permit several training epochs before a new
sample is collected. But each time the composition of the windows is changed the test
and training errors will probably be subjected to an immediate change that might be
interpreted as an overtraining situation. The Early Stopping technique is here used in
conjunction with a measure of the best model that is retained for control. Each time
there is a change in the windows the values of the best models (direct and inverse)
must be re-evaluated because the previous ones, obtained over a different test set, are
no longer valid for a direct comparison.

After each epoch the ANN is evaluated with a test set. The value of the Mean Square
Error (MSE) obtained is used to perform Early Stopping and to retain the best models.

The conditions for overtraining and the maximum number of epochs are then ver-
ified. If they are true, the Flag, which indicates that the threshold of quality has been
reached, will also be verified and if it is on, the training of the inverse model starts, oth-
erwise the models will be reset since new models need to be prepared. Resetting here
means that the model’s weights are replaced by random values between -1 and 1 as in
the initial models. After testing these conditions, if they are both false, the predefined
threshold of quality will also be tested and if it has been reached the variable Flag will
be set to on. In either case the remaining time of the sampling period is tested to decide
if a new epoch is to be performed or if a new sample is to be collected and training is to
be performed with this new sample included in the sliding window.

The procedure for the inverse model is very similar and almost the same block dia-
gram could be used to represent it. The on-line training goes on switching from direct
to inverse model each time a new model is produced. The main difference between
the procedure for direct and inverse model lies in the evaluation step. While the direct
model is evaluated with a simple test set, the inverse model is evaluated with a con-
trol simulation corresponding to the hybrid Direct/Specialized approach for generating
inverse models [8]. During the on-line training the NNSYSID [9] and NNCTRL [10]
toolboxes for MATLAB were used.
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Fig. 1. Block diagram for the identification of a direct model on-line

4 Time Variant System

The time variant system used for this test is a cruise control with a variable pole position
according to the following equation:{ 0.05

s+0.05
0.15

s+0.15

if sample � 500
if sample > 500

(3)

with this change in the pole position a new system is obtained and a new set of models
must be prepared. The system used is rather simple but the variance introduced allows
testing the functionality of the algorithm proposed.

5 Results

The test sequence is composed of 100 points, the sliding window used for training has
a maximum of 200 samples and training starts after 240 samples have been collected.
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Fig. 2. Result obtained using the IMC control strategy and the proposed on-line learning solution
with a random reference

Both direct and inverse models were one hidden layer models with 6 neurons on the
hidden layer and one linear output neuron. The direct model has as inputs the past two
samples of both the output of the system and the control signal.

The sampling period used was 150 seconds, which allowed performing several
epochs of training between each control iteration. During the initial phase of collect-
ing data a Proportional Integral controller (PI) was used in order to keep the system
operating within the range of interest. The PI parameters are Kp=0.01 and Ki=0.01. Af-
ter this initial phase the PI is replaced by an Internal Model Controller (IMC) controller,
using the direct and inverse models trained on-line.

The first inverse model is ready at sample 243, that is only 2 samples after the
training has started. After the 240 samples have been collected it only took one sam-
pling period to complete the training of the direct model and another sampling period
to complete the inverse model. As can be seen from figure 2 after the pole position is
changed the closed loop enters a stage of heavy oscillation but as soon as the informa-
tion about the new characteristics of the system is dominant in the training window(that
is at sample 795) the quality of control is re-established.

6 Conclusion

This paper presents on-line identification and control of a pole position varying system
using the Levenberg-Marquardt algorithm in a batch version with two sliding windows
and Early Stopping.
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As shown here, even for a noisy system, for which overtraining is a real problem it
is possible to create models on-line of acceptable quality and recover from changes in
the system.

The artificial pole position variant system used in this experiment is an extreme sit-
uation compared with most real time variant systems, which vary slowly. Nevertheless
the successful application of the Levenberg-Marquardt sliding window solution to this
situation shows that it will also work for slowly variant systems.

With this artificial time variant system it can be seen that learning is very diffi-
cult when the sliding windows contains data from the system previously and after the
change. This corresponds to training an ANN with mixed data from two different sys-
tems. Once this situation is overcome the models of the new system are rapidly obtained.
This problem would not happen for a slow changing system.

The sliding window solution with Early Stopping for the Levenberg-Marquardt al-
gorithm is very interesting since it does not limit the capabilities of the algorithm and
overcomes the limitations of application of the traditional solution.
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Abstract. Power law tails can be observed in the statistics of human
motor control such as the balancing of a stick at the fingertip. We derive
a simple control algorithm that employs optimal parameter estimation
based on past observations. The resulting control system self-organizes
into a critical regime, whereby the exponents of power law tails do not
depend on system parameters. The occurrence of power laws is robust
with respect to the introduction of delays and a variation in the length of
the memory trace. Our results suggest that multiplicative noise causing
scaling behavior may result from optimal control.

1 Introduction

Power law tails, i. e., distributions p(y) ∼ y−δ for large values of y, occur ubiq-
uitously in the statistics of natural and man-made systems. Examples include
avalanche sizes and durations of granular matter, the distribution of the mag-
nitudes of earthquakes (Gutenberg-Richter law), firing behavior of neural pop-
ulations in cortical tissue, and stock-market fluctuations. Scaling behavior has
also been identified in human sensorimotor control systems such as the bal-
ancing of a stick at the fingertip [2,3] and the visuomotor control of a virtual
target on a computer screen [1]. In the case of stick balancing, the occurrence
of power law tails has been attributed to on-off intermittency [5] resulting from
the existence of multiplicative noise and a fine-tuning of system parameters to a
stability boundary [3]. Here, we suggest a simple control mechanism that yields
self-organized critical behavior without the need of parameter tuning. Moreover,
multiplicative noise turns out to be the result of optimal parameter estimation.

2 The Basic Model

We define our control problem as a discrete random map and employ a maximum
likelihood approach to optimize the prediction of the control parameter.

2.1 Derivation of the Control Equations

The uncontrolled system is defined by a one-dimensional linear random map

yt+1 = α0yt + βt , (1)

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 365–370, 2005.
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where the dynamical variable yt denotes the deviation from some target value
at time t (t = 0, 1, 2, . . .). α0 is a system parameter unknown to the controller;
it is assumed to be constant in the following. For α0 > 1, the fixed point at
the origin is unstable. βt ∼ N (0, σ2) is a Gaussian random variable describing
nonpredictable fluctuations. Its variance σ2 ≡ const. is a second hidden system
parameter. Its estimation turned out to be irrelevant for the system under study.
In the following, we shall therefore focus on the estimation of α0.

In unconstrained control, the controller simply minimizes deviations from the
target value, i. e., 〈y2〉 != min. The controller is assumed to know the form of the
dynamical equation (1). A control strategy consists in computing an estimate
αt of the parameter α0 from observations yt+1, yt, yt−1, . . . of the system and
subtracting the term αtyt. If control is switched on, (1) has therefore to be
replaced by

yt+1 = (α0 − αt)yt + βt . (2)

The estimate of the system parameter α0 is obtained from an optimality
principle as follows. In the basic form of the control algorithm, we consider the
observation of only two subsequent values yt and yt+1. Since α0 is unknown to
the controller, it is regarded a variable, and αt+1 is taken to be the value α0 that
maximizes the compound density p(yt+1, yt|α0, αt, αt−1, . . .):

αt+1 = argmax
α0

p(yt+1, yt|α0, αt, αt−1, . . .) . (3)

In other words, the new estimate αt+1 is defined to be the control parameter α0

that is most probable to give rise to the two observations yt and yt+1, given the
past estimates αt, αt−1, . . .. The compound density can be written as

p(yt+1, yt|α0, αt, αt−1, . . .) = p(yt+1|yt, α
0, αt, αt−1, . . .)p(yt|α0, αt, αt−1, . . .)

= p(yt+1|yt, α
0, αt)p(yt|α0, αt, αt−1, . . .) . (4)

The second equality is due to the Markov property with respect to the control
parameter αt which becomes clear from (2).

Now consider p(yt+1|yt, α
0, αt). It is computed with the help of (2) which

can be written as

yt+1 − (α0 − αt)yt = βt ∼ N (0, σ2) . (5)

If the left hand side is regarded as a function of yt+1, a transformation of variables
yields the result p(yt+1|yt, α

0, αt) ∼ N (0, σ2
t ):

p(yt+1|yt, α
0, αt) =

1√
2πσ2

t

e
− β2

t
2σ2

t =
1√
2πσ2

t

e
− (yt+1−(α0−αt)yt)2

2σ2
t . (6)

We now assume that the second term on the right hand side of (4) is independent
of α0: ∂p(yt|α0, αt, αt−1, . . .)/∂α0 = 0. This assumption is by no means trivial
and will have to be checked later in the analysis of the control system. If it holds,
(3) can be replaced by

αt+1 = argmax
α0

p(yt+1|yt, α
0, αt) .
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Inserting (6) yields the result

αt+1 = αt +
yt+1

yt
. (7)

Employing (2), it can be written in the more common form αt+1 = α0 + βt/yt.

2.2 Properties of the Control System

The control system (2,7) is a two-dimensional random map giving rise to a com-
pound density p(yt, αt|α0). Here we shall focus on the behavior of yt under the
iteration of both equations. Figure 1 shows an example of the time series yt after
removal of the transient. The trajectory is irregular. In most cases, deviations of
yt from zero are rather small, with large deviations interspersed. The time series
seems to have a self-similar structure: Magnifications of the trajectory yield tra-
jectories of similar appearance (middle and bottom). In particular, fluctuations
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Fig. 1. Solutions yt of the two-dimensional random map (2, 7) in three different reso-
lutions. Top: 106 iterations, middle: 105 iterations, bottom: 104 iterations. The interval
on the left of the vertical dotted lines in the top (middle) figure is expanded in the
middle (bottom) figure. In all cases, α0 = 2, σ2 = 0.8.
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Fig. 2. (a) Time delay plot yt+2 vs. yt. 25000 iterations after the transient. α0 = 2,
σ2 = 0.8. (b) Marginal density p(yt|α0) for α0 = 2. A clear power tail is visible, the
exponent of which was estimated to be δ ≈ −2.0. σ2 = 0.8, 108 iterations. The inset
shows exponents δ for different values of the true control parameter α0 as fitted from
the marginal densites p(yt). Note the logarithmic scaling of the abscissa. In all cases,
σ2 = 0.8, 108 iterations for each value of α0.

with large amplitudes in yt (and also in αt) occur because there are no further
constraints on the estimated parameter. The existence of large fluctuations be-
comes clear from the structure of the system equations: a good estimate at time
t, i. e., a small value yt yields a large value αt+1 because yt appears in the de-
nominator on the right hand side of (7). This in turn yields a bad estimate (i. e.,
a large value) of yt+2 via (2). This mechanism can also be seen by eliminating
αt from the system (2,7), resulting in a random map with delay 2,

yt+2 = βt+1 − βt
yt+1

yt
. (8)

The time delay plot yt+2 vs. yt in Fig. 2a corroborates the above explanation:
large values of yt yield small values of yt+2, and only small values of yt can result
in large values of yt+2.

An example for the marginal density p(yt|α0) is shown in Fig. 2b. For small
values of yt, the density is constant. For large values, it shows clear power law
behavior with an exponent close to 2. Extensive numerical simulations show
that the exponent is independent of the system parameter α0 (see inset of
Fig. 2). In fact, the complete density p(yt|α0) is invariant with respect to α0:
∂p(yt|α0)/∂α0 ≡ 0 (data not shown). This can also be seen from (8) where α0

has dropped out.
The exponents of the power law tails of p(yt|α0) are also independent of

the variance σ2 of the distribution of the noise variable βt. This was tested
numerically over 7 orders of magnitude of σ.

The control system and the resulting distributions can be studied analytically
by means of the Frobenius-Perron equation which reveals an asymptotic power
law exponent δ = −2 of the marginal density p(yt) [6].
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3 Extensions of the Basic Model

The basic model introduced in the previous section exhibits a fundamental prop-
erty of biological motor control systems, the occurrence of power law tails. An
application to realistic systems (such as the balancing of a stick or human pos-
tural sway) will only be possible if power law behavior in the model is robust
with respect to the introduction of delays, changes in the system dynamics, etc.
Here we briefly consider two extensions: delays and memory.

Interaction delays are ubiquitous in motor control (e. g., [7,4,2,3]). They can
be introduced in the model simply by replacing (7) by

αt+n = αt +
yt+1

yt
(9)

which will be referred to a system with delay n. Figure 3a shows the marginal
density pn(yt|α0) for the system with delay n = 10. Again, a clear power law
tail can be identified. More systematic numerical investigations show that the
exponents δn decrease with n.

A second extension of the basic model considers a longer history of past
observations than only yt and yt+1 as employed in (3):

αt+1 = argmax
α0

p(yt+1, yt, yt−1, . . . , yt−n|α0, αt, αt−1, . . .) .

which will be referred to a system with with memory n. In this case, the control
equation reads

αt+1 =
∑n

i=0

(
yt−i+1yt−i + αt−iy

2
t−i

)∑n
i=0 y

2
t−i
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Fig. 3. (a) The marginal density pn(yt) for the delayed system with n = 10. The
densities show clear power law tails. The exponent was estimated to be δn ≈ −1.7.
(b) The marginal density p(n)(yt|α0) of a system with memory n = 2. The exponents
was estimated to be δ(n) ≈ −3.9. In both cases, α0 = 2, σ2 = 0.8. 107 (a) and 108 (b)
iterations.
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instead of (7). Figure 3b gives an example of a marginal density p(n)(yt|α0)
for n = 2. Numerical investigations suggest that for a system with memory n,
p(n)(yt|α0) has an exponent δ(n) = −(n+ 2), independent of the value of α0.

Finally, the control equation (7) can be equipped with constraints on αt. For
example, a clipping at some value αmax again yields power law tails of p(yt) that
have an exponential cutoff (data not shown).

4 Discussion

We developed a simple control algorithm to explain the occurrence of power
law tails in human movement data. As can be seen from (5), two mechanisms
may contribute to this behavior: first, the dynamical variable yt appears in the
numerator, resulting in large amplitudes if the controller has previously been
successful. Second, the noise term is multiplicative. Multiplicative noise is well
known to produce on-off intermittency and power law scaling in random maps
[5]. Whereas previous models for motor control explicitly incorporated multi-
plicative noise [2], in our model it results from a maximum-likelihood parameter
estimation of a standard unstable fixed-point situation with additive noise.

So far, the occurrence of power law behavior has proven to be robust with
respect to delays and extended memory. The fact that the consideration of a
longer history yields faster decaying densities suggests that power laws observed
in sensorimotor control result from a compromise between stability and fast
adaptation with respect to changes in system parameters. Future work will focus
on mechanisms that produce the power spectra and exponents found in human
motor control.
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Abstract. In this paper we address the problem of virtual central navigation in
3D tubular structures. A virtual mobile robot, equipped with a neuro-fuzzy con-
troller, is trained to navigate inside image datasets of tubular structures, keep-
ing a central position; virtual range sensors are used to sense the surrounding
walls and to provide input to the controller. Aim of this research is the identifica-
tion of smooth and continuous central paths which are useful in several medical
applications: virtual endoscopy, virtual colonoscopy, virtual angioscopy, virtual
bronchoscopy, etc. We fully validated the algorithm on synthetic datasets, and
performed successful experiments on a colon dataset.

1 Introduction

Mobile robots often need to keep a central position while moving in corridors: several
approaches have been proposed in literature both for holonomic and non-holonomic
robots ([1], [2]), but most of them deal with real robots moving on the ground: thus,
with a 2D navigation.

Identifying central lines in 3D tubular structures is an important task in several
fields; magnetic resonance imaging (MRI) techniques allow the exploration of the inner
human body through high resolution multi-slice images; 3D visualization of recon-
structed volumes and virtual tours inside organs provide better analyses of the organ’s
morphology, function and pathology. However, virtual tours (like virtual angioscopy,
virtual colonoscopy, virtual bronchoscopy, etc.) need a smooth and unique central line
through the organ in order to provide internal views.

Different methods for central path extraction have been proposed in literature: skele-
ton based approaches (Yeorong et al. [3], Kiraly et al. [4]) usually provide non-smooth
and non-unique paths which need post-processing steps (see Deschamps [5]). Paik et al.
[6] use thinning techniques to project a surface minimum path in the middle of the struc-
ture: it results in smooth paths, but the algorithm is computationally heavy. Haigron et
al. [7] proposed a fly-through approach based on active vision for virtual angioscopy:
the system is highly automatic but time consuming.

We suggest a new approach to the problem of central path extraction for 3D tubular
objects. By using a virtual mobile robot, the smoothness and uniqueness of the final
path is granted. While moving through a virtual structure, the robot uses virtual range
sensors to analyze its surrounding: results of the analysis are given to a 3D neuro-fuzzy

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 371–376, 2005.
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controller which continuously adjusts the robot position and orientation, in order to
generate a smooth central path through the organ. The 3D controller has a key role in
the central navigation, and its design is based on a 2D controller introduced by Ng et
al. [1] for car-like vehicles. Real-time interaction with the system is allowed: the user
can suspend the exploration and inspect the surrounding in detail. Due to its generality,
the method can be applied in different areas where central line extraction is needed: we
present an application for virtual colonoscopy.

2 Method

The virtual mobile robot is represented as a flying vehicle with a direction system lo-
cated on the front: the desired direction is defined in the local system by the two angles
φ and ψ (figure 1.a). The mobile robot is equipped with range sensors on all its sides:
they are simulated as lines which propagate in the environment and return information
on detected obstacles or walls. In order to guarantee smooth trajectories, the direction
system is limited ([-φmin,φmax], [-ψmin,ψmax]), and kinematic constraints for a 3D
nonholonomic three-cycle vehicle are applied: we had already used nonholonomic con-
straints in [8], and we have extended them in this work by considering a 3D movement
as a sequence of 2D steps on different planes.

The 3D central navigation problem is solved by separately considering the local xy
and xz planes; for each plane we apply a procedure similar to the one proposed in [1],
and by merging the results we obtain the final desired direction in 3D. We report the
procedure for the xy local plane.

a) b)

Fig. 1. (a) the robot in 3D and its local coordinate system. The desired direction (red arrow) is
identified by two angles; (b) the robot evaluates its position and orientation on its local xy plane.

a) b) c)

Fig. 2. Membership functions: (a) 5 for drl (very negative, negative, central, positive, very posi-
tive); (b) 3 for dφ (right, center, left); (c) 5 for the output (strongly right, right, center, left, strongly
left)
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The mobile robot, using its range sensors, evaluates its position and orientation (see
figure 1.b). The position is evaluated at each step as:

drl =
dr − dl

dr + dl
, (1)

where dr and dl are the distances from the right and left walls; the orientation is defined
as dφ and is positive for the left orientation, and negative for the right one.

The two variables drl and dφ are first fuzzyfied through the membership functions
shown in figure 2.a and 2.b.

The output of the fuzzyfication is given to a feed-forward neural network (FFNN)
called RNN1: the RNN maps the 8 input values onto 5 levels, corresponding to the out-
put membership functions (see figure 2.c) associated with the output variable φ (steering
angle on xy local plane).

The output of RNN is given to a second FFNN, ORNN2, whose task is to defuzzyfy
the 5 input levels into one crisp output: the desired steering angle. The RNN is trained
on a set of basic rules (see table 1), while the ORNN is trained to reproduce the function:

O =
∑

i=1..5 ωi ∗ Vi∑
i=1..5 Vi

(2)

where ωi is the fuzzy value for the ith output membership function and Vi is the func-
tion’s center. The ORNN learns a mathematical formula, and it would be right to argue
that a neural network is not necessary for this aim; nevertheless, by building the system
with neural networks, we end up with a more flexible tool which can be further im-
proved by interaction with users. Particularly, an expert could provide the right central
path, and the ORNN would then adapt to the user capabilities rather than to a mathe-
matical formulation of the problem.

By applying the same procedure to the xz local plane, the desired ψ angle is evalu-
ated, and the combination of φ and ψ angles gives the desired direction in 3D.

Table 1. Example of a fuzzy rule: the first 8 columns are the input for training RNN, and the last
5 columns are the desired output; if the robot is close to the right wall (drl is very negative) but
is already pointing towards the left direction (dφ is left), it should keep going toward the left wall
(φ is left)

drl dφ Output φ
vn n z p vp l c r hl l c r hr

1 0 0 0 0 1 0 0 0 1 0 0 0

3 Experiments and Results

The validation for the neuro-fuzzy controller in 3D has been made in synthetic environ-
ments; the algorithm has then been tested on a colon dataset.

1 RNN, Rule Neural Network: 8 input nodes, 20 hidden nodes, 5 output nodes.
2 ORNN, Output Refinement Neural Network: 5 input nodes, 10 hidden nodes, 1 output nodes.
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3.1 Synthetic Environments

The first tests3 were performed on the tubes shown in figure 3.a-d; for each case, we
let the application run 50 times, and for each step of the robot we evaluated the error
variable as the distance between the robot position and the closest position on the ideal
central line. In average, the error amounts to 6% of the diameter; table 2 reports the
statistical analysis.

a) b) c) d) e) f)

Fig. 3. (a)-(d) test environments: straight, tube, U-shaped, and S-shaped; (e)-(f) single side slice,
straight corridor, 80% of the length removed, and entire slice, tube corridor, 80% of the length
removed

Table 2. Statistical analysis for the error variable on different shapes; results are in voxels; N is
the total number of robot’s step being considered

N μ σ 95% Conf. Int.
Lower Upper

Straight 1755 .06 .21 .05 .07
Tube 1469 1.59 1.06 1.53 1.64

U-shape 1895 1.42 1.16 1.37 1.47
S-shape 2670 1.61 1.13 1.57 1.65

All 7789 1.21 1.17 1.18 1.24

Table 3. Conf. Int. (95%, Lower, Upper) for missing information (results are in voxels); case I:
Straight, single side, case II: Straight, entire, case III: Tube, single side, case IV: Tube, entire

case I case II case III case IV
L U L U L U L U

20% .12 .16 .13 .17 1.31 1.41 1.46 1.57
40% .10 .13 .07 .10 1.30 1.40 1.38 1.48
60% .04 .07 .14 .19 1.33 1.43 1.54 1.64
80% .05 .07 .14 .19 1.57 1.68 1.82 1.97

In order to test the robustness of our solution, we performed tests on the straight and
tube corridors with missing information; holes were created at regular distance, and the
amount of missing data varied from 20% up to 80%; two frameworks were used: single
side slice (only half side of a tube slice removed) and entire slice (see figure 3.e-f).
The average error amounts to 9% of the tube diameter: table 3 reports the confidential
intervals for the error variable in the four scenarios.

3 Parameters: safety distance=5 units, maximum steering angle=±30 degrees, tube radius=10
units.
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Finally, we tested the neuro-fuzzy controller on tubes of different sizes: we con-
sidered straight tubes with different constant radius (4, 5, 20, 25 voxels), two straight
tubes with changing radius, and a tube with a radius of 6 units: we obtained an average
error of 0.6 voxels over 50 runs per case.

3.2 Medical Dataset

We tested the algorithm on a colon dataset (CT scan, 128 x 128 x 488 voxels of 2.88 x
2.88 x 1.00 mm). The colon is a challenging environment presenting curves with high
curvature and changes in diameter: the robot went successfully through it for several
runs (different initial positions and orientations). Visual results are shown in figure 4:
thanks to the use of a virtual mobile robot and kinematic constraints, the extracted path
is always inside the organ (the robot can not pass through the walls), and is always
unique, continuous, and smooth. The exploration with visualization is in real time: the
robot goes through the colon, approximately 1.3 meters long, in 2 minutes.

Fig. 4. Three outside views (top row) with central line, and three internal views (bottom row)

4 Conclusion

The main contribution of this paper is the development of a neuro-fuzzy controller for
central navigation in 3D tubular structures (central path extraction); by using a non-
holonomic mobile robot we guarantee smooth and unique paths, which are useful in
several medical applications. We have thoroughly validated the algorithm on synthetic
datasets. The experiment performed on the medical dataset resulted in a successful ex-
ploration (virtual colonoscopy), based on the identified central path. The navigation
is in real time, allowing the user to interact with the environment. Finally, due to its
generality, the method is suitable for different applications like virtual angioscopy and
virtual bronchoscopy. We are currently investigating the use of extra modules for the
robot (like novelty filters) which could highlight abnormal situations (branches, polyps,
aneurysms, etc.), helping users in the diagnosis of diseases.
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Abstract. We explore the possibility of replacing a process simulator
with a learning system. This is motivated in the presented test case set-
ting by a need to speed up a simulator that is to be used in conjunction
with an optimisation algorithm to find near optimal process parameters.
Here we will discuss the potential problems and difficulties in this appli-
cation, how to solve them and present the results from a paper mill test
case.

1 Introduction

In the process industries there is often a need to find optimal production param-
eters, for example to reduce energy costs or to improve quality or production
speed. Many of the parameter settings are scheduled some time in advance, e.g.
to produce necessary amounts of different product qualities. A parameter sched-
ule that is sufficiently near optimal as evaluated by a cost function can possibly
be found using an optimiser that iteratively tests different scenarios in e.g. a first
principles simulator, i.e. a simulator that tries to mimic the physical properties
of the process, gradually converging to an optimal solution. An initial state for
the simulator must be retrieved from the actual process, and the final scheme is
suggested to the operators as an effective way to control the real process.

Unfortunately, although the simulator in question is faster than real time,
it might still not be fast enough. The number of iterations that is required
for the optimisation might easily stretch into the thousands, which means that
even a relatively fast simulator cannot be used to reach a conclusion before the
optimisation horizon is well over. If this is the case, some way to speed up the
simulations is critical.

1.1 Learning Systems and Simulators

Let us consider two fundamentally different ways to model process behaviour.
One is to build a first principles simulator of some sophistication. It has to
consider how e.g. flows, temperatures, pressures, concentrations, etc. varies as
material flows through components. The other approach is to approximate the
input-output mapping in the process with some mathematical function, without
considering the actual physical path. This is essentially what is done by a learning
system, in which at least a subset of the parameters are estimated from examples.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 377–382, 2005.
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If we want to replace the simulator with a learning system we have a choice of
either modelling the actual outputs of the simulator, i.e. training the system to
map simulator inputs to corresponding outputs, or to associate simulator states
to corresponding objective function values. The latter approach is very elegant
and could probably yield very good results, but it is highly dependant on the
specific outline of the objective function. In our test case it was not possible to
try this direct modelling of the objective function, since all data necessary was
not available. Instead, the first approach of mapping simulator inputs, consisting
of a description of the initial state and a proposed schedule, to corresponding
outputs was used.

We also have to make a choice of either using real process data, or to generate
data with the simulator. There are benefits and drawbacks with both approaches,
but using a simulator is actually very attractive mainly because of two reasons.
First, most simulators are not only free of random measuring noise and drifting
sensors, they also lack the stochastic nature of real data in the sense that we
do not need several samples from identical input states to reliably estimate the
mapping. Second, and perhaps more importantly, is the fact that real processes
are kept within only a fraction of the total state space by the operators, following
best practises known to produce good results. Most states are simply worthless
from the process point of view. Nevertheless, the learning system does not know
that these states are worthless unless the training data contains examples show-
ing this, and will probably not produce very realistic results when the optimising
algorithm moves out of the region covered by training data.

With a simulator we can cover a larger part of the state space in a controlled
manner, but the actual generation of this training data now becomes somewhat
of a problem. At first, this might seem like an ideal case: We should be able
to generate arbitrary amounts of relatively noise free data. Unfortunately, dis-
regarding the effects of finite precision calculations and time resolution in the
simulator, there is still one problem remaining: Having a large amount of training
data is still effectively useless if it does not reflect the data the learning system
will encounter in use. When generating data, we would like to cover as much
as possible of all possibly relevant states of the process. Fortunately, this can
be rather straightforward using e.g. a statistical modelling approach, as we will
describe later for the test case.

2 The Paper Mill Test Case

A simulator of a part of the system at the Jämsänkoski paper mill in Finland
was used to test the approach. In the Jämsänkoski mill, thermo mechanical pulp
refiners are used to grind wood chips, resulting in pulp that is fed to a number
of production lines through a complex system of tanks and filters. There are two
separate refiner lines, each consisting of five refiners, and three paper machines,
PM4–6. Refiner line one is connected through two production lines to PM4 and
PM5, while the second refiner line is only connected to PM6. The second refiner
line and production line is largely representative for the whole system and was
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chosen for the test case. The state of the system is mainly represented by a
number of tank levels, and the external control parameters by production rates,
refiner schedules and production quality schedules.

The cost function for the optimization problem is constructed so that electric-
ity costs for running the refiners are minimized while maintaining consistency of
schedules and tank levels. It can be expressed as Ctot = CE

104 +CC + CΔtot

4 + |VΔ|
4 ,

where Ctot is the total cost, CE the cost of electricity, CC and CΔtot consistency
terms related to the refiner and set points schedules, and VΔ the difference be-
tween desired and actual tank levels at the end of a schedule. For a further
explanation of these terms, see [1].

To generate training and validation data from the simulator, we modelled the
joint distribution of the “normal” conditions over all inputs to the simulator, and
then sampled random input values from this distribution. By “normal” states,
we refer not only to the states and conditions the process normally encounters in
daily use, but rather conditions that do not produce obviously faulty or unaccept-
able behaviour. This might seem complicated at first, but there are reasonable
assumptions that simplify the procedure considerably. As a first approach, we
can consider all inputs to be independent. This means that the joint multivariate
distribution is simply the product of all marginal distributions. We only have
to describe these marginal distributions over each variable, which simplifies the
task significantly. Common parameterisations such as uniform distributions, nor-
mal distributions etc. were used, preferably making as few assumptions about
the variable and its range as possible. When we e.g. from explicit constraints
know that two or more variables are dependant, we model these using a joint
distribution over these variables.

For the external control variables the situation is a little bit more difficult,
since we need to generate a time series that to at least some degree reflect a real
control sequence in the plant. We model these control sequences using Markov
processes, each with transfer probabilities that will generate a series with about
the same rate of change and mean value as the real control sequences. Great
care was taken to assure that the statistical model and its parameters reflected
actual plant operations. In total, around ten million samples were generated,
representing about six years of operations.

2.1 Test Results

A natural approach to emulate the simulator with a learning system is by step-
by-step recursive prediction. However, initial test results using this approach
were not encouraging. The state space is large and complex, making the error
in the prediction add up quickly and diverging from the true trajectory.

Fortunately, we can actually re-write the data into a form that does not
involve time directly. From the cost function we know that we are not interested
in intermediate tank levels, but only the final levels at the end of the optimisation
horizon. However, we do not want to overflow or underflow any tanks during the
time interval, as this disturbs the process and does not produce optimal quality.
We also know that apart from the internal control loops, all parameter changes in
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the process are scheduled. This allows us to re-code the data as events, where an
event occurs at every change of one of the scheduled external control parameters,
i.e. one data point describing the momentary state is generated for each external
change to the control parameters. If we assume that the process stays in one
state, i.e. that flows or levels are stable or at least monotonous during the whole
event or after a shorter stabilisation period, it should be possible to predict the
difference in tank levels at the end of an event from initial levels, flows, quality
and perhaps event length.

The previously generated raw data was transformed to this event form and
three types of learning systems were tested: A Multi-Layer Perceptron trained
with backward error propagation in batch mode using sigmoid activation func-
tions [2], a k-Nearest Neighbour model using an euclidean distance measure on
normalised inputs [3], and a mixture [4] of Näıve Bayes models [5], one for each
production quality and all using normal distributions for all attributes. One sep-
arate model was constructed for each tank. The parameters of each model were
chosen experimentally to values producing good results on a separate validation
data set. This data was also used to perform backwards selection of the input
attributes for each model, resulting in 4 to 10 used inputs out of 10 available de-
pending on model and tank. Testing was performed by predicting the difference
in a tanks level at the end of an event from the initial level in the beginning of
the event on a test data set separate from the training and validation set. The
results can be found in table 1. For a detailed description of the models used
and the results, see [1].

Table 1. Results from predicting the difference in tank levels. σ denotes the standard
deviation of the data, and results are displayed using both the correlation coefficient (ρ)
and the root mean square error (RMS) for the multi-layer perceptron (MLP), k-Nearest
Neighbour (k-NN), and Näıve Bayes (NB) models.

Events Monotonous Events
MLP k-NN NB MLP k-NN NB

Tank σ ρ RMS ρ RMS ρ RMS σ ρ RMS ρ RMS ρ RMS
2 22.5 0.50 20.3 0.59 18.2 0.52 19.3 37.8 0.89 33.3 0.89 17.4 0.71 26.6

3 16.0 0.70 11.7 0.63 12.4 0.71 11.2 7.5 0.82 5.18 0.81 4.85 0.84 4.29

4 15.9 0.48 16.0 0.64 12.1 0.57 13.2 16.4 0.77 12.5 0.72 12.4 0.53 15.5

5 14.9 0.34 14.0 0.35 14.0 0.35 13.9 15.6 0.44 6.66 0.44 15.1 0.33 15.9

6 15.8 0.61 12.8 0.55 13.2 0.55 13.2 14.2 0.59 8.13 0.57 11.9 0.51 12.8

7 22.0 0.54 18.7 0.57 18.0 0.47 19.3 21.2 0.63 12.8 0.58 16.5 0.44 18.3

8 19.4 0.69 14.1 0.75 12.7 0.54 16.4 20.1 0.76 14.9 0.72 14.5 0.51 17.9

The different models’ performances are reasonable similar, but not particu-
larly good. Although there might be a reasonable correlation coefficient in some
cases, the square errors are still much too high for the predictions to be seen as
very useful. Also note that for optimisation horizons consisting of more than one
event, which usually would be the case, these errors will accumulate and make
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Fig. 1. An example of the characteristic oscillations of tank levels

the predictions unusable. Since all three types of models perform similarly, we
can conclude that the problem probably is ill posed.

So why does it actually go wrong? A closer look at data reveals a likely reason
for the poor performance, so let us study an example. Figure 1 shows that the
tank levels behave very nicely during the first part of the event. Then, one tank
overflows and the regulatory systems in the simulator change behaviour. The
tank volumes start to oscillate and behave in an unstable manner, the overflow
affecting almost the entire tank system. These oscillations in the tank levels are
very difficult for a learning system to predict, since it in essence has to learn
how to predict the phase, frequency and shape of these oscillations. However, we
can now actually try to use this observation to change the representation of the
problem in a manner that would make it easier for a learning system to solve.

Overflows or underflows are not desired from the cost functions perspective,
which means that we have an opportunity to restrict the state space we train
the learning system on to data when this does not occur. The model would of
course only be valid when there are no overflows or underflows, but since we in
practise predict a derivative for the tank levels we can easily estimate whether
we would have an overflow or not in any of the tanks during the event. We
transformed the data as earlier, but with the exception that an overflow or an
underflow of any tank also constitutes the end of an event, although not the
start of a new since the process then is in an unstable state. The models used in
testing is as before, and the results can be seen in table 1. An improvement of
the results compared to earlier tests was observed, but some tank levels are still
very difficult to predict. The main storage line of tanks 2, 3 and 4 show decent
results on the test data set, but the tanks with a direct connection to the paper
mill (5 and 6) are very difficult to predict accurately. The differences in these
tanks are actually usually zero, only occasionally changing drastically when a
control loop need to use these tanks for temporary storage. Predicting when and
to what degree this happens is very difficult.

The differences between the different models performance is again not that
high. Usable predictions could possibly be made for the tanks in the main line
and some tanks used for temporary storage. However, if the exact levels of the
tanks connected more directly to the process itself are necessary, then there is
a question of whether the predictions produced by the models are good enough.
The correlation coefficient is definitely very low, but the tanks do not usually
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fluctuate much, which means that the mean absolute error of the predictions
still could be kept rather low.

3 Discussion

The idea of replacing a slow simulator with a faster learning system is certainly
attractive. The neural network and Näıve Bayes models are at least 100 to 1000
times faster than the simulator in the test case. However, as the results showed,
it is by no means an easy process and not necessarily an effective solution. The
generation and representation of data require quite a lot of work, which might
easily make it more effective to develop a simpler, faster simulator instead.

It can also be argued that learning systems often are not a suitable solution
for approximating a process simulator. The reason is that most “real” processes
are described by a system of non-linear differential equations. Such systems will
display chaotic behaviour, i.e. small changes in input data are quickly amplified,
and lose correlation with the input. The time horizon for accurately predicting
the output from input data is likely about as short as the time span within which
the non-linear differential equations can be approximated by linear differential
equations. However, this might not be a problem if we are not interested in the
actual output values after a longer time period, but rather a mean value over a
certain time or similar.

Even if we need these actual output values, it might still be possible to re-
formulate the problem so that it is solvable. It might potentially also be possible
to divide the simulator into smaller parts and replacing some or all of these
parts with fast learning systems, overcoming the problem of non-linearity for
these systems. This division will, unfortunately, require a substantial amount
of domain knowledge, as there is no reliable way to perform the division auto-
matically today. Method development might need to get further before we can
expect the learning system simulator replacement to become directly viable as
an alternative in the general case.
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Abstract. In practice, almost all control systems in use today imple-
ment some form of linear control. However, there are many tasks for
which conventional control engineering methods are not directly appli-
cable because there is not enough information about how the system
should be controlled (i.e. reinforcement learning problems). In this pa-
per, we explore an approach to such problems that evolves fast-weight
neural networks. These networks, although capable of implementing arbi-
trary non-linear mappings, can more easily exploit the piecewise linearity
inherent in most systems, in order to produce simpler and more compre-
hensible controllers. The method is tested on 2D mobile robot version
of the pole balancing task where the controller must learn to switch be-
tween two operating modes, one using a single pole and the other using
a jointed pole version that has not before been solved.

1 Introduction

All real-world systems are non-linear to some degree, yet almost all control sys-
tems in operation today employ some variant of linear feedback control. The
wide applicability of linear methods relies on the fact that most non-linear sys-
tems of interest are either nearly linear around some useful operating point or
can be decomposed into multiple linear operating regions. Methods such as gain-
scheduling provide powerful tools to control such systems [1]: first a linear model
is built for each operating mode, and then a linear controller (e.g. PID) is de-
signed with parameters (i.e. gains) that are switched by a scheduler when the
system transitions from one mode to another.

Gain scheduling works well when the mode of the system is observable, and,
like all classical approaches, when the appropriate type of strategy is known
a priori. For very complex tasks, such as those encountered in robotics, the
designer often does not know what action should be taken in each system state.
One method for solving control tasks under these more general conditions is
neuroevolution [2] where a genetic algorithm is used to search the space of neural
network controllers by repeatedly recombining the best performing candidates
according to the principle of natural selection.

Artificial neural networks can potentially implement global non-linear con-
trollers, but ensuring their stability and analyzing their behavior is difficult [3].
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Fig. 1. Fast-Weight Network Module. The figure shows the two components of a Fast-
Weight Module. On the left is the generator network that is evolved by the GA. This
recurrent network receives input from the environment and outputs a set of weight val-
ues for the single-layer controller network at right. The controller network also receives
input from the environment and outputs the control action.

This paper explores a method for evolving a special kind of fast-weight neural
network that can potentially provide simpler automatically designed controllers.
The networks consist of separate modules containing a recurrent neural network
that generates weights for a linear controller.

The next section describes the fast-weight network architecture. Section 3
describes the neuroevolution method, Hierarchical Enforced SubPopulation (H-
ESP) that is used to evolve the fast-weight networks. Section 4 presents our
experimental results in applying the method to a two-mode robot pole balancing
task, and section 5 concludes with a brief discussion of the results.

2 Modular Fast-Weight Networks

When neural networks are used to solve tasks in which the output depends on
a history of inputs, they usually contain recurrent connections that feed back
previous activations. Temporal information is encoded in the form of internal
activation patterns (i.e. state) generated by propagating external inputs and
previous activations through a fixed set of weights. Another possibility is to
have dynamic weights or fast weights that can change in value over time. The
little work that has been done using this concept has either used fast-weights
as a mechanism to provide more robust associative memories [4], or to reduce
network learning complexity [5]. Here we use the idea of fast-weights to generate
controllers capable of switching easily between linear functions.

Networks are composed of a separate fast-weight module for each output
unit. Each module consists of a recurrent generating network and a single-layer,
feedforward controller network (figure 1). The output om of module m is:
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om = δ

(
I∑

k=1

xkŵkm

)
(1)

ŵkm =
H∑

j=1

(
wjk δ

(
I∑

i=1

xiwij +
H∑

h=1

ahwhj

))
(2)

where x ∈ �I is the external input, a ∈ �H is the hidden layer activation from
the previous time step, wij is the weight from unit i to unit j in the generating
network, ŵij is the weight from i to j in the controller network, and δ is the
sigmoid function. Equation 1 computes the output of the controller network after
the generating network has produced the I weights according to equation 2.

This network architecture is theoretically no more powerful than a standard
fully recurrent network. The underlying intuition behind its design is that such
an architecture will bias the search toward controllers that are potentially simpler
and better suited to non-stationary environments characterized by transitions
between operating modes. Although a module can generate weights that are a
non-linear function of the entire history of inputs, it can easily implement a
linear controller, if it is all that is required, by having the generating network
output constant values.

PLANT

Neural Network

H−ESP

input

output

neuron level

network level fitness

Fig. 2. H-ESP. Evolution occurs at both the level of neurons and of networks. The
neuron level (L1) consists of multiple subpopulations of neurons, shown here in different
colors. The network level (L2) consists of complete network representations that have
either migrated up from below or have been created by recombining networks. During
evolution, networks are evaluated in two possible ways: from L2 directly, and from L1
by randomly selecting a neuron from each subpopulation and combining them into
a complete network. The dashed lines from the neuron level to the network being
evaluated indicate a network formed in this manner. A network from L2 that has
higher fitness than any network formed so far in L1, has its neurons copied into their
corresponding subpopulations in L1 (shown with the dashed arrows from L2 to L1). A
network form in L1 that has higher fitness than the worst L2 network is copied into
L2 (the solid arrows from L1 to L2). In this way, the two levels supply each other with
new genetic material with which to search in their respective weight spaces.
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3 Hierarchical Enforced Subpopulations

Fast-weight networks are evolved using a method introduced in [6] called Hierar-
chical Enforced SubPopulations (H-ESP). H-ESP searches the space of recurrent
networks by evolving at two levels in tandem: the level of network components or
neurons, and the level of full networks. The neuron level (i.e. plain ESP) searches
the space of networks indirectly by sampling the possible networks that can be
constructed from the subpopulations of neurons. Network evaluations provide a
fitness statistic that is used to produce better neurons that can eventually be
combined to form a successful network. Figure 2 shows the basic operation of
the algorithm (see [6] for further details).

The network level provides a repository or “hall of fame” of the best networks
found so far by the neuron level, and allows H-ESP to search within the space of
highly fit neuron combinations in a way that is not possible at the neuron level
because it constructs networks at random.

To evolve fast-weight networks each neuron encodes the input, recurrent, and
output weights of one of the units of a generating network.

4 Experiments

To evaluate approach, we evolved controllers for a simulated version of the three-
wheeled Robertino mobile robot (figure 3a). Each wheel can slide along its rota-
tional axis using six small sub-wheels (figure 3b). This holonomic drive enables
the robot to change direction without having to rotate. On top of the robot is
a vertical pole that is attached to the chassis with a ball joint. The pole can be
either a single rigid rod or two rods, one on top of the other, with a ball joint

(a) (b)

Fig. 3. Robertino with pole. (a) A snapshot from the Robertino ODE simulation show-
ing the robot in the center of a walled arena. (b) Robertino wheel. The small sub-wheels
allow the Robertino to slide as well as roll.
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connecting them. The objective is to balance the both types of poles by applying
a torque to each of the three wheels. Balancing each type of pole requires a dif-
ferent strategy. Both systems are nearly linear around their unstable equilibrium
points (i.e. poles in vertical position), but when the angle of the pole(s) increases
they become non-linear, more so in the case of the jointed pole.

Note that unlike the 2-dimensional version of the classic pole balancer [7], the
system cannot be controlled by solving the 1-dimensional case and then using
two copies of this controller, one for each principle axis. Because the robot can
rotate around its vertical axis using 3 wheels spaced 120◦ from each other, this
simple symmetry cannot be exploited. To move in a given direction, the velocity
of all 3 wheels must be correctly modulated.

Pole

module 1

module 2

module 3

Robot

Fig. 4. Control Architecture for the
Robertino robot. The Robertino (over-
head view) is controlled by of three fast-
weight modules, one for each wheel. At
each time step, the generator networks
produce weights for and activate their re-
spective controller network.

H-ESP was used to evolve networks
consisting of three fast-weight modules,
one for each wheel as shown in figure 4.
The weight generating network of each
module had 5 hidden units and 8 inputs
scaled to the range [-1.0,1.0]: 3 prox-
imity sensors, the angle of the lower
pole in the x-axis θl

x and y-axis θl
y,

the angles for the upper pole θu
x , θu

y ,
and the rotation of the chassis; all an-
gles were measured in absolute (global)
coordinates. For the single pole mode
θu

x,y were set to zero. The neuron level
subpopulations consisted of 200 neu-
rons, and the network level population
of 100 networks. The robot was simu-
lated using the Open Dynamics Engine
(www.ode.org) with a 0.01 second inte-
gration time.

During evaluation the controllers
were tested in two trials: one with a sin-
gle pole of 1.0 meter in length, and one
with a jointed pole with two 0.5 meter
segments. Each trial starts with the robot sitting in the center of a 1.5×1.5 me-
ter walled arena (see figure 3a) with the pole(s) leaning 6◦ (0.5◦) from vertical
in the x direction. Every 0.04 seconds (i.e. 25Hz control frequency) each module
outputs the desired angular velocity for its corresponding wheel [−3.6π, 3.6π],
until the pole angle(s) exceed 36◦. The fitness of the controller was the number of
time steps the pole(s) could be balanced in the shorter of the two trials. The task
was considered solved with a fitness of 10 thousand. In order to solve the task,
the controller must determine which mode it is in and apply the appropriate
strategy for that mode.
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4.1 Results

Figure 5 shows the controller network weight values produced during the suc-
cessful operation of a typical controller for the first 100 time steps of operation,
in each mode. The solid curve is for the single pole and the dotted curve is
for the jointed pole. For most weights, the difference between the modes occurs
at the beginning of the trial when the pole angles are relatively large, and the
controller must employ a different strategy to bring the pole(s) into the linear
region. Other weights, specifically those in module 3, quickly reach a constant
value for the jointed pole mode, and then transition to the same value used for
the single pole after about 80 time steps, by which time the jointed pole has
been stabilized.
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Fig. 5. Fast-weight values during control. Each plot shows the weight value for one of
the inputs for the two modes. Each row corresponds to one of the 3 modules. The solid
curve is for the single pole, the dotted curve is for the jointed pole.

5 Discussion and Conclusion

The experiments show that fast-weight networks can be evolved to produce rel-
atively simple controllers. The weights produced by the generating networks
implement almost piecewise linear controllers. While simpler architectures such
as fully recurrent networks can solve each case, we were unable to do so for
the two mode problem, and even the jointed pole version by itself could not be
solved reliably. Furthermore, with such networks it is often difficult to under-
stand the strategy being implemented. Using fast-weight networks, each period
of constant weight values is a linear controller that can be “cut away” from its
generating network during testing, leaving a set of simple linear filters that are
more amenable to formal control theory analysis.

Future work will apply this approach to bipedal robot walking where it might
be possible to implemented controllers for different, potentially non-linear, gait
modes by using fast-weight networks.
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Abstract. We consider the problem of locating small openings inside
the domain of definition of elliptic equation using as the observation data
the values of finite number of integral functionals. Application of neural
networks requires a great number of training sets. The approximation of
these functionals by means of topological derivative allows to generate
training data very quickly. The results of computations for 2D examples
show, that the method allows to determine an approximation of the
global solution to the inverse problem, sufficiently closed to the exact
solution.

1 Introduction

We consider a given geometrical domain Ω ⊂ IR2, e.g. Ω = (0, 1)× (0, 1), which
contains a small opening Bρ(y) = { x | |x − y| < ρ }. In such a domain Ωρ =
Ω \Bρ(y) the following model boundary value problems are defined:

Δui
ρ = f i in Ωρ,

ui
ρ = gi on Γ i

1 ,
∂ui

ρ

∂n
= hi on Γ i

2 ,
∂ui

ρ

∂n
= 0 on Γρ = ∂Bρ(y),

(1)

with solutions ui
ρ ∈ H1(Ωρ). The superscript ”i”, i = 1, . . . ,K, denotes here

different sets of of data for which (1) is solved in the same domain Ωρ. By ui we
mean the solutions for the same data, but in the domain without opening. We
want to locate the position y and radius ρ of the opening. To this end we utilize
the observed values of shape functionals, assuming K > 3:
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Research of the Republic of Poland.
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Ii(Ωρ) = Ii(y, ρ) =
∫

Ωρ

[F (ui
ρ) +G(∇ui

ρ)] dΩ, (2)

with smooth F (·), G(·, ·).
As a result the problem boils down to inverting the mapping G : R3 �→ RK

G(y, ρ) = [I1(y, ρ), . . . , IK(y, ρ)] . (3)

For the approximation of G−1 we may use artificial neural networks (ANN).
However, generation of training data, i.e. the values of G(y, ρ) for a big number
of arguments (y, ρ), requires numerous solutions of the problem (1) in domains
of varying geometries, complicated by changing openings. This is very time con-
suming. The main idea consists in approximating the components of the mapping
G by

Îi(y, ρ) = Ii(Ω) +
1
2
ρ2TΩIi(y) (4)

and inverting the resulting Ĝ instead of G. Here Ii(Ω) denotes, according to
(2), the value of the functional Ii for the solution ui, and TΩIi(y), y ∈ Ω, is a
function defined in Ω and called topological derivative of the functional Ii.

The notion of the topological derivative has been proposed by the authors and
developed in several papers [10,11,12,13,4,14]. It is based on results concerning
asymptotic behaviour of solutions to PDE’s, see [3,6,8]. Partial inspiration for
this work came from [9]. The gain in using (4) follows from the observation that
Ii(Ω) and TΩIi(y) must be computed only once for every set of data, i.e. only
K – times. Since this requires, as we shall see, only solving (1) in Ω 2K times,
generating very big training sets for Ĝ becomes practicable.

The topological derivative may be applied in a great many other cases, in
particular in optimal shape design. We refer the reader to our papers listed in
the bibliography for a detailed discussion and more exhaustive references.

2 Topological Derivatives of Shape Functionals

In the present section we recall only the most relevant results concerning topo-
logical derivative. Let us fix data and consider the functional

I(Ωρ) = I(y, ρ) =
∫

Ωρ

[F (uρ) +G(∇uρ)] dΩ. (5)

Using standard notation for Sobolev spaces H1
g (Ωρ) = {ψ ∈ H1(Ωρ)|ψ =

g on Γ1}, H1
Γ1

(Ωρ) = {ψ ∈ H1(Ωρ)|ψ = 0 on Γ1}, the weak solution uρ ∈
H1

g (Ωρ) satisfies the following integral identity∫
Ωρ

∇uρ · ∇φ dΩ =
∫

Γ2

hφdS −
∫

Ωρ

fφ dΩ, ∀φ ∈ H1
Γ1

(Ωρ) . (6)

We define topological derivative TΩI(y) as

TΩI(y) = lim
ρ↓0

dI(y, ρ)
d(|Bρ(y)|)

,

Then the following theorem holds, [10].
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Theorem 1. The topological derivative of the functional

I(Ω) =
∫

Ω

[F (u) +G(∇u)] dΩ

is given by the following formula

T I(y) = − 1
2π

[2πF (u(y)) + g(∇u(y)) + 2πf(y)v(y) + 4π∇u(y) · ∇v(y)] ,

where ∇u(y) = (a, b)T ,

g(∇u(y)) =
1
2π

∫ 2π

0

G
(
a sin2 θ − b sin θ cos θ,−a sin θ cos θ + b cos2 θ

)
dθ

and the adjoint state v ∈ H1
Γ1

(Ω) solves the boundary value problem

−
∫

Ω

∇v · ∇φdΩ = −
∫

Ω

[F ′(u)φ+∇G(∇u) · ∇φ]dΩ , ∀φ ∈ H1
Γ1

(Ω) .

This result implies immediately the following asymptotic expansion

I(y, ρ) = I(Ω) +
1
2
ρ2TΩIi(y) + o(ρ2) (7)

uniformly for any bounded set of data (in relevant space).

3 Analysis of Inverse Problem

In the present section we discuss the uniqueness of solutions to inverse problems
under consideration. Let Ω be the unit square in R

2, Ω = (0, 1)×(0, 1). Its edges
will be denoted respectively:

Γ1 = [0, 1]× {1} Γ2 = {1} × [0, 1] Γ3 = [0, 1]× {0} Γ4 = {0} × [0, 1].

Let us assume that Ω contains a small circular hole Bρ(y). The the question is:

Can we identify the hole Bρ(y) by means of measurements performed inside Ω
as well as on the exterior boundary of Ω?

More precisely, consider the following boundary value problem defined in Ωρ:

Δu = 0 in Ωρ

u = 1 on Γ1,
∂u

∂n
= 0 on Γ2 ∪ Γ4 ∪ Γρ. u = 0 on Γ3.

(8)

Let us also assume that we solve the same boundary value problem after the
rotation of Ωρ by an angle of π

2 , that is we may use the notations: Γ̂1 = Γ4, Γ̂2 =
Γ1, Γ̂3 = Γ2, Γ̂4 = Γ1. Then following [4] we have the result.
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Theorem 2. Let u and û be the solutions of these two systems and assume that
we are able to compute the following domain and boundary integrals∫

Ωρ

x2
1u/11 dΩ,

∫
Ωρ

x2
2u/22 dΩ,

∫
Ωρ

x1x2u/12 dΩ,

∫
Ωρ

x1u/1 dΩ,

∫
Ωρ

x2u/2 dΩ,

∫
Ωρ

|∇u|2dΩ,
∫

Γ2

u dS,

∫
Γ4

u dS,

and the same integrals with u replaced by û. Then, we can determine, in an
unique way, the center y = (y1, y2) and the radius ρ of the ball Bρ(y).

4 Numerical Example of Shape Functionals

We consider four boundary value problems defined in the same domain Ω =
(0, 1) × (0, 1). It means, that for i = 1, 2, 3, 4 we have Δui = 0 in Ω. These
problems differ with respect to the boundary conditions. For i = 1 they have the
form

u1 = 1 on {0} ×
(

1
3
,
2
3

)
; u1 = 0 on {1} × (0, 1);

∂u1

∂n
= 0 otherwise.

For i = 2, 3, 4 they are obtained from the above conditions applying the succes-
sive rotation by the angle π/2. The shape functionals Ij = Ij(Ω) are defined as
follows: for j = 1, . . . , 12, i = 1, . . . , 4.

I{1+3(i−1)} =
∫

Ω

u2
i dΩ, I{2+3(i−1)} =

∫
Ω

(ui/1)2dΩ, I{3+3(i−1)} =
∫

Ω

(ui/2)2dΩ

The topological derivatives of shape functionals are obtained from Theorem 1.
The inverse mapping G−1, which allows for identification of inclusion, is dif-

ficult to calculate from the mathematical relations and therefore was modeled
using ANN’s. Similarly as in the classical approach, the inverse mapping G−1,
shown in Fig. 1, may be determined unambiguously only when the transforma-
tion G from (y1, y2, ρ) into I1, . . . , I12 is one to one. The knowledge about the
inverse mapping is stored within the network structure and network connection
weights. Values of functionals I1, . . . , I12 are calculated by the use of topologi-
cal derivative method for the square with the inclusion are the network input
vector. The approximated values of the corresponding inclusion’s parameters,

Fig. 1. An inverse mapping problem
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such as radius ρsim and position (y1sim, y2sim), are calculated at the network
output. An unknown mapping of the input vector to the output vector is ap-
proximated in an iterative neural network training [2]. In our particular problem
feed forward MLP network, sum square error cost function and back propagation
learning algorithm with Levenberg–Marquardt [2] optimisation method were ap-
plied. This algorithm was implemented in MATLAB. Different MLP networks
with a single hidden layer were considered and two of them were tested. The
network structure (12-18-3) i.e.: twelve inputs, eighteen processing units with a
sigmoidal transfer function in the network hidden layer and three linear units
in the output layer, comprising 291 weights; and network (12-24-3) with 387
weights. Numerical computations that were based on the topological derivative
have provided data both for network training and testing procedures. The train-
ing and testing data were computed for different values of inclusion radius, which
were changed from 0,05 to 0,2 and for the corresponding values of the inclusion
position. Position coordinates were changed in the range 2ρi < y1i < 1 − 2ρi,
2ρi < y2i < 1− 2ρi.

From available data sets, 1285 that correspond to the radii [0.05, 0.088, 0.125,
0.16, 0.2] were selected for network training and 205 for radii [0.075, 0.1, 0.18]
were selected for network testing. The latter one is required for validation of the
network true generalization capabilities. The stopping condition for the learning
procedure was the value of sum square error SSE less then 0.02. The network
(12-18-3) was trained by the use of Levenberg-Marquardt algorithm in 69 epochs
and the network (12-24-3) in 44 epochs. The maximum values of relative errors
for both of the tested networks and their training times are given in a Table 1.
Increasing the number of neurons in the hidden layer has improved the accuracy
by a factor of two, but the learning time has also increased ten times. The
maximum relative errors for the network (12-24-3) for three values of ρ are given
in Table 2. The largest values of the errors in position identification are observed
at the corners of the square.

Conclusions. An example of numerical solution of 2D shape inverse problem
was presented in the paper. Identification of the position and radius of the small

Table 1. Maximum values of relative errors for ρ = 0.075

network structure δy1 [%] δy2 [%] δρ [%] learning time [min]
(12-18-3) 12 12 5 24
(12-24-3) 6 6 3 240

Table 2. Maximum relative errors for the network (12-24-3)

ρ δy1 [%] δy2 [%] δρ [%]
0.075 6 6 3
0.1 5 5 3
0.18 2 2 3
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inclusion in a square, which is difficult to calculate from the mathematical re-
lations, was computed using ANN’s. The presented experiments indicate, that
the approach based on using topological derivative for producing training data
for neural networks, gives promising results.
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Abstract. A new model of neural network (the domain model) is proposed. In 
this model the neurons are joined together into more large groups (domains), 
and accordingly the updating rule is modified. It is shown that memory capacity 
grows linearly as function of the domain size. In optimization tasks, this kind of 
neural network allows one to find more deep local minima of the energy than 
the standard asynchronous dynamics. 

1   Introduction 

The dynamics of well-known spin models of neural networks [1,2] consists in 
aligning of each spin along the direction of the local field. The storage capacity M of 
such a network is comparatively low: NNM ln/~ 2 , where N is the number of 
neurons. The network storage capacity depends both on the way of organization of 
interaction between neurons (the architecture of the network) and the way of 
relaxation into a stable state (the dynamics of the network). However, usually only the 
possibility to increase the storage capacity by means of changing of the architecture is 
discussed, and at the same time the standard spin dynamics related to the Hopfield 
model is used [3-9]. In what follows we would like to show that the storage capacity 
can be increased noticeably by means of changing of the neural network dynamics. 

In cite [10] we proposed a new type of neural network, which was called the 
domain neural network. Its dynamics is defined by overturns of domains. Each 
domain is a group of strongly coupled spins. Overturn of a domain means the 
simultaneous changing of orientations of all the k spins constituting the domain. We 
will show that replacing of the spin dynamics by the domain one leads to k times 
increase of the storage capacity. Moreover, it will be shown that the domain neural 
network can be efficiently used in optimization problems. The point is that this model 
allows us to find minima on the energy surface that are deeper than the ones obtained 
with the aid of the Hopfield model.  

2   Description of the Domain Model 

Let us examine a system of N spins, which take the values 1±=is , where 

Ni ,...,,21= . The behavior of the system is described by the Hamiltonian  
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1
2

1

N

ij i j
i

E J s s
=

= −  (1) 

where ijJ  are matrix elements of the Hebb connection matrix [2], 

( ) ( )

1
(1 )

M
m m

ij ij i j
m

J s sδ
=

= −  (2) 

In Eq.(2) ( ) ( ) ( )
1 2( , , ..., )m m m

m NS s s s= , Mm ,...,1= , are randomized binary patterns. 

The local field acting on the ith spin is calculated according to the usual rule: 

ii sHh ∂−∂= /  . 

Let us define the domain neural network. We suppose that the system of N spins 
is divided into groups each of which contains k spins. Each group is a domain. In 
the domain the spins are strongly coupled, and when the domain turns over, all the 
spins in the domain change their signs simultaneously(*). Thus, our system consists 
of kN /  domains. When the state of the system is changing due to overturns of 
domains only, its dynamics is called the domain dynamics. From physical point of 
view the behavior of the domain network is determined by stability of domains in 
the local field. The given domain turns over, if as a result the energy of the system 
decreases. For example, let us examine the first domain, i.e. the group of coupled 
spins whose numbers are kr ≤≤1 . To define the domain stability, let us write 
down its energy (the sum of the energies of all k spins constituting the domain) in 
the form of two terms. The first term is the intrinsic energy of the domain that is the 
energy of interaction of the spins of the domain. The second term is the energy of 
interaction of the given domain with other domains of the system ( intE ) , i.e. the 

energy of interaction of the spins belonging to the given domain with spins of all 
other domains: 

( ) ( )
int

1 1 1 1 1

k N M k N

rj r j r r j j
r j k r j k

E J s s s s s sμ μ

μ= = + = = = +
= − = −  (3) 

Evidently, the domain stability is defined completely by the sign of the 
interaction energy intE . The value and the sign of the intrinsic energy of the domain 

are of no importance, since they do not change when the domain turns over. 
Consequently, the domain dynamics of the network is defined as follows. If at the 
time t inequality  0>)(int tE  is fulfilled, then the domain turns over at the next step, 

i.e. it transforms to the state ( 1) ( ), 1,...,r rs t s t r k+ = − ∀ = , with the negative 

interaction energy 01 <+ )(int tE . If  0<)(int tE , then the domain is stable and at 

the next step its state is the same: krtsts rr ,...,),()( 11 =∀=+ . Under the 

described dynamics the energy of the system as a whole decreases, and, 
consequently, the algorithm converges after finite number of steps. It should be 
stressed that a domain can overturn even if each of its spins is in the stable state, i.e. 
each spin is directed along the its own local field. 

                                                           
(*) In contrast to a real domain where all the spins are aligned, the spins of our formal “domain” 

can have different directions.  
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3   Recognizing Ability of Domain Model 

Let us examine the recognizing ability of the domain neural network. Let 
),...,,( NsssS 21=  be the input vector. It is a distorted copy of the pattern mS . To be 

concrete, we suppose that not individual spins are distorted, but the domains as a 
whole: p is the probability that a domain is distorted (all the spins of the domain 
change their signs); p−1 is the probability that the domain of the pattern is not 

distorted. When the number of domains is sufficiently large, kN >> , the probability 
of correct recognition of the pattern can be obtained using the central limit theorem. 
For this purpose let us represent intE  in the form RSE +=int , where S is the useful 

signal (the part of the sum (3) related to the mth pattern) and R is the noise (the 
contribution to (3) from all other patterns). The analysis of statistical properties of S 
and R shows [8] that the signal mean value is ( )(1 2 )S k N k p= − − . The noise is zero 

mean and its dispersion is 2 ( )k N k Mσ = − . With regard to this relations it is easy to 

obtain the expression for the probability of the error of recognition. In the most 
interesting limit / 1Sγ σ= >>  this probability has the form: 

2exp (1 2 )
22

N kN
P p

Mkπ γ
= − −  (4) 

When 1=k , Eq.(4) represents the known result for the Hopfield model. However, 
when the size k of the domains increases, the probability of error decreases 
exponentially. This statement is justified by the results of computer simulations for 
N=600, M=1200, p=0. In Fig.1 we present the dependence of the value of P on the 
size of the domain k: experimental data correspond well with the curve plotted 
according with the formula (4). We see that if the size of domains is small (k<10), the 
network does not recognize the input patterns. When 2015 ÷>k  the domain network 
recognizes the patterns with confidence, though the value of the loading parameter is 
sufficiently large ( 2=NM / ). For comparison , the Hopfield network ( 1=k ) can 
functionate as an associative memory only if the loading parameter is small 

140./ ≤NM . 
From (4) it follows that for the domain model the estimation of the number of fixed 

points in the asymptotic limit ∞→N is 

/ 2 lnM kN N=  (5) 

We see that the storage capacity M  of the domain neural network is k times 
greater than for the Hopfield network. We accentuate that the expression (5) defines 
the number of fixed points only. The number of distorted patterns, which can be 

recognized, is less: 2(1 2 )M M p= − . The results of computer simulations for 

N=1000 are in good agreement with the plot made with the aid of the formula (5), 
which is shown in Fig.2. These results confirm the possibility to obtain the loading 
parameter (M/N) by an order of magnitude greater than for the Hopfield model. 
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Fig. 1. Dependence of recognition error on 
domain size 

Fig. 2. Dependence of number of fixed 
points on domain size 

We see that the storage capacity of the network can be increased noticeably by 
means of changing of the network dynamics only. Imperfection of the model lies in its 
inability to recognize multiplicatively distorted patterns, since no overturn of a 
domain can improve a distortion of a single bit (a single spin). On the other hand, this 
model can be used under the most difficult conditions of recognition, when the bits of 
transmitting information have correlated distortions. 

4   Application of Domain Dynamics for Optimization  

Let us examine the possibility to apply the domain model for minimization of the 
energy functional (1) for an arbitrary connection matrix ijJ . The functioning of the 

network can be treated as a motion of a particle along the energy surface (1). In Fig.3 
the dotted line is the typical form of the descent along the energy surface under the 
standard spin dynamics, the solid line corresponds to the domain dynamics. We see 
that when starting from the point  the domain network gets through shallow minima 
(they are traps for the Hopfield network) and has the possibility to move towards the 
 

 
 

H

A

B

C
 

Fig. 3. The motion along the energy surface (1). The dotted line corresponds to the spin dynamics, 
the solid line corresponds to the domain dynamics. 
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more deep minimum B . Moreover, due to an overturn of a single domain only, the 
domain network can jump from the point B into the point . The last is impossible in 
the case of spin dynamics, where such a transition can be done due to tunneling 
trough the barrier only. 

The domain dynamics can be compared with movement of a big rock, which rolls 
down a mountainside and does not notice shallow defects of the surface. Drawing this 
analogy, one might expect that moving towards the bottom the rock feels the general 
slope of the surface. This assumption was verified with the aid of experiments, where 
for random Hebbian connection matrices with different loading parameters the 
abovementioned two dynamics were compared.  

 The description of the experiments. The connection matrices were defined 
according the generalized Hebb rule. All the patterns Sm with random statistical 
weights ),( 10∈mw  were used to construct the matrix elements (2). Introducing of 

statistical weights allowed us to make an intricate energy landscape: local minima of 
different depth corresponded to different patterns.  

We used random binary vectors as starting points. The coordinates of these vectors 
were combined into domains of a size 1>k . Then the domain dynamics was used. 
When a local minimum was achieved, we set k=1 and, if it was possible, the 
descending along the landscape was continued according to the spin dynamics. 
Beginning from the same starting point we used the domain dynamics with different 
values of the parameter k, including 1=k  (the spin dynamics). For different k we 
fixed the values of energy minima. We found out how frequently the domain network 
reached more deep or more high minima ( dE ) comparing with the Hopfield network 

( hE ). Furthermore, we estimated the benefit or the loss resulting from using of the 

domain network. Note, sometimes when using the spin dynamics and the domain 
dynamics, the values of the reached local minima were equal ( hd EE = ). Note, that 

domains could be chosen arbitrary. But in current experiments, domains were chosen 
as follows: the first domain – consists of spins kisi ,..,2,1  , =  ; second domain -

kkisi 2,..,1  , += , and so on.  

Five different loading parameters were examined: M/N = 0.05, 0.1, 0.2, 0.5, 1. For 
each value of M/N we used 5x104  random starting points. The results of one of the 
experiments (N=100, k=2) averaged over all the starts are given in Table 1. In the first 
column we write down the probability to find the domain network in the deeper 
minimum than the Hopfield network. In the second column the probability of 
relaxation of the both networks in the same minima is presented. In the third column 
we show the probability of relaxation of the Hopfield network in the deeper 
minimum. 

Thus, comparing with the Hopfield network, we find the domain network in a 
deeper minimum more frequently. Moreover, when the reached minimum is deeper, 
for the domain dynamics we get rather large energy benefit 

hhd EEEE /)(% −×= 100δ . In the described experiment for a small loading 

parameter (M/N=0.05) we had %~ 14Eδ . The loss of the domain network was an 
order of magnitude less: %~ 2−Eδ . In different experiments the benefits and the 
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Table 1. 

N=100,  k=2 

 Ed < Eh Ed = Eh Ed > Eh 

M = 5 0.31 0.47 0.22 

M = 10 0.42 0.26 0.32 

M = 20 0.40 0.36 0.24 

M = 50 0.47 0.07 0.46 

M = 100 0.54 0.04 0.42 

losses of the domain network vary. Sometimes the obtained benefit was even 
%48=Eδ . After averaging over N experiments, the mean values of the benefit and 

the loss were %.311=Eδ  and %.43−=Eδ , respectively.  
For larger values of the loading parameter, all minima were practically the same. In 

this case, as it is seen from Table 1, only very rarely we have Ed = Eh . However, even 
in this case, when the energy landscape has no pronounced local minima, the domain 
network reaches deeper minima more frequently, and the averaged benefit is 

%.63=Eδ . 

5   Conclusions 

Summing the abovementioned results we state that comparing with the Hopfield 
network: 

• As a rule, the domain network reaches deeper minima more frequently. The 
frequency depends on the loading parameter and the size of domains. 

• For the domain network the benefit always exceeds the loss.  
• The domain networks wins not only if there are pronounced local minima, but 

also when the local minima differ slightly (for example, when 1≥NM / ). Our 
experiments showed that the domain network could fix very small energy 
differences.  

Concluding this article we would like to emphasize that all the advantages of the 
domain network are obtained by changing the dynamics of the network only, without 
any modification of its architecture.  
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Abstract. The problem of finding of the deepest local minimum of a quadratic
functional of binary variables is discussed. Our approach is based on the asyn-
chronous neural dynamics and utilizes the eigenvalues and eigenvectors of the
connection matrix. We discuss the role of the largest eigenvalues. We report the
results of intensive computer experiments with random matrices of large dimen-
sions N ∼ 102 − 103.

1 Introduction

In various applications ([1], [2], [3]) it is necessary to minimize a quadratic functional
depending on N binary variables si = {±1}:

min
s

⎧⎨⎩E(s) = −
N∑

i,j=1

Jijsisj = −(Js, s)

⎫⎬⎭ , (1)

where (Js, s) is the scalar product of N -dimensional vectors. Vectors s = (s1, s2,
..., sN ) with binary coordinates will be called configuration vectors. They define 2N

binary configurations, among which the optimal configuration with regard to the objec-
tive function E(s) has to be found. When N increases, the number of different states
increases exponentially. Already ifN > 50, it is almost impossible to solve the problem
by means of exhaustive search.

Without loss of generality we consider a symmetric connection matrix J =
(Jij)N

i,j=1 with zero diagonal elements, Jij = Jji, Jii = 0, ∀i, j. The objective func-
tion E(s) will be called the energy of the state.

Usually, one uses the asynchronous dynamic procedure to minimize E(s). Accord-
ing this procedure, if s(t) = (s1(t), s2(t), ..., sN (t)) is the state of the system at the
moment t, in the next moment, t+ 1, coordinates of the state change according the rule

si(t+ 1) = sign

⎛⎝ N∑
j=1

Jijsj(t)

⎞⎠ . (2)

It is known that starting from an arbitrary initial state s(0), after several steps the system
(2) gets into the nearest local energy minimum. As a rule, the number of local minima
is very large [4]. To solve the problem, it is important to start the system from ”a good”
initial state, which is located in the basin of attraction of the global minimum.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 405–410, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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We suggest to start the dynamic system (2) from the configuration vectors, which are
the nearest to the eigenvectors of the matrix J corresponding to the largest eigenvalues.
The idea is based on evident geometrical argumentation (see below). This approach
proved itself for matrices of small dimensions N ∼ 20, allowing us to find the global
energy minimum for statistical assembly of 1500 random matrices with probability 0.97
[5], [6]. The approach has the computational complexity of O(N3). It is of interest due
to its universality.

In this publication we present the computer simulation results for random matrices
of large dimensionsN ∼ 102−103. The organization of the paper is as follows. In Sect.
2 we describe the algorithm allowing us to find the deepest local minimum. In Sect. 3
we estimate the computational complexity of the algorithm and present the numerical
results for random Gaussian matrices.

2 The Algorithm

The symmetric matrix J possesses the full set of the eigenvectors f (i). Let us sort them
in descending order with regard to eigenvalues λi:

J · f (i) = λif (i), λ1 ≥ λ2 ≥ . . . ≥ λk > 0 > ...λN , (f (i), f (j)) = δij .

Since the diagonal elements of the matrix are equal to zero, a part of the eigenvalues is
positive, and another part is negative.

The functional (1) can be rewritten as

E(s) = −
(
λ1(s, f (1))2 + . . .+ λk(s, f (k))2 + . . .+ λN (s, f (N))2

)
. (3)

The expression (3), first, allows one to find the lower estimate for the global minimum
of the functional (1):

E(s) ≥ −λ1N. (4)

Second, from Eq.(3) it is clear that one has to look for the solution of the problem
among those configuration vectors s, which have the smallest possible projection onto
the eigenvectors corresponding to negative eigenvalues. Indeed, E(s) is proportionate
to a weighted sum of squared projections of a configuration vector s onto eigenvectors
f (i). The weights entering the sum (3) are λi. Then, the larger the projection of a con-
figuration vector onto the subspace spanned over the largest eigenvectors, the smaller
is the value of the functional E(s). Eigenvectors corresponding to some first maximal
eigenvalues will be called the largest eigenvectors.

To clarify the aforesaid, we analyze the situation when the eigenvalue λ1 exceeds
essentially all the other eigenvalues in modulus (one faces such a situation not so rarely):

λ1 >>| λi |, i = 2, . . .N.

Then in the expression (3) we can restrict ourselves with the first term only:

E(s) ≈ −λ1(s, f (1))2.

Evidently, in this case the solution s∗ is the configuration vector the nearest to f (1).
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It is very simple to find out this configuration vector: its coordinates are defined by
the signs of the coordinates of f (1):

s∗i = sign(f (1)
i ), i = 1, ..., N ⇒ (s∗, f (1)) =

N∑
i=1

|f (1)
i | ≥ |(s, f (1))| ∀ s. (5)

Thus, if the maximal eigenvalue λ1 of the matrix J is very large, the solution of the
problem (1) is very simple. Difficulties emerge when there are some eigenvalues com-
parable with the maximal one. In this situation the contributions of these eigenvalues
to the functional (3) compete with each other. It can occur that the global minimum is
achieved on the configuration vector, which is the nearest not to the first eigenvector,
but to some other large eigenvector. However, from the expression (3) it is evident that
the global minimum cannot be achieved on the configuration vector orthogonal to the
largest eigenvectors.

This argument defines the main idea of our approach: to find out the deepest local
minimum of the functional (1), the dynamic system (2) has to be started from configu-
ration vectors the nearest to the largest eigenvectors. It is very easy to determine these
nearest configuration vectors (see Eq.(5)).

3 Experiments with Gaussian Matrices

In this Section we present the results of computer simulations for random symmet-
ric Gaussian matrices of dimensionalitiesN = 60, 100, 200, 300, 400, 500, 750, 1000,
1500, and 2000. Their matrix elements where chosen randomly and independently from
the standard Gaussian distribution. In physics matrices of such a kind are used when de-
scribing the so called spin glass, which is characterized by multiply degenerated global
minimum of the energy [2]. In this case the number of local minima is exponentially
large. All these minima have approximately the same depth, and distributed with a
small dispersion around a mean value. When N increases, the dispersion tends to zero.
In other words, there is no a pronounced global minimum, and, consequently, the search
of the deepest minimum is especially difficult.

3.1 Computer Simulation Parameters

Because the exact value of the global minimum is unknown, a reasonable way to verify
the suggested approach is to compare our deepest local minimum with the deepest local
minimum determined with the aid of the random search. For eachN we generated 1000
random matrices and using this statistical assembly compared the two aforementioned
minimization methods. In addition we took care of both methods being of nearly the
same computational complexity.

The computational complexity of our approach is defined by the time required for
calculation of eigenvalues and eigenvectors of the connection matrix. In order of magni-
tude this time is equal to O(N3). When the system (2) starts from an arbitrary configu-
ration s(0), aboutN2 operations are needed to get into the nearest local minimum. Con-
sequently, we can start the system (2) from N configuration vectors that are the nearest
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to all the eigenvectors of the matrix J. Then we have to start the dynamic system from
the same number N of random configurations. Thus, the computational complexity of
the both minimization methods in order of magnitude is O(N3).

Starting configurations s(0) that are the nearest to the eigenvectors of the matrix J
will be called the EIGEN-configurations; the obtained local minima will be called the
EIGEN-local minima. Similarly, local minima obtained when starting from RANDOM-
configurations will be called the RANDOM-local minima.

3.2 Main Results

1. Our experiments showed that the deepest EIGEN-local minima could be obtained
when starting the system from the vicinity of the largest eigenvectors.

This is clearly seen from Fig.1, where for N= 100, 500 and 1000 we present his-
tograms of distribution of the numbers of those eigenvectors, starting from whose vicin-
ity leads the system (2) to the deepest EIGEN-local minimum. We would like to remind
that numbers of eigenvectors corresponding to the largest eigenvalues are small: 1, 2, 3
and so on. To get the histograms, 1000 random tests were done.

For every dimensionalityN we see the leading role of the largest eigenvalues. When
N increases, this tendency becomes only stronger. Thus, for N = 1000 in the over-
whelming majority of the cases the deepest EIGEN-local minimum was achieved when
starting from configuration vectors the nearest to 10 largest eigenvectors only.
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Fig. 1. The numbers of eigenvectors starting from whose vicinity provided the deepest EIGEN-
local minimum. The dimensionality of matrices N=100, 500 and 1000.
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2. For each matrix the deepest EIGEN-local minimum was compared with the deep-
est RANDOM-local minimum to define whichever was deeper. Then using 1000 ran-
dom tests we calculated the probabilities of two events:

i) the probability pe = Prob(EIGEN < RANDOM) to get the deeper local mini-
mum with the aid of our EIGEN-approach;

ii) the probability pr = Prob(RANDOM < EIGEN) to get the inverse result.

Our results are given in the second and third columns of Table 1, respectively. We
see that for small values N ∼ 60 − 100 both minimization approaches are practically
identical: the probabilities pe and pr are approximately equal. In addition, there is a
large probability that both deepest local minima are the same. For N = 60 we have
Prob(EIGEN = RANDOM) = 0.63, and Prob(EIGEN = RANDOM) = 0.30 for
N = 100.

Table 1. Results for two methods of minimization

N pe pr Δe Δr

60 0.18 0.19 0.14 0.16
100 0.37 0.33 0.27 0.23
200 0.58 0.41 0.47 0.33
300 0.56 0.44 0.52 0.34
400 0.61 0.39 0.57 0.26
500 0.62 0.38 0.59 0.26
750 0.76 0.24 0.74 0.12

1000 0.87 0.13 0.98 0.06
1500 0.97 0.03 1.33 0.01
2000 0.996 0.004 1.64 0.001

However, beginning from N = 200 the probability pe exceeds the probability pr.
WhenN increases, this superiority increases too. WhenN = 2000 the probability pe is
close to one. Note, as it was mentioned above, for largeN ∼ 1000 the deepest EIGEN-
local minimum is reached when starting the system (2) from several largest eigenvectors
only.

3. It is important to estimate the worth of the improvement obtained with the aid
of the EIGEN-approach comparing with the results of the RANDOM-minimization. To
make this estimate we used the following method. Suppose, for the ith matrix,Ee is the
deepest EIGEN-local minimum and Er is the deepest RANDOM-local minimum. We
also suppose that Ee < Er. We remind that always Ee, Er < 0. Then for the ith matrix
the value

Δi =
Ee − Er

Er
· 100 > 0

shows (in percentage terms) how low the RANDOM-local minimum can be deepen
when using the EIGEN-approach. Averaging the positive Δi over 1000 random tests,
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we obtain the value of Δe that characterizes in average the efficiency of the EIGEN-
approach,

Δe =
1

1000

∑
Δi>0

Δi.

For those matrices, where the inverse inequality Er < Ee was true, we calculated

δi =
Er − Ee

Ee
· 100 > 0, Δr =

1
1000

∑
δi>0

δi.

The value ofΔr characterizes in average the efficiency of the RANDOM- minimization
compared with the EIGEN-approach (in percentage terms).

The values of Δe and Δr are given in the fourth and fifth columns of Table 1,
respectively. As above, for small N ∼ 60 − 100 both minimization methods are prac-
tically the same. When N increases, the value of Δe increases monotonically, and the
value of Δr decreases.

In other words, the larger N , the more is the possibility to make gains (to reach a
deeper local minimum) when using the EIGEN-approach. The fact that the benefit is
relatively small, ∼ 1.5% only, is understood easily. The spin glass has no a pronounced
global minimum. On the contrary, when N → ∞ there are a lot of local minima of
approximately the same depth. In other words, starting from any initial configuration,
the system reaches a local minimum whose depth is practically the same as depths of
other local minima. The fact that for large N the results of the EIGEN-approach are
better is the evidence of its efficiency.
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Abstract. The adaptive toolbox approach to human rationality analyzes envi-
ronments and proposes detailed cognitive mechanisms that exploit the struc-
tures identified. This paper argues that the posited mechanisms are suitable for 
implementation as connectionist networks and that this allows (1) integrating 
behavioral, biological, and information processing levels, an attractive feature 
of any approach in cognitive science; and (2) addressing developmental issues. 
These claims are supported by reporting implementations of decision strategies 
using simple recurrent networks and showing how age differences related to at-
tenuation in cholaminergic modulation can be modeled by lowering the G pa-
rameter in these networks. This approach is shown to be productive by deriving 
empirically testable predictions of age differences in decision making tasks. 

1   The Adaptive Toolbox Approach 

The adaptive toolbox approach is concerned with how simple mechanisms can exploit 
the information structure of an environment to make effective decisions. Accordingly, 
it has been shown that, in some environments, simple algorithms perform very well 
compared to more complex ones [1]. One example of such an algorithm is Take-the-
Best (TTB), a simple lexicographic heuristic for multiattribute pair-comparison tasks 
(e.g., inferring which of two diamonds is more expensive based on a set of cues, such 
as carat, clarity, and cut). A lexicographic strategy is one that looks up cues in a fixed 
order, much like we use the alphabetic order arrangement of words when consulting a 
dictionary. TTB makes decisions by selecting the alternative with the highest value on 
the cue with highest validity (i.e., the proportion of correct inferences a cue supplies). 
If the two alternatives have the same value, the cue with the second highest validity is 
considered, and so forth. It has been shown that TTB cannot be outperformed by a 
multiple-reason decision strategy like a weighted additive rule (WADD) in a non-
compensatory environment, that is, an environment in which one cue cannot be out-
weighed by any combination of less important cues. WADD is an information-
intensive strategy; it creates a weighted value for each cue by multiplying the cue 
value by its weight and summing over all weighted cue values to arrive at an overall 
evaluation of an alternative. In comparison, TTB’s performance is striking given it 
has no cue integration process – this success is due to the fit of TTB to the structure of 
noncompensatory environments.  
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Several connectionist models of decision making have been proposed [2], [3], [4] 
and shown to handle complex processes of information integration. This contrasts 
with the adaptive toolbox approach’s emphasis on how the fit between environment 
and mechanisms allows decision strategies to processs little information. Hence, it is 
understandable that attempts have been made to pit connectionist models against heu-
ristics [2]. Nevertheless, this opposition is not warranted. According to an implemen-
tationist perspective to connectionism [5], it is possible to think of networks as im-
plementing aspects of symbol-manipulation. Thus, in principle, one can model 
decision strategies, such as TTB, as neural networks. Moreover, combining the adap-
tive toolbox and the connectionism frameworks provides clear benefits. First, the 
models proposed by the adaptive toolbox approach can inform a connectionst agenda 
in the domain of inference by supplying plausible algorithms to be modeled. Second, 
the synergy can help connect different levels of explanation, from the behavioral to 
the neurological levels. Finally, as proposed here, it can help tackle issues such as on-
togenetic change in efficiency of strategy use due to age-related cognitive decline. 

1.1   Age-Related Cognitive Decline 

Age-related cognitive decline has been studied at different levels. For example, at the 
behavioral level, researchers have identified age differences in asymptotic perform-
ance [6], and complexity cost [7]. At the neurological level, neuroanatomical as well 
as neurochemical changes due to aging have been reported [8]. Finally, at the infor-
mation processing level, it has been proposed that there are age related reductions in 
general processing resources [9].  

Although there is a considerable body of work on age-related cognitive decline, lit-
tle is known about how strategy use in decision making changes with age. A survey of 
aging and decision making [10] suggests that older adults look up less information 
and take longer to make a choice than younger adults. Hence, some preliminary evi-
dence exists supporting the idea that age-related cognitive decline impacts strategy 
use. However, this work did not identify the strategies used or the occurrence of ap-
plication errors. Thus, it is not known how strategy efficiency changes as a function 
of age. A principled way of investigating this issue is to consider already detailed 
models of decision making, associate them with a theory of aging and, subsequently, 
design empirical studies to test the models’ predictions against data. That is the ap-
proach taken here. 

2   A Connectionist Approach to Decision Making and Aging 

Simple recurrent networks (SRN; [11]) were used to implement two decision strate-
gies: TTB, and an evidence accumulation strategy (EAS), which can be thought of as 
a version of WADD that implies sequential information search. This sequentially fea-
ture is common in decision making tasks like pair-comparison ones which are the fo-
cus of the reported modeling efforts. SRN are well suited to deal with these tasks be-
cause internal states are fed back at every step, which supplies such networks with a 
memory, and allows them to process information sequentially over time.  
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The SRN used had 2 input, 20 hidden, 20 context, and 2 output units. Fifty net-
works with different initial random weights were trained using both TTB-congruent 
and EAS-congruent target activations. Thus, each network was trained once to im-
plement TTB and once to implement EAS. The number of possible input patterns for 
training, given all combinations of 5 binary cues for two alternatives, is 1024. How-
ever, to insure the networks implemented TTB and EAS, 1/3 of these trials were 
withheld (341) from the training set to be used after training in a generalization test. 
The total number of input patterns used to train the networks was, therefore, 683. 
Each training epoch consisted of supplying as input the same sequence of 683 sets of 
5 vectors with 2 cue values each, corresponding to 683 decisions between 2 different 
objects based on 5 cues.  

At the end of each epoch the network weights were updated using a gradient de-
scent backpropagation algorithm [12] with adaptive learning rate and momentum. The 
networks were trained for 500 epochs. Target activations were constrained to range 
between 0 and 1. The two versions of each of the 50 networks differed only in terms 
of the specific targets provided. The crucial difference between the targets were that 
for the TTB implementations the first object having a positive value on a discriminat-
ing cue had an activation of 1, while for the EAS each positive cue value led to a pro-
portion of the maximum possible activation1. For example, given 5 cues with equal 
validities, the contribution of each cue to an object’s activation is .2. Thus, EAS tar-
gets reflected the principle of information accumulation (see Table 1). 

Table 1. Example of mapping between input and activation of alternatives for TTB and EAS 

 Input  Targets TTB  Targets EAS 
Cue 1 1 1 0 0 .20 .20 
Cue 2 1 0 1 0 .40 .20 
Cue 3 0 1 1 0 .40 .40 
Cue 4 1 1 1 0 .60 .60 
Cue 5 0 1 1 0 .60 .80 

After 500 training epochs the mean MSE was considerably small (MSETTB = 
.0007; MSEEAS = .0051). However, performance was not perfect: only 13 networks 
showed perfect performance in the sense that the difference between objects’ activa-
tions for each decision was in the prescribed direction both when trained with TTB 
and EAS targets. This subset of networks was further analyzed and it was found that 
only 2 generalized perfectly to the new 341 trials (MSE < .003). These networks were 
used to obtain the quantitative predictions presented below regarding strategy effi-
ciency. To obtain a probability that a network would choose a particular option out of 
the two alternatives a Luce choice rule was employed (P(A,B) = ActivationA / (Activa-
tionA+ActivationB) ). This rule specifies that the probability of choosing the object 

                                                           
1 For EAS, the object target activation corresponding to each input cue value was defined by: 

valuei × vi/Σv, where valuei represents the object’s value on cue i, vi the validity of that cue, 
and Σv the sum of all cue validities.  
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with highest activation tends to .5 as the magnitude of the difference between A and B 
decreases.  

This framework makes the prediction that someone using an evidence-
accumulation strategy, will more often make a choice not recommended by that strat-
egy than someone using TTB, which relies on a single piece of information. This is 
because TTB ensures that the difference between objects with different profiles will 
be of magnitude 1, while EAS allows differences between 0 and 1, depending on the 
number of positive cue values. The claim that information intensive strategies are par-
ticularly error prone is supported by research showing that people trained to use, for 
instance, WADD, choose alternatives not prescribed by it more often than when using 
other, more frugal strategies [13].  

2.1   Aging Decision Strategies 

Li and colleagues [14] have proposed that deficits in neuromodulatory efficiency due 
to aging can be conceptualized as noisy information processing and the existence of 
less distinct neural representations. Specifically, they proposed that deficits in cate-
cholaminergic activation in the prefrontal cortex [8] can be modeled by adjusting the 
gain (G) parameter of the sigmoidal activation function of neural networks (see [15] 
for the general approach). Li et al. showed that manipulation of the G parameter al-
lowed simulating various behavioral findings, for instance, the fact that older adults 
require more trials to learn paired-associates (i.e., arbitrary word pairs, such as violin-
computer; see [14] for more examples). According to this approach, the activation 
function of neural units takes the form: 

)(1

1
biasxInputGt

tte
Activation +−+

=  (1) 

where t indicates the processing step, Input refers to the input supplied to the unit (In-
put = Σ Wij Ij), and bias refers to a negative bias unrelated to aging (usually, bias = - 1; 
[15]). Finally, G is a random number sampled from a uniform distribution (Gi, ∈ 
[Gmin, Gmax], Gmin > 0; see Fig. 1 for the values of G used).  

Age-related decline in neuromodulation and its effect on strategy efficiency was 
modeled by using Equation (1) as the activation function of the output layer of the 
two successfully trained SRN. Reducing G flattens the sigmoidal activation function, 
lowering units’ responsivity (see Figure 1). Quantitative results were obtained by ap-
plying the Luce choice rule after a network was presented with the 5 cues concerning 
each decision for which both TTB and EAS did not have to guess. The outcomes for 
the two networks were averaged to produce the final results. 

In general, sampling G from a distribution with a lower mean should produce less 
pronounced and more variable activations [14], thus making differences between ob-
ject’s activations harder to distinguish by a choice rule. As a consequence, the prob-
ability of someone choosing an alternative not recommended by a particular strategy 
should increase with age. In sum, the relation between aging cognition and decision 
making was modeled by manipulating the signal to noise ratio of information 
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processing in strategies implemented as neural networks. The following sections 
present illustrative predictions of this approach concerning strategy efficiency of 
human decision makers which mirror effects found in other domains, such as 
memory [14]. 

Mean Performance. Young and older adults usually differ in terms of mean 
performance even after considerable periods of training [6]. Figure 1 shows average 
efficiency of the young and old TTB and EAS networks. As expected, young TTB 
and EAS perform better than the equivalent old networks. 

Complexity Cost. Another robust empirical finding in the aging literature is an age 
by complexity effect, that is, an increase in the difference between young and older 
adults with increasing processing demands or task difficulty [7]. Researchers have 
claimed that lexicographic rules are less computationally demanding than other more 
information-intensive strategies [1], [13]. Accordingly, an age by complexity effect 
can be observed in Figure 1: The difference between young and old TTB networks is 
smaller than the difference between young and old EAS networks (2% vs. 9%). The 
reason for this is that differences between activations for TTB are on average larger 
than for EAS due to the pattern of target activations and that older networks suffer 
considerably with less sparser codes than that of TTB. 

The same logic predicts additional complexity cost effects regarding efficiency of 
EAS: (1) older adults should have more difficulties with increased number of cues 
than young adults; (2) options with similar profiles should be harder to distinguish for 
older compared to young decision makers. In both cases, this arises from the fact that 
the differences between alternative’s activations become increasingly small with in-
creased number of cues or similarity which, due to the choice rule, leads to an in-
crease in the probability of choosing the wrong alternative.  

 

Fig. 1. The S-shaped logistic activation function at different values of G  and the probability of 
choosing the option prescribed by TTB and EAS given different age (G) levels 
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3   Conclusion 

A neurocomputational approach was presented which builds on previous accounts of deci-
sion making [1] and formal modeling of aging [14] to predict effects of age-related cogni-
tive decline on the efficiency of decision strategies. However, the results obtained provide 
only the groundwork for understanding the relation between cognitive aging and decision 
making; these preliminary modeling efforts will have to be further developed, for exam-
ple, to include predictions about variability in performance [14]. Nevertheless, these basic 
results remain empirically testable and will be examined by training young and older 
adults to use TTB and EAS (see [13] for such a procedure) and analyzing their error pat-
terns as a function of trial difficulty. One additional step that could provide support for the 
approach would be to estimate G for each participant and relate this person-specific pa-
rameter to individual measures of cognitive capacity, such as speed [9].  
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Abstract. The mathematical model of an industrial robot is usually de-
scribed in the form of Lagrange-Euler equations, Newton-Euler equations
or generalized d’Alambert equations. However, these equations require
the physical parameters of a robot that are difficult to obtain. In this
paper, two methods for calculation of a Lagrange-Euler model of robot
using neural networks are presented and compared. The proposed net-
work structure is based on an approach where either a not inverted or
inverted inertia matrix is calculated. The presented models show good
performance for different sets of data.

1 Introduction

An accurate robot mathematical model is useful for the design of advanced
robot control systems. Its calculation requires knowledge of exact values of a
robot’s physical parameters. It is rather difficult to obtain the data without
disassembling a robot. One of the methods which enables the identification of
the robot mathematical model without a’priori knowledge of these parameters
is using the neural networks [3,4,5].

This paper presents identification method of the robot mathematical model
using neural networks. Firstly, the robot mathematical model is presented. Then,
two neural network models of a robot are described, with not inverted inertia
matrix (NIIM), and with inverted inertia matrix (IIM). Next, computer simula-
tions and comparison of the robot neural network models are presented. Finally,
concluding remarks are given.

2 Discrete Time Robot Model

The discrete time model of a robot with n degrees of freedom, in the form of the
Lagrange-Euler equation [2] can be presented as follows

τ(k) = T−2
p M(k)[q(k + 1)− 2q(k) + q(k − 1)] + V (k) +G(k) , (1)

where τ(k) ∈ Rn is a vector of control signals, q ∈ Rn is a vector of gener-
alized joint coordinates, M(k) = M(q(k)) = [mij(k)] ∈ Rn×n is a robot in-
ertia matrix, G(k) = G(q(k)) = [gi(k)] ∈ Rn is a vector of gravity loading,

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 417–422, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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V (k) = V (q(k), q(k − 1)) = [vi(k)] ∈ Rn is a vector of Coriolis and centrifugal
effects, k is discrete time, t = kTp, Tp is sampling time.

3 Design of the Neural Network Robot Models

In the robot model (1) the unknown nonlinear elements ofM(k), V (k), G(k) have
to be identified. For their identification neural networks are proposed, because of
their ability to approximate the nonlinear multidimensional functions [6]. Two
different approaches to design robot neural models can be developed.
In the first approach, with a not inverted inertia matrix, equation (1) can be
rewritten as

M(k)γ(k) +H(k) = τ(k) , (2)

where
H(k) = [hi(k)] = V (k) +G(k) , (3)

γ(k) = [γi(k)] = T 2
p [q(k + 1)− 2q(k) + q(k − 1)] . (4)

Matrix equation (2) can be presented in the form of n independent equations

n∑
j=1

mij(k)γj(k) + hi(k) = τi(k), i = 1 . . . n . (5)

The structure of neural network should be designed to identify the elements hi(k)
and mij(k). The inputs of the neural network are q(k − 1), q(k), and γ(k). The
output of the neural network is τi(k). The performance function of the neural
network is in the form

JNIIMi =
1
N

N∑
k=1

(τi(k)− τNNi(k))2 , (6)

where τNNi(k) is the neural network output and N is the number of training
samples.
The neural network model of a robot with a not inverted inertia matrix can be
used to calculate the values of MNN(k) = [mNNij(k)] and HNN(k) = [hNNi(k)]
in (2). Thus, using neural networks generalized coordinates qNN(k + 1) can be
calculated based on (2) and (4) as follows

qNN(k + 1) = M−1
NN(k)T 2

p [τ(k)−HNN(k)] + 2q(k)− q(k − 1) . (7)

In the second approach, with inverted inertia matrix, equation (1) can be pre-
sented as follows

M(k)τ(k) + P (k) = γ(k) , (8)

where
M(k) = [mij ] = M−1(k) , (9)

P (k) = [pi(k)] = −M−1(k)[V (k) +G(k)] . (10)



Comparison of Neural Network Robot Models 419

Each of n independent equations of matrix equation (8) can be written as follows

n∑
j=1

mij(k)τi(k) + pi(k) = γi(k), i = 1 . . . n . (11)

In this case, the structure of neural network should be designed to identify the
elements pi(k) and mij(k). The inputs of the neural network are q(k − 1), q(k),
and τi(k), i = 1 . . . n. The output of the neural network is γi(k). The performance
function of the neural network is in the form

JIIMi =
1
N

N∑
k=1

(γi(k)− γNNi(k))2 , (12)

The neural network robot model with inverted inertia matrix can be used to
calculate the values ofMNN(k) = [mNNij(k)], PNN(k) = [pNNi(k)], and γNN(k) =
[γNNi(k)] in (8). Thus, using neural networks generalized coordinates qNN(k +1)
can be calculated based on (4) as follows

qNN(k + 1) = T−2
p γNN(k)− 2q(k) + q(k − 1) . (13)

Fig. 1. Structure of the neural network for the robot model identification

For both approaches, the structure of neural network is similar, with different
input and output signals, which is presented in Fig.1.

4 Computer Simulations

To compare the presented methods sets of data were generated from the simu-
lation of the robot PUMA 560 [1] with 6 degrees of freedom, revolute joints and
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Table 1. Parameters of training (�i = 18[ ◦
s
], ϕi = 0[◦], i = 1 . . . 6) and testing

(�i = 18[ ◦
s
], ϕi = 180[◦], i = 2, 3, 5, 6, ϕi = 0[◦], i = 1, 4) trajectories

q1[◦] q2[◦] q3[◦] q4[◦] q5[◦] q6[◦]
qmini, training trajectories -20 10 -180 -20 20 -100
qmaxi, training trajectories 160 45 225 170 100 266
qmini, testing trajectories -20 10 -180 -20 20 -100
qmaxi, testing trajectories 86 140 30 40 90 120

Fig. 2. Trajectories and control signals: a. training data, b. testing data

sliding mode control algorithm. They were used to train and test the proposed
neural network models.

The trajectory for i-th joint was set according to the following formula

qi(k) = aicos("ikTp + ϕi) +
ai

2
+ qmini, i = 1 . . . n , (14)

where ai = |qmaxi−qmini| is the amplitude, qmaxi is the maximal value of angular
position, qmini is the minimal value of angular position, "i is the angular velocity
and ϕi is phase.

The values of qmaxi, qmini, "i, ϕi for the training and testing data are given
in Table 1. The trajectories and control signals are presented in Fig.2.

The robot was simulated with given trajectory in time interval T = 10[sec],
with sampling time Tp = 0.01[sec]. Thus, there were 1000 data samples for
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training and 1000 data samples for testing of the neural models. In all nonlinear
layers (NL) the neurons are described by the sigmoidal activation function

y = fnl(x) =
1

1 + e−x
− 1 . (15)

In linear layers (L) the neurons are described by the linear activation function

y = fl(x) = x , (16)

where x =
∑L

i=1 wixi + b, L is the number of neuron inputs, wi is the weight of
the i-th input to neuron, xi is the i-th input to neuron, b is bias.
In both robot neural network models, (IIM) and (NIIM), there were two neurons
in each nonlinear layer and one neuron in each linear layer. Models were trained
using the the Levenberg - Marquardt method to update weights in all layers [6].
There were 1000 training iterations.

To compare both neural network models, (IIM) and (NIIM), quality indexes
were chosen as average absolute error Qavi and maximum absolute error Qmaxi

in i-th joint

Qavi =
1
N

N∑
k=1

|ei(k)|, i = 1 . . . n , (17)

Qmaxi = max
k
|ei(k)|, k = 1 . . .N, i = 1 . . . n , (18)

where errors were calculated as

ei(k) = qNNi(k)− qi(k), i = 1 . . . n , (19)

k is the number of the data sample, N is the number of all data samples.
The values of quality indexes (17) and (18) for (IIM) and (NIIM) robot neural
network models for training and testing data are given in Table 2.
The obtained results show that for the robot neural network model with a not
inverted inertia matrix the average errors are generally smaller than for the robot
neural network model with an inverted inertia matrix. The main drawbacks

Table 2. Values of the average errors Qavi and maximum errors Qmaxi

Qavi q1[◦] q2[◦] q3[◦] q4[◦] q5[◦] q6[◦]
NIIM Model, training 0.080 0.040 0.017 0.115 0.030 0.035
NIIM Model, testing 0.032 0.018 0.090 0.034 0.130 0.049
IIM Model, training 0.360 0.070 0.820 0.380 0.740 0.740
IIM Model, testing 0.210 0.260 0.420 0.120 0.140 0.440
Qmaxi q1[◦] q2[◦] q3[◦] q4[◦] q5[◦] q6[◦]
NIIM Model, training 0.480 0.210 0.530 1.510 0.130 1.100
NIIM Model, testing 2.800 3.660 15.420 2.890 12.460 8.090
IIM Model, training 0.560 0.110 1.270 0.600 0.250 1.200
IIM Model, testing 0.330 0.410 0.660 0.200 0.220 0.700
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of the robot neural network model with a not inverted inertia matrix are the
significantly bigger maximal errors and the requirement of inversion of the matrix
MNN(k) to calculate the generalized coordinates. The neural network model with
the inverted inertia matrix has better overall performance. The main problem is
the difficulty to recognize exactly which equation from the matrix equation (8)
is calculated. It is due to the fact that as the output is γi, it can be the same
for different joints during use of the robot neural network model.

5 Concluding Remarks

In this work the two approaches to design neural networks that can be used
for a robot mathematical model identification, have been described. The results
obtained during the simulations have shown, that presented robot neural net-
work models have good approximation properties for training and testing data.
However, there are a few drawbacks of both methods that should be considered
during the design and use of these models. The model with a not inverted iner-
tia matrix can be used for the the identification of the Lagrange-Euler equation
coefficients. The model with an inverted inertia matrix has better overall per-
formance. It is also useful in practice, especially for the design of robot control
algorithms, where the inverted inertia matrix is needed.

We plan further research to improve the robot neural network models, and
to use them in the synthesis of model-based robot control algorithms.
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Abstract. A causal neural control strategy is described for a simple
“heaving” wave energy converter. It is shown that effective control can
be produced over a range of off-resonant frequencies. A latching strategy
is investigated, utilising a biologically inspired neural oscillator as the
basis for the control.

1 Introduction

It is vital that the energy retrieved from the ocean by a Wave Energy Converter
(WEC) be maximised and much work has been done in this area [4]. However,
due to the inherent unpredictability of the future wave, many advanced tech-
niques that can implement near-optimum transfer require knowledge of the sea
state immediately prior to reaching the WEC device. Our system uses a phase
locked neural oscillator that tracks and optimises the motions of a simple point
absorber WEC. A system with only one degree of freedom, with motion con-
strained to the vertical direction, is studied as a simplified exemplar of a wider
class of WEC’s. A biological system, the lamprey [2], provided the inspiration
for the artificially evolved neural controller presented here. This system is imple-
mented using a neural network in order to optimise the power generated over a
range of frequencies and for a variety of input waveforms. A time domain based
system was developed that does not require explicit prior knowledge of the input
sea state. This approach effectively solves the equations of motion and the neural
equations in parallel as separate, mutually dependent systems.

One of the fundamental requirements for efficiency in WEC’s is that the
correct phase must be maintained at frequencies away from resonance [1]. The
primary method of phase control studied here is “latching” control [5,6,8], which
has been shown to yield significant increases in power. Latching control provides
a pseudo-resonant system by clamping the device rigid at the extremities of its
motion until the wave force has increased to an optimum. The device is then
released and thus generates power until reaching the next extremity of excursion.
Although latching has so far been difficult to implement in irregular waves we
outline a system that points towards a practical latching strategy for irregular
waves that does not require explicit knowledge of the future state of the ocean.
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2 The Wave Energy Converter (WEC) Model

Advanced models of ocean wave energy converters can take account of complex
wave-body interactions, including non-linear effects in order to model exactly
how to absorb maximum energy from their environment. Whilst these models are
essential to develop increased overall power capture, their inherent complexity
makes them unsuitable for concept-proving experiments such as this. In order
to better illustrate the method of control proposed, a point absorber, restricted
to a single degree of movement in the vertical plane is considered. Experience
with full WEC models suggests that this simplification captures most of the
important characteristics of a more complex WEC model.

Ca z k z CPTO  z

(M+Ma)

Mean Water Level

Water Level
z

h

Buoy Displacement

Fig. 1. Mechanical model of heaving buoy

Consider the simple mechanical system described in fig. 1, consisting of a
single buoy constrained to oscillate in heave mode (i.e. vertically) only. The
float is a cylinder of radius 1.65m and length 5m that is 50% submerged at
equilibrium. The power take-off is represented as a damper, CPTO. This simple
harmonic oscillator system is described by equation 1.

Fe(t) = (M +Ma)z̈ + Caż + CPTO ż + kz (1)
displacement = η − z (2)

Fe(t) = η(πr2ρwg) & kz = z(πr2ρwg) (3)

The hydrodynamic co-efficients of added mass (Ma) and added damping
(Ca) are defined by the buoy’s geometry and are frequency dependent. As we
aim to construct a control strategy requiring no foreknowledge of future waves,
these have simply been approximated to static values. Although we appreciate
that this is not strictly accurate it was found that such an approximation was
adequate for this model.

In order to maintain a linear approximation, the force on the buoy is decom-
posed into the wave force Fe and the spring force kz which are proportional to
water level(η) and buoy displacement(z) respectively. This is shown in eqn. 3,
where (πr2ρwg) is the restoring force on the cylinder.[3]
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As power is the rate of energy absorbed in damper CPTO, and given that
from eqn. 1, F(t) = CPTO · ż, it follows that: P(t) = F(t) · ż = CPTO · ż 2

2.1 Existing Control Methods

Maximum power transfer between the wave and the device will occur when the
natural period of these coincides, i.e resonance. Budal [1] found that it is the
phase difference of π

2 between the forcing component and the device displacement
that characterises this point of maximum power transfer. Away from resonance
this phase difference reduces or increases. However, by varying the value of CPTO

in eqn. 1, it is possible to adjust the WEC’s response at off-resonant periods,
increasing the phase difference so as to optimise the power captured. However
this is still an uncontrolled system as CPTO remains constant over many periods,
hence is is classed as “optimal real” damping in this paper (see fig. 3). Due to
the unpredictable nature of sea waves, increases in off-resonance performance
are desirable so that the effective bandwidth can be as wide as possible.

Many approaches to optimising the power developed with WEC’s have been
proposed and are reviewed in [4]. Latching, the simplest and hence perhaps the
most significant of these methods, was initially proposed independently in [6]
and [5] and then later in [8]. Latching enforces the correct phase shift between
the water level and device displacement by locking the device at the extremities
of its oscillatory cycle. This is implemented by locking the device displacement
when velocity, ż = 0 and releasing it a certain time TL later. The optimum power
achievable from this method is intrinsically non-continuous, although it can be
calculated iteratively [8]. Alternatively, reactive control [4] involves application
of forces to the device that are in phase with both displacement and accel-
eration. Both latching and reactive control can develop significantly improved
off-resonance power by using knowledge of the incoming wave.

3 A Neurally-Inspired Solution

In order to appreciate the inspiration for the control method proposed here, we
first look at the articulated (snake-like) configuration of some real WEC devices.
Generally consisting of two or more floats, it can be seen that these devices
generate power through the relative motions of their individual sections.[10]

It can be further seen that this motion is similar to the propulsive anguiliform
movement shown in many aquatic organisms. In general, it can be seen that this
motion is controlled through a local neural system known as a “Central Pattern
Generator”(CPG). One particular vertebrate to demonstrate this locomotion,
the lamprey, has a very well documented CPG structure and has been shown [7]
to have a surprisingly simple and elegant neural architecture.

The structure of the lamprey CPG consists of a series of neural oscillators
(segments), each responsible for controlling a single section of the body. Intercon-
nections between adjacent segments produce a small phase difference such that
a travelling wave propagates along the length of the body. This overall motion
is subject to modulation via sensory interaction [9].
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Fig. 2. Evolved controller for the system in fig 1. A fully connected topology was devel-
oped. However, for clarity, only weights> 1.7× average synaptic weight are illustrated.

It is proposed that we may be able to apply the lamprey CPG to such an
articulated WEC. However in order to test this hypothesis, we must start with
a simple system. If we consider that we can approximately model an articulated
WEC as a series of point absorbers limited to heave only, whereby the power
out-take (CPTO) is between adjacent floats, we can further simplify this and
consider the control of a single float as in fig. 1.

This is convenient as it has been shown [2] that a single neural CPG seg-
ment, see fig. 2, will oscillate at a natural frequency defined by the weights of
the network, modulated by the sensory input. In future work we will show the
extension of this to include interconnected buoys as described above and how
we can apply a series of interconnected CPG segments as the control.

3.1 Developing a Neural Controller

The mechanical simulation described in section 2 was coupled to the neural
network using the buoy velocity (ż) as a sensory feedback input. This allowed
the period of oscillation of the CPG network to adapt to that of the WEC
device. Furthermore, optimisation of the network weights allows the adjustment
of the phase difference range and the bandwidth over which the CPG output (the
neural network output) and the device displacement could become matched. It
was found that an effective latching strategy could be implemented by fixing the
buoy displacement at extremity by using CPTO �� optimum when ż = 0 [6]
and using the CPG output to trigger the release, where CPTO = optimum.

The synaptic weights of the network were optimised by a genetic search pro-
cess. The fitness of each individual was rated using the average power developed
over four separate 60 second simulations, each at a different, constant wave pe-
riod. The Genetic Algorithm (GA) was also given the freedom to evolve the value
of CPTO (optimum) as it was not clear exactly what value would be appropriate
to the evolved solution.

Using a real valued population and taking advantage of the network sym-
metry, individual chromosomes consisted of 73 variables each of 6dp precision,
giving a search space of 1073×6. For the results here, three separate evolutions
were invoked, each of which converged within 500 generations. The average vari-
ation in individual weights between these solutions was less than 2% and the
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“fitnesses” of the final solutions matched to within 0.2%. The evolved result is
shown in fig. 2.

4 Results

The results in fig. 3 show that the evolved strategy was successful over a useful
range of frequencies, but it is interesting to note that it was not possible to
produce a network that would provide latching control close to the resonant pe-
riod of 2.9s. This can be explained relatively straightforwardly. If TL defines the
duration of latching, then the phase lag introduced by latching can be described
as: φi = TL

Periodπ. For maximum power transfer, the optimal phase difference
between the wave and buoy displacement is φ = φn +φi = π

2 . At resonance how-
ever, the natural phase shift of the buoy is φn = π

2 , so the induced additional
phase φi (though latching) should be 0 at resonance. Close to resonance however,
a lower limit is imposed upon TL by the neuron model, forcing φ > π

2 , resulting
in sub-optimal power transfer. Under these conditions, since the network phase
locks to the buoy displacement rather than to the water level, a feed-forward
effect reinforces this error and neural control fails. In theory it would be possible
to adjust the neuron coefficients to reduce the minimum value of TL, ultimately
side-stepping the control failure at resonance. However, as the release point must
occur after the fix point, then due to the discrete nature of the simulation TL

can never equal zero as it is limited by the minimum time-step of the simulation.
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Fig. 3. Phase and power response for regular waves with periods between 1 and 10
seconds. Within region “C” the neural controlled latching strategy (+), can be seen
to outperform optimal real damping (∗) and the uncontrolled system (×) over much
of this frequency range. Region “B” illustrates areas where a solution could not be
evaluated. Results in region “A” are not of interest in this paper.
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Fig. 4. Response of the system to a changing period from 3 to 10s over a duration of 35s.
The top pane shows the wave displacement (dashed) relative to the device displacement
(solid), while the lower pane shows the Motor Neuron (MN) output from the network.
The vertical lines indicate the latch points for the system. Although these are not
conditions experienced in reality, temporal scales for areas of interest are correct.

In order to concentrate on producing a general solution for periods above
3.5s, the network was evolved using four regular wave periods of 3.5, 4, 5.5 & 7
seconds with overall developed power used as the fitness. Over this bandwidth
it can be seen to show a significant improvement over optimal real damping.

The GA evolved a single value of CPTO for all periods. However in optimal
real damping an ideal value was computed for CPTO at each period and this
value increased significantly with the period. From fig. 3 it can be seen that
there is a distinct reduction in power from the neural control above its evolved
bandwidth (>8s). It was seen that this reduction was due to the value of CPTO

being too low at these longer periods. By simply increasing this value for periods
8s< period <10s, increases of up to 246% were observed.

The ability of the neural controller to adjust to changing input conditions is
clearly illustrated in fig. 4. The sensory input to the network allows the oscillatory
period of the network to adapt to the displacement of the buoy and hence to
define the latching release points accurately. Even though a practical strategy is
implemented, it is possible to see that the ideal π

2 phase shift is not obtained. This
is because future knowledge of the wave is required for this optimum condition.
However, by using the neural system as we have, we can effectively extrapolate
the correct release point from the past knowledge contained within the network.
This can be seen in fig. 4 whereby the release point is somewhat too early.
Nevertheless, good performance is maintained over an input wave sweeping from
3.5 to 10s.
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5 Concluding Remarks

We have shown that “causal” latching control for wave energy converters (WEC),
based on a model of a biological (CPG) controller, can be developed using ge-
netic search techniques. This method produces controllers that can outperform
optimised real damping over a wide range of sea conditions, with an idiosyncrasy
at resonance that can be avoided straightforwardly. Although the wave condi-
tions demonstrated here are far from real conditions, the controller demonstrates
a basic ability to adapt accurately to changing input conditions. Extension to
testing in realistic-wave conditions will be covered in a future paper.

This work is based upon a simple abstraction of a real WEC device that cap-
tures much of the richness of a more complex model and we are optimistic that
the promising results reported here will translate into a simple, implementable
strategy for control of power out-take in real WEC devices. Furthermore, we
speculate that, using naturally-evolved examples of “neural”computing and con-
trol structures as a starting point, it may be possible to evolve novel solutions
to further hard problems by altering the constraints under which the neural
solution is optimised.
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Abstract. There has been a problem called “exploration-exploitation
problem” in the field of reinforcement learning. An agent must decide
whether to explore a better action which may not necessarily exist, or to
exploit many rewards by taking the current best action. In this article,
we propose an off-policy reinforcement learning method based on a natu-
ral policy gradient learning, as a solution of the exploration-exploitation
problem. In our method, the policy gradient is estimated based on a
sequence of state-action pairs sampled by performing an arbitrary “be-
havior policy”; this allows us to deal with the exploration-exploitation
problem by handling the generation process of behavior policies. By ap-
plying to an autonomous control problem of a three-dimensional cart-
pole, we show that our method can realize an optimal control efficiently
in a partially observable domain.

1 Introduction

Reinforcement learning (RL) is a machine learning scheme for achieving optimal
controls based on trial-and-error, and has been mainly applied to various Markov
decision processes (MDPs), in which all state variables of the environment are
assumed to be observable [7]. In many real problems, however, there are unob-
servable factors which affect the dynamics of the environment, and it is then
reasonable to model the environment as a partially observable MDP (POMDP)
[2]. The optimal policy in a POMDP should be a mapping from the history of
observations to an action. The belief state MDP is one possible solution for a
POMDP, by means of the belief state, which typically represents a posterior dis-
tribution of the current state estimated from the history. It is difficult to solve a
belief state MDP, however, because the space of belief states is very large. Fur-
thermore, the model of the environment is necessary to estimate a belief state,
while various system identification techniques have been used for modeling the
environment in fully observable domains [9].

On the other hand, policy gradient methods, a type of RL, can be applied to
both MDPs and POMDPs. In these methods, a policy is defined as a paramet-
ric probability distribution (stochastic policy), and the parameter is updated ac-
cording to the policy gradient; the partial derivative of a performance indicator
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(e.g., the expected reward accumulation) with respect to the policy parameter.
Recently, policy gradient methods combined with value learning have been devel-
oped, and they attract attention because of their efficiency and stability [8][4].

Because the current observation does not have sufficient information of the
state, the performance of a stochastic policy which depends only on the current
observation is low. In order to increase the efficiency, a policy gradient method
for tuning a policy that possesses an internal state was formerly proposed [1]. The
internal state has a dynamics based on a state-space model, and the dynamics
is changed by applying an external input such to maximize the accumulated
reward. Then, it is expected that the internal state extracts the information
essential to the reward maximization from the history of observation-action pairs.
However, it was suggested that a policy tends to converge to a local optimum,
where the internal state was not used effectively [1].

In order to overcome this problem, it is useful to focus on the “exploration-
exploitation problem” which has been studied in the field of RL [3]. Although
the aim of RL is to obtain an optimal controller, i.e., to exploit the optimal
policy to get rewards as much as possible, such an optimal controller should
be explored in the space of possible controllers, because RL is based on trial-
and-error in its concept. If a parameter which determines the randomness of the
policy is adjusted by the maximization criterion of the performance indicator,
it becomes an automatic meta-control of exploration and exploitation. However,
the learning of the randomness parameter is not easy; as the learning proceeds,
the randomness parameter becomes small to exploit the rewards, but in that
case the policy becomes non-ergodic and the estimate of the policy gradient is
likely to diverge.

In this article, we propose an off-policy learning method based on the natural
policy gradient learning, as a solution of the exploration-exploitation problem.
In an off-policy learning method, actions are not generated by the current policy,
but by an arbitrary policy (such a policy is called a behavior policy)[6]. Because
large variety of behavior policies leads to exploration, and employing a behavior
policy similar to the current policy corresponds to exploitation, we can realize
an appropriate control of exploration and exploitation by the meta-control of
the behavior policy. We apply our proposed method to the acquisition of an
automatic control of a three-dimensional cart-pole, and computer simulation
shows a good controller possessing an internal state can be obtained even in a
partial observation situation.

2 Policy Involving Internal State

The motion of a physical system is expressed as ẋ = F (x,ux), where x and ẋ
denote the state and time derivative, respectively, of the physical system, and
ux denotes the control signal applied to the physical system. We assume the
observation is given by a function of the state x: X = G(x), where G is an
observation function, and the dimensionality of X is smaller than that of x, i.e.,
the environment is partially observable.
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Controller Possessing An Internal State. In this study, we assume that the
output of the controller depends on an internal state y, and its state transition
is given by a linear dynamics system (LDS): ẏ = Ay +uy, where uy is an input
to the LDS, and A denotes the parameter that represents the linear dynamics.
The control signal ux to the physical system depends on X and y, and the input
to the LDS uy is also determined from X and y. Note that the dynamics of the
LDS can be controlled by appropriately controlling its input uy.

Learning Framework. The dependence of ux on y makes the controller to possess
an internal state y. Then, the action selection probability cannot be specified
from the state of the physical system x, which leads to a non-stationarity. Al-
though policy gradient methods can be applied to POMDPs, they cannot be
applied to training of a non-stationary policy by itself.

In this study, the controller is trained by the same framework as in [1]. The
physical system and the internal state are treated as a single dynamical system,
which we call LDS-embedded system, and the controller for the LDS-embedded
system is trained by a policy-gradient-based RL method. Then, the stochastic
policy is conceptually represented as π(s,u) ≡ p(u|s), where s ≡ {x,y} and
u ≡ {ux,uy} denote the state and the input, respectively, of the LDS-embedded
system. In this case, the policy depends only on the state of the controlled
object, the LDS-embedded system, and hence becomes stationary. In partially
observable domains, a policy depends only on the observation o ≡ {X,y}.

3 Learning Algorithm

At a discrete time step t, the controller receives the observation o(t), and outputs
a control signal u(t) according to the stochastic policy π. The LDS-embedded
system receives u(t), and changes its state s(t) to s(t + 1). Simultaneously, the
controller receives an immediate reward r(s(t),u(t)).

The stochastic policy πθ is assumed to depend only on the observation o,
and is defined by p(u|o; θ), where θ is the policy parameter which is an n-
dimensional vector. We assume that πθ is differentiable with respect to each
parameter component θi, i.e., ∂

∂θi
πθ exists, and that under any stochastic policy

πθ, there exists a stationary invariant distribution of states, Dθ(s), which is
independent of initial states of the LDS-embedded system.

3.1 Natural Policy Gradient Method

The objective of RL here is to obtain the policy parameter that maximizes
the expected reward accumulation defined by ρ(θ) ≡ Eθ

[∑
t γ

t−1r(s(t),u(t))
]
,

where γ ∈ (0, 1] is a discount factor. The partial derivative of ρ(θ) with re-
spect to the policy parameter θi is calculated by ∂ρ(θ)

∂θi
=

〈
ψi(s,u)Qθ(s,u)

〉
,

where ψi(s,u) ≡ ∂
∂θi

lnπθ(u|s) and Qθ(s,u) denotes the action-value function
(Q-function) [8].

〈
·
〉

stands for the expectation with respect to the stationary
distribution of state-action pair (s,u). When the Q-function is approximated by
a weighted sum of bases ψ: Qw

θ (s,u) ≡
∑

i wiψi(s,u), where w is the weight
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vector of the approximate Q-function, the optimal weight in the least square
sense: w̃ = argminw

〈(
Qθ(s,u)−Qw

θ (s,u)
)2〉, provides the natural policy gra-

dient without introducing any bias, so that the policy parameter can be updated
as θi := θi + ηaw̃i [4].

The Q-function is required to satisfy probabilistically the self-consistency
equation for a fixed policy: Qθ(s,u) = r(s,u) + γVθ(s′), where s′ denotes the
state at the next discrete time step. Then, the Q-function is approximated as
r(s,u) + γV̂θ(s′), where V̂θ(·) ≡

∑
j vjφj(·) is an approximate state-value func-

tion, φi for i = 1, . . . ,M are arbitrary basis functions of state s, and v is
the weight vector. Hence, w̃ is calculated by using one-step-ahead prediction:
w̃ = argminw

〈 (
r(s,u) + γvφ(s′)T − vφ(s)T −wψ(s,u)T

)2 〉. In this case, the
weight vectors, w and v, are estimated together by the least square method:

W =
〈
rϕ̂T 〉〈ϕϕ̂T 〉−1

, (1)

where ϕ(t) =
(

ψ(s(t),u(t))
φ(s(t))−γφ(s(t+1))

)
, ϕ̂(t) =

(
ψ(s(t),u(t))

φ(s(t))

)
and W ≡ ( w

v ) [5]. Note
that W is the parameter of the value function (critic).

3.2 Importance Sampling Method

In ordinary policy gradient methods, sufficient statistics,
〈
rϕ̂T 〉 and

〈
ϕϕ̂T 〉 in

Eq. (1), are calculated using state-action pairs which are sampled by the current
policy. In this study, these statistics are instead calculated using state-action
pairs which are generated by some behavior policies that differ from the current
policy. In this case, unbiased estimators for the expectations can be obtained by
an importance sampling method [6].

According to the importance sampling, an expectation
〈
f
〉

of a function
f(s,u) with respect to the current policy π is calculated by using a sequence of
state-action pairs, hB = {(s(t),u(t))}, which is generated by a behavior policy
πB:

〈
f
〉
≈ EhB

[
η 1

te

∑te

t=1 f(s(t),u(t))
]
, where η is the importance weight for

the sequence hB: η =
∏

t
πθ(s(t),u(t))
πB(s(t),u(t)) , and EhB [·] denotes the expectation with

respect to the sample sequence hB [6].
In our experimental setting, after generating a behavior policy πB, the con-

troller interacts with the environment for a certain number of steps in a single
‘episode’, then the expectation

〈
f
〉

is approximated as

〈
f
〉
≈ 1
tB

B∑
b=1

ηb

tb∑
t=tb−1+1

f(s(t),u(t)) =
1
tE

tE∑
t=0

η(t)f(s(t),u(t)), (2)

where B denotes the number of episodes, tb and ηb represent the time at the
end of the b-th episode and its importance weight, respectively. In Eq. (2), η(t)
is fixed at ηb in the b-th episode (t ∈ (tb−1, tb]).

In order to make the effects of old policies decay, instead of using the simple
mean (2), we introduce the weighted mean:

〈
〈f〉

〉
(tE) = α(tE)

∑tE

t=0
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(
∏tE

τ=t+1 β(τ))η(t)f(s(t),u(t)), where α(tE) and β(t) ∈ (0, 1] are the normaliza-
tion term and the discount factor, respectively. The normalization term α(tE) is
calculated iteratively: α(tE) = α(tE−1)/ (β(tE) + α(tE − 1)), thus the weighted
mean

〈
〈f〉

〉
(tE) is iteratively calculated by

〈
〈f〉

〉
(tE) = (1 − α(tE))

〈
〈f〉

〉
(tE −

1) + α(tE)η(t)f(s(tE),u(tE)). These weighted means are updated after a single
episode, and β(t) is fixed at 1 during the episode.

In this method, behavior policies can be chosen arbitrarily, but appropriate
choice will accelerate the learning. In this study, a behavior policy is produced
by adding a small randomness ΔθB to the current policy parameter θ. When
the variance of ΔθB is large, the behavior policy may be different from the
current policy so that the exploration happens. When ΔθB is small, in contrast,
a behavior policy becomes close to the current policy and the policy parameter
is updated to obtain a larger reward accumulation, namely, the exploitation
occurs. This variance is decreased as the learning proceeds, which reminds us of
the annealing procedure.

4 Experiment

We applied our off-policy RL scheme based on the natural policy gradient learning
to an automatic control problem of a three-dimensional cart-pole depicted in Fig
1(a). The cart and the pole were connected by a ball joint. The state of the cart-
pole is represented by coordinates of d1 and d2, angles ζ1 and ζ2, and their time
derivatives x = (d1, ḋ1, ζ1, ζ̇1, d1, ḋ2, ζ2, ζ̇2). A control signal to the cart-pole
consists of forces applied to the cart in the direction of d1 and d2. The controller
observes the state of the cart-pole each 0.01 sec. and outputs a control signal.

The aim of RL is to stabilize the cart-pole at the upright position, and for that
purpose we defined an immediate reward as r(s,u) = −

√
ζ2
1 + ζ2

2−0.02(ḋ2
1+ ḋ2

2).
The maximum time period of each RL episode was 20 sec. and if the pole fell
down or the cart moved too fast before 20 sec elapsed, the episode was terminated
at that time and a large penalty was incurred. The RL proceeded by repeating
such learning episodes.

In this experiment, we assumed the angular velocity ζ̇1 is not observable,
and trained a controller which possesses a one-dimensional internal state. We
performed ten learning tasks by our proposed (off-policy) method and by the
on-policy method (ΔθB = 0). Fig. 1(b) shows a learning curve, the horizontal
axis denotes the number of learning episodes, and the vertical axis denotes the

(a) 3D cart-pole
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Fig. 1. Learning of a controller for a 3D cart-pole
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average reward. Eight controllers that allow the pole to keep upright position
for 20 seconds were obtained by either of the methods. The solid (dashed) line
denotes the average reward when the cart-pole was controlled by a controller
which was trained by off(on)-policy learning method. This figure shows a good
controller can be obtained by our method even in a partially observable situation,
and obtained controllers by the off-policy method was better than those by the
on-policy method.

5 Conclusion

In this article, we proposed an off-policy learning method based on the natural pol-
icy gradient learning. In our method, sufficient statistics in the natural policy gra-
dient were estimated based on state-action pairs sampled by a behavior policy that
was different from the current policy. We applied our method to the autonomous
control problem of a 3D cart-pole, and computer simulation showed a good con-
troller can be obtained by our method, even in a partially observable domain.

In experiments, behavior policies were produced by adding a noise to the
current policy parameter. It is important to develop a more efficient way to
appropriately control the exploration-exploitation balance by considering the
uncertainly and non-stationarity of the environment. Furthermore, to develop a
framework to determine the dimensionality of the internal state automatically
is our future work.
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Abstract. In terms of computational neuroscience, several theoretical
learning schemes have been proposed to acquire suitable motor con-
trollers in the human brain. The controllers have been classified into
a feedforward manner and a feedback manner as inverse models of con-
trolled objects. For learning a feedforward controller, we have proposed
a forward-propagation learning (FPL) rule which propagates error “for-
ward” in a multi-layered neural network to solve a credit assignment
problem. In the current work, FPL is simplified to realize accurate learn-
ing, and to be extended to adaptive feedback control. The suitability of
a proposed scheme is confirmed by computer simulation.

1 Introduction

Computational neural researches have suggested the existence of inverse mod-
els in the human brain. Investigating how to acquire such inverse models in
the motor control, several learning schemes have been proposed to implement
the inverse model in artificial multi-layered neural networks. Preparing forward
models of controlled objects in advance, supervied learning can be realized[1].
The learning method has been applied to engineering. On the other hand, it was
suggested in consideration of physiological structure that feedback-error signal
can be used to learn the neural networks without the forward models[2]. Back-
propagation (BP) rule[3] is applied to both schemes for learning in the neural
networks. However, the back-propagation channels in biogenic neural networks
have not been found yet. We have proposed a forward-propagation learning
(FPL) rule in which back-propagation errors are not used[4,5]. Approximating
the gradient of the learning model to the inverse gradient of the controlled ob-
ject, FPL performs the inverse model learning based on a Newton-like method.
However, FPL might not be able to learn the inverse model in the neural network
if a gradient of the inverse model is not bound. Moreover, both feedforward and
feedback controllers are required in biological motion tasks, such as optokinetic
eye movement response, smooth pursuit, posture control, and so on.

In the current work, FPL is modified for accurate learning in solving a
credit assignment problem which inquires how to assign appropriately the ob-
served error to each layer with neural network. The modification is achieved
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by simplifying the estimation of a desired signal in each layer of the network.
Furthermore, applying Taylor expansion, we extend FPL to an adaptive closed-
loop control system.

2 Forward-Propagation Learning Scheme

FPL for an open-loop control system has been proposed as shown in Fig.1[4].
Given a desired trajectory θd, a neural network g(θd; w) produces motor com-
mand τ . Driving a controlled object f by τ , an achieved trajectory θ = f(τ ) is
observed. The purpose of the learning is that the trajectory error Δθ = θd − θ
comes to zero by acquiring f−1 in g(θd; w).

In this learning, the desired motor command τ̂ is unknown. Thus, inverse
model learning schemes face a problem how τ̂ is determined. FPL can provide
a solution of this problem based on a Newton-like method assuming that an
open-loop system can be regarded as an approximated identity mapping.

Fig. 1. A forward-propagation learning scheme for a neural inverse model

f ◦ g ! I. (1)

Applying a Newton method to find a zero point of Δθ according to τ on the
assumption, τ̂ can be approximated as follows:

τ̂ ! τ − [∇τΔθ(τ )]−1
Δθ

= τ + [∇τf(τ )]−1
Δθ

= τ +
[
∇θf

−1(θ)
]
Δθ

! τ + ε
[
∇T

θd
g(θd; w)

]
Δθ, (2)

where ε is a positive small number in cosideration of nonlinearity. Since
∇θf

−1(θ) is approximated by ε∇T
θd

g(θd; w), this is one of Newton-like meth-
ods. If g is the multi-layered neural network, the error Δτ = τ̂ − τ must be
propagated backward in the network to learn a mapping of f−1 by BP rule.

Let us consider a (L + 1)-layered neural network described by

g(θd; w) = gL(θd; wL, · · · , w1),
gl(θd; wl, · · · , w1) = gl(wl) ◦ · · · g1(θd; w1), (l = 1, 2, · · · , L).
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If Eq.(1) is applicable, the Newton-like method cannot be applied to find a zero
point of Δθ but be applied to find a zero point of Δτ l =

[
∇T

θd
gl
]
Δθ according

to τ l = gl(θd) in each layer. Thus, the desired output τ̂ l which should be
calculated by gl is described as follows:

τ̂ l ! τ l − [∇τl
Δτ l]

−1
Δτ l

! τ l + ε
[
∇T

θd
gl
]
Δθ. (3)

Then, parameters wl can be adjusted by various methods which minimize
not only the norm of Δτ l but also the norm of Δθ[6].

ŵl = argmin
wl

‖Δτ l‖2. (4)

Since the error signals are only propagated forward to derive τ̂ l in each layer
from Δθ, this scheme has been called “forward-propagation learning rule.”

Although feedback-error learning (FEL)[2] has been also based on the
Newton-like method, ∇θf

−1(θ) has been approximately prepared by the feed-
back controller. Moreover, FEL uses BP rule to learn the multi-layered neural
network according to Δτ = τ̂ − τ while FPL does not use BP rule.

If a differentiable forward model can be prepared in advance, BP rule can
be used to solve the credit assignment problem instead of Newton-like method.
Forward and inverse modeling[1] is typical one of such schemes. But the learning
schemes based on BP rule require huge iterations, and seem to be improper in
terms of neurophysiology.

3 Simplified Forward-Propagation Learning Rule

Since FPL requires the forward-propagated error Δτ l, the neural network must
not only acquire the inverse model but also estimate its gradient for the learn-
ing. If the function of a true inverse model is discontinuous or its gradient is
complicated, FPL might not acquire the inverse model. In order to overcome
this serious problem, we revise FPL successfully to estimate the inverse function
and its “approximated” gradient.

Applying gradient descent methods to the minimization in Eq.(4), the sign
of gradient is mainly used to find a solution. Furthermore, since the activation
function of neurons is usually monotonous increased function, the sign of its
gradient is always plus. Thus, Δτ l can be approximated as follows:

Δτ l =
[
∇T

θd
gl
]
Δθ

= ∇ [σ ◦wl ◦ σ ◦ · · · ◦w1(Δθ)]
!W LW L−1 · · ·W 1Δθ = Δτ̃ l, (5)

where σ is an activation function of a neuron and W l is the l-th translation
matrix in each linear mapping wl. Δτ̃ l can be derived from linear translation
without calculation of the gradient of non-linear activation.
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4 Adaptive Closed-Loop Control by Forward-Propagation
Learning Rule

Although FPL has been proposed as a learning scheme that acquires the inverse
model serving as a feedforward controller, we extend FPL to adaptive closed-
loop control. Let us consider applying Taylor expansion to the neural feedforward
controller g(θd; w) by perturbation Δθ = θd − θ in which θ = f ◦ g(θd; w). If
Eq.(1) is applicable, Δθ is enough small. Then, the higher order terms of Taylor
expansion can be neglected.

Fig. 2. Adaptive closed-loop control by FPL

g(θd; w) ! g(θ; w) +∇T
θ g(θ; w)Δθ. (6)

Since the second term in the right hand of Eq.(6) is the same form as Δτ , the term
can be approximated by simplified forward-propagated error Δτ̃L as follows:

g(θd; w) ! g(θ; w) + ηΔτ̃L, (7)

where η is small positive number in consideration of the approximation. Ac-
cording to Eq.(7), the forward-propagated error ηΔτ̃L should add to the motor
command in adaptive closed-loop control by FPL as shown in Fig.2.

Adaptive closed-loop control of FPL is similar to that of FEL[7] since the
error signal ηΔτ̃L can be replaced with the signal from feedback controller.
However, they differ in the adjustment of parameter w ; FEL must use BP rule
while FPL can use the simplified forward-propagated error Δτ̃ l in each layer.
Naturally, FPL can use a steepest descent method to adjust the parameters with-
out back-propagation signals, since the error signals in each layer are obviously
estimated as Δτ̃ l.

5 Simulation of Motor Learning

Here the suitability of the proposed scheme is shown by computer simulation.
We examined a learning problem for a 3-layered feedforward neural network in
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a closed-loop controller of a 2-link arm in x-y plane as shown in Fig.3(a). The
dynamics of the 2-link arm can be described by

τ = M(q)q̈ + h(q, q̇),

where τ is the drive torque, q is the joint angle, M is the inertia matrix of
the arm, and h represents the Coriolis and centrifugal force. M and h were
calculated according to the values: m1 = 1.59 kg, m2 = 1.44 kg, l1 = 0.35 m, l2 =
0.35 m, lg1 = 0.18 m, lg2 = 0.21 m, I1 = 0.0163 kgm2, I2 = 0.0164 kgm2. Here, m
is the mass of the arm, l is the length of the arm, lg is the center of gravity and
I is the inertia of the arm.

The 3-layered neural network with 6 hidden units g(θ; w) was used for
learning the closed-loop controller. The input signal θ was defined as θ =[
qT , q̇T , q̈T

]T

. The activation functions of input and output layer units were

linear but those of hidden units were nonlinear as σ(x) = [1 + exp(−x)]−1.
The initial values of W 1 were randomly selected in the uniform distribution

on (-0.1,0.1). To satisfy Eq.(1) before learning, we prepared a sequence of the
torque patterns T = [τ (1), τ (2), · · · , τ (500)]T ∈ R500×2 and a sequence of the
corresponding angular trajectories Θ = [θ(1), θ(2), · · · , θ(500)]T ∈ R500×6. Here
the torque patterns are selected to be various sine waves. Inputting Θ to the
neural network, the output signal in the hidden layer Γ 1 ∈ R500×6 was derived.
An approximated inverse model was obtained by substituting the solution of the
following equation for W 2 which was obtained by multiple linear regression.

T = Γ 1W 2.

The desired trajectory of an end effector was defined as a minimum jerk
trajectory from (0.45, 0.0)m to (0.0, 0.4)m in x-y plane during 1.0 s. This trajec-
tory was sampled at 100 Hz in the angular space to obtain a training sequence
Θd ∈ R100×6. For updating the connection weights to achieve Eq.(4), we applied
a RLS algorithm in bach-mode learning[5]. The learning results of FPL were sim-
ulated with the learning parameters η = 0.1, ε = 0.0001 and the regularization
parameter in the RLS algorithm δ = 1.0× 10−6 without the forgetting factor[5].

Fig.3(b) shows that the mean square errors of the observed error Δθ and the
forward-propagated error ηΔτ̃L by FPL would be decreased as iterations. The
desired trajectories are indicated by solid lines, and the achieved trajectories
before and after learning are indicated by dash-dotted and dashed lines in Fig.4.
Although the achieved trajectories before learning (dash-dotted lines) could not
follow the desired trajectories (solid lines), the achieved trajectories after 100
iterations roughly agreed with the desired trajectories. Moreover, the achieved
trajectories after 1000 iterations agreed with the desired trajectories. Fig.3(b)
and Fig.4 suggest that FPL can acquire a suitable closed-loop controller in the
neural network whose ability is good enough to follow the desired trajectory
after 1000 iterations.

To compare with other scheme, FEL applied to closed-loop control[7] is also
implemented in computer simulation using the same initial neural network in
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(a) A 2-link arm
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(c) Learning curves of FEL

Fig. 3. A controlled object and the results of learning control
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(c) q̈1
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Fig. 4. Trajectories achived by proposed adaptive closed-loop control in FPL

Fig.3(b) and learning rate for BP rule is 0.01. Fig.3(c) indicates the mean squares
of the observed error and the feedback error by FEL. Since the feedback con-
troller prepared and worked as the reference model, the observed error is enough
small in initial iterations. However, the feedback error monotonously decreased,
while the observed error was not. It means that the neural network imitates
the feedback controller through learning. It was found by computer simulation
that the required iterations and the calculation time for achieving convergence
of FPL is quite less than that of FEL, although the calculation cost per iteration
of FPL is more expensive than that of learning schemes based on BP rule.
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6 Conclusions

In the current work, FPL has been simplified and extended to closed-loop control.
The modified FPL was applied to adaptive closed-loop control of a 2-link arm by
computer simulation, and its learning achieved good performance. We confirmed
that both feedforward and feedback controllers can be acquired in the multi-
layered neural network by FPL. Although there are many works with regard to
supervised learning approach to acquire neural inverse models, they are required
to apply BP rule. In consideration of our results, however, adaptive biological
motor control might be achieved by inverse models as feedforward and feedback
controllers without back-propagated signals.

Supervised learning schemes for acquiring neural inverse models require prior
information of controlled objects; FPL and FEL require the approximated gra-
dient of the inverse models, while a scheme of forward and inverse modeling
requires the approximated gradient of a controlled object. It is interesting how
living things can obtain such prior information.

Acknowledgements

This study was supported by the 21st Century COE Program “Intelligent Hu-
man Sensing” from the Japanese Ministry of Education, Culture, Sports, Sci-
ence and Technology, and by the scholarship from Support Center for Advanced
Telecommunications Technology Research, Foundation in Japan.

References

1. M.I. Jordan, and D.E. Rumelhert, “Forward models: Supervised learning with a
distal teacher,” Cognitive Sciences, 16, pp.307-354, 1992.

2. M. Kawato, “Feedback-error-learning neural network for supervised motor learn-
ing,” in Advanced Neural Computers, ed. R. Eckmiller, pp.365-372, North Holland,
Amsterdam, 1990.

3. D.E. Rumelhart, G.E. Hinton, and R.J. Williams “Learning representations by back-
propagation errors,” Nature, vol.323, pp.533-536, 1986.

4. K. Nagasawa, N. Fukumura, and Y. Uno, “A forward-propagation rule for acquiring
inverse models in multi-layered neural networks,” (in Japanese), IEICE Trans., J85-
D-II, pp.1066-1074, 2002.

5. Y. Ohama, N. Fukumura, and Y. Uno, “A forward-propagation rule for acquiring
neural inverse models using a RLS algorithm,” in Neural Information Processing.
eds. N. R. Pal et al., pp.585-590, Springer-Verlag, Berlin, 2004.

6. Y. Ohama, N. Fukumura, and Y. Uno, “A forward-propagation learning rule in
consideration of the correlation of propagated errors,” (in Japanese), IEICE Trans.,
J88-D-II, pp.218-229, 2005.

7. H. Gomi, and M. Kawato, “Adaptive feedback control models of the vestibulocere-
bellum and spinocerebellum,” Biol. Cybern. 68, pp.105-114, 1992.



Improved, Simpler Neural Controllers for
Lamprey Swimming

Leena N. Patel1, John Hallam2, and Alan Murray1

1 The University of Edinburgh, Kings Buildings, Mayfield Road,
Edinburgh EH9 3JL

2 University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Abstract. Swimming for the lamprey (an eel-like fish) is governed by
activity in its spinal neural network, called a central pattern generator
(CPG). Simpler, alternative controllers can be evolved which provide
improved performance over the biological prototype (modelled by Eke-
berg). Results of computational evolutions demonstrate several possible
outcomes exist, with reduced connectivity (16 connections instead of 26)
and a diminished equation set for describing the model. Furthermore,
resulting oscillators operate over a wider frequency range (0.99 - 12.67
Hz), outperforming the biological prototype (frequencies 1.74 - 5.56 Hz).
Evolving advanced yet simpler controllers provides solutions which are
more attainable in silicon (VLSI), determines the extent to which na-
ture’s solutions are unique and generates efficient task-specific versions.

1 Introduction

Neural oscillators in nature perform and control functions such as walking, swim-
ming, breathing and digestion. Inspiration from such biological controllers could
provide a degree of intelligent control to mechanical operators, improving their
productivity and efficiency. Developing these solutions requires detailed analy-
ses of biological neural systems, including an assessment of how unique nature’s
configurations are, whether simpler versions perform effectively, and if their op-
eration range can be optimised for similar mechanical engineering tasks. This
would ascertain whether years of evolution make nature’s solutions optimum or
if alternatives are possible. The solution space can be explored using genetic
algorithm techniques, searching for suitable substitutes.

This research considers the neural architecture responsible for controlling
the lamprey’s swimming movements in varying water conditions. In parallel, the
system is being be developed to optimise the efficiency of wave power devices op-
erating in irregular seas [1]. To contribute towards this goal, this paper explores
the flexibility of the lamprey CPG, specifically assessing whether alternative,
simpler configurations within the constraints of Ekeberg’s model [2] are feasible.
Certain neural parameters are evolved together with synaptic weights within
the constraints of the biological prototype. Optimum performance is signified
by controllers which maintain low level system complexity, yet cover a wider
frequency range.
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2 The Lamprey Central Pattern Generator (CPG)

The lamprey propels itself by propagating an undulatory wave (with increasing
amplitude) from head to tail. A central pattern generator (CPG) along its spinal
column, comprises several copies of an oscillatory neural network which cause
rhythmic activity of motoneurons. These, in turn, alternate motion between the
two sides of the lamprey’s body. The entire network can be represented as a sim-
plified connectionist model, with non-spiking neurons representing populations
of functionally similar neurons. Activity of each neuron class is described by a
set of first order differential equations [2]:

ξ̇+ =
1
τD

(
∑
iεΨ+

uiwi − ξ+) (1)

ξ̇− =
1
τD

(
∑
iεΨ−

uiwi − ξ−) (2)

ϑ̇ =
1
τA

(u − ϑ) (3)

u = 1− exp {(Θ − ξ+)Γ} − ξ− − μϑ (if u > 0) OR 0 (if u ≤ 0) (4)

Output u (equation 4), of each neural unit represents the mean firing fre-
quency of the population. Synaptic inputs (excitatory (ξ+) and inhibitory (ξ−))
are added seperately (equations 1-2) and are subject to time delays (τD). Groups
of pre-synaptic excitatory and inhibitory neurons are represented by the terms
Ψ+ and Ψ− respectively, where wi denotes the synaptic weight associated with
each input. A saturating transfer function is applied to high levels of excitatory
input. Finally a leak is included as delayed negative feedback (equation 3). Pa-
rameters of threshold (Θ), gain (Γ ) and adaptation rate (μ) of equation 4 are
tuned to match the response characteristics of the corresponding neuron type
based on experimentally established connectivity (see [2]).

Two of 100 replicas of an oscillating segment are displayed in Figure 1, with
neural connections in a single segment highlighted. Tonic (i.e. non-oscillating)
input to the pattern generator is supplied by the brainstem and controls the
frequency of oscillation. These signals connect to all the neurons in the CPG; for
reasons of clarity they are not shown in figure 1. Each segment functions as a non-

Fig. 1. Connectionist Model of the Lamprey’s Spinal CPG
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linear oscillator and is coupled to its neighbours through extensions of interneural
connections towards the head and the tail (depicted in figure 1 by vertical dotted
lines). Output from each segment’s motoneurons drive the muscles with a burst
activity of 1.74 - 5.56 Hz depending on the level of tonic excitation applied, with
higher tonic input resulting in increased oscillation frequency.

The lamprey’s CPG is relatively simple and has been isolated in vivo to pro-
duce detailed cell models, examine electrochemical reactivity to neural stimula-
tion and reproduce the network artificially [2,3]. The simulated CPG is realistic,
provides a tool for further exploration of network connectivity and activity, and
offers potential for developing systems for more complex control. Alternative
controllers have been evolved [4] using genetic algorithms (GAs). Past research
manipulated the connection weights and intersegmental extensions. However,
optimisation of neural parameters which describe network activity has not been
undertaken, nor has reduction and therefore simplification of the equation set,
which is especially important for efficient implementation in a real application.

3 Evolving Controllers

Genetic algorithm (GA) techniques are deployed to find acceptable configura-
tions. This method can determine whether the modelled lamprey CPG is unique
and optimal for swimming control. Two of three parameters (threshold and gain),
which describe the dynamics of each neuron class, are co-evolved with synaptic
weights. Adaptation rate, a further neural parameter, is set to zero to elimi-
nate equation 3 (section 2) and thus simplify the system. Each connection is not
pre-specified as inhibitory or excitatory and is therefore also evolved.

A real number GA, a variation on the standard binary GA is used. Individ-
ual solutions are encoded as chromosomes comprising 39 genes, with each unit
corresponding directly to one parameter of the neural configuration. The range
of each gene includes the values of the biological CPG. Left-right symmetry is
imposed for synaptic weights constituting 24 of the genes. Since, motoneurons
only supply output to muscles, connections from them are not evolved. Three
chromosome units contain the sign (excitatory or inhibitory) of each neuron
group and four genes represent synaptic weights of brainstem input. Finally,
eight genes correspond to the equation parameters (threshold and gain).

A random initial population (100 chromosomes) is generated and then oper-
ations of selection, variation and rejection are applied to each subsequent gen-
eration. Selection involves a fixed number of parents being chosen according to
rank-based probability. Fittest individuals are therefore selected more often to
create 30 offspring. Variation imposes operations of two-point crossover and mu-
tation on paired chromosomes. Crossover entails swapping parent substrings at
two randomly chosen locations. With a 40% probability, each gene is selected
exclusively for mutation and a random number ∈ [-0.5, 0.5] is added to the orig-
inal value. Every connection is considered independently for pruning and is set
to 0 with a probability of 10%. The final population is pruned by eliminating
weak connections which do not effect neural activity. Finally, the worst solutions
are rejected to maintain a consistent overall population size.
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Table 1. Genetic Algorithm Equations for Fitness Evaluation

Mathematical Definition Bad Good Obj
1 (zerosL + zerosR)/2 where zeros = total start/end activity points 3 8 1

2
(√∑n

t=1 (Ul(t) − U l)
2

+
√∑n

t=1 (Ur(t) − Ur)
2
)

/2n 0.1 0.5 1

3
(∑c

cycle=1 Pl(cycle) +
∑c

cycle=1 Pr(cycle)
)

/2c 0.15 0 2

4 (|Pl(c) − Pl(c − 1)| + |Pr(c) − Pr(c − 1)|) /2P 0.15 0 2

5
(∑

t∈cycle n
|Ul(t)−Ul(t−P)|∑

t∈cycle n
|Ul(t)−Ul(t−P)|

)
/2 +

(∑
t∈cycle n

|Ur(t)−Ur(t−P)|∑
t∈cycle n

|Ur(t)−Ur(t−P)|

)
/2 0.4 0.05 2

6
∑

t∈cycle n |Ul(t) − Ur(t − P/2)|/(∑t∈cycle n |Ul(t) + Ur(t − P/2)| 0.4 0.05 2
7
∑n

t=1 |Ul(t) − Ur(t)|/∑n
t=1 |Ul(t) + Ur(t)| 0 0.8 3

8 frequency range (Hz) 1 12 4
9 n connections/n max connections 1 0.3 5

In order to achieve fictive swimming (i.e. oscillatory patterns of activity pro-
duced by disconnected pieces of the complete spinal CPG) it is necessary to
match certain observed characteristics of the biological oscillating network. These
objectives incorporate measurements using the equations in table 1.

Objectives (Obj) include (1) frequency should be controllable by simple tonic
excitation from the brainstem (and monotonically increase with the level of ex-
citation), (2) oscillations must be regular with one peak of activity per period
and (3) motoneuron activity between the left and right sides of the CPG must
alternate. Furthermore, oscillators which operate over a wider frequency range
(4) whilst maintaining low connectivity (5) are rewarded. Many of the equations
are from Ijspeert’s algorithm for evolving synaptic weights [4] but equations 2
and 5 are corrected versions. Procedures analogous to Ijspeert are used to deter-
mine the frequency range and combine individual fitness criteria. An additional
condition excluded in his work, ensures that the frequency range of the biological
model is covered. Also, neural parameters threshold (Θ), gain (Γ ) and adapta-
tion rate (μ) are evolved in this work, but fixed to Ekeberg’s values in Ijspeert’s
research. Fitness evaluation is based on motoneural activity as these alone effect
muscular activity. In the mathematical definitions of table 1, n is the number of
integration steps, c is the number of simulated cycles, Ul and Ur represent left
and right motoneuron output respectively, P denotes mean period and Pl(r)(j)
is the period of cycle j for the left (right) motoneuron activity burst.

The outcome of each equation is transformed into a fitness value between 0
and 1 using the function F (x) = 0.95 ∗ (x −Good)/(Good− Bad) + 1. A result
of 1 signifies a good representative, and 0 a poor outcome. Variables ‘Good’ and
‘Bad’ depict fitness extremes by which value x is transformed.

4 Results and Discussion

Results of forty experiments, each evolving 500 generations, demonstrate that
40% of the simplified controllers improve performance over that of the prototype
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CPG. Table 2 compares the best evolved solution with Ekeberg’s biological CPG
[2] and Ijspeert’s fixed parameter controller [4]. The symmetric weight values are
derived by substituting l (left) with r (right) and vice versa in table 2. Fitness
of improved controllers (those with greater objective values than the biological
prototype’s fitness 0.11) range from 0.2 - 0.8. The best overall controller’s fre-
quency range is 0.99 - 12.67 Hz (tonic input (ge)= 0.2 - 1.8), substantially greater
than the biological frequency range (1.74 - 5.56 Hz, ge=0.2 - 1) and Ijspeert’s
best controller (1.2 - 8 Hz, ge=0.4 - 2.1). The lowest number of interneuron
connections amongst all improved controllers is 16; the highest, 30.

Table 2. Comparing Biological, Fixed Parameter (FP) and Best Evolved Controllers

Run Obj Frequency Conns Neural Synaptic Weights
Val Range(Hz) (of 56) Parameters from:EINl CINl LINl EINr CINrLINr BS

[low - high] θ Γ μ to:
bio 0.11 3.82 26 -0.2 1.8 0.3 EINl 0.4 - - - -2.0 - 2.0

[1.74 - 5.56] 0.5 1.0 0.3 CINl 3.0 - -1.0 - -2.0 - 7.0
8.0 0.5 0 LINl 13.0 - - - -1.0 - 5.0
0.1 0.3 0 MNl 1.0 - - - -2.0 - 5.0

FP 0.31 6.8 22 -0.2 1.8 0.3 EINl -0.8 -3.8 - -0.9 - 0.7 - 0.8
[1.2 - 8.0] 0.5 1.0 0.3 CINl - - - -3.5 -3.7 - 13.0

8.0 0.5 0 LINl - - - - - - -
0.1 0.3 0 MNl -0.4 -3.2 - - - - 3.8

2 0.8 11.68 16 -1 0.7 0 EINl - -4.6 - - - - 3.06
[0.99 - 12.67] -1 0.48 0 CINl 5.53 - - - -2.9 - -1.18

-1 0 0 LINl - - - - - - -5
-1 0.27 0 MNl - -4.3 - - - - 10.8

Evolved neural parameters and synaptic weights are markedly different from
the biological prototype values. Negative synaptic weights denote inhibitory con-
nections, positive weights are excitatory and BS represents brainstem input. It
should be noted that although the denominations of EIN, CIN and LIN are kept
to distinguish the neuron classes, they lose their functional meaning and even
the sign they had in the biological model. Network activity for 3000ms, at the
lowest oscillation frequency, is shown in fig. 2 for a) Ekeberg’s network and b) the
best evolution. Motoneuron burst activity (the dot-dash line), measured for fit-
ness evaluation, is similar for each network. Furthermore, activity is regular and
alternates between the left and right sides (top and bottom graphs respectively)
as per stipulated conditions for fictive swimming.

5 Conclusion

Experiments evolving Ekeberg style segmental controllers, with added simultane-
ous adaptation of some neural parameters and connection strengths demonstrate
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Fig. 2. Network Activity (Lowest Oscillation Frequency) for a) Ekeberg’s Biological
Controller and b) the Best Evolved CPG

that many effective segmental oscillators can be constructed. The evolved net-
works can operate over a wider frequency range than their biological prototype
[2] and networks with evolution restricted to their weights [4], whilst maintaining
low connectivity. Also, since adaptation rate (μ) is set to 0 a simpler model than
that used by Ekeberg and Ijspeert is implicitly produced. This property, together
with low connectivity, is desirable if an integrated (VLSI) controller is to be con-
structed. Evolving neural systems according to predefined constraints introduces
the potential for developing systems of intelligent control for other non-adaptive
operators such as oscillating wave power converters. We are led to speculate that
this biological control structure that can be “improved upon” for implementation
as an artificial computing system and subsequent use in an application, may not
be an isolated example; so can we develop other biologically-inspired structures
that lead to new solutions to difficult problems? In summary, by relaxing some
of the constraints associated with a biological exemplar, controllers (and poten-
tially other computational structures) can be evolved that capture the strengths
of biological “computation” in a simpler, or perhaps more effective manner.
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Abstract. Flotation circuits play an important role in extracting valu-
able minerals from the ore. To control this process, the level is used to
manipulate either the concentrate or the tailings grade. One of the key
elements in controlling the level of a flotation cell is the control valve.
The timely detection of any problem in these valves could mean big op-
erational savings. This paper compares two Artificial Neural Network
architectures for detecting clogging in control valves. The first one is
based on the traditional autoassociative feedforward architecture with a
bottleneck layer and the other one is based on discrete principal curves.
We show that clogging can can be promptly detected by both meth-
ods; however, the second alternative can carry out the detection more
efficiently than the first one.

1 Introduction

The flotation of minerals plays an important role in the processing of copper.
By using a series of tanks the valuables minerals are extracted from the ore. The
tanks are connected in cascade with control valves between them. The concen-
trate or the tailings grade can be controlled by manipulating the tanks levels;
therefore valves are very important for having well performing level control loops.
Several authors have proposed fault detection algorithms for control valves based
on linear models, parameter estimation and state observers. These approaches
require a model of the system and normally they use assumptions concerning
the time variations of either signal or parameters[2][3]. In addition, problems
concerning the stability of the algorithms must also be addressed during the
observer design process. A data driven approach uses the data available to build
models of normal operation modes, and then these models can be applied to de-
tect on-line any problem in the incoming data. To this end, ANN have been used
in the past to carried out this task. In [4], a three layer bottleneck architecture
is proposed to detect changes in the process. This work; however, proposes an-
other alternative based on the use of principal curves, which can be obtained by
a Kohonen algorithm. This work is organized as follows: section 2 describes the
flotation process model. Section 3 describes two ANN models for addressing the
problem of detecting clogging. Section 4 illustrates, by simulation examples, the
advantages and limitations of the proposed approaches. Finally some conclusion
are given in section 5.
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2 Hydraulic Flotation Process Model

A flotation circuit consists of cascade coupled tanks with control valves after
each tank for regulating the levels. Normally all levels are measured. The input
signals to the process are the control valve signals and the external inflow. The
continuous time model of the level h(t) in the tanks can be described by the
following equation:

V̇1(t) = qin − (C1(u1) + ΔC1)
√

H1, (1)

V̇i(t) = (Ci−1(ui−1) + ΔCi−1)
√

Hi−1 − (Ci(ui) + ΔCi)
√

Hi, (2)

where V represents the volume of liquid in the tank, which is a nonlinear function
of the height h. The function Ci(ui) represents the valve opening area of the valve
i. The function Hi(t) are defined as:

Hi(t) = 2g(hi − hi−1 + Δhi), (3)

where g is the acceleration of gravity and Δhi is the physical height difference
between the zero-levels of tanks i and i + 1. For the last tank

Hn(t) = 2g(hn + Δhn). (4)

The valve manufacturer normally provides some nonlinear model for the valve
opening as follows:

Ci(u)(t) = a1d
2 a2u + a3u

2

1 + ea4u
, (5)

where ai are constants and d is the diameter of the valve. In addition each level is
controlled by single loop PI controllers as depicted in Fig. 1. Clogging manifests

Fig. 1. A conventional flotation circuit

itself as reduction in the effective valve opening. This effect can be represented
as an offset added to the position signal. Thus the real opening will be:

u = uc + b, (6)

where b is the clogging effect and uc is the control signal.
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3 The ANN Models for Clogging Detection

In industrial processes normally a set of variables are correlated through the
natural interactions. These interactions define, for a given operational condition,
a principal curve; i.e. a curve that passes through the middle of the data. If there
is enough data corresponding to normal operations, it will be possible to build
these principal curves. If the variable of interest are stacked in a vector x, then
the principal curve will be defined by a function F (·) such that:

F (x) = 0. (7)

Then any data lying far from these curves will represent an abnormal operation.
In this section we describe two ANN architectures based on the principal curves
concept for detecting control valves clogging in a flotation circuit.

3.1 Auto Associative ANN

The traditional approach for dealing with fault detection, using Multilayer Per-
ceptron Network, considers a bottleneck architecture with three hidden layers
trained to reproduce the inputs. The fact that the number of units in the hidden
layer is smaller than the input, forces the network to rely in the functional de-
pendencies of the variables to reconstruct them. The training is carried out by
using standard backpropagation algorithm. Once the network has been trained,
the detection can be carried out by comparing each network input and output,
and finding the maximum difference:

k = arg max ‖xi(t)− yi(t)‖ (8)

where y represents the ANN output. If ‖xk−yk‖ > δ then the output k is faulty
[4].

3.2 Discrete Principal Curves and Self-organizing Map Algorithm

In order to train the network to extract the discrete principal curves the following
procedure can be followed [1]. The location of units in the feature space are fixed
and take values z ∈ Ψ . Given a training data xi, i = 1, ..., n and initial centers
cj(0), j = 1, ..., nu repeat the following steps:

1. Projection. For each data point find the closest projected point on the curve:

zi = argmin ‖cj − xi‖2, i = 1, ..., n (9)

2. Determine the conditional expectation using a kernel regression estimate

F (z, α) =
∑n

i=1 xiKα(z, zi)∑n
i=1 Kα(z, zi)

(10)

where Kα define the neighborhood function with width parameter α. The
principal curve F (z, α) is then discretized by computing the centers

cj = F (z, α), j = 1, ..., nu (11)
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3. Decrease α repeat until the empirical risk Remp = 1
n

∑N
i=1 ‖xi − F (zi, α)‖2

reaches some small threshold.

The detection can then be carried out by finding

k = arg min ‖x(t)− cj(t)‖, j = 1, ..., nu (12)

then, if ‖x− ck‖ > δ then the vector x represents a fault.

4 Simulation Results

The equation described in section 2 were simulated for generating data for both
normal and faulty conditions. A system with three tank was considered. The
clogging was simulated by a adding a constant value to the valves positions,
additional noise was also included in all the level signals. For the first valve
the variables of vector x are selected as: h1(t), h2(t), q(t), h1(t − T ) and u1(t).
This selection is consistent with the equations describing the hydraulic model;i.e.
equation (1). A set of MLPs with one, two and three layers were trained with
regularization, and the best results were obtained with the MLP with just three
unit in the bottleneck layer are shown in Fig. 2; where the inputs are depicted
in blue and the outputs in red, the variable b1 represents the clogging. The
threshold for identifying a fault was selected considering a value bigger than the
magnitude of residual error obtained with the training set. As seen in this fig-
ure, the difference between the evolution of the fourth input and output of the
neural networks, corresponding to the valve opening, does not show up the clog-
ging effect. In order to reach a conclusion concerning the clogging problem, the
difference between the input and output vector must be calculated; i.e.‖x− y‖,
Fig. 4 shows this results for three valves, as can be seen this measure is not
so effective for detecting problems in the third valve. For the second valve, the
required variables are just h2(t), h3(t), u2(t) and h2(t− T ). In this case, a MLP
with just three unit in the bottleneck layer is also used. Fig. 3 shows the evo-
lution of the input and output variables, as in valve 1 the fourth pair of input
and output, corresponding to the valve opening, does not show any evidence
of change. Finally, Fig. 4 summarizes the total distance between the input and

Fig. 2. Clogging detection for valve 1 using autoassociative networks
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Fig. 3. Clogging detection for valve 2 using autoassociative networks

Fig. 4. Summary of results using autoassociative networks

Fig. 5. Clogging detection for valve 1 using a discrete principal curves based approach

Fig. 6. Clogging detection for valve 2 using a discrete principal curves based approach

output vector, clearly for the first two valves this measure can be used to detect
clogging. For calculating the discrete principal curves we have found that a
network of 100 units gives a good approximation of the validation data. Fig. 5
shows the evolution of the input variables (red) and the estimated values given
by the networks (black); the variable b1 represents the clogging. As seen in the
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Fig. 7. Summary of results for a discrete principal curves based approach

fourth graph, corresponding to the valve opening, is possible to detect the prob-
lem in the valve since the network clearly predict a different opening. However;
for the second valve, Fig. 6, the difference between the input and output is not
significant. Looking at the total difference, as seen in Fig. 7 is possible to detect
the problem in all three valves.

5 Final Remarks

This work has illustrated the use of ANN in the detection of clogging in coupled
flotation cells. The use of conventional three bottleneck layer for detecting faults
has the disadvantage of requiring a big set of training data and a complex train-
ing procedure. In addition, in some cases does not provide consistent results.
The discrete principal curves, however, provides a much simpler and efficient
alternative. The simulation show that, in this application, it provides more con-
sistent results than the autoassociative network. The next step is to carry out
the testing of this strategy with measurement data obtained from some Chilean
concentrators.
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Abstract. In this paper, a Time-Delayed feed-forward Neural Network (NN) is 
used to make an input-output time-domain characterization of a nonlinear elec-
tronic device. The procedure provides also an analytical expression for its 
behavior, the Volterra Series model, to predict the device response to multiple 
input power levels. This model, however, can be built to different accuracy de-
grees, depending on the activation function chosen for the NN used. We com-
pare two Volterra series models extracted from different networks, having 
hyperbolic tangent and polynomial activation functions. This analysis is applied 
to the modeling of a Power Amplifier (PA). 

1   Introduction 

The analysis of electronic systems often requires an analytical model for each nonlinear 
element (i.e. an equation representing the in/out relationship), that allows to draw conclu-
sions about the system performance. This approach aims to extract a relationship in order 
to build a model able to generalize the behavior of an electronic component. This proce-
dure is based on the known physical behavior of the modeled device that dictates the 
equivalent circuit model topology. However, there are difficulties related to the circuit-
oriented modeling of microwave electron devices, mainly due to the simultaneous pres-
ence of nonlinear phenomena. The process of converting nonlinear device measurements 
into an equivalent-circuit, and therefore into equations, relies on curve-fitting techniques. 
However, many of the most common techniques are useful where data trace is well be-
haved over a defined independent variable range and where behavior of an object is 
known to follow a specific mathematical model, but problems arise when the object’s 
internal behavior cannot be estimated in advance [1]. In that case, common curve-fitting 
techniques become useless and a clear need appears for a new procedure, such as the NN 
approach. In fact, for electronic device modeling, it is receiving increasing attention 
[2][3] since the training procedure needs only simulation or measurements data. How-
ever, an analytical expression is still needed for the analysis and design of electronic 
devices inside a circuits simulator. In particular, for nonlinear behavior modeling, the 
analytical Volterra series model has been traditionally used[4]. 

In a previous work [5] it has been shown that it is possible to build a Volterra Series 
model for a nonlinear electronic device using a three-layer feed-forward Time-Delayed 
NN with hyperbolic tangent (tanh) activation functions in the hidden layer, trained with 
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input-output time-domain device measurements. In this paper a simpler and faster way of 
obtaining the Volterra series model from a NN is presented, having a simple one-term 
polynomial activation function in each hidden neuron. The conclusions of the work are 
drawn from the comparison between these approaches, applied to a practical case study: 
the modeling of the nonlinear behavior in a PA, according to their estimation accuracy 
with respect to the original data used for training. The organization of the paper is the 
following: in the next Section, the neural network model used for the building of the 
Volterra Series model is introduced. Section 3 presents the Volterra modeling of a 
nonlinear electronic device (a PA) and how it can be obtained from a NN model is ex-
plained in Section 4. Simulation results and conclusions appear on Section 5 and 6. 

2   Neural Network Model 

The NN used to model the amplifier is a feed-forward Time-Delayed network with three 
layers, the input time-domain voltage samples and their delayed replies, a nonlinear hid-
den layer and a linear output. The architecture is shown in Fig. 1, and Eq. 1 shows its 
corresponding in/out analytical expression, being f() a nonlinear activation function for 
the hidden neurons.  
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Fig. 1. Time-Delayed NN model for a PA. N: memory deep. H: number of hidden neurons. 

This network is trained with PA time-domain measurements. The inputs to the device 
are sinusoidal voltage waveforms, that are amplified at the output according to the ampli-
fier gain. The input and output waveforms are expressed in terms of their discrete sam-
ples in the time domain. An analytical expression for the device under study can be built, 
as a Volterra series expansion, calculated in function of this NN parameters (connection 
weights and neuron bias). The series model can be more or less accurate to represent the 
original device behavior, not only depending on the number of hidden neurons, but also 
according to the hidden layer nonlinear activation function f() chosen and the number of 
terms included in the series. This is explained in the next Section. 
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3   Volterra Modeling of a PA 

The Volterra approach characterizes a system as a mapping between two function spaces, 
which represent the input and output spaces of that system [6]. The Volterra series is an 
extension of the Taylor series representation and it can be represented exactly by a con-
verging infinite series. The series can be described in the time-domain or in the fre-
quency-domain[7]. A Volterra series model in discrete form that represents the nonlinear 
behavior of a Power Amplifier is presented in Eq. 2. Here, Vout(t) is output power of the 
system at time t; Vin(t) is input power at time t and hn(k1, …, kn) is the nth order Volterra 
kernel. Typically in the series representation, only up to the 3rd order terms are included. 
The summation interval [0-N] is limited to the practically finite duration of the “mem-
ory” effect in the device. 
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The Volterra series analysis is well suited to the simulation of nonlinear microwave 
devices and circuits, in particular in the weakly and mildly nonlinear regime where a few 
number of kernels (generally up to the 3rd order kernels) are able to capture the device 
behavior (e.g. for PA distortion analysis) [8]. The Volterra kernels allow the inference of 
device characteristics of great concern for the microwave designer. However, the number 
of terms in the kernels of the series increases exponentially with the order of the kernel. 
Moreover, at microwave frequencies, suitable instrumentation for the measurement of the 
kernels is still lacking [9]. In spite of this drawback, the Volterra series is used for mi-
crowave circuit design, by means of complex and time-consuming analytical or numeri-
cal calculation [10] A procedure has been found in [5] that allows generating the Volterra 
series ad its kernels, for the modeling of a nonlinear electronic device, using the weights 
and bias values of a Time-Delayed feed-forward NN, after it has been trained with time-
domain device measurements. It is briefly explained in the next Section, as it is also 
presented a new approach for the building of the Volterra series, based on a simpler net-
work model. 

4   Volterra Kernels Extraction 

The procedure to obtain the Volterra kernels is based on a NN like the one presented 
in Fig. 1, with f(x)=tanh(x) in the hidden layer. This network is trained with time-
domain device measurements, up to a predetermined number of epochs or a desired 
accuracy. Once the network has been trained, and its weights and bias values have 
been fixed, the network in/out expression (Eq. 1) is developed as a Taylor series 
around the bias values of the hidden nodes. To do that, the hidden neurons functions 
derivatives have to be calculated with respect to their bias values. After accommodat-
ing the resulting expression in common terms, the Volterra kernels can be easily iden-
tified. The general formula that builds the Volterra model using the NN parameters 
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(weights and bias), is shown in Eq. 3, being d derivative order. The kernels can be 
identified as the terms between brackets. 
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The order of the kernel is given by the activation function derivative order. The 
particular case for the hyperbolic tangent activation function is shown in Eq. 4, where 
only the most common order kernels (1st and 3rd ) are shown. The formulas for the 
calculation of any order kernels can be found on [5]. Another way of calculating the 
kernels has been suggested in [11], where it is proposed a new kind of neural network, 
with a particular topology, having distinct polynomials series with trainable coeffi-
cients (i.e. ax+bx2+cx3+…) as activation functions in the hidden layer. This model 
requires also a special training algorithm for updating the polynomials coefficients 
(a,b,c). Later, these coefficients, combined, provide the kernels values. 
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However, a simpler neural network model like the one presented in Fig. 1, with the 
same order one-term polynomial activation function with coefficient 1 (instead of a 
polynomial series) in each hidden neuron, using a standard training algorithm for the 
updating of the network weights and bias, can be used to obtain the same results. The 
kernels are obtained using the polynomial derivatives, faster and easier to calculate. 
Once the kernels are found, they are combined with the inputs and the Volterra series 
model is built. An example is shown in Eq. 5. 
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Concerning this new method, two important observations have to be made. The 
first one is that, having in mind the objective of  simplifying the Volterra kernel cal-
culus and therefore introducing the new cubic method, the universal approximation 
property of the MLP model is not valid anymore [12] and therefore the model be-
comes a polynomial one. Second, the order and the type of polynomial function cho-
sen will certainly influence the accuracy of kernels estimation and the type of system 
that could be approximated through the Volterra Series model. In other words, the 
order of the polynomial function will influence on the order of the Volterra kernels 
that could be calculated and added to the series,  i.e. with quadratic functions the 3rd 
order kernels could not be obtained. Therefore, a trade-off has to be made between 
simplicity and accuracy, at the moment of choosing the type of activation function for 
the hidden neurons of the network model, from where the Volterra model will be 
built. The hyperbolic tangent activation function still remains as the preferred choice 
when the order of the system that has to be modeled is unknown in advance. How-
ever, if there is some information about the system under study and its order (i.e., PAs 
present at most a 3rd order degree nonlinearity) and the main objective is to accelerate 
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the calculus, the use of the corresponding polynomial would yield a better result. A 
case study that confirms this assumption is presented in the next Section, for the mod-
eling of a PA nonlinear response to several simultaneous input power levels. 

5   Model Training and Results 

The data for the training of the neural models were obtained in the laboratory from a 
Cernex 2266 PA, with 1-2 GHz bandwidth and 29 dB gain. The data used to train the 
NN are eight different power levels used altogether for training the NN model of Fig. 
1, having N=4 (five inputs in total). Several networks configuration were tried, finally 
choosing a topology with ten hidden neurons (H=10), which provided a mean square 
error (MSE) for the network of approximately 1e-06 after 50 epochs. Two different 
nonlinear activation functions were tried for the hidden layer: hyperbolic tangent (Eq. 
4) and cubic (Eq. 5). After the training phase, the network parameters (weights and 
bias values) have been used to build a Volterra Series model for the amplifier, includ-
ing up to the 3rd order kernels in the approximations. From each different NN model, 
a Volterra series approximation was built. The results are presented in the next fig-
ures. We have also calculated the mean squared approximation error (MSAE) be-
tween the original device behavior Vout and each obtained Volterra series approxima-
tions, over the number of samples, using the formula of Eq. 6, being P the total num-
ber of samples (pairs input/output) used for training. 
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The approximation obtained with a Volterra series approximation built from a NN 
model having hyperbolic tangent (tanh) activation function in each hidden neuron is 
shown in Fig. 2 (left). The MSAE for this Volterra approximation with regard to the 
original behavior is 0.0011. Concerning a cubic model (right), its MSAE is equal to 
0.0121. Analyzing the errors, the differences among the approximations is of roughly 
one order of magnitude, having the network with tanh the lowest error. However, for 
this problem, the cubic NN model is faster than the other one, reaching the 1e-05 
MSE only after 6 epochs (Fig. 3). Taking this into account and looking for a compro-
mise, we can claim that for the device under study, the new cubic NN and its corre-
sponding Volterra model are preferable. 

 
Fig. 2. Results after training the NN with the original data (doted line) and building afterwards 
the Volterra series model (solid line) from a tanh_NN (left) and a cubic_NN (right) 
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Finally, a natural question that could arise is why to build and use an approxima-
tion of the PA behavior (the Volterra model) that has an error twice bigger than the 
neural network model itself? The answer is that for simulation purposes, to be able to 
 

 

Fig. 3. Speed in NN training: tanh model (left) vs. cubic model (right) 

put the device model into a circuits simulator and to interconnect it with other devices 
models to make systems simulations, an analytical formula is most of the time re-
quired. The NN is a valuable tool that saves time and complexity when building the 
analytical Volterra model, which is a particular suitable model traditionally used for 
nonlinear device behavior representation, and already available as a component 
(whose kernels, however, have to be assigned a value) inside most of today circuits 
simulators. 

6   Conclusions 

In this paper we have presented a new method for the building of the Volterra series 
model of a nonlinear PA, using a simple polynomial-based NN trained with data 
from different power levels simultaneously. The Volterra model, however, can be 
built to different accuracy degrees, depending on the activation function chosen. 
That is why two NNs have been tested, having hyperbolic tangent and cubic func-
tions, for the building and comparison between their corresponding Volterra mod-
els, according to their estimation accuracy with respect to the original data. Even 
though the new method, that proposes the use of simpler polynomial activation 
functions in the hidden layer to further simplify the procedure, the old one assures 
good approximation accuracy in the case of a nonlinear system that has to be mod-
eled, where system order is unknown in advance. 
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Abstract. In this paper, a new method is introduced for the identification of a 
Volterra model for the representation of a nonlinear electronic device in the fre-
quency domain. The Volterra model is a numerical series with some particular 
terms named kernels. Our proposal is the use of feedforward neural networks 
(FNN) for the modeling of the nonlinearities in the device behavior, and a spe-
cial procedure which uses the neural networks parameters for the kernels identi-
fication. The proposed procedure has been tested with simulation data from a 
class “A” Power Amplifier (PA) which validate our approach. 

1   Introduction 

The classical modeling of electronic devices consists in building empirical models, 
which are electrical circuits schematics containing capacitors, resistors, transmission 
lines, among other electronic components representations. The elements with nonlin-
ear behavior are typically defined though analytical functions, and when microwave 
applications are considered, they are more conveniently defined in the frequency 
domain. The main problem with this approach is that the model can have hundred of 
parameters to be tuned to make it work properly. On the other hand, behavioral mod-
els propose to characterize a nonlinear system in terms of in/out scattered waves, 
using relatively simple mathematical expressions. The modeled device is considered 
as a “black-box”, no knowledge of the internal structure is required. The modeling 
information about its behavior is completely contained in the external response 
(measurement data) of the device, which help estimating the model parameters [1].  

A truncated Volterra series has been successfully used to derive some behavioral 
models for PA in recent years. It has been traditionally the most general and rigorous 
modeling approach for systems characterized by nonlinear dynamic phenomena [2]. 
Black-box models relying on the Volterra series and on directly measured data enable 
to forget the circuit topology [3]. Concerning a single port (or single in/out) device, 
the terms “nonlinear” and “dynamic” imply that the output, i.e. the current in the case 
of a PA, at any time instant, is nonlinearly dependent not only on the applied input at 
the same instant, but also on its past values, that represent the “memory” effect asso-
ciated with dynamic phenomena in the device (i.e. charge-storage effects) [4]. This 
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makes the modeling of such a system a difficult task. Furthermore, the high computa-
tional complexity of the standard methods for Volterra modeling [5][6] are limited in 
many practical situations. In this paper we present a new method for the identification 
of the terms of the Volterra series model using a FNN. With the proposed procedure 
they can be obtained using standard device measurements in the frequency domain in 
a simple and straightforward way, saving time to the design engineer at the moment 
of modeling and simulating a nonlinear device. We have tested our approach with 
simulation data from a class “A” PA with 3rd order nonlinearities and memory effects, 
which validate our proposal. The organization of the paper is the following: in the 
next Section, the nonlinear behavior of electronic devices, in particular in the fre-
quency domain, is introduced. Section 3 presents the Volterra modeling of a nonlinear 
electronic device. The new procedure to obtain the Volterra kernels from a neural 
network appears in Section 4. Section 5 shows some results obtained from simula-
tions. Finally, the conclusions can be found on Section 6. 

2   Electronic Device Nonlinear Behavior 

Typically, a black-box representation of a device consists in an abstract block. In 
general, the incident and reflected power waves are related to the inputs (voltages) 
and outputs (currents) of the device (i.e. PA) as shows Fig. 1. Here a typical 2-port 
device (two inputs/outputs) is presented together with its scattering matrix parameters 
[S], which are a widely known set of parameters that characterize the device and that 
relate its inputs (a1 and a2) and outputs (b1 and b2) in a linear way. The Sij parameter 
describes the influence of the incident wave at port j on the resulting wave at port i.  

 

Fig. 1. Representation of a nonlinear two-port device, with the scattering matrix parameters [S]. 
I represents current, V represents driving voltage and a and b are the incident and reflected 
power waves, respectively. 

Let us first consider a 2-port device with linear behavior. If both ports are excited 
by incident waves (a1, a2) at frequency f0 (also named the fundamental) the reflected 
waves (b1, b2) will contain a component at that frequency, specified by the S-
parameters according to Eqs. (1) and (2).  

)f(a)f(S)f(a)f(S)f(b 020120101101 +=          (1) 

)f(a)f(S)f(a)f(S)f(b 020220102102 +=          (2) 
Linear systems do not generate new frequencies (the frequency content at the out-

put is identical to that of the input, although it can be modified in amplitude and 
phase). This is represented in Fig. 2. On the left side, the input/output of a linear de-
vice is shown, in both time and frequency domain, where can be clearly seen that the 
input and output frequency is the same and new frequency components are not cre-
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ated. However, on the right side, a nonlinear behavior is shown, where some fre-
quency components apart from f0 (i.e. f1, f2, f3) may interact nonlinearly to produce 
frequency components in the output that may not be present in the input signal. This 
interaction may produce some nonlinear phenomena, such as intermodulation (f1 ± f2 
± f3) and 3rd harmonic terms (3f1, 3f2, 3f3), which are of particular interest to the elec-
tronic engineer, because they allow to obtain some parameters that describe the device 
performance [7].  

 

Fig. 2. Left side: representation of a device with linear behavior. Input and output frequencies 
are the same, no additional frequencies are created. The output frequency may only change in 
amplitude and phase. Right side: representation of a nonlinear device. Output frequency may 
suffer a frequency shift and additional frequencies can be created. 

3   Volterra Series Model of a Nonlinear Device 

The Volterra approach characterizes a system as a mapping between two function 
spaces, the input and output spaces of that system. The Volterra model is an extension 
of the Taylor series representation to cover dynamic systems [8]. The series can be 
described in the time-domain or in the frequency-domain. In the discrete-frequency 
domain, the series takes the form of Eq. (3), where X(f) is the Fourier transform of the 
input signal x(t) at the frequency f. The term Hn is the “kernel” which describes the 
contribution of the nth degree of nonlinearity to the system. This way, H1 represents 
the linear transfer function and H2 and H3 are the quadratic and cubic transfer func-
tions of the system [9]. 
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An example of this model for a nonlinear device is shown below. Eq. (4) shows the 
linear part of the generated signal at port 1 (b1) and Eq. (5) models the cubic compo-
nent that appears in this port as a consequence of the device nonlinear behavior (com-
bination of the input signals). Equivalent equations are valid for port 2 (b2). 

)f(a)f(H)f(a)f(H)f(b 0201010101 +=   (4) 
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Application of Volterra system theory has an important role in nonlinear system 
analysis and identification, due in part to the fact that Volterra series a firm mathe-
matical foundation and nonlinear behavior can be described with reasonably accuracy 
by a truncated version of the series, which reduces the complexity of the problem and 
requires a limited amount of knowledge of higher order statistics or higher order spec-
tra [10]. In nonlinear microwave analysis the tool for excellence has been the 
Volterra-series analysis. The kernels allow the calculation of device parameters of 
great concern for the microwave designer, i.e. in the case of a PA, among others, 
nonlinear gain, 3rd order harmonics and intermodulation. However, kernels calcula-
tion, analytical expression or measurement can be a very complex and time-
consuming task [11]. There have been some approaches to help the calculation of the 
kernels, in particular in the frequency domain. For example in [7][12] special fitting 
functions are proposed, using then optimization procedures to find the kernels values 
in a global manner. Our proposal is a modular approach, simpler and more straight-
forward, and it is an adaptation of a previous work performed for the kernels identifi-
cation in the time domain [13]. We use FNNs to do the fitting of standard frequency 
domain measurements, one for each nonlinear part of the system, and after that, a 
simple procedure permits obtaining the kernels values directly from the network pa-
rameters, just combining its weights and bias values. This procedure is explained in 
the next Section. 

4   Identification Procedure Using Neural Networks 

The proposed approach involves the use of FNNs like the one presented in Fig. 3, hav-
ing H hidden neurons with a generic activation function (af) and bias values. The choice 
of the function will depend on the type of nonlinearity that will be modeled by the net-
work. The inputs to the model are the inputs to the device, i.e. a1 and a2, measured at the 
fundamental frequency f0, and the output is the output value b1 measured also at f0. The 
output neuron is lineal. The training set is built with these measurements performed in 
all the frequency range or work interval of the device, where the S-parameters have the 
same value as long as the device bias point does not change [11]. 

 

Fig. 3. Feedforward Neural Network model used in the Volterra kernels identification proce-
dure. The inputs/output of the network are the inputs/output measured at the fundamental fre-
quency f0, in port 1. 
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First of all we focus our attention on port 1 of the 2-port device of Fig. 1 (equiva-
lent reasoning applies for port 2). Several FNNs like Fig. 3 will be used to model the 
1st and 3rd order nonlinearities of  output b1. In general, the network output is Eq. (6).  
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If the network output is developed as a Taylor series around the bias values of the 
hidden neurons, and the terms are re-ordered according to derivative order and com-
mon terms, Eq. (7) yields, where due to space restrictions only the 1st order terms 
have been included. The  Volterra kernels for b1 are easily identified as the terms 
between brackets. Actually this is the general procedure, but for the linear behavior in 
particular, the activation functions of the hidden neurons are linear and the bias values 
take zero values. Taking this into account, Eq. (8) and Eq. (9) are obtained for the 1st 
order kernels at port 1. Comparing Eq. (7) with  the in/out relationship of this port 
(Eq. (1)), becomes clear the fact that the 1st order kernels H1 happen to be the lineal 
scattering parameters. The simulations presented in the next Section validate our 
proposed approach, and therefore we use it for the 3rd order nonlinearity. 
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We apply the same procedure to the identification of higher order kernels, in par-
ticular the 3rd order Volterra kernels. But now the FNN used includes bias values in 
the neurons and cubic (af = x3)  in the hidden neurons, and it is trained with the same 
inputs, but with the output response generated at the 3rd harmonic (b1(3f0)). The pro-
cedure is applied and the formulas obtained this time for the 3rd order Volterra kernels 
are Eq. (10) to Eq. (13). 
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5   Case of Study and Simulation Results 

The simulation data used for the network training were obtained from a class A PA at 
1 Ghz. The absolute errors between its scattering parameters the corresponding 1st 
order Volterra kernels obtained from the FNN at the port 1 are: [Re{S11}=0.99999, 
H1(a1)] = 4e-07 and [Re{S12}=0.00001, H1(a2)] = 3e-07. Concerning port 2, the errors 
are: [Re{S21}=0.00001, H1(a1)] = 2e-07 and [Re{S22}=-0.73351, H1(a2)] = 8e-08. As 
can be seen, the errors are very low and the procedure is validated.  In the case of the 
3rd order Volterra kernels estimation, the values are not previously known, so the only 
way of testing our approach is using the kernels to build a Volterra series model that 
includes the kernels identified from the network, and compare it with the original nonlin-
ear behavior. The results are shown in Fig. 4, showing an excellent approximation result 
and validating our proposal once more. 

  

Fig. 4. Simulation results with the 3rd order kernels. Left side: frequency domain plot compar-
ing the original data and the Volterra model. Right side: a1 vs. b1 plot comparing original data 
(dotted line) and the Volterra model (full line). The mean square error between them is of 
0.0099. 

6   Conclusions 

In this work we have presented a new modular method for the identification of the 
Volterra kernels in the frequency domain. We propose the use of FNNs and a special 
procedure for the kernels identification, using the neural network parameters. The 
proposed procedure has been tested with simulation data from a class “A” Power 
Amplifier (PA), which have validated our approach for the 1st and 3rd order nonlin-
earities identification. 
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Abstract. CMAC Neural Network is a popular choice for control ap-
plications. One of the main problems with CMAC is that the memory
needed for the network grows exponentially with each addition of input
variable. In this paper, we present a new CMAC architecture with more
effective allocation of the available memory space. The proposed architec-
ture employs hierarchical clustering to perform adaptive quantization of
the input space by capturing the degree of variation in the output target
function to be learned. We showed through a car maneuvering control
application that using this new architecture, the memory requirement
can be reduced significantly compared with conventional CMAC while
maintaining the desired performance quality.

1 Introduction

The Cerebellar Model Articulation Controller (CMAC) neural network was pro-
posed by Albus [1] as an associative memory neural network that models the
mechanisms of the human cerebellum. Since then, CMAC has become a popular
choice for real-time control and optimization [2] such as the modeling and control
of robotic manipulators [3]. It has also been applied to various signal processing
and pattern-recognition applications [4,5].

CMAC learning is based on the principle that similar inputs should produce
similar outputs, while inputs that are located distantly in the input space should
produce nearly independent outputs. CMAC is an associative memory which
stores information locally and behaves as a dynamic look-up table, in which its
contents are indexed by the inputs to the network. The advantages of CMAC
are simple computation, fast training, local generalization and ease of hardware
implementation.

Unfortunately, the look-up table behavior of CMAC also implies that the
size of the network increases exponentially as the number of input variables.
This causes problems, especially when there are uneven degree of variations in
the target function to be learned, where uniform quantization of input space will
result in suboptimal space utilization.

It is therefore necessary to find a mechanism for efficient memory space allo-
cation by allocating more storage space in the range of input space which holds
more information. Some previously published works have tackled this problem by
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introducing non-uniform quantization of the input space to CMAC [6,7,8]. How-
ever, the examples used to illustrate the performance are single input variable
cases. Moreover, there is a compromise between the computational complexity
and the required memory space.

In this paper, we propose a CMAC architecture for reducing the memory re-
quirements. It makes use of adaptive quantization based on hierarchical cluster-
ing technique, which we refer to as Hierarchical-Clustering based Adaptive Quan-
tization Cerebellar Model Arithmetic Computer (HCAQ-CMAC). The proposed
architecture is tested on an automated car maneuver control application. The
experimental results show a significant improvement on the memory utilization.

2 CMAC Network

The CMAC behaves like a memory, where a particular input to output mapping
acts as the address decoder. Each possible input vector selects a unique set of
cells, the weighted sum of which is the output of the network for that particular
input combinations.

An example of the cell memory allocation is depicted in Figure 2 for a 2-
dimensional input. From this point of view, CMAC can be considered a memory
in which the memory cells are uniformly distributed along the input dimensions.
Each of the input dimension can be considered as being quantized into discrete
steps or quantization levels. The input value will first be quantized into one of
the levels, and the result will be the index which is used to access the memory
locations. The idea of HCAQ-CMAC is based on this observation.

(a) 2D CMAC Memory Cells (b) 2D HCAQ CMAC Memory Cells

Fig. 1. Comparison of CMAC and HCAQ-CMAC Memory Surface

3 The HCAQ-CMAC

Figure 2 shows an example of a two-dimensional HCAQ-CMAC network. In
HCAQ-CMAC, the memory cells are distributed in a non-uniform way according
to the degree of variations of the target function to be learned. This is in contrast
to Figure 2 where the cells are distributed uniformly.
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The idea is to perform a non-uniform quantization of the input variables to
obtain a more efficient coverage of the overall input space. The more changes
observed in the region of an input variable, the more memory space will be
allocated to that particular region along that axis. This results in a finer quan-
tization level inside the input range for which “high frequency of activities” are
observed. This implies that more memory cells are allocated to the range of
input which holds more information than the rest of the input space.

3.1 Adaptive Quantization

The idea of adaptive quantization is to capture the input distribution and output
variation. For this purpose, hierarchical clustering technique is employed. The
clustering method is applied separately on each individual input dimension. For
each input dimension, we start off by having each individual training data sample
as a cluster. In each iteration, the two nearest clusters with the smallest merging
cost function are merged to form a single cluster. The cost function is defined
as the distance between the mean output value of the two clusters, expressed
mathematically as

f(M,N) =
∑

i∈M Xi

nM
+

∑
j∈N Xj

nN
(1)

where M and N are two different clusters, and Xi is the ith output value con-
tained in a cluster.

The clusters-merging iteration is continued until the number of clusters in
that input dimension reaches the predefined memory size. This step is effectively
clustering the nearest data points having similar output together, and allocating
more storage cells into those densely populated areas which contain a high degree
of variation in the target output.

3.2 Memory Allocation

Following the adaptive quantization, is the memory allocation, in which each
of the individual cluster is allocated a memory axes along its particular dimen-
sion. The result of the memory allocation is an adaptively quantized CMAC
associative neural network, as in the example depicted in Fig. 1 for 2D input
case.

3.3 Network 1-Point Training and Neighborhood Retrieval

The learning equation employed is the Widrow-Hoff learning equation, modified
for 1-point update and neighborhood retrieval HCAQ-CMAC:

Zi
xj ,yj

=
1
SN

⎡⎣ ∑
k∈K,l∈L

Wi
k,l

⎤⎦ (2)

K = {Q[xj ]−NRx ≤ k ≤ Q[xj ] +NRx} (3)
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L = {Q[yj]−NRy ≤ k ≤ Q[yj ] +NRy} (4)

Wi+1
Q[xj ],Q[yj]

= Wi
Q[xj],Q[yj ]

+ α
[
Wi

Q[xj],Q[yj]
−Dxj ,yj

]
(5)

Here, i is the iteration number, Vj = (xj , yj) is the two dimensional input to a
2D HCAQ-CMAC, Q[·] is the quantization function, Zi

xj ,yj
is the output of the

network for input Vj , SN is the number of elements inside the neighborhood
of the current input, N is the neighborhood constant, Rx and Ry are both the
input space range for input dimension x and y respectively, and Wk,l is the
HCAQ-CMAC memory cell at index (k, l). Neighborhood retrieval is employed
to smoothen the output of HCAQ-CMAC so that fluctuations of the retrieved
output are reduced.

4 Experiments and Results

We demonstrate the performance of the proposed HCAQ-CMAC for a multi-
input experiment. In particular, the HCAQ-CMAC network is used as a car a
automatic steering controller. The car simulator was developed in [9] and [10]. It
consists of a vehicle model together with a 3D virtual driving environment. The
simulated car is equipped with 8 directional sensors in the 8 different directions of
the car, as shown in Figure 4. The sensor readings were taken at every simulation
time interval. The inputs to the HCAQ-CMAC network are the 4 front sensor
values: FLSTB (Front Left Sensor to Barrier), FRSTB (Front Right Sensor to
Barrier), SFLSTB (Side Front Left Sensor to Barrier), SFTSTB (Side Front
Right Sensor to Barrier). The output of the network controls the steering angle.
The car is driven along a path in a multi-lane circuit shown in Figure 2. Training
data are obtained by sampling human drivers’ steering control actions for the
specified track. A 4-dimensional HCAQ-CMAC is trained on the steering angle
response to data from the four front car sensors. Over 100 seconds of driving
data are collected for training. The auto-driving performances are compared with
those obtained using a standard CMAC network, employing the same learning

(a) Car sensors’ placement (b) Driving Track

Fig. 2. Simulation Environment
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Table 1. Comparison of Results from CMAC and HCAQ-CMAC Testing

CMAC HCAQ-CMAC

Memory size per dimension 8 10 5 6
Neighborhood size 0.2 0.2 0.1 0.1
Training

Learning constant 0.1 0.1 0.1 0.1
Final epoch training error 28.5546 30.104 22.6618 22.6607
Training time 9031 ms 14453 ms 3438 ms 4000 ms
Testing

Average deviation from centre line 0.3499 m 0.2068 m 0.2216 m 0.2058 m
Average deviation of car orientation 0.7272 rads 0.7594 rads 0.6891 rads 0.6969 rads

(a) HCAQ CMAC Driving Path (size = 6) (b) CMAC Driving Path (size = 10)

Fig. 3. Driving paths comparison

function and parameters. The results are tabulated in Table 1. Figure 3 gives
a visualization of the tack path obtained using 6 × 6 × 6 × 6 HCAQ-CMAC as
compared to the path obtained using 10×10×10×10 CMAC. It is observed that
using a HCAQ-CMAC whose size is only 60% of the original CMAC network (in
each dimension), driving qualities are very similar. This significant improvement
on memory allocation will not only reduce memory requirement of a CMAC
network, but will also reduce the network training time.

5 Conclusions

We have presented the HCAQ-CMAC as an enhancement to the original CMAC
architecture. HCAQ-CMAC improves memory utilization of CMAC by allocating
more memory cells in the region where rapid changes in the output of the target
function are observed. The performance has been evaluated on multiple-input
application – an automated car maneuver control. Simulation results show that
significant reduction in memory size can be achieved in HCAQ-CMAC, while
still maintaining comparable quality of performance compared to the standard
CMAC network. Further research in this direction will include a more detailed
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study of the computational complexity of the proposed approach and apply it
to other application areas.

References

1. Albus, J.S.: A new approach to manipulator control: The cerebellar model articu-
lation controller (CMAC). J. Dynamic Syst., Measurement, Contr., Trans. ASME
(1975) 220–227

2. Yamamoto, T., Kaneda, M.: Intelligent controller using CMACs with self-organized
structure and its application for a process system. IEICE Trans. Fundamentals
E82-A (1999) 856–860

3. Commuri, S., Jagannathan, S., Lewis, F.L.: CMAC neural network control of robot
manipulators. J. Robot Syst. 14 (1997) 465–482

4. Wahab, A., Tan, E.C., Abut, H.: HCMAC amplitude spectral subtraction for noise
cancellation. Intl. Conf. Neural Inform. Processing (2001)

5. Huang, K.L., Hsieh, S.C., Fu, H.C.: Cascade-CMAC neural network applications
on the color scanner to printer calibration. Intl. Conf. Neural Networks 1 (1997)
10–15

6. Moody, J.: Fast-learning in multi-resolution hierarchies. In: Adv. Neural Infor.
Processing Syst. Volume 14. Morgan Kauffman Publishers (1989) 29–38

7. Menozzi, A., Chow, M.: On the training of a multi-resolution CMAC neural net-
work. 23rd. Intl. Conf. Ind. Electron. Contr. Instrum. 3 (1997) 1130–1135

8. Yeh, M.F., Lu, H.C.: On-line adaptive quantization input space in cmac neural
network. IEEE Intl. Conf. Syst., Man, Cybern. 4 (2002)

9. Pasquier, M., Quek, C., Toh, M.: Fuzzylot: A self-organizing fuzzy neural rule-
based pilot system for automated vehicle. Neural Networks 14 (2001) 1099–1112

10. Ang, K.K., Quek, C.: An improved mcmac with momentum neighborhood and
average trapezoidal output. IEEE Transactions on Systems, Man and Cybernetics
Part B 30 (2000) 491–500



W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 479 – 484, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Knowledge Extraction from Unsupervised 
Multi-topographic Neural Network Models 

Shadi Al Shehabi and Jean-Charles Lamirel  

Loria, Campus Scientifique, BP 239 
54506 Vandoeuvre-lès-Nancy Cedex, France 

{Shadi.Al-Shehabi, Jean-Charles.Lamirel}@loria.fr 

Abstract. This paper presents a new approach whose aim is to extent the scope 
of numerical models by providing them with knowledge extraction capabilities. 
The basic model which is considered in this paper is a multi-topographic neural 
network model. One of the most powerful features of this model is its generali-
zation mechanism that allows rule extraction to be performed. The extraction of 
association rules is itself based on original quality measures which evaluate to 
what extent a numerical classification model behaves as a natural symbolic 
classifier such as a Galois lattice. A first experimental illustration of rule extrac-
tion on documentary data constituted by a set of patents issued form a patent 
database is presented. 

1   Introduction 

Data mining or knowledge discovery in database (KDD) refers to the non-trivial 
process of discovering interesting, implicit, and previously unknown knowledge from 
large databases [4]. Such a task implies to be able to perform analyses on high-
dimensional input data. The most popular models used in KDD are the symbolic mod-
els. Unfortunately, these models suffer of very serious limitations. Rule generation is 
a highly time-consuming process that generates a huge number of rules, including a 
large ratio of redundant rules. Hence, this prohibits any kind of rule computation and 
selection as soon as data are numerous and they are represented in very high-
dimensional description space. This latter situation is very often encountered with 
documentary data. To cope with these problems, preliminary KDD trials using nu-
merical models have been made. An algorithm for knowledge extraction from self-
organizing network is proposed in [3]. This approach is based on a supervised gener-
alized relevance learning vector quantization (GRLVQ) which is used for extracting 
decision trees. The different paths of the generated trees are then used for denoting 
rules. Nevertheless, the main defect of this method is to necessitate training data. On 
our own side, we have proposed a hybrid classification method for matching an expli-
cative structure issued from a symbolic classification to an unsupervised numerical 
self-organizing map (SOM) [7]. SOM map and Galois lattice are generated on the 
same data. The cosine projection is then used for associating lattice concepts to the 
SOM classes. Concepts properties act as explanation for the SOM classes.  Further-
more, lattice pruning combined with migration of the associated SOM classes towards 
the top of the pruned lattice is used to generate explanation of increasing scope on the 
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SOM map. Association rules can also be produced in such a way. Although it estab-
lishes interesting links between numerical and symbolic worlds this approach necessi-
tates the time-consuming computation of a whole Galois lattice. In a parallel way, in 
order to enhance both the quality and the granularity of the data analysis and to reduce 
the noise which is inevitably generated in an overall classification approach, we have 
introduced the MultiSOM model [6]. This model represents a significant extension of 
the SOM model, in which each viewpoint is represented by a single SOM map. The 
conservation of an overall view of the analysis is achieved through the use of a com-
munication mechanism between the maps, which is itself based on Bayesian inference 
[10]. The advantage of the multi-viewpoint analysis provided by MultiSOM as com-
pared to the global analysis provided by SOM [5] has been clearly demonstrated for 
precise mining tasks like patent analysis [8]. Another important mechanism provided 
by the MultiSOM model is its on-line generalization mechanism that can be used to 
tune the level of precision of the analysis. Furthermore, we have proposed in [1] to 
use the neural gas (NG) model as a basis for extending the MultiSOM model to a 
MultiGAS model. Hence, NG model [11] is known as more efficient and homogene-
ous than SOM model for classification tasks where explicit visualization of the data 
analysis results is not required. 

In this paper we propose a new approach for knowledge extraction that consists in 
using our MultiGAS model as a front-end for unsupervised extraction of association 
rules. In our approach we specifically exploit the generalization mechanism of the 
model. We also make use of our own recall and precision measures that derive from 
the Galois lattice theory and from Information Retrieval (IR) domain [9]. The first 
section of the paper presents the symbolic approach for rules extraction.  The second 
section presents the rule extraction principles based on the MultiGAS model. The 
experiment presented in the last section shows how our method can be used both for 
controlling the rules inflation that is inherent to symbolic methods and for extracting 
the most significant rules.  

2   The Symbolic Model and Association Rules Extraction 

The symbolic approach to Database Contents Analysis is mostly based on the Galois 
lattice model (see [2] and [12]). A Galois lattice, L(D,P), is a conceptual hierarchy 
built on a set of data D which are described by a set of properties P also called the 
intention (Intent) of the concept of the lattice. A class of the hierarchy, also called 
"formal concept", is defined as a pair C=(d,p) where d denotes the extension (Extent) 
of the concept, i.e. a subset of D, and p denotes the intention of the concept, i.e. a sub-
set of P. The lattice structure implies that it exists a partial order on a lattice such that:  

 

∀ C1, C2 ∈ L, C1 ≤ C2 ⇔ Extent(C1) ⊆ Extent(C2) ⇔ Intent(C1) ⊇ Intent(C2) 
 

Association rules are one of the basic types of knowledge extraction from large da-
tabases. Given a database, the problem of mining association rules consists in generat-
ing all association rules that have certain user-specified minimum support and confi-
dence. An association rule is an expression A → B where A and B are conjunctions of 
properties. It means that if an individual data possesses all the properties of A then he 
necessarily possesses all the properties of B. The support of the rule is supp(A∪B), 
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and the confidence: Conf = supp(A ∪ B)/supp(A). An approach proposed by [12] 
shows that a subset of association rules can be obtained following the direct links of 
heritage between the concepts in the Galois lattice. Even if no satisfactory solution 
regarding rule computation time have been given, some attempt to solve the rule se-
lection problem by combining rules evaluation measures is also proposed in [2]. 

3   MultiGAS Model for Rule Extraction 

A reliable unsupervised neural model, like a gas, represents a natural candidate to 
cope with the related problems of rule inflation and rule selection that are inherent 
to symbolic methods. Hence, its synthesis capabilities that can be used both for re-
ducing the number of rules and for extracting the most significant ones. We will 
rely on our own class quality criteria for extracting rules from the classes of the 
original gas and its generalizations, that is the Precision and Recall measures based 
on the properties of class members, which are defined in [9]. The Precision crite-
rion measures in which proportion the content of the classes generated by a classifi-
cation method is homogeneous. The greater the Precision, the nearer the intensions 
of the data belonging to the same classes will be one with respect to the other, and 
consequently, the more homogenous will be the classes. In a complementary way, 
the Recall criterion measures the exhaustiveness of the content of said classes, 
evaluating to what extent single properties are associated with single classes. We 
have demonstrated in [9] that if both values of Recall and Precision reach the unity 
value, the peculiar set of classes represents a Galois lattice. A class belongs to the 
peculiar set of classes of a given classification if it possesses peculiar properties. 
Finally, a property is considered as peculiar for a given class if it is maximized by 
the class members. As compared to classical inertia measures, averaged measures of 
Recall and Precision present the main advantages to be independent of the classifi-
cation method. They can thus be used both for comparing classification methods 
and for optimizing the results of a method relatively to a given dataset. In this paper 
we will focus on peculiar properties of the classes and on local measures of Preci-
sion and Recall associated to single classes. Hence, as soon as these informations 
can be fruitfully exploited for generating explanations on the contents of individual 
classes, they also represent a sound basis for extracting rules from these latter 
classes. The general form of the extraction algorithm follows: 

Let C being a class, PC being the set of properties associated to the members of C, 
and  PC

*  being the set of peculiar properties of C, with PC
*  ⊆ PC : 

 

∀ p1, p2 ∈PC
*  

1) If    (Rec(p1, p2) = Prec(p1, p2) = 1) Then there is an equivalence rule:  p1  ↔ p2 

2) ElseIf  (Rec(p1, p2) = Prec(p2) = 1) Then there is an association rule:  p1  → p2 

3) ElseIf  (Rec(p1, p2) = 1) Then 
            If  (Extent(p1) ⊂ Extent(p2))  Then:   p1  → p2 

  If  (Extent(p2) ⊂ Extent(p1)) Then:   p2  → p1 

  If  (Extent(p1) ≡ Extent(p2))  Then:  p1  ↔ p2 

∀ p1 ∈ PC
* , ∀ p2 ∈ PC - PC

* 

 4) If (Rec(p1) = 1) If (Extent(p1) ⊂ Extent(p2)) Then: p1 → p2  (*) 

where Prec and Rec represent the local Precision and Recall measures, respectively. 
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The optional step 4) (*) can be used for increasing the number of extracted rules. In 
this step the constraint of peculiarity is relaxed for the most general property. 

The gas generalization principle consists in summarizing the contents of an origi-
nal gas by progressively reducing its number of neurons. A triangle-based strategy for 
gas generalization has been successfully tested in [1]. Its main advantage is to pro-
duce homogeneous gas generalization levels while ensuring the conservation of the 
topographic properties of the gas codebook vectors on each level. A basic rule extrac-
tion strategy consists in applying the above described extraction algorithm both on an 
original gas and on its generalizations. The expected result of this strategy is to be 
able to control the rule number and the rule quality by the choice of a proper generali-
zation level. 

4   Experimental Results 

Our test database is a database of 1000 patents that has been used in some of our pre-
ceding experiments [8]. For the viewpoint-oriented approach the structure of the pat-
ents has been parsed in order to extract four different subfields corresponding to fours 
different viewpoints: Use, Advantages, Titles and Patentees. As it is full text, the con-
tent of the textual fields of the patents associated with the different viewpoints is 
parsed by a lexicographic analyzer in order to extract viewpoint specific indexes. 
Only, the Use viewpoint will be considered in our experiment. This viewpoint gener-
ates itself a description space of size 234. Our experiment is initiated with an optimal 
gas generated thanks to an optimization algorithm based on the quality criteria [9]: 

 

− Original gas of 100 neurons (optimal)  is firstly generated for the Use viewpoint. 
− Generalized gases of 79, 62, 50, 40, 31, 26, 16 and 11 neurons are generated for 

this latter viewpoint by applying the generalization mechanism to the 100 neurons 
original gas. 
 

Our experiment consists in extracting rules from the single Use viewpoint. Both 
the original gas and its generalizations are used for extracting the rules. The algorithm 
is used once without its optional step, and a second time including this step (for more 
details, see algorithm). The results are presented at figure 1. Some examples of ex-
tracted rules are given hereafter: 
 

Bearing of outdoor machines ↔ Printing machines (supp = 2, conf = 100%) 
Refrigerator oil → Gear oil (supp = 3, conf = 100%) 
 
A global summary of the results is given in table 1. The table includes a compari-

son of our extraction algorithm with a standard symbolic rule extraction method con-
cerning the amount of extracted rules. When our extraction algorithm is used with its 
optional step, it is able to extract the same number of rules as a classical symbolic 
model that basically uses a combinatory approach. Indeed, table 1 shows that all the 
rules of confidence 100% (i.e. 536) are also extracted by the combination of gas lev-
els. Moreover, a significant amount of rule can be extracted from any single level of 
the gas (see fig. 1b). Even if, in this case, no rule selection is performed, the main 
advantage of this version of the algorithm, as compared to a classical symbolic 
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method, is the computation time. Indeed, as soon as our algorithm is class-based, the 
computation time it significantly reduced. Moreover, the lower the generalization 
level, the more specialized will be the classes, and hence, the lower will be the com-
binatory effect during computation. Another interesting result is the behavior of our 
extraction algorithm when it is used without its optional step. The fig. 1a shows that, 
in this case, a rule selection process that depends of the generalization level is per-
formed: the higher will be the generalization level, the more rules will be extracted. 
We have already done some extension of our algorithm in order to search for partial 
rules. Complementary results showed us that, even if this extension is used, no partial 
rules will be extracted in the low levels of generalization when no optional step is 
used. This tends to prove that the standard version of our algorithm is able to naturally 
perform rule selection.  

Use

0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1, 0

Percent  of  specif ic rules
Percent  of  new rules
Percent  of  rules count

100 40G 11G

Use

0,0

0,2

0,4

0,6

0,8

1,0

100 40G 11G

 

Fig. 1. Rule extraction curves for Use viewpoint. a) extraction algorithm without optional step. 
b) the same with optional step. New rules: rules that are found in a given level but not in the 
preceding ones. Specific rules: rules which are found only in a given level. Rules count: is the 
total number of rules that are extracted from all levels. ((xG): represents a level of generaliza-
tion of x neurons). 

Table 1. Summary of results. The table presents a basic comparison between the standard sym-
bolic rule extraction method and the MultiGAS-based rule extraction method. The global rule 
count defined for the symbolic model includes the count of partial rules (confidence<100%) 
and the count of total rules (confidence=100%). The rules generated by the MultiGAS model 
on the 9 levels are only total rules. The peculiar rule count is  obtained with the standard ver-
sion of the extraction algorithm. The extended rule count is obtained with the extended version 
of the extraction algorithm including the optional step.  

 Use 

Total rule count 536
Average confidence 100%
Global rule count 2238

Symbolic model 

Average confidence 59% 
Peculiar rule count 251
Average confidence 100%
Extended rule count 536

MultiGAS model 
(9 levels) 

Average confidence 100% 

a) b) 
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5   Conclusion 

In this paper we have proposed a new approach for knowledge extraction based on a 
MultiGAS model. Our approach makes use of original measures of recall and preci-
sion for extracting rules from gases. It takes benefit of the generalization mechanism 
that is embedded in the MultiGAS model. Even if complementary experiments must 
be done, our first results are very promising. They tend to prove that a neural model, 
as soon as it is elaborated enough, represents a natural candidate to cope with the re-
lated problems of rule inflation, rule selection and computation time that are inherent 
to symbolic models. One of our perspectives is to adapt this model to the multi-
viewpoint context of the MultiGAS model that represents itself a powerful context for 
knowledge extraction. Furthermore, we plan to test our model on a reference dataset 
on genome. Indeed, these dataset has been extensively used for experiments of rule 
extraction and selection with symbolic methods [2]. 
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Abstract. The extraction of knowledge from trained neural networks provides
a way for explaining the functioning of a neural network. This is important for
artificial networks to gain a wider degree of acceptance. An increasing amount of
research has been carried out to develop mechanisms, procedures and techniques
for extracting knowledge from trained neural networks. This publication presents
some of the current research trends on extracting knowledge from trained neural
networks.

1 Introduction

Techniques of artificial neural networks (ANN) have been applied with success to
problem domains including classification and continuous function approximation ([1]).
However, it is important to understand the process by which ANN arrive at a given
result and to provide ways of extracting the knowledge embedded in the network ([2]).

Knowledge extraction (KE) from trained neural networks provides a way for ex-
plaining the functioning of a neural network. This is important for artificial networks to
gain a wider degree of acceptance. A considerable amount of research has been carried
out to develop mechanisms, procedures and techniques for extracting knowledge from
trained neural networks. This publication presents some of the current research trends
on extracting knowledge from trained neural networks.

This paper is divided into six sections. In the second section some of the current
trends for extracting knowledge from neural networks are given. Three separate sec-
tions, describing knowledge extraction methods based on these trends, are provided.
Finally some conclusions are given in section six.

2 Trends on ANN KE Methods

The knowledge embedded in a trained neural network is represented in terms of the
topology, the activation functions, and the weights. Several criteria can be used to clas-
sify the different methods for extracting knowledge from neural networks. A variety of
methods for dealing with knowledge extraction from neural networks have been pro-
posed, and there seems to be an increase in interest in this area. This survey presents a
compilation and an overview of these methods. In this paper, three classes of methods
for extracting and representing knowledge from trained neural networks are discussed,
the symbolic, the fuzzy logic, and the application dependent methods.
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– Symbolic Based. These methods produce rules in the form of logical If-then state-
ments. These rules are expressed as Horn clauses and can also be used for refining
the neural network.

– Fuzzy Logic. These methods combine fuzzy logic with neural networks in order to
facilitate the extraction of knowledge.

– Application Dependent. These methods are designed using approaches which are
tailored to specific problems or application areas.

In the following, trends on the current methods developed for knowledge extrac-
tion are presented. They are arranged into three sections following the trends described
above.

3 Symbolic Based KE Methods

The use of symbolic knowledge is a popular trend on knowledge extraction from neural
networks. This provides a way of using problem domain knowledge to build the topol-
ogy, train the network, and extract knowledge from a trained network. An example of
this trend is the work developed by [3]. The authors propose a method for extracting
knowledge from a pruned fuzzy ARTMAP based neural network (Adaptive Resonance
Theory). They used weight quantization to transform real valued weights into feature
values (i.e. into fuzzy characteristics for logical rules). This enables their system to
provide semantic rules and their interpretation to users. The quantization is done by
dividing the range [0 1] into Q intervals and assigning a quantization point to the lower
bound of each interval.

A method for extracting symbolic knowledge from neural networks based on linear
functions is presented on [4]. The authors show how the knowledge of a Recursive
Deterministic Perceptron (RDP) network [5] can always be expressed, transparently, as
a finite union of open polytopes which correspond to the decision regions of the RDP.
The authors also discuss the combination of the decision regions of RDP models by
using boolean operations.

An alternative to the If-Then-Else symbolic rules is proposed by [6]. The paper pro-
poses rules of the form M-of-N which the authors argue maybe more suitable for some
applications because it provides better understanding of the problem domain. These
rules have the form: ’If M of N conditions a1, a2, ..., am are true, then the conclusion b
is true’.

A symbolic KE method based on a decomposition approach is presented in [7].
Clusters of the hidden unit activation levels are produced and rules are generated in
terms of these clusters. Rules for the clusters in terms of the inputs are also generated.
Finally, these rules are merged together to create a system that can explain how the
system reaches a given answer. Their approach is able to separate core global knowl-
edge, from generic local knowledge, thus extracting additional characteristics that the
neural network correlatess during training. The system has been adjusted by using some
previous knowledge of the applicability of it.

A method for rule extraction from ANN using a novel gradient-based method with
input data dimensionality reduction is given in [8]. The method is ontogenic as it takes
place while the neural network is being trained. Rules extracted by their method have
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hyper-rectangular decision boundaries. The rules are extracted based on the training
result of an RBF neural network using gradient descendent theory. Their method leads
to smaller rule sets with increased levels of accuracy with respect to other methods and
it does not require the transformation, like many methods, from continuous attributes to
discrete ones.

A rule-extraction system for ANN using genetic programming is given in [9]. The
KE system is independent of the architecture of the neural network architecture and the
training method. This method produces a set of if-then rules by means of evolutionary
computing, by encoding the rule tree as a chromosome that is evolved to solve a fit-
ness function which relates the training input data set to the output set that the trained
network has.

A similar approach for extracting knowledge from neural networks is used by [10].
The authors use the trained network’s hidden layer activation functions to relate them to
the inputs using a clustering fitness function for the genetic algorithm, rules are gener-
ated using each identified cluster. Although their method is specific to software quality
applications, it does not need to incorporate any application specific constrains to the
search.

Many works including [9,10], show that evolutionary programming based tech-
niques are the main tools used for architecture and training independent symbolic based
KE methods.

4 Fuzzy Logic KE Based Methods

An increasing trend for extracting knowledge from trained neural networks involves the
use of Fuzzy Logic. These methods extract knowledge from neural networks as a set
of fuzzy rules. Gorban ([11]) proposes a method for extracting fuzzy rules from pruned
multilayer perceptron trained neural networks. The type and number of rules depend
on the type of transfer function of each neuron, and the type of input/output neuron
(discrete/continuous). For discrete neurons, the authors propose an automatic way of
generating a verbal description of the network.

A neural network model for handling business rules is proposed by [12]. The topol-
ogy of the neural network is based on both training samples and hidden rules extracted
from trained neural networks. The authors use a knowledge based descriptive neural
network (DNN) that incorporates embedded business rules extracted from previously
trained neural networks. These rules are in the form of fuzzy descriptors. Three steps
are involved in the construction of a DNN network: build a neural network forecasting
model, extract rules from the trained neural network, and incorporate hidden forecasting
rules extracted in the previous step into the DNN.

A neurofuzzy model to create an algorithm for KE from observed finite data sets is
proposed by [13]. This is another ontogenic method which works on the basis that the
knowledge is being extracted/identified as the training of the neural network happens.
In this way it achieves a one-to-one mapping between the rules-base and the model
features.

A KE method based on high correlation rules using a fuzzy inference is presented in
[14]. Although the method is very effective in extracting the knowledge, it is ontogenic
in nature and therefore, has to be applied at training time.
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A structural based learning method to extract knowledge from neural networks is
described in [15]. The rules obtained are in the form of fuzzy rules. The extraction is
correlated to the trained ANN but is actually training dependant. Their method is four
fold. To start with, the training data set is fuzzified. With this transformed data set, a
back propagation neural network is constructed. The next step is to create an importance
index matrix. The final step consists on creating a weighed set of fuzzy rules.

5 Application Dependent KE Based Methods

An application dependent method for extracting knowledge from neural networks
trained to model river flow is presented in [16]. The authors explain the internal behav-
iour of the neural network in terms of the ranges of the outputs of the hidden neurons.
They try to map these outputs to portions of the activation function. This mapping is
then labelled according to the river flow (high, medium, and low magnitude).

The use of an application specific problem to explore various data mining methods
is discussed in [17]. This approach includes the training of a ANN and followed by
the extraction of the rules from its knowledge. From five different methods tested in
their application, they found that the rule extraction from ANN was second best for
accurate knowledge representation, thus proving its potential as a knowledge explicit
data mining tool.

A neural network solution for solving an application specific problem is given in
[18]. At the same time, a method to create a set of if-then rules representing the knowl-
edge of the ANN is provided. The method for extracting the rules is non-ontogenic
implying that the rules are extracted after the ANN was trained but with knowledge
about its training. Even though the proposed method is very efficient it is only useful
for their application and type of ANN.

A method for extracting knowledge based on pruning and the progressive use of a
simpler transfer functions is discussed in [19]. Optimal brain damage is used for pruning
the topology of the network. Three steps are used by the authors to extract the rules.
The first step consists on considering the first layer of weights as simple perceptrons
enabling the extraction of hyperplanes. The second step aims at relating the binary
activation of the hidden units with the activation of the output units corresponding to
the decision of the network. The third and final step consists on integrating steps one
and two to formulate knowledge usefull for the experts. Using this method, the authors
were able to find new rules, which the NN had correlated during training. These rules
were significantly useful to radar experts.

6 Conclusions

Knowledge extraction is important for artificial networks to gain a wider degree of
acceptance. Therefore, this domain has become a mayor field of research since it vali-
dates the use of neural networks for applications where reasons or explanations on why
or how a result has been achieved are important. Many problems which require the
process of reaching a solution to be either accountable, or transparent and interpretable,
have found new use for neural networks. This is subject to providing a process for ex-
tracting knowledge in the development. In addition, the fact that neural networks are
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powerfull tools for finding knowledge hidden in data makes KE a natural and sound
extension to neural network based data analysis, making this knowledge available in an
explicit way.

Several of the most commonly used methods for extracting knowledge from neural
networks have been presented. The different methods were divided into three classes of
methods, the symbolic, the fuzzy logic, and the application dependent methods.

The symbolic based methods provide the simpler, yet most general and versatile ap-
proaches for KE from NNs. The use of Evolutionary Computing techniques in this area
enables the extraction of knowledge from ready trained networks, as well as providing
the most potential for an architecture and application independent method. Although in
principle it provides the highest potential for clarity in the extracted knowledge, most
applications still provide very cryptic and large sets of convoluted if-then-rules.

The Fuzzy Logic methods extract if-then type rules either during or after training
the neural network. Although in principle very similar to the symbolic methods, they
clearly focus to the Fuzzy Logic approach to rule description, thus making their results
more human-readable. Unfortunately most applications are still restricted to data-set
and architecture dependent methods.

The Application Dependent approaches, as expected, produce the most specific and
immediately useful results in the form the knowledge is presented. This advantage is
over weighed by the fact that always, for any new application, the whole process from
the stage of method design, has to be performed. Still, we envisage that the use of
evolutionary computing based methods, which are becoming more general with time,
might enable the application specific methods to be generalised to the symbolic meth-
ods with good human-readability. This will provide the most useful form of KE for
NNs.
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Abstract. In this paper, we present an association rule based protein interaction 
prediction method. We use neural network to cluster protein interaction data 
and feature selection method to reduce protein feature dimension. After this 
model training, association rules for protein interaction prediction are generated 
by decoding a set of learned weights of trained neural network and association 
rule mining. For model training, the initial network model was constructed with 
existing protein interaction data in terms of their functional categories and in-
teractions. The protein interaction data of Yeast (S.cerevisiae) from MIPS and 
SGD are used. The prediction performance was compared with traditional sim-
ple association rule mining method. According to the experimental results, pro-
posed method shows about 96.1% accuracy compared to simple association 
mining approach which achieved about 91.4%. 

1   Introduction 

A variety of attempts have been tried to predict protein functions and interactions with 
various data such as gene expression, protein–protein interaction (PPI) data, and lit-
erature analysis. Analysis of gene expression data through clustering also adopted to 
predict functions of un-annotated proteins based on the idea that genes with similar 
functions are likely to be co-expressed [1]. Park et al. [2] analyzed interactions be-
tween protein domains in terms of the interactions between structural families of 
evolutionarily related domains. Iossifov et al. [3] and Ng et al. [4] inferred new inter-
action from existing interaction data. 

In this paper, we propose an adaptive neural network (ANN) based feature associa-
tion mining method for PPI prediction. We used additional association rules for PPI 
prediction. These are generated by decoding a set of learned weights of adaptive neu-
ral network. We assumed that these association rules decoded from neural network 
(NN) would make the whole prediction procedure more robust to unexpected error 
factors by accounting relatively robust characteristic of NNs. 
                                                           
1  This research was supported by the NRL Program of the Korea Ministry of Science and by 

the BK21-IT Program from the Ministry of Education and Human Resources Development of 
Korea. The ICT at Seoul National University provided research facilities for this study. 
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Basically, we use ART-1 version of adaptive resonance theory [5] as an ANN clus-
tering model to construct prediction model. The ART-1 [6] is a modified version of 
ART [7] for clustering binary vectors. Here, we assume again PPI of yeast as feature–
to–feature association of each interacting proteins. We also use the same approach of 
Rangarajan et al. [8] for clustering model design and the same feature selection filter 
of Yu et al. [9] to reduce computational complexity. 

This paper is organized as follows. In Section 2, we introduce feature selection fil-
ter concept and overall architecture of ART-1 based protein interaction clustering 
model. In Section 3, we present detailed NN training method with PPI data and the 
decoding method of association rule. In Section 4, we present the representation 
scheme of PPI for the NN input and association mining method and experimental 
results. Finally, concluding remarks and future works are given in Section 5. 

2   Feature Dimension Reduction and Protein Cluster Learning 

Feature Dimension Reduction by Feature Selection 
Here, we consider each PPI as feature to feature associations. We constructed massive 
feature sets for each protein and interacting protein pairs from public protein data-
bases as the same manner of Eom et al. [10]. However, there are also many features 
which have no information of its association with other proteins. Therefore, feature 
selection may be needed in advance of clustering PPIs. Especially, this feature selec-
tion is necessary when dealing with such high dimensional data. So, to filter out these 
features we used entropy and information gain based measure, symmetrical uncer-
tainty, as a measure of feature correlation and which is defined in the work of Press et 
al. [11]. The overall filtering procedures are described in the paper of Eom et al. [10] 
 

Clustering Protein Interactions 
We use ART-1 NN to group the class of PPIs by their 13 functional classes and the 
class of interacting counter parts. In our ART-1 based clustering, each PPI is repre-
sented by a prototype vector that is generalized representation of the set of features of 
each interacting proteins. The degree of similarity between the members of each clus-
ter can be controlled by changing the vigilance parameter  of Eom et al. [12]. The 
more detailed overall procedures for clustering PPIs with the ART-1 based clustering 
model is described in our previous work by Eom et al. [12]. The set of weights of 
trained NN were decoded as the form of association rule with the weight-to-rule de-
coding procedures described in Eom et al. [13] to enrich the protein features. 

3   Rule Extraction from Trained Neural Network 

Learning Feature Association with Neural Network 
A supervised ANN uses a set of training examples or records include N attributes. 
Each attribute, An (n = 1, 2, … , N), can be encoded into a fixed length binary sub-
string {x1 . . . xi . . . xm(n)}, where m(n) is the number of possible values for an attribute 
An. The element xi = 1 if its corresponding attribute value exists and 0 otherwise. So, 
the proposed number of input nodes, I, in the input layer of ANN can be given by 
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The function, k = f(xi, (WG1)i,j, (WG2)j,k) is an exponential function in xi since 
(WG1)i,j, (WG2)j,k are constants. Its maximum output value is equal to one. 
 

Association Rule Construction from Trained Neural Network with GA 
To extract relations (rules) among the input attributes, Xm relating to a specific classk 
one must find the input vector, which maximizes k. This is an optimization problem 
and can be stated as k(xi) by considering binary data feature vector x. In k(xi), xi are 
binary values (0 or 1). 

Since the objective function k(xi) is nonlinear and the constraints are binary so, it 
is a nonlinear integer optimization problem. Thus the genetic algorithm (GA) can be 
used to solve this optimization problem by maximizing the objective function k(xi). 
In this paper, we used conventional generational-GA procedures with this objective 
function k(xi) to find the best chromosome which provided as an input of NN and 
produce best network output (highest interaction prediction accuracy). 

After we obtain the best chromosomes which produces best network output, we de-
code these chromosome into the form of association rule (we call this association rule as 
‘neural feature association rule’, since it’s extracted from trained NN). To extract a rule 
for classk from the best chromosome selected by GA procedures, we decoded it with 
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several procedures presented in our technical report [13]. The basic approach of above 
procedures and notations are borrowed from the work of Elalfi et al. [14]. 

4   Experimental Results 

Protein Interaction as Binary Feature Vector 
An interaction is represented as a pair of two proteins that directly binds to each other. 
This protein interaction is represented by binary feature vector of interacting proteins 
and their associations. These interaction representation processes and the processing 
steps are described in the work of Eom et al. [10]. 
 

Data Sets 
Each Yeast proteins have various functions or characteristics which are called ‘fea-
ture.’ Here, set of features of each protein are collected from public genome databases 
as the same manner of Eom et al. [10]. Table 1 shows the statistics of each interaction 
data source and the number of features before and after the feature filtering. 

Table 1. The statistics for the dataset 

Data Source # of interactions # of initial features # of filtered features 
MIPS 10,641 
YPD 2,952 
SGD 1,482 

Y2H (Ito et al.) 957 
Y2H (Uetz et al.) 5,086 

6,232 
(total) 

1,293 
(total) 

Table 2. Accuracy of the proposed methods. The effect of the FDRF-based feature selection 
and NN-based are shown in terms of prediction accuracy. 

Number of interactions 
Prediction method Training set 

Size 
Test set 

(T) 
Predicted correctly 

(P) 

Accuracy 
(|P|/|T|) 

Asc. ( ) 4,628 463 423 91.4 % 
FDRF + Asc. ( ) 4,628 463 439 94.8 % 
Asc. + N-Asc. ( ) 4,628 463 432 93.3 % 

FDRF + Asc. + N-Asc. ( ) 4,628 463 445 96.1 % 

Experiment Procedures 
First, we predicted the classes of new PPIs with NN for their 13 functional categories 
obtained from MIPS [11]. The accuracy of class prediction is measured whether the 
predicted class of interaction is correctly corresponds to the class of MIPS. After this, 
we constructed feature association rule from this trained NN. 

Next, we trained another NN with PPI data represented as binary feature vector ac-
cording to the method of Eom et al. [10]. After the model training, we extracted again 
feature association rule from the model with the procedure of Eom et al. [13]. Then we 
predicted test PPI set with these two set of association rules and measured the prediction 
accuracy of each approaches. Results are measured with 10-fold cross-validation. 
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Results 
Table 2 show the interaction prediction performance of various combination of 
associantion mining, feature filtering, and exploitation of rules derived from NN. 

In Table 2, Simple association mining approach ( ) achieved the lowest 
performance. The number of total feature used in this approach was 6,232. This is 
quite high feature dimension. We can guess that it may includes lots of non-
informative and redundant features and these features may affect the prediction 
accuracy in negative way by interfering correct rule mining. This assumption 
confirmed by investigating the result of second approach, FDRF + Asc. ( ), 
association mining with non-informative and redundant feature filtering. This feature 
filtering approach improved overall prediction performance about 3.4% than the first 
approach. But the third approach, Asc. + N-Asc. ( ), prediction with the rules from 
association rule mining and the rule derived from trained NN only improved overall 
prediction performance about 1.9% than the first approach. This result can be 
explained again with the feature dimension problem. In this third approach, there also 
exist redundant and non-informative garbage features which decrease the prediction 
performance. But in this approach, eventhough there still lots of garbage features, the 
over all performance improved about 1.9%. This is the effect of the rule exploitation 
derived from trained NN. This inference can be confirmed again by investigating the 
result of fourth approach, FDRF + Asc. + N-Asc ( ), prediction with the rule from 
association mining and the rule derived from trained NN along with feature filtering. 
Non-informative and redundant features are filtered out in this approach. 
Consequently, his approach improved over all prediction accuracy up to 4.7%.  

Thus, we can say that both the information theory based feature filtering and the 
exploitation of the rule derived from trained NN and conventional association rule 
mining methods are helpful for improving overall performance of feature-to-feature 
association-based PPI prediction. By considering these experimental results, the 
proposed approaches in this paper will be useful as a data preprocessing and 
prediction methods especially when we handle the data which have many features. 

5   Conclusions 

In this paper, we presented NN based protein interaction learning and association rule 
mining method from feature set and trained NN model for PPI prediction task. The 
proposed method (combination of all methods) achieved the improvement of accuracy 
about 4.7%. The experimental results of various approaches suggest that the NN 
based feature association learning model could be used for more detailed investigation 
of the PPIs when the proposed model can learn effectively the hidden patterns of the 
data which have many features and implicit association of these features. From the 
result of Section 4, we can conclude that the proposed method is suitable for efficient 
analysis of PPIs through its hidden feature association learning. 

However, current public interaction data have many false positives and some inter-
actions of these false positives are corrected as true positives by recent researches 
through reinvestigation with new experimental approaches. Thus, the study on the 
new method for adapting these changes in data set which is related to false positive 
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screening remains as future works. Also, consideration of more biological features 
such as pseudo amino acid composition or protein localization facts will be helpful for 
improving overall performance. 
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Abstract. While artificial neural networks (ANNs) are undoubtedly powerful
classifiers their results are sometimes treated with suspicion. This is because their
decisions are not open to inspection – the knowledge they contain is hidden. In
this paper we describe a method for extracting and representing the knowledge
within an ANN. Mappings between inputs and output classifications are stored
in a table and, for each classification, Structured Query Language (SQL) queries
are evolved using a genetic algorithm. Each evolved query is a simple, human-
readable representation of the knowledge used by the ANN to decide on the clas-
sification based on the inputs. This method can also be used to show how the
knowledge within an ANN develops as it is trained, and can help to identify
problems that are particularly hard, or easy, for ANNs to classify.

1 Introduction

Techniques of ANNs have been applied with success to problem domains including
classification and continuous function approximation. However, sometimes it is impor-
tant to understand the process by which ANNs arrive at a given result and to provide
ways of extracting the knowledge embedded in the network. There are many techniques
that have been researched in the past years to extract the knowledge from ANNs [1],
some of which aim to create rules to explain their behaviour; despite the successful
results from many of these works, the IF-THEN rules or other logic equations that rep-
resent the behaviour of the ANN are still too cryptic to be understood easily.

Another critical aspect in knowledge extraction is the capacity for a method to be
able to work after the ANNs have been trained and to be independent of their archi-
tecture. Many authors, including [2], point out that the data mining tools that have
been shown to work systematically for these constraints are those based on evolution-
ary programming techniques. These techniques have been applied to the extraction of
knowledge from ANNs in different ways, mainly by developing symbolic systems to
get different forms of IF-THEN rules to represent the knowledge in the networks.

In this paper we propose a method to create a more clear, human-readable and ac-
countable representation of the knowledge embedded in an ANN based on our past
work in the area of data mining. Since our work in 1995 [3], where we successfully
used evolutionary computing to evolve SQL queries for data mining applications, to
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more recent approaches to our initial work by other authors [4], the use of evolutionary
computation has proven to be a very powerful technique to search for efficient SQL
queries to extract rules for data mining in large sets of data. An additional advantage
of this approach, apart from its mere functionality, is that the resulting queries for data
classification resemble more of a natural language form than complex sets of IF-THEN
rules which use mainly logic relational operators and numbers. Data in a database can
be arranged in many forms including conveniently semantically labelled categories. The
SQL queries use these labels and organisation to form rules that look more natural, and
need not use statements based only on number-ranges.

In the rest of this paper we will present our proposed novel approach in which the
data classification process of ANNs will be transferred to an organised database and
then, using evolutionary computing as a search method, SQL queries will be created to
explain the processing model of the network.

This paper is divided into five sections. In the second section, an overview of the
use of SQL queries for knowledge representation is presented and the issue of using
evolutionary techniques for searching efficient queries is discussed. Our novel method
for knowledge extraction is based on previous work in this area. In the third section
we discuss the issue of data representation in ANNs. The proposed evolutionary pro-
gramming method for evolving SQL queries towards the extraction of knowledge from
ANNs is presented in section four. Finally, some conclusions and our proposed future
research are given in section five.

2 Evolving SQL Queries as Representation of Knowledge

As shown in our previous work [3] and validated as still a current technique by works
such as Salim’s [4], SQL queries are a powerful method for data mining. When data is
structured carefully in a database it presents an underlying organisation relevant to its
relation in the database.

Databases provide organisation and conveniently named categories. They also
present relations between the data. Part of these relations can be provided manually
when this information is known or a level of initial analysis is available. Other relations
are intrinsic to the data and have to be extracted using data mining techniques.

When the data mining methodology involves creating SQL queries, natural lan-
guage explanations of the relations of the data can be created. A means to extract
knowledge involves evolving database queries which are rewarded when the correct
related data is selected by such queries. This means that each SQL statement represents
the knowledge on how the classification of the data is made. Thus, the structure of the
query itself explains the knowledge about the data with respect to the analysis being
made.

This represents the aims of most current data mining systems which are based on
symbolic AI techniques; and using database queries for data mining brings us to tack-
ling the problem of having to analyse very large amounts of data, which we solve by
combining the database organisation, the SQL as a powerful tool to explore it, and evo-
lutionary computing techniques to search for efficient and effective queries. One of the
main reasons for basing a data mining system on evolutionary computing is that the
properties of such a system include both robustness of solutions and scalability.
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An additional advantage of evolving the queries to represent knowledge is that a
population of SQL queries can be partitioned and the subpopulations evolved in paral-
lel, also the database can be similarly partitioned with subpopulations seeing different
subsets of the data (having windows of data sections), with a further corresponding in-
crease in parallelism. This form of representation of knowledge is an advantage that we
have explored, both in terms of search efficiency (and ultimately speed of computing)
and in terms of data organisation relevant to the representation of the information. Ro-
bust solutions can be produced even if they only see a local portion of the data which
can then be evolved further after merging successful knowledge clusters and reselecting
the window on the database. Thus, an evolutionary system can make the transition from
small clean datasets with a clearly organised knowledge representation, to large datasets
and sometimes noisy characteristics (like the ones found in knowledge representation
inside trained ANNs), without a degradation in performance.

Another critically useful advantage of using SQL queries as representation of
knowledge is that it enables the system to be easily used within the majority of com-
mercial relational database application, and more importantly, it allows the relations to
be expressed as a set of first order logic expressions. This increases the power of the
search as queries can include operations such as EXISTS which cannot be represented
in zero order logic. Also SQL queries are easy for people to understand so the results
of our knowledge extraction method are naturally presented in a more suitable form.

3 Data Representation from Trained ANNs

Symbolic AI methods are a preferred form of knowledge representation from ANNs
[5,6,7,8]. These methods have shown not only that evolutionary computing based tech-
niques are the most powerful way to search for the knowledge, but that even having this
powerful search tool, the organisation of the data is also critical to be able to achieve
correct knowledge extraction.

Data organisation is critical and in [8] the authors use a clustering genetic algorithm
to organise the training data as a first step to applying a knowledge extraction (KE)
process during the training of the network. This is a step that has to occur naturally
when organising the data for the ANN in a database. The underlying organisation in
tables and columns in an appropriately designed database presents a first step towards
a correct representation of the KE of the ANN: this includes the data collection process
which Yang et al. have found to be a critical step [8] .

In the proposed method presented in this paper the knowledge embedded in a trained
ANN can be represented with respect to the data in different ways. One way relies on
the training data being available; in this case it is possible to use this data, organised
in a database, to create a set of inputs and outputs, equivalent to a fully known sample
of the knowledge of the network. Another way relates to the case when the network is
already trained and validated. In this case extended data can be included in the database;
the coherent way to include this data necessitates new inputs, the organisation of which
could be determined. This data is included alongside the outputs which result from the
ANN being used to classify these new, previously unseen inputs. A database organised
in this way would hold a collection of data representing the knowledge embedded in an
ANN.
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At this stage the issue of data dimensionality arises. As seen in works such as [6,7],
researchers use tools to reduce the dimensionality of the overall data, by removing re-
dundant data, to have more efficient datasets. In [6,7] the authors use genetic algorithms
to organise the data and minimise the redundancy in it, for a further step of training and
knowledge extraction. Their method, although dependent on the training algorithm and
the architecture of the ANN, shows how critical it is to have the correct data represen-
tation.

On this basis our data representation, as organised either from the original data only
or in an extended data set, by no means corresponds to having redundant data. The
difference between the original data only (the training set) and the extended data, is that
in the later, the results which correspond to the ANN classification process are included.
Data is available from the correctly classified samples out of the training set, as well as
from the previously unseen data used to extend the database.

4 Searching for the ANN Knowledge

Our evolutionary algorithm adapted from [3] is to be used to find SQL queries that
correctly extract the data from the tables using criteria which match the results obtained
with the ANN.

The chromosome structure will be taken from [3] where we have implemented the
ability to evolve tree structures that are needed to represent the structure of database
queries. Although representation techniques exist for evolving trees using traditional
genetic algorithms [9], when dealing with database queries, the ability to evolve the
inherent complexity of queries, as well as their constituent elements, is of great value.
Consequently we use a more general Genetic Programming based approach which is
best suited for the structure of the queries; so we use dynamic trees to represent them.

A standard SQL query has the form:

SELECT attributes FROM tables WHERE logical condition;

Note that the logical condition is in first order logic.
In the initial phase, we have configured the search for queries from a single table.

In this phase we also select a constant subset of table attributes (specified by either a
configuration file, or interactively by the user). Consequently the system only needs
representations of the tree that represents the logical condition of the query.

The fitness of each chromosome (set of SQL queries) will be measured against how
effective it is at extracting the correct records from the database. In practical terms we
propose two elements of the fitness measurement, relative to the results obtained from
the analysed ANN:

– In the first instance, the fitness will be relative to how many correct records are
selected by the query in comparison to how many are wrongly selected. This factor
will relate to false positives.

– The other factor will be relative to how many correctly classified records were se-
lected out of the total records from its class. This factor will relate to false negatives,
relating to the class elements that are left out (not selected) by the query.
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Being able to manipulate the levels of importance of these two fitness methods
makes the system versatile and more tailored for critical domains such as medical ap-
plications. Many authors, including [2], have found that a problem with the use of ANNs
in medical applications is that it is difficult to analyse the accountability of results, in
particular the relations between false positives and negatives in classification processes.
Our method, by using evolutionary computing techniques coupled with SQL format,
presents a very powerful case for the use of an ANN as its process can now be more
accountable.

The termination criteria of the search for queries present a particular problem. There
are currently four possible scenarios that we are taking into account:

– If the fitness was measured using the real outputs of a known data set (i.e. the
known answers for the dataset for training and validation) the termination criteria
can include an error margin equal to the accuracy of the ANN being tested. It could
be argued that if the genetic algorithm finds a perfect representation of the knowl-
edge of the ANN, the output error of the evolved queries would represent the error
of the predicted values produced by the network. This is not completely true since
there is a possibility that the same type of error as the ANN produced was achieved
by the genetic search but in another region of the solution space. This would mean
that the real error relative to the knowledge representation of the ANN could be as
much as twice as that presented by the fitness measure. On the other hand, an exact
match (maximum fitness) would not be a suitable termination criterion since it will
guarantee that there is at least the same error of knowledge representation of the
ANN as the network itself has with respect to the classification of the data.

– Using this same type of data, the fitness can be measured relative to the results
predicted by the ANN rather than from the observed values from the training data
set. In this case, the error of the ANN will be included in the data rather than
in the error allowance given to the evolutionary search. An exact match (maximum
fitness) can then be used safely since it will mean that the knowledge representation
is that of the ANN and nothing else.

– The third scenario is to measure the fitness relative to a mixture of known data with
known results and new data with the result values as predicted by the ANN. This
will provide a compromise between needing a maximum fitness achieved by the
search (zero error), or using the maximum error as obtained by the ANN. On the
other hand, there is still work to be done to make an error accountable to either
to the ANN or the genetic search; provided that it is possible to calculate this in a
deterministic way.

– Another situation is to use only data with unknown outputs to measure the fitness,
in which case we are definitely unable to tell the origin of the error. This scenario
will be used and interesting comparison to the results obtained by applying the 2nd
scenario (known data with ANN outputs).

5 Conclusions

Knowledge extraction is important for ANNs to gain a wider degree of acceptance.
Therefore, this domain has become a major field of research since it validates the use of
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ANNs for applications where reasons or explanations on why or how a result has been
achieved are important.

In this paper, a novel method for KE from ANNs is proposed. The processing of the
data done by a trained ANN is transformed into a set of tables organised into a relational
database. SQL queries from these tables are then created using evolutionary techniques.
These SQL queries can then be used to explain how the neural network reaches a par-
ticular answer. Since the standard SQL queries are of first order logic form, they are
more human-readable representations of the knowledge embedded in ANNs than the
IF-THEN rules that symbolic based KE methods use. Details of the evolutionary pro-
gramming techniques used to evolve the SQL queries are provided. These include the
structure of the chromosome and their fitness function. Some discussion concerning the
termination criteria for the evolution of queries has been presented.

Future work will involve the implementation and thorough testing of the proposed
method for KE from ANNs using machine learning benchmarks and real world prob-
lems including the classification of satellite images, and of medical images. Addition-
ally we will explore the use of this method to produce a sequence of SQL queries that
show how the knowledge in an ANN develops. Also, potential ”fuzzification” of the
approach can be sought by using the SQL statement ”SOUNDSLIKE”. This may be an
interesting avenue of investigation.
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Abstract. In this paper, it will be shown that it is feasible to extract
finite state machines in a domain of, for rule extraction, previously un-
encountered complexity. The algorithm used is called the Crystallizing
Substochastic Sequential Machine Extractor, or CrySSMEx. It extracts
the machine from sequence data generated from the RNN in interaction
with its domain. CrySSMEx is parameter free, deterministic and generates
a sequence of increasingly deterministic extracted stochastic models until
a fully deterministic machine is found.

1 Introduction and Background

The problem of extracting rules, or finite state machines, from recurrent neural
networks (RNN Rule Extraction, or RNN-RE) has occupied a number of re-
searchers on and off during the last 15 years. The achievements of this research
have recently been compiled into a review [1] which identified four common
ingredients of RNN-RE algorithms:

1. quantization of the continuous state space of the RNN, resulting in a discrete
set of states,

2. state and output generation (and observation) by feeding the RNN input,
3. rule construction based on the observed state transitions,
4. rule set minimization.

These four constituents are often quite distinguishable in the algorithms. For
example, in the most commonly used algorithm [2] (1) an equidistant grid par-
titioning of the state space was used for quantization, (2) states were generated
by a breadth-first search, (3) the rules were constructed by transforming the
transitions in the quantized space into a deterministic finite automata, and (4)
the rules were minimized using a standard minimization algorithm. In another
example [3] (1) a self-organising map was used to quantize, (2) states were gener-
ated by observing the network in interaction with its domain, and (3) stochastic
rules were induced from these observations (no minimization in this case).

As pointed out in [1], none of the previously tested quantization functions
have been tailor-made to comply with the specific demands of quantizing the
state space of a dynamic system, where the state is recursively enfolded onto
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itself in interaction with a domain. The used quantizers all build (roughly) on
the assumption that spatial neighbours should be merged and spatially separated
points kept apart. The problem with this approach is that in the RNN, states
that are very similar, spatially, may be very different, functionally in the RNN.

We came to the conclusion that the main problem of earlier solutions is in
fact the lack of integration of the above presented constituents. More specifically,
the quantizer should take into account the dynamics of the RNN through closer
integration with the other constituents, so that the state space is quantized based
on its functional context as set of a states of a dynamic system in interaction
with a domain rather than ordinary points of a Euclidean space.

This realization was the ground for the development of a novel algorithm
named CrySSMEx1 (Crystallizing Substochastic Sequential Machine Extractor,
see Algorithm 1) which builds on a novel hierarchical quantization algorithm
(named Crystalline Vector Quantizer, CVQ) which can merge and split states
based on their dynamical properties in the RNN. By the introduction of this
algorithm, a novel form of state machine, a substochastic sequential machines
(SSM) is also introduced. SSMs can take into account that some data may be
missing in the data collected from the RNN. CrySSMEx is parameter free and
generates a list of SSMs with monotonously increasing determinism.

2 Experiments

The main purpose of the experiments in this paper is simply to show that it is
possible to extract a deterministic finite automata from networks in a challenging
domain. That it is possible, in theory, to extract finite machines if the RNN
is robustly mimicking a regular language recognizer has already been shown
[4]. But previous RNN-RE techniques have predominantly been used on quite
simple regular binary language classification tasks with relatively few states. The
selected domain for this paper is the prediction of the anbn-language which has
been studied extensively in the RNN domain [5,6,7,8,9,10,11,12]. The network
which has been chosen for analysis with CrySSMEx is a simple recurrent network
(SRN) trained using a genetic algorithm with a fitness proportional to how many
of the predictable symbols that were correctly predicted. Strings from the anbn-
language with 1 ≤ n ≤ 10 were generated and augmented in random order both
during training and during generation of data (Ω) for CrySSMEx to analyse. See
[12] for more details on the training (the SRN in question here is actually one of
those behind the statistics in that paper) and for a discussion on the importance
of random string order for the analysis of RNNs in the anbn-domain.

To generate data, the RNN was exposed to a sequence of 5500 symbols (cor-
responding to 50 strings of each length). The resulting extracted deterministic
1 Unfortunately, the constituents of the algorithm are quite complex and there is no

room for these details here. An open source distribution and an article on CrySSMEx

are under preparation at the time of submission of this paper. The purpose of this
paper is not to present the algorithm as such, but to present the underlying principle
of functionally based quantization and to acknowledge the possibility of extracting
rules from domains of a complexity previously not considered in RNN-RE contexts.
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CrySSMEx(Ω, Λi, Λo)
Input: Time series data from the RNN, Ω, an input quantization

function, Λi, and an output quantization function, Λo.
Output: A deterministic machine M mimicking the RNN.
begin

Let M be the stochastic machine based on Ω resulting from an
unquantized state space (i.e. only one state);
repeat

Select data relevant for splitting indeterministic states;
Split quanta in state quantizer according to split data;
Create M using new state quantizer, Λi and Λo for quantization;
if M has equivalent states then

Merge equivalent states;
end

until M is deterministic;
return M ;

end
Algorithm 1: A simplified description of the main loop of CrySSMEx. M is
created from the observed RNN input, output and state contained in Ω by
quantization of input, output and state space, of which the latter is optimized.

machine is shown in Figure 1 together with the two first indeterministic (and
stochastic) machines. CrySSMEx always start with an initial machine of only one
state, in which only the conditional distribution of output symbols given input
symbol is modelled. The quantization of the state space of the RNN was then
refined such that it contained two states from which the output symbols could be
uniquely determined given the input symbol. The algorithm continued to select
states that gave rise to indeterminism and split them until a machine with only
deterministic states were reached. The whole procedure took ten iterations in
the main loop of Algorithm 1.

The extracted deterministic SSM and its stochastic predecessors can all parse
the same sequence the RNN was tested on. To parse with an SSM, an initial
state must be chosen. If nothing is known about the initial state of the RNN,
the initial state of the SSM be a uniform distribution over the states (i.e. that
all states are equally probable). When the SSM is then fed input symbols from
the domain the stochastic state of the SSM “crystallizes”, i.e. the SSM becomes
more “certain” about what the state of the underlying RNN would have been
given the same input history. In other words, the entropy of the state distribution
decreases given “evidence” from the input sequence. In the final, deterministic
SSM of Figure 1, the machine eventually narrows down the number of possible
occupied states to one.

A second reason for the word “crystalline” in this work is due to how the
CVQ divides the state space gradually, in a process that visually resembles crys-
tallization . In the anbn-RNN of the experiment, the CVQ divides the state
space as shown in Figure 2.
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Fig. 1. The two first machines and the last (at iteration ten) in the sequence of machines
extracted by CrySSMEx. A transition label x:y:p is to be read as a transition with x
as input and y as output and p as the probability of this transition. For example, a
transition label “a:b:0.75” from state 0 to 1 would correspond to that the conditional
probability that the next state will be 1 and the output symbol b, given that the prior
state was 0 and the input symbol a, is 0.75. Where p is 1.0, the probability is omitted
from the label. For pairs of transitions between the same pair of states, the labels have
in some cases been merged and comma separated to save space.

Apart from extracting rules from RNNs in the domain where 1 ≤ n ≤ 10 (in
which the RNN is trained to perfection) SSMs have also been extracted from the
same RNNs with longer strings. The results varies with what kind of error the
RNN makes for longer strings. If it makes no error, it is still trivial for CrySSMEx
to extract the rules. But if the network cannot predict correctly when exposed
to longer strings, extraction is either still trivial, or virtually impossible. In some
cases the algorithm had to be aborted when the SSM grew indefinitely (having
some 1000 states). Similar results are reached when testing CrySSMEx on chaotic
systems2. The “grammar of mistakes” can obviously be of staggering complexity
and this can probably be explained by the near chaotic dynamics of successful
RNNs in the anbn-domain [8,9]. Fortunately, all SSMs that are extracted during
the search for a deterministic model are in themselves also models of the RNN,
and can parse the input sequence just as the final model can. And the more
computational resources invested in the iterations of CrySSMEx, the more exact
will the extracted model be with respect to the underlying RNN, within the
domain. There is however a possibility of data starvation if an SSM of a thousand
states is extracted from data of just a few thousand time steps.

3 Discussion

In this paper a simple demonstration has been given to show that it is possible
to extract machines from an RNN trained on a task that requires it to embed
its memory in deeply recursive manner. Apart from the experiment presented
here, CrySSMEx has been tested on, for example, autonomous chaotic dynamic
2 For currently unknown reasons, a similar problem also sometimes occur if the sample

set, Ω, is too small.
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Fig. 2. The state space of the RNN as divided by the quantizer generated by CrySSMEx

in order to describe the RNN as a finite deterministic system. The actual states oc-
cupied by the RNN when it is predicting anbn-sequences are also plotted. Note how
some disparate points sometimes belong to the same regions while some quite nearby
clusters of points are separated.

systems, RNNs (with 103 state nodes) with small random weights and RNNs
trained on regular languages. The results are overall very promising in that SSMs
are extracted reliably and efficiently from all successfully trained networks.

There are of course many open issues and possible enhancements. For exam-
ple, in the current implementation, CrySSMEx requires a symbolic input domain.
If this was not the case, CrySSMEx could be used on systems with continuous
input, e.g. a robotic controller reacting to sequences of sensory data. There are
also a number of experiments that needs to be done to compare CrySSMEx to
earlier approaches more directly, e.g. how many model vectors would typically
be required if k-means is used (as in [13]) instead of the CVQ as quantizer in
the anbn-domain.

Extracted rules give us a unique window into the underlying system in that
we can, in qualitatively new ways, analyse the rules in place of the RNNs. The
next step is to let extracted rules be employed in our ambition to understand
these networks. For example, it should be possible to query the rules concerning
under what exact conditions an RNN commits mistakes. Such information would
be ideal for planning retraining of the RNN. The extracted rules can also be used
to test whether RNNs are equivalent to each other, something which is not easily
derivable from the weights alone. So, if there is a population of networks, trained
on the same domain or not, it would be possible to divide them into families
of equivalent networks and describe exactly what distinguishes these families
from each other. Similar distinctions have previously been made from a dynamic
systems theory standpoint [6].
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In future work, we would like to cooperate with a number of researchers
who together could provide us with access to a large corpus of recurrent neural
networks, of different architectures and trained on different data domains, to
be analysed with CrySSMEx. For the future of the research area as a whole, in
order to facilitate cooperation, exchange of experimental setups, and validation
of results between individual researchers, it would furthermore be desirable to
establish a database of benchmark problems and trained (recurrent) neural net-
works, similar to the benchmark data repositories that are commonly used in
other areas of machine learning research, but with the trained models as the
main focus.
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Abstract. The paper presents a theory and a new generic computational model 
of a biologically plausible artificial neural network (ANN), the dynamics of 
which is influenced by the dynamics of internal gene regulatory network 
(GRN). We call this model a “computational neurogenetic model” (CNGM) and 
this new area of research Computational Neurogenetics. We aim at developing 
a novel computational modeling paradigm that can potentially bring original in-
sights into how genes and their interactions influence the function of brain neu-
ral networks in normal and diseased states. In the proposed model, FFT and 
spectral characteristics of the ANN output are analyzed and compared with the 
brain EEG signal. The model includes a large set of biologically plausible pa-
rameters and interactions related to genes/proteins and spiking neuronal activi-
ties. These parameters are optimized, based on targeted EEG data, using genetic 
algorithm (GA). Open questions and future directions are outlined. 

1   Introduction 

We introduce a novel computational approach to brain neural network modeling that 
integrates ANN with an internal dynamic GRN. Interaction of genes in model neurons 
affects the dynamics of the whole ANN through neuronal parameters, which are no 
longer constant, but change as a function of gene expression. Through optimization of 
the GRN, initial gene/protein expression values and ANN parameters, particular tar-
get states of the neural network operation can be achieved. It is illustrated by means 
of a simple neurogenetic model of a spiking neural network (SNN). The behavior of 
SNN is evaluated by means of the local field potential (LFP), thus making it possible 
to attempt modeling the role of genes in different brain states, where EEG data is 
available to test the model. We use the standard FFT signal processing technique to 
evaluate the SNN output and compare with real human EEG data. For the objective of 
this work, we consider the time-frequency resolution reached with the FFT to be suf-
ficient. However, should higher accuracy be critical, Wavelet Transform, which con-
siders both time and frequency resolution, could be used instead. Broader theoretical 
and biological background of CNGM construction is given in [1]. A simpler linear 
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version of an internal GRN with preliminary results on epilepsy modeling can be 
found in [2]. In this paper we (1) introduce and simulate a more realistic nonlinear 
model of GRN, (2) present a list of real proteins/genes that are involved in CNGM, 
(3) compare the CNGM performance to real human EEG data using the same signal 
processing technique, (4) suggest an optimization procedure to obtain a CNGM with 
parameters leading to modeling of the real EEG signal. 

2   A General CNGM and Its Optimization via Evolution 

In general, we consider two sets of genes – a set Ggen that relates to general cell func-
tions and a set Gspec that defines specific neuronal information-processing functions 
(receptors, ion channels, etc.).  The two sets form together a set G={G1, G2, …, Gn}. 
We assume that the expression level of each gene gj(t+Δt′) is a nonlinear function of 
expression levels of all the genes in G, inspired by discrete models from [3], [4]: 
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We work with normalized gene expression values in the interval (0, 1). The coeffi-
cients wij∈(−5,5) are the elements of the square matrix W of gene interaction weights. 
Initial values of gene expressions are small random values, i.e. gj(0)∈(0, 0.1).  

In the current model we assume that: (1) one protein is coded by one gene; (2) rela-
tionship between the protein level and the gene expression level is nonlinear; (3) pro-
tein levels lie between the minimal and maximal values. Thus, the protein level 
pj(t+Δt) is expressed by 
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The delay Δt<Δt′ corresponds to the delay caused by the gene transcription, mRNA 
translation into proteins and posttranslational protein modifications [9]. Delay Δt′ in-
cludes also the delay caused by gene transcription regulation by transcription factors.  

The GRN model from equations (1) and (2) is a general one and can be integrated 
with any ANN model into a CNGM. Unfortunately the model requires many parame-
ters to be either known in advance or optimized during a model simulation. In the pre-
sented experiments we have made several simplifying assumptions: 

1. Each neuron has the same GRN, i.e. the same genes and the same interaction 
gene matrix W. 

2. Each GRN starts from the same initial values of gene expressions. 
3. There is no feedback from neuronal activity or any other external factors to 

gene expression levels or protein levels. 
4. Delays Δt are the same for all proteins and reflect equal time points of gather-

ing protein expression data. 

We have integrated the above GRN model with the SNN illustrated in Fig. 1. Our 
spiking neuron model is based on the Spike Response Model [5], with excitation and 
inhibition having both fast and slow components [6], [7] both expressed as double ex-
ponentials with amplitudes and the rise and decay time constants. 
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Fig. 1. (a) Spiking neuron model. When the membrane potential ui(t)  of the ith spiking neuron 
reaches the firing threshold ϑi(t) at time tk

i, the neuron fires an output spike. ϑi(t) rises after 
each output spike and decays back to the resting value ϑ0. (b) The SNN architecture. About 
10−20% of N = 120 neurons are inhibitory neurons that are randomly positioned on the grid 
(filled circles). External input is random with average frequency between 10−20 Hz. 

Table 1. Neuronal parameters and their corresponding proteins (receptors/ion channels) 

Neuron’s parameter Pj Relevant protein pj 

Amplitude and time constants of:  
Fast excitation AMPAR 
Slow excitation  NMDAR 
Fast inhibition  GABRA 
Slow inhibition  GABRB 
Firing threshold and its decay time constant SCN and/or KCN and/or CLC 

Neuronal parameters and their correspondence to particular proteins are summa-
rized in Table 11. Several parameters (amplitude, time constants) are linked to one 
protein. However their initial values in equation (3) will be different.  Relevant pro-
tein levels are directly related to neuronal parameter values PJ  such that 

)()0()( tpPtP jjj =  (3) 

where Pj(0) is the initial value of the neuronal parameter at time t = 0. Moreover, be-
sides the genes coding for the proteins mentioned above, we include in our GRN nine 
more genes that are not directly linked to neuronal information-processing parame-
ters. These genes are: c-jun, mGLuR3, Jerky, BDNF, FGF-2, IGF-I, GALR1, NOS, 
S100beta. We have included them for later modeling of some diseases. 

We want to achieve a desired SNN output through optimization of the model 294 
parameters (we are optimizing also the connectivity and input frequency to the SNN). 
We evaluate the LFP of the SNN, defined as LFP = (1/N)Σ ui(t), by means of FFT in 
order to compare the SNN output with the EEG signal analyzed in the same way. It 
has been shown that brain LFPs in principle have the same spectral characteristics as 
EEG [8]. Because the updating time for SNN dynamics is inherently 1ms, just for 
computational reasons, we will employ the delays Δt in equation (2) being equal to 

                                                           
1  Abbreviations: AMPAR = (amino- methylisoxazole- propionic acid) AMPA receptor, 

NMDAR = (N-methyl-D-aspartate acid) NMDA receptor, GABRA = (gamma-aminobutyric 
acid) GABA receptor A, GABRB = GABA receptor B, SCN = Sodium voltage-gated chan-
nel, KCN = kalium (potassium) voltage-gated channel, CLC = chloride channel. 
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just 1s instead of minutes or tens of minutes [9]. In order to find an optimal GRN 
within the SNN model so that the frequency characteristics of the LFP of the SNN 
model are similar to the brain EEG characteristics, we use the following procedure: 

1. Generate a population of CNGMs, each with randomly generated values of co-
efficients for the GRN matrix W, initial gene expression values g(0), initial val-
ues of SNN parameters P(0), and different connectivity; 

2. Run each SNN over a period of time T and record the LFP;  
3. Calculate the spectral characteristics of the LFP using FFT; 
4. Compare the spectral characteristics of SNN LFP to the characteristics of the 

target EEG signal. Evaluate the closeness of the LFP signal for each SNN to the 
target EEG signal characteristics. Proceed further according to the standard GA 
algorithm to possibly find a SNN model that matches the EEG spectral charac-
teristics better than previous solutions;  

5. Repeat steps 1 to 4 until the desired GRN and SNN model behavior is obtained; 
6. Analyze the GRN and the SNN parameters for significant gene patterns that 

cause the SNN model behavior. 

3   Simulation and Results 

First, we present the results of analysis performed on real human interictal EEG data 
obtained with permission from [10]. Fig. 2 shows the brain EEG signal, its FFT power 
spectrum and evolution of the relative intensity ratios (RIRs) for different clinically 
relevant sub-bands over time. These sub-bands are: delta (0.5-3.5 Hz), theta (3.5-7.5 
Hz), alpha (7.5-12.5 Hz), beta 1 (12.5-18 Hz), beta 2 (18-30 Hz), gamma (above 30 
Hz). Each point depicts the RIR over the previous 1s.  

 

Fig. 2. a) Human interictal EEG Signal; b) classical FFT analysis of the EEG signal, sampling 
rate is 256 Hz; c) temporal evolution of RIRs for the clinically relevant frequency sub-bands for 
the EEG signal. The dominant sub-band is delta (0.5-3.5 Hz). 

We calculated the average RIRs over the whole time of simulation (i.e., T = 1 min) 
and used this vector of values as a fitness function for our GA. After 50 generations 
with 6 solutions in each population we obtained the following result for the best solu-
tion, illustrated in Fig. 3. Solutions for reproduction were being chosen according to 
the roulette rule and the crossover between parameter values was performed as an 
arithmetic average of the parent values. We performed the same FFT analysis as for 
the real EEG data with the Min/Max frequency = 0.1 / 50 Hz. This particular SNN 
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had an evolved GRN with only 5 genes out of 16 changing periodically their expres-
sion values (s100beta, GABRB, GABRA, mGLuR3, c-jun) and all other genes having 
constant expression values (see e.g. Fig. 4) with, either minimal or maximal. 

 

Fig. 3. a) Local field potential of the SNN with GRN; b) classical FFT analysis of the SNN 
LFP, sampling rate is 1000 Hz; c) temporal evolution of RIRs for clinically relevant frequency 
sub-bands for the LFP. The dominant sub-band is again delta (0.5-3.5 Hz). 

 

Fig. 4. Changes in gene expression values over time in the model GRN 

4   Discussion 

Our preliminary results show that the same signal processing techniques can be used 
for the analysis of both the simulated LFP of the SNN CNGM and the real EEG data 
to yield conclusions about the SNN behavior and to evaluate the CNGM at a gross 
level. With respect to our neurogenetic approach we must emphasize that it is still in 
an early developmental stage and the experiments assume many simplifications. In 
particular, we would have to deal with the delays in equation (2) more realistically to 
be able to draw any conclusions about real data and real GRNs. The LFP obtained 
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from our simplified model SNN is of course not exactly the same as the real EEG, 
which is a sum of many LFPs. However LFP’s spectral characteristics are very simi-
lar to the real EEG data, even in this preliminary example. Based on our preliminary 
experimentation, we have come to the conclusion that many gene dynamics, i.e. many 
interaction matrices Ws that produce various gene dynamics (e.g., constant, periodic, 
quasiperiodic, chaotic) can lead to very similar SNN LFPs. In our future work, we 
want to explore statistics of plausible Ws more thoroughly and compare it with bio-
logical data to draw any conclusions about underlying GRNs. Further research ques-
tions are: How many GRNs would lead to similar LFPs and what do they have in 
common? How to use CNGM to model gene mutation effects? How to use CNGM to 
predict drug effects? And finally, how to use CNGM for the improvement of individ-
ual brain functions, such as memory and learning? 
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Abstract. In this paper, a user-centred innovative method of knowledge 
extraction in neural networks is described. This is based on information 
visualization techniques and tools for artificial and natural neural systems. Two 
case studies are presented. The first demonstrates the use of various information 
visualization methods for the identification of neuronal structure (e.g. groups of 
neurons that fire synchronously) in spiking neural networks. The second study 
applies similar techniques to the study of embodied cognitive robots in order to 
identify the complex organization of behaviour in the robot’s neural controller. 

1   Introduction 

Knowledge extraction using neural networks typically involves the use of analytical 
methods for the automatic identification of information relevant to specific research 
goals. For example, the utilization of a finite union of open polytopes permits the 
transparent expression of knowledge embedded in recursive determinist 
perceptron [1]. In this paper, a complementary method for knowledge extraction from 
artificial and natural neural networks is presented. This is characterized by the active 
role of the researcher in the exploration of the neural network representation and the 
search for in-depth knowledge. This method is based on recent research and tools for 
information visualization in neural systems. 

Information visualization [2], [3] is one of the fields of computer science that deals 
with the innovative representation of vast quantities of data. Consequently, it exploits 
advances in interactive computer graphics hardware, mass storage, and data 
visualization in order to visualize information. One of the fundamental principles of 
this field is the role of the investigator interacting with the data being analyzed and 
their ability to steer the exploration, in order to achieve greater insight. Thus, the 
investigator needs to be able to navigate throughout the whole dataset, in order to 
identify and explore specific subsets of interest. However, when visualizing large 
datasets, the issue of efficient navigation is amplified. It is important that the user is 
able to move to points of interest quickly without becoming disoriented within the 
dataset. Thus, it can be beneficial to restrict the mechanisms by which the user can 
navigate within the dataset. Therefore, the user can be constrained to follow 
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predetermined paths throughout the data space. In addition to navigation 
functionality, the investigator should also have control over the data representation 
itself. Thus, in order to truly steer the analysis, the investigator should be able to 
manage and overview the whole dataset, they should be able to filter and manipulate 
the data, select non-sequential subsets of interest and ultimately “drill-down” to 
inspect the actual data values that underpin the data represented. This follows the 
design principles of the much cited “information seeking mantra” coined by 
Shneiderman. 

Recent research has focused on the development of new information visualization 
techniques and tools for neural networks. This includes the visualization of 
information from neuroscience research and the analysis on neural activity in 
embodied cognitive systems. In this paper, two such case studies are described. The 
first study demonstrates the use of information visualization methods for the 
identification of structure (e.g. groups of neurons that fire synchronously) in spiking 
neural networks. The second study applies the same techniques to  embodied 
cognitive robots in order to identify the complex organization of sensorimotor 
behaviour and its management by a neural controller. 

2   VISA: Information Visualization for Spiking Neural Networks 

The key to numerous issues within the field of neuroscience is linked with the 
theoretical understanding of vast quantities of experimental neural data. In particular, 
investigation of information processing in the nervous system is associated with the 
analysis of this vast resource of neural data, namely, simultaneously recorded multi-
dimensional spike train data.  

Much of the research focus in this area is focused around the principle of 
synchronization of neural activity [4], [5]. However, the experimental evidence that is 
currently available requires further, in-depth analysis in order to extract the 
knowledge inherent in these datasets. It is clear that analysis of neural data such as 
multi-dimensional spike trains using traditional tools like raster plots and cross-
correlograms increases in complexity as the size of the datasets increase. Therefore, 
new methods of analyzing this data, designed specifically for large datasets, are 
required.   

Traditionally, analysis of multi-dimensional spike train data has not supported real-
time user interaction. In 1996, Shneiderman [2] identified user interaction as a 
primary essential component of information visualization representations. 
Shneiderman also introduced the “information–seeking mantra” that highlighted user 
requirements in this area. It specified that users should have the capability to 
overview data in order to see the whole dataset in a single display. The mantra also 
recommended that users needed to be able to zoom in on “interesting” areas of their 
datasets and to filter out parts of the datasets not required for the current investigation. 
Finally, the mantra specified that users needed to be able to get details-on-demand, 
access to the fundamental data items which were used to create the visual 
representation.  

Based on this mantra, a toolbox of interactive methods for exploring neural data 
was developed by Stuart and collaborators [6] as part a research project called VISA, 
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Visualization of Inter-Spike Associations. This toolbox facilitates zooming, filtering 
and manipulation of neural data and supports the use of multiple views of the same 
data, as well as real time interaction. One of the key visualization tools currently 
included within VISA is subsequently described. 

2.1   Traditional Parallel Coordinates 

Interest in parallel coordinates was rejuvenated by Inselberg et al. [7]. The true value 
of parallel co-ordinates is their ability to represent vast quantities of multi-variate data 
in a simply 2-d representation. Traditional presentation of parallel coordinates denotes 
a series of data points as vertical axis coordinate values distributed along a horizontal 
axis.  

 
 
 
 
 

 

 

Fig. 1. Representation of the points p(2,1,3) and q(3,2,0) using parallel coordinates 

Thus, a specific point in n-dimensional Euclidean space is represented by n vertical 
axes values distributed along the horizontal axis. To illustrate this, consider the two 3-
dimensional points p(2,1,3) and q(3,2,0). Refer to Figure 1 for an illustration of these 
two points in 3-dimensional space represented in parallel coordinates. 

2.2   The Use of Parallel Coordinates in VISA  

Parallel coordinates are traditionally used to identify correlations between variables 
and to convey aggregation information. Although the VISA parallel coordinate 
tool [8] is based on the original method, it has been adapted for use in the analysis of 
spiking activity in neural networks.  

In brief, the original multi-dimensional spike train dataset is transformed using a 
well known and respected method of analysis called the gravity transform algorithm 
defined by Gerstein et al [9]. Thus, the data under investigation is now the position of 
n particles in n-dimensional space where n is the number of neurons initially 
specified. The traditional means of displaying output from the Gravity Transform 
does not scale up easily for large numbers of particles. Thus, parallel coordinates were 
introduced to represent the n-dimensional positions of the n particles. Therefore, all n 
particle parallel coordinates were displayed simultaneously on the display to represent 
the position of all n particles at a specific point in time. Subsequently, animation was 
used to represent the movement of the particles over time. Numerous trials have been 
carried out using this technique to support the identification of neuronal assemblies 
from multi-dimensional spike train datasets. The success of these trials is well 
documented [8,10]. Furthermore, this work continues as the parallel coordinate tool 
undergoes further adaptation [11].  
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3   Sensrimotor Knowledge Integration in the Neural Controller of 
Cognitive Robots 

Research in cognitive systems, including natural (animals and humans) and artificial 
(agents, robots) systems, supports increased understanding of the relationship between 
cognitive, neural, social and evolutionary factors. Various researchers are working on 
the design of cognitive robots that have sensorimotor capabilities, to interact with 
their environment, and cognitive and linguistic skills to build internal representations 
of their physical social environment and talk about them [12]. The complex patterns 
of interaction between the different sensorimotor and cognitive capabilities require 
the development of new methodologies to increase understanding of the cognitive 
systems. Information visualization has a role to play in the analysis of these complex 
sets of behavioural and cognitive data [13].  

A new study based on the application of parallel coordinates to the visualization of 
activity in the neural controllers of linguistic cognitive robots [14] is presented. The 
primary aim is to investigate the interaction between sensory neurons and the internal 
categorical and linguistic representations in simulated robotic agents that are able to 
interact with two different objects (i.e. touch a sphere and avoid a cube). These agents 
are also able to develop, through evolution, a shared lexicon to name the two objects.  

The cognitive robotic model consists of a 3-segment arm with 6 degrees of 
freedom (DOF). Each segment consists of a basic structure of two cylindrical bodies 
and two joints. This structure is replicated three times, with the final segment being 
shorter to represent the hand of the robot (with no fingers). The controller of each 
individual robot consists of an artificial neural network with 11 sensory neurons 
connected to 3 hidden neurons. These connect to 8 output neurons. The first 9 sensory 
neurons encode the angular position (normalized between 0.0 and 1.0) of the 6 DOFs 
and the state of three contact sensors located in the three corresponding arm segments. 
The other 2 sensory neurons receive their input from the other agents (name of 
objects). The first 6 motor neurons control the actuators of the corresponding joints. 
The motor is activated so that it is able to apply a force proportional to the difference 
between the current and the desired position of the joint. The last 2 output neurons 
encode the signal to be communicated to the other agents. Agents are evolved for 
their ability to interact with the objects, using a genetic algorithm. 

To investigate the neural control strategies for the robot’s sensorimotor and 
cognitive behaviour, a dataset from two experimental trials was created. In the first 
trial, the activity of all the input, hidden and output units were recorded whilst the 
robot interacted with a sphere. The second trial records the neural activity during the 
interaction of the robot with the cube. Each trial produced a dataset of 16 variables 
consisting of the 4 linguistic units, the 9 input units (3 touch sensors and 6 
proprioceptive), and the 3 hidden nodes. In addition, each trial lasted for 150 cycles of 
actions (i.e. neural networks activations), thus producing 150 x 16 data points. All 
activation values (2 x 16 x 150) were plotted in the parallel coordinate representation. 
This was produced by a modified version of the VISA software.  

This parallel coordinate tool produces a dynamic and interactive representation of 
the whole dataset. For example, it is possible to search for the different patterns of 
activation that distinguish the two behavioural tasks. Initially, the whole dataset, 
150 x 16 cycles, was plotted using a different colour to represent each of the two 
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tasks. During experimentation, the activation cycles were identified and eliminated. 
Note: these were the lines (parallel coordinates) from the two tasks which were 
coincident (i.e. the same unit has the same activation value in both tasks). This 
process of eliminating redundant (less informative) cycles gradually revealed the 
small number of critical cycles in the display. These are the lines (parallel 
coordinates) from each task that have distinct activation patterns. 

 

 

Fig. 2. Parallel coordinate display for cognitive robotics. See text for explanation. 

Figure 2 shows a snapshot of the dynamic information visualization process with 
the data from the robotic experiment. The display shown solely depicts the six critical 
cycles of interaction (cycles 65-70 for each interaction) when the robot arm makes 
contact with the two objects (light gray for spheres, dark for cubes). This display 
clearly shows, with a single view, which input and hidden units are involved values in 
the two tasks. During interaction with the sphere, the units active solely for the 
touching behaviour are the first 2 proprioceptive sensors (vertical axes 5 and 6), the 
touch sensor of the second arm segment (axis 10) and the 3rd hidden unit (the final 
vertical axes). Instead, the units that specialize for the cube avoiding behaviour are the 
pairs of proprioceptive sensors for the 2nd and 3rd segment (respectively units 8-9 and 
11-12) and the 1st hidden units (vertical axis 14).  

4   Conclusions 

The two studies presented in this paper demonstrate the usefulness of information 
visualization methods for knowledge extraction in various types of neural network. In 
the first study, the parallel coordinate method included in the VISA software project 
has supported the identification of common activity in networks of spiking neurons. 
In the second study, research on cognitive robots and the further adapted parallel 
coordinate tool was used to identify the input and output units involved in the neural 
control of the sensorimotor behaviour in robots.  

The work presented here is an innovative approach to knowledge extraction in 
artificial neural networks. Instead of relying solely on formal methods for knowledge 
elicitation, this approach is based on an active exploration and visualization of neural 



520 L. Stuart, D. Marocco, and A. Cangelosi 

 

network data. This design is largely based on Shneiderman’s information–seeking 
mantra, where users have the capability to “overview data”; to “zoom and filter” data 
and also to obtain “details-on-demand”. 

Future research is looking at the development of new information visualization tools 
for neural networks and cognitive robotics research as well as the further use of current 
tools. For example, extension of the parallel coordinate tool is required in order to 
support greater investigation of the various interrelationships between the neural 
network units. To achieve this, the tool will require the additional functionality to 
enable the user to move variables (the vertical axes) along the horizontal axis. This will 
enable users to analyse the precise relationships between any two variables which are 
not adjacent by default in the original display. In addition, the user interface will be 
further developed. It is important that the user is able to specify the colours used to 
represent both the lines (parallel coordinates) corresponding to correct and incorrect 
behaviours, and to highlight differences in the pattern of the neural network activation. 
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Abstract. The idea of using RBF neural networks for fuzzy rule extraction from 
numerical data is not new. The structure of this kind of architectures, which 
supports clustering of data samples, is favorable for considering clusters as if-
then rules. However, in order for real if-then rules to be derived, proper antece-
dent parts for each cluster need to be constructed by selecting the appropriate 
subspace of input space that best matches each cluster’s properties. In this paper 
we address the problem of antecedent part construction by (a) initializing the 
hidden layer of an RBF-Resource Allocating Network using an unsupervised 
clustering technique whose metric is based on input dimensions that best relate 
the data samples in a cluster, and (b) by pruning input connections to hidden 
nodes in a per node basis, using an innovative Genetic Algorithm optimization 
scheme.  

1   Introduction 

Extracting if-then rules from numerical data using an RBF neural network can be 
achieved in the following framework: (a) The RBF-hidden nodes combine inputs in 
an AND form creating the antecedent part of the rule; that is rule antecedents are 
considered the input to hidden connections, (b) output nodes combine the outputs of 
the hidden nodes in an OR form; that is the rule consequents are the hidden to output 
connections, (c) knowledge in the form of if-then rules can be derived from clustering 
numeric data, (d) fuzziness is achieved both in the hidden and the output nodes forc-
ing the activation and final output to be in the interval [0 1] instead of having crisp 
values.   

Although the above framework seems reasonable there are two important problems: 
(i) All inputs are used in the antecedent part of the rule; this leads to inefficiency in 
creating real linguistic rules especially in cases where the input dimension is relatively 
high and (ii) the classic clustering approach used in RBF neural networks does not 
account for specifying different weights for the various input dimensions. While for the 
second problem one could consider the use of a different metric for creating a more 
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“rule-like” clustering, the first problem is not that easy to solve. In this paper we ad-
dress both problems by:  (1) using Genetic Algorithms for selecting the appropriate 
inputs for each hidden node separately; this is radically different from the classic com-
bination of RBF and GAs which focus in feature selection for the whole network 
[1][2][3] and (2) applying an unsupervised clustering technique, that is based on a data 
dependent metric, for initializing the parameters of the hidden nodes in the RBF net-
work. In the proposed method clusters are created by data samples that are based on 
these dimensions that relate them best. This is clearly a more “rule-like” approach that 
the classic unsupervised clustering methods. The modifications proposed above are 
applied on an modified Resource Allocation Network consisting of RBF hidden nodes 
to account for learning required for rule extraction from numerical data. 

2   Preliminaries 

One approach for extracting rules from numerical data is to apply a supervised train-
ing procedure on a domain D from which the learner has access to a representative 

example set E of pairs { x , )(xd } (numerical data), nx ℜ∈ , md ℜ∈ . By the end of 

learning, performed on set E, a set of parameters G (typically represented as matrices) 

that model the function png ℜ→ℜ: , is available so that ε<− )()( xgxG , >0.  

In the proposed method the set of parameters consists of four matrices correspond-
ing to the mean vectors (matrix M) and spreads (matrix ) of the hidden RBF nodes, 
to the association of the hidden nodes to output classes (matrix W), and to the asso-
ciation of input dimensions to hidden nodes (matrix A), i.e., which subspace of input 
space need to be considered for each hidden node for maximum performance in clus-
tering. The values of matrices M,  and W are estimated during the formal training of 
the RBF network (see Section 2.2) while the matrix A is computed by applying GAs 
optimization to the (already) trained RBF network (see Section 3).  

2.1   Unsupervised Clustering of High Dimensional Data  

In this work, we extend the classic agglomerative clustering algorithm in order to 
incorporate soft feature selection in the inter cluster distance estimation process, thus 
providing an output that is more effective (better results) and more efficient (faster 
convergence) for initializing the network. Let 1c  and 2c  be two clusters of data sam-

ples. Let also ir , 1..i F  be a distance metric defined in space F  the 

count of distinct metrics that may be defined among a pair of clusters, S  the count of 
features for the data samples and iS  the count of features considered by the i -th sam-

ple-to-sample distance metric. A distance metric between the two clusters, when con-
sidering the i -th sample-to-sample distance metric, is given by 

1 2,
1 2

1 2

( , )

,
i i i

a c b c
i

r a b

f c c
c c

where ia , ib  are the positions of data samples a  and b  

iS S⊆ ,
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in feature space 1c , 2c  are the cardinalities of clusters 1c and 2c  respectively 

and  is a constant. The “context” is a selection of features that should be con-

sidered when calculating an overall distance value; we define it as a vector Fctx  

with 
1

1
F

i
i

ctx . Given a context, the overall distance between clusters 1c and 2c  is 

calculated as *
1 2 1 2 1 2
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. For the sake of space, the proof for this is omitted 

and the reader is directed to [4] for more details on the proposed extension to the 
agglomeration process.  

2.2   RBF Network Initialization and Training 

Learning is incorporated into the network using the gradient descent method, while a 
squared error criterion is used for network training. The squared error e t  at iteration 

t  is computed in the standard way: 

2
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k k
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 where ( )kd t  is the de-

sired output and ( )ky t  is the output of neuron k  given by 

2

2

1

1

k

k

z

k z

e
y t

e ,  
T

k kz w t
 where 1 2 ( ), ...

T

k k k kq tw w w w
 are the weights connecting the RBF hid-

den neurons with the output neurons (note that these parameters are constrained to 
have binary values so as to better accommodate the extraction of if-then rules) and 

t
 is the output of the hidden layer. For the sake of space, the reader is directed to 

[6] for more details on the training of the RBF network. 

3   Derivation of the Antecedent Part of If-Then Rules Using 
Genetic Algorithms 

The last step for the creation of if-then rules is the derivation of the antecedent part 
through the estimation of matrix A. The initialization of the hidden layer based on the 
results of the clustering method, described in Section 3, supports the construction of 
clusters with similarities in subspaces of the input space. However, when the training 

iS , 
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of the RBF network concludes all inputs are connected to all hidden neurons, thus all 
values of A matrix are set to one. In order to construct a proper antecedent part sev-
eral input connections to hidden neurons need to removed. Moreover, these connec-
tions need, in general, to be different for each hidden node so as allow us to consider 
each hidden neuron as an if-then rule. In order to accommodate the above requirement 
a genetic algorithm optimization procedure is followed as described below.   

Let iφ  be the activation of i-th hidden neuron and I be the set of data samples of 

training set E (which in addition to I contains the corresponding target vectors). Let 
also iS  be the subset of I ( ISi ⊂ ) such that every data sample belonging to it 

( iSx ∈∀ ) activates the most the i-th hidden neuron. The aim of the training is to find 

a string that optimizes the activation iφ  over set iS . For this purpose a genetic algo-

rithm (GA) optimization scheme is used. We utilize a “per rule” feature selection 
methodology for the construction of the antecedent part of the rules. The coding that 
has been selected models the presence or absence of the corresponding input dimen-
sion in the antecedent part of a rule as 1 or 0 respectively. The fitness function F that 

is used is given by  
∈

=
iSx

i
i

i x
Scard

SF )(
)(

1
)( φ where card(Si) is the cardinality of set 

iS  and )(xiφ  is the activation of the i-th hidden neuron when fed by the input vector 

x . The objective is to find the binary string that maximizes the fitness function 

)( iSF . The realization of the genetic operators reproduction, mutation and crossover 

is as follows: Reproduction. The fitness function )( iSF  is used in the classical “rou-

lette” wheel reproduction operator that gives higher probability of reproduction to the 
strings with better fitness according to the following procedure: i) an order number, q, 
is assigned to the population strings. That is q ranges from 1 to Np, where Np is the 
size of population, ii) the sum of fitness values (Fsum) of all strings in the population 
is calculated, iii) the interval [0 Fsum] is divided into Np sub-intervals each of one 
being, iv) a random real number R0 lying in the interval [0 Fsum] is selected, v) the 
string having the same order number as the subinterval of R0 is selected and vi) steps 
(4) and (5) are repeated Np times in order to produce the intermediate population to 
which the other genetic operators will be applied. Crossover. Given two strings of 
length k (parents) an integer number kr ℵ∈ is randomly selected. The two strings 

retain their gene values up to gene r and interchange the values of the remaining 
genes creating two new strings (offspring). Mutation. This operator is applied to each 
gene of a string and it alters its content, with a small probability.  

4   Experimental Results  

The iris data were used to validate the proposed method as far as the rule extraction 
efficiency and the classification performance is concerned. When trained with the iris 
data the proposed combination of RBF-RAN and GAs creates three rules and 
achieves an overall classification performance of 96.7%. The estimated matrices are 
given below: 
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We should note that the pruning of input to hidden nodes connections due to the GA 
optimization has no degradation effect on the classification performance which re-
mains 96.7%.  Comparisons with other methods (with the help of [5]), as far is the 
classification performance (resubstitution accuracy), are given in Table I. We observe 
that the proposed method (RBF-GAs) outperforms all listed soft computing tech-
niques, with the exception of FuGeNeSys, creating as few as three rules. More results  
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Fig. 1. The proposed RBF architecture for rule extraction 
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Table 1. Comparison of RBF-GAs with other techniques for Iris Data Classification 

Method Rules Resubstitution Accuracy (%) 
FuGeNeSys 5 100 
NEFCLASS 7 96.7 

ReFuNN 9 95.3 
EFuNN 17 95.3 
FuNe-I 7 96.0 

RBF-Gas  3 96.7 

from the application of the proposed methodology are available and equally promis-
ing, but are omitted for the sake of space. 

5   Conclusions 

In this paper we propose an innovative hybrid architecture, which combines resource 
allocating properties, novel clustering techniques for multi-dimensional problems and 
evolutionary weight connection purging in order to incorporate (a) fast classifying 
capabilities, (b) expert knowledge modeling, (c) knowledge extraction from numerical 
data. The proposed approach embeds rule-based knowledge directly into its architec-
ture while its resource allocating structure enables new rules to be created. The latter 
is very important for two reasons: (a) there are several domains in which no estima-
tion about the number of rules that are required to solve a particular problem is avail-
able, (b) rules can be created to model a changing of a context. 
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Abstract. Many practical tasks require discovering interconnections between 
the behavior of a complex object and events initiated by this behavior or corre-
lating with it. In such cases it is supposed that emergence of an event is pre-
ceded by some phenomenon – a combination of values of the features describ-
ing the object, in a known range of time delays. Recently the authors suggested 
a neural network based method of analysis of such objects. In this paper, the re-
sults of experiments on real-world data are presented. The method aims at re-
vealing morphological and dynamical features causing the event or preceding 
its emergence. 

1   Introduction 

The task of search of correlations in multi-dimensional time series as one of the tasks 
of spatiotemporal image analysis is very topical [1]. A significant condition of such 
problems being solved at present by various methods is zero delay between the cause 
(or precursor) of the event and the event itself (or this delay is known and fixed). One 
more important feature is the opportunity to perform "active investigation" of depend-
ences, i.e. to vary input conditions and to record the response. At the same time, only 
the acceptable delay range is given in many problems. Thus, search for temporal cor-
relations should be performed in a sufficiently wide time range. One more obstacle is 
inability to influence the object of investigation ("passive observation").  

A demonstrative example is the problem of forecasting geomagnetic storms by re-
vealing those phenomena on the Sun surface that initiate the storm or precede its 
emergence. Similar tasks also exist in other areas – medicine, seismology, finance etc. 
In [2,3], the authors have suggested a method for analysis of multi-dimensional time 
series with the purpose of forecasting occurrence of some events and finding their 
precursors – phenomena, i.e. some unknown combinations of the values of the fea-
tures describing the object. The algorithm is based on the use of a committee of neural 
networks (NN) trained on different segments of the analyzed time series. A significant 
feature of the developed algorithm is the possibility of searching non-linear intercon-
nections between the event and the phenomenon.  
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2   Description of the Algorithm 

Let us assume that in the analyzed multi-dimensional time series, possible range of 
delays between an event and its precursor (from Tmin to Tmax, Fig.1) is set a priori. 
This range determines search interval T=Tmax-Tmin, during which one should reveal 
a phenomenon (i.e., a combination of the input features) that has initiated the event. 
Let us further assume that for the event initiation, existence of phenomenon during 
some specific time interval (initiation interval Tinit) is required. The initiation interval 
is estimated from a priori considerations as well; it should exceed the duration of the 
sought phenomenon. Finally, assume that the length of the event is much smaller than 
the search interval. The goal is to find the phenomenon inside the search interval that 
is the one most probably responsible for the event initiation, and to determine the de-
lay between the event initiation and the event itself. 

To accomplish this task, the analyzed search interval is split into overlapping seg-
ments with length equal to initiation interval Tinit. Relative position of neighboring 
segments is the same and it is characterized by the overlapping interval. A separate 
neural network (NN), which is trained to forecast the event based on the features 
within this segment, is built for each segment. The number of inputs for each NN is 
equal to the product of the segment length and the dimensionality of the input time se-
ries. The number of NN is calculated from the lengths of the search interval and the 
overlapping interval, so that the search interval is always covered by overlapping data 
segments, each of which is used as the source of input data for its corresponding NN. 

During training, the search interval is shifted along the time axis. When the right bor-
der of the search interval is situated at the minimum possible delay between the phe-
nomenon and the moment of the event emergence, the desired output of the NN for each 
of the segments is set to 1. In such case, the input variables for one or several neighbor-
ing NNs with overlapping segments contain the phenomenon that has initiated the 
event. As the delay between the phenomenon and the event is assumed to be constant, 
for each event the phenomenon falls into the segments belonging to the same NNs.  

Fig. 1. A 1-dimensional illustration of the algorithm. The event is initiated by 0-1 transition. 
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In all other cases, the desired output is set to zero. Thus, different NNs of the 
committee, having the same desired output, are fed each with is own segment of the 
analyzed multi-dimensional time series as the input data. In this situation those of the 
networks whose segments happen to contain the precursor (or at least its part), will 
demonstrate more efficient learning than the networks whose input data is in no way 
connected with the event (most probably the latter will not learn at all).  

When the training is over, one may make a conclusion that the sought phenomenon 
(the precursor of the event) falls into the segment of the network that gives the most 
exact prediction of the event (preferably on independent data) as the result of the 
training. Shifting the search interval along the time axis and applying the set of the 
NNs to corresponding segments of the analyzed time series, one can forecast the oc-
currence of an event. The delay between the phenomenon and the event is thus deter-
mined with the precision not worse than the length of the initiation interval. Further 
refinement of the delay value may be achieved by change of the overlapping interval 
of the segments corresponding to different networks.  

The described algorithm has been applied to a set of model tasks. The results of 
model experiments demonstrate efficiency and high potential of the suggested ap-
proach [4,5]. 

3   Results of Experiments with Space Physics Data 

To solve real-world problems, a modification of the algorithm was developed, which 
forecasts continuous value rather than a binary one. Using a committee of neural net-
works trained on different segments of time series makes it possible (as in binary ver-
sion of the algorithm) to discover nonlinear interrelations between the values of the 
forecasted variable and the input features, as well as to determine which time interval 
is the most appropriate one for phenomena search. 

3.1   Forecasting Geomagnetic Dst index  

This experiment was devoted to forecasting hourly values of the geomagnetic storm 
index Dst [6]. The values of the Dst index were provided by WDC-C2 KYOTO [7]. It 
is known that the development of a geomagnetic storm depends primarily on two so-
lar wind parameters: Bz-component of the interplanetary magnetic field (IMF) and so-
lar wind velocity V. The parameters of the solar wind were recorded by the satellite 
ACE [8], located in the point of gravitational equilibrium between the Sun and the 
Earth. The characteristic duration of the disturbance process registered by the ACE 
satellite is about several hours. 

The values of the solar wind velocity and of the Bz-component of the IMF for 2000 
- 2003 years were used as input data. The data was split into training set (2000 - 
2001), test set (2002) and examination set (2003). The search interval was 24 hours, 
the initiation interval was 8 hours, and t he overlapping interval was 4 hours. A com-
mittee of 5 neural networks (three-layer perceptrons with 10 hidden neurons) was 
used.  

The algorithm discovered the correct range of possible delays between the phe-
nomenon (being the precursor of geomagnetic storm) and the event (i.e. storm itself). 
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Namely, it was automatically determined that the values of the solar wind parameters 
leading to a geomagnetic storm are registered by the satellite at 12 hours or less be-
fore the beginning of a geomagnetic storm. According to the results obtained on ex-
amination set (Fig.2), correlation coefficient between actual and forecasted values of 
Dst-index for the best network in the committee is 0.7. This may indicate that the 
sought phenomenon (the precursor of the event) may be described more adequately 
with an extended set of input features. Nevertheless, taking into consideration the 
complexity of the task, these results demonstrate the effectiveness of the approach. 

 

Fig. 2. Results of forecasting Dst index on examination set (May 13 2003 to June 30 2003).  
Top to bottom: Dst index of geomagnetic activity (dark curve – actual values, light curve – 
forecasted values); Bz-component of interplanetary magnetic field; solar wind velocity V. 

In further experiments, hourly values of the solar wind velocity, of the Bx, By, Bz - 
components of the IMF, and of the solar wind density for 2000 - 2003 years were 
used as the input data. The algorithm efficiency increased on the higher dimensional 
data (the correlation coefficient for the best NN approached 0.8).  

During this experiment, an attempt was made to identify the role of each solar 
wind parameter by calculating its contribution factor. The contribution factors were 
based on the analysis of the weights of perceptron (NN). Such factors are a rough 
measure of the significance of each input variable relatively to other input variables in 
the same NN. The higher is the value of the contribution factor, the more the corre-
sponding variable is contributing to the prediction. The Bz - component of the IMF is 
the most important parameter. Influence of solar wind velocity and density is practi-
cally equal and exceeds that of Bx, By - components of the IMF. The obtained estima-
tions of significance of the solar wind parameters are in partial agreement with those 
reported in [6].  
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3.2   Forecasting Solar Wind Velocity 

Periodic increase of solar wind velocity may be correlated with emergence of the so-
called large coronal holes (structures on the Sun surface) next to central Solar merid-
ian. A specialized algorithm for automatic detection of coronal holes on the Sun im-
ages was used for processing daily snapshots of the Sun, made by the telescope EIT 
(Extreme ultraviolet Imaging Telescope) from the satellite SOHO (Solar & Helio-
spheric Observatory) at 284Å wavelength, for the 1997 - 2004 years. The database 
contains daily data about total area of coronal holes in the central region of the Sun 
image. With these data, the values of solar wind velocity were forecasted using the 
suggested algorithm. The parameters of the solar wind were taken from the satellite 
ACE [8]. 

Training set contained data from January 1, 2002 to June 30, 2003, test set con-
tained data from July 1, 2003 to December 31, 2003, and examination set contained 
data from January 1, 2004 to September 1, 2004. Search interval was set to 10 days, 
initiation interval to 3 days, and overlapping interval to 2 days.  

The algorithm determined automatically the range of delays between the moment 
of passing of the central Sun meridian by equatorial coronal hole and the moment of 
increasing of the solar wind velocity near the Earth orbit. Namely, it was found that 
the delay corresponding to the maximum of multiple determination coefficient (R-
squared) was in the range of 1 to 3 days. The results on examination set are presented 
at Fig.3. Correlation coefficient between actual and forecasted values of solar wind 
velocity for the best network in the committee is 0.58.  

The results obtained in this experiment were compared to the results obtained by 
alternative methods for 1997 - 2004 years. Correlation coefficient between solar wind 
velocity and total area of coronal holes (shifted for the period of 1 to 6 days) was cal-
culated. It was determined that the delay corresponding to the correlation coefficient 
maximum, varies from year to year, and is 3-4 days on average, what was in good 
agreement with the results obtained using the developed algorithm. 

 

Fig. 3. Results of forecasting solar wind velocity on examination set (January 1 2004 to Sep-
tember 1 2004). Dark curve – actual values, light curve – forecasted values. 
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4   Conclusion 

Recently, the authors have suggested a method for analysis of multi-dimensional time 
series with the purpose of forecasting occurrence of some events and finding their 
precursors – phenomena, i.e. some unknown combinations of the values of the fea-
tures describing the object. The algorithm is based on the use of a committee of neural 
networks trained on different segments of the analyzed time series. A significant fea-
ture of the developed algorithm is the possibility of searching non-linear interconnec-
tions between the event and the phenomenon. The approach may be used both for 
forecasting binary and continuous values. 

The suggested approach was also applied to real world problems. First, geomag-
netic storm index Dst was forecasted using Bz-component of the interplanetary mag-
netic field and solar wind velocity. Second, the values of solar wind velocity were 
forecasted using daily data about total area of coronal holes in the central region of 
the Sun image. These data were obtained using a specialized algorithm processing 
daily snapshots of the Sun. In both experiments, the algorithm correctly determined 
the range of delays between the precursor and the event, and correlation coefficient 
between actual and forecasted values on independent data set was 0.7 and 0.58 for the 
first and second task, respectively.  

The results obtained in experiments on model and real world problems demonstrate 
the perspective of the approach. At the next step of the algorithm development, a set 
of input features describing a phenomenon should be refined automatically once a 
range of delays containing precursor is found. Gradual reduction of the input data di-
mensionality along with increasing the precision of delay determination will increase 
the algorithm efficiency on high dimensional data.  

This work has been performed under financial support of the following institutions: 
Russian Foundation for Basic Research (RFBR), project no. 04-01-00506. 
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Abstract. The paper presents a method for time series prediction using a com-
plete counterpropagation network with delay kernels. Our network takes advan-
tage of the clustering and mapping capability of the original CPN combined with
dynamical elements and become able to discover and approximate the strongest
topological and temporal relationships among the fields in the data. Experimental
results using two chaotic time series and a set of astrophysical data validate the
performance of the proposed method.

1 Introduction

Over the last two decades, a wide variety of new techniques for analyzing and manipu-
lating time series have been proposed. Neural Networks have become one of the most
popular analytical tool in providing solutions to difficult problems. The complexity of
useful neural network structures varies from the simple adaline to multi-dimensional
arrays with full interconnection utilizing thousands of neurons and multiple feed-back
paths. Many neural networks models for time series prediction have been reported:
standard feedforward networks (MLP), Elman networks, RBF networks, TDNN, Finite
Impulse Response (FIR) networks, with the latter having the distinction of being the
winning entry in the Santa Fe Institute Time Series Prediction Competition [10].

Kohonen’s Self-Organizing Map (SOM) [1] has also found practical application in
temporal sequence processing. It is a difficult problem to implement selective responses
to dynamical phenomena into the simple SOM, but several extensions using short-term
memories and feedback loops have been proven as workable.

The counterpropagation network (CPN) was developed from the instar-outstar
model as a network that self-organizes itself to implement an approximation to a func-
tion. CPN was successfully used for function approximation, pattern recognition, sta-
tistical analysis and data compression [3]. In our previous work [4], we extended the
approximation capabilities of the original forward-only CPN by the implementation of
delay kernels in its competitive layer and applied the new method to the prediction of
currency exchange rates.

In this work we further extend the new method, by implementing delay kernels
in the complete version of the original CPN. The new complete counterpropagation
network with delays (CCPND) will be validated first by approximating the complex
form of the radial velocity function of a spiral galaxy. As a second task, the prediction
of chaotic time series will be approached.
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2 Counterpropagation Network with Delays

The CPN architecture was synthesized by Hecht-Nielsen from the Self-Organizing Map
of Kohonen and Grossberg’s outstar structure [2]. The basic idea is that, during adap-
tation, a given set of vector pairs (x1, y1), (x2, y2), . . . , (xL, yL) are presented to the
network at the two opposite input layers and then propagate through the network in a
counterflow manner to give as return the output vectors x’ and y’ as approximations of
the input vectors. A schematic representation is shown in Fig.1. The role of SOM is

Fig. 1. Architecture of the counterpropagation network with delays

to perform an initial clustering of the input data and to attain a spatial ordering of the
map, in the sense that similar input patterns will produce response in neighboring units.
Thus, the asymptotic values of the weight vectors will define the vector quantization
of the pattern space. But the original SOM idea was based on matching of static signal
patterns only. Bringing temporal dependence into the model would extend its capabil-
ities, making it better suited to a variety of tasks such as speech recognition, system
identification, time series prediction and other problems where dynamical systems are
involved. Therefore we expanded the SOM original learning rule by adding a delay
kernel [4], defined as a locally integrable function, at least piece-wise continuous k(t),
with a finite L1 norm and further assume that the best matching units and its’ neighbors
will change their weights according to the rule

dw(t)
dt

= −α(t)[w(t) ∗ k(t)− x], 0 < α(t) < 1 (1)

where ∗ denotes the convolution and α(t) is the learning rate, that decreases exponen-
tially as learning proceeds. By taking the discrete form of equation (1) and inserting the
neighborhood function hUBMU(x)(t), we obtain the following learning rule:
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wj(t+ 1) = wj(t)− α(t)hUBMU(x)(t)[wj(0)k(t)+

+wj(1)k(t− 1) + . . .+ wj(t− 1)k(1)− x(t)]
(2)

where j = 1, . . . , N with N the dimension of the input space and α(t) is the learning
rate which decreases as the learning proceeds. Considering the equation (2) as govern-
ing the dynamics of the units in the competitive layer of our CPND, the weights will be
allowed to depend also on their past values.

In our previous work [4] we have introduced the forward-only version of the CPND.
The CCPND is obtained in a similar way. Both x and y input vectors are fully connected
to the competitive layer and the associated weight vectors wx and wy contribute jointly
to the calculation of the winner unit. As with the forward network, only the winning unit
and its neighbors are allowed to learn for a given input. The weights updating rule is the
same as in equation (2) with j covering the extended input space. After the competitive
layer has stabilized (the x-y vectors have clustered), the wj vectors are frozen and the
Grossberg layer begins to learn.

Like the input layer, the output layer is split into two corresponding parts. The y’
units have weight vectors uyi and the x’ units have weight vectors uxi. The learning
laws are:

uyij(t+ 1) = uyij(t) + β[yi − uyij(t)]vj , 0 < β + 1 (3)

with outputs

y′i =
N∑

j=1

uyij(t+ 1)vj (4)

where β is a constant learning rate, vj is the output signal of the competitive layer and i
indexes the component of the desired vector. The equations for uxij and corresponding
outputs x′i have similar forms.

3 Case Studies

In order to evaluate the performance of the proposed network, we used a set of radial
velocity measurements of a spiral galaxy and the popular Mackey-Glass and laser gen-
erated data.

Multiple CPND architectures for each data set were tested according to the follow-
ing procedure: First, the training data is normalized to zero mean and variance 1. The
last part of observations is reserved for out-of-sample testing periods. The training pat-
terns are obtained by sliding a window through the series. The selection of window
widths was based on trial and error along with various heuristics i.e. considering the
average mutual information of the given data [5].The order of the input vector has to
be large enough to resolve ambiguities, but also cope with ”the curse of dimensional-
ity” [7].

Each a CPND and a CCPND are trained using the past few values as x vector and
the next value as y vector. For the neighboring function hUBMU(x)(t) from equation 2,
the ”Winner Takes All” principle has proven as the best choice. After the network is
trained, a long-term iterated prediction is achieved by taking the estimate ŷ and feeding
it back as input to the network. The normalized root mean square error (NRMSE) is
used as the performance measure:
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NRMSE =

√
1
P

∑P
p=1(yp − ŷp)2

σ
(5)

where P is the number of elements in the test set and σ the standard deviation of the
target series. If NRMSE ≈ 0, the prediction is almost perfect, whereas a NRMSE
value equal to 1 is equivalent to using the average as the predictor. Since training is
based on only single step predictions, the accuracy of the long iterated predictions can-
not be guaranteed. For comparison purposes, we use a MLP with one hidden layer and
hyperbolic tangent transfer function, trained with the backpropagation learning algo-
rithm. The architectures (nr. of neurons per layer), the number of training epoches and
simulation results are shown in table 1.
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Fig. 2. The distribution of radial velocity points of the galaxy NGC7531 versus position on the
celestial sphere

3.1 NGC 7531 Galaxy Data

The galaxy NGC 7531 is an example of a nonbarred spiral in the Southern Hemisphere,
possessing a very bright inner ring. R. Buta has explored the properties of all types of
ringed galaxies, inspired by the belief that the ringlike patterns could be useful probes
of the galaxy dynamics and structure [8].

The dynamics of a galaxy is governed by cooperative gravitational interactions of
stars, gas and dark matter. The dominating motion of the disk stars is differential rota-
tion around the center of the galaxy at an angular velocity depending on the Galactocen-
tric distance [9]. Other systematic motions are superimposed on the rotation, as those
induced by spiral density waves. Apart from the systematic motion, the stars are also
involved in random motions (residual velocities). Conclusively, the rules governing the
motion of a spiral galaxy are nonlinear and very complex. The measured data is noisy
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and could be incomplete. An estimation of the radial velocity for regions where direct
measurements are not possible, could be an auxiliary tool for further analysis, since the
rotation curve provides the most direct method of measuring the mass distribution of a
galaxy.

The variables used for simulation are: the east-west coordinate of the velocity mea-
surement, the north-south coordinate and the radial velocity measured in km/sec.

From the total amount of 323 measurements, 50 points were reserved alternatively
for test purposes. The original data and a set of 50 predictions are shown in the Fig.2.
The CPND has given slightly better predictions. Consequently, the inclusion of the
velocity in the training of the competitive layer doesn’t improve the generalization ca-
pability of the network.
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Fig. 3. Sequence of 100 iterative estimated samples of the Mackey-Glass data

3.2 Mackey-Glass Time Series

We consider the well known Mackey-Glass delay-differential equation dx(t)/dt =
−0, 1x(t) + [0, 2 x(t−Δ)]/[1 + x(t−Δ)10] which is a model of dynamic respiratory
and hematopoiectic diseases [11]. The delay was set to Δ = 30, with initial conditions
x(t) = 0.9 for 0 ≤ t ≤ Δ and sampling rate τ = 6. The generated set contains 1500
points of the series. 1400 points are used for training and the next 100 points to validate
the iterative prediction capacity of the two networks. This time the CCPND has slightly
outperformed the CPND. The prediction area is shown in Fig. 3.

3.3 Laser Generated Data

The data was recorded from a Far-Infrared-Laser in chaotic state and was distributed
as part of the Santa Fe Competition [10]. The time series shows a cross-cut through
periodic to chaotic intensity pulsations of the NH3 laser. Since the size of the provided
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Fig. 4. Sequence of 100 iterative estimated samples of the Laser data

Table 1. Simulation results

Model Data
Architecture Training epoches

NRMSE
Input Instars/Hidden Output Instars Outstars

CPND Galaxy 2 75 1 150 150 0,125

CCPND Galaxy 3 75 1 150 150 0,157

MLP Galaxy 2 18 1 20000 0,138

CPND Mackey-Glass 5 600 1 200 200 0,281

CCPND Mackey-Glass 6 600 1 200 200 0,268

MLP Mackey-Glass 5 24 1 10000 1,078

CPND Laser 4 300 1 200 200 0,744

CCPND Laser 5 300 1 200 200 0,726

MLP Laser 4 28 1 10000 1,044

data set was 1000 points, only two collapses in the amplitude are shown. A prediction
of the next collapse based on so few instances is a difficult task. None of our networks,
trained for one-step ahead prediction has been able to predict the intensity collapse at
the point 1065, based only on the first 1000 data points, although the predictions up
to the point 1050 were almost perfect. Alternatively we also tested networks trained
for a multi-steps direct prediction, but these alone gave even worse results. We have
adopted the method used by Tim Sauer in his competition entry [10] and combined
both approaches in order to optimize the prediction. With each of our models we have
trained two nets accordingly. In the simulation phase, a weighted combination of both
outputs is used to build the prediction, which is subsequently fed back in both networks’
inputs. The prediction accuracy has been improved by 20%.



Counterpropagation with Delays with Applications in Time Series Prediction 539

4 Conclusion

This paper presented an extended version of the counterpropagation neural network
with delays, as described in [4]. The method was validated by using examples drawn
from the Santa Fe Institute Time Series Prediction Competition, computer generated
chaos and astrophysical data. The simulations results illustrate the iterative prediction
potential of the presented method, compared with those produced by a MLP network.
The proposed technique needs to be further consolidated, both in theoretical and prac-
tical terms, in order to be become a viable alternative to classical supervised models.
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Abstract. In this paper we propose a voice activity detection (VAD)
algorithm for improving speech recognition performance in noisy environ-
ments. The approach is based on statistical tests applied to multiple ob-
servation window based on the determination of the speech/non-speech
bispectra by means of third order auto-cumulants. This algorithm differs
from many others in the way the decision rule is formulated (detection
tests) and the domain used in this approach (bispectrum). It is shown
that application of statistical detection test leads to a better separation
of the speech and noise distributions, thus allowing a more effective dis-
crimination and a tradeoff between complexity and performance. The
experimental analysis carried out on the AURORA databases and tasks
provides an extensive performance evaluation together with an exhaus-
tive comparison to the standard VADs such as ITU G.729, GSM AMR
and ETSI AFE for distributed speech recognition (DSR), and other re-
cently reported VADs. Clear improvements in Speech Recognition are
obtained when the proposed VAD is used as a part of a ASR system.

1 Introduction

Speech/non-speech detection is an unsolved problem in speech processing and
affects numerous applications including robust speech recognition [11], discon-
tinuous transmission , real-time speech transmission on the Internet or combined
noise reduction and echo cancellation schemes in the context of telephony [1,5][3].
The speech/non-speech classification task is not as trivial as it appears, and most
of the VAD algorithms fail when the level of background noise increases. During
the last decade, numerous researchers have developed different strategies for de-
tecting speech on a noisy signal [12] and have evaluated the influence of the VAD
effectiveness on the performance of speech processing systems. Most of them have
focussed on the development of robust algorithms with special attention on the
derivation and study of noise robust features and decision rules [14,7,8]. The
different approaches include those based on energy thresholds, pitch detection,
spectrum analysis, zero-crossing rate, periodicity measure, higher order statistics
in the LPC residual domain or combinations of different features [8,5,1,10,14].
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This paper explores a new alternative towards improving speech detection
robustness in adverse environments and the performance of speech recognition
systems. The proposed VAD proposes a noise reduction block that precedes the
VAD, and uses Bispectra of third order cumulants to formulate a robust decision
rule. The rest of the paper is organized as follows. Section 2 reviews the theo-
retical background on Bispectra analysis and shows the proposed signal model.
Section 2.1 introduces the Statistical Tests based on Biespectra employed on
multiple observation in order to build a robust decision rule. Section 3 describes
the experimental framework considered for the evaluation of the proposed algo-
rithm. Finally, section 4 summarizes the conclusions of this work.

2 Model Assumptions

Let {x(t)} denote the discrete time measurements at the sensor. Consider the
set of stochastic variables yk, k = 0,±1 . . .±M obtained from the shift of the
input signal {x(t)}:

yk(t) = x(t+ k) (1)

where k is the differential delay (or advance) between the samples. This provides
a new set of 2 ·M + 1 vector variables yj = {yj(t1), . . . , yj(tN )} by selecting
i = 1 . . .N samples of the input signal. It can be represented using an associ-
ated Toeplitz matrix. Using this model the speech-non speech detection can be
described by using two essential hypothesis(re-ordering indexes):

Ho =
(
y0 = n0;y±1 = n±1; . . . ;y±M = n±M

)
(2)

H1 =
(
y0 = s0 + n0;y±1 = s±1 + n±1; . . . ;y±M = s±M + n±M

)
(3)

where sk’s/nk’s are the speech/non-speech (any kind of additive background
noise i.e. gaussian) signals, related themselves with some differential delay (or
advance). All the process involved are assumed to be jointly stationary and
zero-mean. Consider the third order cumulant function Cykyl

defined as Cykyl
≡

E[y0ykyl], and the two-dimensional discrete Fourier transform (DFT) of Cykyl
,

the bispectrum function:

Cykyl
(ω1, ω2) =

∞∑
k=−∞

∞∑
l=−∞

Cykyl
· exp(−j(ω1k + ω2l)) (4)

Sampling the equation 4 and assuming a finite number of samples, the biespec-
trum estimate can be written as:

Ĉykyl
(n,m) =

M∑
k=−M

M∑
l=−M

Cykyl
· w(k, l) · exp(−j(ωnk + ωml)) (5)

where ωn,m = 2π
M (n,m) with n,m = −M, . . . ,M are the sampling frequen-

cies, w(k, l) is the window function (to get smooth estimates) and Cykyl
=

1
N

∑N−1
i=0 y0(ti)yk(ti)yl(ti) = 1

N y0ykyl|t0 .
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2.1 Detection Tests for Voice Activity

The decision of our algorithm is based on statistical tests including the Gen-
eralized Likelihood ratio tests (GLRT) [13] and the Central χ2-distributed test
statistic under HO [4] applied to a multiple observation window. This imposes
an M -frame delay which is not relevant in the great majority of the real appli-
cations, i.e. speech recognition. We will call them GLRT and χ2 tests.

GRLT: Consider the complete domain in biespectrum frequency for 0 ≤ ωn,m ≤
2π and define P uniformly distributed points in this grid (m,n), called coarse
grid. Define the fine grid of L points as the L nearest frequency pairs to coarse
grid points. We have that 2M + 1 = P · L. If we reorder the components of
the set of L Bispectrum estimates Ĉ(nl,ml) where l = 1, . . . , L, on the fine grid
around the bifrequency pair into a L vector βml where m = 1, . . . P indexes the
coarse grid [13] and define P-vectors φi(β1i, . . . , βPi), i = 1, . . . L; the generalized
likelihood ratio test for the above discussed hypothesis testing problem:

H0 : μ = μn against H1 : η ≡ μTσ−1μ > μT
nσ

−1
n μn (6)

where μ = 1/L
∑L

i=1 φi and σ = 1/L
∑L

i=1(φi − μ)(φi − μ)T are the maximum
likelihood gaussian estimates of vector C = (Cykyl

(m1, n1) . . .Cykyl
(mP , nP )) ,

leads to the activity voice detection if:

η > η0 (7)

where η0 is a constant determined by a certain significance level, i.e. the proba-
bility of false alarm. Note that:

1. We have supposed independence between signal sk and additive noise nk
1

thus:
μ = μn + μs; σ = σn + σs (8)

2. The right hand side of H1 hypothesis must be estimated in each frame (it’s a-
priori unknown). In our algorithm the approach is based on the information
in the previous non-speech detected intervals.

The statistic considered here η is distributed as a central F2P,2(L−P ) under the
null hypothesis. Therefore a Neyman-Pearson test can be designed for a signifi-
cance level α.

χ2 Tests: In this section we consider the χ2
2L distributed test statistic[4]:

η =
∑
m,n

2M−1|Γykyl
(m,n)|2 (9)

where Γykyl
(m,n) = |Ĉykyl

(n,m)|
[Sy0(m)Syk

(n)Syl(m+n)]0.5 which is asymptotically distributed

as χ2
2L(0) where L denotes the number of points in interior of the principal

domain. The Neyman-Pearson test for a significant level (false-alarm probability)
α turns out to be:
1 Observe that now we do not assume that nk k = 0 . . . ± M are gaussian.
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H1 if η > ηα (10)

where ηα is determined from tables of the central χ2 distribution. Note that the
denominator of Γykyl

(m,n) is unknown a priori so they must be estimated as
the bispectrum function (that is calculate Ĉykyl

(n,m)). This requires a larger
data set as we mentioned above in this section.

3 Experimental Framework

The ROC curves are frequently used to completely describe the VAD error
rate. Only the AURORA subset of the original Spanish SpeechDat-Car (SDC)
database [9] was used in this analysis for space reasons. The files are categorized
into three noisy conditions: quiet, low noisy and highly noisy conditions, which
represent different driving conditions with average SNR values between 25dB,
and 5dB. The non-speech hit rate (HR0) and the false alarm rate (FAR0= 100-
HR1) were determined in each noise condition. These noisy signals represent
the most probable application scenarios for telecommunication terminals (sub-
urban train, babble, car, exhibition hall, restaurant, street, airport and train
station). Table 1 shows the averaged ROC curves of frequently referred algo-
rithms [14,7,8,12] for recordings from the distant microphone in quiet, low and
high noisy conditions. The working points of the G.729, AMR and AFE VADs
are also included. If we compare the two test discussed above we can conclude
that GRLT prevails over χ2 tests. The ROC curves of the two proposed tests
are obtained varying the confidence level α (we actually vary the parameter
ηα). The results show improvements in detection accuracy over standard VADs
and similarities over a representative set VAD algorithms [14,7,8,12] in high noise
scenario. The benefits are especially important over G.729 and over the Li’s algo-
rithm. On average, it improves Marzinzik’s VAD that tracks the power spectral
envelopes, and the Sohn’s VAD which applies a single observation likelihood
ratio test on the voice-pause distributions.

Performance of ASR systems working over wireless networks and noisy en-
vironments normally decreases and non-efficient speech/non-speech detection
appears to be an important degradation source [6]. Although the discrimina-
tion analysis or the ROC curves are effective to evaluate a given algorithm, this
section evaluates the VAD according to the goal for which it was developed
by assessing the influence of the VAD over the performance of a speech recog-
nition system. The reference framework considered for these experiments was
the ETSI AURORA project for DSR [2]. The recognizer is based on the HTK
(Hidden Markov Model Toolkit) software package [15].

Table 2 shows the recognition performance for the Spanish SDC databases
for the different training/test mismatch conditions (HM, high mismatch, MM:
medium mismatch and WM: well matched) when WF and FD are performed
on the base system [2]. Again, the VAD outperforms all the algorithms used
for reference, yielding relevant improvements in speech recognition. Note that
the SDC databases used in the AURORA 3 experiments have longer non-speech
periods than the AURORA 2 database and then, the effectiveness of the VAD
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Table 1. Average speech/non-speech hit rates for SNRs between 25dB and 5dB. Com-
parison of the proposed BSVAD to standard and recently reported VADs.

(%) G.729 AMR1 AMR2 AFE (WF) AFE (FD)
HR0 55.798 51.565 57.627 69.07 33.987
HR1 88.065 98.257 97.618 85.437 99.750
(%) Woo Li Marzinzik Sohn χ2/GLRT
HR0 62.17 57.03 51.21 66.200 66.520/68.048
HR1 94.53 88.323 94.273 88.614 85.192/90.536

Table 2. Average Word Accuracy (%) for the Spanish SDC databases and tasks

Base Woo Li Marzinzik Sohn G.729 AMR1 AMR2 AFE GLRT

Sp.

WM 92.94 95.35 91.82 94.29 96.07 88.62 94.65 95.67 95.28 96.28
MM 83.31 89.30 77.45 89.81 91.64 72.84 80.59 90.91 90.23 92.41
HM 51.55 83.64 78.52 79.43 84.03 65.50 62.41 85.77 77.53 86.70
Ave. 75.93 89.43 82.60 87.84 90.58 75.65 74.33 90.78 87.68 91.80

results more important for the speech recognition system. This fact can be clearly
shown when comparing the performance of the proposed VAD to Marzinzik’s
VAD. The word accuracy of both VADs is quite similar for the AURORA 2
task. However, the proposed VAD yields a significant performance improvement
over Marzinzik’s VAD for the SDC databases.

4 Conclusions

This paper presented a new VAD for improving speech detection robustness
in noisy environments. The approach is based on higher order spectra analysis
employing noise reduction techniques and statistic tests for the formulation of
the decision rule. The VAD performs an advanced detection using the estimated
components of the Bispectrum function and robust statistical tests GLRT and χ2

over the set of vector variables yk. As a result, it leads to clear improvements in
speech/non-speech discrimination especially when the SNR drops. With this and
other innovations, the proposed algorithm outperformed G.729, AMR and AFE
standard VADs. It also will improve the recognition rate when it was considered
as part of a complete speech recognition system. The major benefit of the pro-
posed algorithm is robusteness and simplicity of the decision rule as well as the
potential inclusion of the recently reported approaches for endpoint detection.
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Abstract. The back-propagation (BP) training scheme is widely used
for training network models in cognitive science besides its well known
technical and biological short-comings. In this paper we contribute to
making the BP training scheme more acceptable from a biological point
of view in cognitively motivated prediction tasks overcoming one of its
major drawbacks.

Traditionally, recurrent neural networks in symbolic time series pre-
diction (e. g. language) are trained with gradient decent based learning
algorithms, notably with back-propagation (BP) through time. A major
drawback for the biological plausibility of BP is that it is a supervised
scheme in which a teacher has to provide a fully specified target answer.
Yet, agents in natural environments often receive a summary feed-back
about the degree of success or failure only, a view adopted in reinforce-
ment learning schemes.

In this work we show that for simple recurrent networks in prediction
tasks for which there is a probability interpretation of the network’s out-
put vector, Elman BP can be reimplemented as a reinforcement learning
scheme for which the expected weight updates agree with the ones from
traditional Elman BP, using ideas from the AGREL learning scheme (van
Ooyen and Roelfsema 2003) for feed-forward networks.

Reinforcement learning where the teacher gives only feed-back about success or
failure of an answer is thought to be biologically more plausible than supervised
learning since a fully specified correct answer might not always be available to
the learner or even the teacher ([1], especially for biological plausibility [2]).

In this article we extent the ideas of the AGREL scheme [3] about how to
implement (BP) in (FF) networks for classification tasks to encompass Elman
(BP) for (SRN) in prediction tasks [4]. The results have relevance especially
for the cognitive science community for which (SRN) models have become an
important tool [5], since they improve the standing of (SRN) with respect to
biological and cognitive plausibility.

1 SRNs and Elman (BP)

A (SRN) (also called Elman network) in its simplest form resembles a 3-layer
(FF) network, but in addition the hidden layer is self-recurrent [4]. It is a spe-
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cial case of a general (RNN) and could thus be trained with full (BPTT) and
(BPTT)(n) [6]. However, instead of regarding the hidden layer as self-recurrent,
one introduces a so-called context layer into which the activities of the hidden
neurons are stored in each time step and which acts as an additional input to
the hidden layer in the next time step and thus effects its recurrency. Regard-
ing the forward-propagation of activity through the (SRN) these two views are
equivalent.

For the back-propagation of error, the (SRN) is now viewed as a (FF) network
with an additional set of inputs from the context layer. Hence standard (BP) in
conjunction with copying the hidden layer into the context layer can be used for
training [4]. This scheme is called Elman (BP) and has found wide application
especially in linguistically motivated prediction task (for an overview see [7]).

Since as described above, with Elman (BP) training (SRN) can be reduced to
training layered (FF) networks and since the step back to a (SRN) with context
units is obvious, it is sufficient to formulate our reinforcement implementation
of Elman (BP) for layered (FF) networks.

2 Recapitulation: Standard (BP)

We state some important formulae of (BP) for layered (FF) networks first since
the reinforcement implementation will be based on them. In order to keep nota-
tion simple, we will only deal with networks that are strictly layered, i. e. there
are connections only between subsequent layers. Generalisations where neurons
receive input from other downstream layers are of course possible. Furthermore
we refrain from explicitly introducing a bias term, since its effect can easily be
achieved by a unit with constant activation 1 in each layer.

Let us assume we have a network with p+1 layers in total where the counting
starts from 0 for the input layer. Let yr

i , r > 0 denote the output of neuron i in
layer r, while y0 = (y0

i )i denotes the input vector. Let us further assume that the
set of different input patterns y0 is classified into classes c and that the target
vector tc only depends on the class of a particular input vector y0 (or rather the
class of a sequence of input vectors in the case of a (SRN)).

Then, for each input y0 the layers are updated consecutively from 1 to p,
f : x �→ 1

1+e−x is the activation function of the neuron that maps the net
input ar

i of neuron i in layer r to its output yr
i . Finally the output is read off

from yp and the error Ec against the target vector tc is computed as follows,
0 < r ≤ p:

yr
i = f(ar

i ), ar
i =

∑
j

wr,r−1
ij yr−1

j , Ec(yp) =
1
2

∑
i

(tci − y
p
i )2. (1)

For the update of the weights we need to know how much each single
weight wr,r−1

ij contributes to the overall error Ec. For input y0, Ec is an implicit
function of all weights w. It helps in book-keeping of each weights’ contribu-
tion ∂E

∂wr,r−1
ij

to the error by first calculating the contribution Δr
i := ∂E

∂ar
i

of each
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neuron’s net input to the error. The Δs can be recursively computed layer-wise
starting from the output layer p and from them the weight updates δw with
learning rate ε as:

Δp
i := (yp

i − tci )f ′(ap
i ), (2)

Δr
j := f ′(ar

j)
∑

i

Δr+1
i wr+1,r

ij , 0 < r < p. (3)

δwr,r−1
ij = −ε ∂E

∂wr,r−1
ij

= −ε ∂E
∂ar

i

∂ar
i

∂wr,r−1
ij

= −εΔr
i y

r−1
j , (4)

3 Prediction Task for (SRN)

Linguistically and cognitively inspired prediction learning means the following
[4]: a sequence of unarily encoded symbols is input to the network one symbol
at a time. The task is to predict the next symbol of the sequence. A context c
for a prediction task would be given by a whole sequence of input symbols
allowing for the same possible continuation(s). However it does not determine
the next symbol with certainty but rather defines a distribution pc accounting
for linguistic variation. Thus the network has to learn the distribution of next
symbols. Cognitively it is implausible to take the precalculated distribution as
the target. Instead training is done against a target vector tc where only one
entry tcj drawn according to the appropriate distribution is one (all others zero),
i. e. p(tcj = 1) = pc(j). For the error contributions Δp it follows, taking the
expectation value over all possible targets tc in context c:

< Δp
i >c=< (yp

i − tci )f ′(ap
i ) >c= (yp

i− < tci >c)f ′(ap
i ) = (yp

i − pc(i))f ′(ap
i ), (5)

i. e. the expectation value of Δp
i in the output layer p coincides with the Δ

derived from training against the distribution of target vectors. The same is true
for all other Δs recursively computed from this due to the linearity of (3) in
the Δs.

4 Reinforcement Learning

In prediction learning, the output’s activation yp
i corresponds to its symbol’s

estimated probability pyp(i). Let us introduce a reinforcement scheme as fol-
lows: assume the network is only allowed to select one answer k as a response
to its current input context c. It selects this answer according to the distribu-
tion pyp(k) = yp

k/|yp|: the neuron yp
k corresponding to symbol k is called the

winning neuron.
This answer is then compared to the target kc drawn from the target distri-

bution pc and the network receives a reward r = 1 only when k = kc, and r = 0
otherwise. Thus the objectively expected reward in input context c after select-
ing neuron k is < r >c,k= pc(k). The network compares the received reward r
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to the subjectively expected reward, namely the activation yp
k of the winning

neuron. The relative difference

δ :=
yp

k − r
pyp(k)

(6)

is made globally available to all neurons in the network. From δ we then compute
the error signals Δp for the output layer. Since attention is concentrated on the
winning output k, only its Δp

k is different from zero, and we set Δp
i = 0 for i �= k

and
Δp

k = δf ′(ap
k). (7)

The other Δs and the weight updates δw can be recursively computed as before
in (3) and (4). The expectation value of Δp

k in context c and with k as the
winning unit calculates:

< Δp
k >c,k= f ′(ap

k)
yp

k − pc(k)
pyp(k)

(8)

since tc is drawn independently from k and < r >c,k= pc(k). Compared to
Elman (BP) an error for a certain output is calculated only when it is the
winning unit, it is updated less frequently (by a factor py(k)). But its Δ is larger
by 1/py(k) to compensate for this. Weighting the Δs with the probability py(k)
that k gets selected as the winning unit in context c, we get

< Δp
k >c= py(k)f ′(ap

k)
yp

k − pc(k)
py(k)

= f ′(ap
k)(yp

k − pc(k)) (9)

and this agrees with (2) and (5), keeping in mind that pc(k) in our scheme
would be the target entry tci in the standard (BP) scheme. By linearity the
expectation values of all other Δs and the δw in this scheme coincide as well
with their counterparts in standard (BP). When we update weights after each
input presentation, the average of the Δs over several trials in context c will
differ from the expectation value, but this is not a more severe moving target
problem than encountered anyway in prediction learning in (5), and can also be
dealt with by keeping ε low [6].

5 Discussion

We note that the order in which weights receive error signals form the outputs is
altered: in standard (BP) weights receive error signals from all output neurons
in each time step, while in this reinforcement scheme they receive a signal only
from a single output, but with a greater amplitude. No major differences in the
course of learning are expected due to this changed order. In fact, it is known that
training against the actual successors in the prediction task instead of against
their probability distribution leads to faster and more reliable learning because
higher error signals enable the network to leave local minima faster. A similar
effect can be expected here.
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The crucial facts why we can reimplement (BP) as a reinforcement scheme
and thus replace a fully specified target vector with a single evaluative feedback
are: (i) a probability interpretation of the output vector (and the target). This
allows us to regard the network as directing its attention to a single output which
is stochastically selected and subsequently to relate the evaluative feedback to
this single output, (ii) the error contribution of each single neuron in the hidden
layer(s) to the total error in (BP) is a linear superposition of the individual
contributions of the neurons in the output layer. This enables us to concentrate
on the contribution from a single output in each time step and still arrive at an
expected weight update equal to the original scheme.

Obviously the ideas laid out in this paper are applicable to all kinds of (SRN),
multilayered or not, and more general (RNN) as long as their recurrence can be
treated in the sense of introducing context units with immutable copy weights,
and they ought also to be applicable to other networks and gradient based learn-
ing algorithms that fulfil the two above conditions (e. g. LSTM [8]).

As regards the biological plausibility, we list the following in favour of this
(BP)-as-reinforcement scheme: (i) We have replaced a fully specified target with
a single evaluative feed-back. (ii) The relative difference δ of actual and expected
reward can be realised as a prediction error neuron [9,2] whose activation is made
globally available to all neurons in the network, e. g. by diffusion of a messenger
such as dopamine [3]. (iii) Attentive concentration on the winning neuron is
physiological plausible ([3] and references therein). (iv) Using the same sets of
weights both for forward-propagation of activity and back-propagation of error is
made plausible by introducing a second set of weights w′ used only for the back-
propagation of the Δs in (3) and updated with the same – mutatis mutandis –
equation as in (4). This finds its functional equivalent in the ample evidence for
recurrent connections in the brain. However we would consider this assumption
as the scheme’s weakest point that will need further elaboration. (v) Above
and beyond [3]’s scheme, the only additional requirement for Elman (BP) as
reinforcement has been that the activation of the hidden layer is retrievable
in the next time step. This assumption is not implausible either in view of
the ample recurrent connections in the brain which locally might well recycle
activation from a neighbouring cell for some time from which this activation can
be reconstructed. (vi) Finally we need to discuss how pyp(k) can be derived from
yp

k in a plausible way, technically its is just an addition of the yps and dividing
each output by this sum. Evidence for pools of neurons in visual cortex doing
precisely a divisive normalisation is summarised in [10].1

Thus all quantities δ, yr
j and Δr+1

i can be made locally available for the
weight change at each synapse wr+1,r

ij . While our reinforcement scheme naturally
extends even to fully recurrent networks trained with (BP) through time (again
it is mainly a question of the linearity of the Δs), there its application is of
course less plausible since we would need to have access to previous activities of
neurons for more than one time step.

1 An anonymous referee pointed this reference out to me.
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6 Conclusion

Im sum, we have found a reinforcement learning scheme that behaves essentially
like the standard (BP) scheme. It is biologically more plausible by using a suc-
cess/failure signal instead of a precise target. Essential in transforming (BP) into
a reinforcement scheme was (i) that the (BP) error signal for the complete target
is a linear superposition of the error for each single output neuron, and (ii) the
probabilistic nature of the task: select one possible output randomly and direct
the network’s attention towards it until it is rewarded. Furthermore we have
briefly discussed the physiological or biological plausibility of other ingredients
in the (BP)-as-reinforcement scheme. It seems that there is good evidence for
all of them at least in some parts of the brain. Enhanced biological plausibly for
(BP) thus gives (SRN) usage in cognitive science a stronger standing.
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Abstract. This paper presents a method that combines Mutual Information and 
k-Nearest Neighbors approximator for time series prediction. Mutual Informa-
tion is used for input selection. K-Nearest Neighbors approximator is used to 
improve the input selection and to provide a simple but accurate prediction 
method. Due to its simplicity the method is repeated to build a large number of 
models that are used for long-term prediction of time series. The Santa Fe A 
time series is used as an example. 

Keywords: Time Series, Input Selection, Mutual Information, k-NN. 

1   Introduction 

In any function approximation, system identification, classification or prediction task 
one usually wants to find the best possible model and the best possible parameters to 
have a good performance. Selected model must be generalizing enough still preserv-
ing accuracy and reliability without unnecessary complexity, which increases compu-
tational load and thus calculation time. Optimal parameters must be determined for 
every model to be able to rank the models according to their performances. 

In this paper we use Mutual Information (MI), described in Section 2, to select the 
inputs for direct long-term prediction of a time series. Leave-one-out (LOO) method, 
described in Section 3, is used to select the correct parameter for MI. Both MI and 
LOO rely on the k-Nearest Neighbors (k-NN) method, which is described in Section 
4. Section 5 gives information about the time series prediction problem and finally the 
obtained experimental results, conclusions and further work are presented in Sections 
6 and 7. 

2   Mutual Information for Input Selection 

Input selection is one of the most important issues in machine learning, especially 
when the number of observations is relatively small compared to the number of in-
puts. In practice, the necessary size of the dataset increases dramatically with the 

                                                           
†  Part the work of A. Sorjamaa, J. Hao and A. Lendasse is supported by the project of New 

Information Processing Principles, 44886, of the Academy of Finland. 



554 A. Sorjamaa, J. Hao, and A. Lendasse 

number of observations (curse of dimensionality). To circumvent this, one should first 
select the best inputs or regressors in the sense that they contain the necessary infor-
mation. Then, it would be possible to capture and reconstruct the underlying relation-
ship between input-output data pairs. Within this respect, some approaches have been 
proposed [1-3]. Some of them deal with the problem of feature selection as a gener-
alization error estimation problem. These approaches are very time consuming and 
may take several weeks. However, there are other approaches [4-5], which select a 
priori inputs based only on the dataset, as presented in this paper.  

In this paper, the Mutual Information (MI) is used as a criterion to select the best 
input variables (from a set of possible variables) for the long-term prediction purpose.  

The MI between two variables, let say X and Y, is the amount of information ob-
tained from X in the presence of Y, and vice versa. MI can be used for evaluating the 
dependencies between random variables, and has been applied for Feature Selection 
and Blind Source Separation [6].  

Let’s consider two random variables; the MI between them would be  

),()()(),( YXHYHXHYXI −+=  , (1) 

where H(.) computes the Shannon’s entropy. Equation (1) leads to complicated inte-
grations, so some approaches have been proposed to evaluate them numerically. In 
this paper, a recent estimator based on l-NN statistics is used [7] (l is used instead of k 
here to avoid confusion with the k appearing in section 4). The novelty of this ap-
proach consists in its ability to estimate the MI between two variables of any dimen-
sional spaces. The basic idea is to estimate H(.) from the average distance to the l 
nearest neighbors. MI is derived from equation (1) and is estimated as  

)()()(/1)(),( NnnllYXI yx ψ+ψ+ψ−−ψ=  , (2) 

where N is the size of the dataset, l is the number of nearest neighbors and (x) is the 
digamma function, 

xxxdxxdxx /1)()1(  satisfies which ,/)(1)()( +ψ=+ψΓ−−Γ=ψ  , (3) 

)1(ψ  −0.5772156 and <…> denotes averages of nx and ny over all 1 i N and over 

all realizations of the random samples. nx(i) and ny(i) are the number of points in the 
region ||xi − xj||  εx(i)/2 and ||yi − yj||  εy(i)/2, εx(i) and εy(i) are the edge lengths of the 
smallest rectangle around point i containing l nearest neighbors. Software for calculat-
ing the MI based on this method can be downloaded from [8]. 

3   Leave-One-Out 

Leave-one-out [4] is a special case of k-fold cross-validation resampling method. In k-
fold cross-validation the training data is divided into k approximately equal sized sets. 
LOO procedure is the same as k-fold cross-validation with k equal to the size of the 
training set N. For each model to be tested, LOO procedure is used to calculate the 
generalization error estimate by removing each data point at a time from the training 
set, building a model with the rest of the training data and calculating the validation 
error with the one taken out. This procedure is done for every data point in the train-
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ing set and the estimate of the generalization error is calculated as a mean of all k, or 
N, validation errors (4). 
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where xi is the ith input vector from the training set, yi is the corresponding output, hq 
denotes the qth tested model and θι*(q) includes the model parameters without using 
(xi, yi) in the training. Finally, as a result from the LOO procedure, we select the 
model that gives us the smallest generalization error estimate. 

4   k-Nearest-Neighbors Approximator 

K-Nearest Neighbors approximation method is a very simple, but powerful method. It 
has been used in many different applications and particularly in classification tasks [9]. 
The key idea behind the k-NN is that similar input data vectors have similar output 
values. One has to look for a certain number of nearest neighbors, according to Euclid-
ean distance [9], and their corresponding output values to get the output approxima-
tion. We can calculate the estimation of the outputs by using the average of the outputs 
of the neighbors in the neighborhood. If the pairs (xi, yi) represent the data with xi as an 
n-dimensional input and yi as a scalar output value, k-NN approximation is 
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y
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i
==

)(
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where i represents the output estimation, P(j) is the index number of the jth nearest 
neighbor of the input xi and k is the number of neighbors that are used. We use the 
same neighborhood size for every data point, so we use a global k, which must be 
determined. In our experiments, different k values are tested and the one which gives 
the minimum LOO error is selected. 

5   Time Series Prediction 

Time series prediction can be considered as a modeling problem [10]:  a model is 
built between the inputs and the outputs. Then, it is used to predict the future values 
based on previous values. In this paper we use direct forecast to perform the long-
term prediction. In order to predict the values of a time series, M different models are 
built,  

))(),...,2(),1(()(ˆ ntytytyfmty m −−−=+  ,  (6) 

with m = 0,1,…M-1, M is the maximum horizon of prediction and fm is the model 
related to time step m The input variables on the right-hand part of (6) form the re-
gressor, where n is the regressor size. 
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6   Experimental Results 

The dataset used in the experiments is the Santa Fe A Laser Data. To test the influ-
ence of the size of dataset on the selection of parameter l in MI calculation, two steps 
are followed. 

The first experiment is done with 10 000 data, 9900 from which is used for training 
and the rest 100 for testing. In order to apply the prediction model from equation (6), 
we set the maximum time horizon M to 100 and the regressor size n to 10. 

For time step one (m = 0 in equation (6)), MI is used to select the best inputs. The 
estimation of MI based on equation (2) is calculated with different number of 
neighbors, with l = 1,…10. All the 2n-1 combinations of inputs are tested; the one that 
gives maximum MI is selected. 

Finally, k-NN and LOO are used to select the l, which minimizes the LOO error, 
presented in Fig. 1.a. 

20 40 60 80 100
0

500

1000

Timestep  

Fig. 1a. The LOO error according to different l in the MI method. Fig. 1b. The LOO errors 
according to 100 time steps. 

Based on this result, l = 5 is chosen for the MI estimation. The input selection re-
sults for the first 50 time steps are listed in Table 1. After the input selection k-NN 
and LOO are used with the selected inputs for each time step and the graph of the 
resulting learning LOO errors are shown in Fig. 1.b. 

In Fig. 2, the inputs selected with MI are used to predict 100 time steps. For each 
time step, fm in equation (6) is performed using the k-NN method, and the k in equa-
tion (5) is determined by the LOO method. The real prediction error (MSE) is then 
calculated. For this experiment, the MSE is 2.24. 

Table 1. Selected Inputs for each prediction with 10 000 data. The rows of the table represents 
y(t+m), m = 0,…,49, from left to right; the columns represents y(t-n), n = 1,…,10, from top to 
bottom. The cross mark means for one y(t+m), the related input y(t-n) is selected. 
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Fig. 2. 100 predictions (solid line) and the real values (dashed line) 
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Fig. 3. 100 predictions (solid line) and the real values (dashed line) 

In the second experiment, first 1000 data points are used for training and the next 
100 points for testing. The procedure follows the first experiment. Based on the LOO 
error according to different l in the estimation of MI, l = 2 is chosen. 

The prediction using k-NN and LOO based on the selected inputs by MI is plotted 
in Fig. 3. 

7   Conclusions and Further Work 

In this paper, MI is used to select the inputs for time series prediction problem. It has 
been illustrated with the experiments that the k-NN approximator and LOO method 
can be used to tune the main parameter of the MI estimator.  

k-NN has also been used as an approximation model itself. Although Fig. 3 shows 
that after step 50, the jump of Santa Fe A Laser Data is not predicted correctly, the 
results are accurate in other parts. It is also possible to use another regression model 
to improve the quality of the predictions (Multilayer Perceptrons, Radial Basis Func-
tion Networks, Support Vector Machines, etc.). However, the advantage of the k-NN 
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approximators is that it is possible to build a large number of models to perform a 
direct prediction of a time series in a quite reasonable time. 

In the future, we will study different algorithms for estimating the MI and their 
possible implementations to input selection problems. On the other hand, the imple-
mentation of input selection methods directly to k-NN approach will also be studied.  
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Abstract. Some issues about the generalization of ANN training are investi-
gated through experiments with several synthetic time series and real world 
time series. One commonly accepted view is that when the ratio of the training 
sample size to the number of weights is larger than 30, the overfitting will not 
occur. However, it is found that even with the ratio higher than 30, overfitting 
still exists. In cross-validated early stopping, the ratio of cross-validation data 
size to training data size has no significant impact on the testing error. For sta-
tionary time series, 10% may be a practical choice. Both Bayesian regulariza-
tion method and the cross-validated early stopping method are helpful when the 
ratio of training sample size to the number of weights is less than 20. However, 
the performance of early stopping is highly variable. Bayesian method outper-
forms the early stopping method in most cases, and in some cases even outper-
forms no-stop training when the training data set is large. 

1   Introduction 

ANNs are prone to either underfitting or overfitting (Sarle, 2002). A network that is 
not sufficiently complex can fail to detect fully the signal in a complicated data set, 
leading to underfitting. A network that is too complex may fit the noise, not just the 
signal, leading to overfitting, which may result in predictions far beyond the range of 
the training data. Therefore, one critical issue in constructing a neural network is 
generalization, namely, the capacity of an ANN to make predictions for cases that are 
unseen in the training set. Two commonly used techniques for generalization are 
cross-validated early stopping (e.g., Amari et al., 1997; Prechelt, 1998) and the regu-
larization (or weight decay) technique (e.g., Mackay, 1991; Neal, 1996). 

In cross-validated early stopping, the available data are usually split into two sub-
sets: training and cross validation (referred to as CV hereafter) sets. The training set is 
used for updating the network weights and biases. The CV set is used to monitor the 
error variation during the training process. When the validation error increases for a 
specified number of iterations, the training is stopped.  

Large weights can cause excessive variance of the output (Geman et al., 1992). A 
traditional way of dealing with the negative effect of large weights is regularization. 
The idea of regularization is to make the network response smoother through modifi-
cation in the objective function by adding a penalty term that consists of the mean 
square of all network coefficients. Mackay (1991) proposed a technique, called 
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Bayesian regularization, which automatically sets the optimal performance function to 
achieve the best generalization based on Bayesian inference techniques.  

In this paper, we will discuss three issues about the generalization of networks: (1) 
How many data are demanded to avoid overfitting; (2) How to split the training sam-
ples in cross-validated early stopping; (3) Which generalization technique is better for 
time series prediction, Bayessian regularization or cross-validated early stopping? 

2   Experiments and Result Analyses 

2.1   Data 

Seven data sets are used in this study, including three synthetic data sets and seven 
observed data sets. Three synthetic time series are as following: (1) Henon map 
(Henon, 1976) chaotic series; (2) The discretized chaotic Mackey-Glass flow series 
(Mackey and Glass, 1977); (3) A stochastic time series generated with an ANN model 
with a structure 5-3-1. 2% Gaussian noises are added to the two synthetic chaotic time 
series. The four observed real-world time series include: (1) The monthly sunspot 
number series (1749.1 ~ 2004.12); (2) The yearly sunspot number series (1700 to 
2004); (3) Monthly Southern Oscillation index (SOI) series (1933.1 ~ 2004.12); (4) 
and (5) daily and monthly streamflow series of the Rhine River at Lobith, the 
Netherlands (1901.1 ~ 1996.12); (6) and (7) daily and monthly streamflow series of 
the Danube River at Achleiten, Austria (1901.1 ~ 1990.12). 

De Oliveira et al. (2000) suggest to use m:2m:m:1 structure to model chaotic series. 
Follow their suggestion, we use 6:12:6:1 for Henon series as well as the discretized 
Mackey-Glass series. ANNs of 2-4-1 (Foresee and Hagan, 1997) and 18-6-1 (Con-
way, 1998) are used for yearly and monthly sunspot series. With trial and error proce-
dure, the chosen ANN structure is 4-3-1 for the SOI series and the two monthly flow 
series, 23-12-1 for daily flow of Danube, and 16-8-1 for daily flow of Rhine.  

The ANNs are constructed with Matlab Neural network toolbox. In all ANNs, tan-
sig transfer function is used in the hidden layer. To avoid of the problem of sensitivity 
to initial weights, simple ensemble technique is applied. That is, for each network, we 
run 10 times with different initial weights, then choose five ones, which have best 
training performance, and take the average of the outputs of the five networks. 

2.2   How Many Data Are Demanded to Avoid Overfitting? 

Amari et al. (1997) show that, when the ratio (referred to as R hereafter) of the train-
ing sample size to the number of weights is larger than 30, no overtraining is ob-
served. This view is accepted by many researchers as a guideline for training ANNs 
(e.g., Sarle, 2002). 

Is there such a clear cut-off value of R? We make experiments for three synthetic 
series with different values of R ranging from 5 to 50. To avoid the possible impact of 
nonstationarity, real world data are not applied here. We use the last 1000 points of 
each synthetic series as the test data, while the training data vary according to the 
value of R. Networks are trained with Levenberg-Marquardt backpropagation algo-
rithm and the training epoch is 1000. The variations in root mean squared error 
(RMSE) of training data and test data with different values of R are plotted in Fig. 1. 
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Fig. 1. RMSE of training data and test data with different values of R for (a) Henon series; (b) 
Mackey-Glass series and (c) ANN series. (solid line: test error; dash line: training error). 

From Fig. 1, we see that with the increase of R, the training error grows, whereas, 
the testing error decreases with the increase of R, which indicates that the intensity of 
overfitting decrease. However, there is no clear cut-off value of R, above which over-
fitting vanishes. When R=30, as suggested by Amari et al. (1997), overfitting is still 
observed for all three fitted networks. When the ratio R is as high as 50, the overfit-
ting basically disappears. However, for the Mackay-Glass series and simulated ANN 
series, the test error is still slightly higher than, albeit very close to, the training error, 
which indicates the existence of slight overfitting. 

2.3   How to Split the Training Samples in Cross-Validated Early Stopping? 

One important issue with regard to cross-validated early stopping is in what ratio to 
split the total training samples into training set and CV set. Amari et al. (1997) sug-
gest that the average generalization error is minimized asymptotically when the rate 
of CV set to total training sample is: 

2 1 1

2( 1)opt

k
r

k

− −=
−  

(1) 

where k is the total number of weights in the ANN.  
In this section we investigate whether there is such an optimal ratio r. We calculate 

the training error and testing error with different values of r, ranging from 0.02 to 0.3, 
for different cases where the training data size varies with different values of R. The 
results for R = 10 are plotted in Fig. 2. 

The networks for Henon series and Mackey-Glass series have 169 weights, and the 
network for the synthetic ANN series has 22 weights. Therefore, according to the 
optimal ratio proposed by Amari et al. (1997), as shown in Equation (1), for the for-
mer two networks,  ropt ≅ 0.077;   for the later one, ropt ≅ 0.132.  However,  there is no 
clear evidence of the existence of such optimal ratios from the visual inspection of 
Fig. 2 as well as the results for other experimental results when R is 5, 15 and 20. 

Sarle (2002) comments that the results of Amari et al. (1997) contain serious errors 
that completely invalidate the results. From the experiments in this study, it seems 
that this comment is substantiated. In practice, many researchers use a large part, such 
as 1/3 (e.g., Prechelt, 1998), of training samples as CV set. However, according to this 
experiment, the ratio of CV set to training set seems to be not very important for early 
stopping. 10% could be a practical choice when the time series is stationary. 
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Fig. 2. RMSE of training set, CV set and test data with different CV to training ratio r for (a) 
Henon series; (b) Mackey-Glass series and (c) ANN series when R = 10. (solid line: test error; 
dash line: training error). 

2.4   Which Technique Works Better, Bayesian Regularization or  
Cross-Validated Early Stopping? 

Now we investigate the performance of Bayesian regularization and cross-validated 
early stopping technique for one-step ahead time series prediction. As a benchmark, 
no-stop training is also applied, in which training is stopped after 1000 epochs. Root 
mean errors (RMSE) of one-step ahead predictions for test data with these three ap-
proaches are shown in Table 1. The performance comparison shows that:  

(1) Bayesian regularization outperforms CV in most cases, except for the cases of 
Mackay-Glass series and monthly sunspot series.  

(2) When training sample size is small (R < 20), generally, both Bayesian regu-
larization and CV early stopping outperform no-stop training. But these tech-
niques do not always work. For several cases they fail even when R  10.  

(3) With the increase of the ratio of training data size to the number of weights, 
the overfitting problem with no-stop training is alleviated. Consequently, no-
stop training outperforms or is at least equivalent to CV early stopping in most 
cases (except for Mackay-Glass series) when R ≥ 20. That means, cross-
validated early stopping does not improve the generalization error when R ≥ 20 
for most cases, even though overfitting still exists. In contrast, Bayesian regu-
larization still outperforms no-stop training in about half of all cases even 
when R ≥ 30. 

(4) An advantage of CV early stopping is its fastness compared with Bayesian 
regularization and no-stop training, especially when the network is compli-
cated. Whereas the time-costness is a major problem with Bayesian regulari-
zation, especially when the training size is big and the network is compli-
cated. 

(5) The performance of CV early stopping is highly variable, indicating that it is 
much less reliable than the other two techniques, whatever is the training data 
size. This is because it often ends up the training process too early due to local 
minimum of error function for the CV data set. Therefore, care must be taken 
when using CV early stopping in real world application despite of its fastness, 
unless the speed is of the most importance. It’s better to check the error func-
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tion surface of CV data to see if there are local minima before we use the CV 
data for early stopping. 

(6) Comparatively, the performance of Bayesian generalization is highly stable, 
especially compared with CV early stopping. In many cases (e.g., the simu-
lated ANN series), the 10 runs with different initial weights give almost the 
same result. 

Table 1. Compare the performance of Bayesian regularization, CV early stopping and no-stop 
training according to root mean squared errors (RMSE) of one-step ahead predictions 

Series R Bayes CV NST Series R Bayes CV NST 

Henon 5 0.02778 0.02790 0.03684 Rhine 6.3 840 867 886 

 10 0.02642 0.02655 0.02745 monthly 12.6 839 935 858 

 20 0.02508 0.02575 0.02565  18.9 848 862 867 

 30 0.02491 0.02545 0.02520  25.3 850 897 853 

 40 0.02468 0.02531 0.02497  31.6 850 898 854 

 50 0.02468 0.02482 0.02439  37.9 855 876 855 

Mackay- 5 0.01300 0.01253 0.01666 Danube 6.3 380 395 387 

Glass 10 0.01198 0.01186 0.01362 monthly 12.6 377 396 376 

 20 0.01144 0.01142 0.01186  18.9 369 386 369 

 30 0.01140 0.01131 0.01146  25.3 369 384 364 

 40 0.01130 0.01130 0.01128  31.6 367 388 361 

 50 0.01133 0.01129 0.01134  37.9 367 380 362 

ANN 5 1.080 1.098 1.199 Rhine 4.9 227 291 230 

 10 1.055 1.072 1.102 daily 10.0 185 277 220 

 20 1.045 1.055 1.048  15.0 188 508 218 

 30 1.038 1.062 1.044  25.1 168 276 217 

 40 1.026 1.044 1.040  37.7 185 280 211 

 50 1.017 1.046 1.026  50.3 186 281 217 

Sunspot 5 20.9 19.3 19.4 Danube 4.8 218 174 169 

monthly 10 19.7 18.1 18.2 daily 9.6 184 178 162 

 15 19.5 18.0 17.8   14.5 177 175 163 

 20 18.4 17.6 17.6   24.2 172 175 164 

SOI 5 1.327 1.409 1.468   36.3 163 170 159 

monthly 10 1.357 1.559 1.461   48.5 162 171 159 

 15 1.315 1.373 1.354  Sunspot 5 20.9 20.9 20.5 

 20 1.333 1.436 1.448  Yearly 10 18.9 21.4 19.6 

  30 1.313 1.393 1.363    15 18.8 21.0 19.4 

Note: R refers to the ratio of the training data size to the number of weights; NST refers to no-
stop training with the ANN networks trained 1000 epochs.  
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3   Conclusions 

Some issues about the generalization of ANN training are investigated through ex-
periments with several synthetic data sets and real world time series data. First issue is 
how many data are demanded to avoid overfitting? It is found that even with the ratio 
higher than 30, overfitting still would occur, although not significantly. The second 
issue is how many data should be used as cross-validation data? It is found that the 
ratio of cross-validation set to training set has no significant impacts on the testing 
error. For stationary time series, 10% could be a practical choice. The third issue is 
which method is better for time series prediction, the Bayesian regularization method 
or the cross-validated early stopping method. The results show that both methods are 
helpful when the ratio of training sample size to the number of weights is less than 20. 
But these methods do not always work. For some cases they fail even when the ratio 
is less than 10. Especially, the performance of CV early stopping is highly variable. 
Bayesian method outperforms the CV method in most cases, and it even outperforms 
no-stop training in some cases when the ratio of training sample size to the number of 
weights is above 30. 
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Abstract. The availability of accurate empirical models for multi-step-ahead 
(MS) prediction is desirable in many areas. Motivated by B-spline interpolation 
and adaptive time-delay neural network (ATNN) which have proven successful 
in addressing different complicated problems, we aim at investigating the 
applicability of ATNN for MS prediction and propose a hybrid model SATNN. 
The annual sunspots and Mackey-Glass equation considered as benchmark 
chaotic nonlinear systems were selected to test our model. Validation studies 
indicated that the proposed model is quite effective in MS prediction, especially 
for single factor time series. 

1    Introduction 

Multi-step-ahead (MS) is a classical model predictive algorithm with which at any 
given time the process outputs can predict time series values of many time-steps into 
the future. Neural networks for MS prediction were reported by Schenker et al.(1995), 
Prasad et al. (1998),  Parlos et al.(2000) and Bone et al.(2002). Among all the 
proposed methods to deal with the problem, the recurrent neural network was proven 
to be able to improve MS-based prediction (Parlos et al.,2000; Bone et al., 2002). 
Training of a recurrent neural network, however, is usually very time consuming and 
a single recurrent neural network might lack in robustness (Ahmad et al., 2002). 
Then, we began to investigate the capacity of TDNN and ATNN base on feedforward 
network which is easy to implement compared with recurrent neural network.  Time-
Delay neural network (TDNN) and it adaptive version of TDNN, adaptive time-delay 
neural network (ATNN) have been successfully applied in many areas. The current 
and delayed (or past) observations of the measured system input and output are 
utilized as inputs to the network in the case of single stage MS prediction(Parlos, 
et.al.,2000). This especially makes it possible that prediction accuracy deteriorated 
very quickly with increased p. The lack of rigorous proofs regarding the security of 
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prediction values necessitates the use of measured relevant data with convincing 
algorithms. In our paper, the purpose for amplifying history data in every step urges 
us to find a proper method and pay more attention to interpolation for discrete 
sequences. Interpolation kernels based on B-splines have attracted recent interest 
because of their potential for efficient implementation and for the avoidance of 
erroneous `artefacts' arising from oscillations common to a local or running 
polynomial fit (Unser, et. al.,1993a,b). 

In this paper we propose a three-stage prediction model dynamic spline 
interpolation with ATNN (SATNN). Via interpolation units and dynamic 
compounding units and ATNN, respectively, the multi-step-ahead prediction can be 
obtained from single time series.   The effectiveness of the model is demonstrated by 
the application to annual sunspots and Mackey-Glass equation, and comparison is 
made with a traditional MS ANN model based on TDNN. 

The remainder of this paper is organized as follows. Section 2 presents the SATNN 
model as the resolution for multi-step ahead forecasting, and then gives the model 
structure and algorithms. Section 3 presents prediction results and discussion. Section 
4 presents the conclusion. 

2   Model Architecture and Algorithm 

2.1   Model Architecture 

Given the time series { }| ,1iX x i n≤ ≤ , the three-stage architecture is summarized in 

Fig.1. In the first stage, Gs are B-spline interpolation generator with parameter q equal 
to time window of delayed input signals of ATNN in the third stage, which is 
obtained by spectral estimate with MEM1 (Maximum Entropy Method 1). 
{ }1 2, ,..., qSI SI SI  are B-spline interpolation digital filter (Unser, 1999). Among them, 

1S I  is a simple linear function generating the same data set as X expressed as 

{ | , 1, [1, ], 1}
ijl ijl

X x x i j n l
i

= = ∈ = . These interpolation units are employed to interpolate 

the original signal into the smoothed signals { | [1, ], [1, ], [1, ], }ijlX i q j n l q l i∈ ∈ = ≤ with 

various sampling frequencies 
1 2

{1/ ,1/ ,...,1/ | 1 }qd d d d D= where D is original sampling 

period. It is interesting to note that { | [1, ], [1, ], 1, }ijl XX i q j n l l i == ∈ = ≤ . In the second 

stage, several time series { | [1, ], [1, ], [1, ], }ijlX i q j n l q l i∈ ∈ = ≤  are extracted by moving 

controller directed by controlling signal { }|1tic i q≤ ≤ generated by C to construct a 

new time sequence [ ]( 1){ ' | ' 0 /2}, ,t t i q qX x i J J− +≤ ≤ = (see Eq.2) via linear integrating unit 

. In the third stage, { | 1, }ijN i j J= = and N constitute a ATNN which is feedforward 

network. N denotes one nonlinear hidden layers and output layer. The error between 
the output and measured value has remarkable impact on whole network.  
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Fig. 1. The three-stage architecture for MS prediction 

2.2   Algorithm 

In the first stage the time series is interpolated with different units within the original 
sampling period D by B-spline interpolation transform. B-splines of order n are 
piecewise polynomial functions of degree n (in our model 3n= ). The B-spline 
interpolation equation of the proposed model can be represented as Eq.1 

where k′  is the interpolation points , n is the length of original sequence( the same as 
the umber of data), operator * is convolution, q is the number of B-spline 
interpolation units which is equivalent to input dimension of ATNN in stage 3.Our 

aim is to predict the pth sample ahead, ˆt px + , of the series. When p>1, the prediction 

precise begins to depend more and more on the previous forecasting values. Several 
derivative sequences coming from original observations are used to generate dynamic 
sequence X ′  with length J. The procedure can be expressed as follow: 

2 2

1 1

( 1)2 1
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' 0
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= =− − ∈ +

= − +

 (2) 

where t denotes the current time, J is the length of X’. Note that the interval is 
[ 1, ]t p n∈ + , as can be employed to train the neural network. It is reasonable to assume 

that X’ is a dynamic sequence when t different. After interpolation and reconstruction, 
however, time index in the original has lost meaning, and the natural index in the input 
of ATNN X’ would be paid more attention to. In last stage, t denotes the sequence  
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Fig. 2. The dynamic input data set of ATNN, X’(assume q=4) is restructured When t=6 (a), and 
t=7 (b) respectively 

number of X’, and τ  denotes the reduce number from current point(for simplification 
assuming  q=4, a dynamic sequence X’ can be obtained as Fig.2). 

In this study, ATNN consists of L  layers with LN  neurons in the lth layer. The 
input-output mapping of the corresponding dynamic neuron of ATNN is governed by 

( )
1

( ) 0 1
M

i i i i
i

y t x t Jσ ω τ τ
=

= − ≤ ≤ −  
(3) 

where 
iω  are the neuron weights, 

iτ  are the delays, and ( )σ ⋅ is a nonlinear activation 

function. Note that in above equation, the output of the neuron at time t depends on 
the previous values of the inputs which results in a dynamic behavior. This dynamic 
behavior will be subsequently modified in appropriate ways to represent different 
classes of nonlinear systems. Regarding MS prediction, the procedure of input-output 

can be described as Eq.4. Given the time series data set { }| ,0 1X x i Jt t i′ ′ ≤ ≤ −−  

generated in stage 2 where t is current time, the new predictions are based on 
observations, and a group of previous ones, where the quantities with a “hat” 

represent estimates of the actual states and outputs, and the others without a “hat” 
represent observations. p  is the umber of steps ahead. It should be noticed that the 
net is trained in a feedforward manner and used as a ATNN model to generate the 
prediction.The typical ATNN neuron governing equations are developed as follows 

( ) ( )

1
1( ) ( )

, 0 11

( )

lNl l l lnet t w o tj ji i ji l Ji ji
l l lo t net tj j

τ
τ

σ

−
−= −

≤ ≤ −=

=

 
(5) 

The output of the j th neuron in the lth layer at time t is denoted by ( )
j

l
O t . The first 

equation depicts the governing algorithm of original typical multilayer adaptive time-
delay, in which the weight and associated delay connecting the jth neuron in the lth 
layer to the i th neuron in the (l-1)th layer are denoted by l

jiw  and l
jiτ , respectively. l

jiτ  

ˆ ˆ ˆ ˆ( , , , , , , ) ,0 11 2 1

ˆ ˆ ˆ ˆ( , , , ) ,0 11 2

x F x x x x x p Jt p t p t p t t t p

x F x x x p Jt p t p t p t p

τ ττ
τ ττ

′ ′ ′ ′ ′ ′= > ≤ ≤ −+ + − + − + + −
′ ′ ′ ′= ≤ ≤ ≤ −+ + − + − + −

 (4) 



 Multi-step-ahead Prediction Based on B-Spline Interpolation and ATNN 569 

values form 1 to J . ( ){ }1 | ,0 1io t x i Jt i′ ≤ ≤ −−  is the output of the ith neuron in first layer, 

and 
1

ˆ
t

x
+

′ =
1

ˆ
t

x
+

 is the prediction value of 1tx + .   

The accumulation of the errors in the recursive predictions renders higher difficulty 
to achieve accurate long range predictions than accurate one-step-ahead predictions. 
The spline interpolation technology, however, can dynamically enlarge the real within 
inputs and enforce the robustness of net. 

3   Empirical Results and Discussion 

In the paper, classical chaotic benchmark time series, the annual sunspots and 
Mackey-Glass series, are chosen to train and test model for multi-step-ahead 
forecasting.  

 The sunspots of years 1700 through 1959 were chosen to be the training set, and 
15-step-ahead forecasting of the sunspots of years 1960 through 1974 was utilized.  

 In the discrete-time case (considered here) the series arises from the following 
delay-difference Eq.6  

( ) ( ) ( )
( ) ( )

10
1

1

x t
x t x t a bx t

x t

τ
τ

−
+ − = −

+ −
. (6) 

where both t and τ  are integers.The training data are generated using the 
parameters 0.2, 0.1a b= = , 17τ =  and the sampling rate is 5 (only the sample 

0 5 10, , ...x x x are considered). Then the first 225 time steps are used for training, the 

next 15 time steps for testing. 

 

Fig. 3. Prediction results of  TDNN and SATNN for (a)annual sunspots;(b) Macky-Glass 

In identification, prediction and recognition problems the NMSE is widely used as 
an evaluation yardstick. We therefore use the NMSE to evaluate the performance of 
the structures proposed. Meanwhile, TDNN and our model are all trained and tested 
using time-delay technique. The comparison between them for 15-step-ahead 
forecasting is given in Fig.3a, b.Though at some data points, the SATNN model gives 
worse predictions than TDNN, its forecasting capability is improved in all. The 
results are given in Table 1. 
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Table 1. The RMSE results for forecasting accuracy measures 

 Sunspots1960-1974 Mackey-Glass 
 TDNN SATNN TDNN SATNN 
NMSE 0.097857 0.073691 0.00932 0.00753

4   Conclusion 

Time series analysis and forecasting is an active research area over the past few 
decades. Inspired by many technologies such as B-spline interpolation, time-delay 
and ATNN, we propose a hybrid model for MS forecasting on single factor time 
series. The model integrates three-stage networks together. The results obtained 
through the sunspot and the Mackey-Glass chaotic time series substantiate our 
approach. For MS forecasting based on time-delay problems, the net have both 
dynamic and correlation structures, and can be extended to other professional areas as 
well.  
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Abstract. Radial basis function (RBF) kernels are widely used for sup-
port vector machines. But for model selection, we need to optimize the
kernel parameter and the margin parameter by time-consuming cross
validation. To solve this problem, in this paper we propose using Ma-
halanobis kernels, which are generalized RBF kernels. We determine the
covariance matrix for the Mahalanobis kernel using the training data
corresponding to the associated classes. Model selection is done by line
search. Namely, first the margin parameter is optimized and then the
Mahalanobis kernel parameter is optimized. According to the computer
experiments for two-class problems, a Mahalanobis kernel with a diago-
nal covariance matrix shows better generalization ability than a Maha-
lanobis kernel with a full covariance matrix, and a Mahalanobis kernel
optimized by line search shows comparable performance with that with
an RBF kernel optimized by grid search.

1 Introduction

Support vector machines have been used for various applications as a powerful
tool for pattern classification. One of the advantages of support vector machines
is that we can improve generalization ability by proper selection of kernels. In
most cases polynomial kernels and radial basis function network (RBF) kernels
are used. Mahalanobis kernels [1], which exploit the data distribution information
more than RBF kernels do, are expected to ease model selection but how to
set the covariance matrix is a difficult problem. Friedrichs and Igel [2] used
evolution strategies to tune the parameters obtained by grid search but it is
time consuming.

In this paper, we propose model selection for Mahalanobis kernels. Namely,
using the data belonging to the two classes, we calculate the covariance matrix for
the Mahalanobis kernel. We then optimize the margin parameter and the kernel
parameter that scales the Mahalanobis distance by line search: after optimizing
the margin parameter by cross validation, we optimize the kernel parameter. We
show the usefulness of Mahalanobis kernels over RBF kernels using two-class
data sets.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 571–576, 2005.
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In Section 2, we discuss Mahalanobis kernels, and in Section 3 we discuss
model selection. Finally in Section 4, we compare performance of Mahalanobis
kernels with RBF kernels.

2 Mahalanobis Kernels

First we explain the Mahalanobis distance between a datum and the center
vector of a cluster. Let the set of M m-dimensional data be {x1, . . . ,xM} for the
cluster. Then the center vector and the covariance matrix of the data are given,
respectively, by

c =
1
M

M∑
i=1

xi, (1)

Q =
1
M

M∑
i=1

(xi − c) (xi − c)T . (2)

The Mahalanobis distance of x is given by

d(x) =
√

(x− c)TQ−1 (x− c). (3)

Because the Mahalanobis distance is normalized by the covariance matrix, it
is linear translation invariant [3]. This is especially important because we need
not worry about the scales of input variables.

Another interesting characteristic is that the average of the square of Maha-
lanobis distances is m [3]:

1
M

M∑
i=1

(xi − c)TQ−1 (xi − c) = m. (4)

Based on the definition of the Mahalanobis distance, we define the Maha-
lanobis kernel by

H(x,x′) = exp
(
−(x− x′)TA (x− x′)

)
, (5)

where A is a positive definite matrix. Here, the Mahalanobis distance is calcu-
lated between x and x′, not between x and c. The Mahalanobis kernel is an
extension of the RBF kernel. Namely, by setting

A = γ I, (6)

where γ(> 0) is a parameter for slope control and I is the m×m unit matrix,
we obtain the RBF kernel:

exp(−γ‖x− x′‖2). (7)
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For a two-class problem, the Mahalanobis kernel is used for the data belong-
ing to one of the two classes. Assuming that X = {x1, . . . ,xM} is the set of data
belonging to one of the two classes, we calculate the center and the covariance
matrix by (1) and (2), respectively.

Then we approximate the Mahalanobis kernel by

H(x,x′) = exp
(
− δ

m
(x− x′)TQ−1 (x− x′)

)
, (8)

where δ (> 0) is the scaling factor to control the Mahalanobis distance.
From (4), by dividing the square of the Mahalanobis distance by m, it is

normalized to 1 irrespective of the number of input variables. Although (8) is an
approximation of the Mahalanobis kernel, this may enable to limit the search of
the optimal δ value in a small range.

If we use the full covariance matrix, it will be time-consuming for a large
number of input variables. Thus we consider two cases: Mahalanobis kernels
with diagonal covariance matrices and Mahalanobis kernels with full covariance
matrices. Hereafter we call the former diagonal Mahalanobis kernels and the
latter non-diagonal Mahalanobis kernels.

3 Model Selection

To maximize the generalization ability of the support vector machine we need
to optimize the parameters by model selection. The most reliable method is
cross validation. In the following, we discuss model selection for RBF kernels
and Mahalanobis kernels by cross validation.

3.1 RBF Kernels

For RBF kernels, we need to determine the values of γ and C by grid search. To
set the proper search range of γ, it is better to normalize the input ranges into
[0, 1]. Thus, because the maximum value of ‖x− x′‖2 is m, we use the following
RBF kernels instead of (7) [4]:

exp
(
− γ

m
‖x− x′‖2

)
. (9)

However, because RBF kernels are not scale invariant, the range of [0, 1] may
not be optimal.

3.2 Mahalanobis Kernels

For Mahalanobis kernels, we need to determine the values of δ and C. But
because Mahalanobis kernels given by (8) are determined according to the data
distribution and normalized by m, the initial value of δ = 1 is a good selection.
Thus, we can carry out model selection by line search not by grid search. Namely,
the model selection is done as follows:
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1. Set δ = 1 and determine the value of C by cross validation. We call this the
first stage.

2. Setting the value of C as that determined by the first stage, determine the
value of δ by cross validation. We call this the second stage.

Because δ = 1 is a good initial value, we may search the optimal value around
1, e.g., [0.1, 2].

In addition, because Mahalanobis kernels are normalized by the covariance
matrix, it is scale invariant. Therefore, the scale transformation of input variables
does not affect the classification performance of the support vector machine.

4 Performance Evaluation

We compared the generalization ability of Mahalanobis kernels and RBF kernels
using two-class data sets used in [5].1 Each problem has 100 or 20 training data
sets and their corresponding test data sets. Because there is not much difference
of generalization abilities between L1 and L2 support vector machines, we used
L1 support vector machines. We determined the optimal values of γ and C
for RBF kernels and those of δ and C for Mahalanobis kernels by 5-fold cross
validation. Because the input ranges of the data sets were not normalized, we
normalized them to [0, 1]

For RBF kernels for a value of γ in {0.1, 0.5, 1, 5, 10, 15} we performed cross
validation of the first five training data sets changing
C = [1, 10, 50, 100, 500, 1000, 2000, 3000, 5000, 8000, 10000, 50000, 100000],
selected the optimal γ that showed the minimum average error rate for the
five validation data sets, and selected the median of the best value of C for the
optimal γ. Then, for the optimal values of γ and C, we trained the support vector
machine for 100 or 20 training data sets and calculated the average recognition
error and the standard deviation for the test data sets.

Similarly for Mahalanobis kernels, at the first stage we determined the op-
timal value of C by cross validation for the first five training data sets. Then,
at the second stage we performed cross validation with the determined value of
C, changing δ = [0.1, 0.2, . . . , 1.9, 2]. As a reference we also performed the grid
search of optimum δ for δ = [0.1, 0.5, 1.0, 1.5, 2.0] and C.

If the recognition rate of the validation set took the maximum value for
different values of C, we took the smallest value as the optimal value.

Table 1 lists the parameters obtained by the preceding procedure. Here, we
do not include parameters for Mahalanobis kernels obtained by grid search. From
the table, it is seen that the values of C for the Mahalanobis kernels are equal
to or smaller than those for RBF kernels. In addition, for the image and thyroid
data sets, the values for non-diagonal Mahalanobis kernels are smaller than for
the diagonal Mahalanobis kernels. This means that the support vector machines
with RBF kernels are the most difficult to fit to the data, whereas those with
non-diagonal Mahalanobis kernels are the easiest.
1 http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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Table 1. Parameter setting

Data RBF Diagonal Non-diagonal

γ C C δ C δ

Banana 15 100 50 0.8 50 0.9

B. Cancer 1 10 1 0.6 1 0.8

Diabetes 10 1 1 0.5 1 0.2

German 5 1 1 1.7 1 0.9

Heart 0.1 50 1 0.2 1 0.1

Image 10 1000 500 0.7 100 1

Ringnorm 15 1 1 1.5 1 1.3

F. Solar 1 1 1 0.1 1 0.1

Splice 10 10 10 0.8 10 0.5

Thyroid 5 1000 50 0.4 10 0.9

Titanic 10 10 10 0.7 10 0.6

Twonorm 1 1 1 0.9 1 0.2

Waveform 5 10 1 0.6 1 0.4

Table 2. Comparison of average error rates and standard deviations

Data RBF Diagonal-1 Diagonal-2 Diagonal Non-diagonal

Banana 10.5±0.5 10.5±0.4 10.4±0.5 10.4±0.5 10.5±0.5

B. Cancer 25.6±4.4 25.9±4.2 25.6±4.4 25.9±4.2 26.1±4.4

Diabetes 23.4±1.7 24.7±1.9 23.7±1.7 23.7±1.7 23.3±1.8

German 23.8±2.1 23.4±2.1 23.9±2.1 23.7±1.7 23.7±2.2

Heart 16.1±3.1 17.2±3.2 15.7±3.2 15.6±3.4 17.2±4.0

Image 2.8±0.5 3.1±0.6 3.0±0.5 3.0±0.6 3.2±0.6

Ringnorm 2.6±0.4 1.8±0.2 1.7±0.1 1.6±0.1 1.8±0.1

F. Solar 32.3±1.8 34.1±2.0 32.5±1.7 32.8±1.7 32.5±1.7

Splice 10.8±0.7 10.7±0.7 10.8±0.6 10.8±0.7 13.0±0.6

Thyroid 4.1±2.3 4.2±2.0 4.1±2.3 4.2±2.3 6.9±2.8

Titanic 22.5±1.0 22.5±1.0 22.5±1.0 22.5±1.0 22.6±1.0

Twonorm 2.4±0.1 2.7±0.2 2.7±0.2 2.7±0.1 2.8±0.2

Waveform 10.3±0.4 9.9±0.4 9.9±0.5 10.5±0.4 15.6±1.2
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Table 2 lists the average classification errors and the standard deviations
with the ± symbol. The “Diagonal-1” and “Diagonal-2” columns list the values
for the first and second stages, respectively, and the “Diagonal” column lists
the values by the grid search. Performance of RBF kernels with the input range
of [0, 1] is different from that with the original input range given in [5]. Ex-
cept for the ringnorm data set, the performance with the input range of [0, 1]
performed better. If we use the original input range for the ringnorm data set,
the performance is 1.7±0.1, which is equivalent to that of the second stage us-
ing the diagonal Mahalanobis kernel (Diagonal-2). But for Mahalanobis kernels,
performance does not change for the change of the input range.

The best performance in the row is shown in boldface. Except for the di-
abetes, heart, and f. solar data sets, the recognition performance of diagonal
Mahalanobis kernels with δ = 1 (Diagonal-1) was comparable with that of the
RBF kernels. For these data sets by optimizing the value of δ, performance of the
diagonal Mahalanobis kernels (Diagonal-2) was improved and comparable with
that of RBF kernels. There is not much difference between Diagonal-2 and Di-
agonal. But performance of non-diagonal Mahalanobis kernels was not so good.
The full covariance matrix might cause overfitting.

5 Conclusions

We discussed how to train support vector machines with Mahalanobis kernels
for pattern classification problems. We calculate the covariance matrix using the
training data and determine the optimum values of the margin parameter and
the kernel parameter by line search. The computer experiments showed that the
performance of the Mahalanobis kernels by line search of the optimal margin
and kernel parameters was comparable to that of RBF kernels by grid search of
the optimal parameters.
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Ly(x) =
∑

n

cnD
ny(x)

y(x) L

min ‖y −Hw‖22 + λ ‖Lw‖22
w = (HTH + λLTL)−1yTH

HTH LTL

λ

λ

p(y|w, σ2) = N (y|Hw, σ2I)

p(w|α, λ) = N (w|0, (λLTL + A)−1).

λLTL
L

A = diag(α0, . . . , αN)
αi wi



p(w|y,α, λ, σ2) = N (w|μ,Σ),
p(y|α, λ, σ2) = N (y|0, σ2I + HSHT).

Σ = (σ−2HTH + S−1)−1 S = (λLTL + A)−1 μ = σ−2ΣHTy

α λ σ2

αi

αt+1
i =

αt
i(Sii −Σii)

μ2
i

.

λ = 0, Sii = (α−1
i )t

λ

λt+1 =
(Tr(SλtLTL)− Tr(ΣλtLTL))

μTLTLμ
,

(σ2)t+1 =
‖y −Hμ‖2

N − Tr(Σ(σ−2)tHTH)
.

SA ΣA
Tr(ΣλtLTL) Tr(SλtLTL) = N − Tr(SA)

Tr(Σ(σ−2)tHTH) = N − Tr(ΣA)− Tr(ΣλtLTL)

xi

[−10, 10] yi ∼ N (sinc(xi), 0.1)

σ = 1.6
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17.0 ± 0.0 0.054 ± 0.012 0.077 ± 0.017 0.242 ± 0.066
17.0 ± 0.0 0.062 ± 0.010 0.050 ± 0.008 0.062 ± 0.012
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16.3 ± 3.4 0.039 ± 0.009 0.030 ± 0.009 0.033 ± 0.013
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Abstract. This paper presents a kernel-based clustering algorithm called 
SAKM (Self-Adaptive Kernel Machine) that is developed to learn continuously 
evolving clusters from non-stationary data. Dedicated to online clustering in 
multi-class environment, this algorithm is based on an unsupervised learning 
process with self-adaptive abilities. This process is achieved through three main 
stages: clusters creation (with an initialization procedure), online clusters adap-
tation and clusters fusion. Thanks to a new specific kernel-induced similarity 
measure, the SAKM algorithm is attractive to be very computationally efficient 
in online applications. At the end, some experiments illustrate the capacities of 
our algorithm in non-stationary environment. 

1   Introduction 

Clustering methods group data by using distributions models according to various 
criteria (distance, membership function…). Numerous techniques have been devel-
oped for clustering data in a static environment [1]. However, in many real-life appli-
cations, non-stationary (i.e. time-varying) data are generally common and data distri-
butions undergo variations. Therefore, the challenges of online clustering require 
unsupervised and recursive learning rules that are useful to incorporate new informa-
tion and to take into account model evolutions over time. Also, the algorithms must 
be computationally efficient and have to provide good convergence properties in 
order to be applied to real problems.  

So far, several algorithms that have been proposed for online clustering of non-
stationary data were generally developed with neural network techniques [2], [3]. 
More recently, Lecoeuche and Lurette [4] have proposed a new neural architecture 
(AUDyC: Auto-Adaptive and Dynamical Clustering) that is developed with recursive 
learning rules. However, this algorithm leads to overfitting and becomes limited in 
high-dimensional space. Moreover, the convergence bounds of these NN algorithms 
are not theoretical proved in the context of online clustering. 

During recent years, Support Vector Machines (SVM) and related kernel methods 
have proven to be successful in many applications of pattern recognition [5], [6]. 
They provide both theoretical and experimental attractions [7], [8], [9]. But, few SVM 
algorithms exist with recursive learning rules. To online adapt a single-class density 
support, Gretton and Desobry present an incremental algorithm [10] that provides the 
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exact solution of One-class-SVM [8] but becomes too much computational expensive. 
At 2004, Kivinen & al. [11] develop the NORMA algorithm that is successfully ap-
plied to many real-time applications. Nevertheless, the NORMA algorithm could not 
deal with the challenges of online learning real drifting targets in multi-class prob-
lems. 

This paper presents a new online kernel-based algorithm called SAKM (Self-
Adaptive Kernel Machine). After an overall formulation of our algorithm, its new 
learning properties will be presented. Finally, we present some simulation results. 

2   Self-adaptive Kernel Machine: Online Clustering in RKHS 

The SAKM algorithm is developed to online cluster non-stationary data in multi-class 
environment. The clusters are represented using densities supports in RKHS (Repro-
ducing Kernel Hilbert Space) according to a novel kernel-induced similarity criterion. 
The SAKM algorithm updates the clusters by incorporating new information accord-

ing to data evolutions. We use the set { }1 1,..., ,...,t t t t
MC C CΩ =  of temporal clusters  

associated to the set { }1 1,..., ,...,t t t t
Mf f fℑ =  of temporal functions. t

mC  and t
mf  repre-

sent respectively the thm  cluster and its boundary function so that:  

( ){ }( , ) ,   / 0 .t t t t t t
m m m mC f C X f Xχ∀ ∈ Ω × ℑ = ∈ ≥  (1) 

The cluster boundary function t
mf  is learnt with all data of t

mC available in data space 

χ  at time 1t − . t
mf  is defined at time t  by the kernel expansion with an offset t

mρ : 

(2) 

,
t

i mSV  and ,
t
i mα  are respectively the thi  support vector and its corresponding weight at 

time t .  According to the map function φ defined in Hilbert space: 

1 2 1 2 1 2 1 2( ), ( ) ( , ) exp( ),   ,X X X X X X X Xφ φ κ λ χΓ< > = = − − ∀ ∈ , (3) 

where λ  is the parameter of kernel RBF and  is the inner product in RKHS, the 

cluster t
mC  boundary is represented by a linear hyperplane: : ( ) 0m mf X χΔ = ∈ =  [8]. 

2.1   A Novel Kernel-Induced Similarity Measure 

In this context of online clustering, we introduce a new similarity measure to compute 
the membership level of a new data with existing clusters. Let tX  be the new data 

acquired at time t , the kernel similarity measure is evaluated as: 

( )( ), , ,( ) ( ) 1 exp
2

t t
t m t win m t win mX SV X SV

δμφ φ φ δ λ= × − = × − − − . (4) 

( ), ,( ) , ,   t t t t
m i m i m m

i

f SV i ta k r= - <∑i i .  

, G< >i i



 A New Kernel-Based Algorithm for Online Clustering 585 

 

,
t

win mSV  is the winner support vector of t
mC  so that: ,

i
argmin ( ) ( )t

t i mwin X SVφ φ= −  

and δ  is a function defined by: 1 if  ( ) 0 and 0 if  ( ) 0t t
m t m tf X f Xδ δ= < = ≥ . 

Note that ,t mμφ  is strictly monotonous and bounded in interval [0,1[ . 

Finally, the kernel similarity criterion gives the set winΩ  of cluster winners: 

( ){ },,  ,win t t t
m t m t m thm C X Cμφ εΩ = ∈ Ω < . (5) 

The acceptance threshold thε , fixed to 0.8 , guaranties clusters continuity in χ . 

2.2   Online Learning Process of SAKM Algorithm 

From the previous similarity criterion, different learning rules are defined in Table 1.  

Table 1. The decision rule of SAKM learning process and its specific training procedures 

Case 1 Card(Ωwin) = 0 Creation – Initialisation 

Case 2 Card(Ωwin) = 1 Adaptation stage 

Case 3 Card(Ωwin)  2 Fusion stage 

Stage 1 – Creation - Initialisation: The SAKM algorithm is initialised from zero (pre-
acquisition) hypothesis: 0 0f = . At the first acquisition, the first cluster is created 

with boundary function 1f : 

1 1 1 1(.) (., )f Xα κ ρ= −  where 1 11,  (1 )α ρ η ν= = − . (6) 

η  is the learning rate  and the constant ν  fixes the fraction of support vectors [7]. 

At time 1t = , the datapoint 1X  is the unique support vector of cluster 1C .  

The case 1 of Table 1 at an unspecified time 1t >  implies a novelty apparition. So, 
a new cluster 1MC + is inserted using equation (6) and sets Ω  and ℑ  are incremented. 

Stage 2 - Adaptation: The SAKM update rule is inspired by NORMA algorithm. It is 

based on the stochastic gradient to track efficiently evolving clusters. Let tF  be a 
kernel expansion without offset; and consider the gradient descent equation in RKHS: 

( )1 , ,    ( ) ( , )t t t t t
inst t t i t i

i
F F R F X F X X SV

F
η α κ+ ∂= − =

∂
. (7) 

The learning rate  0η >  grants less or more influence to data deviations.  

In online applications, to reach sequentially the minimisation of the Regularized 
Risk (Vapnik SLT [12]), the Instantaneous Risk instR  is introduced [11] :  

( ) ( ) 2
, ,

2
t t t

inst t t
a

R F X F X Fξ
Γ

= +  with ( ) ( ), max 0, ( )F X F Xξ ρ νρ= − − . (8) 

a  is the penalty constant, fixed to 1 . The norm tF
Γ

 is used for regularisation. 

 Card( ): Cardinality 
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Using the Hinge loss function ξ  [11], the derivatives of the Instantaneous Risk in 

the gradient equation (7) provides the iterative update rule of the kernel expansion. 

Also, the offset tρ  of the boundary function tf  changes according to data drifts and 

will be recovered with the hyperplane equation : ( ) ( ) 0t t tf SV F SV ρ= − = . So, the 
update equations in the adaptation stage (case 2, Table 1) are: 

[ ] [ ]

1 1
, , 1 ,

1,1
,,

1 1
, , ,

max(1, )

(1 ) ,    
,  then 

0 resp. ,  ( ) 0

  ( , )

resp. 0

t t t
i m i m t i m

ti mt t
i mi m m t

i

t
t t t t
m i m c m i m

i t

i t

f X

SV SV
τ

α η α αα
αα η

ρ α κ

+ +
+

++

+ +

= −

= − <
←

= ≥

=

<
. (9) 

,i mα  is normalised and c  is the SV  median index chosen for a better estimation. To 

limit the amount of computation, the kernel expansion is truncated to τ  terms by 
using a sliding window. If the new data is got inside a cluster, no computation is 
done ; in opposite case, the cluster boundary would change. 

Stage 3: In case 3, the acquired data is shared by two or more clusters. When the 
number of these ambiguous data exceeds a threshold A , those clusters are merged : 

( ){ }( ) 0merg win win
win

C X C f X= ∈ ∪ ≥ . (10) 

mergf  is computed with data available in these clusters by using the SAKM update 

rule. In assumption that two different clusters are disjoints, Fusion preserves the con-
tinuity of cluster region and then avoids overlapping. Sets Ω  and ℑ  are modified:  

{ }( ) { } { }( ) { }  win merg win merg
win win

C C f fΩ = Ω ∪ ∪ → ℑ = ℑ ∪ ∪ . (11) 

To reach robustness in non-stationary area, an elimination stage is added in [13].  

2.3   Performances Analysis 

In this section, we point out a brief convergence study of the SAKM update rule in the 
context of an online estimation of a singe-class distribution. Let 

{ }1,..., ,...,L t LX X Xχ =  be a training data set and { }1,..., , ...,t Lf f f  boundary func-

tions sequentially learnt on Lχ . Suppose f  to be the best learning function on Lχ . 

Proposition: Assume that the loss function ξ  is convex and Lipschitzian. Assume 

that is bounded on the training set Lχ . The expectation of instantaneous risk  

( , )
L

t t
instE R f Xχ  of function 

tf  obtained by using gradient descent in RKHS, 

converges to the regularised risk of f  on set Lχ  so that: 

( , )k i i
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1

1
( , ) ( , ) ( , ) ( , )

L

L
t t

inst t inst t reg
t

E R f X R f X R f B L
Lχ χ δ

=
= ≤ + . (12) 

with the probability at least 1 δ−  over random draws of sχ . The term B  is depend-

ing of the dataset length L . The proposition (12) rises from the NORMA conver-
gence theorem proved in [11]. Hence, using the SAKM update rule, the Vapnik regu-
larised risk will be close to the instantaneous risk with high probability. So, by gener-
alization in multi-class environment, the SAKM algorithm leads to good convergence 
property. Many tests carried out show that the SAKM update rule is more convenient 
in learning real drifting targets compare with the NORMA and Gentile’ ALMA [13].  

3   Experiments 

Simulation 1. Data are created from four evolving Gaussian densities(means and dis-
persals changes as in the experiment [4]). The SAKM algorithm initializes clusters 
models from the first data acquisitions (Fig. 1.b). Then, models clusters are sequen-
tially update according to their drifting distributions (Fig. 1.c to Fig. 1.f).  

Simulation 2.  This simulation presents the problem of the clusters fusion (Fig. 2.a). 
The SAKM algorithm initialises the two clusters (Fig. 2.b), updates iteratively their 
densities supports according to data evolutions and provides their optimal models 
(Fig. 2.b to Fig. 2.e). When the two clusters are close enough, the algorithm gives a 
good fusion result by overcoming overlapping drawbacks (Fig. 2.f).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

a) Data evolutions b) Initialization   

Drifts

c) Step 1: updating d) Step 2: updating 

e)  Step 3: updating f) Step 4: updating 

c) Step 1: updating d)  Step 2: updating 

e) Step 3: updating f) Step 4: Merging 

Drifts 

a) Data evolutions b) Initialization 

Fig. 2. Fusion of two clusters. The SAKM 
algorithm takes into account distributions’ 
variations and correctly merges clusters 

Fig. 1. Online clustering of 4 evolving 
clusters (real drifting targets) by using 
SAKM in non-stationary environment 

 Parameters settling: 0.8,  =0.1, 0.3, 30,  0.7thλ η ν τ ε= = = =
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4   Conclusion 

We propose a new online algorithm based on SVM & kernel methods for clustering 
non-stationary data in multi-class environment. Based on a novel kernel-induced 
similarity measure in RKHS, the SAKM algorithm is set with an unsupervised learn-
ing process using a simple and fast incremental learning rule. The SAKM update rule 
tracks iteratively the minimisation of Instantaneous Risk in order to avoid overfitting 
problems. Using density supports in RKHS, the algorithm provides a good reliability 
to define suitably the clusters structure. After a brief appreciation of the SAKM con-
vergence properties and its attractive validations on artificial data drawing real-
drifting targets, experiments have been carried out on real data. 
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Abstract. Tuning hyper-parameters is a necessary step to improve
learning algorithm performances. For Support Vector Machine classifiers,
adjusting kernel parameters increases drastically the recognition accu-
racy. Basically, cross-validation is performed by sweeping exhaustively
the parameter space. The complexity of such grid search is exponential
with respect to the number of optimized parameters. Recently, a gradi-
ent descent approach has been introduced in [1] which reduces drastically
the search steps of the optimal parameters. In this paper, we define the
LCCP (Log Convex Concave Procedure) optimization scheme derived
from the CCCP (Convex ConCave Procedure) for optimizing kernel pa-
rameters by minimizing the radius-margin bound. To apply the LCCP,
we prove, for a particular choice of kernel, that the radius is log convex
and the margin is log concave. The LCCP is more efficient than gradient
descent technique since it insures that the radius margin bound decreases
monotonically and converges to a local minimum without searching the
size step. Experimentations with standard data sets are provided and
discussed.

1 Introduction

Support Vector Machine (SVM) [2] is one of the most successful algorithms of
machine learning. SVM is flexible since various kernels can be plugged for dif-
ferent data representations. Besides RBF and Polynomial kernels only few other
kernels have been used. An interesting and important issue for kernel design con-
sists of assigning, for instance, different scales for each feature component. This
is refereed as adaptive metrics [3]. On the other hand, the classical method for
tuning the learning algorithm parameters is to select parameters that minimize
an estimation or a bound on the generalization error such as cross validation
or the radius margin [2]. The latter has been shown to be a simple and predic-
tive enough “estimator” of the generalization error. In this paper, we define the
LCCP for optimizing kernel parameters by minimizing the radius margin bound.
The LCCP is the direct application of the CCCP [4] to our optimization case.

2 The Log Convex Concave Procedure (LCCP)

The convex concave procedure (CCCP) has been recently introduced [4] for opti-
mizing a function that can be written as a sum of convex and concave functions.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 589–594, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The advantage of the CCCP compared with gradient descent techniques is that
it insures the monotonic decrease of the objective function without searching
the size step. In the following, we summarize the main results of the CCCP
optimization framework.

Theorem 1. [4]

· Let E(θ) be an objective function with bounded Hessian ∂2E(θ)
∂θ2 . Thus, we

can always decompose it into the sum of convex and concave functions.
· We consider the minimization problem of a function E(θ) of form E(θ) =

Evex(θ) + Ecave(θ) where Evex is convex and Ecave is concave. Then the
discrete iterative CCCP algorithm: θp → θp+1 given by ∇Evex(θp+1) =
−∇Ecave(θp) decreases monotonically the objective function E(θ) and hence
converges to a minimum or a saddle point of E(θ).
· The update rule for θp+1 can be formulated as a minimization of a convex

function θp+1 = argminθ Ep+1(θ) where the convex function Ep+1(θ) is
defined by

Ep+1(θ) = Evex(θ) + θ
∇Ecave(θp).

We define the LCCP by applying the CCCP to the case of the minimization of
a positive function J(θ) that can be written as a product of log convex and log
concave functions J(θ) = Jlvex(θ)Jlcave(θ) where Jlvex(θ) > 0 is log convex and
Jlcave(θ) > 0 is log concave. In log(J(θ)) = log(Jlvex(θ)) + log(Jlcave(θ)), we
set E(θ) = log(J(θ)), Evex(θ) = log(Jlvex(θ)) and Ecave(θ) = log(Jlcave(θ)).
Hence, we obtain E(θ) = Evex(θ) + Ecave(θ) where Evex(θ) is convex and
Ecave(θ) is concave. Moreover, the minima location of E(θ) and J(θ) are the
same since the log function is strictly increasing.

3 Parameters Selection Procedure

The optimization of SVM parameters can be performed by minimizing an esti-
mator of the generalization error. The simplest strategy consists in performing an
exhaustive search over all possible parameters. When the number of parameters
is high, such a technique becomes intractable. In [1], gradient descent framework
is introduced for kernel parameter’s optimization. Powerful results on the dif-
ferentiation of various error estimators and generalization bounds are provided.
Based of this work, we apply the LCCP framework for optimizing multiple ker-
nel parameters by minimizing the radius margin bound [2]. Indeed, for good
choice of kernels, the optimizing problem can be expressed under the condition
of LCCP, in particular for the multi-parameters L1-distance kernel.

3.1 Distance Kernel

In [1], tests with multiple parameters for polynomial and RBF kernels have been
successfully carried without over-fitting. From the L1-distance kernel:

KL1(x, x′) = −
n∑

k=1

|xk − x′k|, (1)
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where x and x′ are in R
n with components xk and x′k, we propose its following

multiple parameters extension:

KL1,θ(x, x′) = −
n∑

k=1

|xk − x′k|
θk

, (2)

where θ is in R
+n with components θk. This kernel is conditionally positive

definite, see [5]. We prove that it is possible to use the LCCP for minimizing
radius-margin bound R2‖w‖2, with respect to θ. To do so, we prove the log
convexity of the radius R2 and the log concavity of ‖w‖2. Another proof may
be used for another kernel. More precisely, for R2, we will prove that it can be
written as a sum of log convex functions. For ‖w‖2, it is sufficient to prove that
it is concave since the concavity implies the log concavity.

3.2 The Log Convexity of R2

First, we recall from [6] a useful result on convex functions that we need in the
proof of the log convexity of the radius R2.

Lemma 1. If for each y ∈ A, f(x, y) is convex in x, then the function g,
defined as g(x) = maxy∈A f(x, y) is convex in x.

This result can be easily extended to the case of log convex functions. The radius
R2 can be written for the kernel (2) as the following:

R2(θ) = max
β∈B

JR2(β, θ), (3)

where B = {βi ≥ 0,
∑	

i=1 βi = 1} and JR2 is the following function:

JR2(β, θ) = −
	∑

i=1

βi

n∑
k=1

Fak
ii
(θ) +

	∑
i,j=1

βiβj

n∑
k=1

Fak
ij

(θ), (4)

with Fak
ij

(θ) = fak
ij

(θk) = ak
ij

θk and ak
ij = |xk

i − xk
j |. Since ak

ii = 0, the first sum
in JR2 is zero. Next, we prove that F is log convex. To do so, it is necessary and
sufficient [6] to prove that ∇2F (θ)F (θ)−∇F (θ)∇F (θ)
 is a positive definite
matrix. By computing the gradient ∇F and the Hessian ∇2F , it turns out that
the obtained matrix is diagonal. Thus the necessary and sufficient condition for
the log convexity becomes f ′′

ak
ij

(θk)fak
ij

(θk)− f ′2
ak

ij
(θk) ≥ 0. We have:

fa(t) =
a

t
, f ′

a(t) = − a

t2
, f ′′

a (t) =
2a

t3
, f ′′

a (t)fa(t)− f ′
a
2(t) =

a2

t4
≥ 0.

So JR2 is log convex with respect to θ, as a sum of log convex functions [6].
Lemma 1 implies that R2 is log convex.
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3.3 Log Concavity of ‖w‖2

A similar result to Lemma 1, for the concave case, can be derived [6]:

Lemma 2. Assume that A is a convex set, if f(x, y) is concave in (x, y), then
the function g, defined by g(x) = maxy∈A f(x, y) is concave in x.

We also need two extra lemmas, which are proved with details in [5]:

Lemma 3. We define the function f by

f(a, t) =
1
t
a
K a, a ∈ R

	, t ∈ R+, K ∈ R
	×	.

If K is a positive definite matrix then f is convex in (a, t).

Lemma 4. We define the function g for t ∈ R
n, a ∈ R

	

g(a, t) =
n∑

k=1

fk(a, tk).

If each fk is convex in (a, tk), then g is convex in (a, t).

The expression of ‖w‖2 is the following:

‖w‖2(θ) = max
α∈Λ

J‖w‖2(α, θ),

where Λ = {αi ≥ 0,
∑	

i=1 αiyi = 0} and

J‖w‖2(α, θ) = 2
	∑

i=1

αi −
	∑

i,j=1

αiαjyiyjKθ(xi, xj).

It is obvious that Λ is a convex set. The first term in J‖w‖2 is linear with respect
to α, thus it does not affect the convex or concave nature of J‖w‖2 . We thus
only focus on:

J ′
‖w‖2(α, θ) = −

n∑
k=1

1
θk

	∑
i,j=1

αiαjyiyjKk(xi, xj)

where Kk(xi, xj) = −|xk
i − xk

j | is conditionally positive definite. We introduce
the kernel K̃k defined by K̃k(x, x′) = Kk(x, x′) − Kk(x, x0) − Kk(x′, x0) +
Kk(x0, x0) where x0 is chosen arbitrary. It is known that K̃k is positive definite
and that it can be substituted to Kk in the dual SVM problem, see [5]. Similarly,
we can substitute Kk by K̃k in J ′

‖w‖2 according to the constraint
∑	

i=1 αiyi = 0
and rewrite it as J ′

‖w‖2(α, θ) = −
∑n

k=1
1
θk αy


K̃k αy = −
∑n

k=1 fk(α, θk),
where K̃k is the Gram matrix of K̃k, αy denotes the vector [α1y1 . . .α	y	]
,

and fk(α, θk) = 1
θk α
K̃y,k α with

[
K̃y,k

]ij

= yiyj

[
K̃k

]ij

. We have that K̃y,p
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is positive definite. Therefore, lemma 3 implies that fk is convex in (α, θk) and
lemma 4 implies that the sum over fk is convex in (α, θ). Therefore, we have
the concavity of J ′

‖w‖2 in (α, θ) and lemma 2 implies the concavity of ‖w‖2
with respect to θ. The log concavity is always obtained when the concavity of
positive functions is insured [6]. The conditions of LCCP are all fulfilled. We can
thus apply it for the optimization of the L1-distance kernel parameters.

4 Experiments

Fig. 1 shows the variation of log(R2), log(‖w‖2) and log(R2‖w‖2) with respect
to θ1 and θ2 for the kernel (2). It illustrates the log convexity of R2 and the log
concavity of ‖w2‖.
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Fig. 1. The left, middle and right figures plot respectively log(R2), log(‖w‖2) and
log(R2‖w‖2) with respect to the L1-distance kernel parameters (θ1, θ2) on banana
dataset which is a set of 2D points [7].

Table 1. Test error’s comparison of the single parameter L1 distance kernel (1), L2

distance kernel (5) and L1 distance kernel with multiple parameters. n denotes the
number of parameters for multi-parameter’s kernel. LCCP is used for optimizing the
radius margin bound.

Thyroid Titanic Heart Breast-cancer
KL1 (1) 5.77% 22.68% 20.65% 28.97%
KL2 (5) 11.21% 22.56% 18.23% 29.77%

KL1,θ (2) 6.20% 22.08% 17.34% 27.12%
n 5 3 13 9

In order to evaluate the performance of the LCCP for optimizing multiple pa-
rameters, we performed experiments on datasets obtained from [7]. We compare
the L1-distance kernel without parameters (1), the L2-distance kernel:

KL2(x, x′) = −
n∑

k=1

(xk − x′k)2, (5)

and the L1-distance kernel with multiple parameters (2). Initial starting point
is set to 1 for all θi, as in [1]. The stopping criterion is |log(Ep+1(θp+1)) −
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log(Ep(θp))| < ε. The data sets contain 100 realizations of training and test ex-
amples. For each realization, we optimize the kernel parameters on the training
sample using the LCCP. The obtained parameters are used to estimate the gener-
alization error on the test sample by a 5-fold cross-validation. Tab. 1 summarizes
average test errors for different data sets. The L2-distance kernel is equivalent to
the linear kernel when used within SVM. We observe that the L1-distance ker-
nel performs better or similarly than L2-distance kernel except on heart dataset.
Tab. 1 shows that the use of multiple parameters in L1-distance kernel allows
us most of the time to decrease the test error, despite the weightening of each
dataset. This shows clearly the interest of the introduction of multiple parame-
ters in kernels.

5 Conclusion

In this paper, we propose an original way for optimizing of kernel multiple pa-
rameters by minimizing the radius margin bound, we named LCCP. The LCCP is
derived directly from CCCP optimizing framework. The LCCP approach is more
efficient than the gradient descent technique since it converges to a local mini-
mum without searching the size step. We prove that, for the multi-parameters
L1-distance kernel, the radius margin fulfills the conditions for application of the
LCCP. Comparison on standard data set leads to improved recognition perfor-
mance compared to single parameter L1-distance kernel. The multi-parameters
L1-distance kernel is only one example of kernel which fulfills the conditions for
application of the LCCP, but other exists. The formal definition of the set of all
kernels that fulfills these conditions is the subject of our future researches.
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Abstract. In this paper, we present a new compactly supported kernel
for SVM based image recognition. This kernel which we called Geomet-
ric Compactly Supported (GCS) can be viewed as a generalization of
spherical kernels to higher dimensions. The construction of the GCS ker-
nel is based on a geometric approach using the intersection volume of
two n-dimensional balls. The compactness property of the GCS kernel
leads to a sparse Gram matrix which enhances computation efficiency by
using sparse linear algebra algorithms. Comparisons of the GCS kernel
performance, for image recognition task, with other known kernels prove
the interest of this new kernel.

1 Introduction

Support Vector Machine is one of the successful kernel methods that has been
derived from statistical learning theory. Incremental version of SVM has been
introduced in [1] allowing faster on-line learning. We focus in this paper on
how to improve the computational efficiency of SVM training using compactly
supported kernels. We propose a new compactly supported kernel. In §2, we
introduce and derive the new kernel, we named Geometric Compactly Supported
(GCS) kernel. We provide experimental results proving that GCS kernel leads to
good accuracy for image recognition task while being computationally efficient.

2 CS Kernels

A kernel ϕ(x, y) is said to be compactly supported (CS) whenever it vanishes
from a certain cut-off distance 2r between x and y.

ϕ(x, y) =

{
ϕ(x, y) if ‖x− y‖ < 2r
0 if ‖x− y‖ ≥ 2r

The main advantage of CS kernels is that their Gram matrices [ϕ(xi, xj)]i,j are
sparse. If such matrices are associated with a linear system they can be solved
efficiently using sparse linear algebra methods. Genton was the first to point

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 595–600, 2005.
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Table 1. Examples of compactly supported kernels in R, R
2 and R

3

Triangular 1− |x−y|
2r

, |x−y|<2r

KT (x, y) positive definite in R

Circular arccos(
‖x−y‖

2r
)− ‖x−y‖

2r

√
1−

( ‖x−y‖
2r

)2
, ‖x−y‖<2r

positive definite in R
2

Spherical 1− 3
2

‖x−y‖
2r

− 1
2

( ‖x−y‖
2r

)3
, ‖x−y‖<2r

positive definite in R
3

out the possible gain in efficiency provided by CS kernels with machine learning
techniques [2].

Triangular, circular and spherical kernels, see Tab. 1 for definitions, which are
used in geostatistic applications, have been also studied in the context of machine
learning [2]. However, the use of these kernels is limited to dimensions from one
to three, since they are not positive definite for higher dimensions. Indeed, we
provide next a counterexample given in [3] proving that the triangular kernel
KT (x, y) is not positive definite for features living in R

2. Let’s take x, y ∈ R
2,

thus |x−y| is replaced by ‖x−y‖ (the L-2 norm of R
2) in definition of KT (x, y),

see Tab. 1. By choosing xi,j ∈ R
2 from a 8 × 8 square grid of spacing

√
2r, and

ci,j alternatively +1 and −1, we have:

8∑
j1,j2=1

8∑
k1,k2=1

cj1,j2ck1,k2KT (xj1,j2 , xk1,k2) = −1.6081 < 0

Therefore KT is not positive definite on R
2. A few attempts have been carried

out to derive compactly support (CS) kernels for high dimensions [2]. In [4], ex-
perimentations using a CS kernel are described proving that such kernel does not
give usually good performances in the context of non-linear regression (SVR) of
functions. Notice that just truncating positive definite kernels does not generally
lead to positive definite kernels. We now introduce a new compactly supported
kernel that can be viewed as an extension of triangular, circular and spherical
kernels to higher dimensions.

3 The GCS Kernel

The derivation of the new Geometric Compactly Supported (GCS) kernel is
based on the intersection of two n-dimensional balls. Basically, we use the fact
that the intersection volume of two n-dimensional balls leads to a compactly
supported and positive definite kernel.

The properties of positiveness and compactness of the GCS kernel are pre-
sented in the following proposition.

Proposition 1. Let x and y ∈ R
n, Ψn(x, y) denotes the intersection volume

of two balls having the same radius r, centered in x and y. Thus Ψn(x, y) is
compactly supported and positive definite kernel.
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Proof. Intersection volume Ψn(x, y) can be written as the following integral:

Ψn(x, y) =
∫

a∈Rn

�{‖x−a‖≤r}�{‖y−a‖≤r}da (1)

=
∫

a∈Rn

fa,r(x)fa,r(y)︸ ︷︷ ︸
positive definite

da

where fa,r(z) = �{‖z−a‖≤r}(z). Thus, Ψn(x, y) is a positive definite kernel as a
mixture of positive definite kernels. Each time the feature point a ∈ R

n is in the
intersection of the two balls of centers x and y, the function under the integral
equals to one, otherwise it equals to zero. As a consequence, the summation over
a ∈ R

n gives the intersection volume of the two balls. Whenever ‖x−y‖ > 2r, the
balls intersection is empty, so Ψn(x, y) = 0. Therefore, Ψn is a CS and positive
definite kernel.

To simplify notations, we omitted the radius hyper-parameter r in Ψn(x, y).
Next, we derive a more explicit formula for the GCS kernel which allows to
compute the kernel in a fast recursive way. The volume Vn(r) of a n-dimensional
ball with radius r can be calculated recursively as follows:

Vn(r) =
∫ r

0

Vn−1(
√
r2 − t2)dt, for n ≥ 2 (2)

Thus, a general formula of the n-dimensional ball volume can be written as
follows:

Vn(r) =

⎧⎨⎩
1

( n
2 )!π

n
2 rn if n is even

2
n+1
2

n!! π
n−1

2 rn if n is odd

where n!! = n(n−2)(n−4) . . . 1 is the double factorial when n is odd. The same
recursive approach as in (2) can be used for the derivation of the intersection
volume Ψn(x, y). We can see in Fig. 1 that the median plane of x and y is a
symmetric plane for the intersection volume, so Ψn(x, y) can be written, similarly
to (2), but now integrating from ‖x−y‖

2 to r rather than from 0 to r:

r r

x y

‖x−y‖
2

Fig. 1. Intersection volume calculus (case n = 2)
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Ψn(x, y) = 2
∫ r

‖x−y‖
2

Vn−1(
√
r2 − t2)dt

= An(r)
∫ r

‖x−y‖
2

1
r

(
1−

(
t

r

)2
)n−1

2

dt

= An(r)Φn(x, y)

where An(r) is only a normalization factor, which is independent of x and y.
SVM decision function is invariant to the product of any positive constant with
the kernel. Thus, in the following, we get rid of An, and we denote by Φn(x, y)
the remaining term which defines the GCS kernel KGCS(x, y).

By variable changing t = r sin θ, Φn(x, y) can be written as follows:

Φn(x, y) =
∫ π

2

arcsin( ‖x−y‖
2r )

(cos θ)ndθ (3)

By integrating by part, we are able to derive a recursive computation of Φn(x, y).
For a dimension n, we define ϕn,k(x, y) as the value of Φn(x, y) at kth iteration.
As a consequence, we have Φn(x, y) = ϕn,n(x, y). We prove easily that for ‖x−
y‖ < 2r: ⎧⎪⎨⎪⎩

ϕn,k(x,y)=k−1
k ϕn,k−2(x,y)− 1

k
‖x−y‖

2r

(
1−( ‖x−y‖

2r )2) k−1
2

ϕn,2(x,y)=arccos(
‖x−y‖

2r )−‖x−y‖
2r

√
1−( ‖x−y‖

2r )2

ϕn,1(x,y)=1−‖x−y‖
2r

(4)

For ‖x − y‖ ≥ 2r, ϕn,k(x, y) = 0. Notice that Φ1 on R is the triangular kernel,
Φ2 on R

2 is the circular kernel and Φ3 on R
3 is the spherical kernel. Thus, it can

be viewed as the generalization of the spherical kernel to higher dimensions. The
GCS kernel Φn is positive definite on R

n as proved before. Nevertheless ϕn,k,
1 ≤ k ≤ n−1 are not positive definite kernels on R

n. Indeed, the counterexample
given in beginning of §. 2, tells us that ϕ2,1, which is the triangular kernel for
data living in R

2, is not positive definite. Functions ϕn,k are only intermediaries
functions useful to compute the GCS kernel Φn recursively.

4 Complexity Reduction

One of the interest of GCS kernel is the reduction of algorithmic complexity.
Actually, we can take advantages of the Gram matrix sparsity to enhance train-
ing computation stage. Fig. 2-a shows the sparsity of the GCS Gram matrix.
Fig .2-b presents the rearrangement of the Gram matrix using a Cuthill-McKee
permutation which leads to a banded matrix [5]. Fig. 2-c presents computational
savings for the SVM training stage: it plots the complexity of the quadratic term
of the SVM dual problem with respect to the size of training sample n. The usual
computation leads to a quadratic complexity of O(n2), for each iteration. The
use of a sparse Gram matrix leads to a better complexity of O(nB(n)), where
B(n) < n is the bandwidth of the rearranged Gram matrix. Moreover, after
rearranging the Gram matrix, only the banded Gram matrix is kept in memory.
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Fig. 2. (a)-(b) Symmetric reverse Cuthill-McKee permutation of sparse GCS Gram
Matrix for radius hyperparameter r = 0.4. (c) Complexity of quadratic term of the
SVM dual problem using banded matrix representation with respect to the size of
training sample.

5 Experiments

Figure 3 shows some images from Corel database that we used for experiments.
This database gathers 3200 images in 6 different classes. Images are represented
by 64-bin RGB color histogram. We compare 4 kernels namely: Laplace kernel
KLapl(x, y) = exp(− ‖xa−ya‖

σ ), Polynomial kernel KPoly(x, y) = (1 + 〈xa · ya〉)d,

Fig. 3. Image examples from the 6 classes used for experiments

Table 2. Validation and test errors comparisons for the different kernels on Corel
database

valid. err. test err.

KLapl 25.32±0.19 25.34±0.42
KGCS 25.19±0.30 25.07±0.64

KPoly 27.81±0.17 27.92±0.43
KCS 26.12± 0.37 25.30±0.44

KGCS defined by (4) and KCS = KGCSKLapl. The parameter a applies a non-
linear remapping of feature space which is shown to improve drastically perfor-
mances for image recognition task. We set a = 0.25 as in [6]. For KGCS, we tune
the radius r. For KCS , we set the radius to r = 4 such that we obtain Gram
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Table 3. Class-confusion matrix obtained for kernel KCS on Corel database

Animals Birds Buildings Night scenes Roses Water scenes
Animals 536 104 80 69 128 99
Birds 25 62 2 17 35 24
Buildings 37 12 291 95 25 27
Night scenes 13 8 28 82 12 25
Roses 140 189 34 53 542 56
Water scenes 34 36 29 45 27 172

matrix sparsity of 90%, then we tune the σ of inside KLapl. Table 2 shows that
KGCS and KCS yield to similar results to KLapl which known as the best kernel
in the state of the art. Optimal radius of the GCS kernel does not give sparse
enough Gram matrices, however combined with KLapl, KCS has a sparsity of
90%. Table 3 shows the class-confusion matrix obtained with KCS, values on
the diagonal gives the number of correctly classified images.

6 Conclusion

In this paper, we have presented a new compactly supported kernel namely the
GCS kernel. The construction of this kernel is based on a geometric approach
using the intersection volume of two n-dimensional balls. Hence, the GCS kernel
can be viewed as the generalization of spherical kernels to higher dimensions. It
yields to good recognition performance when the radius is tuned similar to that
of Laplace kernel, however optimal radius does not lead to sparse Gram matrix.
To recover sparsity, we combine the GCS kernel and the Laplace kernel to obtain
an efficient kernel with a highly sparse Gram matrix of 90% of zeros.
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Abstract. We describe a kernel method which uses the maximization
of Onicescu’s informational energy as a criteria for computing the rele-
vances of input features. This adaptive relevance determination is used
in combination with the neural-gas and the generalized relevance LVQ
algorithms. Our quadratic optimization function, as an L2 type method,
leads to linear gradient and thus easier computation. We obtain an ap-
proximation formula similar to the mutual information based method,
but in a more simple way.

1 Introduction

Relevance LVQ (RLVQ) [2] uses a weighted distance function for the LVQ clas-
sification. A modification of RLVQ has been proposed by Hammer et al. [3],
Generalized RLVQ (GRLVQ), which obeys a stochastic gradient descent on an
energy function.

The neural-gas (NG) algorithm [4] represents a neural model which is applied
to the task of vector quantization by using a neighborhood cooperation scheme.
The NG network uses an adaptation rule similar to the Kohonen feature map. It
replaces the Euclidian distance with the neighborhood ranking of the reference
vectors for a given input vector. The Supervised Relevance Neural Gas (SRNG)
algorithm [1] combines the NG and the GRLVQ. The idea was to incorporate
neighborhood cooperation of NG into the GRLVQ to speedup the convergence
and make initialization less crucial.

In our previous work we have introduced two LVQ classificators based on On-
icescu’s informational energy (IE): the Energy RLVQ (ERLVQ) [5] and the En-
ergy GRLVQ (EGRLVQ) [6]. We have obtained incremental learning algorithms
for feature ranking and supervised classification. The sensible part of such an
approach is the mutual information estimation, which poses great difficulties as
it requires the knowledge on the underlying probability density functions of the
data space and the integration on these functions [13]. Our technique proved to
be an efficient solution to this problem.

In this paper, we describe the Energy SRNG (ESRNG) classificator, a ker-
nel method which uses the maximization of the IE as a criteria for computing
the relevances of input features. This adaptive relevance determination is used
in combination with the SRNG model, providing an alternative way for deter-
mining the relevances. After introducing the SRNG notations and the relevance
determination using IE, we define the ESRNG algorithm and compare it to other
algorithms of this family.
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2 SRNG

Assume that a clustering of data into M classes, c1, . . . , cM , is implemented and a
set of training data is available: X = {(xi, ci) ⊂ IRn×{1, . . . , M} | i = 1, . . . , N}.
The training vectors xi have n components [xi1, . . . , xin]. A subset of reference
vectors from IRn are assigned to each class. Denote the set of all reference vectors
by W = {w1, . . . , wK}. The components of a vector wj are [wj1, . . . , wjn].

The NG algorithm optimizes a cost function which uses the rank rj(xi, W )
of the reference vector wj for a given input xi [1], [4]:

CNG =
1

C(γ)

∑
wj∈W

∑
xi∈X

hγ(rj(xi, W ))‖xi −wj‖2,

where hγ(rj(xi, W )) = e−rj(xi,W )/γ , C(γ) =
∑K−1

r=0 hγ(r), and γ is a parameter
which gives the neighborhood range. The rank rj(xi, W ) of the reference vector
wj for the input vector xi is the number of reference vectors that are in the
relation ‖xi − wk‖ ≤ ‖xi − wj‖, where j, k ∈ {1, . . . , K} and j �= k. The
neighborhood ranking of the reference vectors is updated each time a training
vector is applied to the input of the neural network.

The GRLVQ algorithm uses a squared weighted distance between an input
vector xi and a reference vector wj , D2

ij =
∑n

k=1 λk(xik − wjk)2, where λ =
[λ1, . . . , λn] is the relevance vector, with λi ≥ 0, i = 1, . . . , n,

∑n
i=1 λi = 1. The

Supervised Relevance NG (SRNG) can be obtained [1] by including the NG idea
in the GRLVQ algorithm. The cost function optimized by this algorithm is:

CSRNG =
∑

xi∈X

∑
wj∈W xi

hγ(rj(xi, W
xi))f(μλ(xi, wj))

C(γ, Kxi)
,

with μλ(xi, wj) = |xi−wj |2λ−Dik

|xi−wj |2λ+Dik
. Dik is the weighted distance between xi and

the closest reference vector that does not belong to Wxi , a subset of W which
contains the reference vectors from the same class with xi. Kxi is the cardinality
of Wxi . According to this cost function, all reference vectors from Wxi and the
closest reference vector that does not belong to this set are updated by [1]:

Δwj = ηλI
∂f

∂μ

Dik

(|xi −wj |2λ + Dik)2
(xi −wj)

rj(xi, W
xi)

C(γ, Kxi)
(1)

where wj is the closest reference vector from xi that does not belong to Wxi ,
and

Δwk = −
∑

wj∈W xi

η1λI
∂f

∂μ

|xi −wj |2λ
(|xi −wj |2λ + Dik)2

(xi −wk)
rj(xi, W

xi)
C(γ, Kxi)

(2)

for all reference vectors from Wxi . In these relations, η and η1 are two posi-
tive constants. We used the sigmoid function f(μ) = 1

1+e−με for which ∂f
∂μ =

f(μ) (1− f(μ)), with ε a positive constant.
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3 Relevance Determination Using Informational Energy

Onicescu’s IE [7], [8] is defined by: E(Y ) =
∫ +∞
−∞ p2(y)dy, where Y is a contin-

uous random variable with probability density function p(y). The conditional
information energy between Y and a discrete random variable C is: E(Y |C) =∫

y

∑M
p=1 p(cp)p2(y|cp)dy.

The unilateral dependence measure o(Y, X) = E(Y |X) − E(Y ), defined in
[9], quantifies the amount of information contained in random variable X about
random variable Y .

The ESRNG algorithm uses a vector of relevances obtained by maximizing
o(Y, X) with an ascending gradient method [6]. A transformation which makes
the connection between the input vector and the class represented by the refer-
ence vector wj is employed: yi = λI(xi−wj). In this equation, xi, i = 1, . . . , N ,
is the set of training vectors that belong to one of the c1, c2, . . . , cM classes;
wj , j = 1, . . . , P , are the reference vectors of the classes; λ is the vector of rel-
evances; I is the unity matrix. The values yi, i = 1, . . . , N , are samples of the
random variable Y .

We obtain the relevance values by an iteratively updating approach:

λ(t+1) = λ(t) + α
N∑

i=1

∂o(Y, C)
∂yi

I (xi −wj) .

Considering the M class labels as samples of a discrete random variable
denoted by C, we have: o(Y, C) = E(Y |C)−E(Y ). The conditional information
energy can be reformulated as a dependence of the squared mutual probability
density E(Y |C) =

∑M
p=1 p(cp)

∫
y

p2(y|cp)dy =
∑M

p=1
1

p(cp)

∫
y

p2(y, cp)dy.

This allows us to write o(Y, C) =
∑M

p=1
1

p(cp)

∫
y p2(y, cp)dy −

∫
y p2(y)dy,

which can easily estimated by using the Parzen windows with the Gaussian

kernel G(y − yi, σ) = 1√
2πσ

· e−
‖y−yi‖2

2σ .

The probability density p(y) can be expressed [10] as p(y) = 1
N

∑N
i=1 G(y−

yi, σ
2). We can write:

∫
y p2(y, cp)dy = 1

N2

∑Np

k=1

∑Np

l=1 G(ypk − ypl, 2σ2) and∫
y

p2(y)dy = 1
N2

∑N
k=1

∑N
l=1 G(yk − yl, 2σ2), where ypk, ypl are two training

samples from class p, and yk, yl are two training samples from any class. Np is
the number of the training samples from the class p.

We obtain

o(Y, C) =
1
N

(
M∑

p=1

1
Np

) Np∑
k=1

Np∑
l=1

G(ypk − ypl, 2σ2I)−

− 1
N2

N∑
k=1

N∑
l=1

G(yk − yl, 2σ2I).

We use two consecutive samples y1 and y2 as classes representatives. This ex-
pression can only be evaluated when the two training vectors belong to different
classes. In this case, we obtain:
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o(Y, C) = G(0, 2σ2)− 1
2
G(y1 − y2, 2σ2).

4 The ESRNG as a Kernel Based Algorithm

When y1 �= y2, we have ‖y1 − y2‖2 > 0 and G(0, 2σ2) > G(y1 − y2, 2σ2). This
means o(Y, C) > 0 for all input vectors. Hence, this is a positive defined kernel.

The squared weighted distance between an input vector xi and a reference
vector wj D2

ij =
∑n

k=1 λk(xik − wjk)2 requires that λk ≥ 0 for all k = 1, . . . , n.
In the case when at least one relevance value is negative, this condition can
be realized by transforming the relevance vectors with λk = eλk∑n

i=1 eλi
+ ε or

by scaling the relevance components λk = λk + mini=1,...,n λi + ε, where ε is a
positive constant. We usually apply a transform of the relevance vector in order
to keep its component’s values in a reasonable domain.

Finally, we obtain:

λ(t+1) = λ(t) − α
1

4σ2
G(y1 − y2, 2σ2I)(y2 − y1)I(x1 −wj(1) − x2 + wj(2))(3)

where wj(1) and wj(2) are the closest prototypes from the input vectors x1 and
x2, respectively.

The ESRNG algorithm adapts the reference vectors for as least as possible
quantization error on all feature vectors. After initializing the relevance vector
λk = 1/n, k = 1, . . . , n, the codebook vectors, η, α, and σ, the following proce-
dure updates incrementally the codebook vectors, the relevances and the feature
ranks, for a given input xi:

1. Update the codebook vectors using the SRNG relations (1) and (2).
2. Update the relevances according to our formula (3) and transform them.
3. Update the overall rank of each feature as an average over all previous steps.

Since we also obtain a ranking of the input vectors’ components, this algo-
rithm can be used not only in classification tasks, but also in feature selection.

The weighted Euclidean metric we use allows for a direct interpretation as
kernelized NG if the relevances are fixed [1]. In this case, the relevances should
not be updated after processing each input pattern. This may be achieved if we
allow a preprocessing of the patterns, where the relevances are computed first.

5 Experiments

The classification results obtained by ESRGN, applied on three well known
datasets (Iris, Ionosphere, and Vowel Recognition [11]), are compared in Table
1 with other experiments performed under similar conditions.

We used 6 reference vectors to classify the 150 vectors from the Iris database.
The third component was ranked as most important and the least important was
the second component, while the recognition rate was 97.33%. The 351 instances
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of the Ionosphere dataset were split into two subsets. For the first training 200
samples we used 8 reference vectors. The remaining 151 samples were used in
the classification tests. We obtained a recognition rate of 94.40%. For the Vowel
recognition database (Deterding data) we trained 59 reference vectors and we
obtained a recognition accuracy of 47.61%. The second feature was found as
most important, whereas the 7-th and 10-th features were ranked as the least
important.

Figure 1 shows the average values of the feature relevances obtained with
ESRNG experiments.

Table 1. Comparative recognition rates for the test data

Iris Vowel Ionosphere
LVQ 91.33% 44.80% 90.06%
RLVQ 95.33% 46.32% 92.71%
GRLVQ 96.66% 46.96% 93.37%
SRNG 96.66% 47.61% 94.03%
ERLVQ 97.33% 47.18% 94.03%
EGRLVQ 97.33% 47.18% 94.40%
ESRNG 97.33% 47.61% 94.40%
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Fig. 1. The average values of the feature relevances obtained with ESRNG experiments

6 Conclusions

Our contribution is an information theory approximation of the relevances in the
supervized NG algorithm. This method proves to be computationally effective
and leads to good recognition rates.

Jenssen et al. [12] have recently proved that information theoretic learning
based on Parzen windows density estimation is similar to kernel-based learning.
Since the distance we use allows for a direct interpretation as kernelized NG, in
our future work we will attempt to combine these two results.
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Abstract. Although Support Vector Machines (SVMs) have been successfully 
applied to solve a large number of classification and regression problems, they 
suffer from the catastrophic forgetting phenomenon. In our previous work, in-
tegrating the SVM classifiers into an ensemble framework using Learn++ 
(SVMLearn++) [1], we have shown that the SVM classifiers can in fact be 
equipped with the incremental learning capability. However, Learn++ suffers 
from an inherent out-voting problem: when asked to learn new classes, an un-
necessarily large number of classifiers are generated to learn the new classes. In 
this paper, we propose a new ensemble based incremental learning approach us-
ing SVMs that is based on the incremental Learn++.MT algorithm. Experiments 
on the real-world and benchmark datasets show that the proposed approach can 
reduce the number of SVM classifiers generated, thus reduces the effect of out-
voting problem. It also provides performance improvements over previous ap-
proach. 

1   Introduction 

As with any type of classifier, the performance and accuracy of SVM classifiers rely 
on the availability of a representative set of training dataset. In many practical appli-
cations, however, acquisition of such a representative dataset is expensive and time 
consuming. Consequently, it is not uncommon for the entire data to be obtained in 
installments, over a period of time. Such scenarios require a classifier to be trained 
and incrementally updated as new data become available, where the classifier needs to 
learn the novel information provided by the new data without forgetting the knowl-
edge previously acquired from the data seen earlier. We note that a commonly used 
procedure for learning from additional data, training with the combined old and new 
data, is not only a suboptimal approach (as it causes catastrophic forgetting), but it 
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may not even be feasible, if the previously used data are lost, corrupted, prohibitively 
large, or otherwise unavailable. Incremental learning is the solution to such scenarios, 
which can be defined as the process of extracting new information without losing 
prior knowledge from an additional dataset that later becomes available. Various 
definitions, interpretations, and new guidelines of incremental learning can be found 
in [2] and references within. 

Since SVMs are stable classifiers that use the global learning technique, they are 
prone to catastrophic forgetting phenomenon (also called unlearning) [3] which can 
be defined as the inability of the system to learn new patterns without forgetting pre-
viously learned ones. To overcome some drawbacks, various methods have been 
proposed for incremental SVM learning in the literature [4, 5]. In this work, we con-
sider the incremental SVM approach based on incremental learning paradigm refer-
enced within [2] and propose an ensemble based incremental SVM construction to 
solve the catastrophic forgetting problem and out-voting problem by reducing the 
number of SVM classifiers generated in ensemble. 

2   Ensemble of SVM Classifiers 

Learn++ uses weighted majority voting, where each classifier receives a voting 
weight based on its training performance [2]. This works well in practice even for 
incremental learning problems. However, if the incremental learning problem in-
volves introduction of new classes, then the voting scheme proves to be unfair to-
wards the newly introduced class: since none of the previously generated classifiers 
can pick the new class, a relatively large number of new classifiers need to be gener-
ated that recognize the new class, so that their total weight can out-vote the first batch 
of classifiers on instances coming from this new class. This in turn populates the en-
semble with an unnecessarily large number of classifiers. The Learn++.MT algorithm, 
explained below, is specifically proposed to address this issue of classifier prolifera-
tion [6]. For any given test instance, it compares the class predictions of each classi-
fier and cross-references them with the classes on which they were trained. Essen-
tially, if a subsequent ensemble overwhelmingly chooses a class it has seen before, 
then the voting weights of those classifiers that have not seen that class are propor-
tionally reduced. 

For each dataset (Dk), the inputs to the algorithm are (i) a sequence of m training 
data instances xi along with their correct labels yi, (ii) a classification algorithm, and 
(iii) an integer Tk specifying the maximum number of classifiers to be generated using 
that database. If the algorithm is seeing its first database (k=1), a data distribution 
(Dt), from which training instances will be drawn, is initialized to be uniform, making 
the probability of any instance being selected equal.  If k>1 then a distribution ini-
tialization sequence initializes the data distribution.  The algorithm adds Tk classifiers 
to the ensemble starting at t=eTk+1, where eTk denotes the current number of classifi-
ers in the ensemble. For each iteration t, the instance weights, wt, from the previous 
iteration are first normalized to create a data distribution Dt.  A classifier, ht, is gener-
ated from a subset of Dk that is drawn from Dt. The error, t, of ht is then calculated; if 

t > ½, the algorithm deems the current classifier, ht, to be weak, discards it, and re-
turns and redraws a training dataset, otherwise, calculates the normalized classifica-
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tion error, βt = t /(1- t), since for 0 < t < ½, 0 < βt <1. The class labels of the training 
instances used to generate this classifier are then stored.  The dynamic weight voting 
(DWV) algorithm is called to obtain the composite classifier, Ht, of the ensemble. Ht 

represents the ensemble decision of the first t hypotheses generated thus far. The error 
of the composite classifier, Et is then computed and normalized. The instance weights 
wt are finally updated according to the performance of Ht such that the weights of 
instances correctly classified by Ht are reduced and those that are misclassified are 
effectively increased. This ensures that the ensemble focus on those regions of the 
feature space that are not yet learned, performing the incremental learning [6]. 

Given a set of training samples xi, i=1,…,m, where xi∈Rn is input patterns, yi, 
(i=1,..,m), is the class labels, the SVM classifier function is formulated in terms of 
kernels functions, such as radial basis function and polynomial:  

  −=
=

m

i
iii bxxKysignxh

1

),()( α . (1) 

where b is the bias and αi  are the coefficients that are maximized by Lagrangian [7,8]. 
The final composite SVM classifier is obtained using the DWV algorithm for 
Learn++.MT algorithm, as follows [6]: 
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Where c = 1,2,…C is classes, and Wt =log(1/ t) is the SVMs classifier weights.   

3   Simulation Results 

Proposed incremental learning approach of SVM ensemble using Learn++.MT has been 
tested on several datasets. We use the SVMLearn++.MT notation for proposed approach 
for consistency. Due to space limitations, we present results on one benchmark dataset 
and one real-world application as explained following sections. We used the LIBSVM 
library [9] as SVM solver. The Gaussian kernel functions were used in our experiments. 
We utilized the cross-validation technique with 5-folds to jointly select the SVM pa-
rameters, which are the regularization constant C and the RBF width σ. 

3.1   Optical Character Recognition Dataset 

The Optical Character Recognition dataset is a benchmark dataset from UCI machine 
learning repository. The OCR dataset features 10 classes (digits 0 ~ 9) with 64 attrib-
utes. The dataset was divided into four sets, to create three training subset (DS1~3) 
and a test subset (Test), whose distribution can be seen in Table 1. We evaluated the 
incremental learning capability and also the performance of SVMLearn++ and 
SVMLearn++.MT on a fixed number of classifiers to allow for a fair comparison.  
Each algorithm was used to generate seven classifiers with the addition of each data-
set, giving a total of 21 classifiers in three training sessions. The data distribution was 
deliberately made rather challenging, specifically designed to test the ability of pro-
posed approach to learn multiple new classes at once with each additional dataset 
while retaining the knowledge of previously learned classes. In this incremental learn-
ing problem, instances from only six of the ten classes are employed in each subse-
quent dataset resulting in a rather difficult problem.   
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Table 1. OCR data distribution 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 
DS1 250 250 250 0 0 250 250 250 0 0 
DS2 150 0 150 250 0 150 0 150 250 0 
DS3 0 150 0 150 400 0 150 0 150 400 
Test 110 114 111 114 113 111 111 113 110 112 

Results from this test are shown in Tables 2 and 3. Each row shows class-by-class 
generalization performance of the ensemble on the test data after being trained with 
dataset DSk, k=1,2,3. The last two columns are the average overall generalization 
performance (Gen.) over 20 simulation trials (on the entire test data which includes 
instances from all ten classes), and the standard deviation (Std.) of the generalization 
performances.  

Table 2. SVMLearn++ with RBF kernel (σ = 0.1, C =1) results on OCR dataset 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Gen. Std. 
DS1 99% 100% 100% - - 98% 100% 99% - - 60% 0.04% 
DS2 99% 73% 100% 44% - 98% 68% 99% 47% - 63% 1.54% 
DS3 99% 100% 100% 93% 14% 97% 100% 99% 90% 13% 80% 4.17% 

Table 3. SVMLearn++.MT with RBF kernel (σ = 0.1, C =1) results on OCR dataset 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Gen. Std. 
DS1 99% 100% 100% - - 98% 100% 99% - - 59% 0.05% 
DS2 99% 34% 99% 97% - 93% 20% 99% 60% - 59% 0.43% 
DS3 99% 98% 95% 97% 89% 53% 100% 52% 95% 90% 85% 0.56% 

SVMLearn++ was able to learn, the new classes 4 and 9, only poorly after they 
were introduced in DS2 but able to learn them rather well, when further trained with 
these classes in DS3. Similarly, it performs rather poorly on classes 5 and 10 after 
they are first introduced in DS3, though it is reasonable to expect that it would do 
well on these classes with additional training. We note however, SVMLearn++.MT 
was able to learn new class quite well in first attempt. Finally, recall that the generali-
zation performance of the algorithm is computed on the entire test data which in-
cluded instances from all classes. This is the reason that the generalization perform-
ance is only around 59% after the first training session, since the algorithm has seen 
only six of the ten classes in the test data. Both SVMLearn++ and SVMLearn++.MT 
exhibit the ability of incremental learning and an overall increase of generalization 
performance as new datasets are observed. However, SVMLearn++.MT is able to 
learn better than SVMLearn++ as shown in Table 2 and 3. 

3.2   Volatile Organic Compounds Dataset  

The Volatile Organic Compounds (VOC) dataset is a real world dataset that consist of 
5 classes (toluene, xylene, hectane, octane and ketone) with 6 attributes coming from 
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six (quartz crystal microbalance type) chemical gas sensors. The dataset was split into 
three training and a test dataset. The distribution of the data is given in Table 4, where 
a new class was introduced with each dataset. 

Table 4. VOC data distribution 

Class C1 C2 C3 C4 C5 
DS1 20 0 20 0 40 
DS2 10 25 10 0 10 
DS3 10 15 10 40 10 
Test 24 24 24 40 52 

In this experiment, both algorithms were incrementally trained with three subse-
quent training datasets. Each algorithm was employed to create as many classifiers as 
necessary to obtain their maximum performance. As shown in Tables 5 and 6, based 
on an average of 30 trials, SVMLearn++ generated a total of 33 classifiers to achieve 
its best performance; however SVMLearn++.MT not only produced a 5% better gen-
eralization performance with only 10 classifiers, but it also provided a significantly 
more stable improvement as seen from the reduced standard deviation. 

Table 5. SVMLearn++  with RBF kernel (σ = 3, C =100) results on VOC dataset 

 C1 C2 C3 C4 C5 Gen. Std. 
DS1(5) 91% - 95% - 99% 58% 1.62% 
DS2(10) 97% 91% 81% - 95% 70% 1.84% 
DS3(18) 93% 99% 94% 68% 76% 83% 8.19% 

Table 6. SVMLearn++.MT  with RBF kernel (σ = 3, C =100) results on VOC dataset 

 C1 C2 C3 C4 C5 Gen. Std. 
DS1(6) 93% - 89% - 99% 58% 1.67% 
DS2(2) 96% 93% 88% - 95% 70% 1.45% 
DS3(2) 95% 94% 100% 99% 73% 88% 1.37% 

4   Conclusions 

In this paper, we presented a new ensemble based incremental SVM learning algo-
rithm, SVMLearn++.MT, using Learn++.MT. SVMLearn++.MT with RBF kernel 
functions has been tested on one real world dataset and one benchmark dataset. The 
results show that while SVM classifier can be equipped with the incremental learning 
capability, dealing with catastrophic forgetting problem, SVMLearn++.MT reduces 
the effect of out-voting problem, and also provides performance improvements over 
SVMLearn++. 

It is also worth noting that, SVMLearn++.MT is more robust than SVMLearn++. 
One of the reasons why SVMLearn++ is having difficulty in learning a new class 
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when first presented is due to difficulty in choosing the strength of the base classifi-
ers. If we choose too weak classifiers, the algorithm is unable to learn. If we choose 
too strong classifiers, the training data are learned very well, resulting in very low  
values which then causes very high voting weights, and hence even a more difficult 
out-voting problem. Since the SVM classifiers are strong classifiers, we have shown 
that SVMLearn++.MT, by significantly reducing the effect of the out-voting problem, 
improves the robustness of the algorithm, as the new algorithm is substantially more 
resistant to more drastic variations in the SVM classifier architecture and parameters 
(regularization constant C and kernel parameters).  
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Abstract. This paper presents a comparison of different initialization
algorithms joint with decomposition methods, in order to reduce the
training time of Support Vector Machines (SVMs). Training a SVM in-
volves the solution of a quadratic optimization problem (QP).The QP
problem is very resource consuming (computational time and computa-
tional memory), because the quadratic form is dense and the memory
requirements grow square the number of data points. The SVM-QP pro-
blem can be solved by several optimization strategies but, for large scale
applications, they must be combined with decomposition algorithms that
breaks up the entire SVM-QP problem into a series of smaller ones. The
support vectors found in the training of SVMs represent a small sub-
group of the training patterns. Some algorithms are used to initilizate
the SVMs, making a fast approximation of the points standing for sup-
port vectors, to train the SVM only with those data. Combination of
these initializations algorithms and the decomposition approach, cou-
pled with an QP solver specially arranged for the SVM-QP problem,
are compared using some well-known benchmarks in order to show their
capabilities.

1 Introduction

Support Vector Machine (SVM) is a well known technique for solving classifi-
cation, regression and density estimation [1] problems. This learning technique
provides a convergence to a globally optimal solution and, for several problems,
it has shown better generalization capabilities than other learning techniques.
Training a SVM involves the solution of a quadratic programming (QP) pro-
blem. Solving this QP problem, special training patterns contained in the origi-
nal training database (X), called support vectors (SV), are identified. Since the
number of variables in the QP problem is equal to the number of data patterns,
the complexity of the problem grows exponentially with the number of training
patterns, and thus, find out a solution for large scale applications use prohibitive
computational time. Several researches [1] use the fact that, given a training data
set, the QP optimization problem will provide the same result if the entire data
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set or a reduced one (having only support vectors) is used. This paper compares
different initialization methodologies in order to find the best one. The initial-
ization algorithm find a reduced set of vectors containing candidate examples
to become SV and, then, the training of the SVM is performed only using the
reduced training set. The compared methods make use of an initialization by
means of different algorithms and the result is used to train a better-posed pro-
blem by traditional QP solver. The paper is organized as follows: Section two
describes the optimization problem generated by a SVM. Section three describes
the different initialization algorithms. Section four describes the way in which
initialization strategies are integrated to the decomposition method. Section five
compares performance, in terms of time, of the proposed initialization using
seven different benchmarks. Finally, results are discussed.

2 Support Vector Machines

For classification tasks, the main idea can be stated as follows: given a training
data set (X) characterized by patterns xi ∈ �n, i = 1, . . . , n belonging two
possible classes yi ∈ {1,−1}, there exist a solution represented by the following
optimization problem:

Maximize

α
LD(α) =

∑l
i=1 αiαjyiyjk(xi,xj) (1)

s.t.
∑n

i=1 yiαi = 0, 0 ≤ α ≤ C (2)

where αi are the Lagrange multipliers introduced to transform the original for-
mulation of the problem with linear inequality constraints into the above repre-
sentation, [1]. The parameter C controls the misclassification level on the training
data and therefore the margin. The k(xi,xj) term represents the so called kernel
trick and is used to project data into a Hilbert space F of higher dimension us-
ing simple functions for the computation of dot products of the input patterns:
k(xi,xj) = φ(xi)T φ(xj), i, j = 1, . . . , n. Once one has the solution, the decision
function is defined as:

f(x) = sign
( l∑

i=1

αiyik(xi,x) + b
)

(3)

The solution to the problem formulated in (2) is a vector α∗
i ≥ 0 for which

the αi strictly greater than zero are the support vectors. Geometrically, these
vectors are at the margin defined by the separator hyperplane. There are different
algorithms for the resolution of the QP problem but, for our purposes, a fine
tuning dual active set method properly arranged for large datasets is used [4].

3 Initialization Algorithms

3.1 Barycentric Correction Procedure

Barycentric Correction Procedure (BCP) is an algorithm based on geometrical
characteristics for training a threshold unit [2]. It is very efficient training lin-
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early separable problems and it was proven that the algorithm rapidly converges
towards a solution [3]. The algorithm defines a hyperplane wT x+ θ dividing the
input space for each class. Thus, we can define: I1 = 1, . . . , N1 and I0 = 1, . . . , N0

where N1 represents the number of patterns of target 1 and N0 the number of
patterns of target −1. Also, let (b = b1, b0) be the barycenters of data points
belongin to class {+1,−1} respectively, and weighted by the positive coefficients
α = α1, . . . , αN1 and μ = μ1, . . . , μN0 referred as weighting coefficients [3]:

b1 =

∑
i∈I1

αixi∑
i∈I1

αi
b0 =

∑
j∈I0

αjxj∑
j∈I0

μj
(4)

The weight vector w is defined as a vector difference w= b1 − b0. At each iter-
ation, barycenter moves towards misclassified patterns. Increasing the value of
particular barycenter implies hyperplane moves on that direction. For computing
the bias term θ, let’s define ϑ : �n → � such that ϑ(x) = −w·x The bias term
is calculated as follows: θ = max ϑ1+minϑ0

2 . Assuming the existence of J1 ∈ I1

and J0 ∈ I0 that refer to misclassified examples of target {+1,−1}, barycenter
modifications are calculated by:

∀i ∈ J1, α(new)i = α(old)i + βi and ∀j ∈ J0, μ(new)j = μ(old)j + δj (5)

Where β = max
{
βmin, min[βmin, N1

N0
]
}

and δ = max
{
δmin, min[δmin, N0

N1
]
}
.

According to [3], βmin and δmin can be set to 1 and βmax and δmax set to 30.

3.2 Perceptron Algorithm

The Perceptron algorithm [5] is the first approach method to deal with linearly
separable problems. It is an incremental algorithm which starts with a weight
vector w = 0 and, at each iteration, small modifications to w are computed until
a solution is reached. Convergence is ensured in a finite number of iterations for
linearly separable problems. In this research, we make some modifications to the
original algorithm to treat with non-linearly separable problems.

Algorithm 1. Perceptron algorithm
1. Initialize the weight vector w, b and choose a learning steep η
2. While there exist i : i ∈ N such that f(xi) �= yi

a. Update w and b according to:
δw = wold + (η/2)(yi · xi) and δb = bold + (η/2)(yi)

Kernel Perceptron Extension. The kernel Perceptron algorithm [8] deals
with non-linearly separable datasets. Basically the algorithm defines the dual
function: f(x) =

∑n
i=1 γiyi

{
φ(xT

i ) ·φ(x)
}

+b, where γ is the set of dual variables
to be updated and the dot product (φ(xT

i ) · φ(x)) is replaced for the kernel
function k(xi,x).
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3.3 Kernel Shlesinger-Kozinec Algorithm

Kernel Schlesinger-Kozinec algorithm is an extension of the original Kozinec al-
gorithm [6], [7], which finds a maximal margin classifier in linearly separable
datasets, to kernel functions in order to find a maximal margin separation hy-
perplane for the non linear case. The main idea is to find the optimal weights
vector w+1 and w−1 in the feature space F in such a way that:

w+1 =
∑

i∈I+1

λi · xi,
∑

i∈I+1

λi = 1 and w−1 =
∑

i∈I−1

λi · xi,
∑

i∈I−1

λi = 1 (6)

The inner process of the method requires the next dot products:〈
wa,wb

〉
=
∑

i∈Ia

∑
j∈Ib

λi · λj ·
(
xi,xj

)
a, b ∈ {+1,−1} (7)〈

wa,xj

〉
=

∑
i∈Ia

λi

(
xi,xj

)
a, b ∈ {+1,−1} (8)

then, at each itearation, a new weight vector is calculated by:

wnew
j =

{
(1− k) · λj ∀j �= i, j ∈ Ia

(1− k) · λj + k ∀j = i, j ∈ Ia

And finally the decision rule is as follows: f(x) =
∑

i∈I λiyik(xi,x)− b.

4 Initialization Strategies

Solving large scale applications require a decomposition method (Algorithm 2)
which breaks up the original problem into smaller QP sub problems. The main
disadvantage with this approach is that patterns for each sub problem are se-
lected randomly (causing substantial difference in the learning rate) for the de-
composition method. To obtain a better initialization working set, which con-
tains more support vectors, algorithms like Perceptron, Kernel-Perceptron, BCP
and kernel Schlesinger-Kozinec are used, instead of a random one, in order to
accelerate the learning process. To perform the task we take advantage of the
characteristics of these algorithms: find an optimal separating hyperplane for
a given dataset, easy to implement and minimal processing and memory re-
quirements. The combination between these algorithms and the decomposition
approach ensures that the initial sub problem is conformed by candidate sup-
port vectors which were extracted before training the SVM, and consequentially,
the training time is reduced. The general idea is to obtain a hyperplane well-
classifying the original dataset, by means of the proposed algorithms, then, by
simple Euclidean distance between the hyperplane w and the different patterns
x, we get the closest to w and form the active set A. Due to geometrical char-
acteristics of the clusters, we can demonstrate that, if the length of A is greater
enough, then support vectors are included, and thus, we have a good working
set A to train the SVM.



A Comparison of Different Initialization Strategies 617

Decomposition Technique. Several authors, [1], introduced the idea to reduce
the problem into smaller ones. All strategies consider two key points: 1)Optimal-
ity conditions [1], which make possible to check if the algorithm has optimally
solved the problem, and 2)Strategy of implementation, which defines the imple-
mentation of the objective function, associated with variables violating optimal-
ity conditions, if a particular solution is not the global solution. To incorporate
optimality conditions, implementation strategy takes into account the fact that
a significant part of Lagrange multipliers of αi are equal to zero in the solution,
then, a solution is to divide the training set in an active set A, also known as
working set, and its complement N . Thus we can replace any i ∈ A, by any
j ∈ N , without modifying the cost function and having the support vectors in
the active set A and the inactive set N formed by zero-multipliers αN .

Algorithm 2. Decomposition algorithm of the SVM-QP
1. Election of an active unit A of size nA ,by means of the proposals
2. Solve the QP (2), defined by active set A.
3. While there is any example violating yjg(xj) > 1,

a. shift the nA most erroneous vectors xj to active set A,
b. shift all vectors xi with αi = 0, i ∈ A, to inactive set N , return 2.

The solution is obtained verifying the optimality conditions, in particular
yjg(xj) > 1, j ∈ N (αj = 0), where g(x) is equal to (3). If it is not the case,
then αj , corresponding to xj , must be different to zero and, consequently, it is
necessary to shift it to active set A.

5 Experimental Results

In this section, we present a comparison table with the four initialization strate-
gies: BCP +QP , Perceptron+QP , KernelPerceptron+QP , KSK +QP and
Random+QP algorithms. We use seven benchmark problems commonly referred
in the literature: iris (iri), sonar (son), Pima Indian diabetes (pid), Tic Tac Toe
(tic), Phonemes (pho), adult (adu) and Shuttle (shu) data sets [9]. Experiments
were done with a RBF function with γ = 0.5 for the kernel parameters and
the regularization parameter C was set to 1000. These parameters were selected
by means of cross-validation. Results are shown in Table 1 and are the stan-
dard mean of about 1000 executions. This research is focused on reducing the
training time of a SVM since the algorithms optimal solution is the same for
the different implementations. The BCP + QP and the KernPerceptron + QP
strategies showed a better performance than the other algorithms. Also, our pro-
posals were minimal time consuming in comparison to traditional Random+QP
implementation. Although the good results obtained, an important problem is
noted: The BCP +QP strategy has a good performance with these data sets but,
if a bechmark with a high degree of non-linearity is tested, it is not guaranted
that the initial working set contains a significant number of support vectors. It
is because we are aproximating the solution by a linear function(in the original
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space), while the solution of the SVM is reached in a high dimensional space (in
feature space). The KernPerceptron+QP strategy does not have this problem,
becuase the Kernel Perceptron algorithm looks for the solution in the same high
dimensional space than the SVM algorithm.

Table 1. Time performance of the initialization strategies using the UCI data

N BCP + QP P ercep + QP Kpercep + QP KSK + QP Random + QP

iri 150 0.014 sec 0.0673 sec 0.0160 sec 0.5391 sec 0.016 sec
son 208 0.181 sec 0.3588 sec 0.1231 sec 2.9990 sec 0.391 sec
pid 768 4.703 sec 5.4085 sec 2.9060 sec 10.6013 sec 17.203 sec
tic 958 3.102 sec 4.4576 sec 1.7350 sec 16.6742 sec 15.781 sec
pho 1027 3.262 sec 3.7297 sec 3.5150 sec 21.3721 sec 19.406 sec
adu 5000 23.38 sec 29.2773 sec - 284.96 sec 355.797 sec
shu 13633 33.77 sec 72.6192 sec 22.328 sec 87.532 sec 4256.757 sec

6 Conclusions

Support Vector Machines is a promising methodology used in different research
areas. Moreover, the optimization of the SVM is a delicate problem due to com-
putational and memory requirements. This research is focused in comparing dif-
ferent initialization strategies with a decomposition method in order to select one
that improves the training time of SVMs. The comparison of the different pro-
posals shows on one hand, that using kernel Perceptron as initialization strategy
has a good performance and on the other hand, BCP shows a better behaviour
although the limitations that could have training data sets with a high non lin-
earity degree. Additionally, these two approaches ensure a better performance
training large scale datasets, in comparison with the Random-QP algorithm.
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Abstract. A novel approach is presented for continuous function approximation 
using a two-stage neural network model involving Support Vector Machines 
(SVM) and an adaptive unsupervised Neural Network to be applied to real 
functions of many variables. It involves an adaptive Kohonen feature map 
(SOFM) in the first stage which aims at quantizing the input variable space into 
smaller regions representative of the input space probability distribution and 
preserving its original topology, while rapidly increasing, on the other hand, 
cluster distances. During convergence phase of the map a group of Support 
Vector Machines, associated with its codebook vectors, is simultaneously 
trained in an online fashion so that each SVM learns to respond when the input 
data belong to the topological space represented by its corresponding codebook 
vector. The proposed methodology is applied, with promising results, to the 
design of a neural-adaptive controller, by involving the computer-torque 
approach, which combines the proposed two-stage neural network model with a 
servo PD feedback controller. The results achieved by the suggested SVM 
approach are favorably compared to the ones obtained if the role of SVMs is 
undertaken, instead, by Radial Basis Functions (RBF). 

1   Introduction 

It is known that Artificial Neural Networks (ANNs) and especially Multilayer 
Perceptrons (MLP) and Radial Basis Functions (RBF) have the theoretical ability to 
approximate arbitrary nonlinear mappings[1]. Moreover, since ANNs can have multi-
inputs and multi-outputs, they can be naturally used for control of multivariable 
systems. Although MLPs and RBFs have been successfully employed in function 
approximation tasks, on the other hand, several drawbacks have been revealed in their 
application. In order to overcome them more powerful ANN models have emerged, 
namely, Support Vector Machines (SVMs). SVMs, introduced by Vapnik in 1992 [1], 
have recently started to be involved in many different classification tasks with 
success. Few research efforts, however, have employed them in nonlinear regression 
tasks. One of the goals of the herein study was to evaluate the SVM for Nonlinear 
Regression approach in such tasks, in comparison with the RBF techniques. The 
results herein obtained justify that the SVM approach could widely and successfully 
be used in function approximation/regression tasks involved in intelligent control. 



620 D.A. Karras 

Robot manipulators have become increasingly important in the field of flexible 
automation but they are subject to structured and/or unstructured uncertainties. ANN 
models and especially MLPs and RBFs have been used for the construction of Neural 
- Adaptive Controllers to cope with both types of uncertainty [2] following different 
approaches. The research line herein followed for designing a nonlinear compensator 
using ANNs is based on the computed torque method proposed in [3], where the 
ANNs were used to compensate for nonlinearities of the robotic manipulator rather 
than to learn its inverse dynamics. Another method for the direct control of robot 
manipulators using ANNs was proposed in [4]. Here, the control system consists of an 
inverse model of the robot dynamics which produces the forces/torques to be applied 
to the robot, given desired positions, velocities and accelerations and a neural 
controller generating a correcting signal. Another approach is to combine an ANN 
model with a servo PD feedback controller [5]. This approach, illustrated  in Figure 1, 
provides  on - line learning of the inverse dynamics of the robot. In this scheme the 
manipulator’s inverse - dynamics model is replaced by generic neural network 
models, one per joint, each neural network model adaptively approximating the 
corresponding joint’s inverse dyamics. 
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Fig. 1. Neuro-controller based computed torque architecture 

2   Hierarchical SVM in the Computed Torque Method 

It is herein proposed that ANN performance in control tasks could be improved 
through a two-stage process employing an adaptive regularized SOFM and a group of 
SVMs associated with its codebook vectors. The SOFM algorithm could be applied to 
the available training input vectors of the function approximation problem in order to 
quantize the space defined by the input variables in smaller topology preserving 
regions by involving suitable codebook vectors, whose distribution is representative 
of the joint probability distribution of these input variables. This unsupervised process 
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results in determining the associated codebook vectors, whose number has been 
predefined by the user. During convergence of this process and at its (t) iteration, the 
codebook vectors associated to the number NE(t) of neighbouring output units at 
instance t are updated in accordance with the classical SOFM algorithm. Then, the 
weights of their corresponding NE(t) group of SVMs are, also, updated. Thus, each 
such SVM is iteratively being specialized, simultaneously with its associated 
codebook vector, to respond when the input vector belongs to the topological 
subspace represented, at the end of the process, by this codebook vector.  

In the proposed variation of the SOFM algorithm we attempt to increase the 
distances between different clusters of the input space probability distribution so as to 
facilitate convergence of the map and achieve higher resolution of SOFM input space 
in order to feed the second stage SVMs with groups of input vectors of better quality, 
in terms of homogeneity. It is herein suggested that such a goal could be attained 
through adapting not only the winning neuron and its neighboring neurons NE(t) 
weights but, also, loosing neurons weights. Loosing neurons weights are adapted in a 
manner similar to that of LVQ, by increasing the distance between these weights 
vectors and the corresponding input data vectors. More specifically, all neurons 
outside the winning neuron neighborhood NE(t) at iteration t, are updated by the 
following formula: Wj(t+1) = Wj(t) – [b(t) exp||(X- Wj(t))||] (X- Wj(t)), for all 
codebook-vectors j not belonging in NE(t) at  the t iteration of the algorithm, when an 
input vector X is applied to the SOFM model. All codebook-vectors i belonging in 
NE(t) are updated as in the conventional SOFM. The term [b(t) exp||(X- Wj(t))||] is 
similar to Kohonen’s conventional learning rate but now this parameter depends not 
only on time but, also, on distance due to  exp||(X- Wj(t))||. That is, the larger the 
distance between input vector X and codebook-vector j the larger the learning 
parameter so that the updated codebook-vector j increases dramatically its distance 
from input vector X, in order to have faster convergence. This is the reason we call 
this new SOFM update scheme adaptive SOFM. 

With regards to the second stage involved group of SVMs, the task of nonlinear 
regression could be defined as follows. Let f(X) be a multidimensional scalar valued 
function to be approximated. Then, a suitable regression model to be considered is: D 
= f(X) + n, where X is the input vector, n is a random variable representing the noise 
and d denoting a random variable representing the outcome of the regression process. 
Given, also, the training sample set {(Xi, Di)} (i=1,..,N) then, the SVM training can 
be formulated as next outlined: 

Find the Lagrange Multipliers { i} (i=1, ..,N) and { ’i} (i=1, ..,N) that maximize 
the objective function, 

Q( i , ’i) = =1..  Di ( i - ’i) – e =1..  ( i + ’i) – ½ =1..  j=1..  ( i - ’i) ( j - 
’j) K(Xi, Xj)  subject to the constraints: i=1..  ( i - ’i) =0 and 0<= i <=C, 0<= 
’i<=C for i=1..N, where C is a user defined constant. 

In the above definition, K(Xi, Xj) are the kernel functions. In the problem at hand 
we have employed the radial basis kernel K(X, Xj) = exp(-1/2 2 || X - Xj||

2). Taking 
into account all the previous definitions we can then, fully determine the 
approximating function as F(X) = i=1..  ( i - ’i) K(X, Xi). 

This paper investigates the generalization accuracy of the suggested system in 
estimating a robotic manipulator's inverse dynamics model in combination with a 
servo PD feedback controller as in fig. 1. Assuming that structural uncertainty occurs 
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in our n-link robot manipulator, the correct model of its inverse dynamics is given by 
the differential equation in vectorial form [3],   

),,(1 qqqRT −=  (1) 

where, T is the joint torque, R-1 is a nonlinear mapping from the joint coordinate 
space to the joint torque space and q , q , q  are the robot arm motion parameters: 

joint trajectory,  velocity and acceleration variables. The correct model of its direct 
dynamics is [3],  

),,( TqqRq =  (2) 

Robot dynamics, however, cannot be modelled exactly. An estimated model 
1ˆ −R  is 

used to predict the feedforward torques and a servo-feedback control scheme is 
involved to improve robustness. To this end, the approach adopted here involves a PD 
servo-controller to compensate for the linear changes and the two-stage ANN based 
controller to compensate for the intrinsic nonlinearities encountered due to parameters 
uncertainties.Therefore, the supposed correct inverse dynamics model of the robot 
arm of figure 1 is defined as follows, 

pdTqqqRT += − ),,(ˆ 1  (3) 

)()( qqKqqKT −+−= dpdppd
 (4) 

where, Tpd  is the joint torque estimated by the PD-controller, T is the total joint 
torque, 

dq  and 
dq   are the desired trajectory and velocity curves and finally, Kp, Kv 

are the gains of the PD controller. From equations (3-4) it is clear that the proposed 
ANN model should be trained to predict joint torque N = T - Tpd  provided, the curves 
q , q , 

dq of actual trajectory, velocity and desired acceleration are given as inputs. It 

is a common practice to use 
dq  instead of differentiating the velocity q  to get q . In a 

simulated version of the system, it is clear that equispaced samples of these three 
curves should be given as inputs to the ANN model.  The algorithm of the simulation 
of the above control scheme can be depicted as follows : At every instance t the 

desired curves dq , dq , and dq as well as the curves of the actual trajectory and 

velocity  ( )(tq  and )(tq ) are given. Applying them as inputs to equation (1) when the 
true masses are involved we have the desired joint torque T = T(true). Then,  if the 

false link masses are used in equation (4) a T̂  = Tpd(false) joint torque is computed. 
Subsequently, this false torque is applied to equation (4) involving the true parameters 
in order to derive the instance t+1 curves of the actual trajectory and velocity  

( )1( +tq  and )1( +tq ) of the robot arm.  And so on. Therefore, we can take 

equispaced  samples of the curves )(tq , )(tq  as well as )(tdq  to form the suggested 

ANN’s input patterns. In addition, we can take N= T (= T(true)) - T̂  (= Tpd(false)) to 
form its desired output. By varying link masses within given intervals, we can obtain 
a large set of training, validation and test set patterns.  
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3   Experimental Results and Discussion 

A simple two-link planar elbow arm was used to test the performance of the proposed 
two-stage methodology comparing the application of SVMs and RBFs in the second 
stage of the proposed approach. The manipulator was modeled as a two rigid links of 
lengths l1 = 1m and l2 = 1m with point masses m1 =0.8kg and m2 = 2.3kg at the 
distal end of the links corresponding to the false PD model, while the true masses 
varied within the 10% confidence interval of these values. Twelve variations have 
been considered for each such link mass. The simulation was carried out invoking a 
fourth order Runge-Kutta algorithm, with step size h= 0.01 The desired position 
trajectory has the components 

)/2sin(11 Ttg πθ =  and )/2sin(22 Ttg πθ =  (5) 

with period T = 2s and amplitudes gi = 0.1 rad. For good tracking the time constant of 
the closed-loop system was selected as 0.1s. For critical damping this means that for 
the PD Outer-Loop design }{ vv kdiag=K , }{ pp kdiag=K with kp = 100 and kv = 20.  
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Fig. 2. (a) Trajectory tracking errors for the two joints when the true values of masses are ±10% 
of the false masses. (b) The same experiment using the correcting torque (N) obtained after 
using the two stage methodology involving RBFs in the second stage. (c) The same experiment 
using the correcting torque (N) obtained after using the proposed two stage methodology, i.e 
involving SVMs in the second stage. 

Application of equations (1), (3), (4) employing these definitions leads, for every one 
of the 144 total pair masses variations, to obtaining the curves of desired acceleration, 
actual trajectory and actual velocity along with the associated torque N to be modelled 
by the proposed two-stage ANN.  Each such curve has been sampled into 30 points, 
from which, using sliding windows of length lw, we have formed training and test 
patterns for the ANN as follows. Each ANN input pattern contains lw points for the 
desired acceleration, the corresponding lw points for the actual trajectory and finally, 
the lw corresponding points for the actual velocity. The desired output value is the 
associated torque N of the lw -th sample of the sliding window under consideration. In 
our simulations lw = 6 and we have used 2000 patterns for ANN training and the rest 
1600 patterns for testing. Finally, the resulting network was combined with the PD 
robotic controller to test the performance of the method. Figure 2(a) shows the 
trajectory tracking error when the true masses are well apart from the false masses. In 
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figures 2(b)/2(c) the same experiment is repeated but this time an additional 
correcting torque, produced by the ANN involving RBFs/SVMs in the second stage, 
is applied to improve the performance of the controller. This experiment is trajectory 
dependent. Further study is needed to make the method trajectory independent. 
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Abstract. This paper presents a new method for the selection of the two 
hyperparameters of Least Squares Support Vector Machine (LS-SVM) 
approximators with Gaussian Kernels. The two hyperparameters are the width σ 
of the Gaussian kernels and the regularization parameter λ. For different values 
of σ, a Nonparametric Noise Estimator (NNE) is introduced to estimate the 
variance of the noise on the outputs. The NNE allows the determination of the 
best λ for each given σ. A Leave-one-out methodology is then applied to select 
the best σ. Therefore, this method transforms the double optimization problem 
into a single optimization one. The method is tested on 2 problems: a toy 
example and the Pumadyn regression Benchmark. 

Keywords: Least Squares Support Vector Machines, Leave-one-out, Noise 
Estimation, Regression. 

1   Introduction 

The selection of hyperparameters is a important issue in the fields of Artificial Neural 
Networks, Machine Learning and System Identification. Many resampling techniques 
have been successfully used as Leave-One-Out (LOO), Bootstrap and Cross-
Validation [1, 2].  

Least Squares Support Vector Machines with Gaussian kernels are efficient 
regression models [3]. For example, they do not suffer from the problem of local 
minima. Unfortunately, two hyperparameters have to be tuned, for example using 
LOO [4]. The two hyperparameters are the width σ of the Gaussian kernels and the 
regularization parameter λ. This problem leads to a grid search that is highly time 
consuming. In this paper, we propose the use of Nonparametric Noise Estimator 
(NNE) in order to select the regularization parameter as a function of the width σ.  

The paper is organised as follows: LS-SVM are introduced in Section 2, NNE in 
Section 3 and the methodology in Section 4. In Section 5, the method is successfully 
tested on 2 problems: a toy example and the Pumadyn regression Benchmark. 
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2   Least Squares Support Vector Machines 

LS-SVM are regularized supervised approximators, which has been proved to be 
efficient for function approximation. Only solving linear equation is needed in the 
optimization process, which not only simplifies the process, but also avoids the 
problem of local minima in SVM. In this section, a short summary of the LS-SVM 
model is given. The LS-SVM model [4, 5] is defined in its primal weight space by,  

( ) bxxy T +ϕω=)(ˆ  (1) 

where ϕ(x) is a function which maps the input space into a higher dimensional feature 
space, x is the M-dimensional vector of inputs xj, and ω and b the parameters of the 
model. Given N input-output learning pairs (xi, yi)  RMxR, Least Squares Support 
Vector Machines for function estimation formulate the following optimization: 
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The parameter set  consists of vector  and scalar b.  Solving this optimization 
problem in dual space leads to finding the i and b coefficients in the following 
solution: 
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Function (x, xi) is the kernel defined as the dot product between the ϕ(x)T and ϕ(x) 
mappings.  The meta-parameters of the LS-SVM model are the width of the Gaussian 
kernels (taken identical for all kernels) and the  regularization factor.  The training 
method for the estimation of  and b can be found in [4].  

3   Nonlinear Noise Estimator 

The problem of function approximation consists in the determination of the 
relationship between a set x of inputs and one single output y. Given N inputs-output 
pairs (xi, yi)  RMxR, the relationship between xi and yi can be expressed as 
yi = f(xi) + εI,.where f is the unknown relationship and εi the noise. Any estimation of 
model f based on a finite number N of learning data goes through a compromise 
between a low learning error (small bias) and a smooth model (small variance).  In the 
case of LS-SVM, this compromise is implemented through the choice of an adequate 
value of γ.  If the value of γ is set too large, the model will overfit the data, including 
the noise.  Still, the value of γ should be set as large as possible; a too small value of γ 
would simply mean that the model does not fit the learning data!  It is therefore 
suggested to select the largest value of γ so that the learning error does goes below the 
level of noise.  Indeed it is unreasonable to expect that a model could lead to an error 
that is lower than the level of noise; if it was the case, the model would be in 
overfitting region. 
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Selecting γ then means first to estimate the learning error of the model in function of 
γ, and secondly to estimate the variance of the noise. Of course, the noise estimator 
should not use the model itself, but only the data at disposal; it should be nonparametric. 

An approach called “Delta Test” has been proposed for estimating the variance of 
the noise on the output [6]. It is based on the similarity of the noise behaviour 
between two closed data points. As the distance δ between two close points x and x’ 
goes to zero, the average MSE between the corresponding outputs tends to var(ε) [7]: 

0)var()(
2

1 2 →δε→δ<−′−′ asxxyyE  (6) 

Despite this approach seems to be promising for noise estimation purposes, it fails 
when the size of the data set is small with respect to the complexity of underlying 
function and noise distribution. Jones et al. [6] improved the Delta test using the k-
nearest neighbour distances between data in the input space and corresponding data in 
the output space. This leads to an approach called here Nonparametric Noise 
Estimator (NNE). Referring to [6], the estimate of noise variance is the intercept of 
the linear regression line which is drawn between the average of the k nearest 
distances in the inputs space and the corresponding average of the k nearest distances 
in the output space (see equation 7 below). A proof of NNE (which is also called 
Gamma Test in some papers) can be found in [7] and is based on a generalization of 
Chybechov inequality and the property of k-nearest neighbor structures. Moreover, it 
has been shown that NNE is useful too for evaluating the nonlinear correlation 
between two random variables, or input and output pairs realizations. In the proof, the 
following conditions are necessary:  

- the first and second partial derivatives of the underlying function exist; 
- the first to the fourth moments of the noise distribution exist; 
- the noise is independent from the input. 

Using this three conditions, the variance of noise is given by the intercept with the 
vertical line δ(k)=0, of the regression line between γ(k) and δ(k), where 1   k   p and  
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In (7), NN(xi,k) is the index of the kth neighbour of xi. According to [6], p=10 is 
used in experiments presented in section 5.  

This noise variance estimator based on [6] is similar to the variogram based 
estimator detailed in [8]. However, it differs from the fact that Jones’ estimator only 
uses the k nearest neighbours of the data points. This reduces the computation time 
and makes the estimator efficient when the number of data points is large enough by 
concentrating on small values of δ(k). 

4   Methodology 

The goal of the presented methodology is to transform the double optimization of γ 
and σ in LS-SVM into a simple optimization procedure. The double optimization of 
the metaparameters using LOO presented in [3, 4] is very efficient but is highly time 
consuming.  
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Our methodology can be expressed as the following: 

1) A range of σ is selected. 
2) For each σ, the Nonparametric Noise Estimate is performed. 
3) A bisection method is used to estimate the value of γ such that the training 

error of the LS-SVM is equal to the value of the Nonparametric Noise 
Estimate. The training error is strictly decreasing with respect to γ and then 
the solution is unique and its computation is very fast. Taking the largest 
γ value such that the training error does not exceed the noise variance leads 
to the more accurate mode without overfitting. 

4) The LOO error (LOO MSE) is estimated for each value of σ. 
5) The value of σ and corresponding γ  minimizing the LOO error are selected. 

5   Experiment 

5.1   Toy Example 

A toy example with 1000 samples is build using the following function:  

sin( ) sin(5 ) sin(15 )y x x x ε= + + +  (8) 

with ε an uniform noise in [-0.5, 0.5]. The function is represented in Fig.2 The real 
value of the variance of the noise is 0.0822 and the estimate obtained with the NNE is 
also 0.0822. The methodology presented in section 4 is applied. The range of σ is 
between 0.01 and 0.4 by step of 0.005. For each value of σ, γ is calculated using the 
estimate of the NNE (see Fig. 1. a).  

 

Fig. 1. Toy example results.  a - γ with respect to σ. b – LOO error with respect to σ. 

For each value of σ (using the corresponding γ), the LOO error is computed (see 
Fig. 1. b). The optimum is obtained for σ = 0.295 and the corresponding γ = 9.727. 

The approximation obtained the selected LS-SVM is represented in Fig. 2.  
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Fig. 2. The toy example and the approximation after the selection of the hyperparameters 
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5.2   Pumadyn Benchmark 

The pumadyn datasets [9] are a family of datasets synthetically generated from a 
realistic simulation of the dynamics of a Puma robot arm. The tasks associated with 
these datasets consist of predicting the angular acceleration of one of the links of the 
robot arm given the angular positions, velocities, torques, and in some cases, other 
dynamic parameters of the robot arm. The dataset contains 8192 samples, 8 inputs and 
one output. The methodology presented in section 4 is applied. The range of σ is 
between 5 and 110 by step of 5. For each value of σ, γ is calculated using the estimate 
of the NNE (see Fig. 3. a). 
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Fig. 3. a γ with respect to σ. b – LOO error with respect to σ. 

For each value of σ (using the corresponding γ), the LOO error is computed; a 
smooth slope similar to the one in Fig. 1. b. is obtained.  Its minimum is found for σ = 
95 and the corresponding γ = 6.4749e+008. The approximation with respect to the 
target value y is represented in see Fig. 3. b. The LOO error that is obtained is 1.81. 

6   Conclusion and Further Work 

In this paper, a Nonparametric Noise Estimator has been introduced for the selection 
of the hyperparameters of LS-SVM. The proposed methodology transforms the 
double optimization problem of the selection of the hyperparameters into a single 
optimization one, therefore reducing drastically the computation time for similar 
results. 

The method has been illustrated on two examples and gives accurate 
approximations. Further work includes the test of other methods for Nonparametric 
Noise Estimation (see for example [8]) and their embedding into the same 
methodology to select hyperparameters in LS-SVM and other learning schemes. 
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Abstract. In this paper we afford the problem of estimating high den-
sity regions from univariate or multivariate data samples. To be more
precise, we propose a method based on the use of functional data analy-
sis techniques for the construction of smooth kernel functions oriented to
solve the One-Class problem. The proposed kernels increase the precision
of One-Class estimation procedures. The advantages of this new point
of view are shown using data sets drawn from representative density
functions.

1 Introduction

The task of estimating high density regions from data samples arises explicitly
in a number of works involving interesting problems such as outlier detection
or cluster analysis. One-Class Support Vector Machines (SVM) [3] and Support
Neighbour Machines (SNM) [1] are designed to solve this problem with tractable
computational complexity. We refer to [3] and references therein for a complete
description of the problem and its ramifications.

The concrete problem to solve is the estimation of minimum volume sets of
the form Sα(f) = {x|f(x) ≥ α}, such that P (Sα(f)) = ν, where f is the density
function and 0 < ν < 1. The goal is to obtain some decision function h(x) which
solves this problem, that is, h(x) = +1 if x ∈ Sα(f) and h(x) = −1 otherwise.
The strategy of One-Class SVM is to map the data points into a feature space
determined by a kernel function, and to separate them from the origin with max-
imum margin. In order to build a separating hyperplane between the origin and
the mapped points, the quadratic One-Class SVM method solves the following
problem:

min
w,ρ,ξ

1
2
‖w‖2 − ρ+

1
νn

n∑
i=1

ξi

s.t. wTφ(xi) ≥ ρ− ξi ,
ξi ≥ 0, i = 1, . . . , n ,

(1)

where φ is the mapping defining the kernel function, ρ represents the decision
value which determines if a given point belongs to the support of the distribution,

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 631–636, 2005.
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ξi are slack variables, and ν ∈ [0, 1] is an a priori fixed constant. The decision
function will be h(x) = sign(w∗Tφ(x) − ρ∗), where w∗ and ρ∗ are the values of
w and ρ at the solution of problem (1) (see [3] for details). In the following we
will show how to build smooth φ functions for the construction of h(x).

The rest of the paper is organized as follows. Section 2 introduces a new
kind of kernels. In Section 3 the smoothing methodology is shown. Section 4
concludes.

2 Neighbourhood Measures and Kernels

There are data analysis problems where the knowledge of an accurate estimator
of the density function f(x) is sufficient to solve them, for instance, mode es-
timation, or the present task of estimating Sα(f). However, density estimation
is far from trivial [4,3]. The next definition is introduced to relax the density
estimation problem: the task of estimating the density function at each data
point is replaced by a simpler measure that asymptotically preserves the order
induced by f .

Definition 1 (Neighbourhood Measures). Consider a random variable X
with density function f(x) defined on IRd. Let Sn denote the set of random
independent identically distributed (iid) samples of size n (drawn from f). The
elements of Sn take the form sn = (x1, · · · , xn), where xi ∈ IRd. Let M : IRd ×
Sn −→ IR be a real-valued function defined for all n ∈ IN. (a) If f(x) < f(y)
implies lim

n→∞
P (M(x, sn) > M(y, sn)) = 1, then M is a sparsity measure.

(b) If f(x) < f(y) implies lim
n→∞

P (M(x, sn) < M(y, sn)) = 1, then M is a
concentration measure.

Example 1. M(x, sn) ∝ 1/f̂(x, sn), where f̂ can be any consistent non- para-
metric density estimator, is a sparsity measure; while M(x, sn) ∝ f̂(x, sn) is a
concentration measure. A commonly used estimator is the kernel density one
f̂(x, sn) = 1

nhd

∑n
i=1K(‖x−xi‖

h ).

Example 2. Consider the distance from a point x to its kth-nearest neighbour in
sn, x(k): M(x, sn) = dk(x, sn) = d(x, x(k)): it is a sparsity measure. Note that dk

is neither a density estimator nor is it one-to-one related to a density estimator.
Thus, the definition of ‘sparsity measure’ is not trivial. Another valid choice is
given by the average distance over all the k nearest neighbours: M(x, sn) = d̄k =
1
k

∑k
j=1 dj = 1

k

∑k
j=1 d(x, x

(j)). Extensions to other centrality measures, such as
trimmed-means are straightforward.

In the case of SNM (see [1]) neighbourhood measures can be used directly to
build the decision function h(x). For One-Class SVM, a particular class of neigh-
bourhood measures has to be defined.

Definition 2 (Positive and Negative Neighbourhood Measures).
MP (x, sn) is said to be a positive sparsity (concentration) measure if
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MP (x, sn) is a sparsity (concentration) measure and MP (x, sn) ≥ 0. MN(x, sn)
is said to be a negative sparsity (concentration) measure if −MN(x, sn)
is a positive concentration (sparsity) measure.

Given that negative neighbourhood measures are in one-to-one correspondence
to positive neighbourhood measures, only positive neighbourhood measures need
to be considered. The following classes of kernels can be defined using positive
neighbourhood measures.

Definition 3 (Neighbourhood Kernels). Consider the mapping φ : IRd →
IR+ defined by φ(x) = MP (x, sn), where MP (x, sn) is a positive neighbourhood
measure. The function K(x, y) = φ(x)φ(y) is called a neighbourhood kernel. If
MP (x, sn) is a positive sparsity (concentration) measure, K(x, y) is a sparsity
(concentration) kernel.

In [1] it is shown that, using concentration kernels, the One-Class SVM method
proposed in [3] will detect asymptotically the desired high density regions.

3 Building Smooth Neighbourhood Measures

Neighbourhood measures are not necessarily smooth functions. Consider, for in-
stance, the neighbourhood measure defined in Example 2, M(x, sn) = d(x, x(k)),
the distance to the kth-nearest neighbour. Figure 1 (left) shows the sparsity mea-
sure plotted for a normal sample of size n = 100, k = 40, apparently non-smooth.
Figure 1 (right) shows the kernel estimator of the density function, a regularized
(therefore smooth) concentration measure. Note that, independently of smooth-
ness, both graphs show a (positive) bias in the mode estimation (it should be
zero).

Figure 2 (left) shows the corresponding measures plotted for a sample of size
n = 2000, k = 437. It is apparent that the sparsity measure becomes smooth
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Fig. 1. Left. Sparsity measure. Right. Kernel density estimator. Normal distribution,
sample size n = 100, k = 40.
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Fig. 2. Left. Sparsity measure. Right. Kernel density estimator. Normal distribution,
sample size n = 2000, k = 437.

as n → ∞, k → ∞ and k/n → 0, and the bias disappears in both graphs. In
both cases k = n4/(d+4), where d is the space dimension. This value is known to
be proportional to the (asymptotically) optimal value [4] for density estimation
tasks.

For small data samples the direct use of the neighbourhood measure could
cause problems for those points lying near the decision surface. A way to over-
come this difficulty is to apply regularization theory (see [5]). The common
approach constructs the regularized curve by minimizing the functional:

min
f∈HK

1
n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2K , (2)

where HK is a Reproducing Kernel Hilbert Space (RKHS) with kernel K, L is
a loss function, ‖f‖2K is the square of the norm of f in the RKHS, and λ is a
positive real constant (usually fixed by cross-validation). Now consider a linear
differential operator D, and choose K as Green’s function for the operator D∗D,
whereD∗ is the adjoint operator ofD [2]. It is easy to show that ‖f‖2K = ‖Df‖2L2

,
where in the right hand side of the equality the norm is taken in L2. Thus the
second term in (2) imposes smoothing conditions on the solution f .

The regularization process tries to find a good estimation of the limit case
(n → ∞, k → ∞, k/n → 0) from a finite sample. The straightforward solu-
tion to the previous regularization problem is to directly build a smooth curve
from the sample {xi, yi = M(xi, sn)}. However, regularization solely based on a
single sample could suffer from bias, inherited from the non-regularized curve,
particularly if the sample is small (see for instance Figure 1, left).

An alternative approach uses a particular application of the technique known
as Functional Data Analysis (FDA) [2]. This application consists in using a
family of curves to build a regularized average curve. The point in this approach
is that the regularized average curve will be less dependant of the sample than
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the regularized curve arising from a single sample. Next we describe the method
for the measureM(x, sn; k) = d(x, x(k)), where k has been included as an explicit
argument for the sake of clarity. Consider the family of curves induced by the
data sets M(x, sn; k) = d(x, x(k)) for k ∈ I, where I is a predefined discrete set.
Then the average curve is calculated and subsequently regularized by performing
a standard SVM regression with exponential kernel based on (2). Figure 3 shows
an example for a normal distribution with n = 200 and k ∈ [60, 80]. On the left,
the average curve and the M curves surrounding it are shown. On the right,
the average curve has been replaced by its regularized version. The choice of I
depends on the data set. In this case I has been chosen as a set of values around
k = n4/(d+4), where d is the space dimension. As mentioned before, this value
is known to be proportional to the (asymptotically) optimal value [4]. For other
neighbourhood measures similar ideas can be applied, where the role of k will
be played by the corresponding parameters of the selected measure.
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Fig. 3. Left. Mk neighbourhood curves for various k and its average. Right. The same
curves together with the regularized average curve.
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sity estimator. γ(1, 5) , n = 200.
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Regularization demonstrates nice properties in some problematic cases. For
instance, if the mode of the distribution is at the boundary of the data domain,
accurate estimation of the support becomes a difficult task. Figure 4 (left) shows
the average curve of the functional data arising from a gamma distribution γ(1, 5)
with n = 200 data points, surrounded by the regularization of each functional
sample. Again, k ∈ [60, 80]. Figure 4 (right) shows the kernel density estimator
for the same distribution. Note that for the kernel estimator there is a clear bias
in the mode estimation (the true mode is zero), while the regularized curve at-
tains its minimum at zero. In this way, when the regularized curve is used within
the One-Class method, the nearest point to the mode (zero) is always included in
the estimated support of the distribution. It is apparent that the regularized ker-
nel introduced here provide improved results agains non-regularized (standard)
kernels using One-Class methods.

4 Conclusions

We have proposed a method based on the use of functional data analysis tech-
niques for the construction of smooth kernel functions oriented to solve the
One-Class problem. The method makes use of neighbourhood measures. These
measures asymptotically preserve the order induced by the density function f . In
this way the complexity of solving a pure density estimation problem is avoided.
The regularized kernels obtained make One-Class estimation procedures become
more accurate. In particular, this methodology is specially useful when the sam-
ple size is small.
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Abstract. The paper presents the comparison of performance of the individual 
and ensemble of SVM classifiers for the recognition of abnormal heartbeats on 
the basis of the registered ECG waveforms. The recognition system applies two 
different Support Vector Machine based classifiers and the ensemble systems 
composed of the individual classifiers combined together in different way to ob-
tain the best possible performance on the ECG data. The results of numerical 
experiments using the data of MIT BIH Arrhythmia Database have confirmed 
the superior performance of the proposed solution 

1   Introduction 

The paper is concerned with the application of the Support vector Machine (SVM) 
classifiers for the recognition of heart rhythms on the basis of the registered ECG 
waveforms. The recognition system will be composed of the SVM used as the basic 
recognizing and classifying system and two different preprocessing stages resulting in 
different feature sets, composing the input signals to the classifier.  

We will compare the performance of the heartbeat recognition system relying on 
the individual classifiers acting independently and on the ensemble of classifiers com-
bined together to form the final recognizing system. The SVM networks have been 
used as the individual classifiers applied in the recognition of the ECG beats. The 
input vector x for these classifiers has been formed by the features following from the 
application of Hermite basis function expansion and of the higher order statistics 
(HOS) of the QRS complex of ECG. The individual classifiers will be combined 
together to form the ensemble network by applying the concept of voting. Three 
different methods of voting will be considered. The results of the numerical experi-
ments for the recognition of 13 types of heart rhythms are presented and discussed. 

2   The Individual SVM Classifiers for Heart Rhythm Recognition 

To solve the problem of heartbeat recognition on the basis of the registered ECG 
waveform we have to generate the appropriate features describing the registered ECG 
waveform and apply them as the input signals to the classifier [1,2,3,4]. We have 
employed here the SVM classifier and two types of pre-processing of the data. 
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2.1   Feature Extraction 

The recognition of the patterns of the heart rhythms needs generation of the features, 
well characterizing patterns in a way enabling differentiation among different types of 
them. This is very important demand, since we observe great variation of signals 
among samples of the same type of beats, as is shown for example in the MIT BIH 
Arrhythmia Database [5].  

In our work we have applied two methods of feature extraction: Hermite basis 
function expansion of the QRS complex and characterization of QRS by the cumu-
lants of the second, third and fourth orders, well satisfying these general requirements 
[3]. In the numerical calculations, we presented the QRS segment of the ECG signal 
by 91 data points around the R peak (45 points before and 45 ones after). 

In Hermite method we represent the QRS by the coefficients cn of Hermite basis 
function expansion. If the analysed waveform is denoted by x(t) the expansion is 
defined by [2] 

−

=
=

1

0

),()(
N

n
nn tctx σφ  (1) 

where cn are the expansion coefficients,  - the width parameter and ),( σφ tn  - the 

Hermite basis functions of nth order for n= 0, 1, 2, …, N-1. After some preliminary 
experiments we have applied 15 Hermite coefficients for ECG data representation. 

In higher order statistics (HOS) approach [6] we represent the QRS complex by the 
values of the cumulants of the 2nd, 3rd and 4th orders [3], each calculated at five 
points distributed evenly within the QRS length (for the 3rd and 4th order cumulants 
the diagonal slices have been calculated). The application of HOS description reduces 
the variance of the registered ECG signals of each type and makes the recognition 
problem easier. For 91-element vector representation of the QRS complex the cumu-
lants corresponding to the time lags of 15, 30, 45, 60 and 75 have been chosen.  

Additionally we have added two temporal features: one corresponding to the instan-
taneous RR interval of the beat and the second representing the average RR interval 
of 10 preceding beats. In this way each beat, irrespective of its description, has been 
represented here by the 17-element feature vector, with the first 15 elements corre-
sponding to either the higher order statistics or Hermite characterization of QRS com-
plex, and the last two - the temporal features of the actual QRS signal. 

2.2   Support Vector Machine Classifier 

The Support Vector Machine (SVM) applied as the classifier is a linear machine [7] 
working in the high dimensional feature space formed by the linear or non-linear 
mapping of the n-dimensional input vector x into a K-dimensional feature space, usu-
ally of K>n through the use of a function )(xϕ . The SVM network separates the data 

into two classes with maximum margin of separation. The hyperplane equation sepa-

rating two different classes is given by ( ) 0)()( 0
1

=+==
=

wwy
K

j
jj

T xxwx ϕ , where 

[ ]TK )(),...,(),()( 10 xxxx ϕϕϕ=  with 1)(0 =xϕ  and w – the weight vector of the net-

work. The learning and testing modes of work are performed in SVM using so-called 
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kernel functions, satisfying the Mercer conditions [7,8 ]. The kernel K(x,xi) is defined 

as the inner product of the vectors )( ix  and )(x , i.e., )()(),( xxxx i
T

iK = . The 

primal learning problem of SVM, formulated as the task of separating learning vec-
tors xi (i=1, 2, ..., p) into two classes of the destination values either di=1 (one class) 
or di=-1 (the opposite class), with the maximal separation margin is transformed to 
the so called dual problem of maximization of the function )(Q  with respect to the 

Lagrange multipliers i forming vector  [7,8]. Dual problem solution results in the 
optimal values of the Lagrange multipliers, on the basis of which the output signal 
y(x) of the SVM is determined as [7] 

o

sN

i
siisi wKdy +=

=
) ,()(

1

xxx  (2) 

If y(x)>0 the feature vector x belongs to the particular class and if y(x)<0 to the oppo-
site one. The recognition of more classes is done in SVM by applying either “one 
against one” or “one against all” methods [8]. We have applied “one against one” 
approach, in which the SVM networks are trained to recognize between all combina-
tions of two classes of data. For M classes we have to train M(M-1)/2 individual SVM 
networks. In the retrieval mode the vector x belongs to the class of the highest number 
of winnings in all combinations of classes. 

3   The Integration Systems 

Let us assume that there exist M channels of individual classifiers combined into one 
classifying system by the integrating part of the network. The measured signals of the 
ECG form the n-dimensional vector xin. This vector is transformed into different fea-
ture vectors xi by the appropriate preprocessing blocks, forming the inputs to the clas-
sifiers. Each classifier has N binary outputs corresponding to N classes and the output 
signals of each classifier form the vector yj, for j=1, 2, …, M. The results of classifi-
cations of different classifiers may be combined together using different methods of 
integration. We will compare here 3 methods: the weighted voting (WV), Kulback-
Leibler (K-L) and the modified Bayes approach (MB) [9].  

The weighted voting combines the results yi of M classifiers through the integrat-
ing matrix W to form one output vector z of the classifying system. The result of 
integration of all classifiers can be expressed by the relation  

z=Wy (3) 

where [ ]TT
M

TT yyyy ,...,, 21= . The position of the highest value element of z indicates 

the membership to the appropriate class. In adjusting the values of elements of the 
matrix W we have applied the minimization of the sum of squared error of the whole 
ensemble of the classifiers, measured on the learning data set [3]. This minimization 
leads to the solution expressed through the Moore-Penrose pseudoinverse in the fol-

lowing form += DYW , where Y is the pNM × matrix composed of p vectors y 

corresponding to p results of individual M classifications for learning data and D is 
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the appropriate pN ×  matrix formed by the destination vectors associated with each 

learning pair of data.  
In Kullback-Leibler divergence [9] we calculate the ensemble probability μj sup-

porting  jth class given the actual input x, as the normalized arithmetic mean 

=
=

M

i
ijj d

M 1

1μ  
(4) 

where dij means the probability of indicating jth class by ith classifier for the data of 
this class. This probability is determined in the testing mode for each classifier as the 
ratio of the number of victories of jth class to all possible indications in one against 
one mode of operation of SVM. 

In modified naive Bayes combination [9] the ensemble probability μj for jth class 
is determined on the basis of results of testing the networks on learning data and is 
given in the form 

∏
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where nj is the number of elements in training set for class j and )(i

ijscm is the element 

of the confusion matrix generated for learning data of ith classifier. The (j,s)th entry 
of the confusion matrix is the number of elements of the data set whose true class 
label was j and were assigned by ith classifier to sth class. 

4   The Results of Numerical Experiments 

The experiments have been performed for 13 types of heartbeats contained in MIT 
BIH Arrhythmia Database [5]. In this data base there are ECG waveforms of 12 types 
of abnormal beats: left bundle branch block (L), right bundle branch block (R), atrial 
premature beat (A), aberrated atrial premature beat (a), nodal (junctional) premature 
beat (J), ventricular premature beat (V), fusion of ventricular and normal beat (F), 
ventricular flutter wave (I), nodal (junctional) escape beat (j), ventricular escape beat 
(E), supraventricular premature beat (S) and fusion of paced and normal beat (f) and 
the waveforms corresponding to the normal sinus rhythm (N). We have used 12785 
heart rhythms (6690 for learning and 6095 for testing). The SVM networks of radial 
Gaussian kernels have been applied and one against one strategy. The optimal values 
of regularization constant C and parameter  of Gaussian function have been adjusted 
using cross validation approach for the learning data (C=100, =0.5). They have been 
set constant for all SVM networks. 

Table 1 presents the comparison of total results achieved by individual SVM based 
classifiers (Hermite and HOS preprocesing), as well as by the ensembles of both clas-
sifiers for the learning and testing data (not used in learning). The rows labelled as 
WV, K-L and MB denote the results of integration of classifier results. The misclassi-
fication rate has been calculated as the mean of errors of each class recognition. There 
is a visible improvement of the results of testing after application of ensemble of  
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Table 1. The comparison of the average misclassification rate of testing different SVM solu-
tions for the recognition of 13 types of the heartbeats 

Classification 
method 

Total number 
of learning 
errors 

Average rela-
tive learning 
error 

Total number 
of testing 
errors 

Average rela-
tive testing 
error 

Hermite 103 3.02% 172 5.23% 
HOS 173 5.19% 216 6.28% 
WV 74 1.83% 159 4.09% 
K-L 108 2.27% 147 3.77% 
MB 73 1.80% 171 4.39% 

Table 2. The confusion matrix of the ensemble classifier system for 13 types of rhythms of the 
testing data 

Heart 
type 

A a f E F j I J L N R S V Total 

A 399  3  1  0  1  5  1  0  1 16  0  0  6  433 
a  2 57  0  0  1  0  0  0  0  2  0  0  3  65 
f  0  0 195  0  0  0  0  1  6  1  0  0  0  203 
E  0  0  0 48  0  0  0  0  0  0  0  0  0  48 
F  0  0  0  0 358  0  0  0  0  2  1  0  5  366 
j  2  0  1  1  1  95  0  0  0  5  0  0  0  105 
I  0  0  0  0  0  0 193  0  1 1  0  1  2  198 
J 0  0  0  0  1  0  0 36  0  3  0  0  0  40 
L  1  0  1  0  0  0  0  0 488  5  0  0  5  500 
N  10  3  1  0  1  4  0  1  3 1959  2  0 1 1985 
R  1  0  0  1  0  0  0  1  0  1 395  0 1  400 
S  1  0  0  0  0  1  6  0  0  0  2 511  0  521 
V  2  1  1  0  7  0  0  0  1  5  0  0 1214 1231 
Total 418 64 200 50 370 105 200 39 500 2000 400 512 1237 6095 

classifiers. For the best Kulback-Leibler (K-L) integration it is more than 20% in 
relation to the best individual classifier. Table 2 presents the confusion matrix of 
classification for the best ensemble system.  

The diagonal entries of this matrix represent right recognition of the beat type and 
the off diagonal – the misclassifications. Each column presents how the beats of par-
ticular type have been classified. The row indicates which beats have been classified 
as the type mentioned in this row. 

In practice the most dangerous case is when the ill person is diagnosed as the 
healthy one (false negative diagnosed patient). To deal with such case we have intro-
duced the parameter DUV (dangerous uncertainty value), defined as the ratio of the 
number of all false negative diagnosed patients to the total number of misclassifica-
tions. Table 3 presents the values of this parameter for the individual SVM classifiers 
and for the integrated system. There is an evident improvement of the quality of clas-
sification, both in learning and in the testing mode. 
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Table 3. The comparison of DUV values for different SVM based classifiers 

Learning data Testing data Quality 
measure 

HOS HER Integration HOS HER Integration 

DUV 31.79% 38.83% 27.03% 18.52% 23.84% 17.68% 

5   Conclusions 

The paper has presented the application of the single SVM based classifier and the 
ensemble of classifiers for the recognition of heartbeats on the basis of ECG wave-
forms. The numerical results performed on the MIT BIH AD examples have shown 
that the SVM networks combined into the ensemble system composed of individual 
classifiers brings in significant improvement of the classification results, especially 
reduction of the most dangerous misclassification cases. The experimental results 
have shown that instead of designing one high performance classifier we can build a 
number of classifiers, each of possibly not superb performance and as a results we get 
the classifying system of significantly higher quality. 
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Abstract. This paper extends recent advances in Support Vector Machines and
kernel machines in estimating additive models for classification from observed
multivariate input/output data. Specifically, we address the question how to ob-
tain predictive models which gives insight into the structure of the dataset. This
contribution extends the framework of structure detection as introduced in recent
publications by the authors towards estimation of componentwise Support Vec-
tor Machines (cSVMs). The result is applied to a benchmark classification task
where the input variables all take binary values.

1 Introduction

The theory, methodology and application of Support Vector Machines (SVMs) has
gained a mature status in the last decade, see e.g. [16,3,12,13]. This work extends recent
advances on primal-dual kernel machines for learning classification rules based on ad-
ditive models [7] where the primal-dual optimization point of view [2] (as exploited by
SVMs [16] and LS-SVMs [14,13]) is seen to provide an efficient implementation [9].
Although relations exist with results on ANOVA kernels [16,6], the optimization frame-
work established a solid foundation for extensions towards structure detection similar
to LASSO [15] and bridge regression [1] in the context of regression as elaborated
in [9,10]. The key idea was to employ a measure of maximal variation (as defined in
the sequel) for the goal of regularization. Extensions towards handling missing values
amongst the observed inputs were described in the context of cSVMs in [8].

This paper is organized as follows. Section 2 gives the main result of component-
wise SVMs equipped with a measure of maximal variation. Section 3 then illustrates
the concept on a UCI benchmark prediction task.

2 Componentwise Support Vector Machines

Given a set of observed input/output data-samples D = {(xi,yi)}N
i=1 ⊂ R

D×D where
D = {−1,+1}. Learning a decision rule then amounts to identifying a function f : R →
D such that any data-sample (x∗,y∗)∈R

D×D sampled from the same distribution PXY :
R

D×D → [0,1] underlying the dataset D deviates minimal from the prediction using
the model f . More formally, let F denote the class of admissible functions f . Learning
amounts to the task of approximating the minimizer f ∗ = argmin f∈F

∫
(y− f (x))2dPXY .

The framework of SVMs as given in [16] is adopted.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 643–648, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Definition 1. (Additive Classifier) Let x ∈ R
D be a point with components

x
.=
(

x(1), . . . ,x(P)
)

. Additive classifiers then take a componentwise form [7] defined
as

sign[ f (x)] = sign

[
P

∑
p=1

fp

(
x(p)

)
+ b

]
, (1)

with sufficiently smooth mappings fp : R
Dp → R such that the decision boundary is

described as in [16,12]

H f =

{
x0 ∈R

D
∣∣ P

∑
p=1

fp

(
x(p)

0

)
+ b = 0, x0 ∈R

P

}
. (2)

It is well-known [16] that the distance of any point x the hyper-plane H fp is given as

d
(
x,H f

)
=
| f (x)|
‖ f ′(x)‖ ≥

yi

(
∑P

p=1 fp

(
x(p)

)
+ b

)
∑P

p=1‖ f (p)′(x(p))‖
, (3)

as
∥∥∥∑P

p=1 f (p)′
(

x(p)
)∥∥∥ ≤ ∑P

p=1

∥∥∥ f (p)′
(

x(p)
)∥∥∥ due to the triangle inequality. The opti-

mal separating hyper-plane can be expressed as the model (3) solving

max
M≥0, fp,b

M s.t. d(xi,H fp)≥M. (4)

After the change of variables in the function f such that M ∑P
p=1 ‖ f (p)′‖ = 1 and the

application of the lower-bound (3), one can write alternatively

( f̂ , b̂) = argmin
f ,b

J ( f ) =
P

∑
p=1

∥∥∥ f (p)′
∥∥∥

s.t. yi

(
P

∑
p=1

fp

(
x(p)

i

)
+ b

)
≥ 1, ∀i = 1, . . . ,N. (5)

Then the size of the margin is given as M = 1/∑P
p=1‖ f (p)′‖.

2.1 Structure Detection and Maximal Variation

Structure detection as in the case of LASSO and bridge regression in the case of linear
parametric models becomes hard to incorporate into non-parametric and kernel meth-
ods. A possible approach then is to employ a measure of the contribution of any compo-
nent which is not expressed directly in terms of the parameters. The following measure
was proposed.

Definition 2. (Maximal Variation) The maximal variation of a function fp : R
Dp → R

is defined as

Mp = max
x(p)∈R

Dp

∣∣∣ fp

(
x(p)

)∣∣∣ , (6)

for all x(p) ∈R
Dp . The empirical maximal variation can be defined as
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M̂p = max
x
(p)
i ∈D

∣∣∣ fp

(
x(p)

i

)∣∣∣ , (7)

with x(p)
i denoting the p-th component of the i-th sample of the training set D .

Adopting this definition, it becomes clear that when a certain component fp finally has
a maximal variation Mp equal to zero, the corresponding variables do not contribute to
the learned classifier and may be omitted for the sake of prediction.

2.2 Componentwise Primal-Dual Kernel Classifiers

Consider the model

f (x) =
P

∑
p=1

wT
p ϕp

(
x(p)

)
+ b, (8)

where ϕp(·) : R
Dp → R

nh denote the potentially infinite dimensional feature map and
wp ∈ R

nh is the unknown parameter of the pth component for all p = 1, . . . ,P. The
following regularized cost-function is considered:

min
w,b,e,t

Jγ,C(w, t) = γ
P

∑
p=1

tp +
1
2

P

∑
p=1

wT
p wp

s.t.

⎧⎪⎪⎨⎪⎪⎩
yi

(
∑P

p=1 wT
p ϕp

(
x(p)

i

)
+ b

)
≥ 1− ei ∀i = 1, . . . ,N

∑N
i=1 ei ≤C, ei ≥ 0 ∀i = 1, . . . ,N

−tp ≤ wT
p ϕp

(
x(p)

i

)
≤ tp ∀i = 1, . . . ,N, p = 1, . . . ,P.

(9)

The dual problem is given in the following Lemma.

Lemma 1. (Dual of Componentwise SVM with Maximal Variation) Given the primal
problem (9), the dual solution is

max
αi,ρ+

ip,ρ−ip,λ
−1

2

N

∑
i, j=1

(
αiyi + ρ+

ip−ρ−ip
)(

α jy j + ρ+
jp−ρ−jp

)
Ω̃ P

i j +
N

∑
i=1

αi−λC

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑N

i=1 yiαi = 0

0≤ αi ≤ λ ∀i = 1, . . . ,N

γ = ∑N
i=1(ρ

+
ip + ρ−ip) ∀p = 1, . . . ,P

ρ+
ip,ρ

−
ip ≥ 0 ∀i = 1, . . . ,N,∀p = 1, . . . ,P,

(10)

where Ω̃ P
i j = ∑P

p=1 K̃p

(
x(p)

i ,x(p)
j

)
for all i, j = 1, . . . ,N and where K̃p

(
x(p)

i ,x(p)
j

)
=

Kp

(
x(p)

i ,x(p)
j

)
. The resulting nonlinear classifier evaluated on a new data point x∗ =(

x(1)
∗ , . . . ,x(P)

∗
)

takes the form

sign

[
P

∑
p=1

N

∑
i=1

α(p)
i Kp

(
x(p)

i ,x(p)
∗
)

+ b

]
, (11)
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where α̂(p)
i =

(
α̂iyi + ρ̂+

ip− ρ̂−ip
)

for all i = 1, . . . ,N and p = 1, . . . ,P follow from the

unique solution to (10).

Proof. The dual solution is given after construction of the Lagrangian

Lγ,C(wp,b,ei,tp;αi,νi,ρ+
ip,ρ

−
ip,λ ) = Jγ,C(wp,tp)−
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νiei
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(
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wpϕp
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i

)
+ b
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−1 + ei
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i,p
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ip

(
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p ϕp

(
x(p)

i

))
−∑

i,p
ρ−ip

(
tp−wT

p ϕp

(
x(p)

i

))
, (12)

with positive multipliers 0 ≤ αi,νi,ρ+
ip,ρ

−
ip and λ ≥ 0. The solution is given by the

saddle point of the Lagrangian [2]

max
αi,νi,ρ+

ip,ρ−ip,λ
min

wp,b,ei,tp
Lγ,C. (13)

By taking the first order conditions
∂Lγ,C

∂wp
= 0,

∂Lγ,C

∂b
= 0,

∂Lγ,C

∂ei
= 0 and

∂Lγ,C

∂ tp
=

0, one obtains the (in)equalities wp = ∑N
i=1

(
αiyi + ρ+

ip−ρ−ip
)

ϕp(x
(p)
i ), ∑N

i=1 αiyi = 0,

0 ≤ αi ≤ λ and γ = ∑P
i=1

(
ρ+

ip + ρ−ip
)

. By application of the kernel trick Kp(xi,x j) =

ϕp(x
(p)
i )T ϕp(x

(p)
j ), the solution to (8) is found by solving the dual problem The primal

variables b,ei and tp can be recovered from the complementary slackness
conditions. �

3 Example: Learning Logical Rules Using Componentwise SVMs

In order to explore the capabilities of the presented method, the 1984 United States
Congressional voting records database available on the UCI benchmark repository is
used. This data set includes votes for each of the U.S. House of Representatives Con-
gressmen on the 16 key votes identified by the CQA. A 90%- 95% performance was
reported in [11]. Here we explore the capabilities of the described framework to learn a
parsimonious decision system from the observed data.

We first elaborate on the issue how to handle the special structure of the input data.
Inspired by the method of first order inductive logic programming, one may let the
variable x be mapped on the truth-value as T (x) = T RUE if x = +1 and T (x) = FALSE
otherwise. Then the following relation holds

T (y) = OR(T (x1), . . . ,T (xp)) ⇔ y = sign

(
P

∑
p=1

xp + P−1

)
, (14)

where OR is the logical OR operation. This motivates the use of the additive model (3).
Furthermore note that ¬T (x) = T (−x) holds where ¬ denotes the logical negation. The
AND operator is induced by the use of the following kernel.
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Definition 3. (Logic ’AND’ Kernel) Let πp be a nonempty set of indices 1, . . . ,D for all
p = 1, . . . ,P and let Dp denotes the number of different indices in πp. Let the feature
space mapping of the pth component be defined as

ϕp(x) = IAND

(
xπp(1), . . . ,xπp(Dp)

)
, (15)

where the indicator function IAND(·) is +1 if all arguments equal +1 and−1 otherwise.
The corresponding Mercer kernel becomes

Kp(xi,x j) = IAND

(
x

πp(1)
i , . . . ,x

πp(Dp)
i

)
IAND

(
x

πp(1)
j , . . . ,x

πp(Dp)
j

)
. (16)

For this example, a maximal order of Dp = 2 is used in order to keep the computations
tractable. The datset was divided in disjunct training dataset (N = 250), validation set
(of size 100) and test set (of size 85). The pameters γ and C where tuned minimizing the
misclassification rate on the validation set. A Monte Carlo simulation was conducting
resulting in mean testset performance of 96.24% with a one sigma bound as 96.24%±
1.2%. The vote of congressmen pro or contra the democration candidate is in most
predictors of the sample proportional to their vote pro the resolutions of (3) cost-sharing
of water-projects (4) inversely proportional to the adoption of the budget-resolution and
(4) proportional to the vote concerning immigration.

4 Conclusions

This paper studied the estimation of additive classifiers by componentwise SVMs. The
measure of maximal variation was used to perform structure detection. An example was
elaborated where the task is to infer logical rules from binary observations by use of the
additive model structure and the use of a logical AND kernel.
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Abstract. We consider regularization methods to improve the recently intro-
duced backpropagation-decorrelation (BPDC) online algorithm for O(N) training
of fully recurrent networks. While BPDC combines one-step error backpropa-
gation and the usage of temporal memory of a network dynamics by means of
decorrelation of activations, it is an online algorithm using only instantaneous
states and errors. As enhancement we propose several ways to introduce memory
in the algorithm for regularization. Simulation results of standard tasks show that
different such strategies cause different effects either improving training perfor-
mance at the cost of overfitting or degrading training errors.

1 Introduction

Recently, recurrent neural networks have matured into a fundamental tool for trajectory
learning or time-series prediction and generation and increasingly find application in
domains such as speech recognition, adaptive control, or biological modeling. In par-
ticular for discrete time standard and recursive networks approximation capabilities and
suitable training algorithms have been intensively investigated [1]. The main drawbacks
for their more widespread application are the difficulties to chose a suitable architecture
among the many possible connecting schemes which reach from partially recurrent or
cascade correlation networks to fully connected RNN’s. Also the usually high degree of
architecture specialization with respect to applications and the complexity of respective
specialized training algorithms for these architectures prohibits simple transfer of meth-
ods among problem domains. Finally there is much ongoing research to devise efficient
recurrent learning schemes often employing regularization techniques [2]. However,
most of the efficient existing algorithms are quite complex and most online techniques
typically need proper adjustment of learning rates and time-constants.

In [3], we proposed a new efficient online technique, the BPDC rule, combining
three principles: (i) one-step back propagation of errors; (ii) the usage of the temporal
memory in the network dynamics based on decorrelation of the activations, and (iii)
the employment of a non-adaptive reservoir of hidden neurons to reduce complexity
of training. The BPDC rule roots in a combination of recent ideas to differentiate the
error function with respect to the states in order to obtain a “virtual teacher” target, with
respect to which the weight changes are computed [4,5]. Further, under the notion “echo
state network” [6] and “liquid state machine” [7] non-adaptive recurrent networks as a

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 649–654, 2005.
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Fig. 1. The BackPropagation-DeCorrelation (BPDC) rule adapts only the output weights of a
fully recurrent network with fixed internal reservoir and output-to-reservoir connections

kind of dynamic reservoir to store information about the temporal behavior of inputs
have been proposed, which allow to effectively learn simple readout functions.

In the BPDC network, the output weights also implement a linear readout function
while at the same time the output neurons provide full feedback into the reservoir, see
Fig. 1. In [3,8] it has been shown that BPDC performs well on a number of standard
tasks and in [8] there has also been derived an stability condition, which can easily
be monitored online. While BPDC can learn very fast and with large learning rates,
in this contribution we show that regularization can improve BPDC performance be-
cause the generalization error tends to increase already after few epochs like shown
in Fig. 2 a). Section 2 introduces the BPDC approach and its regularization, Section
3 gives simulation results on three different nonlinear prediction tasks, and Section 4
concludes.

2 The BPCD-Rule

We consider fully connected recurrent networks

x(k+1) = (1−Δt)x(k) + ΔtWϕ(x(k)) + ΔtWuu(k), (1)

where xi, i = 1, . . . , N are the states, W ∈ R
N×N is the weight matrix, Wu the in-

put weight matrix. Let k = k̂Δt, k̂ ∈ N+ be a discretized time variable and with a
slight abuse of notation interprete time arguments and indices (k+1) as ((k+1)Δt) for
simplicity. For small Δt we obtain an approximation of the continuous time dynamics
dx/dt = −x + Wϕ(x) and for Δt = 1 the standard discrete dynamics. We assume
that ϕ is a standard sigmoidal differentiable activation function with ϕ′ ≤ 1 and is
applied component wise to the vector x. We further assume that W, Wu are initialized
with small random values in a certain weight initialization interval [−a, a]. Denote by
O⊂{1, .., N} the set of indices s of NO output neurons (i.e. xs output ⇒ s∈O) and let
for a single output neuron w.r. O={1} such that x1 is the respective output of the net-
work like shown in Fig. 1, which is a linear combination of the internal neuron outputs.
In [3], the Backpropagation-Decorrelation rule
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Fig. 2. a) Typical error curves for train/test error motivating need for regularization. Sensitivity of
b) training and c) test NMSE to number of training data for the Mackey-Glass data (40 neurons,
50 runs of 10 epochs, weights in [−0.2, 0.2], η =0.5, ε = 0.002, timestep 0.2).

Δwij(k+1) =
η

Δt

ϕ(xj(k))∑
s ϕ(xs(k))2 + ε

γi(k+1), (2)

where γi(k+1) =
∑
s∈0

(
(1−Δt)δis + Δtwisϕ

′(xs(k))
)
es(k)−ei(k+1),

has been introduced, where η is the learning rate, ε > 0 a small regularization constant,
and es(k) are the non-zero error components for s∈O at time k :es(k)=xs(k)−ys(k)
with respect to the teaching signal ys(k). The γi propagate a mixture of the current
errors ei(k+1) and the errors in the last time step es(k) weighted by a typical back-
propagation term involving ϕ′.

The term ϕ(xj(k))/(
∑

s ϕ(xs(k))2 + ε) can be further interpreted as enforcing an
approximative decorrelation of the neurons’ outputs ϕ(xj(k)) over time: denoting fk =
(ϕ(x1(k)), ϕ(x2(k)), . . . , ϕ(xn(k)))T the vector of outputs and C(k) = εI + fkfTk the
regularized instantaneous correlation matrix of the outputs, we obtain

fk∑
ϕ(xs(k))2 + ε

= fk

[
1
ε
− 1

ε2
fTk fk

1 + 1
ε‖fk‖2

]
=
[
1
ε
I− [ 1

ε Ifk][ 1
ε Ifk]T

1+fT
k

1
ε Ifk

]
fk =C(k)−1fk

⇒ Δwij(k+1) =
η

Δt
[C(k)−1fk]jγi(k + 1) (3)

The BPDC rule in the form (3) is a modification and simplification of an online learning
approach introduced by Atiya & Parlos [4] (AP learning), which can be given as ([3])

ΔwAP
ij (k+1) =

η

Δt

[
C−1

k fk
]
j
γi(k + 1) +

η

Δt
(C−1

k − C−1
k−1)

k−1∑
r=0

[fr]j γi(r + 1)

=
η

Δt

[
C−1

k fk
]
j
γi(k + 1) +

η

Δt

(
C−1

k Ck−1 − I
)
ΔwAPbatch

ij (k) (4)

where Ck =
∑k

r=0 fkfTk is the full correlation matrix of the neurons’ outputs accumu-
lated over time and ΔwAPbatch

ij is the accumulated Atiya-Parlos learning update step
until time step k. BPDC in (3) is the first term in (4) using C(k) instead of Ck The
restriction of learning in BPDC to the output weights, i.e. only i ≡ 0 in (3) is now moti-
vated by the observation that in AP recurrent learning the hidden neurons update slowly
and in a highly coupled way [5]. These simplifications lead to the O(N) efficiency of
BPDC.
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2.1 Memory Issues

AP recurrent learning employs memory in the update in two ways: (i) by accumulating
the full correlation matrix and (ii) by using a momentum term providing some memory
about the previous update history. The O(N) efficiency of BPDC originates in the sim-
plifications in (3) in comparison to (4), which skip both memory terms of the APRL.
Further BPDC (as well as AP learning) does not follow the standard gradient of the
quadratic error [5], such that the online rule itself can not be interpreted in the usual
way as stochastic and regularizing approximation of the true gradient function. Lack-
ing any memory in the algorithm itself BPDC thus is fully dependent on the memory
contained in the dynamics of the network. This has the advantage that BPDC learns
extremely fast with very few data and is highly capably of tracking quickly changing
signals. On the other hand , BPDC generalization becomes sensitive to the length of
the training sequence, because it is most sensitive to the last data provided. Fig. 2 b), c)
shows this dependency for the training error of the Mackey-Glass data. Further BPDC
can show strong overfitting behavior as demonstrated in Fig. 2 a).

This motivates to investigate different ways to reintroduce some regularizing mem-
ory in the BPDC algorithm without sacrificing the O(N) complexity: the use of a sim-
ple momentum term mixing the actual update with the last one Δw(k+ 1)mom =
Δw(k+1) + αΔw(k); a local batch version, which accumulates

∑k+p
k+1 Δwij for p

steps and then performs an update; the third way is motivated more directly from the
BPDC-formula (2.1) using1 (interprete (k−s) as ((k−s)Δt)):

Δwij(k+1) =
η

Δt

∑p
s=0 ϕ(xj(k−s))
‖ϕ(x(k))‖2 + ε

γi(k+1) (5)

This is an elegant way to accumulate a weighted sum of the instantaneous decorrelation
factors, because (neglecting ε) we have∑p

s=0 ϕ(xj(k−s))
‖ϕ(x(k))‖2 =

p∑
s=0

C−1(k−s)ϕ(xj(k−s))
‖ϕ(x(k−s))‖2
‖ϕ(x(k))‖2 .

3 Simulation Results

The different strategies to introduce memory are investigated on three standard
datasets2, for which reference results are also available in [3],[4]. We compute the
NMSE defined as E[(x1(k) − y(k))2]/σ2, where σ2 is the variance of the input sig-
nal. For comparison we use a common parameter setting for all networks and all data:
ε=0.002 (is not critical), the initialization range [−0.2, 0.2] provides sufficient dynam-
ics to enable fast learning. As learning rate we use μ = 0.2, μ = 0.2/p in the batch
mode and the correlation mode of equation (5). This ensures that for the accumulated
updates the steps size does not become too large. Preliminary experiments have shown

1 This idea is due to M. Wardermann, personal communication.
2 The exact data used and full tables of results for all combinations of memory parameters can

be obtained from www.jsteil.de/BPDC.html
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Table 1. Selected Average test/training NMSE for 50 runs of 50 epochs, one line at end of train-
ing, second line best results within 50 epochs

data/net no reg. mom. .8 batch 3 batch 10 corr. 1 corr. 2

Las/40 .548/.656 .490/.248 .368/.431 .275/.324 1.53/1.57 2.35/3.37
.254/.271 .259/.263 .245/.273 .263/.305 .305/.297 .766/.665

Las/75 1.05/1.42 1.07/1.528 .156/.185 .175/.196 1.18/1.52 1.64/2.13
.157/.248 .156/.247 .150/.181 .174/.196 .200/.299 .375/.391

Las/100 .320/.485 .311/.499 .141/.168 .164/.179 .537/.671 .924/1.19
.143/.230 .141/.220 .139/.168 .163/.179 .204/.277 .312/.359

10th/40 .183/.361 .187/.364 .244/.368 .291/.507 .198/.381 .316/.516
.183/.342 .186/.339 .243/.363 .291/.503 .193/.352 .210/.382

10th/75 .153/.309 .152/ .310 .169/.247 .213/.332 .163/.296 .350/.461
.153/.277 .151/ .280 .169/.237 .213/.324 .161/.275 .178/.288

10th/100 .155/.323 .161/.302 .186/.282 .233/.328 .175/.319 .251/.394
.159/.287 .159/.285 .185/.271 .232/.326 .173/.299 .192/.312

MG/40 .029/.212 .030/.208 .052/.280 .070/.265 .033/.210 .036/.211
.286/.181 .029/.181 .0516/.238 .070/.240 .031/.182 .035/.183

MG/75 .033/.254 .033/.248 .053/.290 .074/.268 .037/.254 .041/.252
.030/.214 .031/.205 052/.245 .073/.245 .0344/.208 .038/.214

MG/100 .034/.302 .032/.313 .054/.297 .079/.269 .036/.303 .04/.313
.031/.256 .028/.248 .051/.259 .077/.258 .032/.253 .035/.258

that neither small learning rates nor a small initialization rate provides the same regu-
larization and degrades performance. We use three datasets:

Example 1 (Santa Fee Laser Data)): We predict the y(k + 1) based on a time window
of 15 past values y(k− i), i = 0..15 using the first 1000 points for training and the next
2000 for test.

Example 2 (Tenth-order system (10th)): The following hard problem [4]predicts

y(k + 1) = 0.3y(k) + 0.05y(k)
[ 9∑

i=0

y(k−i)
]

+ 1.5u(k−9)u(k) + 0.1.

based on u(k), u(k − 9) as input fed to network, # training/test data = 500.

Example 3 (Mackey-Glass (MG)): As higher order benchmark we use the well known
Mackey-Glass system with standard parameters

ẏ(t) = −0.1y(t) +
0.2y(t−17)

1 + y(t−17)10
.

Network inputs are y(k), y(k − 6), y(k − 12), y(k − 18) and the target y(k + 84), #
training/test data = 500. To disregard initial transients, the training error is taken only
after 200 steps.

Table 1 shows the reference performance without additional memory and selected
results for the different memory methods. The classical momentum term does not give
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significant results for any of the problems. The batch update can improve performance
for both training and test data for the Laser data, where it also keeps the error at the end
of training close to the best result achieved overall. The role of the accumulated decor-
relation factor p. For p=1, 2 the effect depends on the problem: for the Laser data and
the tenth order data it disturbs learning while for the Mackey-Glass data the training er-
ror can decrease p=1,2 while the test error increases, a sign of overfitting. We suspect
that this difference is caused by the different character of the time-series; the 10th-order
system is driven by random input and the Laser data have large and fast changing oscil-
lations such that the correlation memory of a time-step before can be totally misleading
and even reinforce a already too large step. The Mackey-Glass data are much more
smooth and therefore can profit from taking into account the last state as well.

4 Conclusion

We have introduced a new effective and simple learning rule for online adaptation of re-
current networks, which combines backpropagation, virtual teacher forcing, and decor-
relation. In its derivation it is stripped all elements of memory in the algorithm itself and
therefore in its basic form has to rely on the implicit memory in the network. This leads
to fast learning and online tracking but as well to a high sensitivity to the last training
data shown such that a careful choice of the training sequence is essential. We have
further identified two ways to introduce memory, which have different effects: a local
batch version which can regularize learning in particular for undersized networks, while
an extended correlation factor can improve approximation at the cost of over-fitting and
a decay in test performance. In control experiments we have also tried to combine these
two mechanisms, however, with no significant other result. The different effects these
mechanism have with respect to the different problems also show that an optimization
of parameters may be difficult. Nevertheless the current work offers simple and compu-
tationally feasible extensions of the BPDC algorithms which are worth being explored
if an optimized performance is desired.
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Abstract. Fuzzy ARTMAP is capable of incrementally learning inter-
pretable rules. To remove unused or inaccurate rules, a rule pruning
method has been proposed in the literature. This paper addresses its
limitations when incremental learning is used, and modifies it so that it
does not need to store previously learnt samples. Experiments show a
better performance, especially in concept drift problems.

1 Introduction

Fuzzy ARTMAP [1] is the most popular supervised architecture based on the
Adaptive Resonance Theory (ART). One of its most appealing features is its
capability for incremental learning: it can learn new patterns without forgetting
previous knowledge, and without the need to present previously learned patterns
again [2]. This is useful in a number of cases: if a model has to be first trained on
a few available samples, and then improved with fresh data as they are collected;
if a dataset is too large and sweeping over it is computationally very costly; or
if data distribution varies with time.

Another significant feature of fuzzy ARTMAP is that, for classification tasks,
it finds recognition categories of input patterns, associating each of them with
the predicted class label. These associations can be translated into IF-THEN
rules, simple to understand if not too many recognition categories are created
during training (a phenomenon called category proliferation). To reduce category
proliferation, some authors have devised alternative learning algorithms [3], that
reduce the number of generated rules but loose the incremental learning capabil-
ities. Others [2] proposed rule pruning after learning is complete, preserving the
properties of the original training algorithm. However, this pruning mechanism
needs to store all previously presented patterns in order to compute usage and
accuracy indices that determine which rules should be pruned. Moreover, com-
puting these indices every time a new pattern is presented is computationally
demanding. Finally, in an adaptive setting, recently generated rules will have
low usage, thus being likely to be pruned, hindering learning.

This paper addresses the limitations of the rule pruning mechanism proposed
in [2] for incremental learning settings. A new method is proposed that does
not use previously presented patterns, thus reducing computational demands.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 655–660, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In addition, a novelty index is computed for each rule, in order to avoid early
pruning. These modifications are illustrated with an experiment where a network
must be trained with an initial set of samples, and then incrementally trained
with recent ones as they become available. In addition, the proposed method
will also be tested in scenarios where the concepts being learned drift with time
[4], thus making the network obsolete and calling for incremental learning.

After this statement of the problem, section 2 briefly recalls the rule pruning
method proposed in [2], and details the new method. Section 3 will illustrate
this method experimentally, and section 4 will conclude.

2 Incremental Rule Pruning for Fuzzy ARTMAP

Due to space constraints, fuzzy ARTMAP cannot be explained in detail, and the
reader is referred to [1,2]. However, as long as this work is concerned, it suffices
to know that, when used for classification tasks, fuzzy ARTMAP partitions the
input space with (hyper)boxes, associating a classification label to each one.
The size of the boxes is determined by the distribution of data samples with the
match tracking algorithm [2]. During the test, a pattern selects the closest box
if it is outside all existing boxes, or the smallest hyperbox that contains it, and
the associated classification label is predicted. Thus, each of these recognition
categories and their associated labels can be seen as a set of IF-THEN rules.

In order to produce a small set of rules, [2] proposes to divide labelled samples
into a training and a validation set. After fuzzy ARTMAP is trained on the whole
training set, a confidence factor CFj is computed for each rule:

CFj = γUUj + γAAj . (1)

where Uj is the usage of rule j, Aj its accuracy, and γU , γA are weighting factors
that meet γU + γA = 1. The usage of rule j, provided that it predicts label k,
is the number of training samples used to learn this rule (Cj), divided by the
maximum CJ used to learn any rule J that predicts the same classification label:

Uj = Cj/ max{CJ : rule J predicts label k} . (2)

The accuracy of rule j, provided that it predicts label k, is the number of vali-
dation samples that selected this rule and were correctly classified (Pj), divided
by the maximum PJ of any rule J that predicts the same classification label:

Aj = Pj/ max{PJ : rule J predicts label k} . (3)

The scaling ensures that Uj ∈ [0, 1], Aj ∈ [0, 1] and thus CFj ∈ [0, 1]. In addition,
at least one rule has Uj = 1, and at least one rule (but not necessarily the same)
has Aj = 1. Threshold pruning can be carried out by pruning those rules with
CFj < τ , where τ ∈ [0, 1], i.e. those that are infrequent and inaccurate (in a
balance that depends on γ, and to an extent determined by τ).

This method has several limitations when using incremental learning, if rule
pruning has to be carried out frequently. First, all training and validation samples
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have to be retained in order to recompute the usage and accuracy. Moreover, if
any of the existing rules is modified, or a new one created, all indices should be
recomputed, because samples that previously selected another rule may select the
one recently modified or created, and viceversa. This also applies after pruning a
rule. As the computational cost of evaluating usage and accuracy increases with
the number of samples, rule pruning becomes eventually unfeasible.

Moreover, incremental learning can be applied to a problem where concepts
drift with time (e.g. the preferences of a web portal user). In this scenario,
initial data becomes obsolete after sources drift, as well as rules that were
learnt using those data. However, a rule pruning mechanism that uses old data
to compute the confidence factors would retain old rules while pruning recent
ones.

This paper proposes two modifications to the rule pruning method: com-
puting the confidence factor without the need to store previous patterns, and
introducing a novelty index in the confidence factor to avoid early rule
pruning.

2.1 Computing CFj Without Storing Previous Patterns

If training samples are discarded once they are used, the count Cj of samples
that selected rule j, needed in eq. (2) cannot be recomputed. However, an es-
timated count, Ĉj , can be incremented after training with one sample if it se-
lects rule j, as explained in Fig. 1. Nevertheless, since rules evolve during train-
ing, a sample that chooses rule j when it is learnt, may select a different rule,
j′, if presented after the network is trained. Here, Ĉj is incremented instead
of Ĉj′. This might fake the real usage of a rule that was initially quite spe-
cific (hence with precedence over more general rules) but grew later becoming
more general. This way, a rule that is sparsely used might remain after prun-
ing takes place. However, this effect disappears after a reasonable amount of
samples.

To compute the accuracy index, Aj , eq. (3) could be used, with an esti-
mated P̂j . Each P̂j can be expressed as PC

j /PT
j , where PT

j is the total number
of validation samples that selected category j, and PC

j and the number of them
that were correctly labelled. These two counts can be incremented after each
validation sample is presented (see Fig. 1). Nevertheless, after pruning rule j,
if the PT

j samples that selected this rule were recorded they could have been
represented again to contribute to the accuracy indices of some other rules. In
our approach they are not recorded, and thus the quantities PT

j and PC
j could

be added to other PT
j′ and PC

j′ . However, j′ should predict the same class label
that j, otherwise PC

j′ would not make sense as a number of correctly labelled
samples. But it may well be the case that the samples (if recorded), would select
rule j′ with different class label, and the PC

j should be used to increment the
number of wrong predictions of j′. In summary, there is not enough informa-
tion on how to assign these counts of samples, and it seems better to discard
them.
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– Present a training sample
– It selects rule j

• Update Ĉj := Ĉj + 1

• Compute Uj with Ĉj in eq. (2)

– Present a validation sample
– It selects rule j that predicts label k

• Update P T
j := P T

j + 1
• Only if k is the correct label

∗ Update P C
j := P C

j + 1

• Update P̂j := P C
j /P T

j

• Compute Aj with P̂j in eq. (3)

Fig. 1. Pseudo-code to compute of Ĉj and P̂j without storing previous patterns

2.2 A Novelty Index to Prevent Early Pruning

If rule pruning is done frequently during incremental learning, recent rules will
have very small usage and are likely to be pruned, making the network quite
unstable. To avoid this, a novelty index is introduced in eq. (1), as follows:

CFj = γUUj + γAAj + γNNj . (4)

where γU , γA, γN are weighting factors (and in general γU + γA + γN ≥ 1), and
Nj is the novelty index defined by

Nj = 1−
Agej

K
. (5)

where Agej is the number of training samples presented to the network after rule
j was created, and K is a constant, as a rule of thumb, two or three times the
number of patterns presented before a significant change of the data sources. This
equation gives a chance to each rule to be selected by some training patterns.

3 Experimental Study

As stated in the introduction, incremental learning makes sense if a network
needs to be trained on a few initial samples, and then its knowledge incremented
with the use of more recent samples, or if data sources vary with time.

To asses rule pruning when incremental learning is used in order to improve
the knowledge of the network with time-invariant data sources, 12 initial
samples were generated from two gaussian sources with μ1 = (0.25, 0.5) and
μ2 = (0.75, 0.5), and σ = 0.20. After that, sets of 12 training and 4 validation
samples were generated, the networks updated, and rule pruning carried out.
Parameters were heuristically selected to be γU = 0.5, γA = 0.5, γN = 0 (novelty
is not relevant since data sources do not vary) and τ = 0.5. The experiment was
completed after the presentation of 1000 samples in total. Fig. 2a shows that,
if the network is not pruned it ends up with a larger set of rules and a larger
error. This is because rule pruning removes inaccurate rules in the boundary
between the two gaussian sources. Moreover, the rule pruning method proposed
here yields the same result as the original from [2]. After some more samples,
the count indices computed without storing and processing all previously learnt
patterns approach those of the original method, and the selection of rules to
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Fig. 2. (a,c,e) Number of rules in the network and (b,d,f) test error, for the classi-
fication of samples from (a,b) two fixed gaussian sources, (c,d) two drifting gaussian
sources that start as in the previous case, and (e,f) noisy Stagger concepts

prune is similar. Significantly, the simulation with our method took 1/2 the
time and 1/20 the memory of the original method.

Two experiments have been proposed to evaluate the usefulness of rule prun-
ing on Fuzzy ARTMAP when it is used to carry out incremental learning of a
problem where time varying data sources. In both, pruning parameters were
γU = 0.3, γA = 0.3, γN = 0.7, τ = 0.5 and K in eq. (5) was set to 250. In the
first experiment, patterns come from two gaussian sources as in previous exam-
ple (but with σ = 0.1). However, after 100 patterns have been generated, the
sources are changed by drifting their means clockwise by π/10. The experiment
concludes when five turns are completed. Fig. 2c shows how pruning is necessary
since, as old rules become incorrect, new rules are created being more specific,
and hence many rules become necessary. Pruning removes obsolete rules, and
lets new rules become more general, which in general results into a smaller and
more accurate set of rules. Furthermore, as shown in Fig. 2d, the original pruning
method has a higher classification error, since recent, good rules may be removed
due to the use of obsolete samples to compute the confidence factors.

The second experiment is a variation of the Stagger Concepts [4]. An object
is described by size, shape and color, with three values each. Initially, some of the
objects are labelled in one class (say “objects I like”), as shown in Fig. 3a. After
150 samples are presented, the classification drifts to Fig. 3b, and 150 later to Fig.
3c, looping through them three times. To represent the problem numerically, we
could state that color can take values 0 (red), 0.5 (green) and 1 (blue). However,
in many real problems there is noise and natural overlap between classes. In
our experiments, once the feature value is selected (say color is green), gaussian
noise (σ = 0.1) is added to its numerical representation (i.e. color=0.5+N (′, σ)).
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Fig. 3. (a,b,c) The three possible classifications in the Stagger concepts, using shape
(©, � or �), size (S, M or L) and color (R, G or B). (d) Rules after pruning with the
proposed method, for case (c).

Fig. 2e shows how the number of rules grows indefinitely if no pruning is applied.
Furthermore, the proposed method shows smaller classification error for the
reasons mentioned above. Fig. 3d shows the set of rules that remained after
having successively learnt the classifications in Figs. 3a, 3b and 3b, and having
pruned several times. Though suboptimal, these rules are easy to understand
and yield a good classification performance.

4 Conclusions

A new rule pruning method for fuzzy ARTMAP has been proposed, with advan-
tages for incremental learning: it does not store all previous patterns, and it does
not use obsolete information to determine which rules to prune. Experimentally,
it performed with less memory and computation, yielding similar results to the
original method with invariant data sources, and better otherwise.
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Abstract. We present an inductive learning algorithm that allows for a partial 
completeness and consistence, i.e. that derives classification rules correctly 
describing, e.g, most of the examples belonging to a class and not describing 
most of the examples not belonging to this class. The problem is represented as 
a modification of the set covering problem that is solved by a greedy algorithm. 
The approach is illustrated on some medical data.  

1   Introduction 

In inductive learning (from examples) we traditionally seek a classification rule 
satisfying all positive and no negative examples which is often strict and unrealistic. 
Here we assume: (1) a partial completeness, and (2) a partial consistency, i.e. that it 
is sufficient to describe – respectively – e.g., most of the positive and, e.g.,  almost 
none of the negative examples. We also add: (3) convergence, i.e. that the rule must 
be derived in a finite number of steps, and (4) that the rule is of a minimal ”length”. 

Examples are described (cf. Michalski [14]) by a set of K "attribute - value" pairs 

]#[1 jj
K
j vae ∧ == ; ja  denotes attribute j with value jv  and # is a relation ( =, <,…).  

We propose a modified inductive learning procedure based on Michalski’s [14] 
star-type methodology, related to our previous work (cf. Kacprzyk and Szkatuła [5 – 
13]). The problem is represented as a modified set covering problem solved by a 
greedy algorithm. Medical data are employed for testing. 

2   A Softened Problem Formulation of Inductive Learning 

Sets of examples U and attributes }...,,{ 1 KaaA =  are finite. }...,,{
1

ja

ji
ja

ija vvV =  is a 

domain of ja , Kj ...,,1= , 
ja

Kj
VV

...,,1=
= . VAUf →×: , 

jaj Vaef ∈),( , 

Aa j ∈∀ , Ue∈∀ . Each Ue ∈ , with K attributes, }...,,{ 1 KaaA = , is written 

][1
ja

ij
K
j vae == ∧ = , where 

jaj
ja

i Vaefv ∈= ),(  denotes attribute ja  taking on 

value vi
a j  for example e. An e in (1) is composed of K ”attribute-value” pairs, denoted 

][ ja
ijj vas ==  (selectors). The conjunction of Kl ≤  ”attribute-value” pairs, i.e. 
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][ ja
ij

Ij
j

Ij

I vasC =∧=∧=
∈∈

 = ][...][ 1
1

lja
ilj

ja
ij vava =∧∧=     (1) 

where }...,,1{}...,,,{ 21 KjjjI l ⊆=  is called a complex. 

Let us have example e and  a complex =IC  ][...][ 1
1

lja
ilj

ja
ij vava =∧∧=  

corresponding to the set of indices }...,,{ 1 ljjI = }...,,1{ K⊆ ; }...,,{ 1 ljj  is equivalent 

to a vector T
jxx ][= , Kj ,...,1= , such that 1=jx  if ][ ja

ijj vas ==  occurs in IC , 

and 0 otherwise. C I  covers e if IjaefaCf jj
I ∈∀= ),,(),( . Now, da  is a decision 

attribute and }...,,{
1

da

di
da

ida vvV =  is a domain of da . Each Ue ∈  is described by 

}{}...,,,{ 21 dK aaaa ∪ . So, da  determines a partition }...,,,{
21

da
di

vda
ivda

iv
YYY  of U, 

where }),(:{ da

tidda
ti

v
vaefUeY =∈= , 

da
da

ti
Vv ∈  for dt ,...1= . Set 

da

ti
v

Y  is 

called the t-th decision class (for 
da

da

ti
Vv ∈ ), UYY

da

di
vda

i
v

=∪∪...
1

, 

∅=∩
da

jvda
iv

YY  for ji ≠ .  

Suppose that we have a set of positive and negative examples for a class da
ti

v
Y  

}),(:{)( da

tidda
ti

v
P vaefUeYS =∈=             (2) 

)('),(:{)(
da

ti

d

tda
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vP

a
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v

P YS ∅=∩ )(
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v
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ti
v

P YS , ∅≠)(
da

ti
v

N YS . 

The descriptions of 
da

ti
v

Y  can be given as “IF certain conditions are fulfilled THEN 

membership in a definite class takes place”. The rule ),( d

t

a
ivPrul : “IF IC  THEN 

[ da

tid va = ]” is called an ”elementary” rule for class 
da

ti
v

Y , v Vi
a

at

d

d
∈ , 

}...,,1{}...,,{ 1 KjjI l ⊆= , P a a A aj j dl
= ⊆{ , ..., } \ { }

1
, where IC  is a description of 

example in terms of attributes Ija j ∈, , and this example belongs to 
da

ti
v

Y . 

The strength of a rule is defined in the following manner: 
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We consider the classification rules: 

IF LII CC ∪∪...1  THEN  [ da

tid va = ]           (4) 

with: }...,,1{...,,1 KII L ⊆ , ][ ja
ij

lIj
lI vaC =∧=

∈
, Ll ,...,1= . 

Let us have P positive examples, )( da

ti
vP

m YSe ∈ , m P= 1,..., , and N negative 

examples, )( da

ti
vN

n YSe ∈ , Nn ,...,1= . For each a j , each possible value occurs at 

some intensity (frequency). If it occurs more frequently in the positive and less 
frequently in the negative examples, then it is somehow typical and should appear in 
the rule sought. So, we introduce the function, for each a j , j K= 1, ...,  and v Va j

∈  

g v
P

e v
N

e vj
m n

n

N

m

P

( ) ( , ) ( , )= −
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==

otherwise

vvfor
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1
),(δ , and: e Sm

P∈ , 
j

j
aj
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i Vaefv ∈= ),( ; and 

analogously for δ( , )e vn . So, we may expresses to which degree the particular 
v Va j

∈  of a j  occurs more often in the positive than negative examples; the 

normalized )(vg j  is used as a weight of 
jaVv ∈  (cf. Kacprzyk and Szkatuła [10].  

Example We  with weights is )](;[
1

ja
ij

ja
ij

K

j
W vgvae =∧=

=
, i.e. is a conjunction of 

weighted selectors, =W
js  )](;[ ja

ij
ja

ij vgva = ,  that is: W
j

KIj

I
W sC

}...,,1{⊆∈
∧= , and is 

called a weighted complex. Notice that for I
WC  x has the elements 1=jx  for Ij ∈ , 

while, for IKj \},...,2,1{∈ , 0=jx . For I
WC  its weighted length is: 

 d CW W
I( ) =  

=
∈

⋅−
Ij

j
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ij xvg ))(1( =⋅−+
∈

j
ja

ij
IKj

xvg ))(1(
\},...,2,1{ =

⋅−
K

j
j

ja
ij xvg

1
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which reflects a higher relevance of those values of attributes which occur more often 
in the positive than in negative examples.  

The length of RW = C CW
I

W
IL1 ∪ ∪...  is )(max)...(

,...,1
1 lL

W
I
WW

Ll

I
W

I
WR CdCCd

=
=∪∪ , 

and we look for an optimal classification rule R C CW W
I

W
IL* * *...= ∪ ∪1 such that 

LII ...,,1

min )...( 1 L
W

I
W

I
WR CCd ∪∪               (7) 
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As the (exact) solution of (7) is very difficult, an auxiliary problem is solved (cf. 
Kacprzyk and Szkatuła [11]) whose solution is in general very close but much easier, 

i.e. an R C CW W
I

W
IL* * *...= ∪ ∪1  is sough such that ).(min...,),(min 1

1

LI
WW

LI

I
WW

I
CdCd  

3   Formulation as a Modified Set Covering Problem 

For P
p Se ∈ , and all the negative examples N

nP Se ∈+ , Nn ...,,1= , we construct a 

0-1 matrix ][ njKN zZ =∗ , Kj ...,,1= ,
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=
= +
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z  whose 

rows correspond to the consecutive N
nP Se ∈+ , Nn ...,,1=  and columns to attributes 

Kaa ...,,1 ; 1=njz  if ja  has different values in the positive and negative examples, 

i.e. ),( j
p aef  ≠ ),( j

nP aef + , and 0=njz  otherwise. There are no rows with all 0s 

since the sets of positive and negative examples are disjoint (and non-empty). So, for 
any positive and negative example there is always at least one attribute with a 
different value in these examples. 

Consider now the following inequality:
=

≥
K

j
njnj xz

1
γ , Nn ...,,1= , where 

T
N ]...,,[ 1 γγγ =  is a 0-1 vector, and }1,0{∈jx , for Kj ...,,1= . Any vector x  

satisfying γ≥Zx  determines uniquely a complex describing at least one example 

from the set of positive ones, and does not describe most of the negative examples. If 
x does not describe the n-th negative example, then γ n = 1; and γ n = 0 otherwise. 

So, the problem is, using the above inequality: 
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 in which each 

minimization with respect to x is equivalent to the determination of a 0-1 vector *x  
which uniquely determines the complex of the shortest weighted length. On the other 
hand, the satisfaction of Λ≥Zx  ( Λ  is a unit vector) guarantees that such a complex 

would not describe all negative examples. If rules should describe almost none of the 
negative examples, the problem can be written as a modification of the set covering 
problem   
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where ))(1( ja
ijj vgc −= , }1,0{∈njz , }1,0{∈jx , Kj ...,,1= , 0≥rel , 

T
N ]...,,[ 1 γγγ = , }1,0{∈nγ . 

 This is as the original set covering problem except for that no more then rel rows 
are uncovered. Then, no more then rel rows can be deleted though we may loose 
some information, and this reduction cannot always be applied. In the set covering 

problem (cf. [1-4]) there is only constraint, and T
N ]...,,[ 1 γγγ =  is a unit vector. 

Problem (11) is that of covering at least N-rel  rows of an N-row, K-column, zero-one 
matrix )( njz  by a subset of the columns at minimal cost jc . We define 1=jx  if 

column j with cost 0>jc  is in the solution, and 0=jx  otherwise. Then, most rows 

(at least N-rel rows) are covered by at least one column. It always has a feasible 
solution (x of K element), due to the required disjointness of the sets of positive and 
negative examples and the way the matrix Z was constructed.  

We seek a 0-1 vector x at the minimum cost and a 0-1 vector T
N ]...,,[ 1 γγγ =  that 

determines the covered rows, nγ = 1 if row n is covered by x, and nγ = 0, otherwise. 

By assumption, at least N-rel rows must be covered by x. Then, an ”elementary” rule 

for 
da

ti
v

Y , v Vi
a

at

d

d
∈ , may not describe at least (

=

N

n
nN

1
/100 γ )% negative examples.  

The set covering problem is a well-known NP-complete combinatorial optimization 
problem. Many optimal and faster heuristic algorithms exist, cf. Balas and Padberg [1], 
Beasley [2], Christofides [3], presented a genetic algorithm, with modified operations,too. 
One can also use here a greedy algorithm (cf. Chvatal [4]) and we use it here. 

4   An Example Using Heart Disease Data 

We have 90 examples, ill or healthy, 60 are a training set and 30 are for testing. The 
following 12 blood factors (attributes) are measured: lk1 - blood viscosity for 
coagulation quickness 230/s, lk2 - blood viscosity for coagulation quickness 23/s, lk3 
- blood viscosity for coagulation quickness 15/s, lp1 - plasma viscosity for 
coagulation quickness 230/s, lp2 - plasma viscosity for coagulation quickness 23/s, 
agr - aggregation level of red blood cells, fil - blood cells capacity to change shape, 
fib - fibrin level in plasma, ht - hematocrit value, sas - sial acid rate in blood serum, 
sak - sial acid rate in blood cells, ph - acidity of blood. 

We seek classification rules into: class 1: patients have no coronary heart disease, 
class 2: patients have a coronary heart disease. Some results are shown below: 

learningA %, 

by assumption

Number of 
iterations 
for class 1/2 

Number of 
selectors in  
rule for class 1/2

learningA  %, 

by assumption 

learningA  %, 

attained 

100% 16/19 43/55 100% 90.0% 

at least 97% 13/17 26/33 at least 97% 96.7% 
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and the results are encouraging, in fact comparable to the use of a genetic algorithm 
(cf. Kacprzyk and Szkatuła [13]). 

5   Concluding Remarks 

We proposed a improved inductive learning algorithm allowing for a partial 
completeness and consistence that is based on a set covering problem formulation 
solved by a greedy algorithm. Results seem to be very encouraging. 
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Abstract. Text categorization and retrieval tasks are often based on a
good representation of textual data. Departing from the classical vector
space model, several probabilistic models have been proposed recently,
such as PLSA. In this paper, we propose the use of a neural network
based, non-probabilistic, solution, which captures jointly a rich repre-
sentation of words and documents. Experiments performed on two infor-
mation retrieval tasks using the TDT2 database and the TREC-8 and
9 sets of queries yielded a better performance for the proposed neural
network model, as compared to PLSA and the classical TFIDF repre-
sentations.

1 Introduction

The success of several real-life applications involving tasks such as text catego-
rization and document retrieval is often based on a good representation of textual
data. The most basic but nevertheless widely used technique is the vector space
model (VSM) [1] (also often called bag-of-words), which makes the assumption
that the precise order of the words is uninformative.

Such representation neglects potential semantic links between words. In or-
der to take them into account, several more recent models have been proposed
in the literature, mostly based on a probabilistic approach, including the Prob-
abilistic Latent Semantic Analysis (PLSA) [2]. They in general factor the joint
or conditional probability of words and documents by assuming that the choice
of a word during the generation of a document is independent of the document
given some hidden variable, often called topic or aspect.

In this paper, we would like to argue that while the basic idea behind prob-
abilistic models is appealing (trying to extract higher level concepts, such as
topics, from raw texts), there is no need to constrain the model to be proba-
bilistic. Indeed, most of the applications relying on text representation do not
really need precise probabilities. It was recently argued [3] that in such a case,
one should probably favor so-called energy-based models, which associate an un-
normalized energy to each target configuration, instead of a proper probability,
and then simply compare energies of competing solutions in order to take a final

� This work was supported in part by the Swiss NSF through the NCCR on IM2 and
in part by the European PASCAL Network of Excellence, IST-2002-506778, through
the Swiss OFES.
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decision. It is argued that this scheme enables the use of architectures and loss
functions that would not be possible with probabilistic models.

We thus propose here a neural network based representation that can be
trained on a large corpus of documents, and which associates a high score to
pairs of word-document that appear in the corpus and a low score otherwise.
The model, which automatically induces a rich and compact representation of
words and documents, can then be used for several text-related applications such
as information retrieval and text categorization.

The outline of the paper is as follows. Section 2 briefly summarizes current
state-of-the-art techniques used for text representation, mostly based on prob-
abilistic models. Then, Section 3 presents our proposed neural network based
model. This is followed in Section 4 by some experiments on two real informa-
tion retrieval tasks. Finally, Section 5 concludes the paper.

2 Related Work

In most Textual Information Access applications, documents are represented
within the Vector Space Model (VSM) [4]. In this model, each document d is
represented as a vector (α1, ..., αM ), where αj is a function of the frequency of
the jth word wj in a chosen dictionary of size M . To be more concrete, let us
consider the Document Retrieval task, - used in the experimental section - and
how VSM is implemented there. In a Document Retrieval task, a user formulates
a query q addressed to a database, and the database documents d are then ranked
according to their Relevance Status Value, RSV (q, d), which is defined so that
documents relevant to q should have higher values than non-relevant ones. In the
VSM, RSV (q, d) is defined as the scalar product of the query’s and document’s
representations: RSV (q, d) =

∑M
j=1 αq

j ·αd
j , where αd

j (resp. αq
j) is the weight in

the document (resp. query) representation of the jth dictionary word. A simple
way to implement this value function is to choose αq

j as a binary weight stating
the presence or absence of the word in the query, and dj as the well-known
TFIDF weight [5]:

αd
j = tfj(d) · log(

N

dfj
) ,

where tfj(d) corresponds to the number of occurrences of wj in d, N is the num-
ber of documents in the database and dfj stands for the number of documents
the term wj appears in. It is designed to give more importance to terms frequent
in the document while penalizing words appearing in too many documents.

In the VSM, two documents (or a query and a document) are considered
similar if they are composed of the same words. However, a property of most
human languages is that a certain topic can be expressed with different words
(synonyms). Moreover, a given word can often be used in totally different con-
texts (polyseme). The VSM does not model these links between words. Several
attempts have been proposed to take that into account, among which the use of
the so-called Latent Semantic Analysis (LSA)[6]. LSA tries to link words together
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according to their co-occurrences in a database of documents by performing a
Singular Value Decomposition. The more recent Probabilistic Latent Semantic
Analysis (PLSA) model [2] seeks a generative model for word/document co-
occurrences. It makes the assumption that each word wj in a given document
dδ, is generated from a latent aspect t taking values among {1, . . . , K}, K being a
chosen hyper-parameter, and δ a variable picking one document among the others
in the database. The joint probability of a word wj and a document dδ is then:

P (dδ, wj) = P (δ)
K∑

k=1

P (t = k|dδ)P (wj |t = k) . (1)

PLSA can then be used to replace the original VSM document representation by
a representation in a low-dimensional “latent” space. In [2], the components of
the document in the low-dimensional space are P (t = k|d), ∀k; for each unseen
document or query these are computed by maximizing the log likelihood of (1)
with P (wj |t = k) fixed. Successful Document Retrieval experiments have been
reported in [2], for which documents were ranked according to a combination of
their cosine similarities with the query in the latent space and in the VSM.

Several other probabilistic models have also been proposed lately, including
a hierarchical version of PLSA [7], Latent Dirichlet Allocation [8], multinomial
Principal Component Analysis [9], Theme Topic Mixture Model [10], etc. Kernel
methods pursuing the same goal have been also proposed [11].

3 Proposed Model

As seen so far, most recent research work have concentrated on novel probabilistic
models for document representation. But is the probabilistic framework really
necessary at all? In the resolution of a machine learning task, such a probabilistic
framework appears necessary in two cases: either some probabilities are involved
in the final decision, or probabilities are to be used as a tool for exploring the
solution space. The tasks related to Information Access do not necessarily belong
to the first case; for example in a Document Retrieval task, what we seek is a
ranking of RSV, for which a probabilistic setting is not particularly needed.
Regarding the second case, as it has been suggested in [3], while probabilities
are a useful tool, they establish constraints, eg of normalization or cost function
to be minimized, which are not always justified and are difficult to deal with.
In addition, in a non-probabilistic framework, a lot of powerful tools allowing
different kinds of exploration are available, among which the well-established
margin and kernel concepts as well as the stochastic approximation.

The model we propose in this paper is designed to take advantage of the huge
amount of unlabeled textual documents, using them as a clue per se to the links
between words. The basic idea is to train a Neural Network using couples (word,
document) as inputs and the absence or presence of the word in the document
as targets.

A similar approach has been first proposed successfully in the context of
statistical language modeling under the name of Neural Probabilistic Language



670 M. Keller and S. Bengio

Model (NPLM) [12], which learns a distributed representation for each word
alongside with the probability of word sequences in this representation.

Here we adapt the same idea and call our model Neural Network for Text
Representation (NNTR). As illustrated in Figure 1, there are two input vectors
in an NNTR: the first one is a word wj represented by a one-hot encoding, and
the second one is a document di represented as a VSM with TFIDF weighting.
The output is a score which target is high if wj is in the context of di, and low
otherwise. As depicted in Figure 1, the word (resp. document) vector is first
passed through a Multi-Layer Perceptron MLPW (resp. MLPD) that extracts
a richer and more distributed representation of words (resp. documents); these
two representations are then concatenated and transformed non-linearly in order
to obtain the target score using MLPT , as summarized in (2):

NNTR(wj , di) = MLPT {[MLPW (wj), MLPD(dj)]} . (2)

All the parameters of the model are trained jointly on a text corpus, assigning
high scores to pairs (wj , di) corresponding to documents di containing words wj

and low scores for all the other pairs.
A naive criterion would be to maximize the likelihood of the correct class,

however, doing so would give the same weight to each seen example. Note that
our data presents a huge imbalance between the number of positive pairs and
the number of negative pairs (each document only contains a fraction of words
of the vocabulary). Thus, the model would quickly be biased towards answering
negatively and would then have difficulties in learning anything else. Another
kind of imbalance specific to our data is that, among the positive examples, a
few words tend to appear really often, while a lot appear only in few documents,
which would bias the model to give lower probabilities to pairs with infrequent
words independently of the document.

One DocumentOne Word

One-Hot Encoding TF-IDF Encoding

Word Repres. Document Repres.

Document MLP

Word/Document
MLP

Word MLP

Fig. 1. The NNTR model

Task TFIDF PLSA NNTR
Retrieval 0.170 0.199 0.215

Filtering 0.185 0.189 0.192

Fig. 2. Compared mean Averaged
Precisions (the higher the better)
for Document Retrieval and Batch
Document Filtering tasks

The approach we thus propose does not try to obtain probabilities but simply
unnormalized scores. Thanks to this additional freedom, we can help the opti-
mization process by weighting the training examples in order to balance the total
number of positive examples (words wj that are indeed in documents di) with the
total number of negative examples. We can also balance each positive example
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independently of its document frequency (the number of documents into which
the word appears). The criterion we thus optimize can be expressed as follows:

C =
1

L−

L−∑
l=1

Q(xl,−1) +
1
M

M∑
j=1

1
dfj

dfj∑
i=1

Q((di, wj), 1), (3)

where L− is the number of negative examples, M the number of words in the
dictionary extracted from the training set, dfj the number of documents the
word wj appears in, and Q(x, y) the cost function for an example x = (d, w) and
its target y. Note that using this weighting technique we do not need to present
the whole negative example set but a sub-sampling of it at each iteration, which
makes stochastic gradient descent training much faster. Furthermore, we use a
margin-based cost function Q(x, y) = |1 − y · NNTR(x)|+, as proposed in [13],
where |z|+ = max(0, z).

4 Experiments

TDT2 is a database of transcripted broadcast news in American English. For this
experiment we used 24 823 documents from a manually produced transcription
and segmentation, referred to in the following as TDT2-clean. Two sets of 50
queries for documents of TDT2, called TREC-8 and TREC-9 were collected
during TREC SDR evaluation. In this Document Retrieval classical setting
the database documents are available as development data as well as the TREC-8
queries and their corresponding relevance judgements, while the TREC-9 queries
are for evaluation. Using TDT2-clean, we trained a PLSA model with 1000
aspects and a NNTR with the following architecture: the word and document
sub-MLPs had 25 438 inputs each (corresponding to the size of the training
set vocabulary), no hidden unit, and 10 outputs each; the joint word-document
MLPT had 20 inputs, 25 hidden units, and one output unit. Similarly to [2], the
relevance of a document d to a query q was computed as λ · RSVtfidf (q, d) +
(1 − λ) · RSVmodel(q, d), where RSVtfidf (q, d) is a normalized version of the
scalar product described in Sect. 2, RSVmodel(q, d) in the case of PLSA is the
cosine similarity and in the case of NNTR the normalized sum, over words w of
q, of NNTR(w, q). All hyper-parameters of the compared models, including λ,
were tuned by cross-validation using TREC-8 queries, and we report the mean
averaged precision of each model for TREC-9 queries in Figure 2.

Another Document Retrieval setting, described in [14], is the Batch Fil-
tering task. In this application, the targeted documents are not immediately
available. Thus, we trained our models using a parallel corpus, which we called
TDT2-par, of 28 843 documents from other medias covering the same period
of news as TDT2-clean. Using TDT2-par, we trained a PLSA model with 500
aspects and a NNTR with the word and document sub-MLPs having 63 736
inputs each, no hidden unit, and 10 outputs each, and the joint word-document
MLPT having 20 inputs, 10 hidden units, and one output unit, with all hyper-
parameters tuned using cross-validation over the training set. Note however that
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in that case there were no data available to tune λ, and it was thus set to 0.5 ar-
bitrarily for both models. Figure 2 reports the results in terms of mean averaged
precision for the TREC-9 queries.

5 Conclusion and Discussion

In this paper, we have proposed a novel, non-probabilistic, text representation
model, which yields rich internal representations of both words and documents.
It has been applied to two text-related tasks, namely document retrieval and
batch filtering. In both cases, the proposed neural network yielded a better
mean averaged precision than the well-known PLSA model. Several extensions of
NNTR are currently investigated, including representing a full query/document
relation instead of a word/document relation, with shared parameters between
all word sub-MLPs of the query.
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Abstract. In many real–life problems we deal with a set of objects to-
gether with their properties. Due to incompleteness and/or imprecision of
available data, the true knowledge about subsets of objects can be deter-
mined approximately. In this paper we present a fuzzy generalisation of
two relation–based operations suitable for set approximations. The first
approach is based on relationships between objects and their properties,
while the second set approximation operations are based on similarities
between objects. Some properties of these operations are presented.

1 Introduction and Motivation

In many applications the available information has the form of a set of objects
(examples) and a set of properties of these object. Relationships between objects
and their properties can be naturally modelled by a binary relation connecting
objects with their properties. For a subset X of objects, which might be viewed
as an expert decision, the real knowledge about X is actually twofold: selected
elements of the set X itself and properties of these (and other) objects. Since
explicit information is usually insufficient to precisely describe objects of X in
terms of their properties, some approximation techniques are often applied. The
theory of rough sets provides methods for set approximation basing on similari-
ties between objects – relationships among objects determined by properties of
these objects (see e.g. [5],[7],[8]).

A more general approach has been recently proposed by Düntsch et al.
([1],[2]). Sets of objects are approximated by means of specific operations based
only on object–property relations themselves, without referring to similarities
between objects.

Both these approaches were developed under the assumption that the avail-
able information, although incomplete, is given in a precise way. However, it
� The work was carried out in the framework of COST Action 274/TARSKI

on Theory and Applications of Relational Structures as Knowledge Instruments
(www.tarski.org).
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is often more meaningful to know to what extent an object has some property
than to know that it has (or does not have) this property. When imprecision
of data is admitted, it usually cannot be adequately represented and analysed
by means of standard methods based on classical structures. A natural solu-
tion seems to be a fuzzy generalisation ([16]) of the respective methods. Hybrid
fuzzy–rough approaches were widely discussed in the literature (see, e.g., [3],[6],
[10],[11],[12],[15]).

In this paper we present a fuzzy generalisation of set approximation opera-
tions proposed in [1] and [2]. An arbitrary continuous triangular norm and its
residuum are taken as basic fuzzy logical connectives. Some properties of these
operations are presented. We show that in general these operations give a better
set approximation than fuzzy rough set–style methods. It will be also shown that
under some assumptions both these techniques coincide.

2 Preliminaries

Fuzzy Logical Operations. Fuzzy logical operations are generalisations of
classical logical connectives. Triangular norms ([13]), or t–norms for short, are
fuzzy generalisations of classical conjunction. Recall that a t–norm is any asso-
ciative and commutative mapping ⊗ : [0, 1]2 → [0, 1], non–decreasing in both ar-
guments and satisfying the boundary condition x⊗1=1⊗x=x for every x∈ [0, 1].
Typical examples of t–norms are the Zadeh’s triangular norm x⊗Z y=min(x, y),
and the �Lukasiewicz triangular norm x⊗L y=max(0, x + y − 1).

A fuzzy implication ([4]) is any mapping ⇒: [0, 1]2 → [0, 1], non-increasing in
the 1st and non–decreasing in the 2nd argument, and satisfying 1 ⇒ 1 = 0 ⇒ 0 =
0 ⇒ 1 = 0 and 1 ⇒ 0 = 0. For a continuous t–norm ⊗, a residual implication
determined by ⊗ (the residuum of ⊗) is a fuzzy implication ⊗→ defined by:
x ⊗→ y=sup{z ∈ [0, 1] : x ⊗ z � y} for all x, y ∈ [0, 1]. The Gödel implication
x ⊗→G y=1 iff x� y and x ⊗→G y=y otherwise, is the residuum of ⊗Z , while
the �Lukasiewicz implication x ⊗→Ly = min(1, 1−x+y) is the residuum of ⊗L.

Fuzzy Sets and Fuzzy Relations. Given a non–empty domain U , a fuzzy
set in U is a mapping X : U → [0, 1]. For any u∈U , X(u) is the degree to
which u belongs to X . The family of all fuzzy sets in U will be written F(U).
For X, Y ∈F(U), we will write X ⊆Y iff X(u)�Y (u) for every u∈U .

For two non–empty domains U and V , a fuzzy relation from U to V is a fuzzy
set in U×V , i.e. this is any mapping R : U×V → [0, 1]. For any u∈U and for
any v ∈V , R(u, v) is the degree to which u is R–related with v. The family of all
fuzzy relations from U to V will be denoted by R(U, V ). For R∈R(U, V ), the
converse fuzzy relation R

�∈R(V, U) is given by R
�(v, u) = R(u, v) for all u∈U

and v ∈V . For u∈U (resp. v ∈V ) we write uR (resp. Rv) to denote the fuzzy sets
in V (resp. in U) given by: (uR)(z) = R(u, z), z ∈V (resp. (Rv)(z) = R(z, v),
z ∈U). If U=V , then R is called a fuzzy relation on U . A fuzzy relation R on
U is reflexive iff for any u∈U , R(u, u)=1, symmetric iff R(u, v)=R(v, u) for all
u, v∈U , and ⊗–transitive, where ⊗ is a t–norm, iff R(u, v) ⊗ R(v, z)�R(u, z)
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for all u, v, z∈U . A fuzzy relation R is called a ⊗–equivalence relation iff it is
reflexive, symmetric and ⊗–transitive.

Recall ([9]) two specific fuzzy relations on F(U). Let ⊗ be a t–norm and let ⇒
be a fuzzy implication. For two fuzzy sets X, Y ∈F(U) a fuzzy inclusion inc⇒
and a fuzzy compatibility com⊗ are defined by: inc⇒(X, Y )= infu∈U (X(u) ⇒
Y (u)) and com⊗(X, Y )= supu∈U (X(u) ⊗ Y (u)), respectively. Observe that
inc⇒(X, Y ) is the degree to which X is included in Y , whereas com⊗(X, Y )
is the degree to which X and Y overlap. For a residuum ⊗→ of a continuous
t–norm ⊗, a fuzzy inclusion will be written inc⊗.

3 Approximation Operations

Let U be a non–empty set of objects, V be a non–empty set of their properties,
and let R : U×V → [0, 1] be a fuzzy relation representing relationships between
objects and their properties. For any u∈U and for any v ∈V , R(u, v) is the de-
gree to which the object u has the property v. Moreover, let a continuous t–norm
⊗ be given. A system Σ=(U, V, R,⊗) is called a fuzzy information structure.

Given a fuzzy information structure Σ=(U, V, R,⊗), let us define two op-
erations from F(V ) to F(U) as follows: for any P ∈F(V ) and for any u∈U ,

[R]
Σ

P (u) = inc⊗(uR, P ) (1)
〈R〉

Σ
P (u) = com⊗(uR, P ). (2)

Following the terminology from modal logics the operations (1) and (2) are called
the necessity and the possibility operator, respectively. [R]

Σ
P (u) is the degree to

which all properties characterizing the object u are in P , whereas 〈R〉
Σ

P (u) is the
degree to which some property from P characterizesu. Note that for any X ∈F(U)
and for any property v ∈V , [R� ]

Σ
X(v)=inc⊗(Rv, X) is the degree to which all

objects characterized by v are in X . Similarly, 〈R�〉
Σ

X(v)=com⊗(Rv, X) is the
degree to which X contains an object which has the property v.

Basing on the operations (1) and (2), let us define now the following two
fuzzy operations �Σ , �Σ : F(U) → F(U) as follows: for any X ∈F(U),

�Σ(X) = 〈R〉
Σ

[R
�

]
Σ

X (3)

�Σ(X) = [R]
Σ
〈R�〉

Σ
X. (4)

Note that for every object u∈U , �Σ(X)(u)= supv∈V (R(u, v) ⊗ inc⊗(Rv, X)).
Intuitively, this is the degree to which some property of u characterizes only
(some) objects from X . Also, �Σ(X)(u)= infv∈V (R(u, v) ⊗→ com⊗(Rv, X)), for
any u∈U . Intuitively, this is the degree to which every property of the object u
characterizes some object from X .

The operators (3) and (4) have the following properties.

Proposition 1. For every Σ=(U, V, R,⊗) and for all X, Y ∈F(U),
(i) Approximation property: �Σ(X) ⊆ X ⊆ �Σ(X)
(ii) Monotonicity: X⊆Y implies �Σ(X)⊆�Σ(Y ) and �Σ(X)⊆�Σ(Y ).
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Due to the approximation property, the operations (3) and (4) are useful for
set approximations. These operations are respectively called a fuzzy lower and
fuzzy upper bound of X in Σ. Consequently, �ΣX(u) (resp. �ΣX(u)) might
be interpreted as the degrees to which u certainly (resp. possibly) belongs to X .
Note also that monotonicity is the natural property of approximation operations:
the larger the approximated set is, the larger its lower (upper) bound should be.

Example 1 (Knowledge assessment) Let U be a set of problems, V be a set
of skills (abilities) necessary to solve these problems, and let R∈R(U, V ) be a
fuzzy relation from U to V such that for any problem u∈U and for any v ∈V ,
R(u, v) represents the degree to which the skill v is necessary to solve the problem
u. Let T ∈F(U) be a result of some test an agent solved. This set reflects a state
of the agent’s knowledge. Applying the operators �Σ and �Σ to T , we get
the following approximation of the agent’s knowledge: �Σ(T ) ⊆ T ⊆ �Σ(T ).
Intuitively, for any problem p∈U , �ΣT (p) (resp. �ΣT (p)) is the degree to which
the agent is certainly (resp. possibly) capable to solve p, i.e. his true state of
knowledge allows to solve p. Basing on characterizations of particular problems
and the result of a test the agent solved, we have the assessment of the true
knowledge of the agent.

Table 1.

R EN CP DB T �Σ(T ) �Σ(T )
p1 0.9 0.1 0.4 0.9 0.8 1.0
p2 1.0 0.2 0.4 1.0 0.9 1.0
p3 0.2 1.0 0.1 0.2 0.2 0.2
p4 0.1 0.8 0.2 0.3 0.0 0.4
p5 0.3 0.5 0.7 0.6 0.5 0.7
p6 0.6 0.3 0.7 0.5 0.5 0.7

Consider, for example, a structure Σ=(U, V, R,⊗L), where U={p1, . . . , p6}
and V consists of three abilities necessary to solve these problems: EN (English
speaking), CP (Computer Programming), and DB (expertise in Data Bases). In
Table 1 a fuzzy relation R is given, together with the test result T . Using the
�Lukasiewicz triangular norm ⊗L and its residuum ⊗→L, by simple calculations
we get the lower �Σ(T ) and the upper �Σ(T ) bound of T (see Table 1). Note
that the problem p4 was solved to the degree 0.3, whereas the agent knowledge
wrt this problem was assessed between 0.0 and 0.4. Therefore, the agent could
obtain a weaker evaluation for his solution of p4. Also, his solution of p6 was
evaluated to 0.5, which coincides with the (fuzzy) lower approximation of the
test. Since the upper approximation for p6 is 0.7, the agent’s real knowledge
allows him to get a better result for the solution of p6. ./

4 Similarity–Based Set Approximations

In this section we assume that U=V . Then we actually deal with a set U of
objects and a fuzzy relation R on U representing relationships among objects.
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This relation, called a similarity relation, is usually determined by properties of
objects. As before, let ⊗ be a continuous t–norm. A system Σ=(U, R,⊗) is called
a fuzzy approximation space. Clearly, this is a specific case of fuzzy information
structure.

In rough set theory ([7],[8],[5]) similarity relations (originally referred to as
indiscernibility relations) are assumed to be equivalence relations (i.e. reflex-
ive, symmetric and transitive), but in recent research ([14]) only reflexivity and
symmetry are required properties of these relations.

In fuzzy rough set theory ([3],[10],[11],[12],[15]) any set X ∈F(U) of objects is
approximated by means of similarity classes of the relation R: for any X ∈F(U),
the fuzzy lower and the fuzzy upper rough approximation of X in Σ=(U, R,⊗)
are respectively defined by: Σ(X)(u)=[R]

Σ
X and Σ(X)(u)=〈R〉

Σ
X . For any

X ∈F(U) and for any u∈U , Σ(X)(u) (resp. Σ(X)(u)) is the degree to which
all (resp. some) elements similar to u are in X .

The following proposition presents some connections between fuzzy rough
approximation operations and the operations (3)–(4).

Proposition 2. For every Σ=(U, R,⊗) and for every X ∈F(U),

(i) if R is reflexive, then Σ(X) ⊆ �Σ(X) ⊆ X ⊆ �Σ(X) ⊆ Σ(X)
(ii) if R is a ⊗–equivalence relation, then �Σ(X)=Σ(X) and �Σ(X)=Σ(X).

The above proposition says that only for (at least) reflexive fuzzy relation R
we get a sensible approximation of any set X ∈F(U) of objects. Also, in view
of Proposition 1(i), the operations �Σ and �Σ give an approximation of X
for an arbitrary fuzzy relation, regardless of its properties. Moreover, the pair
(�Σ ,�Σ) of fuzzy operators gives a tighter set approximation than the pair
(Σ, Σ). However, from (iii) it follows that for a ⊗–equivalence relation, the
operators �Σ and Σ, as well as �Σ and Σ, coincide.

5 Conclusions

In this paper we have presented a fuzzy generalisation of two relation–based
approximation operations. We have taken an arbitrary continuous t–norm and
its residuum as fuzzy generalisation of classical conjunction and implication.
The first approach allows for (fuzzy) set approximation on the basis of a hete-
rogeneous fuzzy relation connecting objects and their properties. The second
approach uses similarities of objects, so it is based on homogeneous binary fuzzy
relations among objects. Some basic properties of these operations have been
shown. In particular, it has turned out that the operations �Σ and �Σ give
tighter set approximations that fuzzy–rough approximation operations. More-
over, these operations do not depend on properties of relations, whereas in the
fuzzy–rough approach similarity relations should be at least reflexive in order to
obtain a sensible set approximation. Finally, basic properties of the operations
�Σ and �Σ are straightforward generalisations of the properties of the respective
operations based on classical structures.
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Abstract. This paper presents a new connectionist model of the grounding of 
linguistic quantifiers in perception that takes into consideration the contextual 
factors affecting the use of vague quantifiers. A preliminary validation of the 
model is presented through the training and testing of the model with experi-
mental data on the rating of quantifiers. The model is able to perform the “psy-
chological” counting of objects (fish) in visual scenes and to select the quanti-
fier that best describes the scene, as in psychological experiments.  

1   Introduction 

The selection and use of vague linguistic quantifiers, such as a few, few, several, 
many, lots of is greatly influenced by the communicative aim of the speaker. For ex-
ample, in the two sentences “A few people went to the cinema. They liked the movie” 
and “Few people went to the cinema. They preferred the restaurant”, the selection of 
the quantifier a few vs. few indicates differences in the focus of attention signaled by 
the quantifier. A few is chosen to put emphasis on those that actually went to the cin-
ema; Few, instead, shifts the attention to the people that did not go. Understanding the 
meaning of such terms is important as they are among the set of closed class terms 
which are generally regarded as having the role of acting as organizing structure for 
further conceptual material. Although some researchers have proposed that quantifiers 
can be mapped directly to numbers on a scale (e.g. [3]), there is compelling evidence 
that the comprehension and production of quantifiers can be affected by a range of 
factors which go beyond the number of objects present. These include contextual 
factors (e.g. the relative size of the objects involved in the scene, the expected fre-
quency of those objects based on prior experience, the functionality present in the 
scene -  e.g. [15]) and communicative factors (e.g. to control the pattern of inference 
as in the example above - see [14]). 

The existence of these contextual and communicative effects highlights the fact 
that language cannot be treated as an abstract, self-referential symbolic system. On 
the contrary, the understanding of language strongly depends on its grounding in the 
individual’s interaction with the world. The importance of grounding language in 
perception, action and cognition has recently received substantial support both from 
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cognitive psychology experiments (e.g. [2,9,11]) and computational models (e.g. 
[4,12]). In particular, connectionist systems are being increasingly used as the basis 
for modeling grounding [6]. They permit a straightforward way to link perceptual 
stimuli to internal categorical representations, upon which semantic and linguistic 
representations are anchored. The use of connectionist components within embodied 
cognitive systems, such as agents and robots, also permit the link between language 
and sensorimotor stimuli.  

Various connectionist models of quantification and number learning have been 
proposed, although none has directly focuses on linguistic quantifiers. Two main 
directions of research can be identified in the neural network literature. A first set of 
models focuses on learning number sequences. They are able to process the objects in 
the input scene sequentially to reproduce the sequences and/or compute distances 
between two numbers. For example, Rodriguez et al. [18] modeled the learning of 
sequences of letters. The identification of the correct number of presentations of a 
first letter permits the prediction of the presentation of a second letter. Ma and Hirai 
[13] simulated the production of the number word sequence as observed from  
children. 

The second approach includes models that learn to identify the number of objects 
in the input visual scene. Dehaene & Changeux [10] developed a numerosity detec-
tion system comprised of three modules: an input retina, an intermediate topological 
map of object locations, and a map of numerosity detectors). This was able to repli-
cate the distance effect in counting, by which performance improves with increasing 
numerical distance between two discriminated quantities. Peterson and Simon [16] 
presented a connectionist model of subitizing, the phenomenon by which subjects 
appear to produce immediate quantification judgments (normally up to 4 objects) 
without the need to do sequential counting. The simulation results suggested that 
subitizing emerges through experience, rather than being the result of a limited repre-
sentational capacity of the architecture. Similar results were found in the model by 
Ahmad et al. [1], which uses Kohonen’s SOM networks. This model also used a re-
current backpropagation network for articulating the numerosity of individual objects 
in the collection and a static backpropagation network for the next object pointing 
task. This model is distinct in the way it is trained to count by decomposing the count-
ing task into that of number word update\storage from the next-object pointing task. 

In this paper we present a new connectionist model of the grounding of linguistic 
quantifiers in perception that takes into consideration the contextual factors affecting 
the use of vague quantifiers. The model is able to perform both the “psychological” 
counting of objects (fish) in visual scenes and to select the quantifier that best de-
scribes the scene. A preliminary validation of the model will be presented through the 
training and testing of the model with experimental data on the rating of quantifiers.  

2   Architecture of the Model 

The computational model consists of a hybrid artificial vision-connectionist architec-
ture (Figure 1). The model has four main modules: (1) Vision Module, (2) Compres-
sion Networks, (3) Quantification Network, and (4) Dual-Route Network. This  
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architecture is partially based on a previous model on the grounding of spatial lan-
guage [5,8]. The overall idea is to ground the connectionist and linguistic representa-
tion of quantification judgments directly in input visual stimuli. 

                   

   Fig. 1. Modular architecture of the model 

The vision module processes visual scenes involving varying quantities of two 
types of objects: striped fish and white fish. It uses a series of Ullman-type vision 
routines to identify the constituent objects in the scene. The input to the Vision mod-
ule consists of static images with the two kinds of fish. The system must pay attention 
to striped fish, whilst white fish are only used as distracters (or vice versa). The input 
images are processed at a variety of spatial scales and resolutions for object features 
yielding a visual buffer. The processing of each image results in two retinotopically 
organized arrays of 30x40 activations (one per fish type). The output of the vision 
module represents data of isotropic receptive fields. 

The Compression Networks is needed to convert the output data from the vision 
module into compressed neural representation of the input scene. This is to reduce the 
complexity of the vision module output. Two separate auto-associative networks are 
used, respectively for each of the object types in the scene (stripy fish and white fish). 
Both networks have 1200 input and output units, and 30 hidden units. The activation 
values of the hidden units will be utilized by the following networks to make quantifi-
cation and linguistic judgments. The compression network for each type of fish will 
learn to autoassociate all the stimili with varying number of fish. 

The Quantification Network is a feedforward multi-layer perceptron trained to re-
produce the quantification judgments of the number of fish made by subjects during 
experiments on psychological counting [7]. Previous simulations only focused on the 
counting of the striped fish, those the subjects are asked to consider when making 
quantification decisions [17]. In the current, updated version, the same network has to 
count both sets of fish. The network has 60 input units (30 per compressed fish type), 
50 hidden nodes, and 2 output nodes. Each output node has a modified activation 

Compression Networks 
(autoassociators)

Dual-Route Network 
(quantifier rating)

Quantification Network 
(psychological number)
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function that produce activation values in the range 0 to 20, to include the actual 
range of 0 to 18 stripy fish used in the stimulus set. 

The fourth module consists of a Dual-Route neural network. This architecture 
combines visual and linguistic information for both linguistic production and compre-
hension tasks [6]. This is the core linguistic component of the model, as it integrates 
visual and linguistic knowledge to produce a description of the visual scene. The 
network receives, in input, information on the scene through the activation values of 
the compression (and quantification) networks’ hidden units. It will then produce, in 
output, judgments regarding the appropriate ratings for the quantifier terms describing 
the visual scene. The activation values of the linguistic output nodes correspond to 
rating values given by subjects for the five quantifiers considered: a few, few, several, 
many, lots. 

In the current version of the model, only the hidden representations of the com-
pression networks are used. The dual-route network will require 60 input visual units 
and 5 input linguistic nodes, one for each quantifier. The linguistic units correspond to 
the 5 vague quantifiers a few, few, several, many and lots. The 60 visual nodes corre-
sponded to the 30 hidden units of the two compression networks (of stripy fish and 
white fish). The output layer has the same number and type of units as those in the 
input layer. After training with data from psycholinguistic experiments, the network 
will be capable of producing two different outputs: (1) acceptability ratings for quan-
tifiers given only the vision inputs (language production) and (2) imaginary output 
pictures, given only a description of the scene in terms of quantifiers (comprehen-
sion). Results of the simulation on the production route (predicted ratings for the 
quantifiers) will be compared to the actual ratings of experiments with human  
subjects. 

3 Simulation Results 

The model uses as input stimuli to the vision module 216 scenes used in quantifica-
tion experiments with subjects [7]. In the experimental design, the number of fish (of 
both types) is varied from zero to 18 fish per scene, with incremental steps of 3. The 
fish are arranged in random locations, with equal spacing between them (two levels of 
inter-fish distances are used). In addition, two levels of grouping of fish from the 
same type (grouped or mixed) are used, with another factor regarding the two levels 
of the position of the grouped stimuli (top or bottom of the image).  

The 216 scenes are first presented to the vision module. Its output is then used to 
train the autoassociative networks of the Compression module. For the training, 195 
scenes are used as training stimuli and 21 as generalization test stimuli. The learning 
rate is 0.01 and momentum 0.8. The networks are trained for 2000 epochs. The 
autoassociative network is able to learn both training stimuli (average RMS error of 
0.019 and 0.014 for stripy and fish data respectively) and novel generalisation stimuli 
(average RMS error of 0.080 and 0.070 for stripy and white fish data). This permits a 
significant reduction of complexity of the 1200 output values of the visual module 
into only 30 compressed hidden activation values.  
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Results with the Quantification network [17] have shown that networks are able to 
reproduce the production of “psychological numbers” produced by subjects [7] and 
that they use similar mechanisms in producing such judgements.  

New simulations have focused on the training of the dual route network. The same 
stimulus set is used to collect data on the use of the five vague quantifiers a few, few, 
several, many and lots. In this psycholinguistic experiment, subjects are asked to rate 
the use of vague quantifiers by using a 9-point Likert scale for the appropriateness of 
sentences like “There are a few stripy fish”. The average rating data of the subjects 
are converted into presentation frequencies for the training of the dual route network, 
as in Cangelosi et al. [6]. For the training, 195 scenes are used as training stimuli and 
21 as generalization test stimuli. The learning rate is 0.001 and momentum 0.8. The 
networks are trained for 1000 epochs. The autoassociative network is able to learn 
both training stimuli (average RMS error of 0.051) and novel generalisation stimuli 
(average RMS error of 0.084).  

 
Simulation
No. 

Learning 
rate 

Random novel 
set Hidden nodes Training error Novel error 

1 0.001 TrnTst1 30 0.055079 0.086295 
2 0.001 TrnTst2 30 0.055002 0.070183 
3 0.001 TrnTst3 30 0.043332 0.095066 

average 0.051138 0.083848 

4 Conclusions 

This paper reports some preliminary simulation results on a new artificial vi-
sion/connectionist model of the grounding of linguistic quantifiers in perception. 
Experimental data are used for the training and testing of the dual-route neural net-
work that selects the linguistic quantifiers that best describe the scene.  

Future simulation experiments will focus on the analyses of the specific effects that 
the various contextual factors manipulated in the experiment (e.g. number, spacing 
and grouping of fish) produce in the selection of vague quantifiers. In addition, future 
simulations will address the contribution of explicit numerical judgments, as in quan-
tification experiments [7], in the use of linguistic quantifiers. 

The model presented here proposes a new approach to the study of linguistic quan-
tifiers, by grounding quantification judgments and vague quantifier directly in percep-
tion. From the semantic point of view, these terms have the virtue of relating in some 
way to visual scenes being described. Hence, it will be possible to offer more precise 
semantic definitions of these, as opposed to many other expressions, because the 
definitions can be grounded in perceptual representations. 
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Abstract. An introduction to how to use RecBF to work with very-imbalanced 
datasets is described. In this paper, given a very-imbalanced dataset obtained 
from medicine, a set of Membership Functions (MF) and Fuzzy Rules are 
extracted. The core of this method is a recombination of the Membership 
Functions given by the RecBF algorithm which provides a better generalization 
than the original one. The results thus obtained can be interpreted as sets of low 
number of rules and MF. 

1   Introduction 

Classical learning methods are always based on balanced datasets, where the data of 
different classes are divided proportionally. Neural Networks, Classical Extraction of 
Rules, etc. are some examples. 

However, the very imbalanced datasets are present in many real-world domains, 
for example, in diagnosis of diseases, text classification, etc. The solution consists on 
methods specialized in imbalanced datasets [1][2]. These methods work assuming that 
the dataset is imbalanced and either they try to balance the dataset or they try to 
adapt/build a new method. 

In this paper, we will work with a very-imbalanced dataset. Very-imbalanced 
datasets are datasets with very low proportion of data (i.e., for a 2-class system, 1000 
instances of class-1 and 20 instances of class-2). 

This dataset belongs to the problem of Down syndrome. Down syndrome detection 
during the second trimester gestation is a difficult problem to solve because the data is 
highly unbalanced. Current methods are statistically based and are only successful in 
a maximum of 70% of the cases [3]. 

To achieve the goal of this paper, Recombined RecBF and Genetic Algorithms will 
be used. 

RecBF network [4] is a variation of RBF networks, in which the representation is a 
set of hyper-rectangles belonging to the different classes of the system. Every 
dimension of the hyper-rectangles represents a membership function. Finally, a 
network is built, representing, on every neuron, the Membership Function (MF) 
found. 

Genetic Algorithms (GA) are methods based on principles of natural selection and 
evolution for global searches. Given a problem, GAs run repeatedly by using the three 
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fundamentals operators: reproduction, crossover and mutation. These operators, 
combined randomly, are based on a fitness function evolution to find a better solution 
in the searching space. Chromosomes represent the individuals of the GA and a 
chromosome is divided in genes. GAs are used to find solutions to problems with a 
large set of possible solutions and they have the advantage of only requiring 
information concerning the quality of the solution. This fact makes GA a very good 
method to solve complex problems, [5][6][7][8]. 

This paper is divided in four parts. In the first one, the use of the RecBF and the 
method used to recombine are explained. In the second one, the GA is described. In 
the third part, the results will be shown and, in the last part, the conclusions of this 
paper are described. 

2   Part I: MFs from RecBF 

RecBFN is a good method to obtain MFs. In this paper, we only use RecBF as a 
method to obtain MFs, without its neural network. The hyper-rectangles defining the 
MF are created by means of splitting a bigger one (shrinking). This splitting can be 
either done in all dimensions or only in one (which looses less volume in its splitting). 
In this article, the latter is used, to avoid granulation of the MFs of the minor-class 
and reduce the number of total MFs. This will make the problem simpler and more 
understandable. 

In this case, MFs and the rules are generated according to the given dataset, 
although this dataset is very-imbalanced. That is, some rules/MFs are specialized for 
these few cases, as happen in classical learning methods. 

To solve this problem, we introduce in this paper a method to combine these MFs 
to create new ones. 

This method consists on applying to the maximum variability for our rules/MF, i.e 
similar competition between the patterns to match the rules, without taking into 
account which class they belong to. 

A Fuzzy Rule is a set of MFs, each belonging to a variable. The value of every rule 
i is represented by the equation (1): 

                                    )()( ij xx
j

MFi ∏= μμ  
 

(1) 

If the result of this formula for every pattern is >0, then any pattern can introduce 
variability to (1). 

Another factor which plays an important role in the final fuzzy calculation (1) is 
the area covered by every MF, that is, how wide is the area where μMFij(x) =1 and 
where 0 < μMFij(x) <1. Where μMFij(x) is 1, this area marks the alpha-cut as 1 
(maximum area for the centroid defuzzyfication method). If this area is 0 < μMFij(x) 
<1, marks the minimum of all the alpha-cuts. So, always a fuzzy rule is calculated by 
the minimum alpha-cut. 

The solution is to use maximum variability for the MFs corresponding to the very-
imbalanced classes. The RecBF returns the MFs as trapezoids, and classifies them by 
classes. 
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The method is described in the following 4 steps. From now on, we will use the 
term major-class to refer to the class with the most quantity of patterns and the term 
minor-class to refer to the class with the lowest quantity of patterns. 

 
1. Train the RecBF with ordered patterns, first major-class and then minor-class. The 

results are much better with ordered patterns than with non-ordered patterns. The 
results are MFs. 

2. Take only the MFs belonging to the major-class which include, at least, the 10% of 
patterns. Thus, we avoid having specialized cases and exceptions to general rules 
[9][10]. 

3. Reorder and transform the MFs of major-class into new trapezoids, and those of 
minor-class into triangles, just calculating the centre as the average of the points b 
and c. (Figure-1). Every MF has to have the points a and d (Figure-2) as the 
minimum and maximum values of its variable. 

4. Apply a Genetic Algorithm to find the Fuzzy Rules. 
 

Since the shrinking method in RecBF algorithm is only in one dimension (to avoid 
granulation of MFs), superposed MFs are given as result of RecBF algorithm (Figure-
2). If a set of rules is tried to be obtained from them, much noise is introduced into the 
system, because of the system has much more probability to not obtain good rules 
which match with test patterns. In this case, MFs are transformed, splitting them by 
the b and c points of every MF. Figure-3 shows the result obtained from the original 
(Figure2). 

 

Fig. 1. 

 

Fig. 2. 

 
Fig. 3. 

 a1       b1         a2     b2                             c1       d1        c2             d2 

a      b            c     d a           avg          d 

Minor-class Major-class 

 a1      b1                b2                          c1                          c2                  d2 



688 V. Soler, J. Roig, and M. Prim 

3   Part II: The GA 

The codification of one chromosome of our GA is expressed in the following lines: 

(x1,1 , ... ,x1,n ,x2,1 , .... ,x2,n ,xm,1 ,...,xm,n ) 

where n is the number of variables (input variables plus output variables) and m is the 
number of rules. xi,,j is the value a gene can take, which is an integer value 
compressed in the interval [0 , n_fuzzysetsj ] where n_fuzzysetsj is the number of MFs 
of the jth variable. If a xi,j has value 0 it express that this variable is not present in the 
rule. Every xi,1 , ... , xi,,n corresponds to a rule of the system. 

If the set of rules is set to m, the system is able to find a set of rules less than m, 
just putting 0 in the output fuzzy set of the rule. 

The initial population is either taken randomly or by an initial set of rules. Every 
gene of a chromosome is generated randomly in the interval [0, n_fuzzysetsj], but 
some rules can be fixed for all the simulation or just given as an initial set of rules. If 
a fuzzy set is 0, it means that the variable is not taken into account in the rule. 

The GA has to find a set of rules which prioritizes matching the minor-class 
patterns over the major-class ones. To do this, the fitness calculation of the GA for a 
class c is: 

total number of patterns matched (c) 
Fitness (c) = 

total number of patterns (c)  
(2) 

4   Results  

The presented method has been applied to the problem of Down’s syndrome 
Detection. This is a very good example of very-imbalanced problem. In this case, to 
compare results, the same dataset can be presented with either 5 variables or 3 
variables, thanks to an applied reduction of variables. The characteristics of these 
datasets are: 2 output classes, continuous input data in 3060 patterns belonging to the 
major-class and just 11 belonging to the minor-class. 

This dataset has been tested in Neural Networks (Backpropagation, BayesNN), 
classical methods of Fuzzy Rule Extraction [11] and other methods, like decision 
trees. The results were negative, either because they did were not generalized or 
because the minor-class patterns were ignored (they tried always to match the major-
class patterns without taking into account the minor-class patterns). 

The training was always done with the worst case (for minor-class), that is 1000 or 
1500 patterns of major-class and 5 for the minor-class. If we tried to train with less 
than 5 patterns, the results were not acceptable. If we tried with 6 patterns, the results 
were much better than with 5. 

The main problem is thus to choose the training dataset. Depending on which 
patterns are selected, the results are different, even if the patterns chosen from the 
minor-class are the same.  

 
 



 Fuzzy Rule Extraction Using Recombined RecBF for Very-Imbalanced Datasets 689 

The results obtained are the following: 

1. The lower the input variables are in the dataset, the better the method generalizes. 
A difference of one magnitude order is presented. 

2. The generalization never reached the whole matching of the minor-class patterns. 
At least, one could not be matched. Anyhow, the best results reached more than 
85% of the input patterns. 

3. The number of MFs is always small, smaller than 20. Normally it is between 5 and 
15. That makes the resulting fuzzy set understandable and allows GA to reach the 
solution in just a few steps. In addition, the number of MFs found for minor-class 
is less than half of patterns trained (in this case, 5 patterns trained and 2 or 3 MFs 
of that class, as maximum). 

4. With the same training dataset, different quality solutions are obtained, but there is 
always a good combination of parameters that gives a good solution. 
Consequently, every dataset has one good solution. 

5. The perfect matching is never obtained, but the minor-class patterns are always 
matched.  

5   Conclusions 

This study reflects the application of a new method for very-imbalanced datasets, 
working on a 2-class dataset. The method can generalize, at least, half of the patterns, 
given only 5 patterns of minor-class. Other experiments, with more test data, have 
shown that about 85-87% of patterns are matched for major-class, even if other 5000 
patterns (from the same medical problem) not shown before are tested, with 12-14% 
of false positives. 

The set of rules generated is small - between 4 and 6, with few MFs as well- and it 
is easy to understand for the medical staff.  

Optimal results were obtained in 90% of the cases. On the other hand, since pattern 
matching was never 100% obtained, it is necessary to try different combinations of 
patterns in order to improve the generalization. However, these results improve the 
current ones (given by a statistical method), which are 70% of good classified patterns 
with 10% of false positives. 
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Abstract. We present an Iterative Artificial Neural Network (IANN) in which 
computation is performed through a set of successive layers sharing the same  
weights. This network requires fewer weights while it can handle high-
dimensional inputs. IANN is applied, with good results, to a time series predic-
tion and two classification problems.  

1   Introduction 

Artificial Neural Networks (ANN) are universal computing machines capable to ap-
proximate an arbitrary function. In a multilayer perceptron computation is performed 
through a nonlinear projection over successive layers of processing units called neu-
rons. In general large set of adjustable weights connecting the nodes are required. 

In difficult problems with high dimensional data, large networks may be necessary. 
In these situations, training is difficult and may become an ill-conditioned optimiza-
tion problem. Furthermore, such large networks have a considerable risk of overfit-
ting. To alleviate these difficulties we can either prune the network to decrease its 
complexity or reduce the dimensionality of the problem using feature extraction tech-
niques. However, these techniques discharge some information, while some problems 
are intrinsically high dimensional.  

In bioinformatics these cases abound, for example, gene identification or prediction 
of secondary structure of proteins. In the latest case long-range interactions between 
amino acids are common, due to protein folding, and to surpass accuracies of 80% 
much larger sequences have to be consider. In time series prediction of systems with 
stiff dynamics, several time scales may be present and to take into account long range 
correlations a large time window is necessary leading to very large networks. 

We present a new neural network architecture, mainly to deal with high dimen-
sional data. Although related to recursive networks [1], this network, called Iterated 
Artificial Neural Network (IANN), differs from them in several aspects. In an IANN 
computation is performed iteratively through successive layers using the same set of 
connection weights. IANN is therefore more compact than traditional perceptrons. 

The paper is organized as follows. Section 2 explains the IANN, section 3 presents 
some applications to time series prediction, a benchmark classification problem and a 
bankruptcy prediction problem. Section 4 presents the conclusions. 
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2   Iterative Artificial Neural Networks (IANN) 

Many complex functions can be decomposed in a n-fold repetition of a simple process 
[2]. Mathematically this is equivalent to the problem of computing iterative or func-
tional roots. Iterative functions are very difficult to handle by analytical methods but 
they play a key role in nature. It is known from chaos theory that relatively simple 
rules, iterated many times, can produce complex mappings. For instance, the logistic 

equation )1(1 ttt xxx −=+ λ  generates chaotic sequences for  > 3.57, and the fa-

mous Mandelbrot-set results from this equation for a complex-value . 
 The use of iterative processes to approximate complex functions has, however, 

several difficulties. In most cases the system is driven to equilibrium points or is 
trapped on attraction basins. This represents a computational limitation since the same 
fixed point is reached irrespectively of the inputs presented to the system. 

With these considerations in mind, we developed the Iterative Artificial Neural 
Network - figure 1. The IANN is composed of a sequence of identical fully connected 
layers. The input is presented to layer 1 and passed to the following layer using a set 
of weights connecting node i of layer t+1 to node j of layer t 

0
jiij xpw = , (1) 

where 0
jx  is the element j of input vector 0x , and the array p  contains the adjust-

able weights. Note that the weights are the input vector scaled by the vector p . We 

used this definition in order preserve information of the initial state of the system, 
0x . Each layer has the same dimension, of the inputs, N. Note that, in contrast to 

recurrent neural networks, the weights are the same for all layers.  
Each neuron has a nonlinear transference function, and the input is propagated 

through successive layers following the rule: 
      

=

+ =
N

j

t
jij

t xwf
1

1 )(x , (2) 

 
where xt+1 is the output of layer t+1, N the dimension of the input, and f a nonlinear 
function. For this work the sigmoid was used: 
 

)(1

1
θη +−+

=
xe

f , (3) 

with a bias term θ  and a parameter η to adjust the slope of the sigmoid. A different 
bias is used for each neuron. The output is obtained through a readout neuron con-
nected to the last layer:  
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=
N

i

T
i

f
i xwfy . (4) 
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Fig. 1. A Iterative Artificial Neural Network architecture with a single output 

 
The total number of training parameters is 3N+1, which is linear with the number 

of input features, N. The number of layers T is not specified apriori but is adapted to 
the complexity of the problem. The convergence criterion must be verified: 

 

ε<−+ TT xx 1 , (5) 

for all x, being ε  a small quantity.  
Training the IANN consists in computing the weights that minimize the quadratic 

error: 
2)( oyE −= , (7) 

where y is the actual output of the network and o the desired output.  
The backpropagation algorithm cannot be used since the network is heterogenous 

and has iterative characteristics. The parameters p, θ, wf and η were optimized using a 
Genetic Algorithm with elitism. A mutation rate of 0.002, crossover probability of 
60% and elitism ratio of 20% were used. 

3   Applications  

The IANN was applied to several problems and its performance compared with tradi-
tion neural networks and other machine learning approaches. 

3.1   Sunspot Prediction  

For this classical time-series prediction we used four time delayed windows of size k 
= 5, 10, 15 and 20 and one step ahead prediction. From the 280 points, the initial two 
hundreds were used for training and the remaining reserved for test. We compare our 
results with predictions made by a MLP optimized for the problem - Table 1. For the 
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MLP five runs were evaluated using different weights initializations. For the IANN, 
five runs were also computed using different initial populations for the GA. The 
smallest error were obtained by a MLP with k = 10 using 5 hidden neurons, which 
corresponds to 70 weights. While the performance of IANN is very close to the MLP, 
it does not degrade as much when k is increased, reaching almost the same level of 
accuracy as the best MLP but using less parameters. For this problem T = 9 and η = 
0.73 were selected. 

 

Table 1. MSE and standard deviation for the sunspot problem 

k MLP IANN 
5 15.1 ± 0.3 15.9 ± 0.5 

10 13.2 ± 0.5 15.3 ± 1.1 
15 13.4 ± 0.7 13.8 ± 0.7 
20 14.3 ± 0.4 13.3 ± 0.9 

 

0 2 4 6 8 10 12
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

N
eu

ro
n 

4

t

0 2 4 6 8 10 12
0.0

0.2

0.4

N
eu

ro
n 

7

t

 

Fig. 2. Activity of two neurons over successive iterations for the sunspot problem  with k = 15 
 

To test the robustness of the predictor a 10% gaussian noise was added to the sig-
nal. While the accuracy of the best MLP degrade from 13.1% to 15.6 % the accuracy 
of the best IANN only decreased from 13.2% to 13.4%. Figure 2 show the activity of 
some neurons as a function of iteration t for k = 20. Note that some neurons take more 
time to stabilize that others. 

3.2   The Ionosphere Problem 

The IANN was applied to the ionosphere dataset to test its capabilities as a classifier. 
This dataset (see http://www.ics.uci.edu/~mlearn), containing 351 examples, was 
chosen due to its high dimensionality: 33  attributes and two classes. Five fold cross 
validation was used to measure the efficiency of the classifier. For this problem the 
values chosen were T = 6 and η = 1.17. This small T is an indication that the problem 
is more linear than the sunspot (T = 10), thus requiring less iterations to reach  
convergence. 
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Table 2 show our results compared with MLP, Genetic Programming (GP) [3] and 
Support Vector Machines (SVM) [4]. In this problem SVM achieved the best results 
but IANN clearly outperforms MLP and even GP. 

 

Table 2. Efficiency of several classifiers in the ionosphere dataset 

Method Test Error (%) 
SVM  5.9  
GP 9.8  
MLP 11.4 ± 1.1 
IANN 8.3 ± 1.4 

3.3   Bankruptcy Prediction  

Finally, we apply IANN to a important problem largely discussed in the literature: 
bankruptcy prediction. This problem consists in discriminating between healthy and 
distressed companies based on the record of several financial indicators from previous 
years [5, 6].  

The sample has 583 financial distressed French companies firms, most of them of 
small and medium size, with 35 to 400 employees. To test IANN we used a balanced 
dataset containing the same number of healthy and distressed companies. We dis-
criminate the accuracy of the classifiers for type I, type II error and the overall mis-
classification. Table 3 summarizes the results with data from 1999, one-year prior to 
the announcement of bankruptcy. We used T = 12 and η = 1.30 and results were ob-
tained using ten-fold cross validation. 

Our method surpass discriminant analysis (MDA) and MLP, both in the overall ac-
curacy, and, more important, on type I error which is the term with higher costs for 
banks and insurance companies. For details see Ref [7]. 

 

Table 3. Average generalization errors for the bankruptcy problem 

Model Error I  Error II Total 

MDA 

SVM 

MLP 

IANN 

26.4 

17.6 

25.7  

19.1 

21.0 

12.2 

13.1   

13.3 

23.7 

14.8 

19.4 

16.2 

4   Conclusions 

Iterative Neural Networks is a promising approach for high dimensional data analyse. 
It is robust, relatively simple to implement and it can handle many features, even if 
they are irrelevant for the solution. Applications in bioinformatics, like protein-
protein interactions and secondary protein structure prediction will be addressed in a 
future work. 
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Abstract. We show how linguistic database summaries can provide
tools for human friendly data mining. The relevance of Zadeh’s con-
cept of a protoform is indicated. We present the use of our fuzzy databse
querying interface for an effective and efficient mining of such linguistic
data summaries. We outline an implementation for a computer retailer
involving both data from an internal database of the company and data
downloaded from external databases via the Internet.

1 Introduction

Data mining is meant here as a process to obtain from a very large, uncompre-
hensible to a human being data set some simpler, condensed form that would
“subsume” the contents and essence of that data set, and is comprehensible to
a human being. Needless to say, that since for a human being the only fully
natural way of communication and articulation is natural language, then human
consistent and friendly data mining would ideally involve natural language as
much as possible. A promising approach, used here, is based on the concept of
a linguistic data(base) summary proposed by Yager [10] and further developed
mainly by Kacprzyk and Yager [1], and Kacprzyk, Yager and Zadrożny [2]. The
essence of linguistic data summaries is that a set of data, e.g., on employees, with
(numeric) data on their age, salaries, etc., can be summarized linguistically with
respect to a selected attribute(s) like age and salaries, by linguistically quantified
propositions like most young and highly qualified employees are very well paid.

We present such linguistic summaries, indicate the use of Zadehs protoform of
a fuzzy linguistic summary (cf. Zadeh [12]) providing a generalization, portabil-
ity and scalability, and then some approaches to mining of linguistic summaries,
notably along Kacprzyk and Zadrożnys [4,7] interactive approach via Kacprzyk
and Zadrożny’s [3,5] FQUERY for Access, a fuzzy querying add-on to Microsoft
Access c©. By relating types of linguistic summaries to fuzzy queries, with vari-
ous known and sought elements, we obtain a hierarchy of protoforms of linguistic
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data summaries. We will show an implementation of the data summarization sys-
tem proposed for the derivation of linguistic data summaries in a sales database
of a computer retailer.

2 Linguistic Data Summaries via Fuzzy Logic with
Linguistic Quantifiers

In Yagers approach (cf. Yager [10], Kacprzyk and Yager [1], and Kacprzyk, Yager
and Zadrożny [2]) we have: (1) Y = {y1, . . . , yn} is a set of objects (records) in a
database, e.g., the set of workers, and (2) A = {A1, . . . , Am} is a set of attributes
characterizing objects from Y , e.g., salary, age, etc. in a database of workers, and
Aj(yi) denotes a value of attribute Aj for object yi.

A linguistic summary of a data set D consists of:

– a summarizer S, i.e. an attribute together with a linguistic value (fuzzy pred-
icate) defined on the domain of attribute Aj (e.g. ‘low salary’ for attribute
‘salary’);

– a quantity in agreement Q, i.e. a linguistic quantifier (e.g. most);
– truth (validity) T of the summary, i.e. a number from the interval [0, 1] as-

sessing the truth (validity) of the summary (e.g. 0.7); usually, only summaries
with a high value of T are interesting;

– optionally, a qualifier R, i.e. another attribute together with a linguistic value
(fuzzy predicate) defined on the domain of attribute Ak determining a (fuzzy
subset) of Y (e.g. ‘young’ for attribute ‘age’).

Thus, linguistic summaries may be exemplified by

T (most of employees earn low salary) = 0.7 (1)

T (most of young employees earn low salary) = 0.7 (2)

and their foundation is Zadeh’s [11] linguistically quantified proposition corre-
sponding to either, for (1) and (2):

Qy’s are S (3)

QRy’s are S (4)

The T , i.e., the truth value of (3) or (4), may be calculated by using either
original Zadehs calculus of linguistically quantified statements (cf. [11]), or other
interpretations of linguistic quantifiers.

Using Zadeh’s [11] fuzzy calculus of linguistically quantified propositions, a
(proportional, nondecreasing) linguistic quantifier Q is assumed to be a fuzzy set
in [0, 1] and then truth(Qy’s are S) = μQ[ 1

n

∑n
i=1 μS(yi)] or truth(QRy’s are S)

= μQ[
∑n

i=1(μR(yi)∧μS(yi))∑
n
i=1 μR(yi)

], respectively. Clearly, the fuzzy predicates S and R

need not be in such a simplified, atomic form referring to one attribute.
Recently, Zadeh [12] introduced the concept of a protoform defined as a more

or less abstract prototype (template) of a linguistically quantified proposition.



Towards Human Friendly Data Mining 699

The most abstract protoforms correspond to (3) and (4), while (1) and (2) are
examples of fully instantiated protoforms. Thus, protoforms form a hierarchy,
where higher/lower levels correspond to more/less abstract protoforms. Going
down this hierarchy one has to instantiate particular components of (3) and (4),
i.e., Q, and S and R. A protoform may provide a guiding paradigm for a user
interface for the mining of linguistic summaries. Basically, the more abstract
protoform the less should be assumed about summaries sought, i.e., the wider
range of summaries is expected by the user, between: (A) a totally abstract
protoform is specified, i.e., (4), and (B) all elements of a protoform are totally
specified as given linguistic terms; in the former case (more intersting but more
complicated) the system has to construct all possible summaries (with all pos-
sible linguistic components and their combinations) for the context of a given
database and present to the user those verifying the validity to a degree higher
than some threshold. In the second case, the whole summary is specified by the
user and the system has only to verify its validity. In Table 1 basic types of
protoforms/linguistic summaries are shown, of a more and more abstract form.
Each of fuzzy predicates S and R may be defined by listing its atomic fuzzy

Table 1. Classification of protoforms/linguistic summaries

Type Protoform Given Sought
0 QRy’s are S All validity T

1 Qy’s are S S Q

2 QRy’s are S S and R Q

3 Qy’s are S Q and structure of S linguistic values in S

4 QRy’s are S Q, R and structure of S linguistic values in S

5 QRy’s are S Nothing S, R and Q

predicates (pairs of ”attribute/linguistic value”) and structure, i.e., how these
atomic predicates are combined. In Table 1 S (or R) corresponds to the full
description of both the atomic fuzzy predicates (referred to as linguistic values,
for short) as well as the structure. The higher the type of a summary, the more
interesting but more difficult to mine it is.

3 Mining of Linguistic Data Summaries

In the process of mining of linguistic summaries, at the one extreme, the sys-
tem may be responsible for both the construction and verification of summaries
(which corresponds to Type 5 protoforms/summaries in Table 1). At the other
extreme, the user proposes a summary and the system only verifies its validity
(which corresponds to Type 0 protoforms/summaries in Table 1). The former
approach seems to be more attractive and in the spirit of data mining meant as
the discovery of interesting, unknown regularities in data. On the other hand, the
latter approach, obviously secures a better interpretability of the results. Thus,
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we will discuss now the possibility to employ a flexible querying interface for the
purposes of linguistic summarization of data, and indicate the implementability
of a more automatic approach.

In Kacprzyk and Zadrożnys [4,7] approach, the interactivity, i.e. a user assis-
tance, in the mining of linguistic summaries is a key point, and is in the definition
of summarizers (indication of attributes and their combinations). This proceeds
via a user interface of a fuzzy querying add-on. In Kacprzyk and Zadrożny [3,5,8],
a conventional database management system is used with a fuzzy querying tool,
FQUERY for Access. For example, an SQL query searching for troublesome or-
ders may take the following WHERE clause:

WHERE Most of the conditions are met out of
PRICE*ORDERED-AMOUNT IS Low
DISCOUNT IS High
ORDERED-AMOUNT IS Much Greater Than ON-STOCK

Obviously, the condition of such a fuzzy query directly corresponds to sum-
marizer S in a linguistic summary. Moreover, the elements of a dictionary (of
terms) are perfect building blocks of such a summary. Thus, the derivation of
a linguistic summary of type (3) may proceed in an interactive (user-assisted)
way as follows: (1) the user formulates a set of linguistic summaries of interest
(relevance) using the fuzzy querying add-on, (2) the system retrieves records
from the database and calculates the validity of each summary adopted, and (3)
a most appropriate linguistic summary is chosen.

Referring to Table 1, we can observe that Type 0 as well as Type 1 linguis-
tic summaries may be easily produced by a simple extension of FQUERY for
Access. For Type 3 summaries, a query/summarizer S consists of only one sim-
ple condition built of the attribute whose typical (exceptional) value is sought.
Type 5 summaries represent the most general form considered: fuzzy rules de-
scribing dependencies between specific values of particular attributes. The sum-
maries of Type 1 and 3 have been implemented as an extension to Kacprzyk and
Zadrożnys [6] FQUERY for Access.

Since the discovery of Type 5 rules is difficult, some simplifications about the
structure of fuzzy predicates and/or quantifier are needed, for instance to obtain
association rules – cf. Kacprzyk and Zadrożny [9] for details.

4 Examples of an Implementation

We will briefly present an implementation for deriving linguistic database sum-
maries for a sales database of a computer retailer. First, suppose that we are
interested in a relation between the commission and the type of goods sold. The
best linguistic summaries obtained are as shown in Table 2.

Next, let us show in Table 3 some of the obtained linguistic summaries ex-
pressing relations between the indicated attributes.

Notice that the linguistic summaries obtained do provide much of relevant
and useful information, and can help the decision maker make decisions. It should
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Table 2. Linguistic summaries expressing relations between the group of products and
commission

Summary
About 1/3 of sales of network elements is with a high commission
About 1/2 of sales of computers is with a medium commission
Much sales of accessories is with a high commission
Much sales of components is with a low commission
About 1/2 of sales of software is with a low commission
About 1/3 of sales of computers is with a low commission
A few sales of components is without commission
A few sales of computers is with a high commission
Very few sales of printers is with a high commission

Table 3. Linguistic summaries expressing relations between the attributes: size of
customer, regularity of customer (purchasing frequency), date of sale, time of sale,
commission, group of product and day of sale

Summary
Much sales on Saturday is about noon with a low commission
Much sales on Saturday is about noon for bigger customers
Much sales on Saturday is about noon
Much sales on Saturday is about noon for regular customers
A few sales for regular customers is with a low commission
A few sales for small customers is with a low commission
A few sales for one-time customers is with a low commission
Much sales for small customers is for nonregular customers

be stressed that in the construction of the data mining paradigm presented we
do not want to replace the decision maker but just to provide him or her with a
help (support).

The system for deriving linguistic summaries developed and implemented for
a computer retailer has been found useful by the user who has indicated its hu-
man friendliness, and ease of calibration and adaptation to new tasks (summaries
involving new attributes of interest) and users (of a variable preparation, knowl-
edge, flexibility, etc.). However, after some time of intensive use, the user has
expressed his intention to go beyond data from the own database of a company,
and use some external data We have extended the class of linguistic summaries
handled by the system to include those that take into account data easily (freely)
available from Internet sources, more specifically data on weather conditions as,
first, they have an impact on the operation, and are easily and inexpensively
available from the Internet, for instance to obtain relations between group of
products, time of sale, temperature, precipitacion, and type of customers, the
best linguistic summaries (of both our ”internal” data from the sales database,
and external meteorological data from an Internet service). Notice that the use
of external data gives a new quality to possible linguistic summaries.
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5 Concluding Remarks

We briefly showed the use of linguistic data(base) summaries, and their proto-
forms, handled by a fuzzy logic based calculus of a linguistically quantified propo-
sitions as a promising tools to obtain a greater human friendliness and consis-
tency i datamining, mainly by a more explicit use of a natural language. We
presented the use of fuzzy querying for an effcient implementation, and showed
some practical application.
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8. J. Kacprzyk and S. Zadrożny. Computing with words in intelligent database query-
ing: standalone and Internet-based applications. Information Sciences, 134, 71 -
109, 2001.
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Abstract. An effective method has been developed to solve the local-
ization problem of the brain sources. A priori knowledge about normal
source locations has been effectively exploited in estimating the rota-
tion matrix, which inherently permutes the estimated separating matrix
in the blind source separation (BSS) algorithm. An important appli-
cation of this method is to localize the Focal epilepsy sources, which
causes changes in attention, movement and behavior. Here, an effective
and simple technique for both separation and localization of the EEG
sources has been developed incorporating BSS. The criterion is subject
to having some of the sources known. The constraint is then incorpo-
rated into the separation objective function using Lagrange multipliers
whereby changing it to an unconstrained problem.

1 Introduction

Electroencephalogram (EEG) signals are the major source of information for
diagnosis of anatomical, pathological, physiological, and functional abnormali-
ties. These signals include normal and abnormal rhythms within the frequency
range of 0.3 to more than 40 Hz. This range is divided into five main subbands of
0.3−3.5 Hz (Delta), 3.5−7.5 Hz (Theta), 7.5−13 Hz (Alpha), 13−30 Hz (Beta),
and more than 30 Hz (Gamma). Although the nature of the mixing medium is
not completely known. A reasonable assumption is that the EEG mixtures are
isotropically propagated, linearly mixed and are considered stationary within a
short interval of about ten seconds. Localization of abnormal sources within the
brain has been a serious and important problem within both neurophysiology
and signal processing communities. A number of methods for localization of EEG
sources has been investigated by researchers. Among them the methods based
on dipole assumption of the sources have been very well established. MUSIC
and its extension RAP-MUSIC have been extended to estimation of the source
locations. However, the accuracy of such algorithms is dependent on the number
of both sources and sensors [1]. Other techniques solely based on independent
component analysis (ICA) cannot ensure a unique solution to the problem [2].
In this paper we show that the ICA based algorithm can be modified in order to
have a unique solution to the localization algorithm. We are therefore consider-
ing an inverse solution to the EEG recordings. Here it is assumed that the EEG
sources are independent. In addition the locations of the normal brain rhythms

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 703–708, 2005.
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are known (obtained from EEG recordings filtered within specific bands). The
instantaneous BSS formulation is as follows. Denote the time varying observed
signals by X = [x1(t), x2(t), . . . , xn(t)]T where X ∈ R

n and the unknown inde-
pendent sources by S = [s1(t),s2(t), . . ., sm(t)]T where S ∈ R

m.

x = As + v (1)

and
y = Wx (2)

here v ∈ R
n is assumed to be a white zero mean Gaussian noise vector, A ∈

R
n×m and W ∈ R

m×n are unknown constant mixing and unmixing matrices
respectively, and (.)T is vector transpose. The mixture is assumed to be over-
determined (valid for usual cases), i.e. m ≤ n. y = [y1(t), y2(t), . . . , ym(t)]T ,
where y ∈ R

m is the output vector. The separation matrix, W, can be found
by finding the global minima (or maxima) of a cost function JM (W ), which
provides a measure of independency of the estimated sources.

Using ICA we can separate the signals into their independent components.
The number of outputs may be approximated by one of the methods described
in [3]. However, the separation is subject to the scaling and permutation of the
sources i.e.

A = DRW−1 (3)

Where D and R are the scaling and permutation matrices respectively. The
effect of D can be constrained by the size of the head and it can be generally
disabled by normalization of the estimated separating matrix after each iteration.
However, without solving the permutation problem there won’t be any solution
to the estimation of A. This means there will be no clue to find a unique solution
to the localization problem. However, a priori information about the locations
of some of the sources, say k < m, leads us to a more accurate estimation of A
and, as a result, the locations of other sources.

Alpha rhythm occurs in fully alert and awake subjects. Therefore it is con-
venient to choose the location of the Alpha generator as the reference point.

2 Source Localization

Figure 1 shows part of the scalp including three electrodes and the two sources
located within the brain as an example. Assuming the head as a homogenous
medium, the link weights are inversely proportional to attenuation of the signals
crossing the brain tissues i.e. aij = Γ−1

ij . To formulate the problem consider k
out of m sources are known. This means that the scaled values of the k columns
of A are known. Moreover since the order of the electrodes is conventional we
know exactly which columns are known. In the example of Figure 1 we may
expand the BSS system as

X =

⎡⎣x1

x2

x3

⎤⎦ = AS =

⎡⎣a11 a12

a21 a22

a31 a32

⎤⎦ . [s1

s2

]
(4)



Localization of Abnormal EEG Sources Incorporating Constrained BSS 705

Fig. 1. Part of the scalp including three electrodes, and locations of the sources, (as-
suming the head is homogenous)

if source s1 is known we define a new matrix as Ã such that only those of its
columns related to the known sources and the unknown source can be presented
by “aij” and “âij” respectively, another words we can assume the column related
to the known sources as nonzero, and unknown sources are arbitrary values i.e.
in this case

Ã =

⎡⎣a11 â12

a21 â22

a31 â32

⎤⎦ (5)

Now, during the separation process we may simultaneously try to minimize the
following constraint

Jc = ‖Ã− P̃‖2F (6)

where ‖.‖2F is the Frobenius norm (Euclidean norm may also be used) and P̃ is

P̃ = {P̃ij}, i = 1, 2, 3 and j = 1, 2 (7)

Considering

P = DRW−1 = {Pij}, i = 1, 2, 3 and j = 1, 2 (8)

then P̃ and P will correspond to each other through

P̃ij =
{

Pij , if aij �= 0;
0, if aij = 0. (9)

This constraint is then incorporated into the main BSS cost function to effec-
tively estimate the rotation matrix iteratively. Such a strategy ensures the solu-
tions to both the estimation of the separation matrix W based on the main BSS
cost function, and the recovery of the mixing matrix A based on estimation of the
permutation matrix. In order to exactly locate the source the non-homogeneity
of the head region has to be encountered. A novel method is described in section
4 to solve this problem.

3 Constrained Problem

EEG signals are statistically non-stationary. They are affected by the human
internal signals, noise of the measurement system, environment noise and inter-
ference from the adjacent electrode signals. In this work, we assume that the
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effects of system noise and other human internal signals are filtered out. The
effective bandwidth for EEGs is from 0.3 to 40 Hz. To decorrelate the electrode
sources, adaptive filtering has been traditionally used. Since each electrode sig-
nal is in fact a combination of more than one nearby sources, blind separation of
these signals appears to be more favorable. Since the signals are not stationary,
an accurate separation technique is hard to achieve. A number of recently devel-
oped techniques such as time-lagged second-order blind identification (SOBI) or
in [5] can better cope with nonstationarity of the data. On the other hand the
signals may be considered stationary within short segments of about 10 seconds
(or about 2000 samples). Here, a method based on the SOBI algorithm has been
considered. Since our main objective is localization of the sources having a priori
information about locations of some of the sources, the separation method is of
less concern. By estimating the inverse of the mixing matrix A we may be able
to localize the location of the sources. Although solution to equation (6), given
the separating matrix W, is a linear programming problem only in places where
the number of unknown source locations is equal to the number of mixtures a
unique solution can result. In general cases this may not be true. Therefore to
find W and R we can incorporate a constant into the cost function and solve
the following unconstrained problem:

J(W) = Jm(W) + λJc(W) (10)

where Jm(W) is the main BSS cost function, Jc(W) is the constraint defined by
equation (6), and λ is the lagrange multiplier. The effect of Lagrange multiplier
here is to incorporate the constraint into the main cost function whereby chang-
ing the constrained problem into an unconstrained one. An efficient algorithm to
minimize equation (10) ensures the best solution to the problem especially when
the number of unknown source locations is close to the number of mixtures.

4 Non-homogeneity Problem

With some indeterminacy in the result we can approximate the location of the
sources within the brain. Unlike the methods in [2] and [3], which consider the
sources as magnetic dipoles, we simply consider them as the sources of isotropic
signal propagations. Therefore the head (mixing media) model only mix and
attenuates the signals. The attenuation directly corresponds to the distance and
the resistance between the sources and the fixed electrodes. Based on the method
developed in section 2 we need to have the location of some of the sources
known. This is not a difficult problem in the context of EEGs. Normal Alpha
rhythms have a fixed source location at the contralateral central sulcus. These
sources generate reference signals within a small frequency band of 7 − 13 Hz
in a fully awake person. Since we can measure both the link weights and the
energy of the mixtures within the selected bands we will be able to estimate the
nonhomogenity by finding a relationship between Ã, found through measurement
of the geometrical locations and Ag, found through measurement of the energy of
the signal(s) of the known source(s). The energy within Alpha band is obtained
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by carefully bandpass filtering the EEGs around the peak in Alpha wave. These
amplitudes are then inverted to give the entries of k columns of Ã. On the other
hand the geometrical location of the known sources can be roughly determined
off-line (call it Ãg). The rest of (m − k) columns are set to zero for both Ã
and Ãg.

In a spherical model of the head we may consider three main layers; brain,
skull, and scalp for which the thickness is known. The conductivity of the skull
is about 10 to 100 times less than those of brain and scalp. In our proposed
algorithm although there won’t be any change in the overall BSS algorithm
but to incorporate the non-homogeneity into account f has to be completely
identified for all the sources. Here, we consider f(Ãg) = ψ.Ãg, where ψ is a
weighing n × m matrix and “.” refers to element-wise multiplication. Having
more than one known source locations, in order to extend the above nonlinear
map to all the estimated source locations a simple means of extrapolation of the
columns of the estimated mixing matrix will be adequate.

5 The Experiments

The proposed algorithm was implemented for separation and localization of the
EEG sources [6]. In order to separate the signals detected from EEG recordings
obtained from head of a patient the cost function based on SOBI was used. Fur-
thermore to localize the positions of the sources a constraint was incorporated
into the main cost function using a Lagrange multiplier. For one source a mini-
mum of three electrodes can be used for correlation measure. A matrix of three
signals containing three synthetic sinusoidal sources were generated and the re-
sulting separated signals are shown in Figure 2(b). A random mixing matrix A
representing the weight links is generated and the sensor signals were mixed [7].
In estimation the constraint on the cost function

Wt+1 = Wt + μ1∇wJ (11)

where J is main cost function, ∇wJ is the gradient of J with respect to W also:

Jc = ‖Ã−RW−1‖2F (12)

where Ã is the estimated mixing matrix, which refers to the position of the
sources , W−1 is pseudo inverse for m �= n, and μ is learning rate.

Furthermore the permutation matrix R is updated through

Rt+1 = Rt + μ2∇RJc (13)

where ∇RJc is the gradient of Jc with respect to rotation matrix R as:

∇RJc = 2W−1(Ã−RW) (14)

After estimating W in each iteration the Rotation matrix R is also iteratively
calculated. Hence the solution to the Mixing matrix can be calculated.The sep-
aration plot is shown in Figure 2(b).

Hence knowing the rotation and the unmixing matrix the mixing matrix
which refers to the weight links of sources can be obtained, as shown in
Figure 2(c).
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Fig. 2. (a)The modelled sinusoidal sources (b)Separated sources using SOBI and (c)
The points represented by “O” refer to A and RW−1 represented by “ + ”

6 Results and Conclusions

The proposed algorithm was implemented for separation and localization of ab-
normal sources. The solution gives the approximate locations of all the sources.
In order to mitigate the ambiguities we need to use a priori information about
the known sources. This is done in two steps: The estimated sources are scaled to
make energy of the known sources equal to those extracted by bandpass filtering.
The Rotation matrix, R, is estimated by minimizing ‖Aes-RW−1‖2F . Moreover,
the computational cost is much lower.
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Abstract. Linear models such as factor analysis, independent com-
ponent analysis (ICA), and nonnegative matrix factorization (NMF)
were successfully applied to dynamic myocardial H15

2 O PET image data,
showing that meaningful factor images and appropriate time activity
curves were estimated for the quantification of myocardial blood flow. In
this paper we apply the ensemble ICA to dynamic myocardial H15

2 O PET
image data. The benefit of the ensemble ICA (or Bayesian ICA) in such
a task is to decompose the image data into a linear sum of independent
components as in ICA, with imposing the nonnegativity constraints on
basis vectors as well as encoding variables, through the rectified Gaussian
prior. We show that major cardiac components are separated successfully
by the ensemble ICA method and blood flow could be estimated in 15
patients. Mean myocardial blood flow was 1.2 ± 0.40 ml/min/g in rest,
1.85 ± 1.12 ml/min/g in stress state. Blood flow values obtained by an
operator in two different occasion were highly correlated (r=0.99). In my-
ocardium component images, the image contrast between left ventricle
and myocardium was 1:2.7 in average.

1 Introduction

Linear model-based methods, including factor analysis, independent component
analysis (ICA), nonnegative matrix factorization (NMF), were shown to useful
in analyzing dynamic positron emission tomography (PET) image data, demon-
strating that meaningful factor images and appropriate time activity curves
could be extracted [1,2,3]. In the application of such linear models to PET,
a main focus was to extract left ventricle input function [1,2], which is an es-
sential part for the calculation of myocardial blood flow (MBF) in the tracer
kinetics model of dynamic H15

2 O cardiac PET. However, the extraction of the
input function is a difficult task, because of the partial volume effect resulting
from the limitation of system resolution and the spill-over of left ventricle, right
ventricle, and myocardium by the motion of heart. Consequently, a new method
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for the input function extraction is required to estimate the blood flow more
accurately. H15

2 O dynamic cardiac PET has been used for the quantification of
MBF as an ideal blood flow tracer [4,5,6]. The half life of H15

2 O is about 2 min-
utes, which makes repetitive and short interval estimation of MBF possible. In
this paper, we apply the ensemble ICA [7] to H15

2 O dynamic cardiac PET image
data. In the ensemble learning [8], the inference is carried out by averaging over
the posterior distribution of the parameters. The main benefit of the ensemble
ICA over the conventional ICA or NMF, is to decompose the image data into
a linear sum of independent components as in ICA, with imposing the nonneg-
ativity constraints on basis vectors as well as encoding variables, through the
rectified Gaussian prior. We evaluate the ensemble ICA for the quantification of
regional myocardial blood flow (rMBF) after segmentation of left ventricle, right
ventricle, and myocardium images.

2 PET Image Acquisition and Processing

PET images were acquired from ECAT EXACT47 (Siemense-CTI, Knoxville,
USA) in Seoul National University Hospital. Totally 24 frames 47 transaxial
images were acquired; 12 frames for 5 seconds, 9 frames for 10 seconds, and 3
frames for 30 seconds. After bolus injection of H15

2 O (555-740 MBq), adeno-
sine stress was carried out during 7 minutes. H15

2 O was injected after 3 minutes
during stress, and then dynamic PET images were acquired during 4 minutes
continuously. Images were reconstructed using FBP (image matrix = 128 128,
magnification factor = 1.5). Twenty patients were investigated using H15

2 O dy-
namic myocardial PET. Patients were underwent gated 99mTc-MIBI myocar-
dial perfusion SPECT for the suspicious coronary artery disease. Rest image and
adenosine stress images were acquired. All frame data was reoriented to short
axis and two plans were summed in order to extract myocardium component
automatically using ensemble ICA. Nine region of interest (ROI) were drown on
left ventricle and myocardium (1 apex, 4 middle wall, 4 basal wall) to take out
the time-activity curve of dynamic PET image. Using input function and time-
activity curve of each region, rMBF was calculated. The values of rMBF were
compared with angiography and gated myocardial perfusion SPECT. Regional
perfusion was relocated to 9 regions used in dynamic PET analysis.

3 Factor Image Extraction Using Ensemble ICA

H15
2 O PET images are converted to vector sequences D = {xt ∈ R

m}. ICA
assumes that data vectors xt are generated by

xt = Ast + εt, (1)

where st ∈ R
n correspond to factor images (independent components), column

vectors of the matrix A ∈ R
m×n represent time activity curves, and εt ∈ R

m

reflect the model uncertainty which is assumed to be Gaussian.
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In the context of H15
2 O PET images, independent components are expected

to images corresponding to left ventricle, right ventricle, myocardium, and back-
ground, which reasonable satisfy spatial independence. In such a case, basis
vectors (corresponding to the column vectors of A) represent the time activity
curves which reflect the time-varying influence in PET images [9]. The standard
ICA, including mutual information minimization, maximum likelihood estima-
tion (MLE), output entropy maximization, and so on (see [10] for recent review),
incorporates with the prior probability of parameters in a limited way and ne-
glects the uncertainty term in (1). That is, in the standard ICA, parameters
were inferred by maximizing the likelihood in the limit of zero noise.

On the other hand, NMF [11] also considers the linear model (1) but infers
parameters with constraining both A and st to be nonnegative, whereas ICA
incorporates with independence conditions for st. Inference in NMF can also be
illustrated in the framework of maximum likelihood estimation with assuming
Poisson distribution for εt. Application of NMF to dynamic PET can be found
in [3].

Here we use the ensemble ICA [7] to extract factor images in H15
2 O PET. In

the Bayesian framework, the posterior probability of parameters θ, given a set
of data points D, is described by

P (θ|D,H) =
P (D|θ,H)P (θ|H)

P (D|H)
, (2)

whereH represents a model. In the ensemble learning, the inference is performed
by averaging over the posterior distribution, so that the inference is sensitive to
regions where the probability mass is large, in contrast to ML or MAP where the
inference is sensitive to regions where the probability density is large. In prac-
tice, exact inference is often intractable. The ensemble learning approximation
finds an approximate a posterior distribution Q for the model parameters by
minimizing the Kullback-Leibler divergence between the approximate posterior
Q and the true posterior

KL[Q||P ] =
〈

log
[

Q(θ)
P (θ|D,H)

]〉
Q

=
〈

log
[

Q(θ)
P (D, θ|H)

]〉
Q

+ log P (D|H). (3)

where 〈·〉Q denotes the statistical expectation under the approximate distribu-
tion Q.

The following objective function J was considered in [7]

J = KL[Q||P ]− log P (D|H)

=
〈

log
[

Q(θ)
P (D, θ|H)

]〉
Q

≥ − log P (D|H). (4)
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The minimization of the objective function J in (4) is equivalent to maximizing
a bound on the log-evidence log P (D|H).

The main benefit of the ensemble ICA is to decompose the PET images as
a linear combination of factor images with encoding variables being statistically
independent as in ICA, with imposing nonnegativity constraints on A and st

through rectified Gaussian prior. In other words, the ensemble ICA leads us to
incorporate with both independence and nonnegativity constraints in the context
of the linear model (1). Empirical results in Sec. 4 demonstrate that the ensemble
ICA, indeed, works well in the task of analyzing H15

2 O PET image data.

4 Quantification Results of rMBF

The rMBF from H15
2 O dynamic myocardial PET were compared with the results

of perfusion SPECT. Image contrast between myocardium and left ventricle were
estimated in segmented myocardial independent component images (see Fig. 1).
Image contrast of myocardium was 1 : 2.97 (LV:myocardium) in the rest image
and was 1 : 2.56 in stress image of separated independent component images (see
Fig. 2). The number of subjects with the image contrast under 2.0 was 6 and the
highest value of image contrast was 4.63. Blood flow obtained from PET was 1.2±
0.40 ml/min/g in rest state, 1.85±1.12 ml/min/g in stress state. Reproducibility
of myocardial blood flow of 15 subjects PET image data which were acquired
twice for each region was high. (r = 0.99, P < 0.0001) Myocardial perfusion
was quantified by autoQuant program. Uptake value of normal segments group
were 67.613.3in stress (reversibility score = 1.9), while that of stenotic group were
71.9±9.8in rest and 69.1±12.8There was no significant difference between normal
group and stenotic group in terms of reversibility score. The rMBF of reversible
segments were 0.98± 0.30 ml/min/g in rest, 1.78± 0.76 ml/min/g in stress, and
blood flow reserve was 0.80± 0.69 ml/min/g. The rMBF of persistent segments
in myocardial perfusion SPECT was 1.10 ± 0.40 ml/min/g in rest, 2.06 ± 1.35
ml/min/g in stress, and the blood flow reserve was 0.95 ± 1.32 ml/min/g (see
Fig. 3).

Fig. 1. Segmented component images using the ensemble ICA method
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(a) (b)
Fig. 2. (a) Image contrast of myocardium was improved in rest image than stress
image; (b) Estimated myocardial blood flow values using H15

2 O PET

Fig. 3. Regional myocardial blood flow of reversible segments and persistent segments
in perfusion SPECT

5 Discussions

The standard ICA had difficulty in extracting appropriate factor images in our
clinical data, because of the difference of injection dose according to weight
and low sensitivity of hardware system. Recently, left ventricle and myocardium
image were visualized through the NMF method in clinical study, and the MBF
of patient could be estimated using the NMF [12] The nonnegativity is a natural
constraint in medical imaging such as PET. The ensemble ICA is a technique
which incorporates with both independence and nonnegativity constraints. In
our study, we have observed that the ensemble ICA had a a merit of improved
image contrast and quality for ROI processing, compared to the NMF method.
The rMBF was estimated using the ensemble ICA in H15

2 O dynamic myocardial
PET. Reproducibility of measurement and image contrast were good enough to
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segment myocardium. We expect that dynamic myocardial PET analysis using
the ensemble ICA can be used to assess the absolute myocardial blood flow in
clinical situations.
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Abstract. An overview of data fusion approaches is provided from the
signal processing viewpoint. The general concept of data fusion is in-
troduced, together with the related architectures, algorithms and per-
formance aspects. Benefits of such an approach are highlighted and po-
tential applications are identified. Case studies illustrate the merits of
applying data fusion concepts in real world applications.

1 Introduction

The data fusion approach combines data from multiple sensors (and associated
databases if appropriate) to achieve improved accuracies and more specific in-
ferences that could not be achieved by the use of only a single sensor [1]. This
concept is hardly new:- living organisms have the capability to use multiple
senses to learn about the environment. The brain then fuses all this available
information to perform a decision task.

One of the first definitions of data fusion came form the North American Joint
Directors of Laboratories (JDL) [2,3], who define data fusion as a:- multilevel,
multifaceted process dealing with the automatic detection, association, correla-
tion, estimation and combination of data from single and multiple sources.

Data fusion principles apply to many domains, and have been (often implic-
itly) at the core of modern applications in the diverse areas spanning engineering,
computing, and biomedicine. The recent interest in the theory and taxonomy of
multisensor data fusion has been reflected by a number of special issues of lead-
ing international journals and conferences, which have been dedicated to this
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area (e.g. Proc. of the IEEE in 1997 [1] and 2003 [4], JMLR in 2003 [5], and
IEEE TNN 2002 [6]).

There has been a somewhat conflicting use of terminology within the data–
sensor–information fusion community. People working at the sensor level view
data fusion as basically operating with raw data which have undergone at the
most only some preliminary processing [7]. Others, like JDL, have a more general
view which includes both raw and processed data – in short, all the inputs to
some higher level decision making/classifying stages.

Our aim in this paper is therefore to provide a systematic overview of the
existing data fusion philosophy and methods for engineering applications.

2 Data Fusion Principles

When approaching a problem from the data fusion viewpoint, we differentiate
between the following levels of abstraction:

– Observation/measurement space contains vectors of measurement func-
tions which can be univariate, multivariate, and/or multidimensional, de-
pending on temporal, spatial or other independent variables. It may be pos-
sible to build a state–space model, or to assess the data modality [8,9];

– Transform domain representations, which seek features from time and/
or frequency models

(
fast Fourier transform (FFT), (nonlinear) autoregres-

sive (N)ARMA models [10], wavelet
)
, blind processing

(
independent compo-

nent analysis (ICA), blind source separation (BSS) [11]), particle/Kalman
filter [12], kernels and support vector machines (SVM) [25], kernel ICA

)
;

– Decision space, where the classes within the data fusion model (and the
corresponding basins of attraction from the measurement space) are mapped
into the relevant probabilities of the occurrence of an event.

Similarly, authors distinguish between the Data, Information, and Knowledge se-
mantic levels [14] (Figure 1). This simple taxonomy has been very useful in the
diverse applications of data fusion, such as in:- i) transportation, aviation, intel-
ligent car traffic and motorways management; ii) multimedia communications,
audio–visual fusion for teleconferencing; iii) robotics, 3-D vision; iv) wearable
computing, monitoring the disabled and elderly.

2.1 Models of Data Fusion

Data fusion is based on the manipulation of multiple measurements, where classi-
fiers operate on features extracted from the real world measurements; an overview

Data

KnowledgeInformationData

Refinement

Situation

Refinement

Object

Refinement

Fig. 1. General data fusion concept
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of the ways for combining classifiers can be found in [15]. Authors distinguish
between the two fusion classes:-

i) Data fusion, where the classifier operates on either the raw data or features
extracted directly from the measurements;

ii) Decision fusion, where the decisions from the individual classifiers for dif-
ferent data channels are combined.

The choice depends on the statistical relationship between the data channels,
mutual entropy, or joint Gaussianity [16], and to this end coupling of mathemat-
ical modelling and information processing is under investigation [17]. The main
issues are signal nonlinearity (with associated non–Gaussianity), nonstationary,
intermittent data natures and noises. This makes it very difficult to perform
estimation by standard methods since no assumption on the data model and
distribution can be ascertained. In some applications, such as functional Mag-
netic Resonance Imaging (fMRI), there is even no “ground truth”, to rely upon.
Multisensor practical systems therefore aim at providing higher accuracy and
improved robustness against uncertainty and sensor malfunction [18], and also
for the information extracted from different sources to be integrated into a single
signal or quantity.

Signal processing algorithms for “sensor” or “data fusion” can be based
on [19]:-

– Probabilistic models: Bayesian reasoning, evidence theory, robust statistics;
– Least squares: Kalman filtering, regularization, set membership;
– Intelligent fusion: Fuzzy logic, neural networks, genetic algorithms.

One of the first proposed data fusion models was the “waterfall model” (Figure
2), developed for the UK Defence Evaluation Research Agency (DERA) [3].

Sensing
Processing Making

Decision
Assessment

SituationPattern
Extraction

Feature
Processing

Signal

Fig. 2. The Waterfall model

2.2 Data Fusion and Sufficient Information

We can think of the heterogeneous sensors monitoring a certain process as being
“windows” into the phenomenon under observation. Sensors can either have
their own window, or the windows “overlap” in space or time. This way, the
information obtained can be thought of as “decomposed” or “fragmented” by
the sensors, which is sometimes called sensor fission [7], and is related to so–
called sufficient information (whether the character and number of sensors can
indeed describe the phenomenon). This is analogous to the notion of embedology,
where we wish to model the nonlinear dynamics of a multidimensional process
based on its time delay representation [8]. The information fragments coming
from sensors are exposed to spectral shaping, saturation, and noise; data fusion
aims at retrieving the “interesting” characteristics of the phenomenon.
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3 Architectures and Performance Aspects

Combining multi–sensor data in the data fusion framework has the potential of
faster and cheaper processing and new interfaces, together with reducing over-
all uncertainty (increase in reliability). Such data can be combined in various
ways, for instance by:- i) linear combiner, ii) combination of posteriors (weights,
model significance), iii) product of posteriors (independent information). Based
on the different ways of combining information and different semantic levels, we
differentiate between the following data fusion architectures, shown in Figure 3:-

– Centralised: simple algorithms, but inflexible to sensor changes;
– Hierarchical: collaborative processing, two way communication;
– Decentralised: robust to sensor changes and failures, complex algorithms.

...
SensorSensorSensor

FusionData
Centralised

...

FusionGlobal

Fusion
Local

Sensors

...

Fig. 3. Centralised and hierarchical data fusion

This synergy [20] of information fragments offers some advantages over standard
algorithms, such as:-

– Improved confidence due to complementary and redundant information;
– Robustness and reliability in adverse conditions (smoke, noise, occlusion);
– Increased coverage in space and time; dimensionality of the data space;
– Better discrimination between hypotheses due to more complete information;
– System being operational even if one or several sensors are malfunctioning;
– Possible solution to the vast amount available information.

The paradigm of optimal fusion in this sense is to minimise the probability of
unacceptable error.

Based on the taxonomy presented in Section 2, depending on the stage at
which fusion takes place, data fusion is often categorized as the low– (LLF),
intermediate– (ILF) or high–level (HLF) fusion, where:-

– LLF (data fusion) combines raw data sources to provide better information;
– ILF (feature fusion) combines features that come from heterogeneous or ho-

mogeneous raw data. The aim is to find relevant features amongst vari-
ous features coming from different methods

(
FFT, discrete cosine transform

(DCT), wavelet, delay vector variance (DVV) [9]
)
;

– HLF (decision fusion), combines decisions or confidence levels coming from
several experts (hard and soft fusion).
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In practice, any combination of these three levels can be employed, for instance
[7]: Data in – Data out, Data in – Feature out, Feature in – Feature out, Feature
in – Decision out, Decision in - Decision out.

4 Data Alignment and Fusion of Attributes

Depending on where the fusion process occurs, open literature differentiates
between the temporal, spatial, and transform domain fusion. Notice, however,
that the latter two can be considered as examples of the low– or intermediate–
level fusion. Temporal fusion is different in the sense that it may occur at any
level:- inputs from one sensor taken at different instants are combined.

The information entering a fusion process should be aligned, a difficult prob-
lem for which there is no general supporting theory. Alignment should be applied
to both homogeneous (commensurate) and heterogeneous (non–commensurate)
information, which may require conversion or transformation of observations [13].

The concept of alignment assumes “common language” between the inputs,
for instance:- i) standardisation of measurement units; ii) sensor calibration; or
iii) corrections for different illuminants and shading [21]. Alignment may oper-
ate at any of the three semantic levels: measurements, attributes, and rules, with
possible crossings between levels [21]. For instance, for aligned and associated
sources of information, fusion of attributes concatenates attributes of the same
object, derived from different representations of the object. Fusion of representa-
tions performs meta–operations, it is applicable to any representation, and can
be combined with other types of fusion.

Data fusion also applies to cyberspace, where intrusion detection (ID) sys-
tems fuse data from heterogeneous distributed network sensors to create “sit-
uational awareness” [14], such as the detection of network anomalies and virus
attack. Information of interest are the identity, threat, rate of attack, and target
of intruders [22].

Performance aspects of a fusion system [20] are domain–specific:-

– Detection performance and characteristics (false alarm rate);
– Spatial/temporal resolution and ability to distinguish between signals;
– Spatial and temporal coverage (span or viewfield of a sensor);
– Detection/tracking mode (scanning, tracking, multiple target tracking);
– Measurement accuracy and dimensionality.

5 Case Studies

We next provide three case studies to illustrate the data fusion concept:- the
examples in car navigation, sleep science and multimedia.

Car navigation systems perform three main tasks: positioning, routing
and navigation (guidance). The car position is calculated from several informa-
tion sources including on–board odometers and gyroscopes, the global position-
ing system (GPS) and digital maps. On–board sensors measure acceleration and
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angular rates, for which the short–term precision is high, but the accumulated
errors grow with time, producing a poor long–term position estimate.
On the other hand, the GPS exhibits excellent overall performance, but its accu-
racy is highly sensitive to factors such as “blind” areas (tunnels, garages) and the
number of “visible” satellites. One way to circumvent these sensor limitations
would be to exploit the potential a combination of the short–term accuracy of
on–board sensors and long–term accuracy of the GPS system.
This has been achieved in the Siemens car navigation system [23], where the
fusion of the information from vehicles’ internal sensors and the GPS position
reading provides 80% improved navigation accuracy within the given time inter-
val as compared to the estimate based on the on–board sensors only.

Awareness/fatigue modelling is important in the detection of sleep stages
and also for the detection of microsleep for drowsy drivers. The observed signals
are the electroencephalogram (EEG), electro-oculogram (EOG), and respiratory
signal. There are also several sources of artifacts, such as the eye blink artifact
in EEG. Although it is possible to detect sleep stages or microsleep events us-
ing only one sensor modality (typically EEG), the classification accuracy is not
sufficient to warant real world applications, and the data fusion approach is
one viable solutions which combines the EEG and EOG features. In addition,
in order to achieve high detection and classification rates, the temporal fusion
over the observation windows is even more important than feature selection. For
sleep stage detection, feature fusion can be performed using the DVV method
[9], which gives features related to the signal nonlinearity [24]. Such a fusion
of EEG and EOG features provides ≈ 99% accuracy in training and ≈ 90 %
accuracy on test data. Similarly, the feature fusion of EEG and EOG channels
significantly improves the detection of microsleep [26].

Video assisted speech separation, where the task is to integrate comple-
mentary audio and visual modalities to enhance speech separation. Rather than
using independence criteria suggested in most BSS systems, visual features from
a video signal are used as additional information to optimise separation. The
Bayesian framework can be applied for feature fusion, where the mel–frequency
cepstrum and “active apperance model” provide audio and video features. This
way a performance improvement of several dB can be achieved [27].

6 Conclusions

Data fusion provides a theoretical, computational, and implementational frame-
work for combining data and knowledge from different sources with the aim of
maximising the useful information content. In this way, reliability and discrimi-
nation capability are improved while the amount of required data is minimised.
Through the three overlapping stages: preprocessing, data alignment, and deci-
sion making, the performance of a system is improved. Data fusion spans disci-
plines such as signal detection, pattern recognition, and tracking, with applica-
tions in domains such as military, robotics, medicine, and space research. This
paper sumarises some of the recent developments in data fusion, and gives an
overview of concepts, architectures and potential benefits of using this approach.
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Abstract. In this paper a new Backpropagation algorithm appropri-
ately studied for modelling air pollution time series is proposed. The
underlying idea is that of modifying the error definition in order to im-
prove the capability of the model to forecast episodes of poor air quality.
Five different expressions of error definition are proposed and their cu-
mulative performances are rigorously evaluated in the framework of a
real case study which refers to the modelling of 1 hour average daily
maximum Ozone concentration recorded in the industrial area of Melilli
(Siracusa, Italy). Furthermore, two new performance indices to evalu-
ate the model prediction capabilities referred to as Probability Index
and Global Index respectively, are introduced. Results indicate that the
traditional and the proposed version of Backpropagation perform quite
similarly in terms of the Global Index which gives a cumulative evalua-
tion of the model. However the latter algorithm performs better in terms
of the percentage of exceedences correctly forecast. Finally a criterion to
make the choice among various air quality prediction models is proposed.

1 Introduction

Non linear regression techniques based on Multilayer Perceptron (MLP) neural
networks have drawn the attention of several scientists involved in the stochastic
modelling of pollutant time series. Several authors have shown that MLP works
better than traditional linear regression techniques [1] and also many other non-
linear techniques as short-term predictors of pollutant concentrations at a point
[2], [3], [4]. The Backpropagation algorithm [5], which is the basic approach to
training a supervised Multilayer Perceptron (MLP) neural networks, is based on
the minimisation of the traditional average squared error cost function defined
as follows

J0 =
1

2N

N∑
p=1

Ep =
1

2N

N∑
p=1

(Tp − Yp)2 (1)

In (1) Tp and Yp represent the target and actual model output value respec-
tively. However, it is easy to understand that this assumption is not the most
appropriate when dealing with pollution time series containing a relatively small
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number of episodes of poor air quality. The drawback that arises considering the
cost function (1) in a similar case is due to the fact there is distinction between
targets above or below a given threshold. Hence the learning algorithm will give
to the exceeding episodes the same weight as the remaining events. The imme-
diate consequence is that although one of the main targets of the models is the
prediction of episodes of poor air quality, these events may not be relevant dur-
ing the model identification process. The idea underlying this work is to modify
expression (1) in order to weigh exceeding events more appropriately.

2 Modified Cost Functions

In this paper five different cost functions (i.e. error definitions) are considered,
as expressed in (2) to (6) respectively

J1 =

∑N
p=1 (Tp − Yp)2(Tp −M)2

2N
(2)

J2 =

∑N
p=1 (Tp − Yp)2[(Tp −M)2 + (Yp −M)2]

2N
(3)

J3 =

∑N
p=1 (Tp − Yp)2e−(

Yp
T −1)(

Tp
T −1)

2N
(4)

J4 =

∑N
p=1 e

−(Yp−T )(Tp−T )(Tp−Yp)2

N
(5)

J5 =

{ ∑N
p=1 (Tp−Yp)2

2N Tp <= T∑N
p=1 2(Tp−Yp)2

2N Tp > T
(6)

In expressions (2) and (3) M is a constant value and T is the threshold (e.g.
180 μg/m3 for ozone daily maximum concentration). We will assume that M is
the average value of the pollutant time series, i.e.

M =
1
N

N∑
p=1

Tp (7)

Furthermore we will indicate the algorithms corresponding to cost functions
(2) to (6) as BP1 to BP5 respectively.

3 The Improved Backpropagation Algorithm

As is known the Backpropagation is a recursive algorithm to update the weights
of Multilayer Perceptron (MLP) neural networks, based on the deepest-descent
formula:

Δwp
ij = −ε ∂Ep

∂wp
ij

= −εδ(S)
i,p O

(S−1)
j,p (8)
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where ε and wij are the learning velocity and the weight of the interconnections
between the i-th neuron of the layer S−1 and the j-th neuron of the layer S. δ(S)

i,p

is the local gradient of the i-th neuron in the layer (S) and O(S−1)
j,p is the output

of the j-th neuron in the layer (S−1). In view of implementing modified versions
of the BP algorithm we observe that different cost functions will affect the local
gradient of the output layer neurons, only. We have computed δ

(n)
i,p for the five

different cost functions given in (2) to (6) and the results are listed below.
Cost function J1:

δ
(n)
i,p = (Tp − Yp)(Tp −M)2ḟ(Netpi ) (9)

Cost function J2:

δ
(n)
i,p = (Tp − Yp)[(Tp −M)2 + (Yp −M)2 −

−(Tp − Yp)(Yp −M)]ḟ(Netpi ) (10)

Cost function J3:

δ
(n)
i,p = (Tp − Yp)e−(

Yp
T −1)(

Tp
T −1)[2 +

+
(Tp − Yp)(Tp − T )

T 2
]ḟ(Netpi ) (11)

Cost function J4:

δ
(n)
i,p = e−(Yp−T )(Tp−T )(Tp−Yp)2(Tp − T )

(Tp − Yp)[(Tp − Yp)− 2(Yp − T )]ḟ(Netpi ) (12)

Cost function J5:

δ
(n)
i,p =

{
(Tp − Yp)ḟ(Netpi ) Tp < T

2(Tp − Yp)ḟ(Netpi ) Tp > T
(13)

4 Modelling Daily Maximum Ozone Concentrations at
Melilli (SR)

The backpropagation algorithm proposed in this paper was considered to model
1 hour average daily maximum concentrations (DMAX) of Ozone (O3) recorded
at various recording stations located in the industrial area of Siracusa (Italy).
To compare the different algorithms 10 trials have been carried out changing the
test set. The process being modelled was assumed to be stationary during the
time interval considered.

4.1 Performance Indices

In order to evaluate the capabilities of the training algorithms to predict excee-
dences of the attention level the indices defined in (14)-(18) were computed.
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SP =
Np

No
; SR = Np

Nf
; FA = 1− SR; (14)

SI = (
Np

No
+
N +Np −No −Nf

N −No
− 1) (15)

In expressions (14)-(18) No is the total number of observed exceedences of a
given threshold, Np is the number of correctly predicted exceedences, Nf is the
total number of forecast exceedences and N the total number of data points. The
meaning of the indices defined above is the following. SP indicates the percentage
of exceedences correctly forecast, FA is the percentage of false alarms, SR gives
the percentage of predicted exceedences which actually occurred and, finally,
SI is the success index which gives a cumulative evaluation of how well the
exceedences are predicted. Details about the measuring of the aforementioned
performance indices can be found in [6].

PI = (1− No +Nf − 2Np

N
) (16)

PI = P (O, Y ) + P (O, Y ) (17)

Unfortunately the SI index does not express a probability of success in
strictly probabilistic sense. To overcome this drawback we propose here a new
index referred to as PI (Probability Index) expressed by (16). It is easy to
demonstrate that PI can also be represented as indicated by (17). The right
term of expression (17) represents the sum of two probabilities: P (O, Y ) which
gives the probability that an observed exceedence will be correctly predicted
by the model and P (O, Y ) which represents the probability that non exceeding
values will also correctly forecast. In (17), the argument O represents a boolean
variable defined as following:

O =

⎧⎪⎪⎨⎪⎪⎩
True when the pollutant time series to

be modelled exibits an
exceedence (e.g. O3MAX > T )

False otherwise

The arguments Y and Y have the same meaning as O and O but refer to
the estimated values (i.e. the output of the prediction model). Furthermore, in
this paper we introduce another new index, referred to as GI (Global Index)
expressed by (18) which gives a measure of the success of the forecasting model
independent on the number of samples (N) in the modelled time series.

GI = (
Np

No +Nf −Np
) (18)

It is to stress that both PI and GI assume values in the [0, 1] interval. For a
good prediction model PI and GI should approach 1.
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4.2 Experimental Framework

To evaluate the peculiarities of adopting the modified cost functions (2) to (6)
in comparison with the traditional MSE given in (1), a software tool was coded
which implements the modified back propagation algorithms as described in the
previous section. All these algorithms were considered to train the model. In
order to obtain a measure of the generalization capabilities not affected by a
particular training and testing set, the learning phase was organized as follows.
The available data set spanning for 1995 to 1998 was divided into ten overlapping
data sets, each containing one year data (i.e. 365 samples of daily maximum
ozone concentration). For each backpropagation algorithm ten different trials
were performed. During each trial 9 of the 10 data set were used for training,
and the remaining one for testing. This should guarantee a non biased evaluation
of the performance (i.e. the set of indices is representative of the generalization
capabilities of the neural model). During all the experiments the number of
learning cycles, hidden neurons (in the unique hidden layer considered) and the
learning velocity were considered constant in order to assure a more objective
inter-comparison exercise. In particular the number of hidden neurons was set
to 6, the learning velocity ε to 0.1 and the number of learning cycles was set to
10000. Results in terms of averaged values of the performance indices over ten
trials for each algorithm are summarized in Fig. 1. In particular Fig. 1a gives
the SP, FA and SI indices and Fig. 1b gives the introduced set of indices (PI and
GI). From Fig. 1 it appears that all the modified backpropagation algorithms
(except BP3) perform better than the traditional BP in terms of SP and SI. In
particular SP is about 0.60 for BP, 0.90 for BP1, 0.78 for BP2, 0.84 for BP4 and
0.70 for BP5. However this result is accompanied by a larger number of false
alarms. This agrees with the fact that the PI and the GI are almost constant
for all the considered algorithms. In other words, the proposed backpropagation
algorithms do not perform globally better than the traditional BP but if the
modeller is interested in maximizing the performance in terms of percentage of
exceedences correctly forecasted it is quite evident that a benefit can be obtained
from adopting one of the introduced algorithms. The price to pay is an increased

Fig. 1. Comparison among all proposed algorithms in terms of SP, FA, SI (a) and PI,
GI (b)
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level of false alarms which is usually acceptable provided that it is lower than a
prefixed threshold (say 0.40). Fig. 1a shows that BP5, among the inter-compared
algorithms, is the best compromise between a high level of SP (0.70) and an
acceptable level of FA (0.40) whilst the traditional BP exhibits SP = 0.60
and FA = 0.30. It is interesting to stress here that the choice of BP5 is also
confirmed by the following reasoning carried out in terms of PI and SP . Indeed
Fig. 1b shows that the best three models in terms of PI are BP (PI = 0.854),
BP3 (PI = 0.863) and BP5 (PI = 0.827) since they exhibit almost the same
value. However BP5 is the best with respect to BP and BP3 in terms of SP .
Hence we may suggest this criterion to make the choice among various air quality
prediction models.

5 Conclusions

In this paper a novel backpropagation algorithm to improve the capabilities
of the traditional backpropagation algorithm used to predict episodes of poor
air quality has been proposed. The rigorous intercomparison, performed in the
framework of the described case study show that eventhough the traditional and
the proposed algorithms perform quite similarly in terms of success index and
global index, the latter algorithms perform better in terms of the percentage of
exceedences correctly forecasted. The price to pay for this is a slight increase in
the percentage of false alarms.
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Abstract. Mobile cellular telecommunication networks are complex dynamic 
systems whose troubleshooting presents formidable challenges. Typically, the 
network performance analysis is carried out on a network cell basis and it is 
based on the traffic information obtained from various sensors such as the 
number of requested calls, number of dropped calls, number of handovers, etc. 
This paper presents a novel troubleshooting system, which provides likelihood 
of different user-specified root causes of performance degradation based on the 
observed sensory information and the underlying domain model. This domain 
model has a form of a Causal Network whose structure is appropriately chosen. 
The novelty of the herein presented approach is that the domain model is 
initially based on expert knowledge and later on refined via supervised learning 
with the data gathered during system operation.  

1   Introduction 

Detecting and explaining faulty states in complex telecommunication systems such as 
GSM networks are challenging tasks. The mobile networks are hierarchical cell-based 
systems with complex dynamics influenced by the stochastic user demand, the 
network operating characteristics such as hand-over algorithms, carrier frequency, 
etc., and the non-stationary influence of the environment (interference, channel 
properties). Once the quality of service (QoS) is unacceptably low in any part of the 
network, it is necessary to perform troubleshooting, i.e. to identify and remedy the 
problem causes in order to bring the QoS to the required level. 
    Troubleshooting in telecommunication networks is typically carried out by human 
experts. The experts analyze system parameters and available measurements and, 
based on their prior experience, try to identify the possible causes of problems. 
Usually, this expert knowledge is formalized as a set of simple rules describing the 
analysis of individual potential network problems completely neglecting their possible 
simultaneous occurrence. 
    Due to the increasing complexity of communication networks and the increasing 
cost of human expert labor, it is necessary to develop a semi-automatic system for 
troubleshooting in communication networks. This system is intended to provide 
decision support to the expert in highly developed areas, or to allow deployment of 
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networks in areas where human expertise is scarce. The system presented in this paper 
will use a domain model describing the interaction of different network variables with 
the goal of estimating the likelihood of different possible problem causes. 

2   Bayesian Network Model of the GSM Domain 

Bayesian Networks are acyclic directed graphs whose nodes represent random 
variables and whose edges indicate causal relationships [1].  A Bayesian Network is 
completely specified only when, in addition to the nodes and edges, the underlying 
conditional and marginal probabilities are also known. Bayesian Networks provide a 
rigorous and efficient framework for inference, i.e. for calculating probabilities of 
non-observable variables given a set of observations of related observable variables. 
Hence, a Bayesian Network can be seen as a data fusion paradigm which is based on 
the probabilistic model of the analyzed domain. 
    In order to specify a Bayesian Network model of the GSM domain suitable for 
troubleshooting, we have to select random variables, i.e. Bayesian Network nodes, 
indicate their causal relationship, and provide the underlying conditional and marginal 
probabilities. Our model has the following characteristics: 
 

i. The networks variables, i.e. nodes, belong to three distinctive groups: Factors, 
Root Causes, and Symptoms. Factors are variables representing the GSM network 
characteristics at the cell basis, such as the carrier frequency or cell type. Root 
causes are the network problems whose occurrence we would like to investigate. 
And symptoms are either basic traffic measurements or their functions, typically 
called Key Performance Indicators (KPI). The KPI are used since they are 
typically used by the operators and since they reduce the redundancy of the basic 
traffic measurements. The justification of using the three-layered structure is two-
fold: It reflects the composition of the GSM network meaning that the network 
characteristics (cell type, planning features...) and customer behavior (mobility...) 
are the factors that contribute to network problems, which are then observed 
through KPI, i.e. network measurements. In addition, this structure enables a 
meaningful and comprehensive collection of human expert knowledge. Lack of a 
clear model structure or its too high complexity (i.e. arbitrary number of layers 
and their interconnectivity) would make the knowledge collection process 
practically impossible. 

ii. Factors are defined as discrete random variables that can have more than two 
states. Factors are variables that describe the network settings (e.g. cell size: pico, 
micro, and macro) and user behavior characteristics and, therefore, there is no 
reason to assume that they should be limited to binary variables. Furthermore, 
they are in most cases discrete per definition. 

iii. Root causes are defined as two-state discrete variables with states YES (present) 
and NO (absent). In the first approximation we are primarily interested in the 
probability of the presence/absence of a particular problem. A further subdivision 
of the original problem into different problem types, when meaningful, is possible 
and can be always achieved by substitution of the original problem by a set of 
sub-problems. An alternative approach is to have an additional probabilistic 
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model of the problem that is activated only when the probability of its state YES 
is greater than a given threshold. The additional model will then use extra 
measurements (possibly per request) in order to provide additional information 
about the problem (its sub-types). The latter case effectively describes a 
hierarchical model with possibly different sets of measurements (KPIs). 

iv. Symptoms are defined as discrete random variable that can have more than two 
states and are functions of measured variables (KPIs). Typically these functions 
are the ones human experts have evolved to best capture the complex correlations 
of the numerous elementary counters and root causes. The measured traffic 
variables are continuous variables that we have to discretize. The number of 
discrete intervals has to take into account that a single KPI can be correlated with 
several different problems where each problem determines specific regions 
(intervals) of interest. Hence, the final discretization of the given KPI can result 
in more than two states (discretization intervals). 

 
Once the nodes are defined, the edges and the corresponding probabilities have to be 
specified. They are either learned from the data describing results of the human 
troubleshooting process, or obtained by interviewing experts.  Our approach uses 
both, initially relying on expert knowledge and then refining through data gathered 
during operation of the troubleshooting module. 

3   Probabilistic Model Generation 

The generation of the GSM domain model is carried out in three steps: 
 
First, extraction and formalization of human expert knowledge about the technical 
domain of interest with the “domain expert” tool, which we have developed for this 
purpose [2], [3]. The experts interact with the tool’s graphical user interface where 
they specify relevant system variables and potential system failures/problems and 
their causal relationships in the form of “factor-problem-symptom”. The obtained 
information is saved in an appropriate database, in our case in Microsoft Access. 
 
Second, automatic generation of the probabilistic model from the knowledge database 
by the so-called “knowledge compiler” program developed for this purpose [4]. The 
resulting model has the form of a Bayesian Network.  

 
Third, refinement, i.e. the on-line learning of the expert model based on the gathered 
data during operation. The initial model based on the expert knowledge contains 
inaccuracies stemming from the subjectivity of the available human knowledge and 
the assumptions made for the purpose of automatic generation of the corresponding 
probabilistic model. In order to improve the initial model, a learning algorithm [5] is 
applied to update the model parameters (conditional probabilities) based on the data 
gathered during system operation. 
 
    Once the expert knowledge is gathered in the database and the probabilistic domain 
model is generated, it can be used for actual troubleshooting. The resulting domain 
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model is fed together with the available process information and measurements into 
the “Inference Engine”, a program that computes the probabilities of different 
possible system problems. Here one of the advantages of using a Bayesian 
probabilistic domain model becomes apparent, namely that it can work with 
incomplete information, using the available data in an incremental way. At each 
moment the instantaneous probabilities of the Root Causes reflect the total available 
knowledge about the problem, and denote the probability of the respective Root 
Cause given the available known measurements and factor values. If enough 
information is presented to the probabilistic model, the probability of the actual 
problem will be sufficiently increased in comparison to the probabilities of other 
alternative problems, to trigger new steps, such as issuing a report to the operator, 
recommending the necessary steps for circumventing the problem, etc.  
    In the case when certain system measurements are not readily available, our 
inference program processes the existing ones and makes a recommendation about 
which additional measurements are needed to properly identify the cause of the 
system problem. This recommendation is a result of a tradeoff between the benefit of 
the new measurement for the problem identification and the cost of its collection. 

The process of the domain model generation and its usage in troubleshooting is 
depicted in the following figure. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. The operator knowledge is collected with the Gexp tool and translated into a 
probabilistic model by the knowledge compiler. The inference engine delivers the probabilities 
of different modeled root causes based on the observed data. 

    Besides the here considered application to troubleshooting in mobile telephony, our 
approach is equally applicable in any technical or complex non-technical domain (as 
for example the medical or biological disciplines, e.g. [4]), where for diagnostic 
purposes and troubleshooting the user relies on the valuable knowledge and 
experience of domain experts. 
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Fig. 2. Bayesian Network model generated for troubleshooting in GSM networks. The 
Bayesian Network consists of layers with different groups of variables. The GSM network 
properties are in the leftmost layer, the potential failures are in the middle layer, while the 
measurements are in the rightmost layer. The remaining two layers contain auxiliary variables 
that can be masked and not shown. The auxiliary variables are generated by the knowledge 
compiler and reflect the built-in assumptions about some entries of the conditional probability 
tables [6]. 
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contains variables 
representing potential 

The last layer 
contains 
variables 
representing 
the GSM 

Auxiliary 
variables 

The variables in the first 
layer describe GSM 
network properties 



734 D. Obradovic and R.L. Scheiterer 

 

4   Implementation and Testing Issues 

The Bayesian Network modeling tool was tested at one of the major mobile phone 
providers in Germany. The interviews with experts resulted in the description of ten 
typical root-cause problems in GSM mobile telecommunication networks. The 
generated Bayesian Networks was fed daily with the mobile traffic data of the 
previous day. The results of the Root-Cause Analysis were made available to the 
operators who were asked to evaluate them. Every time an expert would disagree with 
the results of the Troubleshooting system, he would have to report his findings, i.e. 
the root-causes he had detected. This information was then used to refine the 
Bayesian Network model by adapting its conditional probabilities. The overall 
performance of the tool was very satisfactory in detecting the modeled problem 
causes but cannot be currently presented to the proprietary restrictions.  
    During the development of the modeling tool, we noticed that a typical problem in 
interviewing experts lies in the direction of human reasoning and its relationship to 
causality. In explaining root-causes experts follow the forward cause-consequence 
relation i.e. given a cause they estimate the conditional probabilities of the possible 
consequences. On the other hand, during the troubleshooting stage the experts work 
backwards, quantifying the probabilities of different causes given the symptoms. The 
information about different conditional probabilities has to be optimally combined by 
the knowledge compiler during the generation of a Bayesian Network model. Ref. [6] 
discusses the involved aspects and shows how to combine the expert domain 
description with the requirements for generating a practical Bayesian Network. 
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Abstract. We further explore the possibility of using the energy of brain poten-
tials evoked during processing of visual stimuli (VS) as a new biometric tool, 
where biometric features representing the energy of high frequency electroen-
cephalogram (EEG) spectra are used in the person identification paradigm. For 
convenience and ease of processing of cognitive processing, in the experiments, 
simple black and white drawings of common objects are used as VS. In the 
classification stage, the Elman neural network is employed to classify the gen-
erated EEG features. The high recognition rate of 99.62% on an ensemble of 
800 raw EEG signals indicates the potential of the proposed method. 

1   Introduction 

Over the last decade or so, there has been ongoing research into the possibility of 
employing some alternative biometrics for identifying individuals, instead of the stan-
dard one based on fingerprints [1]. These include techniques which focus on:- face 
[2], palm print [3], hand geometry [4], heart signal [5], iris [6], odor [7], and brain 
signals [8-10]. The brain fingerprints have also been studied for aiding criminal inves-
tigations [11]. Methods based on the use of brain electrical signals (electroencephalo-
gram (EEG)) as a biometric are relatively recent compared to the other established 
biometric tools. Paranjape et al [8] achieved the classification accuracy ranging be-
tween 49% and 85%, by using autoregressive (AR) modelling of EEG in combination 
with discriminant analysis. Poulus et al looked at the problem of distinguishing be-
tween individuals, based on a set of EEG recordings [9].  Their objective was to find 
an individual as distinct from other individuals as possible [9]. Their method was 
based on AR modelling of EEG signals and Linear Vector Quantisation neural net-
work (NN), with 72-80% of classification success. However, this method was not 
tested on the task of recognition of individual subjects. 

In this paper, we provide further perspective on the possibility of EEG based per-
son identification. This is an extension of our approach proposed in [10], where fea-
tures computed from 61 EEG channels, were used for person identification. The fact 
that it is virtually impossible that different persons will have similar activity in all 
parts of the brain, and that brain responses cannot be faked, makes this method suit-
able for the use in biometric applications. The extracted EEG biometric features are 
processed with the Elman NN (ENN) to classify (that is recognise) different persons. 
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Despite its relative simplicity and high success ratio, the method proposed in [10] 
suffered from several drawbacks, such as a decrease in the accuracy with the increase 
in the size of the recorded dataset and number of individuals to classify, and a rela-
tively narrow frequency range used in the processing of signals. This paper therefore 
introduces several improvements in order to increase the success rate of person identi-
fication. This is supported by a comprehensive analysis and experimentation tackling 
all the aspects of the method, such as pre-filtering, usable frequency range, postproc-
essing and dimensionality reduction. 

2   Data and Experiment 

EEG biometrics as a data fusion problem: The processing of EEG recordings com-
ing from multiple electrodes may be considered as a multi-channel signal processing 
problem. Notice, however, that the electrodes on the scalp of a subject are located so 
as to record the electrical activity of different brain areas. These areas in the cortex are 
responsible for a variety of cognitive and motor tasks, and the brain electrical activity 
recorded from these spatially distributed electrodes reflects the nature of the task 
being processed. For instance, the P3 area is responsible for decision making proc-
esses arising from visual stimuli [12]. Therefore, the processing of multi-channel EEG 
recordings represents a data fusion problem, since we combine the data coming from 
different information processing mechanisms within the brain. 
Data used: We use a non-invasive technique based on the EEG signals recorded from 
the scalp. EEG signals are potentials exhibited by neuronal excitations in the cortex 
[13], and were recorded with the subjects observing drawings of common black and 
white objects.  
Data processing: To obtain high frequency EEG signals in the gamma band range 
(30-70 Hz), filtering was performed, and the energy of these signals was used as a set 
of features (after some preprocessing) to be classified by the Elman neural network 
(ENN) [14] trained by the resilient backpropagation (RB) algorithm. This frequency 
band was suggested by other studies [15, 16] which have, for instance, successfully 
used gamma band spectral features to differentiate between alcoholics and non-
alcoholics. Gamma band is suitable as EEG oscillations in this frequency band are 
believed to be involved in feature binding process during visual perception [16]. 
Data acquisition: The subjects (totalling 40) were seated in a reclining chair located 
in a sound attenuated RF shielded room. Measurements were taken from 61 channels 
placed on the subject’s scalp, sampled at 256 Hz. The electrode positions were ac-
cording to the extension of Standard Electrode Position Nomenclature, recommended 
by the American Encephalographic Association.  
Visual stimuli: The EEG signals were recorded from subjects while being exposed to 
a stimulus, which consist of drawings of objects chosen from Snodgrass and Vander-
wart picture set [17]. These pictures represent common black and white objects, such 
as, for instance, airplane, banana, and ball. These were chosen according to a set of 
rules that provides consistency of pictorial contents. They have been standardised 
based in the variables of central relevance to memory and cognitive processing, for 
instance, objects can be named (definite verbal labels).  
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Mental task: The subjects were asked to remember or recognise the stimulus. Stimu-
lus duration of every picture was 300 ms with an inter-trial interval of 5.1 s. All the 
stimuli were shown using a display located 1 meter away from the subjects. One-
second EEG measurements after each stimulus onset were stored. Figure 1 illustrates 
the stimulus presentation. This data set used is a subset of a larger experiment de-
signed to study the short-term memory [18]. 
Artifact removal: EEG signals contaminated with eye blink artifacts were not con-
sidered in the classification, and were detected using a 100 μV threshold. This is a 
common threshold value in EEG studies, and is used since blinking produces 100-200 
μV potential lasting 250 milliseconds [19]. A total of 40 artifact free trials were con-
sidered for every subject, to make a total 1600 EEG data sets. 

 

Stimulus

Stimulus
duration:
300 ms

Stimulus

Inter trial duration:
5100 ms

Next trialOne trial

 

Fig. 1. Example of visual stimulus presentation 

3   Method 

Original method: In the original method proposed in [10], the EEG signals were 
filtered using a forward and reverse Butterworth band-pass digital filter, to obtain zero 
phase distortion. The 3-dB pass-band was chosen to be between 30 and 50 Hz, 
whereas the stop-band was fixed at 28 and 52 Hz. A model order of 14 was used to 
attain a minimum stopband attenuation of 20 dB. To form the EEG features, the en-
ergy of the EEG signal from each channel was computed and normalised according to 
the total energy from all 61 channels. These 61 EEG features were then classified by a 
multi-layer perceptron (MLP) NN trained by a standard backpropagation algorithm 
[20]. The training was conducted until the average error fell below 0.01. 
Improved method: In the proposed method in this paper, several improvements were 
made for every aspect of the method:- 

i) EEG signals were filtered (in the forward and reverse direction) using Elliptic 
filter as this required a lower order as compared to the Butterworth filter;  

ii) frequency range was changed from 30-70 Hz because of the reported existence 
of gamma band oscillations in this range [21]; 

iii) order 5 was sufficient to obtain a 3-dB passband of 30-70 Hz with minimum 
stopband attenuation of 30 dB below 25 Hz and above 75 Hz. The ripple in the pass-
band was kept below 0.1 dB;  

iv) energy of the filtered EEG signal from each channel were computed and nor-
malized with the total energy from 61 channels to form the EEG features; 
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v) EEG features were normalised to unit variance and zero mean;  
vi) principal component analysis (PCA) was used to reduce the feature set by se-

lecting the more discriminating features. 

The PCA setting: The standard PCA method [21] was used, where variable z repre-
sents the extracted signal, for which its covariance matrix is computed as 

)E(zzR T=  , (1) 

where E(.) is the mathematical expectation operator. Next, matrices V and D were 
computed, where V is the orthogonal matrix of eigenvectors of R and D is the diago-
nal matrix of its eigenvalues, that is D=diag(d1,..,dn). The features with reduced di-
mensionality y were then found as 

TTzVy r=  , (2) 

where Vr denotes the reduced eigenvector matrix corresponding to the selected prin-
cipal components (PCs).  In our work, the PCs that contribute to 99.9% of the total 
variance were selected, which amounted to 52 features. These features were normal-
ised to the range [-1,1], using maximum and minimum values of each feature, with 
the idea to improve the NN training. 
Neural network classification: ENN was used for feature processing. The ENN is 
effectively a MLP in which the hidden layer outputs are delayed and fed back into the 
network, thereby providing a state feedback. A three-layer network was used here, 
with the hyperbolic tangent activation function in its hidden layer, and a sigmoid 
activation function in its output layer. As compared to the standard MLP network, 
only one hidden layer, but with more hidden neurons is needed for the function ap-
proximation task. Network weights and biases were initialised following the Nguyen-
Widrow algorithm [22]. This algorithm distributes the active region of each neuron in 
the layer evenly across the layer's input space, which is advantages to speed up train-
ing and to efficiently use the available neurons. After some preliminary simulations, 
the resilient-backpropagation (RB) algorithm [23] was used to train the ENN, and the 
training was conducted until the mean-square error fell below a threshold of 0.0001. 

4   Results and Discussion 

Table 1 shows the classification results based on the original and improved methods. 
For both the methods, 800 EEG patterns (20 from each subject) were used to train the 
NNs, while the previously unseen 800 EEG patterns were used to test the classifica-
tion performance (%).  

In the original method [10], the numbers of hidden units were varied from 10 to 50 
in steps of 10 but using the current dataset, the classification performances were less 
than 93% (except for 50 hidden units) using these numbers of hidden units and are 
therefore not reported here. The poorer classification performance is most likely due 
to the increase in the complexity of the dataset, due to an increase in the number of 
subjects and patterns. In addition, to ensure a fairer comparison with the proposed 
improved method, the numbers of hidden units were varied from 50 to 300 in steps of 
50. The ENN required a higher number of hidden units due to the increased state 
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feedback (outputs of hidden neurons). The number of epochs (iterations), training and 
testing times (in seconds) for 800 EEG patterns are also shown in the Table. We 
chose to compare the execution times, rather than the number of operations needed, 
which is done for convenience. Since the algorithms were run on the same code, using 
Matlab, this still provides a fair comparison of the complexity of the algorithms. From 
the Tables, it can be seen that the proposed improved method gives better classifica-
tion performance in addition to fewer training epochs and a decrease in the training 
duration. This applies for all the cases and sizes of hidden units. 

 

Table 1. Classification results using the original and improved methods 
 

Original method Improved method 
Hidden 
units 

Ep-
ochs 

Train 
time 
(s) 

Testing 
time(s) 

% Hidden 
units 

Ep-
ochs 

Train 
time 
(s) 

Testing 
time(s) 

% 

50 191 51.85 0.19 95.50 50 40 4.26 0.06 98.75 
100 161 54.52 0.20 95.50 100 32 6.81 0.10 99.12 
150 217 96.75 0.25 95.87 150 25 8.29 0.14 99.62 
200 151 83.59 0.29 96.13 200 32 14.12 0.19 99.00 
250 185 122.21 0.35 95.37 250 28 17.29 0.26 99.00 
300 157 120.67 0.39 95.75 300 31 24.48 0.33 99.00 

Average 177.0 88.27 0.28 95.69 Average 31.3 12.54 0.18 99.08 

5   Conclusion 

In this paper, we embark upon the results from [10] and propose an improved method 
for employing EEG features as a biometric to identify individuals. This is achieved in 
a data fusion setting, where the energy of high frequency EEG signals has been used 
as a classification criterion, and has obtained when subjects were seeing a common 
black and white line drawing of common objects. The features have undergone sev-
eral pre- and post-processing operations, to be used as features for classification by 
Elman neural network. The results obtained have shown the potential in applications 
such a stand alone individual identification system or as a part of a multi-modal indi-
vidual identification system.   
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Abstract. The problem of modality detection in so called Communica-
tive Interactivity is addressed. Multiple audio and video recordings of
human communication are analyzed within this framework, based on
fusion of the extracted features. At the decision level, Support Vector
Machines (SVM) are utilized to segregate between the communication
modalities. The proposed approach is verified through simulations on
real world recordings.

1 Introduction

Multimodal interfaces are an emerging interdisciplinary discipline which involves
different modalities of a generic communication process, such as speech, vision,
gestures, and haptic feedback. The main goal is to enable better understanding
and hence more convenient, intuitive, and efficient interaction between humans
and computers. Further requirements are that the users ought to interact with
such technology in a natural way, without the need for special skills. Emerging
work on communicative activity monitoring addresses the problem of automatic
activity evaluation in audio and visual channels for distance learning applica-
tions [1]. These approaches, however, are limited in that they focus only on
separated activity in communicative interaction evaluation, without considering
other aspects of the behavioral interdependence in communication.

In this work, we present an attempt to combine knowledge from human com-
munication theory and signal/image processing in order to provide an intelligent
way to evaluate communicative situations among humans. This analysis will be
used in later stages for implementation of communicative interaction models in
human–machine interfaces. For the purpose of evaluation of multimodal inter-
action, in order to classify them according to “communicative intelligibility” (a
measure of potential affordance [2] (usability) of the analyzed interaction), it
is necessary to first identify certain illustrative communicative situations from
the recorded multimedia streams. We next provide some theoretical background,
� Currently at: Brain Science Institute RIKEN, Saitama, Japan.
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which is followed by a proposal of a multidimensional interaction evaluation en-
gine, supported with some experimental results.

2 Multimodal Features

The underlying aim of this study is to identify those audio–visual features of the
(human) communication process that can be tracked and which, from an infor-
mation processing point of view, are sufficient to create and recreate the climate
of a meeting (“communicative interactivity”). This communicative interactivity
analysis provides a theoretical, computational and implementational framework
in order to characterize the human–like communicative behavior.

The analysis of spoken communication is an alreadymature field, and following
the above arguments, our approach will focus on the dynamical analysis of non–
spokencomponentsof thecommunication. In theproposedmodel of communicative
interactivity, based on interactive (social) features of captured situations, two
sensory modalities (visual and auditory) of communicative situations are utilized.

The working hypothesis underlying our approach is therefore that observa-
tions of the non–verbal communication dynamics contain sufficient information
to allow us to estimate the climate of a situation, that is, the communicative
interactivity. To that end, the multimodal information about the communica-
tion environment must be first separated into the communication related and
environmental components. Notice the analogy to the Wold decomposition theo-
rem which states that every signal can be decomposed into its deterministic and
stochastic part. In this way, the audio and video streams can be separated into
the information of interest and background noise [3,4].

Audio Features: Since the audio signal carries much redundant information,
techniques used in speech recognition, such as the mel-frequency cepstrum coef-
ficients (MFCC) [5] can be used for feature extraction and compression. In our
work we found that the first 24 MFCC coefficients were enough as audio fetaures.

Video Features: We desire to obtain video features that carry information
about the communication–related motion, and are also compatible with the au-
dio features. Two modalities: the search for faces and moving contours are com-
bined to detect communicating humans in video. This is achieved as follows: for
two consecutive video frames f[h×w](t−1) and f[h×w](t), the temporal gradient is
expressed as a smoothed difference between the images convoluted with a two-
dimensional Gaussian filter g with the adjusted standard deviation σ. The pixel
G[h×w](t, n,m) of the gradient matrix at time t is calculated as follows:

G[h×w](t, n,m) =

∣∣∣∣∣∣
x∑

i=1

y∑
j=1

d[h×w](t, n− i,m− j)g[x×y](σ, i, j)

∣∣∣∣∣∣ , (1)

where d[h×w](t) is the difference between consecutive frames of the size h × w
pixels: d[h×w](t) = f[h×w](t)−f[h×w](t−1). The absolute value is taken to remove
the gradient directional information and to enhance the movement capture.
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Fig. 1. All mutual information tracks together with efficiency estimate (av1; av2; aa;
vv; C; stand respectively for IA1V1 ; IA2V2 ; IA1A2 ; IV1V2 ; C(t);)

For the face tracking, the features used were: i) skin color (in three– dimen-
sional color space domain, albeit very sensitive to illumination variations) [6],
ii) moving face pattern recognition with patterns obtained using non-negative
matrix factorization method [7]. Features obtained in this way (details in [8]) are
more localized and correspond to the intuitively perceived parts of faces (face,
eyes, nose, and mouth contours).

So extracted facial features, together with the audio synchronized informa-
tion, permit us to classify a participant in communication as being engaged in
talking, listening, and responding. To enable compatibility with the extracted
audio features and for information compression, the two–dimensional discrete
cosine transformation (DCT) is used, where most of the energy within the pro-
cessed image is contained in a few uncorrelated DCT coefficients (24 DCT coef-
ficients in our approach [8,4]).

3 Evaluation of Communicative Interactivity

Communicative interactivity evaluation assesses the behavior of the participants
in the communication from the audio–visual channel, and reflects their ability
to “properly” interact in the course of conversation. This is quantified by syn-
chronization and interaction measures [4]. In [8] the communication efficiency
is defined as a measure that characterizes the behavioral coordination of com-
municators. Here, a measure of the communication efficiency is proposed as a
combination of four estimates of mutual information [9]: i) two visual (Vi), ii)
two audio (Ai), and iii) two pairs of audiovisual features (Ai;Vi).

Presence of communication is judged based on mutual information(s) for
selected regions of interest (ROI) [10], as
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IAiVi = H(Ai) +H(Vi)−H(Ai, Vi)

=
1
2

log(2πe)n |RAi |+
1
2

log(2πe)m |RVi | −
1
2

log(2πe)n+m |RAiVi |

=
1
2

log
|RAi | |RVi |
|RAiVi |

, (2)

where i = 1, 2 and RAi , RVi , RAiVi stand for empirical estimates of the corre-
sponding covariance matrices of the feature vectors [8] (computed recursively).

Simultaneous activity estimates in the same modes (audio and video re-
spectively) are calculated for video and audio streams, respectively, as:

IV1V2 =
1
2

log
|RV1 | |RV2 |
|RV1V2 |

and IA1A2 =
1
2

log
|RA1 | |RA2 |
|RA1A2 |

, (3)

where RA1A2 and RV1V2 are the empirical estimates of the corresponding co-
variance matrices for unimodal feature sets representing different communicator
activities. Quantities IA1V1 and IA2V2 evaluate the local synchronicity between
the audio (speech) and visual (mostly facial movements) flows and it is expected
that the sender should exhibit the higher synchronicity, reflecting the higher ac-
tivity. Quantities IV1V2 and IA1A2 are related to the possible crosstalks in same
modalities (audio–audio, video–video). The latter is also useful to detect the
possible activity overlapping, which can impair the quality of the observed com-
munication. A combined measure of temporal communication efficiency can be
calculated as (see Figure 1. for dynamic track of multimodal features):

C(t) =
(

1− IV1V2(t) + IA1A2(t)
2

)
|IA1V1(t)− IA2V2(t)| , (4)

The communicator’s role, that is, (sender or receiver) can be estimated by
monitoring the behaviour of audiovisual features over time. An indication of
higher synchronization across the audio and video features characterizes the
active member - the sender, while the lower one indicates the receiver. This
synchronized audiovisual behavior of the sender and the unsynchronized one of
the receiver characterizes an efficient communication [8,4].

The pair of the mutual information estimates for the local synchronization of
the senders and the receivers in Equation (2) is used to give clues about concur-
rent individual activities during the communication event, while the unimodal
cross-activities estimates in Equations (3), are used to evaluate the interlaced
activities for a further classification. Intuitively, the efficient sender–receiver in-
teraction involves action and feedback. The interrelation between the actions of
a sender and feedback of a receiver is therefore monitored, whereby the audio-
visual synchronicity is used to determining the roles.

In our approach, the interactions between individual participants in com-
munication are modelled within the data fusion framework, based on features
coming simultaneously from both the audio and video. A multistage and a mul-
tisensory classification engine [11] based on the support vector machine (SVM)
approach is used at the decision making level of the data fusion framework,
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where the one-versus-rest-fashion approach is used to identify the phases during
ongoing communication (based on the mutual information estimates from Equa-
tions (2) and (3)).

At the Decision Level. SVMs are particularly suited when sender–receiver or
receiver–sender situations are to be discriminated from the noncommunicative
or multi–sender cases. In this work, a kernel based on a radial basis function
(RBF) is utilized [12], and is given by

K(x,xi) = e−γ||x−xi||2 (5)

where γ is a kernel–function width parameter.
Using the above concept, an arbitrary temporal multimodal mutual informa-

tion estimates from Equations (2) and (3) together with efficiency from Equa-
tion (4) can be categorized online into four categories: i) for the noncommunicative
case with no interaction (no communication or a single participant); ii) for the
sender–receiver case; iii) for the receiver–sender case; iv) for the sender–sender
case. The categories i) and iv) are somehow ambiguous due to the lack of clear
separation boundaries, and they are treated by separately trained SVM classifiers.

4 Experimental Results and Conclusions

The experiments, where the participants in communication were engaged in a
face–to–face conversation, were conducted to validate the proposed approach.
The proposed approach was able to evaluate the communication interactivity
level with similar performance to that of subjective evaluations of human ex-
perts for the analyzed videos as summarized in Table 1. This way, the proposed
data fusion approach for the evaluation of communicative interaction represent
a step forward in the modeling of communication situation, as compared to the
existing audio– and video–only approaches [1]. The experiments have clearly
shown the possibility to estimate the interactivity level, based on the behavioral
analysis of the participants in communication. The mutual information based
feature extraction of multimodal audio and video data streams makes it possible
to detect the presence participants and to classify them according their role.
Despite some difference between the conclusions of a seven human experts and
the proposed method, our results show strong correlation between the two. In

Table 1. Comparison of objective and subjective (seven experts) communication in-
teractivity evaluations (the score around 100% would suggest fully interactive event,
while lower one characterizes overlapped discourse between communicators)

Case Objective Subjective Method’s
(proposed method) (human experts) error

teacher & student #1 51% 50% 1%
teacher & student #2 63% 60% 3%
friends #2 75% 80% −5%
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fact, the human judgement is also highly subjective, therefore further studies
will have a larger population of human experts to balance their opinion.
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Bayesian Network Modeling Aspects
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Medical Diagnostics and GSM Troubleshooting
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Abstract. This paper addresses issues in constructing a Bayesian Net-
work (BN) domain model for diagnostic purposes from expert knowledge.
The novelty of this paper is the approach for structured generation of
a model that incorporates the unstructured multifaceted and possibly
conflicting probabilistic information provided by the experts.

1 Introduction

Diagnostic systems are prime examples for data fusion, since they rely on a mul-
titude of measurements, composite indicators, and human models of the domain.
These models describe causal relationships between problems and observables,
and are typically obtained by interviewing domain experts [1], [2] . We examine
modeling aspects in building a Bayesian Network1 for diagnosis assistance. Our
considerations apply to any domain governed by cause and effect principles.

2 Forward and Backward Modeling

2.1 2 Problems

Consider a single binary symptom or indicator K that is causally dependent on
two binary problems P1 and P2, as shown in Fig. 1. The table lists the conditional
probabilities P (K|P1, P2) for all 23 values of the three random variables, for
example P (K = 1|P1 = 0, P2 = 0) = l, the so-called ”leak” probability, which is
the probability that the effect is present even though none of the causes within
the considered domain is present. In order to determine a causal model, [3], the
probabilities of the root nodes and the conditional probability tables of any child
node given its parents have to be specified. In this case this means specifying the
probability distributions of the random variables P1, P2 and K|P1, P2, that is,
the following 6 numbers, the other being determined by the requirement that the
probability of disjoint mutually exhaustive events sums to one (we abbreviate
P (R) = P (R = 1), P (R) = P (R = 0)):

P (P1), P (K|P1, P2), = p1, P (K|P1, P2), = p (free parameter)
P (P2), P (K|P1, P2), = p2, P (K|P1, P2), = 0 or l (leak, free parameter)

1 Bayesian or Causal Networks are directed acyclic graphs whose edges indicate causal-
ity and whose structure captures the joint probability functions of the node variables.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 747–752, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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              0  |  1 

    K

  P_2
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    P_1

0 1 P1P (K|P1, P2) 0 1 0 1 P2

K=0 1-l 1-p2 1-p1 1-p
K=1 l p2 p1 p

Fig. 1. Cause-to-effect model of simple domain with two problems and a single common
symptom

The expert can readily estimate the values of the marginal probabilities P (P1),
P (P2) which are the probabilities that problem i is present, as well as the values
p1, p2 that the symptom is present given that exactly one of the alternative
causes is present. But it is prohibitive to expect him to estimate the value of p,
because two (or more) causes being present at the same time is such a rare event
that he has no intuition about this estimate.

He has no problem though with the values of the backward probabilities P (K),
P (P1|K) and P (P2|K), since this is how he reasons when doing troubleshooting.
The first value is the probability that the symptom K has a conspicuous value,
and the other numbers are the probabilities that problem Pi is present given
that the symptom K has a conspicuous value.

When constructing the model from probability estimates provided by the ex-
pert or in the presence of incomplete data, it is desirable to use exactly those
probabilities that the expert can specify with the highest confidence. These are:

P (P1), P (K|P1, P2), = p1 P (K), P (P1|K)
P (P2), P (K|P1, P2), = p2 P (P2|K)

that is, a mixture of forward and backward probabilities. Thinking of the free-
dom left in the model after specification of the forward probabilities (first 4)
we see that we would like to fix 3 backward probabilities, having only two free
parameters, p and l. This leaves as the only choice a causal model that exhibits
probabilities with the ”closest” approximation to the desired ones, for example in
the minimum mean square error sense (MMSE), but of course any suitable non-
quadratic cost function is possible . There are several ways to do the proposed
MMSE approximation of the model to the provided expert probabilities.

1. Fix P (P1), P (P2), p1, p2, optimize only over the free parameters p, l, such
that the three backward probabilities P (K), P (P1|K), P (P2|K) are approxi-
mated as closely as possible. That is, define the cost function:

C0 =
[
P (K)(P (P1),P (P2),p1,p2,p,l) − P t(K)

]2
+
[
P (P1|K)(P (P1),P (P2),p1,p2,p,l) − P t(P1|K)

]2
+
[
P (P2|K)(P (P1),P (P2),p1,p2,p,l) − P t(P2|K)

]2
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where in each paranthesis the second term is the target value specified by the
expert, and the first term is the value resulting from fixing the functional argu-
ments given in subscript parantheses.

2. Alternatively allow the forward probabilities to deviate from their specified
values by a small amount ε. That is, define

C = C0 + [P (P1)− P t(P1)]
2 + [P (P2)− P t(P2)]

2 + [p1 − pt
1]

2 + [p2 − pt
2]

2 (1)

where in each summand the first term is the variable, and the second value is
the target value specified by the expert. Hence the desired MMSE optimum of
the cost function C over the variable space is the solution of the minimization:

min C
p, l ∈ [0, 1] subj.to

|P (P1)− P t(P1)| < ε1
|P (P2)− P t(P2)| < ε2

|p1 − pt
1| < ε3

|p2 − pt
2| < ε4

s.t.
P (K) ∈ [0, 1],

P (P1|K) ∈ [0, 1]
P (P2|K) ∈ [0, 1]

(2)

The second minimization includes the first as a special case and will there-
fore result in a lower or equal minimum at the expense of increased computa-
tional effort. It is possible that the expert finds it easy to specify the leak value
l = P (K|P1, P2). Then there is only one free parameter left, p, with obvious
modifications.

2.2 Effect of a Leak from Outside the Domain

The effect K results from an effect KD within the domain at hand and possibly
an effect L from outside this domain. The two are combined into K according to
the same law governing the Pi combination to K. The following equation holds
for the probabilities of K, KD and L:

P (K ) = P (KD )P (L ) (3)

From this equation we see that by addition of a leak to our model P (K) can
not increase, hence P (K) cannot decrease. Hence adding a leak to the model
makes sense if and only if the marginal probability P (K) resulting from inputting
the forward probabilitites into the BN is smaller than the probability P (K)
specified by the expert or resulting from the data. If this is not the case, then
the probability P (K) in the Bayesian Network has to be decreased, for example
by introduction of an inhibitor [6].

2.3 n Problems

In the case of n problems the probability table of the binary random variable
K|P1, ..., Pn has 2n entries that have to be specified. The expert finds it feasible
to specify for each symptom 2n+2 probabilities: n forward values of ”probability
that the symptom is present given that exactly one problem is present”, the value
of the leak ”probability that the symptom is present given that no problem is
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present”, P (K), probability of the symptom being present, and n backward
probabilities P (Pi|K), i = 1, ..., n, the probabilities that the problem is present
given the symptom present. For n = 2 the model is under-dimensioned, and
can only approximate the expert estimates in for example a mean-square sense.
Equality is given for 3 problems, n = 3, when 2n = 2n + 2, as after constructing
the model there are exactly 4 free parameters to capture the 4 specified backward
probabilities. For n > 3 the model is over-dimensioned compared to what an
expert can reasonably specify, and has to be reduced in complexity.

2.4 Noisy-OR, or Reducing Complexity via Proxy Modeling

The classical way to reduce complexity in Bayesian Networks is to model the
n-way interaction as ”noisy-OR”, or as ”noisy” versions of AND, MAX, MIN,
ADDER [4], SUM or ELENI [5], which in the ”noisy-OR” case means associating
with each cause a random inhibitory mechanism that prevents the cause from
producing the effect, and linking the single noisy causes with an OR function.
This model has n unknowns in the P (K|Pi) probability table, one for each
inhibitory mechanism, and thus reduces the assessmemt burden from 2n to n.
Note that if a simple OR function would be used to link the causes, instead of a
”noisy-OR” function, there would be no parameter whatsoever available to tune
the model to the probabilities found in the domain at hand.

The way complexity is reduced in proxy modeling, such as in HealthMan
[2], is by introduction of intermediate “noisy-OR” nodes between problem and
indicator, Fig. 2. The figure looks analogously with n problems. The significance

  OR

 KP_2  KP_1

                0  |  1                0  |  1

              0  |  1 

    K

  P_2    P_1

                0  |  1                0  |  1

P (KP1|P1) 0 1 P1

KP1=0 1 1-p
′
1

KP1=1 0 p
′
1

P (KP2|P2) 0 1 P2

KP2=0 1 1-p
′
2

KP2=1 0 p
′
2

P (K|KP1, KP2) 0 1 KP1

(OR with leak ) 0 1 0 1 KP2

K=0 1-l
′

0 0 0
K=1 l

′
1 1 1

Fig. 2. Causal model of two problems with proxy nodes between problem and indicator
layers
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of the proxy nodes KPi, “K due to Pi”, is that they capture the event that the
indicator K is due to precisely the problem Pi, which is seen from the probability
table: P (KPi = 1|Pi = 0) = 0, combined with the following OR-combination of
the proxies. That is, given that the Pi is not present, a possible K = 1 value
cannot be due to Pi.

The following relations hold between the probabilities in the proxy model
and those in the direct causal model specified by the expert: 1) The leaks in the
two models are identical. 2) The p

′
i in the proxy model are related to the pi of

the direct model via: pi = p
′
i + l ∗ (1− p

′
i). 3) Thus, in the absence of a leak, the

p
′
i in the proxy model are identical to the pi in the direct model. 4) Beside the

p
′
i, in the proxy model there is no free parameter, except for the leak, which is a

free parameter only if the expert feels there is a leak, but is not comfortable in
estimating it. P (K|P1, P2) is not a free parameter, as in the direct model, but
fixed by specification of p1, p2, l.

So, after specifying the forward probabilities, “noisy-OR” or proxy modeling
has only one free parameter, which is often not sufficient to accomodate the
backward probabilities the expert can provide. Thus an important issue in re-
ducing complexity is to reduce it to exactly the right amount to incorporate the
probabilities that are easy to obtain.

3 The Minimum Forward and Backward Model

Let us call n problem nodes with a common proxy and no leak, having m free
parameters, an n-m-cluster. Then the 3-6-cluster shown in Fig.3, has exactly
the amount of free parameters necessary to model the 3 forward and 3 backward
probabilities resulting from the 3 problem nodes. Other than the simple one
problem proxy block (1-1-cluster), we have a range of BN building blocks to
choose from, e.g. the 2-3-cluster, the 3-7-cluster (3-6 with leak or inh.) or the
3-6-cluster. To incorporate the n + 1 forward and n + 1 backward probabilities:

1. Choice one is to lump sets of 3 problems into 3-6-clusters2, choice two (e.g.
due to semantics or to the specific number of problems) into 2-3-clusters,
then merge these into the end-of-domain node KD.

2. Be prepared to add a leak respectively inhibitor [6].
3. Compute the values of the free parameters from the given backward proba-

bilities P (Pi|K) and P(K). If there are less unknowns than equations, then
via MMSE over the free parameter values between 0 and 1 (i.e. probabilities).

This model has to be tested against its alternatives, a) the simple proxy model
and b) the proxy model optimized via MMSE as shown in 2.1, generalized to
n problems, in order to avoid overfitting to the prior knowledge. Incorporating
mechanisms for learning from the incoming data reduces the dependence of the
quality of the prior knowledge, and provides a desirable adaptive component.
2 The importance of semantically meaningful grouping is a consideration that has to

be further investigated in the domain at hand. The resulting architecture should be
meaningful to the human expert.
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Fig. 3. Definition of a 3-6-cluster

4 Conclusion

It was shown that a typical problem in expert interviewing is the presence of
partial conditional probabilities in two directions: from root-causes to symp-
toms and vice-versa. A suitable parametric model was introduced which can
accomodate both directions. The discussed examples were binary, however the
applications in [1], [2] deal with mixtures of binary and multivariate variables
and the considerations presented here are amenable to multivariate extensions.
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Abstract. A novel approach for Microsleep Event detection is presented. This 
is achieved based on multisensor electroencephalogram (EEG) and 
electrooculogram (EOG) measurements recorded during an overnight driving 
simulation task. First, using video clips of the driving, clear Microsleep (MSE) 
and Non-Microsleep (NMSE) events were identified. Next, segments of EEG 
and EOG of the selected events were analyzed and features were extracted 
using Power Spectral Density and Delay Vector Variance. The so obtained 
features are used in several combinations for MSE detection and classification 
by means of populations of Learning Vector Quantization (LVQ) networks. 
Best classification results, with test errors down to 13%, were obtained by a 
combination of all the recorded EEG and EOG channels, all features, and with 
feature relevance adaptation using Genetic Algorithms. 

1   Introduction 

One of the main problems associated with data fusion for real-world applications  
is related to combining the information coming from heterogeneous sensors, acquired 
at different sampling rates and at different time scales. Data/sensor fusion approaches 
dealing with combining data from homogeneous sensors are normally based  
either in the time domain, or in some transform domain, for instance on features  
coming from the frequency representation of signals, their time-frequency, or state-
space features [1]. 

Notice that in this framework we deal with multivariate and multimodal processes, 
for which either there are no precise mathematical relationships, or if they exist they 
are too complex. Such is the case with the detection of lapses of attention in car  
drivers, due to fatigue and drowsiness, the so-called Microsleep Event. Their robust 
detection is a major challenge. Recent developments in this field have shown that 
most promising approaches for this purpose are based on a fusion of multiple  
electrophysiological signals coming from different sources together with Artificial 
Neural Networks in the detection and prediction [2-4].   

In general, there are two standard approaches to combine multiple electro-
encephalogram (EEG) and electrooculogram (EOG) signals. In the first approach, 
called Raw Data Fusion the sensor data are merged without prior preprocessing or 
dimensionality reduction. Despite its simplicity, the major disadvantage here is the 
potentially vast amount of data to be handled. In the second approach, the so-called 
Feature Fusion, features extracted from signals coming from different sources and/or 
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extracted by different methods are fused. In our investigations, the frequency domain 
features obtained from the Power Spectral Density (PSD) [4] and state space features 
obtained from the Delay Vector Variance (DVV) [5, 6], are combined in order to 
show whether such a combination of different features shows improvement in MSE 
detection over the standard approaches using only one of the signals and one class of 
features. The motivation for such an approach is as follows: PSD estimation is a  
“linear” frequency domain method which can be conveniently performed using the  
periodogram. This has been shown to perform particularly well in applications related 
to EEG signal processing, [2-4]. It is, however, natural to ask ourselves whether such 
an approach, based solely on the second order statistics conveys enough information 
to provide fast and reliable detection of such a complex event as the MSE.  

On the other hand, the recently introduced DVV approach [5, 6] is a method based 
on the local predictability in the state space. The virtue of the DVV approach is that it 
can show both qualitatively and quantitatively whether the linear, nonlinear,  
deterministic or stochastic nature of a signal has undergone a modality change or not. 
This way, the DVV methodology represents a complement to the widely used linear 
PSD estimation. Notice that the estimation of nonlinearity associated with the DVV 
method is intimately related to non-Gaussianity, and we also set ourselves to 
investigate whether this additional information, which cannot be estimated by PSD, 
contributes to the discrimination ability, and if so, to estimate its importance level, as 
compared to the PSD based discrimination.  

The purpose of this paper is therefore to provide a theoretical and computational 
framework for the combination of the two classes of features (PSD and DVV) and to 
show whether such a combination has the potential benefits for multivariate and 
multimodal signals over standard approaches. This is illustrated on a practical 
problem of detection of MSE in car drivers. Reliable methods to detect MSE in 
continuously recorded signals will be an important milestone in the development of 
drowsiness warning systems in real car cockpits. At present, however, achieving 
highly reliable MSE detection [3] is still a major issue to be resolved. 

2   Data Fusion Architecture 

To achieve the detection of MSE in real-world car driving situations, both estimated 
feature sets are merged by an adaptive feature weighting system (Fig. 1). The error of 
the training set is used to optimize the parameters of feature extraction based on PSD 
and DVV and also serves as fitness function in a genetic algorithm that examines the 
relevance of the different features employed. Subsequent multiple hold-out validation 
of LVQ networks yields the mean test set error for the evaluation of MSE detection 
ability. Consequently, test set errors were not used, directly and indirectly, for any 
step of optimization. 

Fig. 1 shows the block diagram of the proposed data fusion system, which allows 
for the solution of the extensive data management problem in real time processing of 
multivariate and multimodal signals. Fusion based on features provides a significant 
advantage by means of a reduction in the dimensionality of the space in which the 
information to be processed resides. There is a trade-off associated with this strategy, 
since in principle, feature fusion may not be as accurate as raw data fusion because 
portions of raw signal information could have been eliminated. 
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Fig. 1. Proposed Microsleep detection system based on feature fusion 

In general, it is not known a priori which features within the different sets of 
features (EEG-FFT, EEG-DVV, EOG-FFT, EOG-DVV) are best suited for detection 
of MSE. It is intuitively clear that the obtained features differ in their importance level 
with respect to the classification accuracy. We therefore combine all different feature 
sets obtained from EEG and EOG by means of PSD and DVV. To prove whether our 
hypothesis that a combination of features coming from two different sources will 
indeed improve classification accuracy, we propose to use Genetic Algorithms (GA) 
to determine a scaling factor for every single feature coming from the four different 
sets. The scaling factors are used as gene expressions and the training error rate as 
fitness function. The sensitive adaptation of scaling factors by GA leads to a weighted 
Euclidean metric in the feature space, and can be interpreted as relevance factors [12]. 
For the purpose of comparison, the classification task is also performed without 
application of the relevance adaptation step (Fig. 3). 

3   Experimental Setup 

Our experimental setup was similar to the one presented in [4]. Seven EEG channels 
from different scalp positions and two EOG-signals (vertical, horizontal)  
were recorded from 23 young subjects (age range: 19 - 35 years) during driving 
simulation sessions lasting for 35 minutes. These sessions were repeated every hour 
between 1 a.m. and 8 a.m. This way, the likelihood of the occurrence of MSE was 
gradually increasing due to at least 16 hours without sleep prior to the experiment.  

MSE are typically characterized by driving errors, prolonged eye lid closures or 
nodding-off. Towards automatic detection, two experts performed the initial MSE 
scoring, whereby three video cameras were utilized to record i) drivers portrait, ii) 
right eye region and iii) driving scene. For further processing, only clear-cut cases, 
where all the experts agreed on the MSE, were taken into account. Despite providing 
enough test data to tune our algorithms, the human experts could not detect some of 
the typical attention lapses, such as the one with open eyes and stare gaze. The 
number of MSE varied amongst the subjects and was increasing with time of day for 
all subjects. In all 3,573 MSE (per subject: mean number 162±91, range 11-399) and 
6,409 NMSE (per subject: mean number 291±89, range 45-442) were scored. This 
clearly highlights the need for an automated data fusion based MSE detection system, 
which would not only detect the MSE also recognized by human experts, but would 
also offer a possibility to detect the critical MSE cases which are not recognizable by 
human experts. 
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4   Feature Extraction 

In our experimental set-up, we varied two preprocessing parameters, the segment 
length and temporal offset. Evaluating test errors of our processing cue (Fig. 1) 
without relevance adaptation yields an optimal offset of 3 and 1sec and optimal 
segment length of 8 and 4 sec for the PSD and DVV, respectively. This means that 
EEG and EOG segments are beginning 3/1 sec (PSD/DVV) before and are finishing 
5/3 sec after the onset of (N)MSE.  

 
 
Fig. 2. Feature relevances for MSE detection 
estimated using GA 
Fig. 2a. (left top): Normalized feature 
relevances for different data channels of EEG 
and EOG 
Fig. 2b. (left bottom): PSD feature relevances 
over all EEG and EOG signals 
Fig. 2c. (right bottom): DVV feature 
relevances over all EEG and EOG signals 

  
 

The preprocessing involves linear trend removal and applying the Hanning window 
to the data segments. PSD estimation was performed by the discrete Fourier 
transform. The so calculated PSD coefficients were averaged within 1.0 Hz wide 
bands. Further improvements in classification were achieved by applying a monotonic 
continuous transformation log (x) to the PSD [7]. 

The linear feature extraction method PSD was accompanied by a feature extraction 
method originating from the nonlinear dynamics, the DVV. The DVV features were 
calculated with the embedding dimension (m=3). Basically, they are variances of 
distances between delay vectors calculated on original and on surrogate data; further 
details are presented elsewhere [5, 6]. In contrast to PSD features, classification 
results did not improve by applying log(x) to DVV features. 

Before examining the MSE detection performance in such a feature fusion setting, 
we perform a rigorous analysis of the feature relevance for the different EEG and 
EOG signals. This was achieved by means of GA. The relevance scores for the single 
EEG and EOG signals (Fig 2a) were calculated and normalized using the sum over all  
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Fig. 3. Mean values and standard deviations of test errors for different single signals (first 9 
groups) and for different combination of fused signals (last 4 groups) 

feature relevance coefficients (35 for PSD, 24 for DVV). The normalized relevances 
for each PSD feature (Fig. 2b) and each DVV feature (Fig. 2c) were determined by 
averaging relevances of all single EEG / EOG signals. 

5   Discriminant Analysis 

Feature sets extracted by both methods (PSD and DVV) and of each of 7 EEG and  
of 2 EOG signals are merged in their multiple combinations both without and with an 
adaptive feature scaling system (GA). For each feature vector a label “MSE” or 
“NMSE” was assigned, thus introducing a two-class classification setting. Networks 
utilizing the OLVQ1 learning rule were used for analysis. Multiple hold-out 
validation [8] of the LVQ networks yields the mean test set error depicted in Fig 3. 
The test error rate was estimated as the ratio between the number of false 
classifications and the number of all classifications. 

The error bars in Fig. 3 represent the standard deviation, which is caused by 
different initializations of LVQ networks and by the nature of the training progress 
due to randomly applied input vectors. To avoid the possibility of excellent results for 
some arbitrary settings, we repeated random partitioning 50 times, following the 
paradigm of multiple hold-out validation. For each partition, training and testing were 
repeated 25 times with different weight matrix initializations.  The LVQ network was 
trained and tested by different selections of signals. Every signal was first selected 
alone for both training and testing (Fig. 3, first 9 groups). The feature extraction 
methods, PSD and DVV, were applied individually and in combination.  The best 
single channel detection result was achieved with a combination of PSD, DVV and 
GA for the EOG channel ‘vertical’ followed by the EEG channel ‘Cz’. 

In an earlier work we pronounce that a combination of EEG and EOG measures 
should be most successful in predicting MSE [4]. Our results (Fig. 3, right) lend 
further support to this statement, independent from the feature extraction method 
used. Our simulations on DVV and PSD features achieved mean test error rates  
of 28 % and 17 % respectively. We judge the standard deviations of 1.4 % as 
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moderate. The fusion of DVV and PSD features from all signals, which yields 531 
features (7 EEG + 2 EOG signals) x (35 PSD + 24 DVV features), gained only a 
small improvement in the test error rates, namely from 17 % to 16 %. This result is 
not satisfactory enough and can be corrected by applying a GA where the DVV and 
PSD features had to compete with each other regarding their relevance for the MSE 
detection. After multiplying each feature with the estimated relevance factor obtained 
by GA, the training of LVQ was repeated. This way the best test error rate of 13 % 
was achieved. 

6   Conclusions 

We have presented an adaptive system for the analysis of Microsleep events (MSE), 
where several combinations of feature fusion were used for MSE detection and 
classification by means of populations of Learning Vector Quantization (LVQ) 
networks. Best results, with test errors down to 13 %, were obtained by a combination 
of all the recorded EEG and EOG channels, all features, and with feature relevance 
adaptation using Genetic Algorithms (GA).  

Due to their complementing abilities to represent the linear and nonlinear nature of 
the EEG and EOG signals [13], simple feature extraction methods, PSD and DVV, 
were applied before and during an onset of a MSE. The results showed PSD to be 
more effective as a feature extraction method. This was also confirmed by our feature 
relevance results using GA, which detects features that were most relevant for the 
MSE detection. The relevances of the PSD features were similar to other findings  
[2-4], but for the understanding of the DVV feature relevance more research is 
needed. Furthermore, there are large inter-individual differences of the EEG- and 
EOG- characteristic [9, 10]. It would be interesting to ascertain whether the found 
feature relevance distribution can be confirmed or whether the DVV features play 
more significant role in certain cases. In general, there are strong indications that the 
role of the DVV features as compared to PSD features increases for the EOG signals. 
Another issue to be investigated is the fusion of EEG- / EOG- features and other 
oculomotoric features such as pupillography [11] using a greater variety of feature 
extraction methods. This is likely to improve and stabilize the discrimination of MSE, 
an issue of important real world applications.  
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Abstract. Quality of measurements is an important factor affecting the
reliability of analyses in environmental sciences. In this paper we combine
foliar measurement data from Finland and results of multiple measure-
ment quality tests from different sources in order to study the effect
of measurement quality on the reliability of foliar nutrient analysis. In
particular, we study the use of weighted linear regression models in de-
tecting trends in foliar time series data and show that the development
of measurement quality has a clear effect on the significance of results.

1 Introduction

Analyzing chemical characteristics in samples collected from different compo-
nents of ecosystems (e.g. biological samples, soil, water, etc.) are key methods
in environmental monitoring. Chemical analyses are, however, prone to many
errors which has brought up concern about the reliability of the analyses. Great
improvements in laboratory quality have been achieved in the past two decades
due to, for example, use of international reference material and interlaboratory
comparisons (so-called ring tests). Despite the general improvement in labora-
tory quality some of the latest ring tests still reveal problems in quality [1].

The aim of this paper is to study how large of an impact laboratory qual-
ity has on detecting changes in environment. We use data from the ring tests,
where laboratories analyzing foliar samples have been surveyed (see e.g. [1]).
Further we link the data of conifer foliar concentrations measured in samples
collected from 36 Finnish ICP Forests Level I plots (International Co-operative
Programme on Assessment and Monitoring of Air Pollution Effects on Forests,
see http://www.icp-forests.org/) and the results obtained by the Finnish labo-
ratory in internal quality tests and the above mentioned ring tests.

Both theoretical computations and real-world data were used to study the
effect of changing data quality on trend detection. Foliar nutrient data from
Finland were analyzed using weighted regression. In our previous research the
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use of sparse linear models for finding other linear dependencies in the data have
been briefly discussed in [6].

2 Data

2.1 Foliar Nutrient Data

Annual nutrient concentration data of conifer needles (Norway spruce [Picea
abies (L.) Karsten] and Scots pine [Pinus sylvestris L.]) collected from 36 Finnish
ICP Forests Level I stands were available for years 1987–2002. Foliage from 20
pine stands and 16 spruce stands around the country were collected yearly in
October or November. Concentrations of 12 elements were measured from the
needles, but in this study we focus on two elements: nitrogen (N) and sulfur (S).
For details concerning the sampling procedure, see [5]. A more comprehensive
characterization of the data using nutrition profiles is presented in [3].

2.2 Laboratory Quality Data

The quality of measurements of the laboratory analyzing ICP Forests foliar sam-
ples in Finland was studied in national calibration tests and international in-
terlaboratory tests. The test data can be used to estimate the accuracy and
precision of the nutrient measurement data. Between 1987 and 1994 the quality
of measurements was surveyed in laboratory comparisons arranged by IUFRO
(International Union of Forest Research Organizations). Since 1993 the measure-
ment quality was tested in seven ICP Forests biennial ring tests (see e.g. [1]). In
addition to interlaboratory tests, starting from 1995 the quality of the Finnish
laboratory was measured in repeated measurements of certified reference sam-
ples (CRM 101). Before 1995 the methods were more varied. The quality control
of the laboratory is discussed in more detail in [3].

3 Methods

3.1 Weighted Regression

If the precision of the observations is not constant, fitting an ordinary least
squares linear regression model in order to analyze the data is not well justified,
because homoscedasticity1 is one of the basic assumptions of the model. Instead,
weighted regression [4] is an effective method with heteroscedastic data. The
regression model with heteroscedastic data can be expressed as follows:

Yi = β0 + β1Xi + εi, i = 1, . . . , n (1)

where β0 and β1 are regression coefficients (β = [β0 β1]T ), Xi are known con-
stants and error terms εi are independent N(0, σ2

i ). If Xi denote time steps, the
model assumes that there is a linear trend in the time series data.
1 Homoscedasticity = property of having equal variances.
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The weight wi is defined as the inverse of the noise variance and thus, the
method gives weights to observations according to their uncertainty

wi =
1
σ2

i

. (2)

For example, completely uncertain (σi =∞) measurements are eliminated from
the model. Y and X the dependent and independent variables expressed in
vector and matrix terms and W is a diagonal matrix containing the weights wi

Y =

⎡⎢⎢⎢⎣
Y1

Y2

...
Yn

⎤⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎣
1 X1

1 X2

...
...

1 Xn

⎤⎥⎥⎥⎦ , W =

⎡⎢⎢⎢⎣
w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn

⎤⎥⎥⎥⎦ (3)

The maximum likelihood estimators of the regression coefficients are

β̂ = (XT WX)−1XT WY. (4)

The statistical significance of β̂j �= 0 can be evaluated using the F-test [2].

3.2 Parameter Estimation

The error in the measurement of laboratory j in year i is assumed to be normally
distributed with standard deviation (precision) σij and mean (accuracy) μij .
The ICP Forests ring tests and a part of the IUFRO tests contained repeated
measurements of the same sample. This makes it possible to estimate both the
accuracy and precision of a tested laboratory. The estimated accuracy is the
average deviation of nij repetitions from the average of all laboratories

μ̂ij =
1
nij

nij∑
k=1

Zijk − μ̂i, (5)

where Zijk is the value of kth repetitive measurement and

μ̂i =

∑mi

j=1

∑nij

k=1 Zijk∑mi

j=1 nij
. (6)

Above, mi is the number of laboratories with acceptable results (i.e. laboratories
fulfilling the quality requirements set by ICP Forests [1]). The estimate of the
precision of a laboratory is the unbiased estimate for the standard deviation

σ̂ij =

√√√√ 1
nij − 1

nij∑
k=1

(Zijk − μ̂ij)2. (7)
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In case there are no repetitions, i.e. nij = 1, the precision is estimated to be the
standard deviation of all acceptable laboratories

σ̂ij =

√√√√ 1
mi − 1

mi∑
j=1

(Zij1 − μ̂i)2. (8)

The minimum relative standard deviation (RSD) of the methods was deter-
mined to be 0.7% for N and 1.5% for S between 1987 and 2000. The precision
estimated using Equation 7 may be lower than these minimum values, because
nij is too small to make reliable estimates. If this is the case, the minimum RSD
is used instead of the estimated value.

4 Experiments

4.1 Theoretical Computations

The effect of measurement quality (i.e. accuracy and precision of measurements)
on trend detection was studied. Here we assume that there is a linear trend (see
Equation 1) in the time series data (e.g. decreasing foliar sulfur concentrations
in the course of time) and that this trend will also continue in the future.

The development of quality in different laboratories was visually inspected.
According to that two simple scenarios roughly corresponding to typical develop-
ment of real measurement precision were constructed. Either the precision does
not change with time or the precision changes linearly from initial precision level
c in a time steps to level b and then stays constant

σi =
{

b−c
a Xi + c if Xi ≤ a
b if Xi > a

(9)

Trend detection with weighted regression was studied using the scenarios
explained above. The hypothesis H1 that there exists either an increasing or a
decreasing trend in the data was tested against the null hypothesis H0 that there
is no trend. That is, H0: β1 = 0, H1: β1 �= 0. The different parameter values, i.e.
a, b, c, β1, and n were varied and the p-value was calculated using the F-test.
Significance level 0.05 was used to reject the null hypothesis.

The results for linearly changing precision are shown in Figure 1. The time
needed to detect a trend with improvement in precision (b < c) can be seen
in Figure 1 above the diagonals of the subfigures. The initial precision c, final
precision b, and parameter a notably affect the time needed for detecting a trend.
For example, when we look at the subfigure in the second column and top row
in Figure 1, we can see (in the center of the subfigure) that the time needed to
detect a trend with slope β1 = 0.1 is greater than 10, if the precision is constant
0.5. However, if the final precision b is improved to 0.25 or 0.05 in two time
steps (a = 2), the time n needed to detect the trend decreases to 8 < n ≤ 10 or
4 < n ≤ 6, respectively. We also studied the effect of an exponential change in
precision, and found that the results are very similar to linear change in precision.
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Fig. 1. Trend detection for linearly changing precision with different parameter values.
The colors indicate the length n of time series that is needed to detect a trend with
significance level 0.05. Black: n ≤ 4, dark gray: 4 < n ≤ 6, medium gray: 6 < n ≤ 8,
light gray: 8 < n ≤ 10, white: n > 10. In a subfigure the abscissa represents the
final precision b and ordinate the initial precision c. Different columns of subfigures
(β1 = 0.05, . . . , 0.25) represent the slope of the trend. Different rows of subfigures
(a = 2, . . . , 10) represent the speed of change in measurement precision.

4.2 Trends in Measurement Data

Quality data from all different sources was combined and the accuracy and preci-
sion of the Finnish laboratory was estimated for years 1988–2003 using methods
described in Section 3.2. Measuring of the needles is done the year after the
sample collection and therefore, quality data of year t+ 1 was used for needles
of year t. Because weighted regression requires that the noise in the measure-
ments has zero mean, the accuracies μij were subtracted from the measure-
ments.

First, the average N and S foliar concentration data of pine between 1987–
2002 were studied. Using weighted regression, a significant (p < 0.05) decreasing
trend was found in S concentration and an insignificant (p ≥ 0.05) weakly in-
creasing trend in N concentration. The trend in average N concentration would
become significant in three years if the data quality stays the same as in year
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2003. The trend could be detected the following year, if the precision would be
improved to b = 0.06.

It was also studied if there are significant trends in N and S concentrations
in pine needles collected from the 20 individual pine stands between years 1987
and 2000. Out of 20 time series in 3 a significant trend was found in the N data
and in 7 in the S data. In both cases there were three time series, where too
many missing values made fitting a regression model unsubstantial.

We also experimented how long we would have to continue measuring in
the stands, where a significant trend was not found, assuming that the trend
continues, to be able to tell that the trend is significant. If the precision of mea-
surements stays the same as in year 2001, the trends would become significant
in 1–146 years depending on the estimated slope and number of measurements.
However, if the precision of measurements is improved to approximately 0.5%
RSD, the time needed decreases clearly. If the standard deviation of N measure-
ments decreases linearly in a = 3 years to value b = 0.06, the time needed to
detect a trend decreases on average 46%. Similarly, if the standard deviation of
S measurements decreases linearly in a = 3 years to value b = 0.005, the time
needed to detect a trend decreases on average 15%.

5 Conclusions

The results show that measurement precision strongly affects trend detection.
Improving data quality can decrease clearly the time needed for finding statis-
tically significant trends in environmental monitoring. Even though the Finnish
laboratory analyzing the foliar samples has always fulfilled the quality demanded
by the ICP Forests programme for both nitrogen (less than 10% deviation from
the mean values of all labs) and sulfur (less than 20% deviation) it can still take
many years to detect a possible ongoing trend with this measurement precision.
For a laboratory not meeting the criteria set by ICP Forest programme (e.g.
showing deviation greater than 20% in case of sulfur) it can take years or even
decades to detect possible ongoing changes in the state of the environment. In all
our results from theoretical computations and real world data clearly highlight
the importance of quality in laboratory analyses.
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Abstract. We present a new lossless compression method named FTT-
coder, which compresses images and 3d sequences collected during a
typical functional MRI experiment. The large data sets involved in this
popular medical application necessitate novel compression algorithms to
take into account the structure of the recorded data as well as the exper-
imental conditions, which include the 4d recordings, the used stimulus
protocol and marked regions of interest (ROI). We propose to use sim-
ple temporal transformations and entropy coding with context modeling
to encode the 4d scans after preprocessing with the ROI masking. Ex-
periments confirm the superior performance of FTTcoder in contrast to
previously proposed algorithms both in terms of speed and compression.

1 Introduction

Modern imaging techniques become increasingly important and common in med-
ical diagnostics; such techniques include X-ray computerized tomography (CT)
and magnetic resonance imaging (MRI). Although much of this paper can be
applied to more general (medical) image series, we will in the following focus
on the latter. MRI visualizes three-dimensional objects by measuring magnetic
properties within small volume elements called voxels. Even single scans of CT
and MRI are already large in size (up to several megabytes). More recently,
it has become popular to also study time series of MRI scans, during which
the subject performs various functional tasks, hence the term functional MRI
(fMRI). These data sets measure up to several hundred megabytes, and efficient
storage methods have to be applied. As even small deviations within adjacent
scans may already contain important information (which can for example be
revealed by blind source separation [1]), lossy image and time series compression
is out of question, and lossless (or at most near lossless) techniques have to be
used. Moreover efficiency not so much in compression rate but also in speed is
essential, as fast and preferably sequential, single-pass processing enables close
to real-time data preprocessing and analysis.

The field of medical image and volume compression is still rather young, with
popular algorithms being direct generalizations of image compression techniques
such as for example 3d context modeling [2]. Image sequence coding methods
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have also recently gained some attention, for instance by compressing sequences
using integer wavelet transform with subsequent entropy coding [3]. However
specific application to fMRI are rare, and to our knowledge only some simple
algorithms exist at present: SmallTime [4] performs a very fast but rather inef-
ficient fMRI compression by simply taking difference images between adjacent
recordings and then storing the typically 8-bit difference image in contrast to
the 16-bit recorded image. Adamson employs the efficient LOCO-I (low complex-
ity lossless compression for images) algorithm [5] to compress MRI and fMRI
recordings in sequence [6]. This enables high data throughput with acceptable
compression efficiency, and we will generalize his proposal using JPEG-LS(’Joint
Photographic Experts Group’-lossless) with added preprocessing in the following.
Lossy fMRI compression has been proposed in [7] but has not been adopted by
the community, most probably due to the above mentioned sensitivity of MRI
recordings to small deviations.

Our algorithm processes the time series, interpreted as recordings from mul-
tiple sources by also taking into account additional recordings such as a region-
of-interest (ROI) or mask selection. This information, stemming from multiple
sources, is packed into a single data stream allowing for efficient and fast storage
and recovery, outperforming present fMRI compression algorithms considerably
both in speed and compression ratio.

2 Lossless Image Compression Using JPEG-LS

Lossless compression should be used for a variety of applications, particularly
those involving medical imaging such as CT and (f)MRI. For these applications,
ISO/IEC provided a lossless algorithm in the JPEG international standard, but,
unlike the baseline JPEG (lossy), this lossless version is poor in compression
performance. Instead, a new lossless image compression standard called JPEG-
LS is provided [8]. This compression algorithm draws heavily from the LOCO-I
method developed by Weinberger at al. [5] and aims at improving compression
performance with low complexity.

JPEG-LS is an image compression algorithm involving prediction and en-
tropy coding. The coder effectively uses four neighboring pixels. Let x[n1, n2]
be a value of the current pixel. The neighborhood consists of the four samples:
x[n1, n2 − 1], x[n1 − 1, n2], x[n1 − 1, n2 − 1], and x[n1 − 1, n2 + 1], respectively
denoted by xa, xb, xc, and xd, which are exploited for modeling contexts of an
entropy coder as well as determining a ‘mode’. JPEG-LS switches between two
modes: normal and run modes, depending on the neighborhood. At the current
pixel, if one of gradients defined as Δ1 = xd−xb, Δ2 = xb−xc, and Δ3 = xc−xa

are non-zero, then the JPEG-LS coder is in normal mode.
In normal mode, prediction of x denoted by μx is obtained by a non-linear

function of the four neighbor pixels. Then, the residual that is actually coded in
JPEG-LS is given by ex = sx(x−μx)−βx, where sx represents the sign and βx the
bias compensating term, which is needed to make the probability distribution
of residuals unbiased symmetric. The JPEG-LS coder represents the mapped
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Fig. 1. Schematic JPEG-LS compression

residuals by using an adaptive Golomb code [9] with context modeling. This
residual coding is context adaptive, where the context used for the current sam-
ple is identified by a context quantization function of the three gradients. Then,
context-dependent Golomb and bias parameters are estimated sample by sample.

If all the gradients are identical, then the JPEG-LS coder moves to the run
mode. The assumption here is that x and possibly a large number of consecutive
samples are all likely to have the same value as xa. The number of samples
which are all the same as xa in a scanning direction is called the run-length.
This run-length is coded by using Golomb code again. But, here a so-called
MELCODE [5], which is specialized for encoding the run-length, is utilized in
JPEG-LS. This compression scheme is visualized in figure 1; for details, see [5]
for example.

3 Compressing Information from Multiple Sensors

The goal of the proposed compression algorithm is to fuse the data set, acquired
by multiple scans over time, into a single easy to store file of decreased size as
quickly as possible. Furthermore, additional information such as masked voxels or
stimulus components corresponding to the protocol used in the fMRI recordings
can be merged with the data stream.

3.1 fMRI Compression

The MRI measurements x(t) ∈ {0, 1, . . . , α}w×h×d are taken for time points
t = 1, . . . , T with a temporal resolution in the range of seconds and size T ≈ 100.
The measured data for each time point is a three-dimensional data structure;
each scan is of size w × h× d and voxels take integer values between 0 and α.

Our compression algorithm is simple in concept — just apply the efficient
and fast context-based JPEG-LS onto each slice image, but after some intelligent



772 F.J. Theis and T. Tanaka

preprocessing. A desirable image property enabling high compression rates is
simple structure together with low α. This property can be achieved in our case
of biomedical time series by temporal operations. Different methods and filters
are possible such as integer wavelet transformation using for example a simple
Haar wavelet, or discrete cosine transform. For fMRI it is advisable to employ
a structurally simple, preferably even linear transformation that uses a rather
small time window — this would increase coding and decoding speed and keep
the memory consumption low albeit at the possible loss of some compression
efficiency. Hence we decided to fully encode the first scan x(1), and then only
encode the difference images Δx(t) := x(t)− x(t− 1) (after possible translation
to have a zero-valued minimum).

Another property of fMRI data is that typical scans are taken of restricted
regions that do not fully fill out the whole scan volume — for example fMRI
is a common tool for brain imaging, and the non-brain volume or at least vox-
els outside of the head can be easily identified and masked out, see figure 2(a).
After preprocessing by motion alignment [10] the scans are temporally aligned.
Hence we can assume to have a single time-independent mask y ∈ {0, 1}w×h×d.
The mask is assumed to be given by the user, and to be binary with ones indi-
cating the ROI. Context-based coding of the full volumes is not as efficient, so
the additional ROI data can be used to enhance compression: only encode the
non-masked voxels of each line, and during reconstruction recover the full line
by adding zeros (or mask values) at the masked voxels. Then of course the mask
y has to be stored in the compressed file. For this we use run-length encoding,
which works well due to the often simple structure of the mask. Given a suffi-
ciently large number of scans additional masking turns out to be of significantly
higher efficiency.

The resulting algorithm is single-run, as there is no need of returning to
previous scans if at most two scans are held in memory at the same time (which
is acceptable, typical sizes are up to 2MB per scan). So memory efficiency is also
provided, and the algorithm is fast as confirmed by the experiments later. We call
the resulting compression algorithm FTTcoder (fMRI temporal transformation
coder), and refer to algorithms 1 and 2 for details.

3.2 Fusing the Stimulus

A peculiarity of functional MRI data sets is the presence of a stimulus protocol. It
describes the functional task used in the experiment. Typically either a simple
block design or a so-called event-based protocol is used. The former describes
a periodic on-off stimulus, whereas the latter consists of activities interspersed
with a varying period of non-activity, which can also depend on the subject’s
interaction. In this section, we will fuse the additional before-hand knowledge
of the stimulus with the data to achieve more efficient compression ratios; for
simplicity, we will use a block design protocol.

In addition to the observed data set x(t) assume that the binary stimulus
protocol σ(t) ∈ {0, 1} is given for t = 1, . . . , T . A simple model for incorporating
the stimulus with the MRI data can be built by assuming that an underly-
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Data: scan sizes w × h × d, scan range [0, α] ⊂ N0, T fMRI scans
x(1), . . . ,x(T ) ∈ [0, α]w×h×d, optional common mask y ∈ {0, 1}w×h×d

Result: compressed bit stream b

store sizes h, w, d, T and range α in b1

if mask is used then run-length encode and store binary y in b2

for t ← 1, . . . , T do
if t = 1 then z ← x(1) else z ← x(t) − x(t − 1)3

if necessary translate z and determine and store new range [0, α′] by4

calculating minima and maxima of z
for j ← 1, . . . , h, k ← 1, . . . , d do

determine masked current and previous lines:5

l ← {z(i, j, k)|i with y(i, j, k) = 1}
pl ← {z(i, j − 1, k) resp. z(i, j, k − 1)|i with y(i, j, k) = 1}
context encode line l using context (l,pl) to stream b by JPEG-LS6

end

end

Algorithm 1. Compression algorithm FTTcoder

Data: fMRI-compressed bit stream b
Result: fMRI scans x(1), . . . , x(T ) ∈ [0, α]w×h×d

read scan sizes h × w × d, number of scans T and maximal range α from b1

run-length decode optional binary mask y ∈ {0, 1}w×h×d from b2

for t ← 1, . . . , T do
for j ← 1, . . . , h, k ← 1, . . . , d do

determine masked previous line:3

pl ← {z(i, j − 1, k) resp. z(i, j, k − 1)|i with y(i, j, k) = 1}
context decode line l using context pl from stream b by JPEG-LS4

recover unmasked line: z({i|y(i, j, k) = 1}, j, k) ← l5

end
if necessary translate z6

if t = 1 then x(1) ← z else x(t) ← x(t − 1) + z7

end

Algorithm 2. Decompression algorithm inverting FTTcoder

ing stimulus-independent activity is additively overlayed by the stimulus-related
brain activity at time instants t where σ(t) = 1. If x(0),x(1) ∈ R

w×h×d denote
the stimulus-independent and stimulus-dependent data component respectively,
then according to the model the data time series x(t) can be written as

x(t) = x(0) + σ(t)x(1) + e(t), (1)

where e(t) denotes the model error at time instant t. The model is fulfilled well
if e(t) is small for all t, and compression can be improved in this case. Please
note that of course more advanced models (including convolutions induced by
the BOLD effect, using blind separation for additional component identification
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etc.) are possible and used in the analysis of fMRI data sets, but our goal is to
keep the algorithm simple, fast and efficient; especially the single-run property
must not be destroyed, so more complex models might be difficult to include.

Let Δσ(t) := σ(t) − σ(t − 1), t = 2, . . . , T , and denote time instants t with
Δσ(t) �= 0 as stimulus jumps. The compression performance can be increased
by reducing the range and the deviation of the difference image Δx(t) to be
compressed. However at stimulus jumps, the differences can be expected to be
larger than at other time instants. By using model (1), we get

Δx(t) = x(0) +σ(t)x(1) +e(t)−x(0)−σ(t−1)x(1)−e(t−1) = Δσ(t)x(1) +Δe(t)

with Δe(t) := e(t)− e(t− 1). So Δx(t) is larger at stimulus jumps.
For compression, we now propose to estimate the stimulus component x(1) by

the normalized difference image x̂(1) := Δσ(t0)Δx(t0) (which equals x(1)±Δe(t)
and hence approximately x(1)) at the first jump t0. Subsequently, instead of
encoding Δx(t), we compress

z(t) := Δx(t) −Δσ(t)x̂(1) = Δx(t) −Δσ(t)Δσ(t0)Δx(t0), (2)

which equalsΔσ(t)
(
x(1) − x̂(1)

)
+Δe(t) and can therefore expected to be small.

The stimulus can be included in the compressed streamusing run-length encoding.
For decompression, this can easily be inverted by restoring the stimulus ap-

proximation x̂(1) at the first jump, and then reconstructing subsequent x(t) from
the decompressed frame z(t) by

x(t) := x(t− 1) + z(t) +Δσ(t)x̂(1). (3)

4 Results

We demonstrate the performance of FTTcoder (freely available for download
at http://fabian.theis.name/) when applied to real data sets. For this we
use two data sets. The first one is a two-dimensional slice with w = h = 128,
α = 2048 and T = 98 scans. The data set has been masked with a rather large
mask, see figure 2(a) for the (masked) first scan of the series. Physically, the
data set is represented by a large file containing a concatenation of all scans.
The second data set is given by 240 analyze files with scan size 64 × 64 × 12.
The data has not been masked, and the largest possible α = 65536 is used for
the 16bit range.

For illustration, FTTcoder performance is compared with two previously
proposed fMRI compression schemes as well as three general algorithms namely
direct file copy, zip and the efficient bzip2. For the latter three algorithms, the
plain data itself is directly compressed, not the temporally preprocessed one. The
two fMRI compression utilities are iterative LOCO-I compression of images [6],
which due to lack of code we emulate by using FTTcoder without temporal
differences and masking, and direct storage by mapping 16bit values into 8bit
values if possible (SmallTime, [4]). We compare both compressed file size and
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Table 1. Algorithm performance; speed was measured for combined compres-
sion/decompression using the mean over 100 runs (first data set) respectively 10 runs
(second data set)

data set original size algorithm compression speed

2d data set 3137 kB FTTcoder (mask) 245 kB (7.8%) 0.182s
2d data set 3137 kB FTTcoder (no mask) 261 kB (8.3%) 0.185s
2d data set 3137 kB FTTcoder (no diffs) 350 kB (11.2%) 0.166s
2d data set 3137 kB FTTcoder (no mask&diffs) 366 kB (11.7%) 0.162s
2d data set 3137 kB SmallTime 1589 kB (50.7%) 1.3s
2d data set 3137 kB bzip2 394 kB (12.5%) 0.514s
2d data set 3137 kB zip 562 kB (17.9%) 0.255s
2d data set 3137 kB file copy 3137 kB (100%) 0.192s

analyze data set 22.6 MB FTTcoder (no mask) 14.1 MB (62.4%) 5.16s
analyze data set 22.6 MB FTTcoder (no mask&diffs) 17.0 MB (75.2%) 5.9s
analyze data set 22.6 MB SmallTime runtime error -
analyze data set 22.6 MB tar and bzip2 15.6 MB (69.0%) 14.6s
analyze data set 22.6 MB tar and gzip 18.0 MB (79.7%) 12.5s
analyze data set 22.6 MB file copy 22.6 MB (100%) 14.3s

speed. The experiments have been made on a Pentium M 2.0GHz using cygwin.
The results are shown in table 1.

Clearly FTTcoder outperforms the other algorithms both in compression ra-
tio as well as in speed — the latter is at first a bit astonishing when comparing
against file copy, but this is due to the fact that the much smaller compressed file
takes less time to be stored on hard disc than the file copy of the larger one. Ap-
parently due to its implementation, SmallTime is considerably slower than the
other algorithms and also less efficient, although we note that the given data set
contains a large number of non-ROI voxels, which SmallTime does not compress
efficiently. SmallTime was unable to compress the second data set, which we be-
lieve is due to the fact that almost all differences were 16bit. Direct application of
LOCO-I performs comparably well in terms of speed as FTTcoder, but the com-
pression rate is considerably lower. In practical applications, FTTcoder is about
3 times as fast as traditional zip algorithms, and considerably more efficient.

We finally compare the proposed extended stimulus-based compression algo-
rithm from section 3.2 with plain FTTcoder. The algorithm performance depends
greatly on how well the model (1) is fulfilled i.e. how large the error terms e(t)
are. In the following, we construct a toy data set by choosing x(0) to be the brain
slice from figure 2(a) with an additive stimulus component x(1) constructed by
setting pixels randomly to ±1 within a fixed rectangle in the brain part, see fig-
ure 2(b). Within the brain, white Gaussian noise is added with varying SNR in
[−1.5dB,∞dB]. A stimulus of 6 off, 6 on periods of total length T = 98 was used.
We compare the file sizes of the compressed data sets. Figure 2(c) shows the ra-
tios. Clearly, the stimulus based algorithm considerably outperforms the normal
one in the no- and low-noise cases, but the performance decreases with increas-
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(a) slice&mask (b) toy data set
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Fig. 2. In (a) a single fMRI slice together with a selected ROI/mask differentiating
brain from non-brain voxels is presented. (b) shows the toy stimulus component x(1)

together with a slice image at active stimulus and noise level 100. Figure (c) compares
the fMRI compression based on stimulus-fusion versus normal compression by plotting
the ratio of the stimulus-compressed file size and the non-stimulus-compressed size.

ing noise. Similar performance is achieved starting at SNRs of around 8dB. We
conclude that depending on how well the stimulus model is fulfilled, fusing the
additional stimulus component with the data may increase compression ratios.
In the future, we will study more advanced temporal preprocessing.

5 Conclusion

We have proposed a novel lossless compression scheme for sequences of medical
images, focusing on fMRI recordings. The algorithm is based on JPEG-LS and
turns to be more efficient in both speed and compression rate than more generic
compression algorithms. It is well known that even for data sets with a small
number of two-dimensional slices and a high slice distance there is a significant
gain in compression ratio by compressing the 3d data spatially in contrast to
compressing the two-dimensional slices separately [2], and we currently work on
generalizing JPEG-LS to 3d contexts and employing this for fMRI compression.
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Abstract. This paper aims to provide an overview of the emerging area
of non-linear predictive modelling for speech processing. Traditional pre-
dictors are linear based models related to the speech production model.
However, non-linear phenomena involved in the production process jus-
tify the use of non-linear models. This paper investigates certain statisti-
cal and signal processing perspectives and reviews a number of non-linear
models including their structure and key parameters (such as prediction
context).

1 Introduction

Linear prediction has been intensively used in speech processing: coding, synthe-
sis and recognition. For instance, the Linear Predictive Coding (LPC) [1] forms
the basis of several speech compression techniques. The key idea is the estima-
tion of the current speech sample ŷk using a linear combination of P past speech
samples or the prediction context {xk−1, xk−2, . . . , xk−P }:

x̂k =
P∑

i=1

aixk−i + e(k) (1)

Where e(k) is the prediction error. The LPC model is based on an Auto-
Regressive (AR) model which can be related, under linear assumptions, to the
vocal tract [1]. The ai coefficients and the predictor order P are related to the
different resonators forming the vocal tract model.

Even if there is some relationship relation between the two models (i.e. LPC
and vocal tract), the basic linear AR models do not offer a sufficiently efficient
modeling of the vocal tract. For this purpose, several alternative models have
been proposed. The Perceptual Linear Predictive (PLP) coding method [2] is an
example of human auditory knowledge integration for the improvement of AR
models’ computation. Other strategies have been also investigated, Ref. [3] gives
an overview of them. In this paper, we deal with non-linear speech processing
for the improvement of predictors.
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Recently, several authors have shown that non-linear processing can improve
the performance of speech predictors in terms of prediction gains. Thyssen [4]
compared prediction gains of linear and non-linear predictors. Results showed a
better fitting using non-linear models. The use of non-linear models for speech
samples prediction is motivated by physiological reasons [5]. Other reasons also
have been advanced including statistical ones which are further explored in this
contribution.

The paper is organized as follows: Section 2 introduces the principle of pre-
diction. Then, the extension of predictors to the non-linear domain is described,
followed by a description of non-linear models. Finally some concluding remarks
are presented.

2 Statistical Aspects

2.1 Regression

From a statistic point of view, prediction can be related to the regression process
which aims to estimate a function f:

Y = f(X) + ε (2)

where X and Y are two random variables. X denotes the random variable rep-
resenting the prediction context: {xk−1, xk−2, . . . , xk−P }. Y is also a random
variable representing the distribution of the predicted sample (x̂k). ε is a noise
modeled by a random variable with zero mean and it is independent of the
variables X and Y.

The function f represents the relationship existing between the two variables
(X and Y), or, in other words, the process which generates the time series. For
instance in Linear Predictive Coding (LPC), the coefficients are related to the
speech production model. However, the linear predictor is known to be non-
efficient for this kind of a model. The optimal predictor f can be computed in a
statistical way from the equation 2:

E[Y|X] = E[f(X) + ε|X] = f(X) (3)

According to this result, the predictor appears as the conditional expectation of
Y given X. The major obstacle is that, in practice, we never know the probabil-
ity joint distribution of the couple (X,Y) and thus the conditional expectation
E[Y|X] = E[x̂k|{xk−1,xk−2, . . . ,xk−P}].

2.2 Predictor Adequacy

The approximation of the optimal predictor is done by the computation of a
predictor h with a fixed structure (Finite Impulse Response filter, polynomial,
neural networks, etc.). The models are commonly computed by the minimization
of quadratic prediction error. The measure of the prediction precision is made
using the overall risk [6]:
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R(h) =
∫

(x̂− h(x))2 dF (X,Y) (4)

For an efficient estimation of h, the overal risk has to be minimized. On can show
that under the same assumptions of the equation 2 (zero mean and standard
deviation σ), the overall risk becomes:

R(h) = σ2 +
∫

(h(x) − f(x))2 p(X)dX (5)

This result shows that the prediction precision depends on:

– The noise deviation σ2.
– The capacity of the used predictor h to approximate the optimal predictor

f: (h(x)− f(x))2.

This theoretical result is important because it highlights the relationship between
prediction error minimization and model approximation.

In other terms, in speech processing, the choice of the predictor h should
allow an efficient approximation of the f (speech production model). Non-linear
speech processing is one of the solutions. In the next section, we describe the
main reasons from a signal processing point of view.

3 Extension to the Non-linear Domain

3.1 Non-linear Aspects of Speech Signal Samples

The speech signal is special since it is produced by human beings involving, dur-
ing its production, several non-linear phenomena [5]. Consequently, such signals
are characterized by non-linear methods exploiting for example, chaos based
assumptions [7] and dynamical theories [8]. These methods aim to model the
signals’ non-linearities.

Another point of view is to characterize the speech signals’ distribution. Such
studies have shown that the distributions are not Gaussian, but rather Laplacian
or Gamma based [9].

3.2 A Non-linear Solution

Section 2 shows that the prediction strategy has to take into account the char-
acteristics of the speech generating process. And it is known that non-linear
models are efficient alternative models for speech processing because they can
take into account the speech samples’ distribution [10]. Indeed, basic AR models
are based on second order statistics (auto-covariance or auto-correlation) which
(optimally) characterize only Gaussian processes.

Higher Order Statistics (HOS) have been investigated in speech processing
[11]. They provide an adaptive mathematical framework for non-linear char-
acterization. However, the estimation is not reliable for non-stationary signals
because of the amount of data needed for an efficient computation of the HOS.
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Non-linear models can be more efficient for speech prediction due to their
modeling capacities. However theoretical and practical aspects limit their uti-
lization. In the next section, we describe characteristics of non-linear models in
speech prediction.

4 Non-linear Predictive Models

4.1 Non-linear Function

Basic Non-linear Predictive models use non-linear functions for prediction:

x̂k = F (xk−1, xk−2, . . . , xk−P ) (6)

The difference between the models relies on the deployed function F . One possi-
ble classification of the predictors involves classifying them as parametric, non-
parametric or semiparametric [12]. Parametric models require a fixed structure
which means that this structure is known and obviously adapted to the problem.
Non-Linear Auto-Regressive (NLAR) are examples of parametric models. Con-
trary to these models, nonparametric models do not require a function definition.
They can be based on look-up tables which is the basis for codebook prediction
[13]. Semiparametric models allow a combination of the two previous ones.

4.2 Global and Local Prediction

Solutions for Non-linear Prediction. Most commonly used non-linear func-
tions are based on polynomial approaches such as Volterra filters [4] or Neural
Networks with ridge/gaussian functions [10]. The advantage of Volterra filters is
that they can be computed using traditional signal processing algorithms in the
same way as linear models. They have the attractive property of being linear
in their parameters. However the number of parameters grows can grow expo-
nentially with increasing order of the input. Neural networks can help limit this
number but learning is often more time consuming.

Both of the above models can be viewed as global non-linear predictor mod-
els in the sense that all the speech signals are processed in a same way. Due
to the non-stationary characteristics of speech signals, other types of non-linear
functions have been investigated including the so called, local non-linear func-
tions. The key idea here is to adapt the modeling and make it more flexible:
for instance, in Threshold Auto-Regressive (TAR) models [14], speech signals
are divided into different parts, and the linear AR model is then fitted for each
partition. Similar ideas are also used in Code-Excited Linear Predictive (CELP)
for speech coding. An excitation codebook is used for speech synthesis using
linear predictive filters. The major problem with local non-linear predictors lies
in the initial partitioning process, for which certain learning based approaches
have been proposed and these are reviewed next.

Local Predictive Models. The partitioning problem for Local Linear Pre-
dictive models can be solved using learning approaches. For example, the Hier-
archical Mixtures of Experts [15] can allow an optimal partition with the help
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of the (Expectation Maximisation) EM algorithm [6]. State based models can
also be used, such as the well-known Hidden Markov Models (HMM) which
provide a general and elegant framework [16]. Moreover, HMMs coupled with
Multi-Layered Perceptron (MLP) neural networks have also been used for non-
stationary time series prediction, including speech signals [17]. Hidden Control
Neural models [18] are another example of connectionist based state models.

4.3 Predictor Structure

Prediction Context. The input window size or the prediction context (cf.
equation 6) is a key parameter in predictive models. The dimension P should
be sufficient to capture the dynamical characteristics of the speech signals. This
parameter is usually determined using the embedding theorems of Takens [19].
The determination of the input window size P is a major problem in non-linear
prediction [10]. It has to be determined for each application and various trade-
offs may be required: for example, in [20] the input window size is optimized for
classification but not for prediction.

Type of Predictor Architecture. Traditional predictors are generally based
on a feedforward architecture. Even if the prediction context is theoretically suf-
ficient, a lack of modelling efficiency can be due to the architecture. Recurrent
models have been recently shown to offer a better solution compared to feed-
forward models [12], but stability and optimization are important problems in
these recurrent structures which need further investigation.

5 Learning Based Predictor Models

Most of the non-linear predictors reported to-date are machine learning based.
The learning scheme can be very different: for example, feedforward Neural Net-
works cz trained using the well known backpropagation algorithm or its variants,
and recurrent models can also be trained using several methods [12]. Statistical
methods such as HMMs are usually trained using the EM algorithm. Predictive
machine learning can be improved using statistical and kernel methods as shown
in [21].

In all machine learning based methods, the generalization capability of the
predictors is an important issue. Several methods including Bagging, Boostrap
and Regularization have been successfully used to-date [10].

6 Conclusions and Perspectives

This paper briefly reviewed the current state of the art in non-linear predictive
modeling for speech processing, focusing in particular, on the statistical and sig-
nal processing perspectives. We showed that non-linear predictors are mainly
needed due to their statistical (i.e. non-gaussian) modeling requirements. The
main structures of the non-linear models (including choice of non-linear func-
tions, type of architecture, etc.) and their key parameters (such as the prediction
context) were highlighted.
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Abstract. This paper compares the speech coder and speaker recognizer appli-
cations, showing some parallelism between them. In this paper, some ap-
proaches used for speaker recognition are applied to speech coding based on 
neural networks, in order to improve the prediction accuracy. Experimental re-
sults show an improvement in Segmental SNR (SEGSNR) up to 1.7 dB. 

1   Introduction 

We can establish a parallelism between speech coding and speech/speaker recogni-
tion. This is stated in the literature as classification versus regression [1], defined as: 

Regression: It is the process of investigating the relationship between a dependent 
(or response) variable Y and independent (or predictor) variables X1, …, XP; a regres-
sion function expresses the expected value of Y in terms of X1, …, XP and model pa-
rameters. 

Discrimination: The problem itself is one in which we are attempting to predict the 
values of one variable (the class variable) given measurements made on a set of  
independent variables (the pattern vector x). In this case, the response variable is  
categorical. 

When comparing speech coding with speech/speaker recognition, we can identify 
the following similarities: 

1.1   Problem Statement 

Without loss of generality we will assume that the speech signal ( )x t  is normalized 

in order to achieve maximum absolute value equal to 1. 
For speaker recognition applications, with a closed set of N users inside the data-

base, the problem is: given a vector of samples [ ](1), (2), , ( )x x x L , try to guess to 

whom speaker ispeaker  it belongs, with [ ]1,2, ,ispeaker N∈ . In order to achieve 

statistical consistency, this task is performed using several hundreds of vectors, and 
some kind of parameterization is performed over the signal samples, like a bank of fil-
ters, cepstral analysis, etc. For speech coding applications, the problem is: given a 
vector of previous samples [ ](1), (2), , ( )x x x L , try to guess which is the next  

sample: [ ]( 1), ( 1) 1,1x L x L+ + ∈ − . Thus, the problem statement is the same with the 



786 M. Faundez-Zanuy 

 

exception that the former corresponds to a discrete set of output values, and the latter 
corresponds to a continuum set of output values. 

Taking into account this fact, the “speech predictor” can be seen as a “classifier”. 

1.2   Signal Parameterization 

Although strong efforts have been done in speaker recognition for obtaining a good 
parameterization of the speech samples in order to improve the results and to reduce 
the computational burden, this step is ignored in speech coding, where the parameter-
ized signal is the own signal without any processing. 

1.3   Model Computation 

For speaker recognition applications, some kind of model must be computed. Usually it 
is computed using some training material different from the test signals to be classified. 
This model can be as simple as the whole set of input vectors (Nearest Neighbor model 
[2]) or the result of some reduction applied on them (Codebook obtained with Vector 
Quantization [3], Gaussian Mixture Model; etc.), being the most popular the GMM. 

For predictive speech coding applications, the model is usually a LPC (Linear pre-
dictive Coding) model, but it can also be a codebook, Volterra series, neural net-
works, etc. These last kind of predictors belong to the nonlinear prediction ap-
proaches, that can outperform the classical linear ones [4]. If the neural network is a 
Radial Basis Function [5], the similarity is considerable with the GMM model of the 
speaker recognition applications. 

1.4   Decision 

For speaker recognition applications, the decision (classification) is done taking into 
account the fitness of the test observation to the previous computed models, and some 
decision rule (for instance, maximum likelihood). On the other hand, in predictive 
speech coders, the predicted sample is the output of the predictor given one input vec-
tor. While the speech prediction is the result of one single predictor, in speaker recog-
nition it is often used a combination of several classifiers performing their task over 
the same observations or sometimes even different (multimodal biometrics). This 
strategy is known as data fusion [6] and committee machines [7], and it can be con-
sidered that it relies on the principle of divide and conquer, where a complex compu-
tational task is split into several simpler tasks plus the combination of them. A com-
mittee machine is a combination of experts by means of the fusion of knowledge 
acquired by experts in order to arrive to an overall decision that it is supposedly supe-
rior to that attainable by any one of them acting alone. 

2   Proposed Improvements 

2.1   Contribution on “Signal Parameterization” 

One drawback of the classical LPC predictors is that there is just one parameter that 
can be set up: the prediction order (or vector dimension of the input vectors). Using a 
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nonlinear predictor there is more feasibility and better results, because linear models 
are optimal just for Gaussian signals, that it is not the case of speech signals. Another 
advantage of nonlinear models for (instance neural networks) is that they can inte-
grate different kinds of information. They can use “hints” in order to improve the ac-
curacy, etc. For this reason we propose, in addition to the speech samples, the use of 
delta parameters. This kind of information has been certainly useful for speaker rec-
ognition [3], where it is found that instantaneous and transitional representations are 
relatively uncorrelated, thus providing complementary information for speaker recog-
nition. The computation of the transitional information is as simple as the first order 
finite difference. This transitional information is also known as delta parameters. 

2.2   Contributions on “Decision” 

The combination of several predictors is similar to the Committee machines strategy 
[7]. If the combination of experts were replaced by a single neural network with a 
large number of adjustable parameters, the training time for such a large network is 
likely to be longer than for the case of a set of experts trained in parallel. The expecta-
tion is that the differently trained experts converge to different local minima on the er-
ror surface, and overall performance is improved by combining the outputs of each 
predictor. Different predictors can be combined, being the result of the same architec-
ture, with the same training vectors and algorithm, but different initialization weights 
and biases. In speaker recognition, this strategy provides improved security [8-10]. 

3   Experimental Results 

The experiments have been done using the same database of our previous work on 
nonlinear speech coding [8]. We have encoded eight sentences uttered by eight differ-
ent speakers (4 males and 4 females). 

3.1   Predictor Based on Radial Basis Functions 

The RBF network consists on a Radial Basis layer of S neurons and an output linear 

layer. The output of ith Radial Basis neuron is ( )i i iR radbas w x b= − × , where x  is 

the L dimensional input vector, ib  is the scalar bias or spread ( ) of the Gaussian, iw  

is the L dimensional weight vector of the Radial Basis neuron i, also known as center, 

and the transfer function is [ ] 2nradbas n e−= . 

In our case, the output is one neuron. We have used two different training  
algorithms: 

RBF-1: 
The variance is manually setup in advance. Thus, it is one parameter to fix. The algo-
rithm iteratively creates a radial basis network one neuron at a time. Neurons are 
added to the network until the maximum number of neurons has been reached. At 
each iteration, the input vector that results in lowering the network error the most, is 
used to create a radial basis neuron. 
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RBF-2: 
The weights are all initialized with a zero mean, unit variance normal distribution, 
with the exception of the variances, which are set to one. The centers are determined 
by fitting a Gaussian mixture model with circular covariances using the EM algo-
rithm. (The mixture model is initialized using a small number of iterations of the K-
means algorithm). The variances are set to the largest squared distance between cen-
ters. The hidden to output weights that give rise to the least squares solution are de-
termined using the pseudo-inverse. 

3.2 Predictive Speech Coding 

We have used an ADPCM scheme with an adaptive scalar quantizer based on multi-
pliers [8]. The number of quantization bits is variable between Nq=2 and Nq=5, that 
correspond to 16 kbps and 4 0kbps (the sampling rate of the speech signal is 8 kHz). 
We have used a prediction order L=10 

3.3 Experiments with Algorithm RBF-1 

In order to setup the RBF architecture, we have studied the relevance of two parame-
ters: spread (variance) and number of neurons. First, we have evaluated the SEGSNR 
for an ADPCM speech coder with RBF prediction and adaptive quantizer of 4 bits, as 
function of the spread of the Gaussian functions. 
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Fig. 1. RBF-1, left: SEGSNR vs spread for 50 neurons; right: SEGSNR vs number of neurons 
for spread=0.22 

Figure 1, on the left, shows the results using one sentence, for spread values rang-
ing 0.011 to 0.5 with an step of 0.01 and S=50 neurons. It also shows a polynomial in-
terpolation of third order, with the aim to smooth the results. Based on this plot, we 
have chosen a spread value of 0.22. Using this value, we have evaluated the relevance 
of the number of neurons. Figure 3, on the center, shows the results using the same 
sentence and a number of neurons ranging from 5 to 100 with a step of 5. This plot 
also shows an interpolation using a third order polynomial. Using this plot we have 
chosen an RBF architecture with S=20 neurons. If the number of neurons (and/ or the 
spread of the guassians) is increased, there is an overfit (over parameterization that 
implies a memorization of the data and a loose of the generalization capability). 
The use of delta parameters can be seen in figure 2. 
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Fig. 2. RBF scheme using delta parameters 

Figure 3 shows the results in the same conditions than figure 1, but adding delta 
parameters. Comparing figures 1 and 3 it is clear that the use of delta information can 
improve the SEGSNR, even without an increase of the number of centers. 
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Fig. 3. RBF-1, delta parameters left: SEGSNR vs spread for 20 neurons; right: SEGSNR vs 
neurons for spread=0.22 
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Fig. 4. SEGSNR vs number of neurons for RBF-2 trained with 10 epochs. Left: without delta 
parameters, right: with delta parameters. 
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Table 1. SEGSNR for ADPCM with several predictors 

 RBF-1 (spread=0.22) RBF-1 
(spread=0.4) 

RBF-2 

Parameterization → x  x + Δ  x  x + Δ  x  x + Δ  

Nq m σ m σ m σ m σ m σ m σ 

2 11.65 7.63 10.94 7.21 12.05 8.88 12.21 8.36 13.75 5.96 14.05 5.78 
3 18.40 6.56 18.99 6.13 19.18 7.94 19.17 7.71 20.23 6.41 20.60 6.22 
4 23.69 6.12 23.40 6.05 24.33 7.20 24.47 6.99 25.35 6.57 25.69 6.63 
5 28.22 6.34 28.13 6.14 29.16 7.28 29.29 6.95 30.22 6.90 30.42 6.86 

3.4   Experiments with Algorithm RBF-2 

Comparing figures 1 and 3 it can be seen that the system with delta parameters 
achieves and improvement without an increase of the number of neurons (centers), 
for the whole range of spreads and number of neurons. Anyway, the algorithm needs 
the setup of the spread. In order to avoid this, we can use the algorithm RBF-2 de-
scribed before, that overcomes this drawback. 

Figure 4 shows the obtained results for RBF-2 and the architecture of figure 2. 
Table 1 shows the results for RBF-1 (with spread=0.4), RBF-2 and a committee 

RBF-1+RBF-2 with and without delta parameters. 

Table 2. SEGSNR for ADPCM with several combined predictors 

 Combined 
RBF-1 spread=0.22+RBF2

Combined 
RBF-1 spread=0.4+RBF2 

Parameterization → x  x + Δ  x  x + Δ  

Nq m σ m σ m σ m σ 

2 13.46 6.58 13.66 6.12 13.57 7.27 13.88 6.90 
3 19.97 6.13 20.05 5.80 20.21 7.02 20.60 6.56 
4 25.19 6.18 25.15 6.00 25.52 6.87 25.69 6.80 
5 29.91 6.43 29.87 6.35 30.22 7.03 30.42 6.92 
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Abstract. Some well known theoretical results concerning the universal
approximation property of MLP neural networks with one hidden layer
have shown that for any function f from [0, 1]n to �, only the output
layer weights depend on f . We use this result to propose a network
architecture called the predictive Kohonen map allowing to design a new
speech features extractor. We give experimental results of this approach
on a phonemes recognition task.

1 Introduction

Most of the speech recognition systems require in the very first stage to model the
short-term spectrum of the signal (typically windows from 10 to 20 ms). MFCC
parameters (Mel Frequency Cepstrum Coding) are for a long time used because
of their robustness and of the quality of their statistical distribution. Authors as
Hermansky [1] however pointed out the importance to revisit the stage of feature
extraction. He proposed to use the more recent perceptual auditive models such
as the PLP and RASTA-PLP. Instead of using directly the short-term spectrum
as for MFCC, one can approximate it by parametric approaches like it is done in
the well-known LPC (Linera Predictive Coding). Usually these approximations
are based on linear assumptions of the speech production model (i.e. vocal tract).

Discriminative Models. One drawback of the NPC parameters, inherited
from LPC parameters, is their lack of discrimination. In fact, they are more
adapted to speech coding and synthesis applications. Juang and Katigiri (1992)
showed that a reinforcement of the discriminant property can be obtained by
adapting the features extraction to the classification task. For example, Biem
and Katagiri [6] proposed to estimate the optimal spectral width of the MFCC
filters bank during the classifier training stage. Similar ideas have been used to
make improvements of the NPC coder. Two new versions of the coder were thus
proposed (DFE-NPC and LVQ-NPC). They were tested on phonemes recognition
[7] and speaker recognition [8].

Unsupervised Models. Some applications (for example the segmentation of
unknown speakers in radio broadcast news) do not provide classes membership

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 793–798, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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information (the speakers). An alternative consists in using unsupervised algo-
rithms. We propose in this article a new unsupervised version of the coder called
SOM-NPC. The output layer cells are organized according to a topological map
called topological predictive map. We show by experiments that a specialization
of the output layer weights is obtained by self-organization, according to the
membership class of the input signals.

2 SOM-NPC Parameters

In 1957, Kolmogorov proved with its superposition theorem (13th Hilbert prob-
lem refutation) that every continuous function f from En to � defined on the
n-dimensional Euclidean unit cube En and with range on the real line � can be
represented as a sum of continuous functions:

f(x1, . . . , xn) =
2n+1∑
q=1

φq(
n∑

p=1

ψpq(xp)) (1)

Hecht-Nielsen [9] recognized that this specific format of Kolmogorov’s superpo-
sitions can be interpreted as a feedforward neural network with a hidden layer
that computes the variables yq =

∑n
p=1 ψpq(xp). This suggestion, has been crit-

icized by Poggio and Girosi [10] for several reasons, one being that applying
Kolmogorov’s theorem would require the learning of nonparametric activation
functions. However, others similar result have been obtained by the use of func-
tional analysis theorems [11]. What makes Hecht-Nielsen’s network particularly
attractive for us is that the hidden layers are fixed independently of any func-
tion f , so that in theory this part of the neural network is trained once for n
(It was demonstrated by Kurkova (1992), Sprecher (1993) and Katssura (1994)
and others that there are universal hidden layers that are independant even of
n). The NPC features extractor is builded from this principle : only the output
layer weights are the feature vector. The remaining problem is then to estimate
the hidden layer weights. Four estimation methods have been already proposed
which are the NPC, NPC-2, DFE-NPC and LVQ-NPC. The proposed one here
has the advantage of being unsupervised and clearly puts in obviousness the
output weights specialization.

2.1 SOM-NPC Coder Definition

Following now the Lapedes and Farber [2] model, one can see the NPC encoder
as a layered neural network trained to predict time series. For a given signal
frame m generated by an unknown non linear operator f , it is trained from
examples of pairs of xk = [yk−1, yk−2, . . . , yk−λ]
 input vectors and yk output
samples, while minimizing the mean square error:

Qm(Ω, a) =
1
2

K∑
k

(yk − FΩ,a(xk))2 (2)
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where FΩ,a is the non linear λ dimensional function realized by the neural net-
work with parameters noted Ω (first layer weights) and a = [a1, . . . , aN ]
 (out-
put layer weights) including sigmoidal node functions. More precisely, FΩ,a can
be viewed as the composition of two functions GΩ (corresponding to the network
first layer) and Ha (corresponding to the network output layer) such that:

FΩ,a(xk) =
∑

i

aiσ[
∑

j

ωijyk−j ] = GΩ ◦Ha(xk) (3)

The NPC coding needs two computing stages. 1) the parameters adjustment stage
which consists in the learning of the weights of the first layer Ω once a time;
2) the features extraction stage which occurs at every signal frame coding: only
the a weights are learned while the hidden layer weights (issued from the first
stage) remain fixed. The prediction error which must be minimized over all the
sample vectors xk of the frame m is then given by : Qm(a) =

∑
k(yk−Ha(zk))2

with zk = GΩ(xk), using a standard multidimensional optimisation method, e.g.
steepest descent (error back propagation).

2.2 NPC Distance

The first stage (first layer weights learning), which is unsupervised in our case,
is done by defining a set of predictive output cells organized on a 2 dimension
map. Because the comparison between patterns from the input signals space
and vectors from the second layer weights space is not immediate, we need to
define a specific distance. The NPC distance between two signal frames l and
m is defined as the Itakura’s distance measure was in the framework of linear
prediction techniques [7]:

dNPC
Ω (l, m) = log

Qm(al)
Qm(am)

(4)

(4) gives the ratio of the frame m prediction error using the frame l NPC pa-
rameters al and the same frame prediction error, but using the frame m NPC
parameters am. When applying the m signal frame to the NPC (for a given Ω)
with its adapted coding coefficients am, the output residual error Qm(Ω, am) is
minimal. On the other hand, when applying the same signal to the NPC with the
adapted coding coefficients al of the l signal frame, the residual error Qm(Ω, al)
is not minimal and one obtains Qm(Ω, al) ≥ Qm(Ω, am). For l = m, one has
dΩ(l, m) = 0. Let us note that dNPC

Ω (l, m) is a not a true distance since it is not
symetrical.

2.3 First Layer Weight Training

One define a network structure with L output cells on a 2D map with a lo-
cal neighborhood V σ (fig. 1). The learning algorithm is that of a traditional
Kohonen map which one would have replaced the Euclidean distance in the in-
put space by the NPC distance in the input signal space. The algorithm is as
follows:
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For all the training frames m :

1) finding the winner neuron l∗ of the map such that :

l∗ = arg min
l=1,...,L

{log
Qm(al)
Qm(am)

} = arg min
l=1,...,L

{Qm(al)} (5)

2) updating the winner neuron and its neighbors weights such as to minimize
the dNPC

Ω (l∗, m) distance (this is equivalent to minimize the square predic-
tion error) :

Qm(a1,...,L) =
L∑
l

∑
k(m)

(yk −GΩ ◦Hal
(xk))2V σ(l∗, l) (6)

were V σ(l, l∗) = e−
d(l,l∗)

2σ is the neighborhood function (a gaussian low in our
case, d(l, l∗) being the length of the shortest way between l and l∗ in the map
and σ the standard deviation). σ is a decreasing function of the learning time
such that σ(q) = [σf

σi
]

1
N σ(q − 1) where σi and σf are the initial and the final

imposed values of the standard deviation and N the learning iteration number.

xk( )F a, lΩ

x k( )F a, l*Ω
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Fig. 1. NPC-K coder
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2.4 Experimental Results

We built three phoneme bases each extracted from the Darpa-TIMIT speech
database. The first base groups four classes of voiced phonemes (vowels) very
commonly used: /aa/, /ae/, /ey/ and /ow/. the second and the third bases
group two series of phonemes : /b/,/d/,/g/ (voiced plosives) and /p/,/t/,/k/
(unvoiced plosives). Those phonemes are frequently used and simultaneously
difficult to process. We used the two first Dialect Regions : DR1 (see table 1)
for the training set of both the SOM-NPC first layer estimation and the MLP
weights estimation, DR2 for the test set.

We trained 3 SOM-NPC coders of 16 inputs, 16 hidden cells and 8× 8 = 64
predictive cells. After 50 training epochs (for example each epoch means 11701
frames presented to the network for the first vowels base) we then obtained
the map cells labelling in table 2. A map cell is labelled according to the most
frequently winner classe. The coder can be then used as a phonemes classifier.
The number of cells sharing the same label depends on the signal class complexity
but also of the ratio of the corresponding frames used for the training (see the

Table 1. Phoneme training bases

vowels voiced plosives unvoiced plosives
frames 11701 883 3223
phones /aa/ /ae/ /ey/ /ow/ /b/ /d/ /g/ /p/ /t/ /k/
frames 2924 4600 2161 2016 258 312 313 623 1100 1510

% 24% 39% 18% 17% 29% 35% 35% 19% 34% 46%
cells (/64) 13 32 13 6 14 32 18 19 34 46

% 20.3% 50% 20.3% 9.3% 22% 50% 28% 15.6% 53.1% 31.2%

Table 2. Map cells labelling for the 3 phonemes bases and phonemes recognition rates

d d d d d g g g
d d d d d b g g
d d d d d b g g
d d d d g b g g
g d d d d d g g
d d d b d d g g
d b d b b b b b
d b b b g g g b

q q q q q q q t
q q q q q q p t
q q p t t t t t
q p p p t t t t
p q p p t t t t
p q t t t t t t
p q q t t t t t
t t t t t t t t

ow ow aa ae ae ae ae ey
ow aa aa aa ae ae ae ey
ow aa aa aa ae ae ey ey
ow ae aa aa ae ae ey ey
aa ae ae ae ae ae ae ey
aa aa ae ae ae ae ey ey
ow ae ae ae ae ae ey ey
aa ey ey ae ae ae ae ae

classifier data set recognition rate
vowels voiced plosives unvoiced plosives

NPC-K map training set 64% 66% 76%
NPC-K map test set 59% 63% 69%

MLP training set 64% 88% 86%
MLP test set 56% 64% 77%
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table 1). Once the first stage was ended, we computed the SOM-NPC parameters
of the DR1 and DR2 frames. The DR1 features were used to train a 2 layers
MLP as a phoneme classifier (50000 training iterations). We reported on table
2 the recognition rates obtained on the three bases from both the coder and the
MLP classifier. These results and the visible differentiation of the output cells on
the 2D map show that the output layer weights carry really important features
related to the modelized short-term spectrum.

3 Conclusions

We have proposed a predictive self-organizing map architecture which ensure the
unsupervised training of a NPC coder under the assumption that only the second
layer weights carry the modelized signal features. Phoneme feature extraction
experiments given in this article have shown an interesting self-organizing process
of the output cells which seems to confirm the initial assumptions. Our current
works are devoted to the study of an adaptative neighborhood function. We are
also focusing on a non deterministic reading of the predictive map mainly because
the higher levels of speech systems usually need class probability estimation.
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Abstract. In this paper, we carry out two experiments on the TIMIT speech cor-
pus with bidirectional and unidirectional Long Short Term Memory (LSTM) net-
works. In the first experiment (framewise phoneme classification) we find that
bidirectional LSTM outperforms both unidirectional LSTM and conventional Re-
current Neural Networks (RNNs). In the second (phoneme recognition) we find
that a hybrid BLSTM-HMM system improves on an equivalent traditional HMM
system, as well as unidirectional LSTM-HMM.

1 Introduction

Because the human articulatory system blurs together adjacent sounds in order to pro-
duce them rapidly and smoothly (a process known as co-articulation), contextual infor-
mation is important to many tasks in speech processing. For example, when classifying
a frame of speech data, it helps to look at the frames after it as well as those before —
especially if it occurs near the end of a word or segment. In general, recurrent neural
networks (RNNs) are well suited to such tasks, where the range of contextual effects is
not known in advance. However they do have some limitations: firstly, since they pro-
cess inputs in temporal order, their outputs tend to be mostly based on previous context;
secondly they have trouble learning time-dependencies more than a few timesteps long
[8]. An elegant solution to the first problem is provided by bidirectional networks [11,1].
In this model, the input is presented forwards and backwards to two separate recurrent
nets, both of which are connected to the same output layer. For the second problem, an
alternative RNN architecture, LSTM, has been shown to be capable of learning long
time-dependencies (see Section 2).

In this paper, we extend our previous work on bidirectional LSTM (BLSTM) [7]
with experiments on both framewise phoneme classification and phoneme recognition.
For phoneme recognition we use the hybrid approach, combining Hidden Markov Mod-
els (HMMs) and RNNs in an iterative training procedure (see Section 3). This gives us
an insight into the likely impact of bidirectional training on speech recognition, and also
allows us to compare our results directly with a traditional HMM system.

2 LSTM

LSTM [9,6] is an RNN architecture designed to deal with long time-dependencies. It
was motivated by an analysis of error flow in existing RNNs [8], which found that long

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 799–804, 2005.
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time lags were inaccessible to existing architectures, because the backpropagated error
either blows up or decays exponentially.

An LSTM hidden layer consists of a set of recurrently connected blocks, known as
memory blocks . These blocks can be thought of a differentiable version of the memory
chips in a digital computer. Each of them contains one or more recurrently connected
memory cells and three multiplicative units - the input, output and forget gates - that
provide continuous analogues of write, read and reset operations for the cells. More
precisely, the input to the cells is multiplied by the activation of the input gate, the output
to the net is multiplied by the output gate, and the previous cell values are multiplied by
the forget gate. The net can only interact with the cells via the gates.

Some modifications of the original LSTM training algorithm were required for bidi-
rectional LSTM. See [7] for full details and pseudocode.

3 Hybrid LSTM-HMM Phoneme Recognition

Hybrid artificial neural net (ANN)/HMM systems are extensively documented in the
literature (see, e.g. [3]). The hybrid approach benefits, on the one hand, from the use of
neural networks as estimators of the acoustic probabilities and, on the other hand, from
access to higher-level linguistic knowledge, in a unified mathematical framework.

The parameters of the HMM are typically estimated by Viterbi training [10], which
also provides new targets (in the form of a new segmentation of the speech signal) to
re-train the network. This process is repeated until convergence. Alternatively, Bourlard
et al. developed an algorithm to increase iteratively the global posterior probability
of word sequences [2]. The REMAP algorithm, which is similar to the Expectation-
Maximization algorithm, estimates local posterior probabilities that are used as targets
to train the network.

In this paper, we implement a hybrid LSTM/HMM system based on Viterbi training
compare it to traditional HMMs on the task of phoneme recognition.

4 Experiments

All experiments were carried out on the TIMIT database [5]. TIMIT contain sentences
of prompted English speech, accompanied by full phonetic transcripts. It has a lexicon
of 61 distinct phonemes. The training and test sets contain 4620 and 1680 utterances
respectively. For all experiments we used 5% (184) of the training utterances as a vali-
dation set and trained on the rest.

We preprocessed all the audio data into frames using 12 Mel-Frequency Cepstrum
Coefficients (MFCCs) from 26 filter-bank channels. We also extracted the log-energy
and the first order derivatives of it and the other coefficients, giving a vector of 26
coefficients per frame in total.

4.1 Experiment 1: Framewise Phoneme Classification

Our first experimental task was the classification of frames of speech data into
phonemes. The targets were the hand labelled transcriptions provided with the data,



Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition 801

Reverse Net Only

Forward Net Only

sil sil f ay vsil w ah n ow

Bidirectional Output

Target

one oh five

sil

Fig. 1. A bidirectional LSTM net classifying the utterance ”one oh five” from the Numbers95 cor-
pus. The different lines represent the activations (or targets) of different output nodes. The bidi-
rectional output combines the predictions of the forward and reverse subnets; it closely matches
the target, indicating accurate classification. To see how the subnets work together, their contri-
butions to the output are plotted separately (“Forward Net Only” and “Reverse Net Only”). As
we would expect, the forward net is more accurate. However there are places where its substitu-
tions (‘w’), insertions (at the start of ‘ow’) and deletions (‘f’) are corrected by the reverse net. In
addition, both are needed to accurately locate phoneme boundaries, with the reverse net tending
to find the starts and the forward net tending to find the ends (‘ay’ is a good example of this).

and the recorded scores were the percentage of frames in the training and test sets for
which the output classification coincided with the target.

We evaluated the following architectures on this task: bidirectional LSTM
(BLSTM), unidirectional LSTM (LSTM), bidirectional standard RNN (BRNN), and
unidirectional RNN (RNN). For some of the unidirectional nets a delay of 4 timesteps
was introduced between the target and the current input — i.e. the net always tried to
predict the phoneme of 4 timesteps ago. For BLSTM we also experimented with dura-
tion weighted error, where the error injected on each frame is scaled by the duration of
the current phoneme.

We used standard RNN topologies for all experiments, with one recurrently con-
nected hidden layer and no direct connections between the input and output layers.
The LSTM (BLSTM) hidden layers contained 140 (93) blocks of one cell in each, and
the RNN (BRNN) hidden layers contained 275 (185) units. This gave approximately
100,000 weights for each network.
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All LSTM blocks had the following activation functions: logistic sigmoids in the
range [−2, 2] for the input and output squashing functions of the cell , and in the range
[0, 1] for the gates. The non-LSTM net had logistic sigmoid activations in the range
[0, 1] in the hidden layer.

All nets were trained with gradient descent (error gradient calculated with Back-
propagation Through Time), using a learning rate of 10−5 and a momentum of 0.9. At
the end of each utterance, weight updates were carried out and network activations were
reset to 0.

As is standard for 1 of K classification, the output layers had softmax activations,
and the cross entropy objective function was used for training. There were 61 output
nodes, one for each phonemes At each frame, the output activations were interpreted
as the posterior probabilities of the respective phonemes, given the input signal. The
phoneme with highest probability was recorded as the network’s classification for that
frame.

4.2 Experiment 2: Phoneme Recognition

A traditional HMM was developed with the HTK Speech Recognition Toolkit (http://
htk.eng.cam.ac.uk/). Both context independent (mono-phone) and context dependent
(tri-phone) models were trained and tested. Both were left-to-right models with three
states. Models representing silence (h#, pau, epi) included two extra transitions: from
the first to the final state and vice versa, in order to make them more robust. Observation
probabilities were modelled by eight Gaussian mixtures.

Sixty-one context-independent models and 5491 tied context-dependent models
were used. Context-dependent models for which the left/right context coincide with
the central phone were included since they appear in the TIMIT transcription (e.g. “my
eyes” is transcribed as /m ay ay z/). During recognition, only sequences of context-
dependent models with matching context were allowed.

In order to make a fair comparison of the acoustic modelling capabilities of the
traditional and hybrid LSTM/HMM, no linguistic information or probabilities of partial
phone sequences were included in the system.

For the hybrid LSTM/HMM system, the following networks (trained in the previ-
ous experiment) were used: LSTM with no frame delay, BLSTM and BLSTM trained
with weighted error. 61 models of one state each with a self-transition and an exit tran-
sition probability were trained using Viterbi-based forced-alignment. Initial estimation
of transition and prior probabilities was done using the correct transcription for the
training set. Network output probabilities were divided by prior probabilities to obtain
likelihoods for the HMM. The system was trained until no improvement was observed
or the segmentation of the signal did not change. Due to time limitations, the networks
were not re-trained to convergence.

Since the output of both HMM-based systems is a string of phones, a dynamic
programming-based string alignment procedure (HTK’s HResults tool) was used to
compare the output of the system with the correct transcription of the utterance. The
accuracy of the system is measured not only by the number of hits, but also takes into
account the number of insertions in the output string (accuracy = ((Hits - Insertions) /
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Total number of labels) x 100%). For both the traditional and hybrid system, an insertion
penalty was estimated and applied during recognition.

5 Results

From Table 1, we can see that bidirectional nets outperformed unidirectional ones in
framewise classification. From Table 2 we can also see that for BLSTM this advantage
carried over into phoneme recognition.

Overall, the hybrid systems outperformed the equivalent HMM systems on
phoneme recognition. Also, for the context dependent HMM, they did so with far fewer
trainable parameters.

The LSTM nets were 8 to 10 times faster to train than the standard RNNs, as well
as slightly more accurate. They were also considerably more prone to overfitting, as
can be seen from the greater difference between their training and test set scores in
Table 1. The highest classification score we recorded on the TIMIT training set with a
bidirectional LSTM net was 86.4% — almost 17% better than we managed on the test
set. This degree of overfitting is remarkable given the high proportion of training frames
to weights (20 to 1, for unidirectional LSTM). Clearly, better generalisation would be
desirable.

Using duration weighted error slightly decreased the classification performance of
BLSTM, but increased its recognition accuracy. This is what we would expect, since its
effect is to make short phones as significant to training as longer ones [4].

Table 1. Framewise Phoneme Classification

Network Training Set Test Set Epochs
BLSTM 77.4% 69.8% 21
BRNN 76.0% 69.0% 170

BLSTM Weighted Error 75.7% 68.9% 15
LSTM (4 frame delay) 77.5% 65.5% 33
RNN (4 frame delay) 70.8% 65.1% 144

LSTM (0 frame delay) 70.9% 64.6% 15
RNN (0 frame delay) 69.9% 64.5% 120

Table 2. Phoneme Recognition Accuracy for Traditional HMM and Hybrid LSTM/HMM

System Number of parameters Accuracy
Context-independent HMM 80 K 53.7 %
Context-dependent HMM >600 K 64.4 %

LSTM/HMM 100 K 60.4 %
BLSTM/HMM 100 K 65.7 %

Weighted error BLSTM/HMM 100 K 66.9 %
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6 Conclusion

In this paper, we found that bidirectional recurrent neural nets outperformed unidirec-
tional ones in framewise phoneme classification. We also found that LSTM networks
were faster and more accurate than conventional RNNs at the same task. Furthermore,
we observed that the advantage of bidirectional training carried over into phoneme
recognition with hybrid HMM/LSTM systems. With these systems, we recorded bet-
ter phoneme accuracy than with equivalent traditional HMMs, and did so with fewer
parameters. Lastly we improved the phoneme recognition score of BLSTM by using a
duration weighted error function.
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Abstract. In this paper, we present a new method of language detection. This 
method is based on language pair discrimination using neural networks as clas-
sifier of acoustic features. No acoustic decomposition of the speech signal is 
needed. We present an improvement of our method applied to the detection of 
English for a signal duration of less than 3 seconds (Call Friend corpus), as well 
as a comparison with a neural predictive model. The obtained results highlight 
scores ranging from 74.7% to 76.9% according to the method used. 

1   Introduction 

Language detection is the process which decides if a language is spoken or not in a 
speech stream. It is a part of the Language Identification (LID) which determines the 
language spoken from a set of given language (English, Farsi, French, German…).  
    LID takes benefit of the interest for multilingual systems, which target the interna-
tional call center for example. The techniques usually used in LID research are based 
on spectral parameters distribution modeling and/or language modeling, by n-gram 
for the phoneme series. The phonotactic approach is mostly used, observing the pho-
neme series to establish a statistical model, like the model proposed by Zissman [1]. It 
is based on the Parallel Phone Recognition followed by Language Modeling 
(PPRLM), which needs Acoustic-Phonetic Decoders (APD). This imposes a heavy 
constraint, because APDs need phonetically labeled corpus which are only available 
for few languages. Techniques have been developed which bypass this problem, for 
example P. Torres [2] replaces phonemes by automatically created acoustic units. J. 
Farinas [3] uses also a creation of pseudo-phonemes, and in the past Y. Muthusamy 
[4] used a technique to generate automatically phonetic macro-class. Unlike the 
precedents authors, W. Wu & C. Kwasny [5] model the speech signal with recurrent 
neural networks without acoustic units. They make language identification English 
and French, from audio files of 12.5s duration, by acoustic vector series classification.            
    We propose in this paper a method using the concept of acoustic vector series clas-
sification too. It is only based on acoustic discrimination of language between them, 
with neural networks. We present an application of detection of English against 10 
other languages, for phone speech signal of 3 seconds duration. The main objective of 
our method is to obtain a technique that allows to reduce the speech duration required 
for identification in order to give an answer more quickly. As 3 seconds is the shortest 
duration where some results have been published, we chose this duration for our tests 
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for comparison reasons. The detection is based on acoustic discrimination between 
languages. We start from the hypothesis that language information for a large part is 
present in the spectrum. We use several neural networks, each of them discriminates a 
couple of languages. The result of this discrimination is merged by language to pro-
vide first signal detection. The continuation of this paper is cut in five parts, the sec-
ond part describes the corpus used, the third one explains the detection method for a 
language, the fourth presents the predictive model, the fifth shows results obtained, 
and finally we conclude. 

2   The Data Description 

We use the Call Friend (CF) corpus [6]. This corpus is composed of 12 languages and 
3 dialects but we use only 11 languages to be compliant with previous research (Eng-
lish, Farsi, French, German, Hindi, Japanese, Korean, Mandarin, Spanish, Tamil and 
Vietnamese). For each of them 120 speakers have spoken with a friend, their subjects 
were unbounded. Our objective is to work on sentences of less than 3 seconds dura-
tion, thus we perform a transformation of sentences. All 11 languages sentences have 
been divided into sentence segments of 3s duration. Next, we distribute these parts 
among 3 subsets : learning, development for tuning the system and test. The ratio of 
these subsets are respectively 3/5, 1/5, 1/5. Since the Call Friend corpus contains 
many hours of speech for each language, each part of the subset is significant.  

3   English Detection Process 

Our first goal is to detect the English language among 11 languages. To do that we 
use neural nets, each of them identifies English versus an other language for example 
English versus French. Thus we are able to discriminate English from the remainder 
of corpus, by merging discrimination coming from all the networks. Acoustic vectors 
are then processed by the 10 networks, each of them giving as output a discriminating 
signal for a language pair. These signals, computed for all the acoustic vectors ex-
tracted from 3s speech duration are then used to calculate an average. Thus we obtain 
10 average values (each of them corresponding to a network discriminating a lan-
guage pair) which are merged to give a global English detection signal. 

3.1   The Front End Processing 

We used a detector of speech and we perform a normalization of speech before the 
Mel Frequency Cepstral Coefficient (MFCC) processing to generate acoustic vectors 
of dimension 36 (12+12Δ+12ΔΔ). This front end is basically use in language recogni-
tion. We use the MFCC processing on 30ms of signal with an overlap of 50%.  

3.2   Discriminating Neural Nets 

At this step we train a neural net for each pair of language: (English vs. another one) 
on MFCC acoustic vectors. Each of the networks are multi-layer perceptron (MLP) 
with sigmoidal activation functions. They are composed with 36 inputs, 72 hidden 
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cells and two outputs (one for each language). The learning algorithm used was the 
stochastic back propagation algorithm with mean square criterion, to increase the 
learning speed [7]. The development subset is used to prevent overlearning. 

3.3   Merging Local Discrimination for English Detection 

At this stage of the model, we discriminate only pair of  language. To detect English 
we proceed to a merging between outputs of networks. The process is represented on 
Fig. 1. In the figures and tables below, we name each language by its two first letters 
(EN : English).       

 

Fig. 1. Scheme of English detector 

    Following the first pair of language detection step, the goal of this merging is to 
emphasize the detection of English from each networks in the time. Because each 
network gives a detection every 30ms, while sentence duration is 3s, the merging is 
done in two steps: “step 2” for the time (output networks are merged to compute the 
average over the 3s duration signal) and “step 3” to convert language pair identifica-
tion into English detection . 
    Since first step, the process converts the speech signal into acoustic vectors with 
the processing MFCC. These acoustic vectors are evaluated by each neural networks. 
Series of acoustic vectors produces series of neural networks outputs. We have im-
proved the 2nd step, by summing the image of the neural network output by rejection 
graph of this neural net computed on evaluation corpus, that allows to take into ac-
count all outputs. Let               be the image of English output of the network: English 
versus Farsi (En vs. FA), when presenting the acoustic vector q as input. We compute 
the output of the English detector as:  
 

 
 
               (1) 
 

 
Where θ is a threshold determined to induce the best score on the learning corpus. 

4   Predictive Model 

In order to compare the predictive model to our model with the intension to improve 
the results through time, we have trained MLP to predict the next acoustic vector, 
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with a prediction order of two. The acoustic vector for this model is composed by 12 
MFCC coefficients for 30ms of signal. Thus we create for each language an MLP 
comprising 24 inputs, 25 hidden cells, and 12 outputs. We trained the networks with 
back propagation algorithm and with the Modelisation Error Ration (MER) criterion 
[8] ( F in eq. (5)). The coefficient  is used for French language modeling and the 
coefficient (1- ) is applied to the discriminated language (English). The development 
subset is used to stop the learning. 

                                                            . (2) 

Each network learns one language and at the same time performs a discrimination 
with another one. Thus we need two networks to replace a discriminating network, 
one learns English and discriminates French and the second one learns French and 
discriminates English (Fig. 2). Through time, we sum the error of prediction of each 
network. We choose the network having the smallest error of prediction to identify the 
language. We use the Euclidean distance to compute the prediction error of networks. 
The next section compares them with our model. 

 
 
 
 
 
 

Fig. 2. Scheme of English and French detector with prediction 

5   Experimentation 

We present in this section the experimental results obtained on pair language identifi-
cation with our model and with the predictive model. Table 1 presents the scores of 
identification obtained on the test corpus for each pair of language. The learning is 
done on acoustic vectors which represents a duration of  30ms, currently used to de-
tect phoneme. For instance, we obtained on the first network (see the EN vs. FA col-
umn of table 1) an English identification score of 62.5% (62.5% of the 30ms English 
frames have been recognized as English language frames) and a Farsi identification 
score of 62.3%. Thus the average identification score of English/Farsi detector was 
62.4%. The results involve that the average identification score is 66.2%. These re-
sults are encouraging because they were obtained from decisions based on frames of 
only 30ms duration. They are improved up to 76.9% by considering sentences of 3s 
duration and using the whole model defined by eq. (2) and (3).  

Table 1. Scores of language pair identification in percent 
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5.1   Results of English Detection Through Time   

We have performed a test to compare the two temporal fusion techniques (CF cor-
pus). The first temporal fusion technique is the average of network outputs. The sec-
ond is the average of network output images by rejection graph. We obtained a gain 
of  2.3% on sentences of 3s duration for the English detection against the 10 other 
languages as the Table 2 shows. We have placed in this Table, the results of output 
average technique developed with OGI corpus [9],[10], to carry out the comparison 
with preceding work. 

Table 2. Scores of English in percent 

 
 

 
    If we compare the results obtained with the OGI corpus, we have improved our 
results by 3.8%. This increase is due to a better front-end processing and to the use of 
rejection graph. The corpus is different but its languages are matching those of the 
OGI corpus previously used. One of the others significant characteristic of the model 
is its response time which we present with the Fig. 3 as those of the predictive net-
work and the discriminating network.  

 
 
 
 
 
 
 

 

Fig. 3. Response time for: the detection of English (En_vs_OTHERS), one of the neural net-
work use in the model (en_vs_fr) and for the predictive model (en_vs_fr_rnp_mer) 

Those graphs show us that the response time is very short, less than 3s, at 1s we are 
near to the maximum score of detection, that’s very interesting because it allows us to 
reduce the time needed to detect without accuracy loss. We also see that the graph of 
the predictive model is slightly below the graph of the discriminating network, not 
increasing our scores, implying that the information type modeled by the two methods 
is the same.   

6   Conclusion 

We have proposed an improvement of the method based on neural networks to detect 
one language among several others and tested it on English detection. The results 
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obtained with our design allow us to detect language very fast in approximately 1s. 
The scores English of detection is less than the best detection systems which are 
around 81% [11], [12] of detection for 3s of speech. Nevertheless the work presented 
here is the first stage of the complete model [9]. The second stage improves the first 
with a gain about 4.5% then we hope obtain a final detection rate at least 81.4%. This 
score is near from the best systems but with a speech duration reduced from 3s to 1s. 
Moreover, The modeling technique includes two interesting properties: the first is the 
real time operation on a P4 1.7Ghz, and the second is the representation of every 
language with a speech corpus without a phonetic labeling. Unfortunately the predic-
tive model cannot be use to improve the model as seen in the previous section.      
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Abstract. The Semantic Web is based on technologies that make the content of 
the Web machine-understandable. In that framework, ontological knowledge 
representation has become an important tool for the analysis and understanding 
of multimedia information. Because of the distributed nature of the Semantic 
Web however, ontologies describing similar fields of knowledge are being de-
veloped and the data coming from similar but non-identical ontologies can be 
combined only if a semantic mapping between them is first established. This 
has lead to the development of several ontology alignment tools. We propose an 
automatic ontology alignment method based on the recursive neural network 
model that uses ontology instances to learn similarities between ontology con-
cepts. Recursive neural networks are an extension of common neural networks, 
designed to process efficiently structured data. Since ontologies are a structured 
data representation, the model is inherently suitable for use with ontologies. 

1   Introduction 

The purpose of the Semantic Web is to introduce structure and semantic content in the 
huge amount of unstructured or semi-structured information available in the Web. 
The central notion behind the Semantic Web is that of ontologies, which describe the 
concepts and the concept relations in a particular field of knowledge. The data associ-
ated with an ontology acquire a semantic meaning that facilitates their machine inter-
pretation and makes them reusable by different systems. However, the distributed 
development of domain-specific ontologies introduces a new problem: in the Seman-
tic Web many independently developed ontologies, describing the same or very simi-
lar fields of knowledge, will coexist. These ontologies will not be identical and will 
present from minor differences, such as different naming conventions, to higher level 
differences in their structure and in the way they represent knowledge. Moreover, 
legacy ontologies will have to be used in combination with new ones.  

For this reason, before being able to combine similar ontologies, a semantic and 
structural mapping between them has to be established. The process of establishing 
such a mapping is called ontology alignment. It will become increasingly significant 
as the Semantic Web evolves, it is already an active research area and several auto-
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matic or semi-automatic ontology alignment tools have been proposed (e.g. [5, 6, 7]). 
Most of the tools rely on heuristics that detect some sort of similarity in the descrip-
tion of the concepts and the structure of the ontology graphs, by using e.g. string and 
graph matching techniques. They usually work at the terminological level of the on-
tologies without taking into account their instances. A different method is proposed in 
[2], where a machine learning methodology is used. The approach is extensional, i.e. 
it exploits the information contained in the ontology instances. For all concepts in the 
ontologies to be aligned, a naïve Bayes classifier is built. The instances of each con-
cept are then presented to the classifiers of the other ontology and, depending on the 
degree of overlap of the classifications, a similarity measure for each concept pair is 
computed. The classifiers do not take into account the structure of the ontologies; this 
is considered at a subsequent stage by integrating a relaxation labelling technique.  

The method we propose follows a similar machine learning approach, but takes di-
rectly into account the structure of the ontologies, by relying on the use of recursive 
neural networks [3], which are a powerful tool for the processing of structured data.  

The rest of the paper is organized as follows: section 2 discusses the basic ideas 
underlying the recursive neural network model, section 3 describes the details of our 
method and presents a simple example, and section 4 discusses future work and  
concludes. 

2   Recursive Neural Networks 

The recursive neural network model was proposed in [3, 8] as an extension to the 
recurrent neural networks, and is capable of efficiently processing structured data. 
The data are represented as labelled directed ordered acyclic graphs (DOAGs), on 
whose structure a neural network (encoding neural network) is repeatedly unfolded. 
Because the representation of the data as DOAGs is in many applications too restric-
tive, some extensions to the initial model have been proposed, that generalize the type 
of graphs on which it can be applied. For example, in [4] the graphs are allowed to 
have labels attached also to their edges. This extension, which we use in our method, 
lifts a significant constraint of the initial model that required the graphs to have a 
maximum, a priori known out-degree as well as an ordering on their out-going edges. 

In the model the data are represented as directed acyclic graphs, each node v  of 
which is assigned a label m

vL  and each edge connecting nodes v  and w  a label 

,
k

v wL . To each node v  an encoding neural network is attached, that computes a 
state vector n

vX  for v . Let ch v  be the set of children of v , p  the cardinality 
of ch v  and chi v  the i -th child of v . The input to the encoding neural network 
of v  is a) a vector, function of the state vectors 

1ch ch,
pv vX X

 
of the node’s chil-

dren and of the corresponding edge labels ,chiv vL , and b) the label vL  of v . The 
encoding neural network is usually an MLP and is identical for all the nodes of the 
graph. The output of the recursive neural network is obtained at the graph’s super-
node, a node from which a path to all other nodes of the graph exists. The output is 
computed by a common neural network applied on the state vector of the super-node. 

The strength of the model is that the state of each node, calculated by the encoding 
neural network and encoded in the state vector, is computed as a function not only of 
the label of the node, but also of the states of all its children. On their turn, the states 
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of the children depend recursively on the states of their respective children. As a re-
sult, the state vector of each node encodes both the structure and the label content of 
the sub-graph that stems from the node. Thus, if a recursive neural network classifier 
is trained appropriately on data represented as graphs of different structures then it 
will be able to identify data similar both in their content and structure. 

3   Neural Extensional Ontology Alignment 

Our method is based on the fact that an ontology can be considered as a graph, with 
the ontology concepts (relations) corresponding to the nodes (edges) of the graph. The 
graph is directed because the ontology relations are in general not symmetric, and 
each node (edge) has a label consisting of the name and the attributes of the corre-
sponding concept (relation). This holds at the terminological level of the ontology.  

At the instance level, there are instances belonging to concepts and pairs of in-
stances connected by relation instances. Thus, if we consider an instance I  of a con-
cept C , then by following the relation instances stemming at I , we obtain a tree that 
consists of I  in its root (root instance), which is connected with nodes that corre-
spond to the instances of the ontology concepts with which I  is related. The tree can 
grow up to n  levels, by recursively following the relation instances of the new nodes 
that are added to the tree. We call this graph an instance tree of level n  of concept C  
for the instance I . Our tool computes similarities between the concepts of two on-
tologies by training and applying a recursive neural network classifier on such in-
stance trees. In detail, the method has as follows: 

Let 2O  be the ontology whose concepts we want to map to the concepts of a simi-
lar ontology 1O , and 1iC , 11,i p , 2iC , 21,i p  be the concepts in 1O  and 2O  
respectively. We first decompose the graph of 1O  (at the terminological level) into a 
set of 1p  sub-graphs, in particular into trees that we call concept trees, one for each 
concept in 1O . Each tree is constructed by setting as its root the concept that it corre-
sponds to and its children are taken to be the concepts that are directly connected to it 
with a relation in the ontology. As in the case of the instance trees we define a maxi-
mum level up to which the tree can grow by recursively following the relations de-
fined for the children that are added to it. In the concept trees we ignore the direction 
of the relations as well as the edges corresponding to hierarchical (is-a) relations. 

A problem that arises while constructing the concept trees is that the graph of the 
ontology in general contains cycles. This obstacle can be overcome by following a 
methodology like the one used in [1] and appropriately expanding the graph into an 
equivalent tree, by traversing it in a specific order and breaking the circles by dupli-
cating the nodes that form them. An example of a concept tree is shown in Fig. 1. 

Once the 1p  concept trees have been constructed, they are used as templates for 
the generation of the instance trees, by assigning a unique instance to each one of 
their nodes. Each concept tree will in general give birth to several instance trees, not 
only because of the several instances available for its root concept (root instances), 
but also because the ontology relations may have cardinalities higher than one. In this 
case, each edge in a concept tree will correspond to several instance pairs. In fact, for 
a particular instance in the role of the root instance, the total number of instance trees 
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that can be produced is equal to the product of the number of instances that can be 
assigned to each node in the corresponding concept tree. In the instance trees we as-
sume that all edges have the same label, i.e. that all the relations are equivalent and 
that all edges have direction towards the root of the tree. 

The instance trees are used as training data in order to build a recursive neural net-
work classifier. The desired output for each instance tree is the concept in 1O  its root 
belongs to. Assuming a two layer perceptron with a linear output activation function 
as the encoding neural network, the state vector of node v is computed as: 

v v vX A X B L C  (1) 

where  is a sigmoid function and q nA , q mB , qC  are parameters 
to be learned and q  is the number of hidden neurons. vL  is the label of the node and 

vX a vector, function of the state vectors of its children. A similar equation holds for 
the neural network that computes the output of the super-node. Since for simplicity 
we have considered all edge labels in the graphs to be the same, we can write for vX : 

ch

ch
1

1
ch i

v

v v
iv

X D X  (2) 

where n nD  is a matrix of parameters. The parameters can be learned by the 
back-propagation through structure algorithm [3]. 

What remains to be defined are the labels vL , which must be descriptive of the in-
stances contents. In the simplest case we can consider as label space the space of the 
attribute values of all instances in 1O  and use as label for each instance its term fre-
quency vector in this space. 
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Fig. 1. Left: A graph representing an ontology of the advertising domain. The sub-graph that 
corresponds to the concept Advertisement and includes the concepts related to it with direct 
relations is marked with thick lines. Right: The corresponding concept-tree of level two. 

After the classifier for the concepts of 1O  has been trained, the same procedure is 
followed for 2O , from which 2p  concept trees and the corresponding instance trees 
are generated. The instance trees of 2O  are presented to the classifier, which classifies 
them to one of the concepts of 1O . Let 2iCt  be the number of instance trees of 2O  
belonging to concept 2iC  and 2 1,i jC Ct  those of them that have been assigned by the 
classifier to concept 1jC . Given that in general several instance trees correspond to 
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the same root instance, the values of 2iCt  and 2 1,i jC Ct  are normalized with respect to 
the number of instance trees that correspond to the same root instance. Then, assum-
ing that the instances that we use are a representative sample of the instance space of 
the two ontologies, we estimate the conditional probabilities:  

2 1

2

,

1 2
ˆ |

i j

i

C C

j i C

t
P C C

t
  ,i j  (3) 

that an instance of 2O  belonging to concept 2iC  is also an instance of 1jC  of 1O . We 
use this probability estimate as the similarity measure 2 1,i js C C  of 2iC  with 1jC . 
Other similar similarity measures can also be computed, like the Jaccard coefficient. 
The final output of the tool is a set of similarity pairs for all concepts 2O  and 1O .  
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Fig. 2. Two ontologies for the TV programs domain. Left: ontology A, Right: ontology B. 

Table 1. Computed similarities for the concepts of ontology B with the concepts of ontology A 

       A 
     B  

Parental  
Guide 

TV  
Program 

Day Schedule Person 
TV 

Station 
Genre 

Actor 0.00 0.06 0.05 0.09 0.59 0.20 0.02 
Presenter 0.01 0.06 0.07 0.02 0.64 0.15 0.04 
Director 0.00 0.14 0.05 0.03 0.48 0.29 0.02 
Owner 0.00 0.03 0.11 0.02 0.68 0.16 0.00 
Series 0.49 0.22 0.05 0.02 0.09 0.08 0.05 
Film 0.31 0.30 0.04 0.07 0.11 0.14 0.01 
Show 0.42 0.19 0.01 0.01 0.10 0.17 0.10 

Schedule 0.02 0.02 0.16 0.65 0.14 0.01 0.02 
Time 0.08 0.36 0.26 0.05 0.15 0.04 0.06 

Station 0.02 0.13 0.15 0.02 0.16 0.50 0.01 
 

    The proposed method has been implemented and tested on small-scale datasets 
with promising initial results. As an example, the similarities of the concepts of the 
two ontologies of Fig. 2 computed by our method are presented in Table 1. The recur-
sive neural network classifier has been trained with instance trees of ontology B of 
level 2, using as label space the stemmed words of the attribute values, excluding 
proper names and numbers. The dataset was taken from [9]. The results are intuitively 
correct; it is however worth noticing that the classifier does not produce very high 
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similarity scores. This reflects the fact that some of the distinctive attributes of the 
domain concepts are distributed over different ontology concepts in the two ontolo-
gies. The recursive neural network classifier takes thus into account such inter-
concept dependencies. Moreover, the classifier performs well with those instances, 
the concept to which they belong can correctly be determined only if the information 
about the instances with which they are related is also considered. For each instance 
this information is provided to the classifier through the corresponding instance tree. 

4   Conclusions 

We described a machine learning ontology alignment tool based on the use of recur-
sive neural networks. Our method exploits the ability of recursive neural networks to 
efficiently process structured data and builds a classifier which is used to estimate a 
distribution-based similarity measure between the concepts of two ontologies. Our 
research is ongoing and we are at the stage of configuring and evaluating our method, 
having some promising initial results. There are several points where the suggested 
method may be improved. Particularly important is the definition of the label space of 
the instance trees. Currently, we use the attribute values, but it is desirable to reduce 
the label space dimensionality by extracting more general labels. For this purpose the 
Wordnet ontology could e.g. be used to map the individual attribute values to more 
general features, moving in this way the attribute values closer to the abstract attrib-
utes they represent and improving the generalization properties of the classifier. 
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Abstract. In this paper we examine the problem of automatic seman-
tic identification of entities in multimedia documents from a computing
point of view. Specifically, we identify as main points to consider the stor-
age of the required knowledge and the computational complexity of the
handling of the knowledge as well as of the actual identification process.
In order to tackle the above we utilize (i) a sparse representation model
for storage, (ii) a novel transitive closure algorithm for handling and
(iii) a novel approach to identification that allows for the specification of
computational boundaries.

1 Introduction

During the last years the scientific community has realized that semantic anal-
ysis and interpretation not only requires explicit knowledge, but also cannot be
achieved solely through raw media processing. For this purpose, multimedia re-
search has now shifted from the query by example approach, where the aim was
to provide meaningful handling and access services directly from the low level
processing of media, to a two step approach including (i) the identification of
high level entities in raw media and (ii) the utilization of this semantic index-
ing towards the offering of more efficient multimedia services. Research efforts in
standardizing the metadata representations of multimedia documents have led to
the MPEG-7 standard which, however, does not suggest methods for automatic
extraction of high level information.

In well-structured specific domains (e.g., sports and news broadcasting),
domain-specific features that facilitate the modelling of higher level semantics
can be extracted (see e.g., [6]). Typically, a priori knowledge representation mod-
els are used as a knowledge base that assists semantic-based classification and
clustering [9]. In [7], for example, the task of bridging the gap between low-level
representation and high-level semantics is formulated as a probabilistic pattern
recognition problem.
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In the proposed paper we aim to deal with the identification of semantic
entities in raw media, focusing on issues related to efficient operation under
computing resources limitations. The aim is to automatically configure the iden-
tification process so as to achieve optimal results, i.e. maximize the relevance of
the retrieved multimedia documents when the amount of available computing re-
sources is constrained. Constraints are directly related to hard bounds regarding
physical memory, processing power and time availability.

These considerations turn to be important due to two major reasons. The first
is that the knowledge base involved in semantic identification procedures naturally
contains a vast amount of items so that even simple operations on its content may
lead to overwhelming the existing computational power and/or memory. The sec-
ond reason is that although retrieval is performed on the basis of semantic entities,
identification of the latter necessarily resorts to quantification of large numbers of
measurable features (syntactic entities) i.e., requires execution of multiple signal
and image processing algorithms. The latter may sum up to an execution cost that
is prohibitive especially for real-time or online scenarios.

2 Knowledge Representation

In order to extract high level (semantic) information from multimedia, low level
(directly measurable) features have to be evaluated and combined with the use of
a properly structured knowledge base [10]. This structure is often called “seman-
tic encyclopedia” and consists of relationships either among semantic entities or
between semantic entities and low level features [2]. For example semantic entity
“planet” can be related with semantic entity “star” while feature “blue color” can
be related with semantic entity “sea”. In most cases such relationships are valid
up to a certain degree, that is, there is an inherent uncertainty and/or degree of
validity associated with them. This makes representation of the aforementioned
relationships by using fuzzy relations a natural choice. Considering the set of both
semantic and syntactic entities as our universe of discourse, the semantic encyclo-
pedia can be modelled as a large fuzzy relation describing the degrees of associa-
tion among the elements of this universe. Using such an encyclopedia, it is possible
to build systems for automatic or semi-automatic identification of semantic enti-
ties in raw media, thus contributing to the bridging of the semantic gap [5].

Even in the case of semantic encyclopedias that are limited to specific the-
matic categories (e.g., sports, politics, etc) the number of included “terms” and
syntactic features may easily reach the order of tens of thousands (in [2], for
example, the universe of discourse contains definitions for 70000 semantic enti-
ties). This alone is prohibitive for the complete representation of the semantic
relations. On the other hand, classical linked list sparse array representations, as
well as hash table approaches, are both inadequate to handle such sizes of data,
the former due to the O(n) access time and the latter due to the augmented
requirements in physical memory. In this work we utilize a novel sparse fuzzy
binary relation model that is based on pairs of AVL trees and provides for both
space efficient storage and time efficient access.



Minimizing Uncertainty in Semantic Identification 819

Specifically, the representation model proposed in order to overcome these
limitations is as follows: a binary relation is represented using two AVL trees ; an
AVL tree is a binary, balanced and ordered tree that allows for access, insertion
and deletion of a node in O(log m) time, where m is the count of nodes in the tree
[1]. If n log n nodes exist in the tree, as will be the case for the typical sparse
relation, then the access, insertion and deletion complexity is again O(log n)
since n < n log n < n2 ⇒ O(log n) ≤ O(log(n log n)) ≤ O(log n2) = O(log n).

In both trees, both row index i and column index j are utilized to sort the
nodes lexicographically; however, the first tree, the row-tree, is sorted according
to index i, and in case of common row positions i, column position j is utilized,
and vice versa for the second tree, the column-tree. The resulting vectors can
then be represented as AVL trees.

Furthermore, most of the semantic relations that participate in the semantic
encyclopedia are of a transitive form. For example, a texture feature may be
associated with entity “skin” and “skin” with semantic entity “human”, which
should imply that the specific feature is also associated with entity “human”. In
order to populate the semantic encyclopedia with the links that can be inferred
in this way and to allow for more efficient time wise access to such implied links,
a transitive closure of these relations needs to be acquired. As conventional
transitive closure algorithms either have a high complexity (O(n3) or higher)
or cannot handle archimedean t-norms and asymmetrical relations, such as the
ones typically included in a semantic encyclopedia, this task is not trivial.

Based on the proposed representation model, a novel transitive closure al-
gorithm that is targeted especially to generalized, sparse fuzzy binary relations
and has an almost linear complexity can be utilized [8]. This algorithm has the
added advantage of allowing updates to the relation with trivial computational
burden while at the same time maintaining the property of transitivity.

3 Semantic Identification

The methodologies referred to up to this point guarantee that the encyclopedia
will be well structured, consistent and informative enough (due to its transitive
closure characteristic) and represented in a compact manner. The remaining of
the paper refers to its effective use in identifying semantic entities and retriev-
ing the corresponding multimedia documents. The core idea is that the analysis
of the raw media by applying signal and image processing algorithms yields
quantification of existence of low level features as a first stage of the retrieval
procedure. The second step is the assessment of the degree up to which cer-
tain semantic entities are identified within the given multimedia documents by
exploiting the relations of the semantic encyclopedia. We choose to model this
identification procedure as a fuzzy inference mechanism. Considering, though,
the count of semantic entities in the universe of discourse, as well as the count
of distinct features that may be extracted and evaluated, it is easy to see that
this process quickly becomes inapplicable in real life scenarios.

The way followed in this paper in order to tackle semantic identification,
without suffering the expense of immense processing power, is to partially iden-
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tify an entity i.e., to evaluate only a subset of the involved syntactic features and
produce an estimation based on this imperfect and incomplete input. The chal-
lenge is to automatically select this subset that includes characteristics providing
the highest possible validity regarding the computed result, combined with min-
imum complexity requirements. Utilization of fuzzy logic theory is shown to
provide methods for quantifying both validity and complexity of the involved
algorithms.

Evaluation of a Syntactic Entity Yi participating in a detailed definition is
equivalent to running its corresponding algorithm τ and computing the member-
ship degree μYi up to which the document under examination assumes property
Yi. In a similar manner, a metric is defined that denotes the degree up to which
a Semantic Entity exists in a document and is called Certainty of the identifica-
tion. Given a detailed definition of a Semantic Entity Ek in the form

Ek = F1k/S1 + F2k/S2 + . . .+ Fnk/Sn,

and the membership degrees μYi of the Syntactic Entities Yi in a specific docu-
ment, Certainty that Ek exists in that document is defined as

μEk

�
= Ui(I(FYiEk

, μYi))

where the operators U and I denote fuzzy union and intersection operators
respectively.

The maximum possible value of μEk
is assigned the term Validity of the

definition and is equal to
V(Ek)

�
= Ui(FYiEk

),

attained for μYi = 1 for all Yi in the scope of Ek and the use of the identity
I(a, 1) = a (true for every t-norm I).

Validity denotes the maximum amount of information that a definition can
provide and is used extensively in the identification design process. We must
note that Validity is independent of the data set under examination and can
be computed prior to the identification. Validity is therefore a property of the
definition itself.

Another characteristic of a definition is the computational complexity asso-
ciated with the algorithms corresponding to its Syntactic Entities. We assign a
computational cost c(t) to every syntactic feature t that is essentially equal to
the cost of it’s corresponding algorithm τ . Hence, we may now define Complexity
of a definition as

C(Ek) =
∑

i

c(ti)

where ti are the syntactic features required to evaluate the properties Yi of the
definition Ek. Notice that this value will normally depend on the size of the input
data, as will the values c(ti). At least, though, worst or average case expressions
of c(ti) can be considered as independent of the actual content of the examined
data sets. In this perspective C(Ek) is also computable prior to identification.
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Based on these definitions, and following the approach of [3] and [4], the
task of optimal semantic identification given some hard complexity boundaries
is reduced to a dynamic programming optimization problem. Thus, semantic
identification can be performed in real-time, while the uncertainty in the output
is guaranteed to be minimized.

4 Experimental Results

In this section we provide some brief, yet indicative, results acquired through
the application of the proposed methodologies.

Representation. A knowledge of 70000 semantic entities has been developed [2].
Although loading a fuzzy binary relation defined on this set requires more than
50GB of main memory, assuming a double precision number format, the knowl-
edge base is loaded in less that 100MB of memory using the proposed represen-
tation model.

Handling. Transitive closure of the above-mentioned relation is calculated to
require more than 5 days of computing time. Using the proposed representation
model and applying the proposed transitive closure algorithm, the time required
for the complete transitive closure is approximately 20 seconds on the same
computer. For the case of simple update of an already transitive relation, the
processing time is less than a millisecond.

Identification. Figure 1 presents the validity achieved when applying the prosed
approach on a random data set with different complexity thresholds. The non
linear character of the graph shows the benefit of the optimized selection of the
part of the definition to evaluate in each case. Note that for a threshold CT = 12
the Validity is V ≈ 0.9 while the total Complexity of the definition is Ct = 132
for the uniformly distributed values.
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5 Conclusions

In this paper we made a first attempt to provide an integrated solution to
computing problems related to semantic identification of entities in multimedia
streams. Problems addresses include the storage requirements of the semantic
knowledge, the computational complexity for the handling of the knowledge, as
well as the computational complexity of the identification process itself.

The above have been tackled through a novel representation model and
matching algorithms for transitive closure and semantic identification. The ex-
perimental results verify the efficiency and prospect of the proposed approaches.
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Abstract. In this work a method for metadata extraction from sign language 
videos is proposed, by employing high level domain knowledge. The metadata 
concern the depicted objects of the head and the right/left hand and the occlu-
sion events, which are essential for interpretation and therefore for subsequent 
higher level semantic indexing. The occlusions between hands, head and hands 
and body and hands, can easily confuse metadata extraction and can conse-
quently lead to wrong gesture interpretation. Therefore, a Bayesian network is 
employed to bridge the gap between the high level knowledge about the valid 
spatiotemporal configurations of the human body and the metadata extractor. 
The approach is applied here in sign-language videos, but it can be generalized 
to video indexing based on gestures.  

1   Introduction 

The extraction of mid- and high-level semantics from video content is important for 
tasks as video indexing and retrieval, video summarization and non-linear content 
organization. This applies also to videos depicting gestures, since they constitute a 
very useful source of semantic information for multimedia content analysis. The 
automated extraction of metadata, e.g., according to MPEG-7 or extensions of it, is a 
prerequisite for the above tasks. However, automated extraction of metadata regard-
ing gesture is lagging behind processing of other modalities such as speech. Apart 
from the variability of spatiotemporal gesture patterns and coarticualtion effects 
(merging of gestures) that are responsible for this slow progress, occlusions introduce 
additional complexity. Failure to produce correct metadata as a result of using con-
ventional extractors can lead to wrong semantics. Such metadata may concern asso-
ciation of color regions to the objects in this context, which are the head, the left and 
right hand or the visual objects that result from their mutual occlusions, or the ap-
pearance and disappearance or occlusion events for the head and left/right hand.  
    Here the occlusion problem is handled through the analysis of temporally struc-
tured events by combining the two-dimensional visual features and the high – level 
knowledge about the human gestures and the related body configurations. A Bayesian 
network is employed for probabilistic knowledge modeling. Inferencing over this 
network serves the purpose of bridging the semantic gap in a top-down fashion. 
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    The rest of the paper is organized as follows: in the next section the research con-
text concerning semantics extraction from gesture videos is briefly discussed; in sec-
tion 3 the structure of the proposed semantic model through a Bayesian network is 
presented; in section 4 the calculation of the evidence nodes and the experimental 
results are presented; finally section 6 summarizes the results and suggests future 
directions. 

2   Related Work 

The extraction of semantics from gesture videos has attracted the interest of many 
researchers in the past. A big portion of them concerns sign language and gestures for 
human-computer interaction. Gesture recognition methods can be used for extraction 
of semantic metadata, with the Hidden Markov Models being the most remarkable 
(e.g., [4], [5]). Other approaches include, neural networks, principal component 
analysis, motion history images, and their comparative features are discussed exten-
sively in surveys such as [7], [8]. Trajectory-based techniques were presented recently 
[6]. Although these techniques may provide significant results for gesture recognition 
tasks, they require accurate hand and (sometimes) head segmentation. Occlusions are 
not handled at all or become resolved through stereoscopic camera configurations, 
e.g., in [1], which concerns very limited content. Another approach for occlusion 
handling is the employment of a 3D hand model, e.g., [9], however optimization of 
models for articulated objects with so many degrees of freedom, such as hands, is a 
very challenging task. In works similar to [2] the optical flow constraint is used, how-
ever they assume that the sampling rate is constantly high and that the movement is 
smooth in terms of shape and position.  
    The above approaches use low-level features to infer higher-level semantics but 
they don’t address the inverse information flow. Reasoning about low- and mid-level 
features using high-level knowledge (thus enabling a closed-loop semantic extraction 
process) would be a major step for bridging the semantic gap and could be comple-
mentary to the aforementioned methods. An approach that has motivated the present 
work is given in [3], where a Bayesian network is used to model known spatiotempo-
ral configurations of the human body.  

3   Semantic Model 

The aim of this work is to facilitate mid-level gesture metadata extraction using high 
level knowledge. It extends the work presented in [3] mainly in three ways: (a) A 
different probabilistic network structure is applied that allows explicit modeling of all 
possible states (occlusions) as well as their types, while not assuming known head 
position. (b) The modeled temporal relations are minimal in order to cope with mo-
tion discontinuities. (c) The observation variables provide a detailed skin region rep-
resentation, including internal structure, based on Zernike moments. In [3] the regions 
are represented only by the area the aspect ratio and orientation, which are insufficient 
for modeling the complex hand shapes appearing in sign language gestures.  
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    In this work a Bayesian network is used as a semantic model due to its ability to 
capture uncertainty of the domain knowledge. This is not possible when using a fixed 
set of rules, which necessitate a manual threshold definition. Here, provided a set of 
variables x (network nodes), we seek to find the instance vector xm of those variables 
that maximizes their joint distribution, given some evidence e coming from image 
measurements (associated with other network nodes). In other words: 

xm = {x0 : ∀ x, P(x0|e)>P(x | e)}  (1) 

The value of xm provides the current gesture state, i.e., position of head and hands in 
the image as well as current occlusions. 

 
Fig. 1. (a) Bayesian network representing the semantic model and (b) the subgraphs 

    The network encoding the high level semantics of the gesture metadata extraction 
task is presented in Fig.1(a-b). More specifically:  
• X0, X1, X2,: Variables corresponding to the three (maximum) skin regions express-

ing the probability that one of them corresponds to left hand, right hand, head, 
mutual occlusion of hands, head – left hand occlusion, head-right hand occlusion, 
occlusion of head by both hands or noise. The corresponding values belong to the 
set A={L, R, H, LR, LH, RH, LRH, N}. 

• X3: Binary variable depending on X0, X1, X2, and used for excluding the non accept-
able associations of regions to visual objects. It is only true when the following 
are the values for X0, X1, X2: (L,R,H), (L,H,N), (L,RH,N), (R,H,N), (R,LH,N), 
(H,N,N), (H,LR,N), (LH,N,N), (RH,N,N), (LRH,N,N), at any possible order.  

• X4, X5, X6: Auxiliary variables used to decouple X0, X1, X2, X3 from the sub-graphs 
presented in detail in Fig.1b. for simplifing the network, e.g., during training and 
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execution sub-graphs 1-3 are treated independently using the same learning and 
inference engine. Their values coincide with those of their parent nodes. 

The aforementioned sub-graphs are identical, each associated with a skin region and 
used for capturing visual evidence. Their root nodes are the Xi (i=7,8,9). 

The child nodes in the sub-graphs provide evidence for inferring the system state:  

• Xi1 Xi2: The distance and angle of the current region center of gravity from the 
common center of gravity of all regions. 

• Xi16:The region label in the previous time instance. Models motion continuity.  
• Xi3, Xi4, Xi5, Xi7, Xi9, Xi11, Xi12, Xi14: Correspond to the Euclidean norm of the Zernike 

moments up to 4th order of the i-region around its center of gravity (|A11|=0). 
• Xi6, Xi8, Xi10, Xi13, Xi15: Correspond to non-zero orientations of the above moments. 

The complex Zernike moments have been selected due to noise resiliency, reduced 
information redundancy (orthogonality) and reconstruction capability. Their defini-
tion in polar coordinates (unit circle) for order p (p-q = even and 0 q m) is [11]: 
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Restating the goal expressed at the beginning of this section, we aim to find the value 
xm of the vector (X0, X1, X2) that maximizes the joint distribution P(x|e) where e is the 
evidence provided by the measured variables and e={xi,j : i {4,5,6}, j {1,2,3,..,15} }. 
xm provides the association of skin color regions in the image space to context objects, 
in the “world” space. The objects appearance or disappearance (whenever the vector 
elements change) signifies the visual events that are extracted as metadata. For infer-
ring the current state, algorithms such as the junction tree [12] can be employed.  
    The efficiency of the followed approach does not depend on the vocabulary size. If 
new gestures need to be analysed they will have to be trained. This will modify the 
probability distributions of the network variables but the system complexity will not 
be affected. Virtual reality systems will be able to facilitate this procedure. 

4   Experimental Results 

To measure evidence we first locate the target’s face in the image (Haar face detec-
tion) and we use a part of the face region for probabilistic skin color modeling. The 
target is assumed to be dressed and to face the camera with the upper body part within 
the image. For this reduced skin color modeling problem, a single multivariate Gaus-
sian model for color is used. Robust estimation functions [10] are employed to re-
move outliers in the face region due to noise, eyes, hair, glasses etc. Using the ex-
tracted color model, the skin regions are segmented, keeping a maximum of three 
regions (the biggest ones). The final mask is applied to the intensity image to obtain a 
masked gray-level image including only these regions. The Zernike moment norms 
are normalized with regard to the initial face area to decrease influence of non-
uniform body dimensions or distance from camera. For simplicity all continuous 
variables are discretized. 
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    The system was trained for several thousand frames using a vocabulary of 15 words 
(including many occlusion types) and was tested on more than 1500 frames with 
promising results, even at lower space and time resolution (Table 1). The latter case 
implies discontinuous motion, and the present approach has an advantage compared 
to algorithms based on optical flow due to the lack of strict temporal constraints. Fur-
thermore, it has been shown that probabilistic approaches like the one presented here 
have been proved superior compared to particle filtering and namely the Condensa-
tion algorithm, as regards tolerance to occlusions and performance, provided that 
proper training has been previously performed [3]. After experimental comparison to 
the work in [3], using a similar training procedure, the results don’t differ signifi-
cantly in full spatial and time resolution but the current method is superior in discon-
tinuous motion (approximately 25% less errors). This is well explained by the fact 
that only one network variable (per skin region) models the temporal relations (Xi16) 
in comparison to 12 such variables used in [3]. Typical examples for the current 
method are displayed in Fig. 2, where the occlusion types are visible. 

 

a 

 
b 

c 

Fig. 2. The extraction of semantics from skin regions in sign language videos for the words: (a) 
change (b) correct, (c) achieve. The identified skin regions are enclosed in rectangles, annotated 
with the region type. Changes in the skin region states signify visual events.  

Table 1. Classification results of skin regions. The three numbers in each cell (a-b-c) provide 
the results for the following cases regarding the same gestures (a) full spatial and time resolu-
tion, i.e., 640x480 - 15fps (b) 320x240 – 15fps (c) 640x480 – 7.5fps. 

 Recognised as 
 L R H LR LH RH LRH NONE 
L 1224-1190-633 33-72-11 9-42-10 0-0-0 0-0-0 0-0-0 0-0-0 45-7-3 

R 71-96-20 1168-1096-601 0-20-7 0-0-0 0-0-0 0-0-0 0-0-0 3-30-0 

H 9-22-6 0-63-0 2415-2321-1206 0-21-0 0-0-0 0-0-0 0-0-0 36-33-18 

LR 3-23-12 0-19-9 33-42-11 414-378-180 0-0-0 0-0-0 0-0-0 45-60-33 

LH 3-0-3 0-0-1 6-13-5 0-0-0 105-101-49 0-0-0 0-0-0 12-12-15 

RH 0-6-0 0-0-0 22-36-15 0-0-0 0-0-0 134-117-45 0-0-0 9-6-0 

LRH 0-0-0 0-0-0 9-9-6 0-0-0 0-0-0 0-0-0 55-47-27 2-10-0 
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NONE 1-6-24 7-7-11 4-6-20 0-3-0 0-0-0 0-0-0 0-0-0 1425-1415-615 
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5   Conclusions 

A method for extraction of gesture-related metadata from video based on a Bayesian 
network has been presented. Its ability to overcome occlusions was shown, which is 
difficult to achieve with conventional methods. Furthermore, it is more resilient to 
image discontinuities than the optical-flow based methods or other probabilistic 
methods that use temporal relations extensively. Higher order Zernike moments (or 
temporal variables) can be easily included for more detailed area representation, but 
the application context has to be considered in that case for a performance-
effectiveness trade-off. Tests with bigger vocabularies will verify scalability. 

Future work includes the integration of the network in a closed-loop gesture recog-
nition scheme, e.g., in combination to a HMM, for more focused low level feature 
extraction. Furthermore, virtual reality systems will be evaluated for automating the 
training procedure. Within the scope of research is also the development of invariant 
measures, to minimize the effect of different camera viewpoints as well as human 
body variations. These measures will be integrated as evidence network nodes.  
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Abstract. In an attempt to extend existing knowledge representation
systems to deal with the imperfect nature of real world information in-
volved in several applications like multimedia analysis and understand-
ing, the AI community has devoted considerable attention to the repre-
sentation and management of uncertainty, imprecision and vague knowl-
edge. Moreover, a lot of work has been carried out on the development
of reasoning engines that can interpret imprecise knowledge. The need
to deal with imperfect and imprecise information is likely to be common
in the context of multimedia and the (Semantic) Web. In anticipation of
such requirements, this paper presents a proposal for fuzzy extensions of
SWRL, which is a rule extension to OWL DL.

1 Introduction

According to widely known proposals for a Semantic Web architecture, Descrip-
tion Logics (DLs)-based ontologies will play a key role in the Semantic Web [5].
This has led to considerable efforts to developing a suitable ontology language,
culminating in the design of the OWL Web Ontology Language [2], which is now
a W3C recommendation. SWRL (Semantic Web Rule Language) [3] is proposed
as a well known Horn clause rules extension to OWL DL.1

Experience in using ontologies and rules in applications has shown that in
many cases we would like to extend their representational and reasoning ca-
pabilities to deal with vague or imprecise knowledge. For example, multimedia
applications have highlighted the need to extend representation languages with
capabilities which allow for the treatment of the inherent imprecision in multi-
media object representation, matching, detection and retrieval. Unfortunately,
neither OWL nor SWRL provides such capabilities.

In order to capture imprecision in rules, we propose a fuzzy extension of
SWRL, called f-SWRL. In f-SWRL, fuzzy individual axioms can include a speci-
fication of the “degree” (a truth value between 0 and 1) of confidence with which
one can assert that an individual (resp. pair of individuals) is an instance of a
given class (resp. property); and atoms in f-SWRL rules can include a “weight”
(a truth value between 0 and 1) that represents the “importance” of the atom in

1 OWL DL is a key sub-language of OWL.
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a rule. For example, the following fuzzy rule asserts that being healthy is more
important than being rich to determine if one is happy:

Rich(?p) ∗ 0.5 ∧ Healthy(?p) ∗ 0.9 → Happy(?p),

where Rich, Healthy and Happy are classes, and 0.5 and 0.9 are the weights for
the atoms Rich(?p) and Healthy(?p), respectively. A detailed motivating use case
for fuzzy rules can be found in [11].

In this paper, we will present the syntax and semantics of f-SWRL. We will
use standard Description Logics [1] notations in the syntax of f-SWRL, while the
model-theoretic semantics of f-SWRL is based on the theory of fuzzy sets [14].
To the best of our knowledge, this is the first paper describing a fuzzy extension
of the SWRL language.

2 Preliminaries

2.1 SWRL

SWRL is proposed by the Joint US/EU ad hoc Agent Markup Language Com-
mittee.2 It extends OWL DL by introducing rule axioms, or simply rules, which
have the form:

antecedent → consequent,

where both antecedent and consequent are conjunctions of atoms written a1 ∧
. . . ∧ an. Atoms in rules can be of the form C(x), P(x,y), Q(x,z), sameAs(x,y)
or differentFrom(x,y), where C is an OWL DL description, P is an OWL DL
individual-valued property, Q is an OWL DL data-valued property, x,y are either
individual-valued variables or OWL individuals, and z is either a data-valued
variable or an OWL data literal. An OWL data literal is either a typed literal
or a plain literal; see [2,6] for details. Variables are indicated using the standard
convention of prefixing them with a question mark (e.g., ?x). For example, the
following rule asserts that one’s parents’ brothers are one’s uncles:

parent(?x, ?p) ∧ brother(?p, ?u) → uncle(?x, ?u), (1)

where parent, brother and uncle are all individual-valued properties.
The reader is referred to [3] for full details of the model-theoretic semantics

and abstract syntax of SWRL.

2.2 Fuzzy Sets

While in classical set theory any element belongs or not to a set, in fuzzy set
theory [14] this is a matter of degree. More formally, let X be a collection of
elements (the universe of discourse) with cardinality m, i.e X = {x1, x2, . . . , xm}.
A fuzzy subset A of X, is defined by a membership function μA(x), or simply
A(x), x ∈ X . This membership function assigns any x ∈ X to a value between 0
2 See http://www.daml.org/committee/ for the members of the Joint Committee.
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and 1 that represents the degree in which this element belongs to X. The support,
Supp(A), of A is the crisp set Supp(A) = {x ∈ X | A(x) �= 0}.

Using the above idea, the most important operations defined on crisp sets and
relations (complement, union, intersection etc) are extended in order to cover
fuzzy sets and fuzzy relations. The complement ¬A of a fuzzy set A is given by
(¬A)(x) = c(A(x)) for any x ∈ X . The intersection of two fuzzy sets A and B
is given by (A ∩ B)(x) = t[A(x), B(x)], where t is a triangular norm (t-norm).
The union of two fuzzy sets A and B is given by (A ∪ B)(x) = u[A(x), B(x)],
where u is a triangular conorm (u-norm). A binary fuzzy relation R over two
countable crisp sets X and Y is a function R : X × Y → [0, 1]. The composition
of two fuzzy relation R1 : X × Y → [0, 1] and R2 : Y × Z → [0, 1] is given by
[R1 ◦t R2]= supy∈Y t[R1(x, y), R2(y, z)]. The reader is referred to [4] for details
of fuzzy logics and their applications.

3 f-SWRL

Fuzzy rules are of the form antecedent → consequent, where atoms in both the
antecedent and consequent can have weights, i.e., numbers between 0 and 1.
More specifically, atoms can be of the forms C(x)∗w, P(x,y)∗w, sameAs(x,y)∗w
or differentFrom(x,y)∗w, where w ∈ [0, 1] is the weight of an atom,3 and omitting
a weight is equivalent to specifying a value of 1. For instance, the following fuzzy
rule axiom asserts that if a man has his eyebrows raised enough and his mouth
open then he is happy, and that the condition that he has his eyebrows raised is
a bit more important than the condition that he has his mouth open.

EyebrowsRaised(?a) ∗ 0.9 ∧MouthOpen(?a) ∗ 0.8 → Happy(?a), (2)

In this example, EyebrowsRaised, MouthOpen and Happy are classes, ?a is a
individual-valued variable, and 0.9 and 0.8 are the weights of the atoms Eyebrows-
Raised(?a) and MouthOpen(?a), respectively.

In this paper, we only consider atomic fuzzy rules, i.e., rules with only one
atom in the consequent. The weight of an atom in a consequent, therefore, can
be seen as indicating the weight that is given to the rule axiom in determining
the degree with which the consequent holds. Consider, for example, the following
two fuzzy rules:

parent(?x, ?p) ∧ Happy(?p) → Happy(?x) ∗ 0.8 (3)

brother(?x, ?b) ∧ Happy(?b) → Happy(?x) ∗ 0.4, (4)

which share Happy(?x) in the consequent. Since 0.8 > 0.4, more weight is given
to rule (3) than to rule (4) when determining the degree to which an individual
is Happy.

In what follows, we formally introduce the syntax and model-theoretic se-
mantics of fuzzy SWRL.
3 To simplify the presentation, we will not cover datatype property atoms in this

paper.
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3.1 Syntax

In this section, we present the syntax of fuzzy SWRL. Due to space limitation,
we use DL syntax (see the following definition) instead of the XML, RDF or
abstract syntax of SWRL.

Definition 1. Let a,b be individual URIrefs, C, D OWL class descriptions, r, s

OWL role descriptions, r1, r2 role URIrefs, m1, m2, w, w1, . . . , wn ∈ [0, 1],
⇀
v ,

⇀
v 1

, . . . ,
⇀
v n are (unary or binary) tuples of variables and/or individual URIrefs,

a1(
⇀
v1), . . . , an(

⇀
vn) and c(

⇀
v ) are of the forms C(x), r(x, y), sameAs(x, y) or

differentFrom(x, y), where x, y are individual-valued variables or individual
URIrefs.

An f-SWRL ontology can have the following kinds of axioms:

– class axioms: C 0 D (class inclusion axioms);
– property axioms: r 0 s (property inclusion axioms), Func(r1) (functional

property axioms), Trans(r2) (transitive property axioms);
– individual axioms: (a : C) ≥ m1 (fuzzy class assertions), (〈a,b〉 : r) ≥ m2

(fuzzy property assertions), a = b (individual equality axioms) and a �= b
(individual inequality axioms);

– rule axioms: a1(
⇀
v1) ∗w1 ∧ · · · ∧ an(

⇀
vn) ∗wn → c(

⇀
v ) ∗w (fuzzy rule axioms).

Omitting a degree or a weight is equivalent to specifying the value of 1. 1

According to the above definition, f-SWRL extends SWRL with fuzzy class
assertions, fuzzy property assertions and fuzzy rule axioms.

3.2 Model-Theoretic Semantics

In this section, we give a model-theoretic semantics for fuzzy SWRL. Although
many f-SWRL axioms share the same syntax as their counterparts in SWRL,
such as concept inclusion axioms, they have different semantics because we use
fuzzy interpretations in the model-theoretic semantics of f-SWRL.

Definition 2. A fuzzy interpretation is a pair I = 〈ΔI , ·I〉, where the domain
ΔI is a non-empty set and ·I is a fuzzy interpretation function, which maps

1. individual names and individual-valued variables to elements of ΔI,
2. a class description C to a membership function CI : ΔI → [0, 1],
3. an individual-valued property name R to a membership function RI : ΔI ×

ΔI → [0, 1],
4. the built-in property sameAs to a membership function

sameAsI(x, y) =
{

1 if xI = yI

0 otherwise,

5. the built-in property differentFrom to a membership function

differentFromI(x, y) =
{

1 if xI �= yI

0 otherwise.
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A fuzzy interpretation I satisfies a class inclusion axiom C 0 D, written
I |= C 0 D, if ∀o ∈ ΔI , CI(o) ≤ DI(o).

A fuzzy interpretation I satisfies a property inclusion axiom r 0 s, written
I |= r 0 s, if ∀o, q ∈ ΔI , rI(o, q) ≤ sI(o, q). I satisfies a functional property
axiom Func(r1), written I |= Func(r1), if ∀o, q ∈ ΔI , | Supp[rI1 (o, q)] |≤ 1. I
satisfies a transitive property axiom Trans(r2), written I |= Trans(r2), if ∀o, q ∈
ΔI , rI2 (o, q) = supp∈ΔI t[rI2 (o, p), rI2 (p, q)], where t is a triangular norm.

A fuzzy interpretation I satisfies a fuzzy class assertion (a : C) ≥ m, written
I |= (a : C) ≥ m, if CI(a) ≥ m. I satisfies a fuzzy property assertion (〈a,b〉 :
r) ≥ m2, written I |= (〈a,b〉 : r) ≥ m2, if rI(a,b) ≥ m. I satisfies an individual
equality axiom a = b, written I |= a = b, if aI = bI . I satisfies an individual
inequality axiom a �= b, written I |= a �= b, if aI �= bI.

A fuzzy interpretation I satisfies a fuzzy rule axiom a1(
⇀
v1)∗w1∧· · ·∧an(

⇀
vn)

∗wn → c(
⇀
v ) ∗ w, written I |= a1(

⇀
v1) ∗ w1 ∧ · · · ∧ an(

⇀
vn) ∗ wn → c(

⇀
v ) ∗ w,

if t(t(aI
1 (

⇀
v1

I
), w1), . . . , t(aI

n(
⇀
vn

I
), wn)) ≤ t(cI(

⇀
v
I
), w), where t is a triangular

norm. 1

Let us take the rule (2) as an example to illustrate the above semantics. As-
suming that EyebrowsRaised, MouthOpen and Happy are class URIrefs, then given
a fuzzy interpretation I = 〈ΔI , ·I〉, the rule (2) is satisfied by I iff for all a ∈ ΔI ,
we have t(t(EyebrowsRaisedI(a), 0.9), t(MouthOpenI(a), 0.8)) ≤ t(HappyI(a), 1).

Note that in SWRL the class assertion Tom : Happy is equivalent to the rule
axiom → Happy(Tom). In f-SWRL, we have the following equivalence between the
f-SWRL individual axiom and rule axiom: The fuzzy assertion (Tom : Happy) ≥
0.8 is equivalent to the rule axiom 2(Tom) ∗ 0.8 → Happy(Tom). According to
the above semantics, we have: t(2I(Tom), 0.8) ≤ HappyI(Tom). From a semantics
point of view an individual always belong to a degree of 1 to the top concept, so
we have: t(1, 0.8) ≤ HappyI(Tom). Due to the boundary condition of t-norms, we
have HappyI(Tom) ≥ 0.8.This suggests that fuzzy assertion can be represented
by fuzzy rule axioms.

4 Discussion

Several ways of extending Description Logics and logic programming with the
theory of fuzzy logic have been proposed [13,10,8,9,7,12]; however, we have
not seen any publications on fuzzy extensions of SWRL. We believe that the
combination of Semantics Web ontology and rules languages provides a powerful
and flexible knowledge representation formalism, and that f-SWRL is of great
interest to the ontology community as well as to communities in which ontologies
with vague information can be applied, such as multimedia and the Semantic
Web.

Our future work includes logical properties and computational aspect of f-
SWRL. Another interesting direction is to extend f-SWRL to support datatype
groups [5], which allows the use of customised datatypes and datatype predicates
in ontologies.
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Abstract. In this paper we propose a new distance metric for probability den-
sity functions (PDF).  The main advantage of this metric is that unlike the popu-
lar Kullback-Liebler (KL) divergence it can be computed in closed form when 
the PDFs are modeled as Gaussian Mixtures (GM). The application in mind for 
this metric is histogram based image retrieval. We experimentally show that in 
an image retrieval scenario the proposed metric provides as good results as the 
KL divergence at a fraction of the computational cost.  This metric is also com-
pared to a Bhattacharyya-based distance metric that can be computed in closed 
form for GMs and is found to produce better results.   

1   Introduction 

The increasing supply of cheap storage space in the past few years has led to multi-
media databases with ever-increasing size. In this paper we consider the case of con-
tent-based image retrieval (CBIR) [3]. That means that the query is made using a 
sample image, and we would like the CBIR system to give us the images that resem-
ble the most our sample-query. A common approach to CBIR is through the computa-
tion of image feature histograms that are subsequently modeled using probability 
density function (PDF) models.  Then, the PDF corresponding to each image in the 
database is compared with that of the query image, and the images closest to the 
query are returned to the user as the query result. The final step suggests that we must 
use some distance metric to compare PDFs. There is no universally accepted such 
distance metric; two commonly used metrics for measuring PDF distances is the 
Kullback-Liebler divergence and the Bhattacharyya distance [4]. In this paper, we 
explore a new distance metric that leads to an analytical formula in the case where the 
probability density functions correspond to Gaussian Mixtures. 

It is obvious that the distance metric we choose to employ is of major importance 
for the performance of the CBIR system. It is evident that the query results are explic-
itly affected by the metric used. Also, a computationally demanding metric can slow 
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down considerably the whole retrieval process, since the sample image must be com-
pared with every image in the database. 

2    GMM Modeling and PDF Distance Metrics  

At first, we need as we noted to construct a feature histogram for each image in the 
database, as shown in [2] for color features. There are a number of reasons, though, 
that feature histograms are not the best choice in the context of image retrieval and it 
is preferable to model the feature data using parametric probability density function 
models, like for example Gaussian mixture models (GMM). 

Consider the case where we choose color as the appropriate feature and construct 
color histograms. It is well-known that color histograms are sensitive to noise inter-
ference like lighting intensity changes or quantization errors (“binning problem”). 
Also, the number of bins in a histogram grows exponentially with the number of fea-
ture components (“curse of dimensionality”). These problems, which apply in feature 
histograms in general, can be solved by modeling the histogram using a probability 
density function model. 

A good way to model probability density functions (PDF) is assuming that the 
target distribution is a Finite Mixture Model [1]. A commonly used type of mixture 
model is the Gaussian Mixture Model (GMM). This model represents a PDF as  

( ) ( )
1

: ,
K

j j j

j

p x N xπ μ
=

= Σ∑                                                       (1) 

where K stands for the number of Gaussian kernels mixed, jπ  are the mixing weights 

and ,
j j

μ Σ are the mean vector and the covariance matrix of Gaussian kernel j. GMMs 

can be trained easily with an algorithm such as EM (Expectation – Maximization) [1].  
 So we come to the point where the sample image used for the query and the im-

ages in the database have their feature histogram and Gaussian Mixture Model been 
generated. The final step is to compare the GMM of the sample image with the 
GMMs of the stored images in order to decide which images are the closest to the 
sample. Therefore, we need a way to calculate a distance metric between PDFs. 

A common way to measure the distance between two PDFs p(x) and p’(x), is the 
Kullback-Liebler divergence [4]: 

( )
( || ') ( ) ln

'( )

p x
KL p p p x dx

p x
= ∫ . 

Notice that ( || ')KL p p  is not necessarily equal to ( ' || )KL p p . Thus, it is more rea-

sonable to use a symmetric version of the Kullback-Liebler divergence: 

1 ( ) 1 '( )
( , ') ( ) ln '( ) ln

2 '( ) 2 ( )

p x p x
SKL p p p x dx p x dx

p x p x
= +∫ ∫                          (2) 

where SKL stands for Symmetric Kullback-Liebler. The absolute value is taken in 
order for the metric to have distance properties. Since the SKL metric cannot be com-
puted in closed form, we have to resort to a Monte-Carlo approximation based on the 
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formula ( ) ( ) ( ) ( )1

1

N

i

i

f x p x dx N f x
−

=

→ ∑∫ as N → ∞ ,where the samples 
i

x are 

assumed to be drawn from ( )p x . Thus, SKL can be computed as: 

 

~ ~ ~ ' ~ '

1 1 1 1
( , ') ln ( ) ln '( ) ln ( ) ln '( )

2 2 2 2
MK

x p x p x p x p

SKL p p p x p x p x p x
N N N N

= − + −∑ ∑ ∑ ∑  

where N is the number of data samples generated from the p(x) and p’(x). Note that 
the above formula can be very computationally demanding, since it consists of sums 
over 4xN elements – N must be large if we want to get an accurate result. Also, when 
the dimensionality of the x vectors is high, things get worse, since N must be even 
larger. 

3    The PDF Distance Metric 

We can take advantage of the fact that the PDFs we need to compare are Gaussian 
Mixtures, not any distributions. A GMM can be described only by the mean and co-
variance of its Gaussian kernels, plus the mixing weights. This suggests that we might 
construct a distance metric using the values μ, ,  for each one of the two distribu-
tions compared, thus creating a fast to compute metric. 

The metric we considered in its general form is the following [5]: 

2 2

2 ( ) '( )
2( , ') log

( ) ' ( )

p x p x dx
C p p

p x p x dx
= −

+

⎡ ⎤
⎢ ⎥
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∫
∫

                                  (3) 

This metric is zero when ( )p x and ( )p x′ are equal and is symmetric and positive. In 

the case where the PDFs compared are GM, eq. (3) yields  

,

, ,
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' '
' '
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ij ij

j jk k
i j i ji j i j

V

e
C p p

V V

e e

ι

ι ι

π π

π π π π
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⎢ ⎥
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            (4) 

where 

( ) 11 1'
ij i j

V
−− −= Σ + Σ , 

1 1( ' ) ' ' ( ' )T

ij i i i j j j j i
k μ μ μ μ μ μΤ − −= Σ − + Σ − , 

π , 'π the mixing weights, i and j are indexes on the gaussian kernels, and, finally, 
,μ Σ and ', 'μ Σ  are mean and covariance matrices for the kernels of the Gaussian 

mixtures ( )p x and  ( )p x′ respectively. 
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4    Numerical Experiments 

To test the effectiveness of the above distance metric we consider an image database 
consisting of pictures that can be classified in 5 categories, according to their theme. 
These are: 1) Pictures of cherry trees (“Cherries”), 2) Pictures of bushes and trees in 
general (“Arborgreens”), 3) Pictures of a seaside village in a rainy day (“Cannon-
beach”), 4) Pictures in a university campus (outdoor) in Fall (“Campus in Fall”) and 
5) Shots of a rugby game (“Football”). Forty 700x500 images per class were  
considered. 

We have generated a Gaussian mixture model for each of the images, using color 
(RGB space) as the feature vector. The number of the Gaussian components for every 
GMM was empirically chosen to be five and the Gaussian mixture models were 
trained using the EM algorithm. In the case of an actual image retrieval query, we 
would need to compare the GMM of the sample image with every other model in the 
database. Instead, in this experiment we compare the models of every image with one 
another, once for each of three distance metrics, which are 1) Symmetric Kullback-
Liebler (with 4096 samples per image), 2) a Bhattacharyya based distance for GMMs 
and 3) the proposed C2 distance. The times required to compute all distances among 
the five sets are 154,39 sec., 674,28 sec. and 33161,62 sec for Bhattacharyya-based 
 

Table 1. Average distance among classes for three distance metrics 
 

 Cherr Arbor Football Cann Campus 
Cherries 1 1,12 1,12 1,43 1,67 

Arbor 2,84 1 1,87 2,57 2,94 
Football 4,96 3,26 1 6,98 3,87 

Cann 1,88 1,32 2,07 1 2,35 
Campus 2,94 2,03 1,54 3,15 1 

(a) Average SKL distances 

(b) Average Bhattacharyya-based distances 
 

 Cherr Arbor Football Cann Campus 
Cherr 1 1,64 1,69 1,45 1,5 
Arbor 1,75 1 1,91 2,15 1,42 

Football 2,28 2,43 1 2,67 1,82 
Cann 1,12 1,56 1,52 1 1,5 

Campus 1,57 1,39 1,4 2,02 1 
(c) Average C2 based distances 

 

 Cherr Arbor Football Cann Campus 
Cherr 1 1,55 1,08 1,28 1,91 
Arbor 1,89 1,05 1 2,78 1,92 

Football 1,66 1,25 1 2,34 1,76 
Cann 1 1,77 1,19 1,02 1,87 

Campus 1,65 1,36 1 2,08 1,36 
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distance, C2, and Symmetric Kullback-Liebler metrics respectively. The computa-
tions were performed in Matlab on a Pentium 2.4 GHz PC. 

Note that the Bhattacharyya-based distance that was used is 

1 1

( , ') ( , ' )
N M

i j i j
i j

BhGMM p p B p pπ π
= =

= ′∑∑ , 

where , 'p p  are Gaussian mixture models consisting of N and M kernels respec-

tively, , '
i j

p p  denote the kernel parameters and ,i jπ π ′  are the mixing weights. B 

denotes the Bhattacharyya distance between two Gaussian kernels, defined as [4]: 

1
1 ' 1

( , ') ( ') ( ') ln
8 2 2 '

'
2

B p p μ μ μ μ
−

Τ Σ + Σ
= − − +

Σ Σ

Σ + Σ⎡ ⎤
⎢ ⎥⎛ ⎞

⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎢ ⎥
⎣ ⎦

 

where μ,  and μ’, ’ stand for the means and covariance matrices of Gaussian ker-
nels p, p’ respectively. 
    In Table 1 we provide for each metric the resulting distances among image classes 
normalized so that the minimum distance value over each line is 1. These distances 
are the means over each of the image categories. For example, by distance of group 
‘Cherry’ to group ‘Campus in fall’, we mean the average distance of every image in 
‘Cherry’ to every image in ‘Campus in fall’. An issue to check out in this Table is the 
distance of an image group with itself (i.e the diagonal elements); if it is compara-
tively small, then the metric works well.  In other words, the more ones in the diago-
nal the better the metric is.  Notice that while C2 is about four times slower than the 
Bhattacharyya-based distance, it provides better results. 
 

Table 2.  Average between-class distances between original and sub-sampled images 
 

 Cherr Arbor Foot Cann Camp 
S-Cher 3,6e16 2,8e19 1 1,21 5,7e19 

S-Arbo 2,14 1,21 1 2,87 2,14 

S-Foot 1,86 1,38 1 2,45 1,94 

S-Cann 1 2,12 1,15 1 2,86 
S-Camp 1,8 1,56 1 2,12 1,7 

(a) Average Bhattacharyya-based distances 
 

 Cherr Arbor Foot Cann Camp 
S-Cher 1 1,56 1,66 1,39 1,52 

S-Arbo 1,5 1 1,62 1,68 1,27 

S-Foot 2,17 2,41 1 2,22 1,82 

S-Cann 1,23 1,74 1,67 1 1,69 

S-Camp 1,47 1,39 1,31 1,67 1 

(b) Average C2 distances 
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The Symmetric Kullback – Liebler (SKL) distance provides good results, however 
it is very slow to compute even when only 4096 (about 1/85 of the total) pixels per 
image are used.  

To test the robustness of the metrics, we have conducted a second set of experi-
ments. That is, we produced a sub-sampled copy of each of the original images, which 
has only half the width and height of the original. Then, based on the RGB values of 
the sub-images the GM models have been computed. Then, the distances of the GM 
models of the sub-sampled images were compared to those of the full images.  

We have conducted the above test for the Bhattacharyya and C2 metrics, comput-
ing average distances as in the ‘non-subsampled’ scenario. This time, we compare 
each original image category with each sub-sampled image category. The distances 
computed are shown in Table 2. (Note that the S- prefix is used for the sub-sampled 
images).  

5    Conclusions – Future Work 

We have experimented with a new distance metric for PDFs that seems to work well 
for image retrieval when the images are modeled using GMMs. The metric is fast to 
compute, since it has a closed form when a GM model is used for the PDF, it also 
provides as good separation between different classes of images, similar to that pro-
duced by symmetric KL divergence which was computed using Monte-Carlo. Fur-
thermore, in an initial test it also seems to be robust. We also compared this metric 
with a Bhattacharyya-based metric which, although it is fast to compute, it does not 
provide as good results in terms of class separation. In the future we plan test this 
metric with more features (edge, texture) and with a larger image database. Also we 
plan to test the accuracy of the SKL metric as the number of samples used in the 
Monte-Carlo approximation is reduced.  
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Abstract. We propose a content-based information retrieval (CBIR)
method that models known relationships between multimedia objects as
a hierarchical tree-structure incorporating additional implicit semantic
information. The objects are indexed based on their contents by map-
ping automatically extracted low-level features to a set of Self-Organized
Maps (SOMs). The retrieval result is formed by estimating the relevance
of each object by using the SOMs and relevance sharing in the hierar-
chical object structure. We demonstrate the usefulness of this approach
with a small-scale experiment by using our PicSOM CBIR system.

1 Introduction

Large multi-modal databases, with objects of many different domains and for-
mats, are becoming more common. Multimedia databases containing texts, im-
ages, videos and sounds require sophisticated search algorithms. Such algorithms
should take into account all available semantic information including the actual
contents of the database objects as well as their relationships to other objects.

We propose a content-based information retrieval (CBIR) method that mod-
els known relationships between objects in a hierarchical parent-child tree struc-
ture. We have used the CBIR system PicSOM [1] as a framework for our research
and extended it to incorporate hierarchical object relationships. By mapping
low-level features of the database objects, such as colour or word-frequency, to a
set of Self-Organized Maps (SOMs) [2] we can index the objects based on their
contents. The known relationships of objects, such as being a part of another
object (eg. image attachment of an e-mail) or appearing near each other (eg. two
images in the same web page) are modelled as object trees.

Section 2 presents the hierarchical object concept in more detail, Section 3
reviews the PicSOM CBIR system. Sections 4 and 5 discuss an experiment using
a small set of web pages. Finally, conclusions are drawn in Section 6.
� Supported by the Academy of Finland in the projects Neural methods in information

retrieval based on automatic content analysis and relevance feedback and New infor-
mation processing principles, a part of the Finnish Centre of Excellence Programme.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 841–846, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Multi-part Hierarchical Objects

A recent review of image retrieval from the World Wide Web [3] shows that
most systems use only information of the images themselves, or in combination
with textual data from the enclosing web pages. ImageRover [4] for example
combines the visual and textual features into one unified vector. WebMars [5]
is the only system in the review that allows multimodal browsing and it uses a
hierarchical object model. Other systems include AMORE [6] that uses multiple
media types in a single retrieval framework, and the Informedia project [7] that
seeks to provide full content search and browsing of video clips by integrating
speech, closed captioning and image recognition.

In this work, a multi-part object is a hierarchical object structure, organised
in a tree-like manner modelling relationships between the objects. A hierarchical
object tree can consist of objects of many different types and can, in principle,
be of any depth. The trees are usually formed from natural relationships, like
the child objects being parts of the parent object in their original context. For
example an e-mail message as a parent object can consist of attachments as child
objects. Likewise, an image can be parent of its segments.

As an example of the forming of a multi-part object, a web page with link
information and embedded images is shown on the left in Fig. 1. The different
parts have been enumerated and marked with a red rectangle. On the right we
see the multi-part object tree structure created from this web page. The URL
of the web page itself and links to other pages, images and other objects, are
collected into one common “links” object, while the images and textual content
of the web page are stored as objects by themselves.

The relevance of each object in a multi-part tree can be considered to be a
property of not only the object itself, but to some extent also of its parents, chil-
dren and siblings in the tree structure. We call this idea relevance sharing, which
means that the relevance assessments originally received from user feedback will
be transfered from the object to its parents, children and siblings. For example,
if an e-mail message is considered relevant in a certain query, its attachments
will also get increased relevance values. As a result of the relevance propagation
performed by the PicSOM system, e-mail messages with similar attachments will
then later get a share of that relevance.

HUT #0
#2

child #1
text

child #2
image

child #0
links

web page
http://www.cis.hut.fi

CIS HOME PAGE

The CIS lab is at
#1

#0

#0

Fig. 1. A web page (left) with its corresponding multi-part object tree (right)
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3 PicSOM CBIR System

The content-based information retrieval system PicSOM [1] has been used as a
framework for the research described in this paper. PicSOM uses several Self-
Organizing Maps (SOMs) [2] in parallel to index and determine the similarity
and relevance of database objects for retrieval. These parallel SOMs have been
trained with different data sets acquired by using different feature extraction
algorithms on the objects in the database. This results in each SOM arranging
the objects differently, according to the corresponding feature.

3.1 Relevance Feedback

Query by example (QBE) is the main operating principle in PicSOM, meaning
that the user is presented with a set of objects of the desired target type, from
which he selects the relevant ones. This relevance feedback information [8] is re-
turned to the PicSOM system which expands it from parent objects to children,
and from children to parents, and possibly also to siblings, depending on the
types of the objects. This relevance sharing stage was added to the baseline Pic-
SOM system for this work to gain an advantage from the dependencies between
the objects.

For each object type, all relevant-marked objects in the database of that
type get a positive weight inversely proportional to the total number of relevant
objects of the given type. Similarly the non-relevant objects get a negative weight
inversely proportional to their total number. The grand total of all weights is
thus always zero for a specific type of objects. On each SOM, these values are
summed into the best-matching units (BMUs) of the objects, which results in
sparse value fields on the map surfaces.

After that the value fields on the maps are low-pass filtered or “blurred” to
spread the relevance information between neighbouring units. This produces to
each map unit a qualification value, which is given to all objects that are mapped
to that unit (i.e. have it as the BMU). Map areas with a mixed distribution of
positive and negative values will even out in the blurring, and get a low average
qualification value. Conversely in an area with a high density of mostly positive
values, the units will reinforce each other and spread the positive values to their
neighbours. This automatically weights the maps according to relevance and
coherence with the user’s opinion.

The next processing stage is to combine the qualification values gained from
each map to the corresponding objects. These values are again summed between
parents and children of the object trees. The final stage is to select a specific
number of objects of the desired target type with the highest qualification values.
These will be shown to the user in the next query round.

4 Data and Features

We collected a set of web pages from the intranet of our institution. This resulted
in a database of over 7000 web pages and almost 2900 images. In the hierarchical
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model each web page forms a tree with the page itself as parent and the embedded
text, images and links as children as illustrated in Fig. 1.

Two ground truth classes containing images as the target type were selected
manually. Tourist class (907 images, a priori 31%) was from a conference or va-
cation and mainly outdoor tourist-type photography with attractions like mon-
uments and buildings. Face images (253, 8.6%) were such that the main target
was a human head.

4.1 Visual Features

From the images we extracted MPEG-7 still image descriptors, using the MPEG-7
Experimentation Model (XM) Reference Software [9]. As colour descriptors we
used Colour Layout (dimension: 12) and Scalable Colour (256), as shape descrip-
tor Region-based Shape (35), and as texture descriptor Edge Histogram (80), all
calculated from the entire image area.

4.2 Weblink Feature

In our experiments we used a weblink feature calculated from all the URLs re-
lated to a web page. Each distinct URL can be regarded as one dimension in
a very high-dimensional binary space of all valid URLs. Our weblink feature
extraction algorithm is based on the idea initially presented in [10], and uses the
Secure Hash Algorithm (SHA-1) [11] for performing random mapping to combine
and to reduce the dimensionality of such vectors. Random mapping replaces an
orthogonal base with a new base of lower dimensionality that is almost orthog-
onal. SHA-1 produces a condensed and nearly unique representation of a text
string or message, called a message digest.

In the weblink feature extraction algorithm, each of the URLs related to a
web page is recursively pruned into shorter URLs: first the original URL, then
the web page directory and each higher level directory, and finally the bare do-
main part. We calculate an SHA-1 message digest for each of these generated
URLs and form a 1024-dimensional binary random projection vector for each
by looking at the first 32 bits of the digest. These bits are interpreted as four
8-bit indices into separate ranges of a 1024-dimensional vector where the corre-
sponding components are set to unity and the others to zero. These vectors are
then weighted, summed and normalised to unit length. Finally, the link feature
vector for the web page is given as the sum of the normalised per URL vectors.
The dimensionality is fixed at 1024 which is computationally sound.

4.3 Text Feature

We extracted the text from the HTML files and calculated a character trigram
feature. For each character trigram in the text we calculate an SHA-1 message
digest and form a 1024-dimensional vector from the first 32 bits in the same
manner as with the weblink feature. The final feature vector is the sum of all
these vectors from each trigram of the text document, normalised by their num-
ber. The text feature can thus be regarded as a random-projected histogram of
character trigrams.
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5 Experiments and Results

We trained a total of six SOMs, one for each of the weblink and character trigram
features and one for each four MPEG-7 features. Every feature vector was used
100 times to train the corresponding SOM of size 256×256 map units.

The experiments were run in four ways: using only the MPEG-7 image fea-
tures and combining MPEG-7 with weblink, trigram or both. Each query was
initialised with one image of the pre-selected ground truth class. 50 query rounds
were performed with 20 returned images in each round, where the relevance of
each image could be automatically determined by using the ground truth data.
The experiment was repeated so that each ground truth image was used once as
the initialiser and the results were then averaged over all experiments.

Fig. 2 shows the recall–precision graphs where the precision has been nor-
malised relative to the a priori of the class. In all plots the precision initially
increases and then begins to decline when a clear majority of the relevant images
has been found. The additional non-visual features can be seen to increase the
precision of the retrieval in all the three combinations. In those cases the recall
level where the precision starts to decline is also substantially higher. Using the
non-visual features seems to bring the final recall very close to unity already
when only one third of the images has been retrieved.
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Fig. 2. Recall–relative precision graphs for classes tourist and face

6 Conclusions

In this paper, we have studied the use of hierarchical object trees to repre-
sent relationships between multimedia objects in a content-based information
retrieval system. We have demonstrated that such structures can improve the
performance of the system by implementing parent-child relevance sharing in
the object trees. The novel idea is that while we are searching for a certain ob-
ject type, for example images, other related object types in the database, like
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web page links, can implicitly contribute to the retrieval. This technique can be
used whenever one has a database with multiple object types with hierarchical
interrelations.

Our approach can be seen to complement the semantic web paradigm [12],
where semantic information is explicitly embedded in web documents. The hier-
archical object structures used in our work incorporate certain forms of semantic
knowledge in an automated way, which will reduce the required manual annota-
tion work. On the other hand, future developments in our system could utilise
semantic web information as an additional feature in the hierarchical structure.
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Evaggelos Spyrou1, Hervé Le Borgne2, Theofilos Mailis1, Eddie Cooke2,
Yannis Avrithis1, and Noel O’Connor2

1 Image, Video and Multimedia Systems Laboratory, National Technical University
of Athens, 9 Iroon Polytechniou Str, 157 73 Athens, Greece

espyrou@image.ece.ntua.gr

http://www.image.ece.ntua.gr/∼espyrou/
2 Center for Digital Video Processing, Dublin City University, Collins Ave., Ireland

Abstract. This paper proposes three content-based image classification
techniques based on fusing various low-level MPEG-7 visual descriptors.
Fusion is necessary as descriptors would be otherwise incompatible and
inappropriate to directly include e.g. in a Euclidean distance. Three ap-
proaches are described: A “merging” fusion combined with an SVM clas-
sifier, a back-propagation fusion combined with a KNN classifier and a
Fuzzy-ART neurofuzzy network. In the latter case, fuzzy rules can be ex-
tracted in an effort to bridge the “semantic gap” between the low-level
descriptors and the high-level semantics of an image. All networks were
evaluated using content from the repository of the aceMedia project1

and more specifically in a beach/urban scene classification problem.

1 Introduction

Content-based image retrieval (CBIR) consists of locating an image or a set of
images from a large multimedia database. Such a task can not be performed by
simply manually associating words to each image , firstly because it would be a
very tedious task with the exponential increasing quantity of digital images in
all sort of databases (web, personal database from digital camera, professional
databases and so on) and secondly because “images are beyond words” [1], that
is to say their content can not be fully described by a list of words. Thus an
extraction of visual information directly from the images is required, and is
usually called low-level features extraction.

Unfortunately, bridging the gap between the target semantic classes and the
available low-level visual descriptors is an unsolved problem. Hence it is crucial
to select an appropriate set of visual descriptors that capture the particular
properties of a specific domain and the distinctive characteristics of each image
class. For instance, local color descriptors and global color histograms are used
1 This work was supported by the EU project aceMedia “Integrating knowledge,

semantics and content for user centered intelligent media services” (FP6-001765).
Hervé Le Borgne and Noël O’Connor acknowledge Enterprise Ireland for its support
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in indoor/outdoor classification [2] to detect e.g. vegetation (green) or sea (blue).
Edge direction histograms are employed for city/landscape classification [3] since
city images typically contain horizontal and vertical edges. Additionally, motion
descriptors are also used for sports video shot classification [4].

Nonetheless, the second crucial problem is to combine the low-level descrip-
tors in such a way that the results obtained with individual descriptors are
improved. The combination of features is performed before or at the same time
as the estimation of the distances between images (early fusion)or directly at
the matching scores (late fusion) [5].

In this work, fusion of several MPEG-7 descriptors is approached using three
different machine learning techniques. A SVM is used with a “merging” de-
scriptors’ fusion, a Back-Propagation neural network is trained to estimate the
distance between two images based on their low-level descriptors and a KNN
Classifier is applied to evaluate the results. Finally in order to extract fuzzy
rules and bridge low-level features with the semantics of images, a Falcon-ART
Neurofuzzy Network is used.

Section 2 gives a brief description of the scope of the MPEG-7 standard
and presents the three low-level MPEG-7 descriptors used in this work. Section
3 presents the three different techniques that aim at image classification using
these descriptors.Section 4 describes the procedure followed to train the machine
learning systems along with the classification results. Finally conclusions are
drawn in section 5.

2 Feature Extraction

In order to provide standardized descriptions of audio-visual (AV) content, MPEG-
7 standard [6] specifies a set of descriptors, each defining the syntax and the
semantics of an elementary visual low-level feature e.g., color, shape. In this
work, the problem of image classification is based on the use of three MPEG-7
visual descriptors which are extracted using the aceToolbox, developed within
the aceMedia project[7]2 and is based on the architecture of the MPEG-7 eX-
perimentation Model [8]. A brief overview of each descriptor is presented below,
while more details can be found in [9].

Color Layout Descriptor. (CLD) is a compact and resolution-invariant MPEG-
7 visual descriptor defined in the YCbCr color space and designed to capture
the spatial distribution of color in an image or an arbitrary-shaped region. The
feature extraction process consists of four stages.

Scalable Color Descriptor. (SCD) is a Haar-transform based encoding scheme
that measures color distribution over an entire image, in the HSV color space,
quantized uniformly to 256 bins. To reduce the large size of this representation,
the histograms are encoded using a Haar transform.

Edge Histogram Descriptor. (EHD) captures the spatial distribution of
edges. Four directions of edges (0 ◦, 45 ◦, 90 ◦, 135 ◦) are detected in addition
2 http://www.acemedia.org
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to non-directional ones. The input image is divided in 16 non-overlapping blocks
and a block-based extraction scheme is applied to extract the five types of edges
and calculate their relative populations.

3 Image Classification Based on MPEG-7 Visual
Descriptors

Several distance functions, MPEG-7 standardized or not, can be used when a
single descriptor is considered. However, in order to handle all the above de-
scriptors at the same time for tasks like similarity/distance estimation, feature
vector formalization or training of classifiers, it is necessary to fuse the individ-
ual, incompatible elements of the descriptors, with different weights on each.

Three methods are considered for this purpose, combined with appropriate
classification techniques. Merging fusion combines the three descriptors using
a Support Vector Machine for the classification, Back-propagation fusion pro-
duces a “matrix of distances” among all images to be used with a K-Nearest
Neighbor Classifier. Finally, a Fuzzy-ART neurofuzzy network is used not only
for classification but also to extract semantic fuzzy rules.

3.1 Merging Fusion/SVM Classifier

In the first fusion strategy, all three descriptors are merged into a unique vector,
thus is called merging fusion. If DSCD, DCLD, DEHD are the three descriptors
referenced before then the merged descriptor is equal to:

Dmerged = [DSCD|DCLD|DEHD]

All features must have more or less the same numerical values to avoid scale
effects. In our case, the MPEG-7 descriptors are already scaled to integer values
of equivalent magnitude. A Support Vector Machine [10] was used to evaluate
this fusion.

3.2 KNN Classification Using Back-Propagation Fusion

The second method is based on a back-propagation feed-forward neural network
with a single hidden layer. Its input consists of the low-level descriptions of two
images and its output is the normalized estimation of their distance. The network
is trained under the assumption that the distance of two images belonging in
the same class is 0, otherwise, it is 1. These distances are used as input of a
K-Nearest Neighbor (KNN) classifier that assigns to an image the same label as
the majority of its K nearest neighbors.

A problem that occurs is that the distance between descriptors belonging to
the same image is estimated rather as a very small number than zero. However,it
is a priori set to zero. Moreover, even for a well-trained network, the output
would be slightly different depending on the row they are presented, thus the
distance matrix would not respect the symmetry property needed by the KNN
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classifier. To overcome this, we used only the distances either of the upper or of
the lower triangular matrix, or replacing a distance by the average of the two
corresponding outputs of the neural network.

Another approach to efficiently fuse the different visual descriptors uses pre-
calculated distance matrices for individual visual descriptors assigning weights
on each one, to produce a weighted sum. This time, the input of the network
consists of the three distances and results to a distance matrix which is used
again as the input of a KNN classifier.

3.3 Classification Using a Falcon-ART Neurofuzzy Network

Image classification using a neural network or a SVM fails to provide semantic
interpretation of the underlying mechanism that realizes the classification. In
order to extract semantic information, a neurofuzzy network can be applied. To
achieve this, we used the Falcon-ART network [11].

The training of the network is done in two phases, the “structure learning
phase”, where the Fuzzy-ART algorithm is used to create the structure of the
network, and the “parameters learning stage”, where the parameters of the net-
work are improved according to the back-propagation algorithm.

The input of the network is a merged descriptor according to the process
of section 3.1. After training, the network’s response is the class that the input
belongs. Hence, the way that the low-level features of the image determine the
class to which it belongs becomes more obvious and can be described in natural
language.

In order to have a description close to human perception for the rules of
the Falcon-Art algorithm, each dimension of an image descriptor was divided
into three equal parts, each one corresponding to low, medium, high values;
each hyperbox created by the Falcon-ART then leads to a rule that uses these
values. We present an example of such a rule, when classification considers only
the EHD descriptor. The subimages are grouped to those describing the upper,
middle and lower, parts of the image and a qualitative value (low, medium or
high) is estimated for each type of edges. Thus, a fuzzy rule can be stated as:

IF the number of 0 ◦ edges on the upper part of the image is low AND
the number of 45 ◦ edges on the upper part of the image is medium AND
. . . AND the number of non-directional edges on the lower part of the
image is high, THEN the image belongs to Beach

4 Experimental Results

The image database used for the experiments is part of the aceMedia content
repository 3 and more specifically of the Personal Content Services database. It
consists of 767 high quality images divided in two classes beach and urban. All
the results are presented in table 1. 40 images from the beach category and 20
3 http://driveacemedia.alinari.it/



Fusing MPEG-7 Visual Descriptors for Image Classification 851

Fig. 1. Representative Images - 1-3:Beach Images, 4-6: Urban Images

Table 1. Classification rate using several approaches on different MPEG-7 descriptors:
edge histogram (EH), color layout (CL) and scalable color (SC)

Classification EH CL SC EH+CL EH+SC CL+SC EH+CL+SC
Merging/linear SVM 79.5% 82.3% 83.6% 87.1% 88.7% 86.9% 89.0%

Back-Prop.L2 dist./KNN -% -% -% 88.97% 89.25% 88.54% 93.49%
Back-Prop./KNN. 81.9% 87.13% 85.86% 67.04% 90.1% 91.37% 86.28%

Falcon-ART 81.4% 84.7% 83.67% 82.4% 83.6% 86.3% 87.7%

Table 2. Fuzzy Rules created by the Falcon-ART, trained with the EH descriptor

part of image edge type Rule 1 Rule 2 Rule 3 Rule 4 Rule 5
0 ◦ M L M-L M-L L
45 ◦ M L M-L M M

upper 90 ◦ M L M M M
135 ◦ H M M M M

nondir. ◦ M M M M M
0 ◦ M L M M M
45 ◦ M M-L H M H

center 90 ◦ M M M M H
135 ◦ H M M-L H H

nondir. ◦ H M M H M
0 ◦ M L L M L
45 ◦ M M H H H

lower 90 ◦ H M M H H
135 ◦ M M-L M H M

nondir. ◦ M M M-L H M
class urban beach urban beach beach

from the urban were selected and used as training dataset. The remaining 707
(406 from beach and 301 from urban) images were used for evaluation.

SVM Classifier using Merging Fusion: The merged vectors were directly
used as input of a SVM classifier with a polynomial kernel of degree one (i.e
a linear kernel). Results with polynomial kernels of higher degree (up to 5)
give similar results. While individual features lead to classification results from
79.5% to 83.6%, the merging of two of them improve the classification results
from 86.9% to 88.7%, and reaches 89% with the merging of the three.

Back-Propagation Fusion of Merged Descriptors: The distance between
two images was determined manually and was set to 0 for images belonging to
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the same category and to 1 otherwise. The symmetric distance matrices were
used with the KNN classifier, as described in section 3. Best performance was
achieved using all the descriptors and the distances between the images. In this
case the success rate was 93.49%. All the results are shown on table 1.

Falcon-ART Neurofuzzy Network: The same 60 images’ merged descrip-
tions were presented randomly at the Falcon-ART neurofuzzy network. In the
case of the EHD descriptor, the Falcon-ART has created 5 fuzzy rules which are
presented in detail in table 2. The success rate was 95.8% on the training set
and 87.7% on the test set, with the Fuzzy-ART algorithm creating 8 hyperboxes
(rules) and the Falcon-ART neurofuzzy network being trained for 275 epochs.

5 Conclusion and Future Works

All methods were applied successfully to the problem of image classification us-
ing three MPEG-7 descriptors. Back-propagation fusion showed the best results
followed by the merging fusion using the SVM. The Falcon-ART provided a lin-
guistic description of the underlying classification mechanism. Future work will
aim to use more MPEG-7 descriptors. Additionally, these classification strategies
may be extended in matching the segments of an image with predefined object
models with possible applications in image segmentation.
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Abstract. The idea of verification the inflection correctness of sentences com-
posed in polish language is presented in this paper. The idea and its realization 
is based on the formal model of modified link grammar, grammatical rules of 
polish language and neural network as a classification tool of individual words 
for the sake of gender, number, person, mood and case. The crucial to deter-
mine the inflection correctness is the third of mentioned items. The proposition 
of the artificial neural classifier is presented. Finally, the application and expect 
results are discussed. 

1   Introduction 

The problem of automatic verification and correction grammatical errors in text files 
created by OCR systems or speech-to-text transcription systems is still important in 
natural language processing. There are many applications which try to solve this prob-
lem in practice. Unfortunately, all of them are related to texts composed in English so 
they use English grammar rules only. The best systems have effectiveness at level of 
97.8%. It is very good result in comparison with human (99.7%). We try to propose 
the idea of such system focused on Polish grammar. Taking into consideration the 
specific for Polish language: inflection, changeable word order and fact that in living 
language most of people speak not so clear but nevertheless understandable (because 
of semantic and intentional understanding), is very possible that efficiency in this case 
would be much lower using the methods applied in known English-dedicated systems. 

Except the process of voice or image (scanned documents, handwriting) recogni-
tion and transformation them into text, verification of inflection correctness is the next 
important problem to get errorless text and realize e.g. speech-to-text transformation 
correctly and effectively. 

Using the modified link grammar (MLG) [5] the correctness of number and rela-
tions among lexical-marked groups of words in sentence is verified. In the MLG the 
inflection of individual words is not considered, so the sentence could be recognized 
as a syntactic correctly but in fact it wouldn’t be true, because one or more neighbor-
ing words would be incorrect with relation to the other. 

This is the reason why it is necessary to have the knowledge at least about gender, 
number and case of each word in sentence. Having such knowledge and verification 
rules – based on rules of grammar – is possible to mark and to correct inflection mis-
takes. 
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2   Aim and Main Idea 

The conception presented in this paper can be put into practice in automatic verifica-
tion and correction grammatical errors in text files from OCR or speech-to-text tran-
scription systems. Preliminary, no context, correction would be realized with the aid 
of dictionary. It is helpful but insufficient. Especially in polish language (and the 
other inflection languages), when the most grammatical errors are caused by using 
incorrect word endings. So, indispensable is a formal method (algorithm) of correc-
tion the inflection errors basis on the grammatical context of words in sentence. 

Actual correction is realized using rules with conditions taken from neural classi-
fier. The classifier provided information about gender, number (singular or plural), 
person and case of each known word. The knowledge serves as the condition in veri-
fication and correction rules. 

3   Verification and Correction Process 

3.1   Preparation 

Each entered sentence is subjected to syntactic analysis, which is based on modified 
link grammar. This step is essential in order to facilitate further inflection verification 
and correction. During analysis the syntactic incorrect sentences are marked. The 
sentences marked as a syntactic incorrect are treated as the exceptions and are not 
further considered. As these sentences do not meet syntactic rules, an analysis by 
means of verification rules is difficult and requires additional semantic analysis. 
Moreover, it needs to follow the semantic context in previous and next sentences what 
is extremely hard. 

Actual verification is realized by means of rules if then, which describes – formally 
– inflection relations between words marked by links and determined in syntactic 
analysis. The conditions of verification rules are taken from the neural classifier data-
base. Based on effects of training, the neural classifier creates for each word (Nn) its 
individual set of features (data) (Fig. 1). For nouns, data-set consists information 
about gender, number, person, case and for verbs: person, aspect, tense, mood, voice. 

Since as only last two letters in word are crucial to describe the difference of each 
inflection form of word we define the ending as at most two last letters of the word. It 
causes simplification of stem-ending separation algorithm and what is much useful, to 
code the ending are needed only ten bits – five for each letter. 

3.2   Correction and Verification 

The correction process (Fig.1) starts with the text consisting only sentences without 
syntax errors – “clear” text. Next, from each sentence Ss pairs of neighboring words 
(Ll-1, Ll) are taken. Each word in pair is divided into stem and ending (according as-
sumption that endings consist of at most last two letters of each word). Next, the data-
base of the neural classifier is searching for the compatible couple, stem and ending of 
word Ll-1 and Ll. If exists any compatible word Nn, the set of its features (data) is 
placed into actual verification rule. Then the rule is fired. If conclusion is true, 
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neighboring words are used in proper inflection form. In case of discrepancy between 
Nn and Ll ending, the sentences is marked as grammatically incorrect (inflection error) 
and follows the search for the correct form in classifier database. If exist, the incorrect 
form is replaced. The process is repeated until the sentences Ss is over. When the 
process successfully ends – each word in pair have proper ending – the sentence is 
including back to the text. Otherwise correction is impossible. 
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Fig. 1. Verification and correction process 

4   Neural Network as Word Classifier 

We propose to use artificial neural network as a word classifier. The classifier is fo-
cused on two parts of speech: nouns and verbs. The classification of nouns means that 
the following features of declension ought to be pointed: gender, number (singular or 
plural), person and case. For verbs – the following features of conjugation are the 
most important: person, aspect, tense, mood and voice (active or passive). The each 
classified word is described by the set of features, some of them are correlated, and 
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some of them are completely independent. The rules which drive the word to the 
proper class during declension or conjugation process are quite complex in polish 
language and it is rather hard to describe them in clear algorithmic way. 

This is the reason why we use artificial neural network to realize the classification 
– the rules are elaborated during learning process based on set of examples. 

4.1   Details 

The input vector for neural network is created based on word endings separated from 
stems. The number of different endings which are characteristic for nouns and verbs 
in polish is rather large, but it is possible to reduce them using the language specific 
word dependences. In our opinion the set of 50 input learning vectors is enough repre-
sentatives to realize correct weights calculation. There is no chance to create the sin-
gle neural network which is able to describe all features, which characterize a single 
noun or a single verb [2, 3]. 

The classification of word is realized using the set of neural networks. The single 
neural network gives an answer related to the single feature. The post processing 
methods combine these elementary answers to general answer about the class of input 
word. Such approach seems to be little bit complicated, but it gives a chance to tune 
the sensitivity of single noun or verb feature – neural networks are trained independ-
ently. On the other hand it is possible to implement the set of neural networks in very 
effective way using parallel processing methods. 

The endings used as neural network inputs are binary coded. The answer of the 
neural network – related to the single feature - is presented using one-of-N code, 
where N is the range of feature – number of cases for example. This coding technique 
is justifiable, because the single word is described by only single case, single gender, 
etc. 

4.2   Neural Network Organization 

We propose multilayer perceptrons as a neural networks responsible for word classifi-
cation. The nets are equipped by single input layer, single hidden layer and single 
output layer. The number of neurons in input layer equals to the number of bits used 
for ending coding. During the experiment we used 10 input neurons – 5 bits for the 
first and 5 bits for the second character of single ending. The hidden layer is com-
posed of ten (the number matched experimentally) neurons and the number of output 
neurons equals to the range of tested feature. The each multilayer perceptron is 
trained with use of backpropagation algorithm with momentum and variable learning 
rate [3]. Mean square error measure (MSE) is used as the base of network energy 
function. Unipolar sigmoid function: 

                                    )uexp(
)u(f

i
i β−+

=
1

1

 
(1) 

where:  ui is weighted sum of i-th perceptron input values, 
β is parameter defining “steepness” of activation function f, 

is chosen for the nonlinear activation element, so all neuron output values fall in range 
(0, 1). The post processing method converts the output into binary values using ex-
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perimentally chosen thresholds [4]. This way we propose the most standard neuron 
classifier with many different and efficient learning algorithms. We can use one of 
them instead of backpropagation if the results of training are not sufficient. 

5   Experiments and Initial Results 

We carried out some experiments using NeuroSolutions system. Both neural nets 
were trained with use of backpropagation algorithm with constant learning rate 0.25. 
The results of two experiments are presented below. 

The first one concerned recognition of noun case. The neural net has in input layer 
10 neurons (each ending included two letter and is coded by ten-bits sequences –  five 
for each letter – where, 00000|00000 – no letters, 00001|00000 – a|-, 00010|00000 – 
b|-, …, ). The output layer consists of 6 neurons (six bits sequence in 1 of 6 code 
describes each case. 000001 – nominative, 000010 – genitive, …). Hidden layer is 
made of 10 neurons (matched experimentally). The training set: 100 words – 20 
words, each in three genders and two numbers. The test set: 100 words – 20 different 
words, each in three genders and two numbers. 

The level of nouns recognition correctness: 65% genitive, 66% accusative, 77% da-
tive, 79% instrumental, 86%, locative 84% and 87% nominative. 

The level of recognition correctness of nouns is not adequate to expected but the 
reaction of neural net is correct and is similar to human. The improvement of recogni-
tion is possible to achieve increasing number of words in training sets and the neural 
net modifications – e.g. in hidden layer. 

The second experiment concerned recognition the person of verb. The input and 
hidden layer as above. The output layer consists of 8 neurons. The learning set con-
sists of 90 verbs – 30 to each tenses. The test set included 90 different verbs. 

The results of recognition where definitely better and achieved average level 92% 
of correctness and are convergent to our expectations. The endings of verbs in polish 
language reveals high regularity what was confirmed by the results of experiment and 
what points the proposed neural nets is well organized. 

6   Conclusions 

The presented method of automatic verification and correction grammatical errors in 
text files is possible to use in speech-to-text transcription systems, scanned documents 
or handwritten recognition systems. We think the conception will find its first applica-
tion in text files processing. The preparation of some testing files in order to specify 
neural network classifier organization, number and forms of verification rules shows 
the limitations of conception and applied methods. 

We expect effectiveness at the level of human but in this moment, due to lack of 
enough number of experiments, the factual progress is unknown. However, the initial 
results confirmed the validity of assumption, the neural classifier could be useful in 
effective inflection error correction in text composed in polish language. 
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The idea of verification the inflection correctness of sentences was introduced. The 
pattern of the verification and correction process was presented. The organization of 
neural classifier, expecting results and application of system was discussed. 
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Abstract. SOM document-map based search engines require initial doc-
ument clustering in order to present results in a meaningful way. This
paper1 reports on our ongoing research in applications of Bayesian Net-
works for document map creation at various stages of document pro-
cessing. Modifications are proposed to original algorithms based on our
experience of superiority of crisp edge point between classes/groups of
documents.

1 Introduction

Nowadays, human beings searching for information are overwhelmed by infor-
mation rain. Even small businesses collect huge amount of written documents
both on their internal activities, advertisement materials and market situation.
Search engines retrieve ever growing number of documents in response to typical
requests. Publicly available libraries contain papers on any subject. Multimedia
encyclopedias run a race in providing a potential customer with more and more
information. Present legal documents - treaties, constitutions, law books - are
too elaborate for an ordinary man in the street to read. So there is an urgent
need for such a presentation of a document collection to its potential user that
one can grasp it as comprehensively as possible.

Within a broad stream of various novel approaches, one can encounter the
well known WebSOM project, producing two-dimensional maps of documents
[7,8]. A pixel on such a map represents a cluster of documents. The document
clusters are arranged on a 2-dimensional map in such a way that the clusters
closer on the map contain documents more similar in content.

At the heart of the process is of course the issue of document clustering.
In fact, to be efficient and reproducible, the clustering process must be multi-
stage one: clustering for identification of major topics, initial document grouping,
WebSOM-like clustering on document groups, fuzzy cell clusters extraction and
labeling [2,3,4].
1 Research partially supported under KBN research grant 4 T11C 026 25 ”Maps and

intelligent navigation in WWW using Bayesian networks and artificial immune sys-
tems”.
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These steps are at the heart of a BEATCA system created in our research
group2 for intelligent navigation in document maps.

In a separate paper [3], we described a document clustering method via fuzzy-
set approach and immune-system-like clustering.

This paper focuses on another research path, based on Bayesian networks. In
the subsequent sections we introduce the concept of Bayesian networks and then
step by step explain, how Bayesian networks may be (and in our system are) ap-
plied in document clustering. Bayesian networks have been applied to document
processing in the past. Modifications are proposed to original algorithms based
on our experience of superiority of crisp edge point between classes/groups of
documents.

2 Bayesian Networks

Bayesian networks (BN) encode efficiently properties of probability distributions.
Their usage is spread among many disciplines. A Bayesian network is an acyclic
directed graph (dag) nodes of which are labeled with variables and conditional
probability tables of the node variable given its parents in the graph. The joint
probability distribution is then expressed by the formula:

P (x1, ., xn) =
∏

i=1n

P (xi|π(xi)) (1)

where π(Xi) is the set of parents of the variable (node) Xi. On the one hand,
BNs allow for efficient reasoning, and on the other many algorithms for learning
BNs from empirical data have been developed.

A well-known problem with Bayesian networks is the practical limitation
for the number of variables for which a Bayesian network can be learned in
reasonable time [6]. Reasonable execution times are known for a few classes of
BN only, including ”naive Bayes” classifier (a BN with decision node connected
to all other variables, which are not connected themselves), the Chow-Liu-tree
structured BN, the TAN classifier (Tree Augmented Naive Bayes Network, a
combination of naive Bayes classifier with Chow/Liu tree-like Bayesian network).

In our approach we substitute Chow/Liu algorithm for learning tree-like BN
with the ETC algorithm [6] learning BNs in tens of thousands of variables.

3 Bayesian Networks in Document Processing

Bayesian networks are exploited in BEATCA system for: rough clustering of
documents - topic extraction, expansion, keyword extraction, relevance feedback
and document classification.

Subsequently we briefly point at our experience with using crisp and fuzzy
aspects of reasoning with Bayesian networks.
2 http://www.ipipan.waw.pl/ klopotek/mak/current research/KBN2003/

KBN2003Translation.htm
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3.1 PLSA Technique for Document Clustering

SOM document-map based search engines require initial document clustering in
order to present results in a meaningful way. Latent semantic indexing based
methods appear to be promising for this purpose. We have investigated empiri-
cally one of them, the PLSA [5].

The so-called Probabilistic Latent Semantic Analysis (PLSA) assumes a
model of document generation based on two assumptions: the first is that a
document is a bag of words, the second is that the words are inserted into a
document based on a probability distribution which depends on the topic to
which the document belongs. This results in the concept of (fuzzy) ”degrees of
membership” of a document to a concept. The document clustering obtained is
just a non-disjoint one.

3.2 Our Modifications to PLSA Technique

In the BEATCA system, we wanted to use the PLSA approach ”as is” for creation
of the initial broad topic identification. We applied it for grouping into 3 or 4
clusters that would initiate some ”fix points” of the document map. However,
the technique proved to be unable to distinguish linearly separable (carefully
chosen) sets of documents. The reason for the problem is probably the too high
number of adjustable variables (degrees of freedom). Beside this we complained
about long computation times and instability of the derived clusters.

We feel that the inability to discriminate linearly separable (in terms of
words) sets of documents is an important drawback of the technique, because
human beings appear to think using categories such as coincidence of terms.
Therefore we have investigated an alternative approach to PLSA, substituting
the ”fuzzy” boundaries between clusters with crisp ones. One can say that in our
experiment ”Naive Bayes” was at work. The linear separability was achieved for
the artificial sets of documents, and experiments with the original Syskill and
Webert data [9] generated meaningful clusters.

So our next step was to extend this ”Naive Bayes” version of PLSA by
substituting the Naive Bayesian network structure with a TAN structure. The
TAN here is learnt with the ETC algorithm from [6], as the typical Chiow/Liu
algorithm based approach fails due to the dictionary size (and hence the number
of attributes). The approach has been implemented and is now subject of intense
testing.

3.3 PHITS Techniques

Not only words, but also links may be a useful source of clustering information
when topics are concerned. PHITS algorithm [5] does the same with document
link information as the PLSA with document textual content. From mathemat-
ical point of view, PHITS is identical to PLSA, with one distinction: instead of
modeling the citations contained within a document (corresponding to PLSA’s
modeling of terms in a document), PHITs models ”in-links”, the citations to a
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document. It substitutes a citation-source probability estimate for PLSA’s term
probability estimate. On the Web and in other document collections, usually
both links and terms could or should be used for document clustering. The
mathematical similarity of PLSA and PHITS creates a joint clustering algo-
rithm [5].

3.4 Our Considerations of PHITS

The link-based clustering is applicable and valuable only in case of a really large
body of documents. Hence we consider a mixed approach to the problem of
link exploration. We extend the contents of a document with the contents of
documents it is pointed to (anchor related information). In this way we may
overcome the loss of information resulting from poor knowledge of related pages
by those that create the links. Most important here is the possibility of straight
application of BNs to combined link and text analysis.

3.5 Query Expansion

The query may not fully express users information needs. A document may not
contain all the words that should or might be contained (may be reasonable for
the document content). Hence it is worth effort to extend users query by terms
that are likely to correspond to user queries BN approach: attach terms from
the ”neighborhood” in a BN of presence/absence of terms in the documents
(approach of e.g. Acid et al system [1]). Theoretically, it is possible to compute
the probability of each term given the user query terms. So one may consider
the user query as a vector of terms weighed via these conditional probabilities
and seek documents similar to this vector. However, experiments show that more
human-acceptable results are obtained if we take only the most probable terms
and ignore the other ones.

It seems that unsharp relations among terms maintained by a Bayesian net-
work prove to be helpful to identify documents only slightly missing the query
formulation but still relevant to the user.

3.6 Relevance Feedback

A user, after obtaining the results of a query, may precise the query by point-
ing at documents that were relevant to his query and the ones that were not.
For relevant and non-relevant documents separate Bayesian networks over the
union of all terms occurring in both document sets are constructed. Further doc-
uments are estimated for relevance by computation of P (document|relevant)−
P (document|irrelevant). The same is done for irrelevant document BN to calcu-
late a substitute for P (document|irrelevant). Weighting is applied if P (relevant)
and P (irrelevant) may be significantly different. This is a standard technique.

Note that a sharp boundary is drawn by the user between relevant and irrel-
evant documents. Apparently, there is something significant for humans drawing
sharp boundaries. But at the same time the system itself works with a kind of
”grades of membership”, when trying to accommodate to user’s way of thinking.
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3.7 Document Classification

Document classification is needed at various stages of a search engine. First of
all, as a complement for the clustering task. Usually, only a subset of documents
is used to identify clusters in the data. The remaining documents need to be
classified into emerging clusters.

In our crawler, that should focus on some document categories, a classifier
is needed to predict which path for collecting documents seems to be the most
promising one at the given state of search.

Note that the class assignment may be unsharp to some extent ; the docu-
ments will not be classified into this or that particular class, but will be con-
sidered to be more or less likely belonging to some classes. So we get a graded
membership, which may be used for ranking the documents, which is in fact the
way we try to use BN for crawler navigation.

4 Conclusions

The case studies associated with the development of our search engine show an
interesting mixture of situations where the ”fuzziness” of concepts is used and
situations where sharp boundaries have to be drawn. Bayesian networks, with
their probabilistic nature, represent unsharp measures of membership in various
contexts. The membership degrees are used for ranking of documents at some
stage, while subsequently they are thresholded to induce sharp memberships, in
order to provide convincing, human-interpretable results. Therefore, crisp and
fuzzy concepts have to coexist and be interchangeably used depending on the
stage of processing. When such switching should take place is not only a philo-
sophical question, but also a practical one.
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3. M. K�lopotek, M. Dramiński, K. Ciesielski, M. Kujawiak, S.T. Wierzchoń: Mining
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Abstract. Neurophysiological findings of graded persistent activity suggest that 
memory retrieval in the brain is described by dynamical systems with continu-
ous attractors. It has recently been shown that robust graded persistent activity 
is generated in single cells. Multiple levels of stable activity at a single cell can 
be replicated by a model neuron with multiple hysteretic compartments. Here 
we propose a framework to simply calculate the dynamical behavior of a net-
work of multi-stable neurons. We applied this framework to spreading activa-
tion for document retrieval. Our method shows higher performance of retrieval 
than other spreading activation methods. The present study thus presents novel 
and useful information-processing algorithm inferred from neuroscience. 

1   Introduction 

It is generally accepted that memory retrieval in the brain is organized by persistent 
activation of an ensemble of neurons. In computational neuroscience, such activation 
is considered to emerge as a discrete attractor of a dynamical system describing a 
neural network in which multiple distributed patterns are embedded by recurrent con-
nections  [1]  [2] (Fig. 1a).  

Recent neurophysiological findings of graded persistent activity, however, dispose 
us to reconsider this traditional view. The firing rate of neurons recorded from the 
prefrontal cortex of the monkey performing vibrotactile discrimination tasks varied, 
during the delay period between the base and comparison stimuli, as a monotonic 
function of the base stimulus frequency  [3]. The firing rate of neurons in the oculomo-
tor system of the goldfish during fixations was associated with the history of sponta-
neous saccadic steps  [4]. These phenomena cannot simply be described by dynamical 
systems with discrete attractors. They are more likely to be described by dynamical 
systems with attractors that continuously depend on the initial state (Fig. 1b).   

Our previous study revealed unique functional properties of a neural-network sys-
tem with continuous attractors, context-dependent retrieval of information. These 
were illustrated by the use of a typical document-processing task, keyword extraction 
from documents  [5]. We considered a network of terms (words) appearing in a set of 
documents; the link between two terms was defined by their co-occurrence. It was 
shown that a continuous attractor led by activation propagation in this network gave 
appropriate keywords for a document (i.e. context) represented by the initial state of 
the network-activation pattern. To endow the network system with continuous  
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attractors, we assumed that each neuron had two stable states; in one state (‘on’ state) 
a neuron is active and in the other state (‘off’ state) it is inactive. It was originally 
proposed by Koulakov et al.  [6] that a network of bistable neurons could produce ro-
bust graded persistent activity.  

The problem accompanying a neural-network system with bistable neurons is that 
the output from each neuron is necessarily dichotomous (this is also the case for re-
current networks of single-stable neurons with a sigmoidal input/output relation). This 
prevents the network system to deal with refined information about a term. For in-
stance, information about a term in a given document is represented not only by its 
presence or absence but also by the degree of its importance, which should be repre-
sented by an analog value.  

Recent remarkable findings by Egorov et al.  [7] will shed a hint on this problem. 
They demonstrated in vitro experiment that individual neurons in the layer V of the 
rat entorhinal cortex (EC) responded to consecutive stimuli with graded change in the 
firing frequency that remained stable after each stimulus presentation. This was ob-
served under pharmacological blockade of synaptic transmission. These observations 
clearly show that graded persistent activity can emerge at a single-cell level.  

The purpose of this study is to demonstrate the functional advantage of a neural-
network system with neurons endowed with mechanisms to generate graded persistent 
activity at a single-cell level. When applied to a document retrieval task, the system 
shows high performance compared with a standard linear spreading activation 
method, as well as our previous neural-network system with bistable neurons. 

b

State space

Attractor states
Initial sates

State space

a b

State space

Attractor states
Initial sates

State space

a 

 

Fig. 1. a, discrete attractors. b, continuous attractor. 

2   Model 

To replicate robust graded persistent activity by single-cell level properties (i.e., with-
out exploiting network level properties), model neurons with multiple bistable (hys-
teretic) compartments piled up in such a way as illustrated in Fig.2a were proposed [8] 

 [9]  [10]. As input I  increases, transitions of the compartments from the ‘off’ to ‘on’ 
states occur in ascending order. As I  decreases, transitions of the compartments from 
the ‘on’ to ‘off’ states occur in descending order. Each state of a cell appearing in 
such ascending or descending processes is stable because of the hysteretic characteris-
tics of the compartments. This means that a neuron, as a whole, is multi-stable. There-
fore, if the activity of a neuron is proportional to the number of compartments in the 
‘on’ state, multiple levels of activity can become stable. Thus, robust graded persis-
tent activity can be gained only by using single-cell level properties.  



 Information Retrieval Based on a Neural-Network System with Multi-stable Neurons 867 

Y

maxY

L steps

IΔY I

( )1θα −= IY
( )2θα −= IY

a b

Ymax

Y(t)

H1 H2
θ2θ1 θ’1 θ’2

 

Fig. 2. Input/output relation of a multiple hysteretic neuron. a, relation for finite L. b, relation in 
the continuous limit: ∞→L  and 0→ΔY  while 

maxY  being fixed 

Now we consider a network consisting of such multi-stable neurons. To describe a 
single neuron with L  hysteretic compartments, we need at least L  variables. Calcu-
lating the dynamics of a network consisting of N  such multi-stable neurons, there-
fore, confronts computational overload (at least, NL×  variables are required to be 
calculated). To solve this problem, we take the continuous limit: ∞→L  and 

0→ΔY  with maxY  being fixed (Fig.2b). In the continuous limit, for given I  and Y  

at time step t , Y  at 1+t is defined by the rule:  

I) If I<′2θ ,  ( ) max1 YtY =+ .  

II)  If  21 θθ ′<< I ,  if IH <2 , ( ) ( )21 θα −=+ ItY ; 

    if 1HI < , ( ) ( )11 θα −=+ ItY ;  

    else  ( ) ( )tYtY =+1 .  

III) If 1θ<I ,  ( ) 01 =+tY .  

Here, 1θ , 2θ , 1θ ′ , 2θ ′ , α , 1H  and 2H  are given as in Fig. 2b. Thus, computational 

load is dramatically reduced.  
Let iY  be the output from neuron i and ijT  be the strength of the link from neuron 

j  to neuron i . The input to neuron i  is hence given by == N
j jiji YTI 1 . The network 

dynamics follows the standard asynchronous neural-network dynamics  [1]:  

1) Select one (say, neuron i ) randomly from N  neurons;  
2) calculate iI ;  

3) update iY  according to the rule I) - III);  

4) repeat 1) - 3) until the network state reaches equilibrium. 

Here we simply verify that graded outputs from individual neurons are realized in a 
continuous attractor of our system. Let Φ  symbolize the input/output relation defined 
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by the rule I)-III); i.e., ( )ii IY Φ= . Consider a state in which a cluster of neurons, say 

C , has persistent activity sustained by reverberating activation within these neurons. 
We further assume that, for neuron i  ( C∈ ) with fairly large iI , iY  is proportional to 

∈= Cj iji TT : i.e. ii TY γ= with γ  being a constant. Hence we have 

∈∈= === Cj jijCj jij
N
j jiji TTYTYTI γ1 . By mean field approximation, 

iCj ijCj jij mTmTTT == ∈∈  with NTm N
i i== 1 . Thus we obtain ( )ii TmY γΦ= . Fig. 3 

intuitively shows that ii TY γ=  ( Ci ∈ ) is gained in a continuous attractor, for which 

multi-stability of a single neuron (indicated by the grey region) is crucial.  

X

maxY

Y
( )mXmY 1θα −=

( )mXmY 2θα −=

XY =
( )mXY Φ=

Yk

Yj

Yi

Yi Yj Yk

X

maxY

Y
( )mXmY 1θα −=

( )mXmY 2θα −=

XY =
( )mXY Φ=

Yk

Yj

Yi

Yi Yj Yk  

Fig. 3. Graded outputs from individual neurons, Yi=γTi, Yj=γTj, Yk=γTk, … , are given in a 
continuous attractor 

3   Results and Discussions 

The effect of a single-cell level of graded persistent activity upon a network-level of 
information processing was examined by applying the neural-network system with 
multi-stable neurons, as formulated in the preceding section, to spreading activation 
for document retrieval. Spreading activation refers to a process to improve the vector 
representation of a given query. We expected that graded representation of output 
from individual neurons operated in favor of spreading activation.  

In conventional document retrieval, texts are converted to vectors in the space 
spanned by terms. Let ),,,( 21

)(
Nppp

p wwwD =  be the vector representation of docu-

ment p  with ipw  being the relative importance of term i  in document p ; 

( )Nrrr
r qqqQ ,,, 21
)( =  be the vector representation of query r  with irq  being the rela-

tive importance of term i  in query r . The relevance of document p  to query r  is 

estimated by the degree of similarity (e.g. cosine) between )( pD and )(rQ .  

One can consider a network of terms. The weight of the link between a pair of 
terms represents the level of association between them, which is usually defined by 
the frequency of ‘co-occurrence’. Each term has ‘activity’ that varies as spreading 



 Information Retrieval Based on a Neural-Network System with Multi-stable Neurons 869 

activation evolves in the network. For query )(rQ , the initial value of activity of term 

i  is defined by irq . The modified query is given by an attractor state of spreading 

activation; ( )**
2

*
1

)(* ,,, Nrrr

r
qqqQ = . In )*(rQ , terms that are closely relevant to the underly-

ing meaning of the query but not highly rated in )(rQ  will be associated with high 

values; on the other hand, terms that are associated with high values in )(rQ  but actu-

ally have little relevance to the query will be low rated. Thus, )*(rQ  will more ade-

quately represent the underlying meaning of query r . Therefore, )*(rQ  is more appro-

priate for estimating the relevance of a given document to query r  than )(rQ . Fig. 4 

illustrates the process of document retrieval by spreading activation. 
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Fig. 4. Outline of document retrieval by spreading activation 

We examined three kinds of spreading activation dynamics:  

i) Liner spreading activation model (LSA) 
LSA is a standard spreading activation method widely used in information re-
trieval, described by the linear dynamics  [11]  [12]  [13]: )1()( ** −+= tQQtQ M  with 

TIM αγ +−= )1(  where *Q describes activities of terms at time t ; Q , which repre-

sents activities of terms in the original query, acts as constant inputs to 
terms; ( )ijt=T  is the matrix defined by co-occurrence of terms (the covariance-

learning rule, see later).  
ii)  Bistable neuron model (BSN) 

Query vectors are modified by the dynamics of a network of bistable neurons pro-
posed in our previous study  [5].  

iii)  Multi-stable neuron model (MSN) 
Query vectors are modified by the dynamics of a network of multi-stable neurons 
whose input/output relation is described by the rule illustrated in Fig. 2.  

We compared the average precisions of document retrieval given by the above 
three methods. The average precision (its mathematical definition is given in Fig. 5, 
legend) is a measure to evaluate both recall and precision by a single value. Med-
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line1033  [14], a data set consisting of 1,033 medical paper abstracts with 30 text que-
ries, was used as a test collection. The relative importance of term i  in document p , 

ipw , is defined by TFIDF (Term Frequency Inverse Document Frequency)  [15]; 

)/log()1log( iipip bPaw +=  where ipa  represents the frequency of term i  in docu-

ment p , 
ib  is the number of documents containing term i , and P  is the number of 

documents. The weight of the link between terms i  and j , ijT , is defined by the co-

variance learning rule that extracts statistically significant co-occurrence of these 
terms: 

=== −−−−= P
p jjp

P
p iip

P
p jjpiipij mwmwmwmwT 1

2
1

2
1 )()())((  with Pwm P

p ipi == 1
. 

In addition, we also examined Vector Space Model (VSM) as a baseline, in which the 
original query vectors ( Q ) were used. 
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Fig. 5. Mean values of average precision for all queries. Average precision  [15] is defined by 
( ) ( )=

−
=+= P

p
p
q qp pzzR 1

1
111ν  where P is the number of output documents, R is the number of 

relevant documents, and zp is 1 if document p is relevant, 0 otherwise. The bar chart indicates 
mean values of average precisions for 26 queries and the error bars indicate standard errors of 
the mean. 

Fig. 5 shows the result of our examination. There were significant difference only 
between MSN and the baseline method, VSM (p < 0.05, ANOVA). MSN performed 
best among three spreading activation methods. Each of LSA, BSN and MSN shows 
higher performance than VSM, but MSN is the best. Actually, difference from VSN is 
statistically significant only for MSN. The superiority of MSN to BSN and LSA can 
be explained as follows. In BSN, output from each neuron is dichotonomous, refined 
information about the relative importance of terms, which should be represented by 
analog values, is lost. In LSA, query is expressed by constant external input ( Q ). 

Therefore, if a query contains irrelevant terms, they lastingly affect search processes. 
On the other hand, in MSN, query is expressed by an initial state of the network acti-
vation pattern. Irrelevant terms in a query will be reduced during spreading activation. 

A novel information-retrieval method by spreading activation has been inferred 
from possible neural mechanisms for graded persistent activity. In this method, for a 
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given query encoded in the initial state of the activation pattern of a network of multi-
stable neurons, information is retrieved as a continuous attractor attained by spreading 
activation in this network. The method, when applied to query extension for document 
retrieval, shows higher performance than other spreading activation methods such as 
LSA. Although comparison with query extension using other methods than spreading 
activation  [16] still remains to be addressed, we believe that our method presents a 
novel and useful approach for document processing.  

In cognitive psychology, it has been proposed that long-term memory is organized 
in the network structure  [12]  [13], which resembles the network of terms examined in the 
present study. The performance of our method demonstrated by the use of the network 
of terms suggests that the continuous-attractor dynamics of a network of multiple 
hysteretic neurons might describe essential features of real brain processes of short-
term memory retrieval from long-term memory.  
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Abstract. We propose a new coding model to the associative ontology that 
based on result of association experiment to person. The semantic network with 
the semantic distance on the words is constructed on the neural network and the 
association relation is expressed by using the up and down states. The 
associative words are changing depending on the context and the words with 
the polysemy and the homonym solve vagueness in self organization by using 
the up and down states. In addition, the relation of new words is computed 
depending on the context by morphoelectrotonic transform theory. In view of 
these facts, the simulation model of dynamic cell assembly on neural network 
depending on the context and word sense disambiguation is constructed. 

1   Introduction 

The language function in the brain is supported by a complex, exquisite system. 
Therefore, even if the activity of the individual neuron related to the language 
function is clarified, the mechanism of the entire system is not understood. If only the 
activity of the entire system is examined from the outside the mechanism that 
supports it is not understood. In this research, the neuron that shows the word by the 
up and down state and the morphoelectrotonic transform on neurophysiology is 
assembled, and the meaning of word sense ambiguity is specified from the relation of 
the network in which it gathered. 

Elman 's Simple recurrent network(SRN) model targets the words generated with 
simple context-free grammar including the relative clause generation. When the word 
was input one by one, study that forecast a approaching word next was learned [1]. 
However, only the grammatical relations between individual words were able to be 
learned, and semantic relations between words were not acquired in Elman 's model. 
The semantic network where semantic relations between words had been shown as a 
distance was implemented on the neural network in this model. The sentence with the 
ambiguity resolves vagueness by the specify the meaning of the word with the cell 
assembly. 

The relations between words use the association ontology constructed based on 
stimulus word-association word relation by the association experiment in the Ishizaki 
laboratory [2]. We proposes the method for computing the relations between concepts 
based on the morphoelectrotonic transform theory from the firing rate between 
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neuron. Dynamical cell assembly is symbolized by the mechanism of the up and 
down state and the morphoelectrotonic transform on the network, and the method for 
clarifying the word sense disambiguation is described. 

2   Up and Down States of Neurons 

When the activity of the cerebral cortex was observed, the experiment result that there 
were two states that were called "Up state" and "Down state" in the state of the neuron 
under the threshold of the fire was announced [3]. Up state indicates the case where 
there is a state of the membrane potential in the place immediately before the spike's 
fire. Down state shows the state of the low membrane potential called the state of 
geostationary. The state that changed at the average cycle of about one second was 
discovered between these two states (Fig.1). 

 

Fig. 1. Spontaneous, suprathreshold up state. The fast transition to the up state, delays in burst 
firing onset during the up state, and relatively slow return to the down state [3]. 

The model such as neurons that fire easily according to the input and neurons that 
do not fire easily can be constructed by using up and down state. For example, two 
states of this fire are built into the recurrent neural network and the model where the 
neuron group has working as the integrator by strength of the input is proposed [4]. 
As a result, the neuron that fire sequentially by the firing pattern of the input is 
dynamically changed, and grouping of the neuron can be changed dynamically. 

3   The Morphoelectrotonic Transform 

When the potential injected into a membrane exceeds a constant threshold, a 
morphoelectrotonic potential corresponding to the input stimulation is generated. For 
example, this morphoelectrotonic potential is observed in neocortical pyramidal 
neuron dendrites of rat olfactory cortex [5]. The potential decreases in proportion to 
the length of neural axon and dendrite because of the resistance of the membrane and 
the cytoplasm. The morphoelectrotonic transform measures the distance between two 
neurons using the attenuation rate of the current that flows between them [6]. A 
morphoelectrotonic transform is expressed by a distance which is calculated by using 
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the amount of the morphoelectrotonic potential when it decreases to 1/e (e: common 
logarithm). 
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(1) 

ijL : attenuation function, 
iV : input voltage, 

jV : measured voltage 

The distance between neurons changes dynamically by using morphoelectrotonic 
transform theory, and it is proposed that the model into which the neuron group that 
fires according to the input is changed can be constructed. For example, the model is 
proposed as a research of the perceptual reconstruction into which the object 
recollected according to the input is changed by learning the distance between 
neurons [7]. It is possible that dynamically constructing the neural network based on 
the relation of the input words by using morphoelectrotonic transform. 

4   Neural Cording Model 

We explains the coding model by which the associative ontology is implemented on 
the neural network based on the theory of neurophysiology. The associative ontology 
is what structurizes and computerizes the association data by the association 
experiment (in Japanese) executed in the Ishizaki laboratory. It has the network 
structure with which a related concept is connected directly and the distance between 
concepts is requested quantitatively. It is calculated based on a large amount of data 
of about 42,000 difference words, of which association words are 160,000 in a present 
version. It is implemented on the neural network by setting this association ontology 
as follows. 

 

Fig. 2. Outline of neural coding model of association ontology. When the text of the Japanese 
kana is input to the associative ontology, it converts it into the text that contains the Japanese 
kana and kanji with a correct meaning relation. 
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1. Nodes of the association ontology as for the neuron. 
2. Words with the association relation as for an excitatory connection. 
3. Homonym as for an inhibitory connection. 

The input signal to the model is vague sentences that are including the polysemy 
and the homonym (Fig.2). The meaning of the word greatly changes into the sentence 
to which the voice is input in the natural language depending on the context. And, we 
recognize it specifying the meaning from the relation of the word before and after. For 
 

 

Fig. 3. Formation process of cell assembly with up and down states 
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example, "Pen" is specified by having the meaning such as instrument and building, 
and containing the following contexts. 

− The pen and pencil are sold in the shop.(instrument) 
− A man who had committed the crime was released from the pen.(building) 

The neurons with the relation between the word and the homonym are put into the 
up state when the word into which the expression changes depending on the context is 
input. Next, when the word that was able to specify the meaning without a homonym 
and polysemy is input, the neuron corresponding to the word fires. The neuron which 
has the associative relation with firing neuron in the up state neurons fires in self 
organization for excitatory connection. Another neuron which has the homonym 
relation with firing neuron is the down state by inhibitory connection. Vagueness is 
resolved according to the context input, and this model corresponds to the input of a 
consecutive sentence.  

In addition, the relation of the word newly extracted is learned from the resolution 
of vagueness to which the up and down states is taken by using distance information 
on the association ontology. The distance of the neurons with a new relation by using 
(Exp.1) is requested by assuming the reciprocal of the distance between the firing 
neurons to be a size of the firing potential. A dynamic model by which the relation of 
new words is extracted can be automatically constructed with this algorithm.  

A Japanese sentence is used as input and output data of this model. Two kinds of 
characters like the Japanese kana and kanji, etc. are changes into the literation by the 
meaning. In this research, the polysemy and the homonym of the Japanese kana are 
resolved by the input context, and the model that literates a specific Japanese kanji is 
constructed. 

4.1   Cell Assembly with Up and Down States 

We explains the process in cell assembly by the sentence that continues to the phrase 
of "katai ishi". The sentence of "katai ishi (wo) hyoumeisuru" is input. Each part is 
sequentially input to the associative ontology (Fig.3). 

The neurons with the same reading as "katai" are the up states because it cannot 
specify the meaning at this stage when "katai" is input (1). Next, the neurons with the 
same reading as well as (1) are the up states because it cannot specify the meaning 
even here when "ishi" was input (2). When the part of "hyoumeisuru" is input, the 
meaning can be specified (Because another doesn't have the meant neuron 
"hyoumeisuru"). Therefore, when the "express" neuron fires, an excitatory signal is 
sent to the related neurons. When the neuron that receives an excitability signal is the 
up state, the neuron fires and "will" neuron fires like (3). It sends an excitatory signal 
to the neurons with the relation in the chain reaction by "will" neuron's firing. The 
firing "will" neuron sends the homonym inhibitory signal at the same time, and puts 
them into the down states. The homonyms similarly are the down states for "strong" 
neuron that fires in the chain reaction (3). 

4.2   Learning of Distance by Morphoelectrotonic Transform 

This simulation is a result of inputting 100 documents that show " katai ishi (wo) 
hyoumeisuru " (Fig.4). The document is extracted by inputting the key word by the 
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search engine. In this simulation, "express" and "strong" neuron were connected from 
the input sentence, and association distance 0.6 was studied according to the 
morphoelectrotonic transform. 

There is a famous Elman network as a network model to the appearance word is 
calculated by the context dependent. But in this network, it is a problem that firing in 
steady order.In this network, it is not necessary to adjust the weight of individual 
neuron, and if average strength is decided, the neuron group is integrated even if 
neuron connects at random. 

 

Fig. 4. Learning of relation of extracted new word 

Table 1. Associative distance after relation of word of "express strong will" is extracted. The 
number in parentheses is a value before learning. 

 
Associative distance strong will express 
strong  2 0 
will 3.6(3)  4 
express 0.6 5.6(5)  

5   Conclusion 

This neural coding model that is able to treat various meanings was constructed by the 
using up and down state. By morphoelectrotonic transform, it was possible to extract 
automatically from the large-scale text data the relation of a new word without the 
association experiment. Large-scale learning of the associative distance and the 
evaluation are scheduled by the association concept dictionary after this. 
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Abstract. The paper presents a new version of a GMDH type algo-
rithm able to perform an automatic model structure synthesis, robust
model parameter estimation and model validation in presence of out-
liers. This algorithm allows controlling the complexity – number and
maximal power of terms – in the models and provides stable results and
computational efficiency. The performance of this algorithm is demon-
strated on artificial and real data sets. As an example we present an
application to the study of the association between clinical symptoms of
Parkinsons disease and temporal patterns of neuronal activity recorded
in the subthalamic nucleus of human patients.

1 Introduction

Artificial Neural Networks (ANN) have been successfully applied in many fields
to model complex non–linear relationships. ANNs may be viewed as the univer-
sal approximators but the main disadvantage of this approach is that detected
dependencies are hidden within the neural network structure. Conversely, Group
Method of Data Handling (GMDH) [1] are aimed to identify the functional struc-
ture of a model hidden in the empirical data. The main idea of GMDH is the use
of feedforward networks based on short-term polynomial transfer function whose
coefficients are obtained using regression technique combined with the emulation
of the self-organizing activity for the neural network (NN) structural learning. In
order to reduce the sensitivity of GMDH to outliers a Robust Polynomial Neu-
ral Network (RPNN) approach was recently developed [2]. This paper presents a
new version of RPNN using new robust criteria for model selection and measures
of goodness of fit and a demonstration of its performance on artificial and real
data sets.
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c© Springer-Verlag Berlin Heidelberg 2005



882 T. Aksenova, V. Volkovich, and A.E.P. Villa

2 GMDH Approach

The GMDH approach for complex system modeling and identification is based
on given multi-unit–single-output data invented by Ivakhnenko [1]. Traditional
GMDH is a multi-layered perceptron type NN formed by neurons whose transfer
function g, g = a+ bwi + cwj +dwiwj + ew2

i + fw2
j is a short-term polynomial of

two variables wi, wj . The GMDH training algorithm is based on an evolutionary
principle. The algorithm begins with regression-type data, the observations of
vector of independent variables x = (x1, . . . , xm)T and one dependent variable
y. The data set is subdivided into training and test sets. At the 1st layer all
possible combinations of two inputs generate the first population of neurons
according to the transfer function g. The size of the population at the 1st layer
is equal to C2

m. The coefficients of the polynomials of g are estimated by Least
Square fitting using the training set. The best neurons are selected by evaluating
the performance on the test set according to a criterion value. The outputs of
selected neurons of the first layer are treated as the inputs to the neurons of
the 2nd layer, and so on for the next layers. The size of the population of the
successive layers become equal to C2

f . The process is terminated if there is no
improvement of the performance according to the criterion. The GMDH model
can be computed by tracing back the path of the polynomials. The composition
of quadratic polynomials of g forms a high-order regression polynomial known
as the Ivakhnenko polynomial. Notice that the degree of the polynomial doubles
at each layer and the number of terms in the polynomial increases.

3 Robust Polynomial Neural Networks

Basically RPNN are described as follows (see [2,3] for more details). Let x =
(x1, . . . , xm)T be the vector of input variables and let y be the output variable
that is a function of a subset of input variables y = u(xi1, xi2, . . . , xip). Let
X = (xij) be a [m × n] matrix and Y = (y1, . . . , yn)T the vector of obser-
vations. The random errors ξ of observations are assumed to be uncorrelated,
identically distributed with finite variance Y = E(Y|X) + ξ. The goal of the
method is to find a subset of variables xi1, . . . , xik and a model belonging to
the class of polynomial that minimizes some criteria values (CR). Thus, model
identification means both structure synthesis and parameters estimation. The
main modifications according to the original GMDH are the following:

1. An expanded vector of initial variables x = (x1, . . . , xm, xm+1, xm+2)T ,
xm+1 = 1, xm+2 = 0 is available at each layer;

2. The following nonlinear transfer function which generates the class of
polynomials is used [3]:

g(wi, wj , wk) = awi + bwjwk, i, j, k = 1 . . .m . (1)

Triplets of inputs are considered instead of pairs. The coincidences of indexes
lead up to triple the number of connections. Neurons with one or two inputs
as well as several transform functions (including the linear one) are generated
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according to Eq. 1 and additional variables xm+1 = 1 and xm+2 = 0. Notice
that only two coefficients a and b are estimated. In traditional GMDH the Mean
Least Square (MLS) method is used. Thus the second order matrices are only
inverted. This provides fast learning of NN. The number of neurons at each layer
of the net that depends on the form of the transfer function g and the number
f of output variables which were selected from previous layer equals C3

m+2+f .
3. Each term xq1

i , . . . , xq2
j in the equation is coded as a product of the ap-

propriate powers of a prime numbers, i.e. the polynomial is coded by a vector
of Gedels numbers [3]. Because of the one-to-one correspondence between the
terms of the polynomials and their Gedels numbers this coding scheme can be
used to transfer the results of the ANN to the parametric form of equation.

4. The polynomials of high power are unstable and sensitive to outliers.
Therefore, a twice-hierarchical ANN structure based on the polynomial com-
plexity control [2] was proposed to increase the stability and computational
efficiency of GMDH. This structure allows the convergence of the MLS coeffi-
cients, as proven mathematically for algorithm with linear transform [4]. The
vector (p, c)T , where c is the number of terms and p is the power of the poly-
nomial is considered as the polynomial complexity. Gedels coding scheme allows
to calculate the number of terms for each intermediate model that equals to
the number of non zero element of its vector of Gedels numbers. The power
of intermediate model g(wi, wj , wl) = awi + bwjwl is controlled by the condi-
tion p(g(wi, wj , wl)) = maxp(wi), p(wj), p(wl) where p(wi), p(wj), p(wl) are the
power of inputs wi, wj , wl. This allows to control the complexity by restricting
the class of the models by p(wi) < pmax and c < cmax. The RPNN are twice-
multilayered since multilayered neurons are connected into a multilayered net.
The external iterative procedure controls the complexity of the models, i.e. the
number of the terms and the power of the polynomials in the intermediate mod-
els. The best models form the initial set for the next iterative procedure. The
internal iterative procedure realizes a search for optimal models given the fixed
complexity and discard models that are out of the specified range. Both external
and internal iteration procedures are terminated if there is no improvement of
the criterion values CR.

5. Robust M–estimates [5] of the coefficients a and b of the transfer functions
g(wj1, wj2, wj3) = awj1 + bwj2wj3 were applied instead of MLS estimates.

6. Robust versions of CR are used for model selection:

CR1 =
σ̂

n− p

n∑
i=1

ρ(ri/σ̂) , CR2 = σ̂
n + p

n− p

n∑
i=1

ρ(ri/σ̂) . (2)

If the data is splitted into training and test sets A and B, then the robust version
of regularity criterion AR used in GMDH [1] is implemented. The parameters
âA, b̂A, and the variance σ̂A estimated on the set A are used to calculate the
residuals ri for the set B. Then, the regularity criterion AR is expressed by
AR = σ2

A

∑
i∈B ρ(ri/σ̂A) .

7. The ρ-test (robust variant of F -criteria) and R2
n-test [6] are applied to

the final models for the canonical hypothesis H0 : βi = 0, β is the vector of
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parameters of the resulted model, to avoid the appearance of spurious terms.
Robust correlation and robust deviation for both training set A and test set B
are used as measures of goodness of fit.

8. The residuals ri, of the final models are used for the outlier detection:
outlier = 0, if |ri| ≤ kσ̂, otherwise outlier = 1.

4 Validation on an Artificial Data Set

Let us consider the vector of m = 5 input variables x = (x1, . . . , x5)T , and the
fourth power polynomial y = 10.0 + 1.0 · x1 · x3

5 + ξ generally used for test-
ing GMDH. The matrix X = (xij) [5 × 15], n = 15 was generated at random
with a uniform distribution on the interval [1, 10]. Random values ξ were gener-
ated according to the model of outliers Pδ(ξ) = (1 − δ)φ(ξ) + δh(ξ). Here φ(ξ)
is the Normal distribution density N(0, σb); h(ξ) is the distribution density of
the outliers N(0, σout); δ is the level of the outliers. Twenty realizations were
considered for the following combinations of parameters: (A) σb = 10, δ = 0;
(B) σb = 10, δ = 0.2, δout = 1000; (C) σb = 10, δ = 0.2, δout = 2000; (D)
σb = 10, δ = 0.2, δout = 3000. Structural indexes StrInd were determined for
each term of the equation: StrInd = 1 if the term was present in the synthe-
sized equation and StrInd = 0 otherwise. The mean value of the structural
indexes corresponds to the frequency of the appearance of the term in the re-
sulted equations over all computational experiments. Table 1 shows that RPNN
provides the best structural synthesis irrespective of the increasing variance of
the outliers. Table 2 summarizes the results of the coefficients estimation with
RPNN and PNN (MLS). Table 3 presents the quality of approximation with the
measures of goodness of fit of the calculated model according to the exact model
yexact = 10.0 + 1.0 · x1 · x3

5, μexact is the mean value:

MSD =
1
n

∑
(ycalc − yexact)2, R2 =

∑
(yexact − μexact)2 −

∑
(ycalc − yexact)2∑

(yexact − μexact)2
.

(3)

Table 1. Mean values of structural indexes StrIn for the constant, monomial x1 · x3
5

and additional terms with significant (signif.) and non-significant (n.s.) coefficients. δ:
level of the outliers, σb, σout: : SD of basic Normal distribution and of the outliers.

MLS RPNN PNN with MLS

δ δ = 0 δ = 0.2 δ = 0.2
σb 0 10 σb = 10 σb = 10

σout −− −− 1000 2000 3000 1000 2000 3000
const 1.00 0.76 0.47 0.53 0.47 0.07 0.21 0.07
x1x

3
5 1.00 1.00 1.00 1.00 1.00 0.80 0.50 0.33

add n.s. 0.00 0.65 0.60 0.53 0.60 0.40 0.64 0.33
significant 0.00 0.00 0.00 0.00 0.00 1.33 0.71 1.60
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Table 2. Coefficients estimated in case the terms were present in the resulted equation

MLS RPNN PNN with MLS

δ δ = 0 δ = 0.2 δ = 0.2
σb 0 10 σb = 10 σb = 10

σout −− −− 1000 2000 3000 1000 2000 3000
const mean 10.0 11.69 10.86 10.54 10.53 687.00 127.50 247.29

SD − 2.59 1.96 1.90 1.88 − 1041.41 −
x1x

3
5 mean 1.0 0.997 0.996 0.992 0.996 1.0541 1.1104 1.0673

SD − 0.004 0.003 0.003 0.003 0.1516 0.6058 0.2412
σb mean 10.0 8.25 14.50 12.53 13.21 304.62 537.20 785219

SD − 1.99 6.93 4.90 5.64 197.60 261.58 758152.26

Table 3. The measures of goodness of fit according to the exact data

MLS RPNN PNN with MLS

δ δ = 0 δ = 0.2 δ = 0.2
σb σb = 10 σb = 10 σb = 10

σout −− 1000 2000 3000 1000 2000 3000
MSD mean 5.49 6.13 5.83 5.96 272.43 447.79 711.28

SD 1.82 3.08 2.97 3.12 139.11 159.32 309.02
R2 mean 0.99996 0.99995 0.99996 0.99995 0.91598 0.78919 0.58605

SD 0.00002 0.00004 0.00004 0.00004 0.07346 0.16420 0.34052

5 Application to Experimental Data

RPNN was applied to study the association between clinical symptoms of Parkin-
sons disease and firing patterns in the subthalamic nucleus of patients that un-
derwent surgical operation for Deep Brain Stimulation (DBS) [7]. The set of
parameters determined from the neurological examination of the patients (xi)
are based on scores defined by the Unified Parkinsons Disease Rating Scale
(x1=RT: resting tremor; x2=AT: action tremor, i.e. essential tremor during vol-
untary movement; x3=RG: rigidity of upper limbs; x4=AK: akinesia of upper
limbs) and the parameters defining the firing activity (yi) are obtained from the
electrophysiological recordings (y1=Syn: percentage of pairs of units with syn-
chronous firing; y2=Bst: % of units with bursting activity; y3=(1-2): % of units
with oscillatory activity [1-2 Hz]; y4=(4-6): % of units with oscillatory activity
[4-6 Hz]; y5=(8-12): % of units with oscillatory activity [8-12 Hz]; y6=FR: aver-
age firing rate in the subthalamic nucleus of patients operated at the Grenoble
University Hospital. We have proceeded by considering the clinical parameter
vector X as the independent variable and the neurophysiological vector Y as
the dependent variable. However, the relation of causality between clinical and
neurophysiological parameters is not known and we have analyzed the data con-
sidering also X dependent on Y . Two outliers exceeding 3σ-confidential interval
were detected (Fig. 1a). The final result of the analysis allowed to generate a
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new model of the associations between clinical symptoms and neurophysiological
data (Fig. 1b). In this Figure the arrows show the presence of the variables in
the models and the sign of the corresponding terms. Notice that only models
with criteria values R2 > 0.6 were considered.

Fig. 1. (a) Examples of polynomial estimates; (b) Results of modeling presented as a
scheme of the dependencies
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Abstract. Micro Electro Mechanical Systems will soon usher in a new
technological renaissance. Learn about the state of the art, from inertial
sensors to microfluidic devices [1]. Over the last few years, considerable
effort has gone into the study of the failure mechanisms and reliability of
MEMS. Although still very incomplete, our knowledge of the reliability
issues relevant to MEMS is growing. One of the major problems in MEMS
production is fault detection. After fault diagnosis, hardware or software
methods can be used to overcome it. Most of MEMS have nonlinear and
complex models. So it is difficult or impossible to detect the faults by
traditional methods, which are model-based.In this paper, we use Robust
Heteroscedastic Probabilistic Neural Network, which is a high capability
neural network for fault detection. Least Mean Square algorithm is used
to readjust some weights in order to increase fault detection capability.

1 Introduction

Reliability of Micro Electro Mechanical Systems (MEMS) is a very young and
fast-changing field. Fabrication of a MEMS System involves many new tools and
methods, including design, testing, packaging and reliability issues. Especially
the latter is often only the very last step that is considered in the development
of new MEMS. The early phases are dominated by considerations of design,
functionality and feasibility; not reliability[2].

Only a few fault detection methods have been introduced for fault detec-
tion in MEMS. Additionally most of them need a precise model of system[3-5].
In MEMS most of the parts are strictly nonlinear and finding a proper model
is difficult or sometimes impossible. The constraints of this kind of model have
motivated the development of artificial intelligent approaches[6,7]. Different neu-
ral networks have been trained and used for fault detection in MEMS. The
Multi Layer Perceptron(MLP), Radial Basis Function (RBF), Probabilistic Neu-
ral Network (PNN) and RHPNN has been used. The best results obtained for
RHPNN[8].In this paper, we will use a new probabilistic neural network for fault
detection in MEMS.

� This work has been partially supported by Iran Telecommunication Research Center.
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2 Robust Heteroscedastic Probabilistic Neural Network

A PNN classifies data by estimating the class conditional probability density
functions, because the parameter of a PNN cannot be determined analytically.
To do this it requires a training phase, followed by a validation phase, before
it can be used in a testing phase. A PNN consists of a set of Gaussian kernel
functions. The original PNN uses all the training patterns as the centers of
the Gaussian kernel functions and assumes a common variance or covariance,
which is named homoscedastic PNN. To avoid using a validation data set and
to determine analytically the optimal common variance, a maximum likelihood
procedure was applied to PNN training [9]. On the other hand, the Gaussian
kernel functions of a heteroscedastic PNN are uncorrelated and separate variance
parameters are assumed. This type of PNN is more difficult to train using the
ML training algorithm because of numerical difficulties. A robust method has
been proposed to solve this numerical problem by using the jackknife, a robust
statistical method, hence the term ’robust heteroscedastic probabilistic neural
networks’ [10]. The RHPNN is a four layer feedforward neural network based on
the Parzen window estimator that realizes the Bayes classifier given by

gBayes = arg (max {αjfj(x)}) (1)

Where x is a d-dimensional pattern, g(x) is the class index of x, the a priori
probability of class j(1 ≤ j ≤ k) is αj and the conditional probability density
function of class j is fj. The object of the RHPNN is to estimate the values of
fj. This is done using a mixture of Gaussian kernel functions.

RHPNN has been shown in Fig.1. In this figure two classes are shown. First
class is considered for fault free and the second class for faulty patterns. There is
only one fault free kernel because with only one Gaussian function all fault free
patterns can be shown. There are many different faults and the distances between
them are unknown, so in second class, more than one kernel is considered. The
optimum number of kernels in second class is the minimum that each kernel has
at least one faulty pattern. The first layer of the PNN is the input layer. The
second layer is divided into k groups of nodes, one group for each class.

The ith kernel node in the jth group is described by a Gaussian function

pi,j =
1

(2πσ2
i,j)d/2

exp(−‖x− ci,j‖2
2σ2

i,j

) (2)

Where ci,j is the mean vector and σ2
i,j is the variance. The third layer has k

nodes; each node estimates fj , using a mixture of Gaussian kernels

fj(x) =
Mj∑
i=1

βi,jpi,j(x), 1 ≤ j ≤ k (3)

Mj∑
i=1

βi,j = 1, 1 ≤ j ≤ k (4)
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Fig. 1. Four layer feed forward RHPNN

Where Mj is the number of nodes in the jth group in the second layer. The fourth
layer of the PNN makes the decision from Eq(1). The PNN is heteroscedastic
when each Gaussian kernel has its own variance. The centers, ci,j , the variance,
σ2

i,j and the mixing coefficients, βi,j have to be estimated from the training
data. One assumption for αj weights is αj = 1

k , 1 ≤ j ≤ k. The EM algorithm
has been used to train homoscedastic PNN’s. Each iteration of the algorithm
consists of an expectation (E) followed by a maximization process (M). This
algorithm converges to the ML estimate. For the heteroscedastic PNN, the EM
algorithm frequently fails because of numerical difficulties. These problems have
been overcome by using a jackknife, which is a robust statistical method. Sup-
pose the training data is partitioned into k subsets {xn}N

n=1 = {{xn,j}Nj

n=1}k
j=1,

where
∑k

j=1 Nj is the total number of samples and Nj is the number of training
samples for class j. The training algorithm is now expressed as follows, where
σ̃2

m,i|k and c̃m,i|k are the jackknife estimates of the previous values of σ2
m,i and

cm,i at step t, respectively.

Step 1: Compute weights for 1 ≤ m ≤Mi , 1 ≤ n ≤ Ni and 1 ≤ i ≤ k.

ω
(t)
m,i(xn,i) =

βm,ip
(t)
m,i(xn,i)∑Mi

l=1 βi,lp
(t)
l,i (xn,i)

(5)

p
(t)
l,i (xn,i) =

1
(2πσ̃2

l,i|(t))d/2
exp(−‖xn,i − c̃l,i|(t)‖2

2σ̃2
l,i|(t)

) (6)

Step 2: Update the parameters for 1 ≤ m ≤Mi and 1 ≤ i ≤ k

c̃m,i|t+1 = Nicm,i|t+1 − Ni − 1
Ni

Ni∑
j=1

cm,i|t+1
−j (7)

cm,i|t+1 =

∑Ni

n=1 ω
(t)
m,i(xn,i)xn,i∑Ni

n=1 ω
(t)
m,i(xn,i)

(8)
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cm,i|t+1
−j =

∑Ni

n=1,n�=j ω
(t)
m,i(xn,i)xn,i∑Ni

n=1,n�=j ω
(t)
m,i(xn,i)

, 1 ≤ j ≤ Ni (9)

σ̃2
m,i|t+1 = Niσ

2
m,i|t+1 − Ni − 1

Ni

Ni∑
j=1

σ2
m,i|t+1

−j (10)

σ2
m,i|t+1 =

∑Ni

n=1 ω
(t)
m,i(xn,i)‖xn,i − c̃m,i|(t)‖2

d
∑Ni

n=1 ω
(t)
m,i(xn,i)

(11)

σ2
m,i|t+1

−j =

∑Ni

n=1,n�=j ω
(t)
m,i(xn,i)‖xn,i − c̃m,i|(t)‖2

d
∑Ni

n=1,n�=j ω
(t)
m,i(xn,i)

, 1 ≤ j ≤ Ni (12)

βm,i|t+1 =
1
Ni

Ni∑
n=1

ω
(t)
m,i(xn,i) (13)

3 Modified RHPNN

In RHPNN training phase, centers and variances of kernel functions change
and finally fix at values to cover faults. Additionally, βi,j which are weights
between second and third layers change to final values. In Modified Robust
Heteroscedastic Probabilistic Neural network (MRHPNN), all βi,j weights are
readjusted by Least Mean Square, LMS, algorithm. The MRHPNN learning has
two phases. First, like RHPNN all training patterns (faulty and fault free) are
applied to network and in two recursive steps, network parameters are defined.
In this phase all centers and variances and βi,js are adjusted. In second phase, all
training patterns are applied to network again and for each misclassified pattern,
error ej is defined at third layer output. For each class, this error is defined and
back propagates to change all βi,j :

βi,j(t + 1) = βi,j(t) + η

NMis∑
n=1

ej(xn)p(t)
i,j (xn), 1 ≤ j ≤ k (14)

In which total number of misclassified patterns is NMis and η is a small number.
We have used 0.001 for this application. When the first training phase is finished,
for each faulty pattern, one or more kernel produce a great probability density
function. In other words, when a faulty pattern is given to network, the outputs
of one or more kernel in second class (faulty class), is greater than the output
of fault free kernel (first cell in second layer). If faulty pattern is far from the
fault free kernel center, the output of faulty group kernels is obviously greater
than the output of fault free kernel. But for faulty patterns which are near the
fault free kernel center, output of fault free kernel is near or sometimes greater
than the output of faulty group kernels. In this case, faulty pattern is classified
as a fault free pattern. We used second training phase to solve this problem. The
difference between fault free class and faulty class outputs is defined as error
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which back propagate to adjust βi,j weights, as Eq(14). After updating all βi,j ,
again all the patterns are applied to network, and for each misclassified pattern
an error is defined at third layer output. In each step all βi,j weights and the
number of misclassified weights are saved. The optimum values of βi,j weights
occur in accordance with the least number of misclassified patterns.

4 Simulation Results

EM3DS is MEMS simulator software, which has been used for fault simulation
in RF MEMS. 20 faults and one fault free pattern have been simulated in a
RF low pass filter MEMS. These 20 faults consist of both digital and analog
faults. Changing substrate resistance, magnetic and electric properties, shorts

Table 1. Fault detection results using RHPNN

Detected Detected Results for Detected Detected Results for
as Faulty as Fault free RF Lp filter as Faulty as Fault free RF capacitor

40 faulty 37 3 %92.5 35 5 %87.5
pattern
10 fault 1 9 %90 2 8 %80
free pattern
Total (37+9) /(40+10)= %92 (35+8) /(40+10)= %86

Table 2. Fault detection results using MRHPNN

Detected Detected Results for Detected Detected Results for
as Faulty as Fault free RF Lp filter as Faulty as Fault free RF capacitor

40 faulty 38 2 %95 37 3 %92.5
pattern
10 fault 1 9 %90 1 9 %90
free pattern
Total (38+9) /(40+10)= %94 (37+9) /(40+10)= %92

and opens, disconnections, connection between separate parts and some other
faults have been simulated by software. The S parameters are calculated and used
for training and testing all neural networks. We have used real and imaginary
parts of S11, 2 dimensional data, as input to neural networks. For each fault 3
patterns and 7 patterns for fault free case have been simulated, so total number
of learning patterns is (20*3+7)=67. The other RF MEMS which is simulated by
EM3DS is Inter digital capacitor. We considered 32 digital and analog faults and
for each one three pattrens have been simulated. Also, seven fault free patterns
have been used. Total number of learning patterns is (32*3+7)=103.

The optimal number of kernels in second layer for RF low pass filter is 6 and
for inter digital capacitor is 8. One kernel is belonged to fault free class and the
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others are belonged to faulty class. All the faulty patterns are labeled with the
same number when training a MRHPNN model. During training the MRHPNN
is able to cluster the patterns automatically. This is an advantage compared with
most of other neural networks. After training neural networks, faulty and fault
free patterns have been applied to them. Table1 shows the results of RHPNN
fault recognition in RF low pass filter and RF interdigital capacitor. Similarly,
Table2 shows MRHPNN results for the same MEMS.

5 Conclusion

MEMS usually have nonlinear and complex models. Most of the times, novel and
unknown faults occur in them, too. A powerful recognition method is essential
to detect/diagnose the faults. This part can be inserted in MEMS as a Built
In Self Test (BIST) mechanism. With respect to nonlinearity and novel faults
in MEMS, neural networks are proposed as a BIST mechanism. In this paper,
we propose MRHPNN for fault detection in MEMS in which for improving the
performance, some of the weights are readjusted by LMS algorithm. Improper η
values cause divergence. For every input data space, a different η value should
be selected. Extra work is needed to determine proper η. Finding better learning
methods for determining centers and variances, is future work.
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Abstract. There are different methods for detecting digital faults in
electronic and computer systems. But for analog faults, there are some
problems. This kind of faults consist of many different and paramet-
ric faults, which can not be detected by digital fault detection meth-
ods. One of the proposed methods for analog fault detection, is neural
networks. Fault detection is actually a pattern recognition task. Faulty
and fault free data are different patterns which must be recognized. In
this paper we use a probabilistic neural network to recognize different
faults(patterns) in analog systems. A fuzzy system is used to improve
performance of network. Finally different network results are compared.

1 Introduction

The primary objective of cluster analysis is to partition a given set of data or
subjects into clusters. Analytical, statistical and intelligent methods have been
proposed to partition input data to clusters(subsets, groups or classes). Analog
fault detection is a pattern recognition task. Some methods have been proposed
for MEMS fault detection [1-3]. One of the best proposed methods for analog
fault detection is neural networks [4]. Analog faults have statistical characteris-
tics, so in this paper we use a Probabilistic Neural Network to recognize analog
faults in Micro Electro Mechanical Systems, MEMS. A fuzzy system is used to
readjust some weights in order to improve performance.

2 Robust Heteroscedastic Probabilistic Neural Network

A Probabilistic Neural Network (PNN), classifies data by estimating the class
conditional probability density functions. To do this it requires a training phase,
followed by a validation phase, before it can be used in a testing phase. A PNN
consists of a set of Gaussian kernel functions. The original PNN uses all the
training patterns as the centers of the Gaussian kernel functions and assumes a
common variance or covariance, which is named homoscedastic PNN. To avoid
using a validation data set and to determine analytically the optimal common
� This work has been partially supported by Iran Telecommunication Research Center.
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variance, a maximum likelihood procedure was applied to PNN training [5]. On
the other hand, the Gaussian kernel functions of a heteroscedastic PNN are
uncorrelated and separate variance parameters are assumed. This type of PNN
is more difficult to train using the ML training algorithm because of numerical
difficulties. A robust method has been proposed to solve this numerical problem
by using the jackknife, a robust statistical method, hence the term ’Robust
Heteroscedastic Probabilistic Neural Networks’ [6]. The RHPNN is a four layer
feedforward neural network based on the Parzen window estimator that realizes
the Bayes classifier given by

gBayes = arg (max {αjfj(x)}) (1)

Where x is a d-dimensional pattern, g(x) is the class index of x, the a priori
probability of class j(1 ≤ j ≤ k) is αj and the conditional probability density
function of class j is fj. The object of the RHPNN is to estimate the values of
fj. This is done using a mixture of Gaussian kernel functions.

RHPNN has been shown in Fig.1. In this figure two classes are shown. First
class is considered for fault free and the second class for faulty patterns. We
assume only one fault free kernel because with only one Gaussian function all
fault free patterns can be shown. There are many different faults and the dis-
tances between them are unknown, so in second class, more than one kernel is
considered. The optimum number of kernels in second class is the minimum that
each kernel has at least one faulty pattern. The first layer of the PNN is the
input layer. The second layer is divided into k groups of nodes, one group for
each class.

P

fj(x)

ßi,j

2

2

2

2

I

I

Inputs

Class1

Class2

arg{max(aj fj(x))}

Fig. 1. Four layer feed forward RHPNN

The ith kernel node in the jth group is described by a Gaussian function

pi,j =
1

(2πσ2
i,j)d/2

exp(−‖x− ci,j‖2
2σ2

i,j

) (2)
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Where ci,j is the mean vector and σ2
i,j is the variance. The third layer has k

nodes; each node estimates fj , using a mixture of Gaussian kernels

fj(x) =
Mj∑
i=1

βi,jpi,j(x), 1 ≤ j ≤ k (3)

Mj∑
i=1

βi,j = 1, 1 ≤ j ≤ k (4)

Where Mj is the number of nodes in the jth group in the second layer. The fourth
layer of the PNN makes the decision from Eq(1). The PNN is heteroscedastic
when each Gaussian kernel has its own variance. The centers, ci,j , the variance,
σ2

i,j and the mixing coefficients, βi,j have to be estimated from the training data.
One assumption for αj weights is αj = 1

k , 1 ≤ j ≤ k. The EM algorithm has
been used to train homoscedastic PNN’s. Each iteration of the algorithm consists
of an expectation (E) followed by a maximization process (M). This algorithm
converges to the ML estimate. For the heteroscedastic PNN, the EM algorithm
frequently fails because of numerical difficulties. These problems have been over-
come by using a jackknife, which is a robust statistical method. RHPNN training
algorithm consists of two recursive steps that finally determines kernel centers,
variances and βi,j weights. All of the formulas can be found in Ref[6].

3 Fuzzy RHPNN

In RHPNN training phase, centers and variances of kernel functions change and
finally fix at values to cover faults. Additionally, βi,j which are weights between
second and third layers change to final values. In Fuzzy Robust Heteroscedastic
Probabilistic Neural network (FRHPNN), all βi,j weights are readjusted by a
fuzzy system. The FRHPNN learning has two phases. First, like RHPNN all
training patterns (faulty and fault free) are applied to network and in two re-
cursive steps, network parameters are defined [6]. In this phase all centers and
variances and βi,js are adjusted. In second phase, all training patterns are ap-
plied to network again and for each misclassified pattern, a fuzzy system make
proper changes to all βi,j weights.

When the first training phase is finished, for each faulty pattern, one or more
kernels in second class, produce a great probability density function. In other
words, when a faulty pattern is given to network, the outputs of one or more
kernel in second class (faulty class), is greater than the output of fault free kernel
(first cell in second layer). If faulty pattern is far from the fault free kernel center,
the output of faulty group kernels is obviously greater than the output of fault
free kernel. But for faulty patterns which are near the fault free kernel center,
output of fault free kernel is near or sometimes greater than the output of faulty
group kernels. In this case, faulty pattern is classified as a fault free pattern. We
used second training phase to solve this problem.
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3.1 Fuzzy System

βi,j are the weights connecting second layer to third layer. For each cell in the
third layer, inputs are βi,jpi,j(x) and output is fj(x) as shown in Eq(3). for each
misclassified pattern, an error is defined. The error is the difference between
other cell output and output of the current cell, both in third layer.

For each class and each input pattern x, maximum βi,jpi,j(x) is defined
as MAXk(x). All the inputs to third layer cell and also error are divided by
MAXk(x) to be normalized as BPN and eN , respectively. Inputs of fuzzy system
are eN and BPN . For every misclassified input pattern x, and each βi,j , there
are BPN and eN as inputs and fuzzy system produces an output. Output of
fuzzy system, δF (t), is used to update βi,j as:

βi,j(t + 1) = βi,j(t)(1 + δF (t)) (5)

After applying all misclassified patterns to change βi,j weights, all the input
patterns are given to network and new set of misclassified patterns is defined.
Again, for all of these misclassified pattern, fuzzy system is used to readjust βi,j

weights. In each step all βi,j weights and the number of misclassified weights are
saved. The optimum values of βi,j weights occur in accordance with the least
number of misclassified patterns. In fig.2 all membership functions are shown.
Table1 shows fuzzy rules.

NB

-0.03 0.030.01-0.01
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PBZE

μ F

NS PS

BPN

10.2

1

BIGSM

μBPN ZE
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μe
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-1.5 1.50.5-0.5

eN

PBNS

Fig. 2. Input and output membership functions

Table 1. Fuzzy rules

e→N NB NS ZE PS PB
↓ BPN

SM NS NS ZE PS PS
BIG NB NS ZE PS PB

4 Simulation Results

EM3DS is MEMS simulator software, which has been used for fault simulation
in RF MEMS. 20 faults and one fault free pattern have been simulated in a
RF low pass filter MEMS. These 20 faults consist of both digital and analog
faults. Changing substrate resistance, magnetic and electric properties, shorts
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and opens, disconnections, connection between separate parts and some other
faults have been simulated by software. The S parameters are calculated and
used for training and testing all neural networks. We have used real and imag-
inary parts of S11, 2 dimensional data, as input to neural networks. For each
fault 3 patterns have been simulated, so total number of learning patterns is
(20*3+7)=67.

Table 2. Fault detection results using RHPNN

Detected Detected Results for Detected Detected Results for
as Faulty as Fault free RF LP filter as Faulty as Fault free RF capacitor

40 faulty 37 3 %92.5 35 5 %87.5
pattern
10 fault 1 9 %90 2 8 %80
free pattern
Total (37+9)/ (40+10)= %92 (35+8)/ (40+10)= %86

Table 3. Fault detection results using FRHPNN

Detected Detected Results for Detected Detected Results for
as Faulty as Fault free RF Lp filter as Faulty as Fault free RF capacitor

40 faulty 38 2 %95 37 3 %92.5
pattern
10 fault 1 9 %90 2 8 %80
free pattern
Total (38+9)/ (40+10)= %94 (37+8)/ (40+10)= %90

The other RF MEMS which is simulated by EM3DS is Inter digital capaci-
tor. 32 faults and one fault free patterns have been simulated. Total number of
learning patterns, in this case, is (32*3+7)=103.

For training FRHPNN, at first all the patterns in the pool are used to find
centers, variances and weights. Then network is able to group all the fault free
and faulty patterns into n groups. The strategy for selecting the value of n is to
ensure each kernel has at least one pattern of a fault free or faulty pattern, falling
in it. The optimal n for RF low pass filter is 6 and for inter digital capacitor
is 8. One kernel is belonged to fault free class and the others are belonged to
faulty class. All the faulty patterns are labeled with the same number when
training FRHPNN network. As mentioned, training is done in two phases, then
50 test patterns are given to network. Table2 shows the results of RHPNN fault
detection in RF low pass filter and RF interdigital capacitor. Similarly, Table3
shows FRHPNN results for the same MEMS.

5 Conclusion

MEMS usually have nonlinear and complex models. Most of the times, novel and
unknown faults occur in them, too. A powerful recognition method is essential
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to detect/diagnose the faults. This part can be inserted in MEMS as a Built
In Self Test (BIST) mechanism. With respect to nonlinearity and novel faults
in MEMS, neural networks are proposed as a BIST mechanism. In this paper,
we propose FRHPNN for fault detection in MEMS in which for improving the
performance, some of the weights are readjusted by a fuzzy system. Simulation
results show that using the fuzzy system as second training phase, improves fault
detection percentage. Extra work is needed to find better learning methods for
determining centers and variances.
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Abstract. The paper presents the application of Support Vector Machine for 
recognition and classification of the bio-products in the gasoline. We consider 
the supplement of such bio-products, as ethanol, MTBE, ETBE and benzene. 
The recognition system contains the measuring part in the form of semiconduc-
tor array sensors responding with a signal pattern characteristic for each gaso-
line blend type. The SVM network working in the classification mode processes 
these signals and associates them with an appropriate class. It will be shown 
that the proposed measurement system represents an excellent tool for the rec-
ognition of different types of the gasoline blends. The results are compared with 
application of multilayer perceptron. 

1   Introduction 

The paper is concerned with the recognition of the bio-products added to the gasoline. 
The bio-based fuels (bio-fuels) or bio-products such as ethanol, methyl tertiary butyl 
ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME) 
as the supplements to the gasoline may form an alternative solution to the increasing 
worldwide needs for a fuels in the next decade. The most commonly used alcohol is 
ethanol, while the most popular ether is MTBE. Other oxidants such as ETBE and 
TAME have recently started being used on a commercial scale. It is also well known 
that aromatic compounds, in particular benzene contribute to the reasonable octane 
properties.  

The paper will consider the application of the artificial nose measurement system 
to the recognition and quantification of these bio-products added to the gasoline. The 
artificial nose is composed of the array of semiconductor sensors and the postprocess-
ing stage in the form of Support Vector Machine (SVM), used as the calibrator. The 
results of numerical experiments will be presented and discussed in the paper. They 
will be compared to the results obtained by using multilayer perceptron. 

2   The Description of the System  

The recognition of the gasoline blends on the basis of its odour applies the fact that 
the blends are associated with different aroma resulting from varieties in technologies 
and their chemical composition. To solve the problem of the analysis of aroma we 
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will use the electronic nose and Support Vector Machine (SVM). The patterns of 
signals of the vapour sensitive detectors are processed by the neural system composed 
of SVM and associated with different types of the gasoline blends. 

In the computerized measurement system [2] we have applied the array of tin ox-
ide-based gas sensors of Figaro Engineering Inc. These sensors have been mounted 
into an optimised test chamber. The chamber is placed in a mass flow controlled 
measurement system with laminar gas flow and controlled gas temperature condi-
tions. The synthetic air used as the carrier was used for delivering an atmosphere from 
the ‘head-space’ of the sample chamber with the testing gasoline sample to sensors. 
The carrier flow, the temperature, the volume of the gasoline sample as well as the 
volume of the measuring chamber are kept constant in the whole measurements.  

The features used for gasoline data analysis have been extracted from the averaged 
temporal series of sensor resistances R(j), one for each j-th sensor of the array. To 
obtain the consistent data for pattern recognition process some form of pre-processing 
of the data from the sensor array is necessary. We have used the relative variation r(j) 
of each sensor resistance  

)(

)()(
)(

0

0

jR

jRjR
jr

−=       (1) 

where R(j) is the actual resistance of the j-th sensor in the array and R0(j) represents 
the baseline value of resistance. The baselines values of the measured resistance of 
the sensors in the synthetic air atmosphere have been used as the reference.  

All numerical experiments have applied seven tin oxide-based gas sensors 
(TGS815, TGS821, TGS822, TGS825, TGS824, TGS842, TGS822-modificated) 
from Figaro Engineering Inc., mounted into an optimised test chamber. The meas-
urements were carried out under the following conditions: carrier flow - 0.2 l/min, 
gasoline temperature - 25oC, volume of the gasoline sample - 100 ml, the volume of 
the sample chamber - 200 ml. In the experimental system we have used 8-Channel 
Analog Input Module Rev.D1 type ADAM-4017 as serial communication interface 
with computer. The resistance sampling rate used in experiments was 30 times per 
minute. The measured sensor resistances R(j) have been pre-processed according to 
the relation (1) described in the previous section, delivering the relative variations of 
each sensor resistance r(j), for j=1, 2, …,7, used as the features. The feature vector x 

applied to the neural classifier takes the form [ ]Trrr )7(),...,2(),1(=x . 

The baseline resistance of the sensors used for generation of features r(j) according 
to the equation (1), was acquired at stabilized temperature of 25oC of a synthetic air. 
The baseline value of resistance was obtained by averaging 36 samples of the meas-
ured values within 72s. The sampling rate was 30 times per minute. The washing 
interval at the measurement was typically 10 min. 

3   The Classifier Network 

We have applied the Support Vector Machine as the basic recognizing and classifying 
system. The choice was made after checking other possible neural network solution, 
multilayer perceptron. Basically, the SVM is a linear machine working in the high 
dimensional feature space formed by the linear or non-linear mapping of the n-
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dimensional input vector x into a K-dimensional feature space usually of K>n through 
the use of functions )(xϕ  forming the K-dimensional vector )(x . SVM is a kernel 

type network using kernel function K(x,xi) [3],[4]. The kernel K(x,xi) is defined as the 

inner product of the vectors )( ix  and )(x , i.e., )()(),( xxxx i
T

iK = . To the most 

often used kernel functions, satisfying the Mercer conditions belong: linear kernel 

( )γ+⋅= i
T

iK xxxx ),(  and radial Gaussian kernel ( )2
exp),( iiK xxxx −−= γ . The 

learning problem of SVM is formulated as the task of separating learning vectors xi 
(i=1, 2, ..., p) into two classes of the destination values, either di=1 (one class) or di=-
1 (the opposite class), with the maximal separation margin. After some transformation 
it is reformulated as the quadratic programming task with respect to Lagrange multi-
pliers [3]. The SVM network separates the data into two classes. The final equation of 
the hyperplane separating these two different classes is given by  

0
1

) ,()( wKdy
svN

i
iii +=

=
xxx       (2) 

where i are the nonzero Lagrange multipliers, di – the destinations associated with 
the input vectors xi, w0 – bias and Nsv – the number of support vectors, that is the 
input vectors xi associated with nonzero Lagrange multipliers. If the actual data vector 
x fulfils the condition y(x)>0 it will be regarded as the member of one class and when 
y(x)<0 – as the member of the opposite one.  
 The important role in learning fulfils the regularization constant C determining the 
balance between the complexity of the network, characterized by the weight vector w 
and the error of classification of learning data. Low values of C mean smaller signifi-
cance of the learning errors on the adaptation stage and leads to the wider separation 
margin. For the normalized input signals the value of C is usually much bigger than 1 
and adjusted by the cross validation technique. 

Although SVM separates the data into two classes only, the recognition of more 
classes is straightforward by applying either “one against one” or “one against all” 
methods [8]. In “one against one” approach the SVM networks are trained to recog-
nize between all combinations of two classes of data. For M classes we have to train 
M(M-1)/2 individual SVM networks. In the retrieval mode the vector x belongs to the 
class of the highest number of winnings in all combinations of classes. In “one against 
all” we build M SVM networks, each trained on the data opposing one class against 
the rest. The vector x belongs to the class of the highest decision value y(x).  

To compare the performance of SVM classifier we have also employed the multi-
layer perceptron (MLP) as the alternative solution of the classifying system. MLP 
network consists of many simple neuron-like processing units of sigmoidal activation 
function grouped together in layers [5]. The typical network contains one hidden layer 
followed by the output layer of neurons. Information is processed locally in each unit 
by computing the dot product between the corresponding input vector and the weight 
vector of the neuron. Training the network to produce a desired output vector di when 
presented with an input vector xi involves systematically changing the weights of all 
neurons until the network produces the desired output within a given tolerance (error). 
This is repeated over the entire training set. Learning is just reduced to a minimization 
procedure of the error measure over the entire learning set, continued finite number of 
cycles to prevent over fitting [5].  The most effective learning methods rely on  
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gradient application, where gradient is computed using the back propagation algo-
rithm [5]. The highest efficiency of learning is achieved at application of Levenberg-
Marquardt or BFGS algorithms [5].  

4   The Results of Numerical Experiments 

All numerical experiments have been performed on the pure extracted gasoline en-
riched by different supplements of various concentration of the blend. The added 
supplements included ethanol, ETBE, MTBE and benzene. Three different types of 
blends have been prepared. The first consisted of extracted gasoline and ethanol of 
different concentration (5%, 10%, 15% and 20% of volume). The second blend family 
was formed by adding two supplements to the extracted gasoline: MTBE and ETBE 
of the same proportion: MTBE (3%) and ETBE (97%). Four different blends of dif-
ferent concentrations of supplements (5%, 10%, 15% and 20% of volume) have been 
created in this way. The third blend family was created by adding benzene as the 
supplement. The same four concentrations (5%, 10%, 15% and 20% of volume) have 
been produced. In this way twelve gasoline blend types have been prepared alto-
gether. In total, 432 gasoline samples have been produced for the study, from which 
360 have been used as the training data set. The rest (72) available gasoline blend 
samples have been used as the testing data only.  

The difficulty of the recognition task has been assessed by exploring the measured 
data using Principal Component Analysis (PCA). PCA is described as the linear trans-
formation y=Wx, mapping the N-dimensional original vector x into K-dimensional 
output vector y, where K<N. The vector y preserves most important elements of origi-
nal information. The matrix W is the PCA transformation matrix composed of the 
eigenvectors of the correlation matrix Rxx associated with the set of input vectors xi. 
Fig. 1 presents the results of PCA analysis of the data. We have mapped the 7-
dimenensional input data on three most important principal components PC1, PC2 
and PC3, presenting the distribution of data as a 3D plot. The analysis of distribution 
of the data samples performed by using PCA tools has convinced us that the clusters 
corresponding to different supplements of the gasoline are well separated from each 
other. This gives good perspective for application of linear discriminant classifier, for 
example the linear kernel SVM network, the simplest possible solution. So the SVM 
networks of linear kernel have been applied for the recognition and classification. The 
gasoline blend samples have been split into two groups as mentioned in the previous 
subsection (360 samples in the learning set and 72 samples for testing only). The total 
number of learning as well testing data samples was equal (30 for learning and 6 sam-
ples for testing) for each category of the gasoline blends.  

Two kinds of experiments have been performed. In the first one we have aimed at 
the recognition of the supplement only, without any attention to the concentration of 
the supplement. Three classes have been defined in this way. The first one corre-
sponds to the ethanol as the supplement, the second – MTBE and ETBE and the third 
one – the benzene.  

Some introductory experiments using cross-validation of the learning data have al-
lowed to find the optimal value of the regularization coefficient, C=300 . For the  
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recognition of three classes we have applied the “one against all” approach [8]. For 
the 3-class recognition problem we had to train 3 of 2-class recognizing SVM net-
works. The trained SVM networks have been tested on the testing data. The perform-
ance of the network was perfect. All samples used in testing have been classified 
without error (100% of accuracy). The number of support vectors (the different learn-
ing vectors x chosen by all trained SVM networks) was 13.  

 

Fig. 1. The 3-dimensional PCA plots of the data samples. The numbers from 1 to 12 are the 
notations of gasoline blend types. 

 

The problem of 12 class recognition (recognition of the supplement and its concen-
tration) is more difficult and has to be dealt with more attention. The main task was to 
find the SVM network structures at application of linear kernel functions in order to 
achieve the best accuracy of classification for the testing data. The experiments have 
been also performed using cross-validation technique on the learning data to deter-
mine the optimal value of the regularization constant C. The optimal results have been 
obtained at C=2000 and linear kernel. The recognition of the gasoline blends was 
perfect (100% accuracy).  

To compare the quality of solution we have trained the MLP of the same structure 
(no hidden layer) as SVM. It was also possible to train this network, recognizing the 
blends perfectly. Since both structures are the same it was interesting to compare their 
performance. We have done it in “one against all” mode by comparing the distances 
of the training data x from the separating hyperplane in both cases. The wider is the 
distance, the better the solution and more probable perfect performance at the future 
measurement data. Fig. 2 presents the results of such comparison for the recognition 
of the first class from all others. The superiority of SVM over MLP solution is evi-
dent. In all cases the distance of x to the hyperplane is much bigger for SVM network. 
The average distance of the vectors x to the hyperplane for MLP was equal 0.035, 
while for SVM network this value was 0.139.  
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Fig. 2. The distances of learning data to separating hyperplane for MLP and SVM 

5   Conclusions 

The paper has presented the gasoline blend recognising system based on the applica-
tion of the electronic nose and linear SVM classifier. The proposed solution has been 
tested on the samples of the gasoline blends related to different supplements of vari-
ous concentrations. In all cases we have obtained 100% accuracy of the recognition of 
the samples. The results confirm that the proposed measurement system applying 
Support Vector Machine represents an excellent tool for the recognition of the type of 
the gasoline blend. The comparison to MLP has confirmed the superiority of SVM 
approach. 
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Abstract. This research employs unsupervised pattern recognition to approach 
the thorny issue of detecting anomalous network behavior. It applies a connec-
tionist model to identify user behavior patterns and successfully demonstrates 
that such models respond well to the demands and dynamic features of the 
problem. It illustrates the effectiveness of neural networks in the field of Intru-
sion Detection (ID) by exploiting their strong points: recognition, classification 
and generalization. Its main novelty lies in its connectionist architecture, which 
up until the present has never been applied to Intrusion Detection Systems 
(IDS) and network security. The IDS presented in this research is used to ana-
lyse network traffic in order to detect anomalous SNMP (Simple Network Man-
agement Protocol) traffic patterns. The results also show that the system is ca-
pable of detecting independent and compounded anomalous SNMP situations. 
It is therefore of great assistance to network administrators in deciding whether 
such anomalous situations represent real intrusions. 

1 Introduction 

Intrusion Detection Systems (IDS) are tools designed to monitor the events occurring 
in a computer system or network, analysing them to detect suspicious patterns that 
may be related to a network or system attack. They have become a necessary addi-
tional tool to the security infrastructure as the number of network attacks has risen 
very sharply over recent years.  

There are currently several techniques used to implement IDS. Some are based on 
the use of expert systems (containing a set of rules that describe attacks), signature 
verification (where attack scenarios are converted into sequences of audit events), 
petri nets (where known attacks are presented with graphical petri nets) or state-
transition diagrams (representing attacks with a set of goals and transitions). One of 
the main disadvantages of these techniques is the fact that new attack signatures are 
not automatically discovered without updating the IDS.  

Connectionist models have been identified as very promising methods of address-
ing the ID problem due to two key features: they are suitable to detect day-0 attacks 
and they are able to classify patterns (attack classification, alert validation). There 
have recently been several attempts to apply artificial neural architectures [1, 2] (such 
as Self-Organising Maps [3, 4] or Elman Network [5]) to the field of network secu-
rity. This paper presents an IDS based on a neural architecture that has never before 
been applied to the problem of ID. 
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2 The Cooperative Unsupervised IDS Model 

Exploratory Projection Pursuit (EPP) [6, 7, 8, 9] is a statistical method for solving the 
complex problem of identifying structure in high dimensional data. It is based on the 
projection of the data onto a lower dimensional subspace in which its structure is 
searched by eye. It is necessary to define an “index” to measure the varying degrees 
of interest generated by each projection. Subsequently, the data is transformed by 
maximizing the index and the associated interest. From a statistical point of view the 
most interesting directions are those that are as non-Gaussian as possible. 

The Data Classification and Result Display steps performed by this IDS model are 
based on the use of a neural EPP model called Cooperative Maximum Likelihood 
Hebbian Learning (CMLHL) [10, 11, 12]. It was initially applied to the field of Arti-
ficial Vision [10, 11] to identify local filters in space and time. Here, we have applied 
it to the field of Computer Security [2, 13, 14]. It is based on Maximum Likelihood 
Hebbian Learning (MLHL) [8, 9]. Consider an N-dimensional input vector, x , and an 
M-dimensional output vector, y , with 

ijW being the weight linking input j  to out-

put i  and let η  be the learning rate. MLHL can be expressed as: 

ixWy
1j

jiji ∀=
=

N

, . (1) 

The activation (
je ) is fed back through the same weights and subtracted from the 

input: 

=

∀−=
M

i
iijjj jyWxe

1

, . (2) 

Weight change: 

( ) 1||.. −=Δ p
jjiij eesignyW η . (3) 

Lateral connections [10, 11] have been derived from the Rectified Gaussian Distri-
bution [15] and applied to the MLHL. The resultant net can find the independent fac-
tors of a data set but do so in a way that captures some type of global ordering in the 
data set. So, the final CMLHL model is as follows:  

Feed forward step: Equation (1)  

Lateral activation passing:  ( ) ( )[ ]+−+=+ Ayb(t)yty ii 1 . (4) 

Feed back step: Equation (2)  

Weight change:  Equation (3)  

Where: η  is the learning rate, τ  is the ”strength” of the lateral connections, b is the 
bias parameter and  p  is a parameter related to the energy function [8, 9, 11]. 
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    Finally A is a symmetric matrix used to modify the response to the data. Its effect is 
based on the relation between the distances among the output neurons. 

3 Model Structure 

The aim of this research is to design a system capable of detecting anomalous situa-
tions within a computer network. The information analysed by our system is obtained 
from the packets that travel along the network, meaning that it is a Network-Based 
IDS. The data needed to analyse the traffic is contained on the captured packets head-
ers, obtained using a network analyser. 

The structure of the IDS model is described as follows: 

First step.- Network Traffic Capture: one of the network interfaces is set up in “pro-
miscuous” mode. It captures all the packets travelling along the network. 
Second step.- Data Pre-processing: the captured data is pre-processed and used as an 
input data in the following stage.  
Third step.- Data Classification: once the data has been pre-processed, the connection-
ist model (section 2) analyses the data and identifies anomalous patterns.  
Fourth step.- Result Display: the last step is related to the visualization stage. Finally 
the output is presented to the network administrator.  

4 Real Data Sets Containing Compounded and Independent  
        Anomalous SNMP Situations  

We have decided to study anomalous SNMP situations because an attack based on 
this protocol may severely compromise system security [17]. CISCO [18] ranked the 
top five most vulnerable services in order of importance, and SNMP was one of them. 
In the short-term, SNMP was oriented to manage nodes in the Internet community 
[19].  

Our efforts have focussed on the study of two of the most dangerous anomalous 
situations related to SNMP [2, 13, 14]: 
SNMP port sweep: it is a scanning of network computers for the SNMP port using 
sniffing methods. The aim is to make a systematic sweep within a group of hosts to 
verify if SNMP is active in any port. Both default port numbers (161 and 162) and 
random port number (3750) are used.  
     MIB information transfer: the MIB (Management Information Base) can be de-
fined in broad terms as the database used by SNMP to store information about the 
elements that it controls. This situation is a transfer of some information contained in 
the SNMP MIB. This kind of transfer is potentially quite a dangerous situation be-
cause anybody who possesses some free tools, some basic SNMP knowledge and the 
community password (in SNMP v. 1 and SNMP v. 2) will be able to access all sorts 
of interesting and sometimes useful information. 

In this work, the IDS analysed three different data sets: 

1st Data set (Fig 1): this includes an example of each one of the anomalous situations 
defined above: an SNMP port sweep and an MIB information transfer. We have 
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called this a compounded anomalous SNMP situation because it involves simple but 
different anomalous events that occur at the same time. 
2nd Data set (Fig 2.a): this contains an example of an SNMP port sweep situation (an 
independent anomalous SNMP situation). 
3rd Data set (Fig 2.b): an example of an MIB information transfer situation (another 
independent anomalous SNMP situation). 

In addition to the SNMP packets, these data sets contain traffic related to other 
protocols installed in our network, such as NETBIOS and BOOTPS. 

In the Data Pre-processing step, the system performs a data selection from all of 
the captured information. As a result, all of the above-mentioned data sets contain the 
following five variables extracted from the packet headers: timestamp (the time when 
the packet was sent in relation to the first one), protocol (all the protocols contained in 
the data set have been codified, taking values between 1 and 35), source port (the port 
number of the source host that sent the packet), destination port (the destination host 
port number to which the packet is sent) and size (total packet size in Bytes).  

5 Results, Conclusions and Future Work 

Scatterplot Matrix is used to analyse pairwise relationships between variables in high 
dimensional data sets. Each factor pair highlights different structures or clusters in the 
projections of the same data set. It was used to analyse the results obtained from the 
connectionist IDS model. The system identified (Fig 1.a) the two anomalous situa-
tions contained in the real compounded data set. The analysis took account of such 
aspects as traffic density or “anomalous” traffic directions. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. a. Scatterplot Matrix factor pair 2-1 
generated by the model for the 1st data set  

Fig. 1. b. PCA projection for the 1st data set 

Factor pair 2-1 (Fig 1.a) contains the best representation of this anomalous situa-
tion, where the horizontal axe is related with the time feature and the vertical axe 
represents a combination of the protocol and size features. There are several issues to 
highlight about this figure: Group 1 (Fig 1.a) identifies the sweep by means of normal 
and abnormal directions. It is clear that packets contained in this group do not pro-
gress in the same direction as the rest of packets groups (related to normal situations). 
On the other hand, Groups 2 and 3 (Fig. 1.a) bring together packets related to the MIB 

Group 2 

Group 3 

Group 1 
Group 1

Group 2

Group 3
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information transfer. These groups are identified as anomalous due to their high tem-
poral packets concentrations. 

We have applied different connectionist methods such as Principal Component 
Analysis (PCA) [20] (Fig. 1.b) or MLHL to the same data set. CMLHL provides more 
sparse projections than the others [11]. CMLHL is able of identifying both anomalous 
situations while PCA (Fig. 1.b) is only able to identify the sweep (Groups 1, 2 and 3). 

On the other hand, as can be seen in Fig. 2.a and Fig. 2.b, the neural IDS is capable 
of identifying both anomalous situations independently. The following figures (Fig. 
2.a and Fig 2.b) show how the system performs successfully in those cases where 
there is only one anomalous situation within normal ones (2nd and 3rd Data Sets). In 
Fig 2.a we have identified the sweep (Groups 1, 2 and 3) by means of nor-
mal/abnormal direction and in Fig 2.b we have identified the MIB transfer (Groups 1 
and 2) by means of high temporal concentration of packets. 

 

  

Fig. 2. a. Independent SNMP anomalous 
situation by a port sweep (2nd data set) 

Fig. 2. b. Independent SNMP anomalous 
situation by a MIB transfer (3rd data set) 

This research demonstrates the effectiveness and robustness of this novel IDS due 
to its capability to identify anomalous situations in two different ways: whether or not 
they are contained in the same data set. In summary, the connectionist IDS described 
in this paper is able to identify both independent and compounded anomalous SNMP 
situations showing its capability for generalization. 

The visualization tool used in the Result Display step, shows data projections that 
highlight anomalous situations sufficiently clearly to alert the network administrator, 
taking into account such aspects as traffic density or “abnormal” directions.  

One of the most common IDS techniques is the one called signature verification 
[20b]. Most of signature verification systems use pattern matching algorithms based 
on previously established rules included in a database. To reduce the number of poste-
rior false alarms, this database should be adapted to the work environment by study-
ing the traffic patterns that circulate along the network segment where the IDS is set 
up. One disadvantage of this method is the high processing time consume. This can be 
reduced by speeding up the packets analysis [21]. In comparison with this method, the 
advantages of our novel neural IDS are the following: it does not require any previous 
knowledge in the form of rules and it is able to detect unknown attacks day-0 ones.  

Further work will be focused on the application of GRID [22] computation with 
more complex data sets and the use of multi-agent distributed systems. 

Group 2 

Group 1
Group 1

Group 3
Group 2 
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Abstract. In this paper we propose the use of Multilayer Perceptrons
(MLPs) to align High Range Resolution (HRR) radar signals circularly
shifted in time. To study the performance, the error of shift estima-
tion is measured for different values of Signal to Noise ratio (SNR). The
Zero Phase method is used for comparison purposes. Results show the
best performance of the Zero Phase method with completely misaligned
patterns, and the best performance of the MLP with low grades of mis-
alignment. Using these results, a new method is proposed. First, the
Zero Phase algorithm is used to pre-align the signals. Then, a MLP is
trained using the pre-aligned signals in order to get more accuracy on
the estimation of the shift. Results show an improvement up to 30%.

1 Introduction

Automatic classification of High Range Resolution (HRR) radar targets is a
difficult task. This kind of radar uses broad-band linear frequency modulation
or step frequency waveforms to measure range profiles (signatures) of targets [1]
in order to increase the resolution in range of the received signal. Due to the inner
characteristics of this HRR radar signals, small variations in the distance to the
target cause circular shifts of the received signal. Results obtained with most of
the classification algorithms are very dependent on shifts over the input signal.
So, it is necessary to align the signal previously to any classification technique
or preprocessing stage.

In the literature there are descriptions of the methods used to align HRR sig-
nals. In [2] a preprocessing method based on the extraction of the position of the
main scatterer is proposed. Using the position of the main scatterer as reference,
a new set of aligned profiles is obtained. This method is very sensible to the pres-
ence of noise. In [3] a non linear classification method based on the comparison
of each pattern with all patterns in the training set is presented. This compari-
son takes into account possible shifts, scalings and DC component of the signals.
For each input pattern and training pattern, the optimum shift, scale and direct
current (DC) component is estimated trying to minimize a simplified version of

� This work has been supported by the “Consejeŕıa de Educación de la Comunidad
de Madrid” (SPAIN), under Project 07T/0036/2003 1.
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the square error. A comparative study of different HRR alignment methods is
carried out in [4]. The paper concludes that the best absolute alignment method
is the Zero Phase method (ZP).

In this paper we propose a novel use of neural networks (NNs). NNs have
never been used to align signals before. The capability to learn from the environ-
ment in noisy conditions makes them an option in signal alignment problems. So,
we propose the use of Multilayer Perceptrons (MLPs) to align HRR radar sig-
nals. Results are compared with those obtained using the ZP alignment method.
At last, using the obtained results, a new method is proposed, combining the
ZP method with a MLP.

2 Materials and Methods

Our objective is to study the capabilities of MLPs to align HRR profiles. For
this purpose, a database containing HRR radar profiles of six types of aircrafts
has been used. The assumed target position is head-on with an azimuth range
of 25o and elevations of −20o to 0o. The database contains 4349 profiles, and
the length of each profile is 128. For the experiments, the database has been
divided into three subsets: a training set composed of 1450 randomly selected
profiles, a validation set composed of other 1449 randomly selected profiles, and
a test set, composed of the resting 1450 profiles. The test set is used to assess
the classifier’s quality after training.

Each profile of the database has been randomly shifted, in order to study
the capabilities of the alignment methods. Three experiments have been defined
in function of the probability density function used to shift the patterns. In the
first experiment, original data have been shifted using an uniform integer random
variable from 0 to 127, which represents a complete misalignment of the profiles
(100% misalignment), with a standard deviation of the shift of 36.95. In the
second experiment, the shift varies from 0 to 63, which corresponds to a partial
misalignment (50% misalignment) with a standard error deviation of the shift of
18.48. In the third experiment the shift varies from 0 to 31 (25% misalignment),
which supposes a standard deviation of 9.24. So, the performance of the methods
can be evaluated in function of the grade of misalignment of the data.

In this paper, the Signal to Noise Ratio (SNR) has been a parameter of
the study, varying from 15 dB to 40 dB in steps of 5 dB. Due to the temporal
localization of the energy of the signal, the SNR has been defined using the peak
energy of the signal (1). A peak SNR value of 15 dB represents a very high
amount of noise and a peak SNR of 40 dB implies a very low amount of noise.
So, using this range of values we cover a wide range of SNR conditions.

SNR = 10 log
(max{x[n]}2

σ2
n

)
dB (1)

The performance of the alignment methods is given by the standard deviation
of the error in the estimation of the shift of the signal. We have generated a
correctly aligned database using the ZP method applied to the profiles without
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noise, and we have used this database as reference for the experiments. Only
integer shifts have been considered in order to obtain the performance.

3 Aligning HRR Radar Signals Using the Zero Phase
Algorithm

The ZP method has been previously used for alignment of panoramic images [5].
The basis of this method is the shift property of the Discrete Fourier Transform
(DFT). For any function x[n] with DFT X(k), the DFT of x[((n−m))N ] denoted
by Y (k) is given by (2):

DFT {x[((n−m))N ]} = Y (k) = X(k) exp(−j2πkm/N) (2)

So, for a discrete shift m, and supposing the phase of the original signal
φ(X(k)) equal to zero, the phase of the k-th component of the Fourier transform
φ(Y (k)) (k = 0, ..., N − 1) will be shifted by −2πkm/N . These phase shifts can
be used to obtain an estimation of the discrete shift m.

A phase shift of φ + 2kπ generates uncertainty, because it is taken like a
phase shift of φ. This fact makes necessary to measure differences between two
consecutive phase shifts. So, if the phase shift for the component k is φ(Y (k)) =
−2πkm/N and the phase shift for the component k+1 is φ(Y (k+1)) = −2π(k+
1)m/N then the difference between both phases is:

φ(Y (k))− φ(Y (k + 1)) = 2πm/N ⇒ m =
N

2π
(φ(Y (k)) − φ(Y (k + 1))) (3)

And this value is annotated between 0 and 2π, solving the uncertainty. So,
in order to study the shift of the signal, it is necessary to study the differences in
phase of two consecutive Fourier components. Using k = 0, it is only necessary
to study one phase, because the phase of the DC component (k = 0) is always
zero. Moreover, the assumption of φ(X(k)) equal to zero is more suitable for low
frequency values. So, applying (3) with k = 0 we obtain (4):

φ(Y (1)) = −2πm/N (4)

And so, the shifting can be estimated by (5):

m = −N

2π
φ(Y (1)) (5)

Table 1 shows the shifting error standard deviation using the ZP method over
the test set for the selected SNR values and the three grades of misalignment.
Results demonstrate the accuracy of the method, which obtains error standard
deviations lower than the unity with SNRs higher than 25 dB. Otherwise, this
accuracy does not depend on the grade of misalignment of the profiles. The ZP
method performance is nearly independent on the grade of misalignment of the
original data. This fact makes this method unpractical for applications with low
grades of misalignment and low values of SNR simultaneously.



914 R. Gil-Pita et al.

Table 1. Error standard deviation aligning the test set with different SNRs, using the
ZP method with the three grades of misalignment

SNR: 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB

100% misalignment 8.08 3.11 1.53 0.89 0.62 0.48
50% misalignment 7.68 3.16 1.50 0.91 0.63 0.47
25% misalignment 7.47 3.12 1.55 0.88 0.60 0.48

4 Aligning HRR Radar Signals Using Multilayer
Perceptrons

The Perceptron was developed by F. Rosenblatt [6] in the 1950s for optical
character recognition. The Perceptron has multiple inputs fully connected to an
output layer with multiple outputs. Each output yj is the result of applying
the linear combination of the inputs to a non linear function called activation
function. Multilayer Perceptrons (MLPs) extend the Perceptron by cascading
one or more extra layers of processing elements. These extra layers are called
hidden layers, since their elements are not connected directly to the external
world. In order to implement an alignment method, the number of inputs of the
network must be equal to the length of the profile (128), and the network must
have one output, in order to obtain a shift value to align the signal.

Cybenko’s theorem [7] states that any continuous function f : R
n → R can

be approximated with any degree of precision by a network of sigmoid functions.
Therefore we choose an MLP with one hidden layer using the hyperbolic tangent
sigmoid transfer function given in (6) as the activation function.

L(x) =
1− e−2x

1 + e−2x
(6)

In order to study the influence of the network size on the performance of the
MLP-based method, we vary the number of neurons in the hidden layer M from
2 to 60 in increments of 2 (M = 2, 4, 6, . . . , 60). The validation set has been used
to obtain the best value of M .

The use of a MLP to align signals has never been studied, and their ability
to solve some non linear problems can be very interesting in the field of study.
There are several options in order to select the targets for training the NN. In
this paper we have selected as targets the shifts needed to align each pattern.
These values are normalized in order to use an output in the interval (−1, 1).
The MLPs are trained using the gradient descent with momentum and adaptive
learning rate backpropagation algorithm. The validation set is used to early stop
the training process.

Table 2 presents the results obtained for each SNR value with the profiles
corresponding to the three grades of misalignment. Results show a global re-
duction of the error deviation when the misalignment of the profiles decreases.
Comparing this results with those obtained in table 1, we can observe that
the ZP method performs better than the MLP-based method, when completely
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Table 2. Error standard deviation aligning the test set with different SNRs, using the
MLP-based method with the three grades of misalignment

SNR: 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB

100% misalignment Lowest Error 16.62 11.65 7.88 7.15 6.27 6.80
Neurons 18 40 38 20 24 10

50% misalignment Lowest Error 6.61 3.54 2.64 2.50 1.99 1.92
Neurons 8 6 20 20 20 12

25% misalignment Lowest Error 3.64 2.15 1.48 1.19 1.12 1.09
Neurons 6 8 8 12 6 12

misaligned patterns and high SNRs are considered. With partially misaligned
patterns, the MLP is the best choice for low SNRs.

5 Aligning Signals Combining MLPs and the Zero Phase
Algorithm

Analyzing results observed in tables 1 and 2 we can extract some conclusions.
Results obtained using the MLPs are very different for different grades of mis-
alignment, obtaining better results with low grades of misalignment. The error
standard deviation obtained with the MLP directly depends on the grade of
misalignment of the patterns. On the contrary, the error standard deviation
obtained with the ZP method does not depend on the grade of misalignment.

Taking this fact into account, a new combined method is proposed, which
consists in a two-stage alignment method. The first stage is a preprocessing one,
in which all profiles are aligned using the ZP algorithm. In the second stage,
a MLP is trained to realign these pre-aligned patterns, using the reconstructed
profiles as inputs of the networks.

Table 3 presents the best results obtained with the completely misaligned
profiles for each SNR value, and different number of hidden units. Due to the
studied characteristics of the ZP method, results with other grades of misalign-
ment are similar and, therefore, they are not considered. Results show the best
performance of the proposed method with low SNR values, compared with the
ZP method. This improvement does not depend on the number of hidden units,

Table 3. Error standard deviation aligning the test set with different SNRs, using the
proposed MLP-based method with the completely misaligned patterns

SNR: 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB

ZP 8.08 3.11 1.53 0.89 0.62 0.48
ZP + MLP with 2 hidden n. 6.69 2.15 1.14 0.76 0.60 0.49
ZP + MLP with 16 hidden n. 6.66 2.16 1.11 0.81 0.63 0.48
ZP + MLP with 28 hidden n. 6.75 2.15 1.18 0.81 0.64 0.48
Improvement 17.57% 30.87% 27.45% 14.61% 3.23% 0.00%
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making two neurons the best choice in all cases. Otherwise, the use of the NN
does not supposes an advantage for high SNR values. In these cases the ZP
method obtains very low error standard deviations (less than the unity).

6 Conclusions

In this paper we propose the use of MLPs to align HRR radar signals. This kind of
signals are presented circularly shifted in time, so they must be previously aligned
to any later feature extraction stage. To study the performance of the alignment
methods, the error standard deviation of the shift estimation is measured for
different values of SNR. The ZP method is used for comparison purposes. Results
show the best performance of the ZP method with high grades of misaligment
and high values of SNR. Otherwise, the MLP performance depends on the grade
of misalignment of the profiles, obtaining better results than those obtained with
the ZP method with low misalignment and low SNR values. Using these results,
a new method for completely misaligned patterns is proposed, which tries to
combine the results obtained with both methods. First, the ZP algorithm is used
to pre-align the signals. Then, a MLP is trained with the pre-aligned profiles,
in order to get more accuracy on the estimation of the shift. Results show an
improvement up to 30% with low SNR values.

As a global conclusion, we can propose a new alignment method which uses
a NN to get more accuracy on the alignment of the profiles for low SNR values.
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Abstract. This paper deals with the application of  neural networks to approxi-
mate the Neyman-Pearson detector. The detection of Swerling I targets in white 
gaussian noise is considered. For this case, the optimum detector and the opti-
mum decision boundaries are calculated. Results prove that the optimum detec-
tor is independent on TSNR, so, under good training conditions, neural network 
performance should be independent of it. We have demonstrated that the mini-
mum number of hidden units required for enclosing the optimum decision 
boundaries is three. This result allows to evaluate the influence of the training 
algorithm. Results demonstrate that the LM algorithm is capable of finding ex-
cellent solutions for MLPs with only 4 hidden units, while the BP algorithm 
best results are obtained with 32 or more hidden units, and are worse than those 
obtained with the LM algorithm and 4 hidden units.   

1   Introduction 

This paper deals with the application of neural networks (NNs) to approximate the 
Neyman-Pearson (NP) detector. This detector maximizes the probability of detection 
(PD), while maintaining the probability of false alarm (PFA) lower than or equal to a 
given value [1]. The problem of detecting radar echoes in additive white gaussian 
noise (AWGN) is studied. 

Ruck et al. [2] and Wan [3] demonstrated that a NN can be used to approximate 
the optimum bayessian classifier, when trained using the least mean squared-error 
(LMSE) criterion. NNs have also been applied to approximate the NP detector [4,5,6]. 
In these works, multi-layer perceptrons (MLPs) with a hidden layer and one output, 
trained using the standard back-propagation algorithm (BP) are used. In [4] MLPs 
with ten inputs, five hidden units and one output are proposed for detecting determi-
nistic signals in different environments, but no study is presented about the influence 
of network size. In [5,6] a trial and error strategy is carried out to find a trade-off 
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solution between performance and complexity.  MLPs with sixteen inputs, eight hid-
den neurons and one output are proposed for detecting non-fluctuating targets in 
AWGN. But in any case, NN performance is compared to the NP detector one, and 
the fact that the studies are based on a trial an error process, does not allow us to 
evaluate the influence of network size and training algorithm efficiency separately.  

In this paper, the application of NNs for detecting fluctuating targets is considered. 
For simulating the target return, the "Swerling 1” model (SWI) has been used [7]. 
Although this model can be too simple and in many cases do not characterize actual 
targets properly, it is useful to evaluate the powerful of alternative detection schemes, 
such us NNs. To evaluate the performance of any detection scheme that approximates 
the NP detector, the Receiver Operating Characteristic (ROC) curves of both detec-
tors must be compared. For a PFA value, the difference between the corresponding PDs 
must be as low as possible. For the case of study, the NP detector is easily obtained 
and evaluated. These ROC curves are compared with those estimated for the trained 
NNs, proving the ability of NNs to approximate the NP detector for the case of study. 
As no assumption is made about the detection problem during training, the obtained 
results can be generalized to prove the possibility of using NNs in practical situations 
where target and interference statistics are unknown and difficult to estimate. 

As a previous step, the NP detector and the optimum decision boundaries are cal-
culated. Taking into consideration the behavior of MLPs [8], the minimum number of 
hidden units that must be used is obtained. The standard BP and the Levenberg-
Marquardt (LM) [9] algorithms are used for training the MLPs. Since the minimum 
number of hidden units is known, the influence of the algorithm can be studied. 

2   Optimum Detector 

We assume that the scanning radar collects N target echoes in a scan, and each input 
pattern, z=[z1,z2,…,z2N]T is composed by the in-phase (the first N samples) and in-
quadrature components (the remaining N samples) of each pulse. Under H0, z is a 
vector of zero mean independent gaussian random variables with variance σn

2, so 
f(z|H0) is a generalized gaussian of zero mean and covariance matrix C0 = σn

2·I, where 
I is the 2N×2N identity matrix. Under H1, f(z|H1) depends on the assumed target 
model. For Swerling 1 targets [7], the target magnitude is Rayleigh and the one-lag 
correlation coefficient is equal to unity. Assuming that the phase of radar echoes is an 
uniform random variable in the interval [0,2π), and independent of the magnitude, the 
quadrature components of each returned pulse are independent gaussian random vari-
ables of zero mean and  variance σs

2.  So, under H1, z is a vector of zero mean gaus-
sian random variables with variance σs

2+σn

2, and f(z| H1) is a generalized Gaussian of 
zero mean and covariance matrix C1 given in (1), where O, U and I are NxN matrixes: 
O is a matrix of zeros, U is a unity matrix and I is the identity matrix.  

 
2 2

1 2 2

s n

s n

σ σ
σ σ

+
=

+
U I O

C
O U I

      (1) 

 
Defining the signal-to-noise ratio (SNR) as SNR=10log10(snr)=10log10(σs

2/σn

2), and 
assuming σn

2=1, SNR=10log10 (σs

2). 
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To calculate the likelihood ratio, a SNR value must be assumed. When designing a 
NN based detector, this design SNR value is denoted as TSNR (Training Signal-to-
Noise Ratio), because it is the SNR of the training set. C1 can be re-written as in (2),  
and an expression of the decision rule in the NP sense is presented in (3), where I is 
the (2Nx2N) identity matrix, ηlr is the detection threshold of the decision rule based 
on the likelihood ratio, and det(C1) has been substituted by its value: (1+N·tsnr)2. 
 

1

tsnr

tsnr

+
=

+
U I O

C
O U I

         (2) 

 
      ( )1

1
1

2
−⋅ ⋅ − ⋅Tz I C z     ( )ln 1 ·lr N tsnrη +               (3) 

3 Structure of the MLP-Based Neural Detector 

If Σ= I-C1

-1, zTΣz is a general quadratic function. When Σ is positive definite, the deci-
sion boundaries defined in (3) are hyper-ellipsoids in a space of 2N dimensions. If λΣ 
are the eigenvalues of Σ, hyper-ellipsoids principal axes are given by the eigenvectors 
of Σ, and its lengths are proportional  to (λΣ)-1/2. In the case of study, C1 has 2N-2 ei-
genvalues equal to one and 2 eigenvalues equal to 1+Ntsnr, so C1 is positive definite. 
As the relation between C1 and Σ eigenvalues can be expressed as λΣ=1-(1/λC),  Σ has 
only two non zero eigenvalues and, hence, 2N-2 axes tends to infinity. So, the deci-
sion regions are open volumes, and the decision boundaries are hyper-cylinders.  

In a 2N dimensions space, a hyper-cylinder can be enclosed with three hyper-
planes, and this number will tend to infinity when the approximating error tends to 
zero. The sigmoid activation functions improve this approximation, but for an error 
being close to zero, the number of hidden units tends to infinity. As to implement an 
approximation of the optimum decision boundary, at least, the approximated bound-
ary must enclose it, a one hidden layer MLP with a minimum number of three hidden 
neurons is needed. Clearly, the approximation error will depend on the number of 
hyper-planes (hidden units) and how the neuron activation functions transform them. 
Combining expressions (2) and (3), rule (3) is expressed as: 

 

    
( )

22 2

1 1

N N

i i
i i P

z z
= = +

+      ( )1
2 ln 1cv

Ptsnr
Ptsnr

tsnr
η+ +                      (4) 

This expression reveals that, the distance to the hyper-cylinder axis is a sufficient 
statistic. So the approximation error will be a function of the hyper-cylinder radius 
and, because of that, of the desired PFA.  

Since σn

2=1, the required detection threshold for a given PFA is independent of 
TSNR, so the NP detector is independent of this value, and when training a NN, its 
performance is expected to be independent of TSNR. 

H1 

H0 

H1 

H0 
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4   Design of Experiments and Results 

In Air Traffic Control radar, the usual number of collected pulses in a scan is N=8, so 
MLPs with 16 inputs have been trained. A hard threshold detector has been used: if 
the NN output is greater than the threshold, H1 is accepted, in other case, H0 is ac-
cepted. To study the dependence on TSNR, different values have been selected. For 
each TSNR, separated training and validation sets composed of 50,000 randomly 
distributed patterns from H0 and H1 have been generated. To study the dependence on 
network size, MLPs with one hidden layer with different number of neurons have 
been trained. Taking into consideration the conclusion presented in previous section, 
starting with three hidden units, we have increased this value until no improvement 
has been observed. In all cases (NN size and TSNR), the log sigmoid transfer function 
has been used. 

NNs have been trained for minimizing the LMSE, using two algorithms: the BP 
(with momentum and adaptive learning rate), and the LM (with adaptive parameter) 
[9]. While BP is based on the steepest descent method, the LM is based on the New-
ton method,  and has been designed specifically for minimizing the LMSE.  

A cross-validation technique has been used to avoid over-fitting and all NNs have 
been initialized using the Nguyen-Widrow method [10]. For each case, the training 
process has been repeated ten times, to check if the performances of the ten trained 
networks were similar in average.  

Since for radar applications only low PFA values are of interest, results are pre-
sented for PFA lower than 10-4. These values have been estimated using Importance 
Sampling techniques (relative error lower than 10% in the presented results) [11,12]. 
PD values have been estimated using conventional Montecarlo simulation. 

In figure 1, MLPs with 8 hidden units trained using the BP algorithm, show a high 
dependence on TSNR and poor detection capabilities. MLPs with 32 or more hidden 
units are needed to make TSNR dependence insignificant. 
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Fig. 1. ROC curves for MLPs trained using the BP algorithm and the LMSE criterion with 
TSNR= 0, 3, 7, 11, 15 and 19 dB, different number of hidden neurons (8 and 32), and 
SNR=3dB. The optimum detector ROC curve is drawn up with wider line. 
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In figure 2, ROC curves for MLPs trained using the LM algorithm are presented. 
LM not only is faster (training epochs can be reduced by more than an order of mag-
nitude), but it is capable of finding a much better solution than the BP for a MLP with 
only 4 hidden neurons. This was a expected result, because for NNs which have up to 
a few hundreds of weights, the LM algorithm is more efficient that the BP with vari-
able learning rate or the conjugate gradient algorithms, being able to converge in 
many cases when the other two algorithms failed to converge [9]. LM uses more in-
formation about the error surface in each iteration to find the minimum, and remain 
robust even if the needed line searches are only performed to relatively low accuracy. 
    Apart from the MLP trained with TSNR=19dB, the dependence of network per-
formance on TSNR is insignificant, and the difference between the network ROC 
curve and the optimum detector one is lower than that observed for the MLPs with 32 
hidden units trained using the BP. LM requires the estimation of the inverse of the 
hessian matrix. For TSNR=19dB, the determinant of the hessian matrix is close to 
zero and the MLP performance is clearly worse. As the hessian matrix is WxW, for a 
MLP with W weights, the results obtained for bigger networks are poorer (figure 2, 
MLPs with 8 hidden units). 
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Fig. 2. ROC curves for MLPs trained using the LM algorithm with TSNR= 0, 3, 7, 11, 15 and 
19 dB, different number of hidden neurons (4 and 8), and SNR=3dB. The optimum detector 
ROC curve is drawn up with wider line. 

5   Conclusions 

The application of NNs to approximate the NP detector for the detection of SWI tar-
gets in AWGN is studied. The optimum detector and decision boundaries are calcu-
lated, with two objectives: to calculate its ROC curves and to determine the minimum 
number of hidden units for enclosing the optimum decision boundaries, and imple-
menting an approximation of the optimum detector. We have concluded that the op-
timum detector is independent on TSNR, so, under good training conditions, NN 
performance should be independent of this parameter. Comparing the NP detector 
ROC curves with those estimated for the trained NNs, we have evaluated the imple-
mented approximations, and the influence of the TSNR. Also, we have demonstrated 
that the minimum number of hidden units required for enclosing the optimum deci-
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sion boundaries is three. The conventional trial an error process for finding the best 
network structure has been transformed in a guided one. Results demonstrate that the 
LM algorithm is capable of finding very good solutions for MLPs with only 4 hidden 
units, while the BP algorithm best results are obtained with 32 or more hidden units, 
and are worse than that obtained with LM algorithm and 4 hidden units.   
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Abstract. Analysis of financial databases is sensitive to missing values (no 
reported information, provider errors, outlier filters…). Risk analysis and 
portfolio asset allocation require cylindrical and complete samples. Moreover, 
return distributions are characterised by non-normalities due to 
heteroskedasticity, leverage effects, volatility feedbacks and asymmetric local 
correlations. This makes completion algorithms very useful for portfolio 
management applications, specifically if they can deal properly with the 
empirical stylised facts of asset returns. Kohonen maps constitute powerful non-
linear financial classification tools (see [3], [4] or [6] for instance), following 
the approach of Cottrell et al. (2003), we use a Kohonen algorithm (see [2]), 
altogether with the Constrained Randomization Method (see [8]) to deal with 
mutual fund missing Net Asset Values. The accuracy of rebuilt NAV estimated 
series is then evaluated according to a comparison between the first moments of 
the series. 

1   Introduction 

The presence of missing data in the underlying time series is a recurrent problem for 
asset allocation and risk measure which require to deal with cylindrical and complete 
samples. Moreover, many financial databases contain missing values. For common 
stock returns measured at a low frequency, the Gaussian hypothesis is considered as a 
fairly good approximation, but financial assets such as options can introduce non-
linearities and asymmetries to the portfolio returns. Because of the non-normality, 
symmetric measures of risk as the standard deviation cannot be applied; they do not 
distinguish between heavy left tails and heavy right tails. Hedge Fund asset return in 
this sense seems to be very particular. Several empirical studies conclude that many 
hedge fund index return distributions are not normal and exhibit negative skewness, 
positive excess kurtosis, and highly significant positive first-order autocorrelation (see 
[1] for instance). Thus, for hedge fund asset class, higher moments should be taken 
into account for the analysis. The importance of higher moments of returns, especially 
the skewness and kurtosis in evaluating portfolio risk and performance has been 
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already highlighted by a number of authors, proposing and analyzing the inclusion of 
higher moments in portfolio theory. For illustration in the following, we extracted 
from the large HFRTM database, a dataset of hedge fund net asset values composed 
with 49 funds on a 5-year period of 60 monthly values. Note that, at purpose, no 
missing values are contained in this database. 

2   Classical Self-Organized Maps Algorithm 

The SOM algorithm is based on the unsupervised learning principle where the 
training is entirely data-driven and no information about the input data is required (see 
[5]). The SOM consist of a network, compound in n neurons, units or code vectors 
organised on a regular low-dimensional grid. If [ ]nI ...,,2,1=  is the set of the units, 

the neighbourhood structure is provided by a neighbourhood function Λ  defined on 
2I  . The network state at time t is given by:  

( ) ( ) ( ) ( )[ ]tttt Tmmmm ...,,, 21=  (1) 

where ( )tim  is the T-dimensional weight vector of the unit i. 

For a given state m  and input x , the winning unit ( )mx,wi  is the unit whose weight 

( )mxm ,wi
  is the closest to the input x . 

The SOM algorithm is recursively defined by the following steps: 

1.   Draw randomly an observation x . 
2.   Find the winning unit ( )mx,wi  also called the Best Matching Unit (noted BMU) 

such that:  
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where .    is the Euclidian norm. 

3.   Once the BMU is found, the weight vectors of the SOM are updated so that the 
BMU and his neighbours are moved closer to the input vector. The SOM update rule 
is: 

( ) ( ) ( ) ( ) ( )[ ] IittiBMUtt itii ∈∀+−−=+ ,1,1 xmmm ε  (3) 

where tε  is the adaptation gain parameter, which is ]0,1[-valued, generally 

decreasing with time. The number of neurons taken into account during the weight 
updates depends on the neighbourhood function  that also generally decreases with 
time (see [5]). 

Figure 1 represents the code vectors obtained using the dataset of hedge funds 
described above. 
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Fig. 1. Representation of Code Vectors on the Kohonen maps 

3   Self-Organizing Maps with Partial Data Algorithm 

SOM allows for classification of data samples with multiple variables and missing 
values (see [7]). Cottrell et al. (2003) propose an adapted Kohonen algorithm that first 
clusters the data, and then replaces the missing observations (see [2]). When the SOM 
algorithm iterates, if a vector x  with missing value(s) is drawn, we consider the 
subset NM of variables which are not missing in vector x . We define a norm on this 
subset (denotes

M
. ) that allows us to find the BMU (with previous notations):  

( ) ( )[ ] ( ) ( ){ }
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Once the Kohonen algorithm has converged, we got some cluster containing our time 
series. Cottrell et al. (2003) first propose to fill the missing values of time-series by 
the cross-sectional mean of observed values present in the cluster. 
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4   Combing Self-Organized Maps and Constrained Randomization 
     for Data Completion 

Such an approach, when dealing with financial time series, will affect drastically 
some important statistical properties of the over-all rebuilt dataset. In particular, 
higher moments (second, third and fourth centred moments), auto-correlations and the 
correlations with the other time-series are neglected in the analysis. We propose here 
to combine the Self-Organizing Maps, adapted to the presence of missing values, and 
the Constrained Randomization algorithm introduced in [8]. This last computational 
method - initially presented as a specific reshuffling data sampling technique - allows 
for the simulation of artificial time-series that fulfil given constraints, but are random 
in other aspects. 
    The Figure 2 summarizes the proposed procedure for data completion. The first 
step starts with computing some empirical features of the data (moments of returns in 
our present case). Then, in parallel, a SOM is run with the non-missing values in the 
original dataset. Coordinates of Code Vectors in each of BMU are then considered as 
natural first candidates for missing value completion. The constrained randomization, 
using as constraints some of the empirical features of the data determined at the first 
step, can then start. If the candidate meets the constraints, then it takes the place of the 
missing value into the original data; if not, a standard normal residual is drawn, then 
added to the previous candidates and the test for the constraints starts again. This 
process lasts until all constraints are fulfilled and all missing values replaced. 

 
Data Sample with

Missing Values

SOM Learning
Statistical Characheristic

Computations

Map 1 Substitute Candidates

Constrained Randomization

Simulations

Constraints
Map 2

Data Sample with
Missing Values

SOM Learning
Statistical Characheristic

Computations

Map 1 Substitute Candidates

Constrained Randomization

Simulations

Constraints
Map 2

 
 

Fig. 2. Representation of the Scheme when Mixing Self-Organizing Maps and Constrained 
Randomization in Data Completion  
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5   Empirical Illustrations 

Table 1 and Table 2 hereafter summarize the mean properties of the errors in 
moments when - respectively - using the adapted Kohonen algorithm alone and the 
two-step procedure presented in this article. As a first remark, we can note that - with 
no surprise - the addition of a Constrained Randomization procedure allows to 
recover missing values that more in line with the statistical characterization of the 
original series, as indicated by the comparison of Table 1 and Table 2. As the second 
remark, this is true in our example for all (reasonable) level of missing values in the 
original database. Finally, in this example, the improvement of accuracy regarding the 
moments is between 11% and 46%, the mean improvement is of order of 27%. 

Table 1. Mean Errors on Moments when using the adapted SOM algorithm for Missing Values- 
fifty draws 

Missing Values 
(in %) Mean Variance Skewness Kurtosis

5.00 2.99 6.96 11.55 9.81
10.00 5.38 12.71 20.71 17.71
15.00 7.47 17.82 27.20 24.21
20.00 9.15 23.51 31.90 29.74
25.00 10.85 28.04 36.89 34.40
30.00 13.91 34.04 40.44 40.85
35.00 15.59 38.83 45.62 45.83
40.00 19.57 42.81 45.04 47.97
45.00 21.62 47.01 54.13 52.88
50.00 23.60 54.77 61.67 62.21

Absolute Error (in %) after Completion via  Kohonen Maps

 
Source: HFRTM; Monthly Net Asset Values (12/1999-12/2004). Computations from the authors.  
 

Table 2. Mean Errors on Moments when using the adapted SOM algorithm for Missing Values 
and Constrained Randomization - fifty draws 

Missing Values 
(in %) Mean Variance Skewness Kurtosis

5.00 2.65 4.63 6.26 5.59
10.00 4.56 8.95 12.99 10.52
15.00 6.13 13.39 17.72 15.43
20.00 7.26 17.69 21.55 20.13
25.00 8.55 22.08 27.26 24.82
30.00 9.42 26.65 30.79 30.38
35.00 10.43 30.04 34.07 34.62
40.00 12.02 33.48 36.22 36.82
45.00 12.98 37.42 41.45 41.47
50.00 14.43 43.82 48.51 49.56

Absolute Error (in %) after Completion via  Kohonen Maps 
Combined with Constrained Randomization

 
Source: HFRTM; Monthly Net Asset Values (12/1999-12/2004). Computations from the authors.  
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    For a more illustrative example, let us suppose a 17% annualized return fund. We 
destruct artificially 5%, 20% and 50% of the time series, at a 5% level of missing 
values, both methodologies get the same result with 0.5 points error on annualized 
return estimated (the annualized return estimated is between 16.5% and 17.5%). At a 
20% level of missing value, the difference between the two methodologies is more 
observable: 1.5 points for a completion with Kohonen maps versus 1 point for a 
completion with Kohonen Maps combined with Constrained Randomization Method. 
At a 50% level of missing value, the difference becomes explicit: 4 points for a 
completion with Kohonen Maps versus 2 points for a completion with Kohonen Maps 
combined with Constrained Randomization Method. 

6   Conclusion 

The presented method for data completion uses SOM description of the data as the 
starting point for a constrained randomization. The main interest of the technique can 
be found in the fact that some of the important empirical features of the input are 
respected during the rebuilding process of missing observations. Specifically higher 
moments, whose accuracy of estimations are crucial in some financial applications, 
are taken into account when substitutions. Moreover, one can easily think about some 
generalizations of the proposed algorithm, adding for instance some features under 
studies into the constraints of the so-called Constrained Randomization procedure, 
such as local correlation structure or tail of the density focuses, depending on what is 
the final aim of the financial applications (asset allocation or risk management). One 
may also think about the robustness of the algorithm, namely specifying robust 
estimators in the constraints and allowing for data resampling when building the 
Kohonen Maps (see [4]). 
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Abstract. This paper describes a novel omnivision-based Concurrent
Map-building and Localization (CML) approach which is able to local-
ize a mobile robot in complex and dynamic environments. The approach
extends or improves known CML techniques in essential aspects. For ex-
ample, a more flexible model of the environment is used to represent
experienced observations. By applying an improved learning regime, ob-
servations which are not longer of importance for the localization task
are actively forgotten to limit complexity. Furthermore, a generalized
scheme for hypotheses fusion is presented that enables the integration of
further multi-sensory position estimators.

1 Introduction

Robust self-localization plays a central role in our long-term research project
PERSES (PERsonal SErvice System) which aims to develop an interactive mo-
bile shopping assistant which can autonomously guide its user within a home
store [1]. To accommodate the challenges that arise from the specifics of this
scenario and the characteristics of the operation area, a regularly structured,
maze-like and populated environment, we placed special emphasis on vision-
based methods for robot navigation. In our previous approach [1], we have em-
ployed a static graph representation as map of the environment, which is build up
manually. The nodes of the graph are labeled with visual observations extracted
from omnidirectional images and corresponding position information. Given this
map, localization was realized employing a Particle Filter to estimate the robot’s
state. The main drawback of this and other appearance-based approaches for lo-
calization published in recent years is, however, that localization is only possible
in manually mapped areas. Furthermore, the learned map is only valid as far as
no important modifications of the operation area occur. Therefore, we developed
an alternative technique which is able to perform an omnivision-based Concur-
rent Map-building and Localization (CML) to overcome this drawback. Inspired
by former approaches like [5] but especially the work of Porta and Kroese [2]
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W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 929–934, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



930 S. Mueller, A. Koenig, and H.-M. Gross

and continuing our former work, we present a neural architecture (see Fig. 1),
which is able to track multiple state hypotheses (position and orientation of a
mobile robot) in a short-term memory (STM) using odometry data and previous
state estimations, while building up a kind of long-term memory (LTM) used for
associating omnidirectional views to already observed and learned states. This
appearance map afterwards directly influences the tracked state hypotheses in
the STM to reduce their uncertainty.

Main advantage of this approach is the advanced learning scheme used in
the LTM. The network is able to actively forget information about observations
that became irrelevant because of changes in the environment. This guarantees
that the complexity remains limited for a given operation area and independent
from working time, which is of fundamental importance for a continuous duty.

2 Neural Architecture for Probabilistic Localization

Our architecture consists of three main components, the short-term memory
(STM), the long-term memory (LTM), and the fusion subsystem shown in Fig.
1. The STM is responsible for representing the distribution of possible states the
robot might currently be in. By placing linear RBF-neurons in the State Space
S (x, y, φ) and summing up their weighted outputs, this structure represents
a Mixture of Gaussians (MoG) characterizing one hypothesis for the current

STM (short-term memory)LTM  (long-term memory)

Fusion

Σ Σ

p(x  )t

Σ
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Σ
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x y φ x y φ
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y
t
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ijw
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μ  ,C
j      j

μ  ,C
k     k
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II

Fig. 1. Architcture of our probabilistic localization system: last known state hypothesis
(position x,y and orientation φ of the robot) from STM (right) and a hypothesis from
LTM (left) resulting from current observation yt become merged and approximated by
a Mixture of Gaussians p(xt). Afterwards, this resulting distribution (top) is used to
adapt STM again and to teach the observation-state associations in LTM. During the
next step, hypotheses in STM will be updated using odometry data ut and a motion
model, then the output p(xt) can be estimated again.
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state estimation. The resulting activity hSTM at the STM-output node can be
determined as follows:

hSTM (xt) =
∑

k

wkφ(x|μk,Ck) (1)

whereby φ is a Gaussian with mean μk and covariance matrix Ck, and wk is
the weight of the respective connection to the output node. The LTM (Fig.
1, left) consists of a layer of nodes representing prototypes yi of observations
and performing a clustering of the Observation Space. Each node in this layer I
receives the current observation yt and a weighted sum of activity from layer II,
which consists of linear RBF-neurons connected to exactly one prototype node
of layer I. Experiments showed that connections to more than one prototype
nodes destabilize the state estimation. While layer II nodes are representing
positions in State Space, layer I combines them considering the similarity between
the respective reference observation yi and the current observation yt, whereby
S(yt,yi) is a similarity function delivering a maximum (1.0) for identical views
and decreasing continuously to zero up to a minimum similarity. As a result, the
activity hLTM at the LTM-output node is given by:

hLTM(xt|yt) =
∑

i

(S (yt,yi) ·
∑

j

wijφ(x|μj ,Cj)) (2)

The LTM-output node integrates the activation over all reference nodes, such
that the resulting output characterizes the distribution of possible states under
the given observation. The sum of activation characterizes the certainty of this
hypothesis resulting from more or less similarity between observation yt and
the learned prototypes. Concerning this, the output is not a true probability
distribution because weights do not sum up to one.

The last component, that receives the two hypotheses hSTM and hLTM , is
responsible for their fusion. In this module, a kind of probabilistic inference takes
place, which leads to a probability distribution of the robot’s current state.

2.1 Fusion of Hypotheses

The fusion module has to evaluate the activity distribution of different sources
of information in the State Space, in the case shown here of hLTM (xt|yt) and
hSTM(xt), but hypotheses from further state estimators can be integrated. To
simplify the fusion process, inputs are given in form of a weighted sum of Gaus-
sians, whereas different to a mixture probability the sum of the weights wi needs
not to be one. First, in this pool of Gaussians one has to decide which Gaussians
are representing the same hypothesis. Therefore, a spatial distance criterion is
applied, similar to [2] the Mahalanobis distance is employed. So the inference
can realize a logic AND for all the combinations of Gaussians within a maximum
spatial distance. This is done by Covariance Intersection similar to [2] and [4].
However, in our approach the weights wi are explicitly considered to take the
reliability of the different Gaussians into account. Gaussians that have no corre-
sponding counterpart, are taken into account in form of a logic OR. This way,
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single hypothesis can be transfered into the resulting set of Gaussians, too. Final
step is to normalize the weights such that the weighted sum can be interpreted as
a probability distribution p(xt). Further on, the resulting MoG can be simplified
if two or more Gaussians resemble each other. This is done by approximating the
overlapping Gaussians by a single one. Also components with too small weights
can be removed. At this point, we want to place emphasis on the necessity of
the inference realizing an AND. Without the reduction of uncertainty by means
of Covariance Intersection, a convergence of the whole model cannot be forced
and variances of the participating Gaussians would grow over time.

2.2 Short-Term Memory (STM)

Main part for tracking the state hypotheses is the STM. After computation of
the localization distribution p(xt), the weights and parameters of the RBF nodes
in the STM have to be adapted to represent the new hypothesis. This is done
by transferring the weights of the MoG p(xt) to wk and setting up the mean
values μk and covariance matrices Ck according to the MoG components, while
the number of nodes is adapted to the number of components in p(xt). An other
kind of STM-update takes place if a motion ut is measured by odometry. Then
a motion model is applied to each partial hypothesis represented by one RBF
node. This results in new parameters μk and Ck. Concurrently a new visual
observation yt is captured and a new estimation of p(xt) will be initiated.

2.3 Long-Term Memory (LTM) - Adaptive Environment Model

The LTM is performing a mapping from observations yt to a distribution of
states the robot has already been in while receiving a similar observation. Unlike
to our former model [1], this mapping is learned and adapted online while using it
for localization. Therefore, pairs of observation yt and related estimated state hy-
potheses p(xt) serve as teach value. To speed up convergence and to reduce faulty
entries in the LTM, principles similar to [2] are employed. So an update takes
place only if p(xt) is unimodal. In all other cases, the updates will be delayed
until p(xt) reaches unimodality again. Then disambiguated former positions can
be reconstructed by using stored motion information (see [3]). Once given an up-
date request, the structure and parameters of LTM are changed in three steps.

First, the clustering of Observation Space in layer I is updated. Therefore, if
similarity of yt to each prototype yi falls below a threshold, a new node repre-
senting the current observation yt is inserted. During this operation, similarities
S(yt,yi) of all layer I prototypes have to be computed.

Second step: In this phase, the parameters of the RBF nodes in layer II are
updated. For that, first the output (merged hypotheses) p(xt) is back-propagated
to each RBF node by multiplying the weights of the MoG components by
S(yt,yi) according to that prototype yi the layer II node is connected to. If
this is done, a single Gaussian φ(x|μt,Ct) with a weight wt = S(yt,yi)wp(xt) is
given for updating all layer II nodes that are connected to the prototype node yi.
This update is done by introducing a new RBF node, representing the new ob-
servation. Finaly, nodes with nearly similar Gaussians become merged, to reduce
redundancy.
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Third step: In this step the connections wij from layer II to layer I are
adapted. Here, relevanceweights wij of layer II hypotheses will be increased with
a learning rate β if layer I is activated by a high similarity S(yt,yi) and layer
II is activated by a low spatial distance to the Gaussian in p(xt).

wij := β S(yi,yt) wp(xt) + (1 − β S(yi,yt) wp(xt)) wij (3)

To reach a stabilizing behavior (and for solving the kidnapped robot problem
while building up the internal representation), on the other hand connections
to inactive layer II nodes have to be reduced if the respective layer I node is
activated.

wij := (1− β S(yi,yt) wp(xt))wij (4)

So long, only new information were captured and the complexity of the LTM
increases continuously. But it is also necessary to delete information, because
the operation area is extremely dynamic. So situations that will not be observed
again can be forgotten, if there is a new observation at the same position. For
this purpose, similarity D(t, j) in State Space between p(xt) and the Gaussian
represented by each RBF node has to be evaluated. So connections from activated
RBF nodes to deactivated prototype nodes in layer I will be decreased,

wij := (1− f (D(t, j), |Ct|)) wij (5)

and if these weights reach a lower bound, the respective RBF node can be deleted.
If no layer II node is connected any longer to a certain prototype node in layer
I, this prototype node is deleted, too. The forgetting function f decreases with
growing spatial distance D and growing variance of the new Gaussian, which is
contained in the determinant of its covariance matrix. Only by means of this
third rule, a limitation of the number of nodes, responsible for a restricted area,
can be reached.

3 Experimental Results and Conclusion

First, the algorithm was analyzed in a part of the home store with low changes
and dynamic modifications. In these preliminary experiments, a mean localiza-
tion error of about 0.6m in an area of about 25m by 10m could be reached.
Observable was a localization error growing with distance to the initial position.
The reason for this behavior is the erroneous odometry data used during the
first lap for building the initial model. So the LTM represents correct spatial
relations of the world in an internal coordinate system, which typically can be
rotated to world space. Binding the model at absolute world coordinates is a
general problem of this class of CML approaches.

In our desired application, the main task is not to build a model of a com-
pletely unknown area but to continuously adapt the model learned before to
a changing environment, so this problem is secondary. Therefore, further long-
term experiments were done in the home store. After building up an initial
model similar to the first experiment, the representation in LTM was rotated
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and translated to fit the absolute world coordinates by means of minimizing the
error between the true path and the estimation of the localization system. Af-
terwards the experiment was continued for several days. The result is a model of
a 30m by 30m area that allows a localization with an average absolute error of
less than 0.45m, built up without any a priori information. The long-term exper-
iments also clearly demonstrates the merits of our model. Using a model similar
to the one presented in [2], the number of layer I nodes in LTM was growing
continuously as long as the environment changed. The method presented here
handles the situation by replacing irrelevant prototype views by new ones, fi-
nally leading to a limited number of nodes for this restricted operation area.
The presented approach, thus realizes an applicable long-term localization in a
continuously changing environment based on an adaptive statistical distribution
with different time-scales.

Fig. 2. Results of the long-term experiment in the home store: localization test after
three days of operation (left): real path (red/grey), estimated path (blue/solid) and
odometric data (green/dotted), histograms of the localization error for three trials
(right) the development of means and the rising concentration on small errors visualize
the convergence of the approach
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Abstract. This paper presents a new neural network based approach to the pre-
diction of mobile locations using signal strength measurements in a simulated 
metropolitan area. The prediction of a mobile location using propagation path 
loss (signal strength) is a very difficult and complex task. Several techniques 
have been proposed recently mostly based on linearized, geometrical and 
maximum likelihood methods. An alternative approach based on artificial neu-
ral networks is proposed in this paper which offers the advantages of increased 
flexibility to adapt to different environments and high speed parallel processing. 
The paper first gives an overview of conventional location estimation tech-
niques and the various propagation models reported to-date, and a new signal-
strength based neural network technique is then described. A simulated mobile 
architecture based on the COST-231 Non-line of Sight (NLOS) Walfisch-
Ikegami implementation of a metropolitan environment is used to assess the 
generalization performance of a Multi-Layered Perceptron (MLP) Neural Net-
work based mobile location predictor with promising initial results. 

1   Introduction 

Location Estimation is the process of localizing an object on the basis of some pa-
rameter. This parameter can be proximity to a detector, or some other parameter like 
radiated energy. The latter parameter is the one of interest in our case. In the particu-
lar context of cellular systems, this translates to the localization of the transmitter or 
the receiver.  
    Proper location estimation is very important in making many crucial decisions in 
cellular networks [1]. Handoff management is one such example. When a mobile sta-
tion enters from the region of service of one base station (BS) to another, a handoff is 
to be made. The initiation of the handoff process depends on the location of the mo-
bile. A delay in the initiation of handoff will result in very low signal strength or in 
the adverse case, a call drop. Applications like handoff management don’t require 
very accurate location estimates; all that is required is to determine which cell the 
mobile is in. But there are applications that ask for a very accurate estimate e.g., intel-
ligent transport systems, fleet management and security applications etc. [1]. 
    Many authors have shown that neural networks provide a good way of approximat-
ing non-linear functions [7, 8]. The application of neural networks discussed in this 
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paper is considered as a function approximation problem consisting of a non-linear 
mapping of signal strength input (received at several Base Stations) onto a dual output 
variable representing the mobile location co-ordinates. The signal strength data is 
generated using a COST 231-Walfisch Ikegami Non-line of Sight (NLOS) model for 
the metropolitan area. 
    This paper is organized as follows: section 2 gives an overview of conventional lo-
cation estimation techniques, and a brief overview of propagation models is presented 
in section 3, together with a description of the COST-231 Walfisch Ikegami NLOS 
model used in this paper. The proposed neural network based location estimation 
model is briefly described in section 4 and preliminary results are presented in  
section 5 together with a description of the mobile architecture used in the simulation 
case study. Finally some concluding remarks are given in section 6. 

2   Conventional Location Determination Technologies (LDT) 

At present conventional LDTs fall into two main classes [1], namely handset-based 
and network bases LDT’s. Currently, GPS based location information services are in 
commercial use. However, in a city or building where there is often no direct Line of 
Sight (LoS) between GPS satellite and the terminal, which causes a severe degrada-
tion of accuracy. In such cases, location estimation using cellular network systems 
can offer advantages, and estimating a location using the signal from BS’s becomes a 
highly non-linear problem. Few linearized and geometrical methods have been pro-
posed for calculating the mobile position based on measured signal strengths [12]. 
    Although signal strength based location estimation algorithms may not be the pre-
ferred approach at present for providing location services, signal strength is the only 
common attribute available between various kinds of mobile networks and deserves 
more attention than received to-date due to its ability to provide network-based mo-
bile location solutions (without the need to modify the handsets). In this paper, we in-
vestigate the use of neural networks for mapping the outputs of a selected signal-
strength propagation model to predict the mobile location co-ordinates. 

3   Brief Review of Propagation Models 

Propagation models are used in the field of wireless communications in order to pre-
dict signal strength at a signal receiving point, or an entire sector of a wireless system. 
However, there is no clear cut definition of a propagation model, because there are so 
many methods of modelling outdoor (as well as indoor) propagation of transmitted 
and received signals [10]. On the basis of the radio environment, the prediction mod-
els can be classified into two main categories, outdoor and indoor propagation models 
[11]. In this paper we employ the well-known COST 231 model also known as the 
Walfisch Ikegami model (WIM) which is described in the next section. 

3.1   COST-231 Walfisch Ikegami Model 

Developing a model for propagation characteristics is an important problem for mo-
bile communications engineering. The problem becomes even more challenging when 
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urban environments are the regions of interest. Many different models have so far 
been developed to solve this problem. 
    The Walfisch-Ikegami model (WIM) has been shown to be a good fit to measured 
propagation data for frequencies in the range of 800 to 2000MHz and the path dis-
tances in the range of 0.02 to 5km. The WIM distinguishes between LOS and NLOS 
propagation situations. For NLOS path situations, the WIM gives the following ex-
pression for the path loss in dB [9] 

 

<+

≥+++
=

0,

0'

rtsmdsfs

rtsmdsmdsrtsfs
NLOS LLL

LLLLL
L  . 

Where 
=fsL Free space loss, 

rtsL = Roof-to-street diffraction and scatter loss, and  

msdL = Multiscreen diffraction loss 

 
Our system assumes a frequency of 1000 MHz, base station antenna height of 30m 
and mobile antenna height of 1m, building separation of 40m, street width of 20m and 

angle of incidence of o20 , and a NLOS metropolitan setting. 

4   New Signal Strength Based Neural Network Techniques 

BS assisted or network based signal strength location estimation techniques are inves-
tigated in this work using neural networks (NN), for an urban environment model. In 
this technique, the signal attenuation is used by the trained neural network model to 
estimate the distance travelled by electromagnetic waves and an estimate of the loca-
tion is made. Real data or a realistic propagation model such as the COST 231 WIM 
can be used to generate training data by analytically calculating the received signal 
power at various BS’s for any given link distance to the mobile. Analytical signal 
strength based approaches for location determination are further analyzed by Song [3] 
who demonstrates that multi-path propagation and shadowing effects are the main 
sources of error in conventional signal strength based location determination tech-
niques, and in this paper we propose the use of neural networks to overcome these 
problems. 
    Next we present a brief overview of the multi-layered neural network model used 
in this work. 

4.1   Neural Network Overview 

The general structure of a multi-layered perceptron (MLP), also sometimes known as 
the back propagation network, is illustrated in Figure 1, which can comprise one or 
more hidden layers [4]. 
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Fig. 1. General architecture of MLP 

    In the MLP structure illustrated in Figure 1, the output Yi of each neuron of the nth 
layer is defined by a derivable nonlinear function F: 

 

=
j

iji ywFy1  . 

 
Where F is the nonlinear activation function, jiw  are the weights of the connection 

between the neuron jN and iN , jy  is the output of the neuron of the ( )thn 1− layer. 

In our application, the neural networks are trained with the Levenberg-Marquardt al-
gorithm, which converge faster than the backpropagation algorithm with adaptive 
learning rates and momentum. The Levenberg-Marquardt rule for updating parame-
ters (weights and biases) is given by [4]: 

 

( ) eJIJJW TT 1−
+=Δ μ  . 

 
where e  is an error vector, μ  is a scalar parameter, W  is a matrix of networks 

weights and J is the Jacobian matrix of the partial derivatives of the error compo-
nents with respect to the weights.  

5   Simulation Results 

5.1   Mobile Architecture 

The mobile architecture used for the simulations is discussed here. For the sake of 
simplicity, a square cell of dimensions 3km X 4km is assumed, as shown in Figure 2. 
Three fixed BSs are used for measuring signal strengths as used in trilateration [13]. 
The coverage area is divided into grids of dimensions 0.3km X 0.3km for training 
purposes. The idea is to place the mobile in each of these grid intersections and 
transmit the signal. All the three BSs measure the received signal strengths from each 
position of the mobile [2] using the WIM NLOS model described in the previous  
section 3.1. 
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    The neural net is trained on the generated data using the corresponding mobile lo-
cation co-ordinates as its target outputs. The origin of coordinates is taken at the left 
bottom corner and all measurements are taken relative to it. The trained neural net-
work’s generalization capability is assessed by testing on data generated with a differ-
ent grid size (0.1km x 0.1km) to that used for training, as described in the next sec-
tion. 

5.2   Multi-layered Perceptron (MLP) Based Location Estimatiom 

For the situation described in Figure 3, the training set consisted of 154 samples of 
signal strength measurements received at the three fixed BSs and the corresponding 
mobile location co-ordinates. A two-hidden layered (3-4-8-2) MLP comprising 3 in-
puts, 2 hidden layers of 4 and 8 nodes, and 2 outputs, was trained using the Leven-
berg-Marquardt back propagation algorithm [4], and the error was reduced to 

71091947.9 −×  after 404 epochs, with the result that the net maps any measurement 
of the training set perfectly to the location of MS for that set. For testing the trained 
neural network’s generalised capability, points other than the training set were gener-
ated within the same (3km x 4km) coverage area by dividing the coverage area into  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

960 970 980 990 1000 1010 1020 1030 1040

3

3.05

3.1

3.15

3.2

3.25

MLP - X predicted vs target

No.of test points

D
is

ta
nc

e 
in

 k
m

predicted

target

Fig. 3. Sample X-location co-ordinates 
(MLP predicted vs. target test data)  

640 645 650 655

0

0.5

1

1.5

2

2.5

3

MLP - Y predicted vs target

No.of test points

D
is

ta
nc

e 
in

 k
m

predicted

target

 
Fig. 4. Sample Y-location co-ordinates 
(MLP predicted vs. target test data)  

Fig. 2. The square cell used for the simulation of neural network assisted location estimation 
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grids of dimensions 0.1km X 0.1km (rather than the 0.3km x 0.3km grids used to gen-
erate the training data). Sample test results for the MLP location predictor are shown 
in Figures 3 and 4, for which the mobile was assumed to be at 1271 different points 
on the test grid. For each of these unseen test points the signal strength received at all 
the four BSs was calculated using the NLOS WIM model and was fed to the MLP 
which mapped these to the estimated locations. Figures 3 and 4 show part of the target 
(test) versus MLP predicted X and Y location coordinates. Note that the MLP predic-
tions on the test data can be further improved by training the net on a larger set of 
readings (using a smaller grid than 0.3km x 0.3km). 

6   Discussion and Conclusions 

The motivation behind application of neural networks to solve the location estimation 
problem is that the neural network technique is adept to the use of intelligence in the 
cellular system. The greatest benefit is the one time training. In practice however, 
field collection of the signal strength data is the most laborious part (and downside of 
the neural network approach in general) but this one-time effort can give location es-
timates for years until the terrain changes considerably and another training trial is re-
quired. Also, the inherent nature of the location estimation problem makes neural nets 
selection a wise choice for tackling this problem. Modeling the propagation of radio 
waves by mathematical models is quite complex involving numerous interacting vari-
ables. In addition, multipath, diffraction and non line of sight (NLOS) cause prob-
lems. Also weather conditions affect the radio wave propagation. These are the types 
of complex modelling problems neural networks are known to be well suited for [6, 
11], and in this research their application is extended to learn the non-linear mapping 
between the propagation model outputs (path loss) and the corresponding mobile lo-
cation co-ordinates at various link distances. The preliminary results reported in this 
paper demonstrate that neural networks can be effectively trained on signal strength 
measurements obtained using a realistic WIM simulation model for a NLOS metro-
politan environment. 
    Further work will assess the performance of the developed MLP based mobile loca-
tor using real field measurements, and comparing with other neural network models 
(e.g., Radial Basis Function and Recurrent Neural Networks) as well as with other re-
lated non-linear function approximation techniques (such as the volterra model). 

References 

1. Location-based Services, Geo Informatics, April; 2001, http://www.geoinformatics.com. 
2. Wamiq M.Ahmed, Amir Hussain and Syed I. Shah,  “Location Estimation in Cellular Net-

works using neural networks”, Proc. International (NAISO-IEEE) Symposium on Info. Sci-
ence Inovations (ISI’2001), Dubai, 19-21 March 2001. 

3. Han-Lee Song, “Automatic Vehicle Location in Cellular Communications Systems”, IEEE 
Transactions on Vehicular Technology, 43(4), November 1994. 

4. Haykin, S, Neural Networks: A Comprehensive foundation. Upper Saddle River, NJ: Pren-
tice Hall, 1994. 



 New Neural Network Based Mobile Location Estimation in a Metropolitan Area 941 

 

5. J.Muhammad, A. Hussain and W.M.Ahmed, “Location Estimation in Cellular Networks 
Using Neural Networks”, 1st IEEE-IEE International Workshop on Signal Processing for 
Wireless Communications (SPWC2003), pages.243-247, London, UK., May 2003. 

6. A.Hussain, J.J Soraghan and T.S.Durrani, A new Adaptive Functional-Link Neural Net-
work Based DFE for Overcoming Co-channel Interference, IEEE Transactions on Com-
munications, 45(11):1358-1362, 1997. 

7. B.E. Gschwendtner and F.M. Landstorfer, “Adaptive propagation modelling using a Hy-
brid Neural Technique”, Electronics Letters, vol. 32, pp. 162-164, Feb.1996 

8. P-R. Chang, W-H Yang, “Environment-Adaptation Mobile Radio Propagation Prediction 
Using Radial basis Function Neural Networks”, IEEE Trans. Vech. Technol., vol. 46, no, 
1, pp 155-160, Feb.1997 

9. J.S. Lee and L.E.Miller, “CDMA Systems Engineering Handbook”, pp. 190-199, 1998 
(ISBN: 0-89006-990-5)  

10. Okumura Propagation Modelling, Tony Ambrosini, Wireless Communications, November 
23, 1999 

11. A. Neskovic, N. Neskovic and G. Paunovic, “Modern Approaches in Modelling of Mobile 
Radio Systems Propagation Environment”, IEEE communications Surveys and Tutorials, 
2000 

12. M. Aso, T. Saikawa, T. Hattori, Maximum Likelihood Location Estimation using Signal 
Strength and the Mobile Station Velocity in Cellular Systems, Proc. IEEE Vehicular Tech-
nology Conference, 2003. 

13. http://electronics.howstuffworks.com/gps1.htm 



Lagrange Neural Network for Solving CSP
Which Includes Linear Inequality Constraints

Takahiro Nakano1 and Masahiro Nagamatu2

1 Graduate School of Life Science and Systems Engineering,
Kyushu Institute of Technology, Kitakyushu, Japan, 2-4, Hibikino, Wakamatsu,

Kitakyushu 808-0196, Japan
nakano-takahiro@edu.brain.kyutech.ac.jp

2 Graduate School of Life Science and Systems Engineering,
Kyushu Institute of Technology, Kitakyushu, Japan 2-4, Hibikino, Wakamatsu,

Kitakyushu 808-0196, Japan
nagamatu@brain.kyutech.ac.jp

Abstract. We proposed a neural network called LPPH-CSP (Lagrange
Programming neural network with Polarized High-order connections for
Constraint Satisfaction Problem) to solve the CSP. The CSP is a prob-
lem to find a variable assignment which satisfies all given constraints.
Because the CSP has a well defined representation ability, it can rep-
resent many problems in AI compactly. From experimental results of
LPPH-CSP and GENET which is a famous CSP solver, we confirmed
that our method is as efficient as the GENET. In addition, unlike the
other conventional CSP solvers which are discrete-valued methods, our
method is a continuous-valued method and it can update all variables
simultaneously, while the conventional csp solvers cannot find a solu-
tion by updating all variables simultaneously Because of the oscilation
of the states. Therefore, we can expect the speed-up of LPPH-CSP if it
is implemented by the hardware such as FPGA. In this paper, we ex-
tend LPPH-CSP to deal with the linear inequality constraints. By using
this type of constraint, we can represent various practical problems more
briefly. In this paper, we also define the CSP which has an objective func-
tion, and we extend LPPH-CSP to solve this problem. In experiment, we
apply our method and OPBDP to the warehouse location problem and
compare the effectiveness.

1 Introduction

The constraint satisfaction problem (CSP) is a combinatorial problem to find a
solution which satisfies all given constraints. Since the CSP is a well-defined prob-
lem, it can represent many problems in the field of information science. There are
two kinds of methods for solving the CSP, the complete search method [1] and
the incomplete search method [2,3]. The complete search method can determine
the inconsistency of the given problem, while the incomplete search method can
not. If the given problem has solutions, the incomplete search method can find
a solution quickly. We proposed a neural network called LPPH-CSP [4,5] to the
CSP. In LPPH-CSP dynamics, the variables are applied force so as to decrease
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the energy of the system, i.e., so as to satisfy all constraints, and the strength
weight of the force applied by a constraint increases if the constraint is not satis-
fied. This means that the dynamics of LPPH-CSP changes the energy landscape
dynamically, and the trajectory of LPPH-CSP is not trapped by any point which
is not the solution of the CSP. LPPH-CSP belongs to the continuous-valued in-
complete search method. It can update all variables simultaneously, while many
other discrete-valued incomplete methods for the CSP such as the MCHC [2]
and the GENET [3] must update variables sequentially. If they update all vari-
ables simultaneously, this may cause the network to oscillate between a small
number of states indefinitely [3]. So, if we implement LPPH-CSP by VLSI, we
can expect significant speed-up for solving the CSP. We implemented LPPH [5]
which is a solver for the SAT (SATisfiability problem) on a digital circuit using
pulse density modulation. Therefore, we think the hardware implementation of
LPPH-CSP is not difficult.

The LPPH-CSP can deal with only logical constraints. However, more general
types of constraints are required to represent practical problems. In this paper we
extend LPPH-CSP to deal with the linear inequality constraints. By incorporat-
ing this type of constraint, we can represent various CSPs more briefly. In this
paper we also define the CSP which has an objective function (OCSP) and ex-
tend LPPH-CSP to solve it. In experiments, we apply the extended LPPH-CSP
to the warehouse location problem (WLP) [6] which is a kind of OCSP and exam-
ine the effectiveness of our method by comparison with other existing method.

2 CSP

The CSP is a combinatorial problem to find a solution which satisfies all given
constraints. The CSP is defined by a triple (X, D, C).

– X = {X1, X2, · · · , Xn} is a finite set of variables.
– D = {D1, D2, · · · , Dn} is a finite set of domains. Each domain Di is a finite

set of values and each variable Xi is assigned a value in Di.
– C = {C1, C2, · · · , Cm} is a finite set of constraints.

A solution of the CSP is a value assignment to the variables in X which satisfies
all constraints in C. Let xij be a Boolean variable which represents the variable
Xi is assigned the jth value in Di. xij is called a VVP (Variable-Value Pair). If
xij is true (xij = 1), the variable Xi is assigned the jth value in Di. If xij is false
(xij = 0), the variable Xi is not assigned the jth value in Di. The constraint
Cr consists of a set of VVPs. In this paper, we consider the following types of
constraints. The CSP can represent briefly in comparison with the SAT by using
the following constraints.

– ALT(n, S) [at-least-n-true constraint]
S is a finite set of VVPs. The ALT constraint requires that at least n of
VVPs in S must be true.

– ALF(n, S) [at-least-n-false constraint]
The ALF constraint requires that at least n of VVPs in S must be false.
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– AMT(n, S) [at-most-n-true constraint]
The AMT constraint requires that at most n of VVPs in S must be true.

– AMF(n, S) [at-most-n-false constraint]
The AMF constraint requires that at most n of VVPs in S must be false.

The ordinary definition of the CSP includes only binary constraint which requires
at least one of the given two VVPs is false, and is represented by ALF(1, S).
By introducing the above four types of constraints, we can represent many com-
binatorial problems more compactly. These four types of constraints represent
that logical relationships between VVPs. In this paper, in addition to the above
logical constraints, we will consider the following linear inequality constraint.∑

crijxij ≤ σ,

where crij is a positive or negative coefficient for VVP xij which appears in
the linear inequality constraint Cr, and σ is a constant. By using this type of
constraints, we can represent various problems in AI or OR field more briefly.

3 Lagrange Neural Network for CSP

Let VVP xij represent the degree of certainty that the variable Xi is assigned
the jth value of Di, i.e., xij has the continuous value between 0 and 1. The
dynamics of LPPH-CSP is defined as follows.

dxij

dt
= xij(1− xij)

m∑
r=1

wrsrij(x), for all VVP xij ,

dwr

dt
= hr(x)− αwr, r = 1, 2, · · · , m,

where srij(x) represents a force put on xij for satisfying constraint Cr, wr is
the weight of constraint Cr, and hr(x) represents the degree of unsatisfaction of
constraint Cr. In LPPH-CSP dynamics, each variable changes its value so as to
satisfy all constraints, and weight wr increases, if constraint Cr is not satisfied.
The factor xij(1 − xij) plays a role of keeping xij between 0 and 1. LPPH-
CSP searches a solution of the CSP by numerically solving the above dynamics.
This dynamics is a generalization of the dynamics of LPPH for the SAT. In the
following we explain how functions srij and hr are defined for ALT, ALF, and
linear inequality constraints. These functions for AMT and AMF constraints are
defined similarly.

3.1 Cr=ALT(n, S)

hr(x) = 1−NMax(n, S),

srij(x) =
{

1−NMax(n + 1, S), if xij ≥ NMax(n, S),
1−NMax(n, S), otherwise,

where NMax(n, S) = nth maximum value in S.
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3.2 Cr=ALF(n, S)

hr(x) = NMin(n, S),

srij(x) =
{
−NMin(n + 1, S), if xij ≥ NMin(n, S),
−NMin(n, S), otherwise,

where NMin(n, S) = nth minimum value in S.

3.3 Cr = (
∑

crijxij ≤ σ)

hr(x) =
{

0, if
∑

crijxij − σ ≤ 0,∑
crijxij − σ, otherwise,

srij(x) = hr

(
x[ij,0]

)
− hr

(
x[ij,1]

)
,

where x
[ij,0]
kl =

{
0, if (k, l) = (i, j),
xkl, otherwise, and

x
[ij,1]
kl =

{
1, if (k, l) = (i, j),
xkl, otherwise.

We relax VVPs x from discrete space to continuous space when we apply LPPH-
CSP to solve the CSPs. Therefore, the inequality constraints may be satisfied by
the VVPs which have continuous values between 0 and 1. However, as mentioned
in sec.2, there is the CSP’s inherent constraint which means “each variable must
have only one value in its domain”. This inherent constraint can be represented
by ALT(1, S) and AMT(1, S). Accordingly, if all constraints are satisfied, all
values of VVPs become 0 or 1 and the inequality constraints never be satisfied
by VVPs which have continuous values.

4 Lagrange Neural Network for CSP with Objective
Function

As mentioned in Sec.2, the CSP is a problem to find a solution which satisfies
all given constraints. However, practical problems in the real world may have an
objective function in addition to the constraints. Thus, in this section we will
consider the CPS with an objective function (OCSP).

(OCSP) minimize E(x),
subject to {Cr|r = 1, 2, .., m},
x ∈ {0, 1}n.

We extend LPPH-CSP dynamics to solve OCSP. The extension LPPH-OCSP
is defined as follows.
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dxij

dt
= xij(1− xij)

(
m∑

r=1

wrsrij(x)− δLHij
∂F (x)
∂xij

)
,

dwr

dt
= hr(x)− αwr ,

dHij

dt
= xij

∂F (x)
∂xij

− βHij ,

dL

dt
=

⎧⎨⎩
η > 0, if all constraints are satisfied,
0, if L = 1 and some constraints are not satisfied,
−ε < 0, if L > 1 and some constraints are not satisfied,

where F (x) is obtained by normalizing the objective function E(x). In this
paper, we attempt to apply LPPH-OCSP to the warehouse location problem
(WLP) which is a kind of OCSP. In the WLP, E(x) is a linear function with
positive cofficients. ∂F (x)/∂xij represents a coefficient of xij in F (x). Therefore,
Hij becomes large when xij has a positive value and a large coefficient in E(x).
L plays a role to move away from current state which satisfies all constraints to
explore new state for minimizing the objective function.

5 Experiments

To investigate the efficiency of LPPH-OCSP, we applied our method to the
warehouse location problem (WLP). This problem can be represented by AMT,
AMT, and linear inequality constraints and has a linear objective function. The
WLP can be formed as 0-1 integer programming. We compared our method
with OPBDP [7] which is a 0-1 integer programming solver. Fig.1 and 2 show
experimental results for randomly generated WLPs which have 30 stores and 15
candidate locations for warehouses. These graphs show how the best known value
of objective function decreases with time for LPPH-OCSP with 3 initial points
and OPBDP. The horizontal axis represents the CPU time, and the vertical
axis represents the best known value of objective function. For LPPH-OCSP, we
used α = 0.06, β = 0.1, δ = 15, η = 10, and ε = 0.1 which were determined by
preliminary experiments.
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6 Conclusion

In this paper, we extend LPPH-CSP to deal with linear inequality constraints.
This enables to represent various CSPs more briefly. Furthermore, we define the
CSP which has an objective function and propose LPPH-OCSP to solve this
problem. In experiments, we apply LPPH-OCSP and OPBDP to the WLP. Ex-
perimental results show that our method can find a good near optimal solutions
quickly compared to OPBDP. A future direction of this research is to apply
LPPH-CSP/LPPH-OCSP various practical problems. In addition, we are also
planning to study a hardware implementation of our method.
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Abstract. The performance of a method for the reduction of the input
space dimensionality of a physical or engineering problem is analyzed.
The results of its application to several engineering problems are com-
pared with those obtained by other well-known methods for the reduction
of input space dimensionality, such as Principal Component Analysis and
Independent Component Analysis. In order to carry out this study, the
features extracted by the three methods were used as inputs to a feed-
forward neural network. The advantages of the proposed method are
that it presents a computational complexity depending on the number
of variables and guarantees dimensional homogeneity in the new space.

1 Introduction

Many scientific disciplines use modelling and simulation processes and techniques
in order to obtain a non-linear mapping between the input and the output vari-
ables of a given system under study. Neural networks are among the several
learning methods used for modelling [1]. In many cases, it is interesting to re-
duce the dimensionality of the problem, in order to save computational resources
such as memory and time, and to avoid the curse of dimensionality. There are
two main methods to reduce the dimensionality: feature extraction and feature
selection. In feature extraction, which is the method used by our approach, the
aim is to find a new set of r dimensions that are the combination of the original
n dimensions.

On the other hand, from a physical point of view, a neural network has to
satisfy the fundamental prerequisite of dimensional homogeneity when employed
as an approximation tool for a given dimensionally homogeneous relation. This
fact is not always accomplished, due to the use of standard neural network
topologies that do not satisfy the requirements for valid physical relations when
used with dimensional variables.

To overcome the inherent disadvantages of a simple mapping between in-
put and output, the proposed method, that employs dimensional analysis and
the Π–theorem, yields an improved generalization of a neural network, while
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achieving a dimensionality reduction. This fact is of great interest for complex
engineering problems, in which this reduction can mean a significant saving in
computational memory and time. Besides, the computational complexity of the
method depends on the number of variables and fundamental magnitudes of the
problem, and not on the number of data points, as most of the other methods
used for dimensionality reduction [2]. In this way, the neural network models used
can be more simple, and so more robust. Other authors [3] have used dimension-
ally homogeneous neural networks, but a formal methodology considering all the
possible dimensionless approaches has not been proposed until [4].

The performance of the proposed method for feature extraction is shown over
two engineering examples, and its results are compared to those obtained by two
of the best known and widely used feature extraction methods, such as Principal
Component Analysis (PCA)[5] and Independent Component Analysis (ICA)[6].

2 The Π–Theorem

There are some fundamental magnitudes in any physical system, such as length
(L), time (T) and mass (M), i.e., some sets of magnitudes such that any other
magnitude (called secondary or derived magnitude), can be written in terms of
them, using certain formulas (for example, velocity is LT−1). Then, consider
a physical problem with n − 1 input variables, x1, · · · , xn−1, and one output
variable, xn. This set of variables can be represented using s fundamental mag-
nitudes, M1, · · · , Ms, i.e., the variables are expressed as:

xj =
s∏

i=1

M
aij

i ; j = 1, 2, . . . , n, (1)

where aij are the exponents associated with variable j, and the fundamental
magnitude i. The elements aij form the matrix As×n shown below:

x1 x2 . . . xn

M1 a11 a12 . . . a1n

M2 a21 a22 . . . a2n

. . . . . . . . . . . . . . .
Ms as1 as2 . . . asn

In this context, the Buckingham Π–Theorem, a fundamental theorem used
in dimensional analysis [7], can be applied to know the minimum set of dimen-
sionless variables involved on it. This theorem can be enunciated as follows:

Theorem 1 (The Π–Theorem). If a physical phenomena can be expressed in
a given measure-system in which there exist m fundamental magnitudes by means
of a function of n parameters (x1, · · · , xn), which represent other magnitudes,
then, if r is the rank of the matrix A which elements aij are the exponents of the
fundamental magnitudes in the corresponding expressions as in (1), then there
exist n-r dimensionless monomials by means of which the physical phenomena
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can be represented. These dimensionless monomials are formed by products of
powers of such magnitudes, i.e., they are of the form:

πj =
xj∏

i

x
dji

i

(2)

where j ∈ {1, . . . , n− r} and dji are constants.

It means that any physically meaningful relation Φ(x1, . . . , xn) = 0 is equiv-
alent to a relation of the form Ψ(π1, . . . , πn−r) = 0, where π1, . . . , πn−r are
dimensionless monomials. The important fact to notice is that a relation of n
variables can be rewritten in a new relation involving r fewer variables than the
original one, simplifying the theoretical analysis and the experimental design.

3 The Proposed Method for Feature Extraction

Considering a physical problem as the one described in the previous page, the
methodology proposed in [4] will be applied as follows:

3.1 Obtaining the Dimensionless Ratios

First, the number of input variables will be reduced. The following algorithm is
automatically applied to determine all the sets of dimensionless ratios, ensuring
that the number of ratios is less than the number of variables:

1. Write the variables in terms of fundamental magnitudes. The variables are
expressed in terms of the fundamental magnitudes using (1), obtaining a
Matrix A as shown in section 2.

2. Determine the number of dimensionless ratios. The BuckinghamΠ–Theorem
allows to determine the number of dimensionless ratios involved in a given
problem. A submatrix C of A leading to the rank is calculated. The indices
of the columns (input variables) of the matrix A that form the submatrix
C compound the set B, analogously, the set F is formed by indices of rows.
It is necessary to choose the variables among the n − 1 input variables, so
that only one of the dimensionless ratios would contain the output variable
in order to be able to recover it later.

3. Reduce dimensionality. Build a matrix B by removing from A the rows not
in F and the columns in B.

4. Change basis. Calculate the matrix D = C−1B, that gives the variables in
terms of the new basic variables (those in B).

5. Build the dimensionless ratios. Using the Π–theorem, the ratios are selected
as:

πk =
xk∏

	∈F
(X	)d�k

; ∀k �∈ B (3)

where d	k are the elements of matrix D.

In step 2 of this algorithm, several submatrices C could be selected leading to
different sets of dimensionless ratios. So, the algorithm is automatically repeated
from step 2 until all the possible sets are obtained.
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3.2 Estimating the Dimensionless Output

Once the dimensionless ratios are known, neural networks are employed to esti-
mate the dimensionless ratio which includes the dimensional output, πq, using
all the others ratios as inputs, i.e., the function g′ will be estimated as follows:

πq = g′(π1, π2, . . . , πq−1). (4)

As the ratios are dimensionless, any neural network used will generate a valid
physical relation.

3.3 Recovering the Dimensional Output

The last step consists in recovering the original dimensional output Xn, using
equation (3), from πq as:

xn = πq

(∏
	∈F

(x	)d�n

)
(5)

4 A Comparison with Other Methods for Dimensionality
Reduction

The performance of the proposed method (DA) is illustrated by its application
to two engineering problems: the estimation of the sinking speed of a ball in a
liquid and the optimization design of a vertical breakwater. Then, the results
obtained are compared to those derived from the application of PCA and ICA
and also with the performance of the same neural network but without previ-
ous dimensionality reduction. The software used for implementing the neural
network, PCA and the proposed method was Matlab 6.0, while the FastICA
algorithm [8] was employed for ICA.

Table 1. All possible sets of dimensionless ratios for the the sinking-speed problem

Approach Columns π1 π2 π3

1 B={1,2,4} ρliq

ρb

μ

D3/2ρbg1/2
v

D1/2g1/2

2 B={1,2,5} ρliq

ρb

gD3ρ2
b

μ
vDρb

μ

3 B={1,3,4} ρb
ρliq

μ

D3/2ρliqg1/2
v

D1/2g1/2

4 B={1,3,5} ρb
ρliq

gD3ρ2
liq

μ

vDρliq

μ

5 B={1,4,5} ρbD3/2g1/2

μ

ρliqD3/2g1/2

μ
v

D1/2g1/2

6 B={2,4,5} Dρ
2/3
b

g1/3

μ2/3
ρliq

ρb

vρ
1/3
b

g1/3μ1/3

7 B={3,4,5} Dρ
2/3
liq

g1/3

μ2/3
ρb

ρliq

vρ
1/3
liq

g1/3μ1/3
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The sinking-speed problem was presented in [9] and it consists on determin-
ing the speed, v, in terms of 5 dimensional input variables: diameter and density
of the ball, density and viscosity of the liquid, and, finally, the gravity, which
abbreviations are, respectively, D, ρb, ρliq,μ and g. These variables involve 3 fun-
damental magnitudes: length, mass and time. Then, applying the first step of
the methodology presented, the 5 input variables are reduced to 2 dimensionless
ratios, therefore, the problem is considerably simplified. Besides, 7 different sets
of dimensionless ratios are obtained (see Table 1), i.e., the output variable v can
be estimated using 7 different approximations. A multilayer perceptron with 7
neurons in the hidden layer, sigmoidal logarithm as transference functions and
the Levenberg-Marquardt training algorithm was used to estimate each approxi-
mation. The overall number of samples was 12120 and a 10−fold cross-validation
was carried out to obtain a more accurate error. As each approximation leads to
different performance results, only the best one is shown in the first column of
Table 2. For the sake of comparison, the same dimensionality reduction was car-
ried out using ICA and PCA. Then, a neural network with the same architecture
was used for estimating the output variable using the transformed inputs. More-
over, the same perceptron was applied over the real inputs, after normalizing
them. Their performance results can be checked in Table 2.

Table 2. Mean and standard deviation for the Normalized Mean Squared Error of the
test data in the 10-fold cross-validation. DA stands for dimensional analysis approach.

v p pu

NN 1.63 × 10−4 ± 1.38 × 10−4 8.85 × 10−2 ± 4.96 × 10−2 7.92 × 10−4 ± 4.07 × 10−4

DA 9.80 × 10−10 ± 7.20 × 10−10 2.77 × 10−3 ± 4.07 × 10−3 2.48 × 10−4 ± 1.87 × 10−4

ICA 7.30 × 10−1 ± 1.45 × 10−2 2.41 × 10−1 ± 4.15 × 10−2 4.67 × 10−2 ± 1.42 × 10−3

PCA 5.01 × 10−1 ± 1.59 × 10−1 1.23 × 10−1 ± 4.80 × 10−2 8.14 × 10−3 ± 2.67 × 10−3

The second problem, the design of a vertical breakwater, is a difficult engi-
neering optimization problem that have been studied for years [10]. The aim is to
find the optimal cross section that minimizes the construction and maintenance
costs during the useful life of the vertical breakwater, while at the same time,
satisfies some reliability constraints that guarantee that the work is reasonable
safe for each mode of failure. This implies determining the water pressures, p
and pu, produced by the sea waves on the breakwater crownwall in function of 9
variables such as the depth of the water, the height of the wave, etc. The input
variables involve 3 fundamental magnitudes. However, most of them implies only
one (length) and therefore just a reduction of 2 variables is achieved (from 9 to
7). Again, 7 different approaches are derived after applying the algorithm pre-
sented in section 3.1. In order to compare the performance results, ICA and PCA
were applied to obtain a similar dimensionality reduction. A neural network with
the same characteristics as the one used for the sinking-speed problem was em-
ployed for each dimensionless approach, the transformed variables derived from
ICA and PCA and the real normalized variables. The number of samples avail-
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able was 1500 and a 10-fold cross validation was carried out. The performance
results are presented in the second and third column of Table 2, although only
the dimensionless approach with the best performance is included.

5 Conclusions

A method for dimensionality reduction for physical or engineering problems is
presented. The dimensionality reduction of the proposed method is based on the
physical dimension of the variables involved in the problem and not on the data;
then, it can be applied independently on the number of samples available. This
is an important advantage, because in most cases the number of inputs is much
lesser than the number of samples. Its performance was illustrated by its applica-
tion to two physical problems. Also, two standard techniques for dimensionality
reduction, ICA and PCA, were applied for solving the same problems and it
was demonstrated that the proposed method is more suitable for engineering
problems than the other two.
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Abstract. An electro-tactile representation technology based on spatio-temporal 
dual-channel is presented and discussed. Both the stimuli current on temporal 
channel and the signal for tactile element selection on spatial channel are 
provided by sound waves. Signals on two channels are composed into a file in 
WAV format by a special wave editor. This WAV format file can be converted to 
a dimensional wave by the sound card of a computer. When the output of the 
sound card is connected to the current stimulator, it provides the control signal 
for tactile stimuli current on temporal channel and tactile element selection signal 
on spatial channel. The analysis on the model of electrotactile representation 
shows that the whole tactile perception can be divided into the base volume and 
the fluctuant amount. To obtain a comfortable electrotactile sensation, a limit to 
the fluctuant amount is needed.  

1   Introduction 

Tactile tele-presence plays an important role in master-slave teleoperator system. In 
1990, the contrastive experiment[1] by Patrick and his partners showed that tactile 
feedback can effectively improve remote manipulator’s operation to the object and help 
the user complete the remote task efficiently and accurately. There are many way for 
direct tactile representation such as pneumatic stimulation[2] ,vibratory stimulation[3], 
electrical stimulation[4], and functional neuromuscular stimulation[5] etc. Among them, 
electrotactile is fairly favored by researchers for its small volume, easy to install and to 
connect to the computer. Electrotactile also has shortcomings of uncomfortable 
sensation such as adaptation and electrical sharp and burning pain, to solve these 
problems we put forward a spatiotemporal dual-channel electrotactile representation 
method on basis of the discovery by Dr. E. Ahissa that the tactile information obtained 
by the brain is encoded in both spatial channel and temporal channel[6].  

2   Scheme 

The scheme of spatiotemporal dual-channel eletrotactile representation is shown in 
Fig.1 (a). The electrotactile data is obtained from the sensors mounted on the fingers of 
the remote robot, and transmitted to the local computer in real time and stored in a 
tactile data file. When a tactile representation experiment starts, tactile data are first 
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read out from tactile data file, and then composed to a stereo file by a special audio 
editor together with the scale control signal of expected stimuli current. The audio 
output of sound card is connected to the tactile current stimulator, the right part with 
dotted line frame in Fig.1 (a). The output of left channel is a voltage and can be 
converted to electro-tactile stimuli current by voltage to current convector VIC . The 
output of right channel is connected to the spatial signal process module of the 
stimulator, which drives the relay group to control the electrical connection (on/off) 
between the electrode elements on tactile array and the stimuli current node, which can 
make the user obtain an electrotactile map of the remote tactile information. 

Tactile Representation Array
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Fig. 1. Tactile tele-presence scheme (a) and electrotactile model (b) 

Fig.2 shows a WAV format stereo file, where, (a) is the stimuli current control signal 
on temporal channel, and (b) is the elements selection signal on spatial channel, 
Different frequency is mapping different electrodes selection of tactile information. 

 

Fig. 2. Wave of a spatiotemporal dual-channel stereo file 

3   Model 

The model of spatiotemporal dual-channel electrotactile tele-presence is shown in Fig.1 
(b). )(tI is the stimuli current, )(txi  is the actual current on each electrode, where  

 

( a ) 

( b ) 
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Ni ,,2,1= LKN ×  is the amount of tactile elements, K and L correspond to the 
row and column amount of the tactile array. The current on each electrode 

is )(*)( tIktx ii = , ik is a constant. In Fig.1 (b), electrode i is taken for instance to 

further discussion. Suppose )(tiδ  is the influencing factor at time t . )(' txi is the current 

applied onto the skin of the finger. The relationship between )(txi and )(' txi  is: 

)()()( ' txttx iii =+ δ  (1) 

)(tiδ  is related to both the electrode-skin contact resistance and skin characteristics 

under electrode i. During an eletrotactile experiment, users often coat the electrodes 
with electric pastern to keep a stable electrode-skin contact status. 

In Fig.1 (b), )(tS i  is the tactile perception under stimulation )(' txi , ii ff Δ+  is the 

current-perception converting function of the tactile receptor, ifΔ is a fluctuant 

parameter. )(tS i , )(' txi and ii ff Δ+  can be formulated as follows: 

)(tS i ii ff Δ+ [ )(' txi ] (2) 

The whole tactile sensation on operator’s finger-tip can be described as: 
)}({ tSS i= )]}()[{( ' txff iii Δ+= )]()([{[ ttIkf ii δ+∗= )]}()([ ttIkf ii δ+∗Δ+  (3) 

Ni   2 1= 0≥t  
The last item is a second order infinitesimal and can be removed, so  

)]]}([)]()([{[ tIkfttIkfS iiii ∗Δ++∗= δ  (4) 

Since )(tδ  is an electrical interference, )(tf i δ∗ can be adjusted to a constant by 

improving the electrode-skin contact status, and the equation can be expressed as: 

)]()([{[ ttIkfS ii δ+∗= )]]}([ tIkf ii ∗Δ+ )]}()({[( 0 tStS ii Δ+=  (5) 

Where )]()([)(0 ttIkftS iii δ+∗= can named as base volume of tactile 

perception which does not change with time, while )]([)( tIkftS iii ∗Δ=Δ  is a 

fluctuant value varying with time. Wide fluctuant range of )(tS iΔ will make a worse 

performance. Suppose )(tS M

iΔ  is the tolerance limit. if )(tS iΔ )(tS M

iΔ , the user will 

have uncomfortable sensations as electrical sharp, burning pain, etc.. 
Theoretically, there should exist an optimal solution set of stimuli current )(txi  to 

provide the user a most satisfying tactile perception at a certain time t . 

}  2 1),(|{ NituUU i ==  (6) 

The actual stimuli current )(txi  is different from )(tui , and there is a difference )(tiζ
)(txi )(tui . Studies on electrotactile is to find the optimal )(txi to make 

0)( →tiζ  or )()( 0 tti ζζ ≤ .  
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)(txi )(tui )(tiζ  (7) 

Where, )(tiζ  is the difference of the stimuli current, )(tui  has only a range while its 

exact value is hard to estimate theoretically or to measure practically.  
Although )(tui  can not be obtained theoretically, it does exist. In Fig.3 (a), iI  

stands for the fluctuant range of the stimuli current on electrode i  which can provide 
the user a comfortable electrotactile perception. The intersection of all iI  is )(1 tU . 

⋯

I1 I2

Ik-1

Ik Ik+

Il-1

Im Im+1

IN

U1 U2 UM

U={U1 , U2 ,⋯, UM }

Ii

I1 IN

U1(t
)

 

(a)                                                                      (b) 

Fig. 3. Current set with a range 

)(1 tU  might be an empty set theoretically, in this case, the electrode elements 

should be divided and organized in small groups, and the electrodes in each small group 
will have the same current set, so the current set of all electrodes should be, 

},,{ 21 MUUUU =  (8) 

In worst case the current on each electrode might be set strictly and separately. The 
current relationship mentioned above is shown in Fig.3 (b). 

4   Frequency Encoding 

As the sound card is a standard part of a computer, to simplify the connection between 
the computer and the stimulator, data in spatial channel are encoded in frequency and 
composed in WAV format audio file with the stimuli current data. 

The maximum BCD (Binary Coded Decimal) code of a digit is 1001(bit3 bit2 bit1 
bit0). When bit3 is 1, bit1, bit2 can not be 1 simultaneously, otherwise it would be over 
9, so the highest bit is left off. The maximum of each digit is 111(bit2 bit1 bit0), and the 
upper-limit frequency is 17777Hz, although it can reach 20 kHz. As the lower-limit of 
audio frequency is 20Hz, bit1 on the ten’s place must be fixed to 1. The available bits 
are: bit0 on ten thousand’s place, bit2, bit1, bit0 on thousand’s place and hundred’s 
place, bit2 and bit0 on ten’s place, and, bit2, bit1, bit0 on unit’s place.  

The array is as table 1(Left). Each element of tactile array is presented by Dij, i is 
line number, j is column number. The frequency for each element selection is shown in 
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Table 1. Collocation of the array (Left) and the frequency of element selection (Right) 
 

 

 

table 1 (Right), * presents any numerical value. When several elements are selected, the 
frequency is logic OR of all selected single element, for example, suppose * as 0, the 
frequency of D11 and D52 is 14***+*24*=1424*Hz, the frequency of D11 and D12 is 
14***+4*4*=14*4* Hz, the frequency of D11 and D51 is 14***+1*2**=142** Hz, 
and the frequency of D11, D52 and D12 is 14***+*24*+4*4*=1424* Hz. Here is a 
problem that D12 and D51 are selected at the same time when D11 and D52 are 
selected. Because mistake selections happen only between different lines, and elements 
on the same line do not interfere with each other, we can avoid mistake selection by 
selecting different line at different time, that is, to work in time-sharing mode. 

5   Experiments 

The early tactile array is made of printed circuit with electrodes of square shaped, 
shown in Fig.4 (a). Purpose for this design is to enlarge the contact area between the 
electrodes and the finger tip to obtain a larger dynamic range. Experiments show that 
this kind of electrode is prone to cause electrical sharp or burning pain. The reason is 
that the acuate rim causes severe charge collection, especially at the sharp angles of the 
square electrode, thus can easily result in an electrical sharp or burning pain. Our 
solutions are as follows, first to reduce the charge accumulation to a lower level by 
using semi spherical electrodes as shown in Fig.4 (b), and then to isolate the charge 
accumulated rim from the user’s finger by covering the electrodes with an 0.3mm-thick 
insulating film with small pinholes on it for the electrodes to stick out, and the diameter 
of each pinhole is a little smaller than the diameter of the electrode. Experiments show 
that this kind of electrode can effectively avoid the electrical sharp or burning pain.   

(b) Semi-spherical electrode and array(a) Square electrode and array
 

Fig. 4. Eectrotactile electrode and array 
 

10,000'
s place

ten's place unit's place Collocation of 
the array 

Bit0 Bit2 Bit0 Bit2 Bit1 Bit0
line

Bit2 D11 D12 D13 D14 D15 D16 1 
Bit1 D21 D22 D23 D24 D25 D26 2 

1000's 
place 

Bit0 D31 D32 D33 D34 D35 D36 3 
Bit2 D41 D42 D43 D44 D45 D46 4 
Bit1 D51 D52 D53 D54 D55 D56 5 

100's 
place 

Bit0 D61 D62 D63 D64 D65 D66 6 
column 1 2 3 4 5 6  

10,000'
s place

ten's place unit's place 
Frequency of 

element 
selection Bit0 Bit2 Bit0 Bit2 Bit1 Bit0 

line 

Bit2 14*** 4*4* 4*1* 4**4 4**2 4**1 1 
Bit1 12*** 2*4* 2*1* 2**4 2**2 2**1 2 

1000's 
place

Bit0 11*** 1*4* 1*1* 1**4 1**2 1**1 3 
Bit2 1*4** *44* *41* *4*4 *4*2 *4*1 4 
Bit1 1*2** *24* *21* *2*4 *2*2 *2*1 5 

100's 
place

Bit0 1*1** *14* *11* *1*4 *1*2 *1*1 6 
column 1 2 3 4 5 6  
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Fig. 5. Waves of stimulating current in tactile representation experiments 

The stimuli currents used in tactile representation are shown in Fig.5, where (a) is a 
rectangle pulse used in early experiments;  (b) is a periodic wave alternating with time, 
the function expression  is 0.3*sin(2*pi*t*f)+ 0.3*sin(2*pi*t*f*1.2599)+ 
0.3*sin(2*pi*t*f*1.4983) (f 250Hz);  (c) is the wave of (b) with a random noise of 
0.1*rand (2). Experiments show that wave (a) is apt to bring on tingle and adaptation; 
while wave (b) doesn't bring on tingle during long time experiment, and can improve 
adaptation; while wave (c) can provide the user a comfortable tactile sensation. 

6   Conclusions 

This paper is primary research in electrotactile field. The frequency encoding and the 
relationship between the tactile tolerance limit and the stimuli current are discussed and 
analyzed in detail, which might be helpful in further researches on eletrotactile. 
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Abstract. Conventional neural network training methods attempt to find a sin-
gle set of values for the network weights by minimizing an error function using 
a gradient descent based technique. In contrast, the Bayesian approach esti-
mates the posterior distribution of weights, and produces predictions by inte-
grating over this distribution. A distinct advantage of the Bayesian approach is 
that the optimization of parameters such as weight decay regularization coeffi-
cients can be performed without use of a cross-validation procedure. In the con-
text of mineral potential mapping, this leads to maps which display far less 
variability than maps produced using conventional MLP training techniques, 
the latter which are highly sensitive to factors such as initial weights and cross-
validation partitioning. 

1   Introduction 

Mineral potential mapping is the process of producing a map which ranks areas ac-
cording to their potential to host deposits of a particular type [1]. More formally, the 
task can be expressed as follows: 

Given: 
1. Background information provided by m layers of data, each of which 

represents the value of a distinct geoscientific variable xi at each pixel p; 
2. A subset of pixels, each of which is known from historical data to contain 

one or more deposits of the sought after mineral; 
Find: 
 A function f(x) that assigns to each pixel p in the study area a value that 

represents the probability that pixel p is mineralized, given the evidence sup-
plied by the background information. 

Thus, assuming that the evidence for a pixel p is described by a vector x = (x1, …, xm), 
the objective is to learn a function f: X → [0,1], where f(x) represents the conditional 
probability that p contains one or more of the known deposits, given the evidence 
provided by x. The function f can then be used to map the probabilities over all pixels. 

There are several characteristics of this problem domain that distinguish it from 
many other domains to which multilayer perceptrons (MLPs) are commonly applied.     
For example, mineralization is an inherently rare event, and consequently, the number 
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of mineralized pixels will be a very small proportion of the total number of pixels in 
the study area. This can be thought of as a class imbalance problem. A second prob-
lem concerns ground truth: while it is known from historical records that a small 
number of pixels are mineralized, we cannot assume for all other pixels that the lack 
of a known deposit means that the call is barren; that is, there is still some probability 
that these pixels are mineralized.  

In [2] we have described an approach by which MLPs can be applied to this task. 
Important features of the approach are that: (i) all examples from the study region are 
used for training, with known mineralized cells being assigned a target value of 1 and 
all other cells a target value of 0; (ii) use of cross-entropy (as opposed to quadratic) 
error reduction ensures that the output of the MLP represents strictly the posterior 
probability, and (iii) a special cross-validation procedure allows the target values (but 
not the input vector) of some of the mineralized cells to be held out from training, 
thus allowing objective estimation of important parameters such as the weight regu-
larization coefficient, early stopping point, and number of hidden layer units. (See [3] 
for details on the cross-validation procedure).  

One of the problems with the approach described above is that the resulting maps 
are sensitive to the particular cross-validation partitions used. This paper reports on the 
application of Bayesian MLP methods [4, 5, 6] to mineral potential mapping. Because 
Bayesian MLP methods do not require a cross-validation procedure for optimization 
of parameters such as regularization coefficients, the resulting maps are expected to 
display significantly less variability than those produced using conventional methods.  

The paper is structured as follows. Section 2 describes the Bayesian MLP tech-
nique used in this research. Section 3 provides empirical results of applying the tech-
nique to mapping gold mineralization potential in the Castlemaine region of Victoria, 
Australia, and compares these results to the conventional MLP training approach. 
Section 4 concludes the paper.  

2   Bayesian Learning for MLPs 

In the Bayesian approach, the predicted output corresponding to some input vector xn 
is obtained by performing a weighted sum of the predictions over all possible weight 
vectors, where the weighting coefficient for a particular weight vector depends on the 
posterior distribution of w given data D. Thus,   

ˆ ( ( | )n ny f , p D d= x w) w w  (1) 

where f(xn, w) is the MLP output, and p(w|D) is the posterior weight distribution. The 
fact that p(w|D) is a probability density function allows us to express the integral in 
Equation 1 as the expected value of f(xn, w) over this density: 
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    Thus, the integral can be estimated by drawing N samples from the density p(w|D), 
and averaging the predictions due to these samples. This process is known as Monte 
Carlo integration. 
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The density p(w|D) can be estimated using the fact that ( ) ( | ) ( )p D p D p∝w | w w , 

where p(w| D) is the likelihood, and p(w) is the prior weight distribution. For the 
mineral potential mapping problem, the target values are binary, and hence the likeli-
hood can be expressed as  

{ }( | ) exp ln ( , ) (1 ) ln(1 ( , ))n n n n

n

p D t f t f= − − + − −w x w x w  (3) 

where tn is 1 if pixel n contains a known deposit, and 0 otherwise.  
The prior weight distribution, p(w), should reflect any prior knowledge that we 

have about the complexity of the MLP. To reflect the fact that we want it to be a 
smooth function, p(w) is commonly assumed to be Gaussian with zero mean and 
inverse variance α, thus giving preference to weights with smaller magnitudes; i.e.,  

/ 2
2( ) exp

2 2

m m

i
i=1

p w
α α
π

= −w  (4) 

where m is the number of weights in the network [6]. However, we usually do not 
know what variance to assume for the prior distribution, and for this reason it is com-
mon to set a distribution of values. As α must be positive, a suitable form for its dis-
tribution is the gamma distribution [6]. Thus,  
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/ 2 1( / 2 )

( ) exp( / 2 )
( / 2)
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μα α α μ−= −
Γ

 (5) 

where the a and μ are respectively the shape and mean of the gamma distribution, and 
are set manually. Note that a single α need not be used for all weights and biases. For 
example, it is common to use separate values of α for input-hidden-layer weights, 
input-to-hidden-layer biases, hidden-to-output layer weights, and hidden-to-output 
layer biases. This is the approach used in this paper. Another common approach is the 
automatic relevance detection (ARD) approach in which all weights emanating from a 
common input node share the same α value [4,6]. 

Because the prior depends on α, Equation 1 should be modified such that it in-
cludes the posterior distribution over α parameters: 

ˆ ( ( , | )n ny f , p D d dα α= x w) w w  (6) 

where 

( , ) ( | ) ( , )p D p D pα α∝w | w w  (7) 

Monte Carlo integration depends on the ability to obtain samples from the posterior 
distribution. The objective is to sample preferentially from the region where p(w,α | D) 
is large. The Metropolis algorithm [7] achieves this by generating a sequence of vec-
tors  in such a way that each successive vector depends on the previous vector as well 
as having a random component; i.e., wnew = wold + ε, where ε is a small random vec-
tor. Preferential sampling is then achieved using the criterion: 



966 A. Skabar 

 

new old

new
new old

old

if   ( | ) ( | ) accept

( | )
if   ( | ) ( | ) accept with probability 

( | )

p D p D

p D
p D p D

p D

>

<

w w

w
w w

w

 (8) 

    The difficulty in using the Metropolis algorithm to estimate the integrals for neural 
networks stems from the strong correlations in the posterior weight distribution; i.e., 
the great majority of the candidate steps generated in the random walk will be rejected 
as they lead to a decrease in p(w|D) [8]. The Hybrid Monte Carlo algorithm [9] re-
duces the random walk behaviour by using gradient information, which, in the case of 
MLPs, can be readily calculated. While the Hybrid Monte Carlo algorithm allows for 
the efficient sampling of parameters (i.e., weights and biases), the posterior distribu-
tion for α should also be determined. In this paper we use Neal’s (1996) approach, 
and use Gibbs sampling [10] for the αs.  

3   Results 

The approach described above has been applied to the production of a mineral poten-
tial map showing the favourability for reef gold deposits over the Castlemaine region, 
Victoria, Australia. Based on a grid-cell resolution of 50m by 50m, the study region 
was represented by a rectangular grid consisting of 29,046 cells, 148 of which were 
known from historical records to contain deposits of the sought-after type. A total of 
16 input layers describing geophysical, geochemical and geological data were used.  

The MLP consisted of 6 hidden layer units, which we know from past work is suf-
ficient to accurately model the posterior probabilities [3,4]. The prior distribution for 
the hyperparameters (i.e., the weight regularization coefficients for the four weight 
groupings) was set to a Gamma distribution with mean 0.1 and shape parameter 0.1. 
For Monte Carlo sampling, a burn–in period of 500 samples was used (allowing the 
sampling procedure to converge to the target distribution), following which the next 
1000 samples were stored. To reduce the chance of any correlations between the sam-
ples, every tenth one of these 1000 samples was selected to be used for marginaliza-
tion. These 100 samples were then used to predict probabilities for each pixel in the 
study region, and, for each pixel, the mean was calculated. 

Figure 1 is the resulting mineral potential map. Points indicate the locations of 
known deposits; values to the rights of the colour bar indicate the posterior probability 
of mineralization (prior probability is approximately 0.0051). Visual inspection of the 
map reveals that the known deposits coincide quite well with regions assigned high 
potential; however, this relationship can be seen more closely by ranking pixels ac-
cording to their assigned probability values (highest to lowest), and tallying the num-
ber of observed known deposits as the area is traversed from highest probability to 
lowest probability. This is shown in Figure 2. Note that the dashed line, which repre-
sents the cumulative sum of probabilities, lies significantly below the line represent-
ing observed deposits. This is an effect of the use of regularization to prevent overfit-
ting. It is the dashed line which provides the best indication of mineralization poten-
tial for unknown deposits. 
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Fig. 1. Contour map showing probabilities. Points indicate location of known deposits. Colour 
bar indicates posterior probabilities. Contours are placed at probabilities of 0.0001, 0.0005, 
0.001, 0.0025, 0.005, 0.0075, 0.01 and 0.02. 

 

Fig. 2. Cumulative deposits versus cumulative area represented by pixels ranked from highest 
probability to lowest probability. Solid curve represents prediction on known deposits; dashed 
curve represents cumulative sum of probabilities 

Finally, we compare the map produced using the Bayesian approach with maps 
produced using the conventional MLP approach. The pairwise correlation between 
four maps produced using the conventional approach ranged from 0.290 to 0.730, 
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with a mean of 0.429. This variation is due predominantly to the selection of cross-
validation partitions, which were chosen randomly, and were different for each run. 
The pairwise correlation between the Bayesian map and each of the four maps pro-
duced using the conventional approach ranges from 0.551 to 0.592, with an average 
of 0.570, and is consistent with the interpretation of the Bayesian-produced map as 
being the average of many networks (i.e., weight vectors) drawn from the posterior 
distribution. 

4   Conclusion 

The essential difference between conventional maximum likelihood approaches to 
MLP training and Bayesian MLP techniques is that whereas the former optimize over 
parameters, the latter integrate over parameters, thus taking into account the inherent 
uncertainty in the parameters. In the context of mineral potential mapping, the advan-
tages of the Bayesian approach are that: (i) it determines regularization coefficients 
automatically, i.e., without having to hold out any data, and thus avoiding a complex 
and noisy cross-validation procedure; (ii) it reduces variability due to factors such 
initial weight assignment and cross-validation partitioning. Further advantages of the 
Bayesian approach, although not discussed in this paper, are that it does not depend 
on the number of hidden layer units, thus allowing complex models to be formed 
without the risk of overfitting that occurs in conventional approaches (see [6]), and that 
it allows estimates of the uncertainties in the predicted probabilities to be easily  
calculated.  
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Abstract. We have proposed a neural network named LPPH (Lagrange 
programming neural network with polarized high-order connections) for 
solving the SAT (SATisfiability problem of propositional calculus), together 
with parallel execution of LPPHs to increase efficiency. Experimental results 
demonstrate a high speedup ratio of this parallel execution. LPPH dynamics has 
an important parameter named attenuation coefficient which strongly affects 
LPPH execution speed. We have proposed a method in which LPPHs have 
different attenuation coefficients generated by a probabilistic generating 
function. Experimental results show the efficiency of this method. In this paper, 
to increase the diversity we propose a parallel execution in which LPPHs have 
mutually different kinds of biases, e.g., positive bias, negative bias, and 
centripetal bias. Experimental results show the efficiency of this method. 

1   Introduction 

For the SAT (SATisfiability problem of propositional calculus), we proposed a neural 
network named LPPH (Lagrange programming neural network with polarized high-
order connections) [1], which is based on the Lagrangian method and has the 
following properties: (1) The solutions of the SAT are the equilibrium points of LPPH 
and vice versa. (2) When a trajectory of LPPH passes near a solution of the SAT, it 
converges to the solution.  

When a neural network is simulated by software, usually parallel processing is 
done by, first, dividing the network into parts, then executing each part on a computer 
individually. This type of parallel processing requires high communication overheads. 
We proposed a parallel execution of LPPHs, in which plural LPPHs are prepared, and 
the LPPHs find solutions from different initial states. It is quit different from the 
previous one. Experimental results show a high speedup ratio is obtained by using this 
parallel technique of LPPHs.  

There is an important parameter, the attenuation coefficient, in LPPH dynamics. 
And this parameter strongly influences the speed of LPPH execution. Furthermore it 
is difficult to decide its good value in advance. To overcome this difficulty, we 
proposed a method to determine the value of the attenuation coefficient of each LPPH 
using a probabilistic generating function in the parallel execution of LPPHs.  
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In some cases, solutions of the SAT may have high percentage of 1s, and in some 
other cases, high percentage of 0s. Suppose, if any information about the percentage 
of 1s or 0s is known, we can introduce a bias to control the direction of value change 
of variables in LPPH dynamics, which is expected to find a solution much faster for 
many cases. But it is not easy to get such information in advance. Furthermore, the 
speed of LPPH execution depends on not only the percentage but also other reasons, 
such as some detailed structure of network of LPPH for the problem at hand. It is 
more difficult to get such information. In parallel execution of LPPHs, even if the 
above information is not known, we can prepare LPPHs with several kinds of biases, 
e.g., a bias toward 1(positive bias), a bias toward 0 (negative bias), and a bias toward 
0.5 (centripetal bias). If the percentage of 1s is high, LPPHs with a positive bias is 
expected to find a solution faster than the others. In the opposite case, LPPHs with a 
negative bias is expected to find a solution faster. Centripetal bias has proposed by us 
[2], which helps variables to change their values more easily. In this paper, parallel 
execution with mixed biases is proposed. In this method, LPPHs are divided into four 
groups. LPPHs in the first group have no bias, the second group positive biases, the 
third group negative biases, and the fourth group centripetal biases. Experimental 
results show this method is efficient. 

2   LPPH 

The SAT is defined as follows: 
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    The dynamics of LPPH is composed of the following differential equations. 
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Where ),( wxF is defined as follows: 
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By solving the above differential equations numerically, LPPH can find a solution of 
the SAT.  is a parameter called an attenuation coefficient. 

3   Parallel Execution of LPPHs 

We have proposed a parallel execution of LPPHs:  

(1) Prepare plural LPPHs.  
(2) Start the LPPHs simultaneously from different initial points from each other.  
(3) When any of the LPPHs finds a solution, halt all LPPHs and return the solution. 

    It is very easy to realize the parallel execution of LPPHs by hardware. Only we 
have to do is to prepare plural LPPHs. The total system is very simple and executable 
at high-speed.  

Experimental results are shown in Fig.1. Suppose that P is the number of LPPHs. 
Let jt be the execution time of jth neural network for finding a solution. Then, 

{ }pjtT j
j

p ≤≤= 1min  is the execution time of parallel execution. The horizontal 

axis indicates the number of LPPHs, and the vertical axis indicates the speedup ratio, 
namely )(/)( 1TETE p , where E(Tp) and E(T1) are the CPU time of the parallel 

execution of LPPHs, respectively. In this experiment, parallel execution of p (p=1, 2, 
… , 50) LPPHs are used, and randomly generated 3-SAT problems are solved. They 
are exp-r300 (300 variables and 1275 clauses), exp-r200 (200 variables and 860 
clauses), exp-r100 (100 variables and 430 clauses) and exp-r50 (50 variables and 215 
clauses).  From Fig.1, it is shown that high radio of speedup is obtained. This is 
remarkable for large and difficult problems, e.g. exp-r300. 

4   Parallel Execution of LPPHs with Different Attenuation 
Coefficients 

The optimum value of attenuation coefficient strongly depends on the problems at 
hand. To resolve this problem, we proposed a parallel execution in which LPPHs have 
different values of attenuation coefficient from each other. To generate a set of values 
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of attenuation coefficient, a probabilistic generating function is proposed [3]. 
Experimental results show the parallel execution of LPPHs which uses the generating 
function is efficient and near optimum for many problems. The function furthermore 
eases the difficulties to select appropriate value of attenuation coefficient. 

5   Parallel Execution of LPPHs with Mixed Biases 

In this paper, we assign four kinds of biases to LPPHs. We call this parallel execution 
of LPPHs with mixed biases. The dynamics of this parallel execution is described as 
follows: 
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6   Experiments 

In experiments, we set the parameter coef_bias=0.1 and coef_cb=1.0. Figs.2 and 3 
show experimental results comparing the following parallel execution methods. (1) 
All LPPHs have a same fixed value for attenuation coefficient and no bias (In Figs.2 
and 3, results of this method are indicated as “alpha=0.l4”, etc). (2) Attenuation 
coefficients are generated by a generating function, and no bias is added. (In Figs.2 
and 3, “generating function”). (3) Attenuation coefficients are generated by the same 
way as (2), and biases are added according to (6) (In Figs.2 and 3, “mixed biases”).  
In Figs.2 and 3, the horizontal axis indicates the number of LPPHs and the vertical 
axis (logarithmic) indicates the number of updates. “exp-hm1020” is a Hamilton 
circuit problem with 100 variables and 762 clauses. It is known that α=0.14 is the 
optimal value, and α=0.06 is a bad value for exp-r200. From Fig.2, we can see that 
the result of the parallel execution with mixed biases is near to the result of the 
optimum value of attenuation coefficient. In Fig.3, α=0.05 (optimal value) and 
α=0.01 (a bad value) are used as the fixed values. From this experiment, we can see 
the result of parallel execution with mixed biases is better than that with optimal 
value, extensively. 
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Fig. 1. Speedup ratio for random 3-SAT problem 

 

Fig. 2. Comparison of Several parallel executions for exp-r200 

 

Fig. 3. Comparison of Several parallel executions for exp-hm1020 

    In general, we can get no information about the percentage of 1s or 0s in a solution 
of the SAT before solving it. So it cannot be determined whether positive bias or 
negative bias is good in advance. Centripetal bias is efficient for many problems, but 
for some problems it is not efficient. We have compared the efficiency of parallel 
execution with positive bias, negative bias, centripetal bias, and the mixed biases. 
Experimental results show that the result of parallel execution of LPPHs with mixed 
biases is near to the best one among the parallel execution of positive bias, negative 
bias or centripetal bias only. 
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7   Conclusion 

We have proposed a parallel technique named parallel execution of LPPHs, which is 
easy to realize not only by software but also by hardware, merely preparing plural 
LPPHs, and executing them simultaneously. Experimental results show a high 
speedup ratio is obtained especially for difficult problems. It is known that the 
attenuation coefficient strongly influences execution time of LPPH. And it is also 
known to be difficult to find a good value of the attenuation coefficient in advance. 
Experimental results show the dependence of the execution time on the attenuation 
coefficient can be eased by the parallel execution of LPPHs. Experimental results also 
show the parallel execution of LPPHs which uses a generating function of attenuation 
coefficient is efficient and near optimum for many problems. The function 
furthermore eases the difficulties to select a good value of attenuation coefficient. 

In this paper, we propose a parallel execution of LPPHs with mixed biases. From 
experiments, it is known, the proposed method is efficient. Furthermore for some 
problems, it is known, the proposed method is better than the parallel execution with 
optimum value of the attenuation coefficient. However, the proposed method is not 
efficient for every problem. For some problems, such as an unique-solution random 3-
SAT, the parallel execution with mixed biases is not efficient. For our future works, 
we want to study why the parallel execution with mixed biases is not useful for some 
problems, such as unique solution random 3-SAT, and find a new efficient bias for 
parallel execution of LPPHs for all types of problems. Deciding the strength of bias 
automatically is also our future work. 
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Abstract. We review two previous simulations in which opponent mod-
elling was performed within the computer game of pong. These results
suggested that sums of local models were better than a single global
model on this data set. We compare two supervised methods, the multi-
layered perceptron, which is global, and the radial basis function network
which is a sum of local models on this data and again find that the latter
gives better performance. Finally we introduce a new topology preserv-
ing network which can give very local or more global estimates of results
and show that, while the local estimates are more accurate, they result
in game play which is less human-like in behaviour.

1 Introduction

One of the most satisfying aspects of most computer games is that there is gener-
ally no transitivity in strategies; i.e. we rarely have a situation in which because
strategy A beats strategy B and strategy B beats strategy C, this automatically
means that strategy A will beat strategy C. Rather we generally have to select
the optimal strategy in the context of what strategy the opponent uses.

One of the main disappointments for computer games players is that the
computer opponent, the “AI”, is often rather unintelligent: it generally has a
fixed, finite repertoire of strategies which it uses again and again. Once a hu-
man has discovered these strategies, they can be responded to: since there is no
overall best strategy, there is always a response which will beat it. Thus, rather
quickly, computer games become rather less interesting. However when we play
games against other humans, these games can often engage us quite happily for
a lifetime.

Thus we have the recent effort to make AIs more human like. Note that
this does not necessarily mean that the AI must perform better: it must rather
perform in a more human-like manner; in contemporary games, the AI often
wins because it is better at micro-management of resources than the human and
again playing against such an opponent is not a rewarding experience. In this
paper, we discuss a series of experiments in which we compare various artificial
neural network methods of modelling human behaviour in the context of the
computer game, Pong.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 975–980, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Background

The self-organising map (SOM) [4] quantises a data set in such a way that
topology relations are preserved: nearby points in data space are quantised to
similar values while distant points in data space are quantised to very different
values. The quantised values, known as nodes or neurons, are assumed to lie on
a regular grid in some latent space and to have an associated centre, ci in data
space. Let an input data point be x. We then select the winning neuron as that
neuron whose centre is closest to the input.

i∗ = argmin
i
||x− ci|| (1)

The centres of the winning neurons and those closest to it are then updated
according to

Δci = ηΛ(i, i∗)(x− ci) (2)

where η is a small learning rate and Λ(i, i∗) is known as the neighbourhood
function and is such that those neurons which are closest to i∗ are updated with
greatest magnitude.

The game of Pong is a computerised table tennis game: each opponent is in
control of one bat at either side of the screen and must move the bat vertically in
order to intercept a ball which moves back and forth across the playing surface.
He who does not intercept the ball is the loser. Of course, it is very easy to
program an “AI” to be perfect at this game, however in [6], McGlinchey showed
how to make a game against an AI more interesting by creating an AI who
learned to behave as a human would: McGlinchey modelled a human player
by training a SOM on the data of a game played between two humans. The
training data is the ball’s position and speed on which (1) is determined while one
human’s response to this state is also recorded and associated with the winning
node: if d is the human player’s bat position and the i∗ neuron currently has an
estimate of this as fi∗, then Δfi∗ = η(d− fi∗).

The generative topographic mapping (GTM) [1] is a probabilistic model
which treats the data as having been generated by a set of latent points. We have
a set of K latent points which are mapped through a set of M basis functions and
a set of adjustable weights to the data space. The parameters of the combined
mapping are adjusted to make the data as likely as possible under this mapping.
The GTM is a probabilistic formulation so that if we define y = ΦW = Φ(t)W,
where t is the vector of latent points, the probability of the data is determined by
the position of the projections of the latent points in data space and so we must
adjust this position to increase the likelihood of the data. More formally, let

mi = Φ(ti)W (3)

be the projections of the latent points into the feature space. Then, if we assume
that each of the latent points has equal probability

p(x) =
K∑

i=1

P (i)p(x|i) =
K∑

i=1

1
K

(
β

2π

)D
2

exp
(
−β

2
||mi − x||2

)
(4)



Local vs Global Models in Pong 977

where D is the dimensionality of the data space. i.e. all the data is assumed to
be noisy versions of the mapping of the latent points.

In the GTM, the parameters W and β are updated using the EM algorithm
though the authors do state that they could use gradient ascent.

In [5], we conjectured that the GTM which models the data in a more global
manner would be better at capturing the main points from play than the SOM.
Also the SOM prediction of bat position requires to be interpolated between
several nodes to give a smooth transition of bat positions while this comes natu-
rally with the GTM since the positions may take any values in the latent space.
Therefore, we trained the GTM on the same data as McGlinchey but, while
we also mimicked human behaviours, we were somewhat disappointed that the
GTM performed less well than the SOM. The SOM-AI could mostly beat the
GTM-AI in play. In this paper, we first investigate two supervised methods, one
of which performs a global mapping while the other performs a local mapping
before introducing a new mapping [2] which can do both simultaneously.

3 Supervised Artificial Neural Networks

The two supervised artificial neural networks which we use are the multilayered
perceptron (MLP) trained with backpropagation and the radial basis function
network (RBF) [3]. These are both well described in the literature; the only
feature in which we are interested is that the MLP is trained in a global manner
while the RBF learns a sum of local models. We trained our networks on a data
set created by two human players playing a game of pong. During the game, the
ball made approximately 80 double traverses of the pitch. This gave us 16733
samples but we cleaned the data by ignoring those samples when the ball was
outwith the pitch i.e. in the few samples when one player had missed the ball.
This left us with 15442 samples. The input data was the ball’s x coordinate, y-
coordinate, x-velocity, y-velocity and a parameter which determined the overall
speed of the ball. The target data was the player’s bat position which had to be
learned from the input data.

We will call the left player Stephen and the right Danny. We trained separate
artificial neural networks on these data sets i.e. one network is trained on the
input data + Stephen’s bat position while the other is trained on the input data
+ Danny’s bat position so that there is no interference in the network from the
other function which must be learned.

We wish to compare two types of supervised learning networks, the multilay-
ered perceptron (MLP) and the radial basis function network (RBF) on a level
playing field: we attempt to level the field by giving each network approximately
100 parameters which will be learned during training.

3.1 Semi-final 1: Radial Basis Networks

We first compare two radial basis networks. 10-fold cross validation suggested
that the radial basis network should be trained for 500000 iterations with in-
verse width parameter =0.0001. We used 100 basis functions since that gives
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us 100 parameters (weights) which can be adjusted; comparative experiments
showed little improvement when we increase the number of basis functions and
a small decrease in performance as we decrease the number of basis functions.
The learning rate was annealed from 0.1 to 0 during the simulation. When the
trained networks played each other rbfDanny beat rbfStephen by 14 games to 2
on new games (i.e. not data in the training set) over 10000 time instances.

An important point to note is that we select the centres randomly from the
data points at the start of the game and do not adjust their positions during the
game. The same centres are used for both RBF networks.

3.2 Semi-final 2: Multilayered Perceptrons

We repeat the experimental situation with multilayered perceptrons. We note
that if we have n inputs, h hidden neurons and 1 output, the number of adjustable
parameters for the mlp is (n+1)h+h+11: we use 20 hidden neurons so that we
have 141 parameters to adjust. Again cross validation showed that 20 hiddden
neurons and a slope parameter of 0.000000001 were appropriate. We also allowed
500000 iterations but used a lower initial learning rate (=0.001) since the higher
learning rate produced overfitting with this number of iterations. With the same
test set as before (i.e. the ball appeared at the same position for the first shot
of any rally), we find that mlpStephen beat mlpDanny by 37 to 19.

3.3 The Final

In the final, we play mlpStephen against rbfDanny and find that the latter wins
by a convincing 10 games to 1. Even if we reduce the number of basis functions
to 50, rbfDanny beats mlpStephen by 18 games to 14.

We also might consider, for example, improving the RBF’s performance by
selecting the centres only from points close to the position from which the ball
must be played. Thus we might select each RBF’s centres only from points within
100 units (the pitch is 600 long) from the appropriate side. This does improve
performance even more but between shots, the RBF networks output nothing
meaning the bat returns to 0 (the bottom of the pitch) after each shot and
only comes up the pitch as the ball re-enters the 100 wide strip near where the
ball must be played; this is hardly a human-like performance and so will not be
considered any further.

3.4 Discussion

The above might seem to suggest that we might always favour the radial basis
network over the multilayered perceptron. However, there are advantages and
disadvantages to be aware of in both networks. In particular, the MLP performs
a global mapping while the RBF is best considered a sum of local mappings. This
means that the MLP is better placed to extrapolate (into new regions of data
space) than the RBF and also that the RBF can be too data-specific. Ideally we
1 The extra 1 appears because of the bias term.
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wish our machines to be robust and able to perform under new conditions not
specifically met during training.

For example, the human players modelled above tried to hit the ball with the
edges of their bats, something which the artificial neural networks also learned
though this actually has no effect in the game. If we reduce the size of the bat
from 64 pixels to 34 pixels, mlpStephen beats rbfDanny (with 100 basis functions)
by 23 games to 16. The RBF has learned to hit the ball with the edge of the
bat; presumably the MLP’s edge hitting behaviour has been moderated by its
neurons learning the global mapping.

4 The Topographic Product of Experts

The Topographic Product of Expers (ToPoE) is discussed in more detail in [2].
We may quickly describe it as a latent variable model which learns using gradient
ascent. We envisage that the underlying structure of the data can be represented
by K latent points, t1, t2, · · · , tK . To allow local and non-linear modeling, we map
those latent points through a set of M basis functions, f1(), f2(), · · · , fM (). This
gives us a matrix Φ where φkj = fj(tk). Thus each row of Φ is the response of
the basis functions to one latent point, or alternatively we may state that each
column of Φ is the response of one of the basis functions to the set of latent
points. One of the functions, fj(), acts as a bias term and is set to one for
every input. Typically the others are gaussians centered in the latent space. The
output of these functions are then mapped by a set of weights, W , into data
space. W is M ×D, where D is the dimensionality of the data space and is the
sole parameter which we change during training. We use wi to represent the ith

column of W and Φj to represent the row vector of the mapping of the jth latent
point. Thus each basis point is mapped to a point in data space, yj = ΦjW .

We may update W either in batch mode or with online learning. To change
W in online learning, we randomly select a data point, say xi. We calculate the
responsibility of each latent point for this data point using

rij =
exp(−γd2

ij)∑
k exp(−γd2

ik)
(5)

where dpq = ||xp −
∑

k(φqk.wk)||, the euclidean distance between the pth data
point and the projection of the qth latent point (through the basis functions and
then multiplied by W). If no weights are close to the data point (the denominator
is zero), we set rij = 1

K , ∀j.
We calculate pkd =

∑M
m=1 wmdφkm, the projection of the kth latent point on

the dth dimension in data space and then use this in the update rule

Δnwmd =
K∑

k=1

ηφkm(xd − pn
kd)rkn (6)

so that we are summing the changes due to each latent point’s response to the
data points. Note that, for the basic model, we do not change the Φ matrix
during training at all.
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With this model on the same pong data as before, we may either during test-
ing take the estimate of the bat position from the modal node (that with highest
responsibility) or we may incorporate the responsibilities into the estimate. Thus
the estimated response to xn is either fi∗ (totally local) or

∑
i firin (somewhat

distributed). This is an even more level playing field with which to compare the
modelling since both estimates, one very local and one more distributed, are
coming from exactly the same model and indeed simulation. Our findings are
that, with a 10× 10 grid of basis functions and a 20×20 grid of latent points, the
local method makes only 75.3% of the misses that the more distributed method
makes but visually it looks rather un-human-like: the bat movement moves jerk-
ily between positions whereas in the global method the transitions are smooth
and human-like.

5 Conclusion

In this paper, we have compared various forms of opponent-modelling for the
computer game, Pong. If the aim of the game is to make the AI as good as
possible at the game, then local models tend to be better. However, it is very easy
with this simple game to make an unbeatable (and hence not very interesting) AI.
Rather our aim is firstly to investigate how we can best model human behaviour
and only subsequently to investigate how to improve the AI player. In the former
task the global models may be better.

The series of simulations in this paper deal with the very simple game of
Pong. Our future research will investigate whether our findings are repeatable
in more complex environments.
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Abstract. The efficacy of two evolutionary approaches to the problem
of generation of heuristical linear and non-linear evaluation functions
in the game of give-away checkers is tested in the paper. Experimental
results show that both tested methods lead to heuristics of reasonable
quality and evolutionary algorithms can be successfully applied to heuris-
tic generation in case not enough expert knowledge is available.

1 The Game of Give-Away Checkers (GAC)

The game of US give-away checkers [1] is played according to the same rules as
US checkers. The way of determining the winner is the only exception. In order
to win in the game of GAC a player has to lose all his/her pieces or be unable
to perform a move. The rules of the game are simple and widely known and
- at the same time - the results of brute-force algorithm using trivial strategy
of losing pieces as quickly as possible are unsatisfactory. One of the reasons for
unsuitability of this simple algorithm is the fact that a single piece is barely
mobile and has very restricted choice of possible moves. Fig. 1 presents two
situations in which white loses despite having only one piece left.

2 The Evaluation Function

In each of heuristical evaluation functions discussed in this paper some or all
of the following components (factors) were considered (each of them calculated
either separately for each player or as a difference of respective values for both
players): numbers of (1) pawns (i.e. pieces other than kings), (2) kings and (3)
pieces; numbers of (4) safe (i.e. adjacent to the edge of the board) pawns, (5)
safe kings and (6) safe pieces; numbers of (7) moveable (i.e. able to make a move
other than capturing − this feature was calculated without considering captur-
ing priority) pawns, (8) moveable kings and (9) moveable pieces; (10) aggregated
distance of all pawns to promotion line; (11) number of unoccupied fields on the
promotion line. Each heuristic consisted of linear combination of some (or none)
of the above parameters and arbitrary number of nonlinear components, each of
them of the following form:
IF [NOT](param1 BETWEEN minVal1 AND maxVal1 AND/OR param2
BETWEEN minVal2 AND maxVal2 AND/OR . . .) THEN

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 981–987, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(a) Black to play and win (b) White to play and lose

Fig. 1. Examples of inefficiency of greedy heuristics. White move bottom-up. Open
circles denote kings.

Heuristic Result +=LinearCombinationOfParameters

Only one logical operator (AND or OR) could be used in each nonlinear
component and negation could be applied to the whole condition only.

3 Evolutionary Algorithms

Genetic algorithms were used to generate weights in each of the above Lin-
earCombinationOfParameters. All variable parameters of the heuristics were
represented as a vector of real numbers and each number was a single gene.
Conditions defined in nonlinear components were not modified by the evolution-
ary process. Two different approaches, described in the following subsections
were implemented.

3.1 Heuristic Generator (HG)

One of the problems encountered while designing a genetic algorithm was defin-
ing fitness function for the heuristics. The general idea to solve this problem
was based on [2]. The game was divided into several stages and the purpose of
the first phase of the algorithm was to obtain a heuristic that would be able
to assess correctly situations close to the end of the game. In order to achieve
this, a number of situations close to the leaves of the game tree were generated
and assessed using alpha-beta algorithm without heuristic. If alpha-beta failed
to reach a leaf of the tree, the situation was considered to be a draw. Subse-
quently, each specimen assessed the same situations and its fitness was defined
as [n/

∑
(hi − ai)2], where n is the number of test positions, hi - assessment

of the i-th test situation by the heuristic specimen and ai by the alpha-beta
algorithm.



Evolution of Heuristics for Give-Away Checkers 983

Depending on the algorithm settings the fitness of each specimen could be
divided by the sum of similarities of all specimens from the population to it.
Similarity of two specimens was defined as exp(−d2), where d is Euclidean dis-
tance between their genotypes. This was done as a mean to encourage speciation
[3,4], which in turn might lead to improved exploration of the problem space.
Since GAC has only three possible results and the values of heuristics belong
to a continuous interval, the depth of a leaf in the game tree was taken into
consideration when assessing it.

Once the initial stage had ended, some new situations were generated, that
were closer to the root of the game tree and worst fitted fraction of the population
was replaced by random specimens. The fittest specimen of the previous phase
was used by alpha-beta to assess these new situations. The process continued
until the beginning of the game was reached.

In each phase a constant fraction of all test boards came from the stage of
the game nearest to the beginning. Depending on the settings of the algorithm,
the situations closer to the leaves of the game tree were either regenerated and
reassessed by the newest heuristic or once generated they were used throughout
all subsequent phases. The following genetic operators were used:

Selection. Tournament selection was implemented. Several specimens were ran-
domly chosen from the population. The fittest among them was the winner of
the tournament. In order to determine a pair of specimens to crossbreed, two
such tournaments were held, and their winners were coupled.

Crossover. Each pair of respective linear combinations contained by a heuristic
was crossed over independently. The genotype of each linear combination was
randomly divided into two parts and values of each part were inherited from
one parent. The value of the gene on which the division was placed was taken
from the interval defined by the values of this gene in parent specimens. The
descendant replaced the weakest specimen in the population.

Mutation. Three kinds of mutations occurred in population: multiplying a value
of a gene by two, dividing it by two or changing its sign. Multiplying or dividing
a value by two were twice as probable as changing the sign. Each gene of a
specimen mutated independently1.

3.2 Simple Heuristic Generator (SHG)

The idea of the algorithm was based on a simplistic assumption that results
of games played by pairs of specimens define a relation close to partial order.
In order to determine the result, two specimens played one or two (with sides
swap) games against each other. By default the search depth during the games
was set to 3. Basing on the relation described above, it was relatively easy to
compare and sort specimens within a small set. Therefore, no fitness function
was necessary to carry out tournament selection.

1 Instead of multiplication/division of gene’s value also addition/subtraction within
some range was tested, but results were poorer in that case.
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The genetic operators used in this algorithm bear great resemblance to those
described above. The only significant difference is the necessity to normalize
specimens genotypes. Two specimens to crossbreed were chosen by means of
tournaments. Additional tournament was held to determine the weakest speci-
men to be replaced by the descendant.

4 Results

4.1 Heuristic Types

Based on preliminary tests we have decided to inspect four types of heuristics in
more detail. Two of them (8F and 10F) were linear and two other (3Ph and 5Ph)
consisted only of nonlinear components. Each heuristic was generated twice: once
using HG and once with SHG.

8Factors (8F) heuristic was a linear combination of the differences (be-
tween the player and his opponent) in the following parameters described in
Sect. 2: (1), (2), (4), (5), (7), (8), (10) and (11). For example (2) in the above
denotes the following feature: the number of kings owned by the player minus
the number of opponents kings.

10Factors (10F) heuristic was a linear combination of the differences in
the following six parameters described in Sect. 2: (4), (5), (7), (8), (10), (11)
and of the four raw values, namely (1) and (2), each of them calculated for both
playing sides.

Basing on the analysis of games played it was decided that it would be advan-
tageous to divide the entire game into several disjoint stages and to use different
heuristic for each stage. Two crucial moments requiring change of the heuris-
tic were identified. Firstly, presence of kings certainly indicates that the game
has entered an advanced stage. Moreover, due to the mobility issues mentioned
earlier, end-game positions might also require defining a new heuristic.

3Phase (3Ph) heuristic assigned each situation on the board to one of
three disjoint categories: (a) ending: one of the players has at most three pieces
left; (b) kings: both opponents have more than 3 pieces and at least one player
has some kings; (c) beginning: both opponents have more than 3 pieces and
no kings exist. A linear heuristic respective to 8F was assigned to evaluate sit-
uations belonging to each category. For example phase (c) was encoded in the
following pseudo-algorithm:

IF ABS(Players pieces count - 10.0) < 6.5 AND ABS(Opponent’s pieces count
- 10.0) < 6.5 AND ABS(Total kings count) < 0.5 THEN C1 ∗ Diff(1) + C2 ∗
Diff(4)+ C3 ∗Diff(7)+ C4 ∗Diff(10)+ C5 ∗Diff(11), where C1, . . . , C5 are
evolvable coefficients, and Diff(n) denotes the value equal to the difference of
feature n (listed in sect. 2) between player and its opponent.

5Phase (5Ph) heuristic was similar to 3Ph with the only exception being
that kings category (i.e. (b) in the above) was subdivided into three categories
depending on which of the players was in possession of kings. Again, a linear
heuristic respective to 8F was assigned to evaluate situations belonging to each
of 5 categories.
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4.2 Algorithm Settings

In case of HG the depth of the initial situations in the game tree was between
81 and 87. The interval was determined basing on preliminary tests calculating
average number of moves necessary to finish a game of GAC performing random
moves. The difference in depths between subsequent phases was set to 6 since
alpha-beta search with depth limit of 6 was still reasonably fast.

For linear heuristics generation the number of test boards for each phase was
3 000 and reusing test boards was disabled whereas for nonlinear ones the count
of the boards was 6 000 and they were reused in different phases. While fewer
boards were assessed in each phase during the generation of linear heuristics
the total number of situations was greater which resulted in better exploration
of the problem space. On the other hand, evaluating as many as 6 000 boards
during each phase while generating nonlinear heuristics minimized the chance of
considering too few situations belonging to certain categories and propagating
the error upwards.

Test populations consisted of 350 specimens. In each phase the weakest 80%
of the population were regenerated.

For SHG each test population consisted of 100− 150 specimens. Populations
had to be smaller because of the way specimens were compared with each other.
During all tests alpha-beta search limit in the games played for comparison
purposes was set to the depth of 3 and maximum of 150 expanded nodes. Com-
parisons were symmetrical, i.e. two specimens played two games against each
other swapping sides after the first game.

During all tests a newly created specimen replaced the weakest specimen in
the population (in SHG the specimen to be replaced was chosen by means of
a tournament). However, this only happened if the descendant was fitter than
the specimen to be replaced. The potential crossovers to effective crossovers (i.e.
the ones in which created specimen was actually added to the new population)
ratio was investigated. It turned out that the fraction remained fairly stable
throughout the process. About 80% − 90% of all the crossovers were effective
in HG and about 70% in SHG. The stability resulted from the fact that in the
initial stages of the algorithm convergence was comparatively quick and there-
fore descendants tended to be fitter than specimens from previous generations.
On the other hand, in the final stages vast majority of the specimens were al-
most identical and there were virtually no difference in fitness between ancestors
and descendants in which case new specimens were preferred and added to the
population.

The convergence of the evolution is clearly illustrated by changes in lengths of
intervals for different parameters as well as by distinct declines in their variances.
For most parameters variances dropped by more than a thousand times in the
course of evolution.

It appeared that mutations had no significant influence on the results of evo-
lution. In SHG best specimens were saved every 1 000 crossbreedings and in most
runs not a single mutated specimen was logged. In the process of evolving linear
heuristics using HG about 1% of the fittest specimens saved turned out to have
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Fig. 2. Performance of the heuristics against TD-GAC

experienced mutation. The fraction was about 10% for nonlinear heuristics. The
significant difference may result from the fact that in initial stages of the algo-
rithm some genes were not applicable to the situations evaluated and therefore
their mutation had no influence on the overall fitness of the specimen.

4.3 Heuristics’ Performance

In order to find out about the quality of different heuristics generated, tests
were run during which each heuristic played 40 games (swapping sides after
each game) against TD-GAC program [5,6,7], which uses temporal difference
algorithm and learns from games played. During the tests alpha-beta search
depth was set to 6 in evolved heuristics and was set to 4 in TD-GAC (since TD-
GAC heuristic makes use of more sophisticated parameters, including indirect
exploration of the game tree one ply further). In order to make a fair comparison
of heuristics the learning ability of TD-GAC was temporarily disabled. Please
note, that due to some randomness in searching the game tree implemented in
alpha-beta, for any particular heuristic games played with TD-GAC were not
identical.

The results of comparison presented in Fig. 2 show clearly that the heuristics
tended to perform well, taking into account simple parameters they considered.
As it can be seen in Fig. 2 nonlinear heuristics (particularly 3Ph) generally
performed slightly better than linear ones which could be expected. Worse per-
formance of 5Ph heuristic might stem from its greater complexity which could
have hindered evolutionary process.

Additional tests were carried out to measure performance of the alpha-beta
algorithm. It turned out that the results depended to a great extent on the play-
ers strategies. During quick games with a lot of compulsory capture sequences
lower average branching factors were reported and fewer nodes had to be ana-
lyzed as well. During games with the search depth of 6 linear heuristics needed
approximately 54−78ms to assess a situation. The number of nodes analyzed was
between 3 700 and 6 700 (at about 75 000− 85 000 nodes per second). For non-
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linear heuristics assessment lasted on average 120− 280ms. Heuristics analyzed
6 000− 10 000 nodes with the speed of about 40 000 nodes per second.

Estimations were also made as to pruning efficiency of different heuristics,
which was defined as (1 − n/s), where n denotes the number of nodes analyzed
and s-theoretical size of the game subtree calculated basing on branching factor
reported and search depth. Approximated pruning efficiency turned out to be
rather stable for all heuristics ranging from 0.75 to 0.9.

5 Conclusions and Directions for Future Research

The main research goal of this paper concerns the possibility of building efficient
heuristic evaluation functions based on evolutionary approach. In particular the
efficacy of nonlinear vs. linear heuristics is verified along with comparison of HG
and SHG.

Results of games played against TD-GAC support the hypothesis that HG
generally outperforms SHG, and hence it can be concluded that due to its non-
transitivity a direct assessing method of SHG may not be the appropriate eval-
uation method.

As it can be expected non-linear heuristics dominated over linear ones. How-
ever, based on some other tests (not presented) it is strongly recommended that
nonlinear components be defined over disjoint conditions. Otherwise, having
several overlapping conditions makes it possible to achieve very similar results
in many ways, each time with very different values of parameters.

In future we plan to verify other schemes of evolving non-linear evaluation
functions in GAC as well as apply these methods to other board games.
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Abstract. It would be useful to have a joint probabilistic model for a general
relational database. Objects in a database can be related to each other by indices
and they are described by a number of discrete and continuous attributes. Many
models have been developed for relational discrete data, and for data with nonlin-
ear dependencies between continuous values. This paper combines two of these
methods, relational Markov networks and hierarchical nonlinear factor analysis,
resulting in joining nonlinear models in a structure determined by the relations in
the data. The experiments on collective regression in the board game go suggest
that regression accuracy can be improved by taking into account both relations
and nonlinearities.

1 Introduction

Growing amount of data is collected every day in all fields of life. For the purpose
of automatic analysis, prediction, denoising, classification etc. of data, a huge number
of models have been created. It is natural that a specific model for a specific purpose
works often the best, but still, a general method to handle any kind of data would be
very useful. For instance, if an artificial brain has a large number of completely sepa-
rate modules for different tasks, the interaction between the modules becomes difficult.
Probabilistic modelling provides a well-grounded framework for data analysis. This pa-
per describes a probabilistic model that can handle data with relations as well as discrete
and continuous values with nonlinear dependencies.

Terminology: Using Prolog notation, we write knows(alex, bob) for stating a fact that
the knows relation holds between the objects alex and bob, that is, Alex knows Bob.
The arity of the relation tells how many objects are involved. The knows relation is
binary, that is, between two objects, but in general relations can be of any arity. The
atom knows(alex, B) matches all the instances where the variable B represents an ob-
ject known by Alex. In this paper, the terms are restricted to constants and variables,
that is, compound terms such as thinks(A, knows(B, A)) are not considered. For every
relation that is logically true, there are associated attributes x, say a class label or a
vector of real numbers. The attributes x(knows(A, B)) describe how well A knows B
and whether A likes or dislikes B. The attribute vector x(con(A)) describes what kind
of a consumer the person A is. Given a relational database describing relationships be-
tween people and their consuming habits, we might study the dependencies that might
be found. For instance, some people cloth like their idols, and nonsmokers tend to be
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Fig. 1. Consider a relational database describing the relationships and consumer habits of three
people. The two tables are shown on the left. On the right, the database is represented graphically,
with the occurrences of the template (con(A), knows(A, B), con(B)) marked with ovals on the
very right.

friends with nonsmokers. The modelling can be done for instance by finding all oc-
currences of the template (con(A), knows(A, B), con(B)) in the data and studying the
distribution of the corresponding attributes. The situation is depicted in Figure 1.

Bayesian networks[6] are popular statistical models based on a directed graph. The
graph has to be acyclic, which is in line with the idea that the arrows represent causal-
ity: an occurrence cannot be its own cause. In relational generalisations of Bayesian
networks [7], the graphical structure is determined by the data. Often it can be assumed
that the data does not contain cycles, for instance in the case when the direction of
the arrows is always from the past to the future. Sometimes the data has cycles, like
in Figure 1. Markov networks [6], on the other hand, are based on undirected graphi-
cal models. A Markov network does not care whether A caused B or vice versa, it is
interested only whether there is a dependency or not.

2 Model Description

This section describes the models that are combined into nonlinear relational Markov
networks.

2.1 Hierarchical Nonlinear Factor Analysis (HNFA)

In (linear) factor analysis, continuous valued observation vectors x(t) are generated
from unknown factors (or sources) s(t), a bias vector b, and noise n(t) by x(t) =
As(t) + b + n(t). The factors and noise are assumed to be Gaussian and independent.
The index t may represent time or the object of the observation. The mapping A, the
factors, and parameters such as the noise variances are found using Bayesian learning.
Factor analysis is close to principal component analysis (PCA). The unknown factors
may represent some real phenomena, or they may just be auxillary variables for induc-
ing a dependency between the observations.

Hierarchical nonlinear factor analysis (HNFA) [11] generalises factor analysis by
adding more layers of factors that form a multi-layer perceptron type of a network. In
this paper, there are two layers of factors h and s, and the mappings are:

h(t) = Bs(t) + b + nh(t) (1)

x(t) = Af [h(t)] + Cs(t) + a + nx(t) , (2)
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where the nonlinearity f(ξ) = exp(−ξ2) operates on each element separately. HNFA
can easily be implemented using the Bayes Blocks software library [10,12]. The update
rules are automatically derived in a manner shortly described below.

The unknown variables θ (factors, mappings, and the parameters) are learned from
data with variational Bayesian learning [4]. A parametric distribution q(θ) over the
unknown variables θ is fitted to the true posterior distribution p(θ | X) where the
matrix X contains all the observations x(t). The misfit is measured by Kullback-Leibler
divergence D(· ‖ ·). An additional term − log p(X) is included to avoid calculation of
the model evidence term p(X) =

∫
p(X , θ)dθ. The cost function is

C = D(q(θ) ‖ p(θ|X))− log p(X) =
〈

log
q(θ)

p(X, θ)

〉
, (3)

where 〈·〉 denotes the expectation over distribution q(θ). Note that since D(q ‖ p) ≥ 0,
it follows that the cost function provides a lower bound for the model evidence p(X) ≥
exp(−C). The posterior approximation q(θ) is chosen to be Gaussian with a diagonal
covariance matrix.

It is possible, though slightly impractical, to model also discrete values in HNFA by
using the discrete variable with a soft-max prior [12]. In the binary case, the ith com-
ponent of x(t) is left as a latent auxiliary variable, and an observed binary variable y(t)
is conditioned by p(y(t) = 1 | xi(t)) = expxi(t)

1+exp xi(t)
. The general discrete case follows

analogously requiring more than one auxiliary component of x(t). The experiments in
Section 3 use a thousand copies of a binary variable having the same conditional prob-
ability. They can be united into one variable by multiplying its cost by one thousand.
Observing 800 ones and 200 zeros corresponds to fixing the variable to a distribution
of 0.8 times one and 0.2 times zero.

2.2 Relational Markov Networks (RMN)

A relational Markov network (RMN) [9] is a model for data with relations and discrete
attributes. It is specified by a set of clique templates C and corresponding potentials
Φ. Using the example in the introduction, a model can be formed by defining a single
clique template C = (con(A), knows(A, B), con(B)) and the corresponding potential
φC over x(C) which is (a subset of) the concatenation of attribute vectors x(con(A)),
x(knows(A, B)), and x(con(B)). Given a relational database, the RMN produces an
unrolled Markov network over all the attributes X . The cliques c ∈ C(I) instantiated
by a template C share the same clique potential φC . The combined probabilistic model
is p(X) = 1

Z

∏
C∈C

∏
c∈C(I) φC(x(c)), where Z is a normalisation constant and

C(I) contains all the instantiations of the template C. In general, a template can be any
boolean formula over the relations.

The general inference task is to compute the posterior distribution over all the vari-
ables X . The network induced by data can be very large and densely connected, so exact
inference is often intractable [9]. The belief propagation (BP) algorithm [6] is guaran-
teed to converge to the correct marginal probabilities only for singly connected Markov
networks, but it is used as a good approximation also in the loopy case. The learning
task, or the estimation of the potentials Φ is done using the maximum a posteriori cri-
terion. It requires an iterative algorithm alternating between updating the parameters of
the potentials and running the inference algorithm on the unrolled Markov network.
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2.3 Nonlinear Relational Markov Networks (NRMN)

In nonlinear relational Markov networks (NRMN), the clique potentials are replaced
by a probability density function for continuous values, in this case HNFA1 The com-
bination of these two methods is not completely straightforward. For instance, mar-
ginalisation required by the BP algorithm is often difficult with nonlinear models. Also,
algorithmic complexity needs to be considered, since the model will be quite demand-
ing. One of the key points is to use probability densities p in place of potentials Φ.
Then, overlapping templates give multiple probability functions for some variable and
they are combined using the product-of-experts combination rule described below.

Combination Rules: One of the non-trivialities in making relational extensions of
probabilistic models is the so called combination rule [7]. When the structure of the
graphical model is determined by the data, one cannot know in advance how many links
there are for each node. One solution is to use combination rules such as the noisy-or.
Combination rule transforms a number of probability functions into one. Noisy-or does
not generalise well to continuous values, but two alternatives are introduced below.

Using a Markov network and the BP algorithm corresponds to using probability
densities as potentials and the maximum entropy combination rule. The probability den-
sities pC(x(C)) are combined to form the joint probability distribution by maximising
the entropy of p(X) given that all instantiations of pC(x(C)) coalesce with the corre-
sponding marginals of p(X). For singly connected networks, this means that the joint
distribution is p(X) =

∏
c pc(x(c))/

∏
k pk(x(k)), where k runs over pairs of instan-

tiations of templates and x(k) contains the shared attributes in those pairs. Marginali-
sation of nonlinear models cannot usually be done exactly and therefore one should be
very careful with the denominator. Also, one should take care in handling loops.

In the product-of-experts (PoE) combination rule, the logarithm of the probability
density of each variable is the average of the logarithms of the probability functions that

the variable is included in: p(x) ∝ n

√∏
C∈C

∏
c∈C(I) pC(x) for all x ∈X , where only

those n instantiated templates c that contain x, are considered. PoE is easy to implement
in the variational Bayesian framework because the term in the cost function (3) can be
split into familiar looking terms. Consider the combination of two probability functions
p1(x) and p2(x) (that are assumed to be independent):〈

log
q(x)√

p1(x)p2(x)

〉
=

〈
log q(x)

p1(x)

〉
+
〈
log q(x)

p2(x)

〉
2

. (4)

A characteristic of PoE is that implicit weighting happens in some sense automatically.
When one of the experts gives a distribution with a large variance and another one with
a small variance, the combination is close to the one with small variance.

Inference in Loopy Networks: Inferring unobserved attributes in a database is in this
case an iterative process which should end up in a cohesive whole. Information can
traverse through multiple relations.2 The basic element in the inference algorithm of

1 One could also think in terms of e.g. a mixture model.
2 In mixture of experts (MoE), it is enough when only one of the experts explains the data even

if all the other disagree. The ignored experts will not pass information on. This explains why
the author did not consider MoE as a combination rule.
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Bayes Blocks is the update of the posterior approximation q(·) of a single unknown
variable, assuming the rest of the distribution fixed. The update is done such that the cost
function (3) is minimised. One should note that when the distribution over the Markov
blanket of a variable is fixed, the local update rules apply, regardless of any loops in the
network. Therefore the use of local update rules is well founded, that is, local inference
in a loopy network does not bring any additional heuristicity to the system. Also, since
the inference is based on minimising a cost function, the convergence is guaranteed,
unlike in the BP algorithm.

Learning: The learning or parameter estimation problem is to find the probability func-
tions associated with the given clique templates C. Now that we use probability func-
tions instead of potentials, it is possible in some cases to separate the learning problem
into parts. For each template C ∈ C, find the appropriate instantiations c ∈ C(I)
and collect the associated attributes x(c) into a table. Learn a HNFA model for this ta-
ble ignoring the underlying relations. This divide-and-conquer strategy makes learning
comparatively fast, because all the interaction is avoided. There are some cases that for-
bid this. If the data contains missing values, they need to be inferred using the method
in the previous paragraph. Also, it is possible to train experts cooperatively rather than
separately [3].

Clique Templates: In data mining, so called frequent sets are often mined from binary
data. Frequent sets are groups of binary variables that get the value 1 together often
enough to be called frequent. The generalisation of this concept to continuous values
could be called the interesting sets. An interesting set contains variables that have such
strong mutual dependencies that the whole is considered interesting. The methodology
of inductive logic programming could be applied to finding interesting clique templates.
The definition of a measure for interestingness is left as future work. Note that the
divide-and-conquer strategy described in the previous paragraph becomes even more
important if one needs to consider different sets of templates. One can either learn a
model for each template separately and then try combinations with the learned models,
or try a combination of templates and learn cooperatively the models for them. Naturally
the number of templates is much smaller than the number of combinations and thus the
first option is computationally much cheaper.

So what are meaningful candidates for clique templates? For instance, the template
(con(A), con(B)) does not make much sense. Variables A and B are not related to each
other, so when all pairs are considered, con(A) and con(B) are always independent and
thus uninteresting by definition. In general, a template is uninteresting, if it can be split
into two parts that do not share any variables. When considering large templates, the
number of involved attributes grows large as well, which makes learning more involved.
An interesting possibility is to make a hierarchical model. When a large template con-
tains others as subtemplates, one can use the factors s in Eq. (1, 2) of the subtemplate
as the attributes for the large template. The factors already capture the internal structure
of the subtemplates and thus the probabilistic model of the large template needs only to
concentrate on the structure between its subtemplates.
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3 Experiments with the Game of Go

Game of Go: Go is an ancient oriental board game. Two players, black and white,
alternately place stones on the empty points of the board until they both pass. The
standard board is 19 by 19 (i.e. the board has 19 lines by 19 lines), but 13-by-13 and
9-by-9 boards can also be used. The game starts with an empty board and ends when it
is divided into black and white areas. The one who has the larger area wins. Stones of
one colour form a block when they are 4-connected. Empty points that are 4-connected
to a block are called its liberties. When a block loses its last liberty, it is removed from
the board. After each move, surrounded opponent blocks are removed and only after
that, it is checked whether the block of the played move has liberties or not. There are
different rulesets that define more carefully what a “larger area” is, whether suicide is
legal or not, and how infinite repetitions are forbidden.

Computer Go: Of all games of skill, go is second only to chess in terms of research
and programming efforts spent. While go programs have advanced considerably in the
last 10-15 years, they can still be beaten easily by human players of moderate skill.
[5] One of the reasons behind the difficulty of static board evaluation is the fact that
there are stones on board that will eventually be captured, but not in near future. In
many cases experienced go players can classify these dead stones with ease, but using a
simple look-ahead to determine the status of stones is not always feasible since it might
take dozens of moves to actually capture the stones.

Experiment Setting: The goal of the experiments was to learn to determine the status
of the stones without any lookahead. An example situation is given in Figure 2. The
data was generated using a go-playing program called Go81 [8] set on level 1 and
using randomness to have variability. By playing the game from the current position
to the end a thousand times, one gets an estimate of who is going to own each point
on the board. Information on the board states was saved to a relational database with
two tables for learning an NRMN. The x(block(A)) contains the colour, the number of
liberties, the size, distances from the edges, influence features in the spirit of [1], and
finally the count of how many times the block survives in the 1000 possible futures. The
ally(A, B) and enemy(A, B) contain a measure of strength of the connection between
the blocks A and B estimated using similar influence features [1]. Only the pairs with a
strong enough influence on each other (> 0.02) were included. One thousand 13-by-13
board positions after playing 2 to 60 moves were used for learning.

Two clique templates, ((block(A), ally(A, B), block(B)) and an analogous one for
enemy, were used. HNFA models were taught with 28 attributes of the two blocks and
the pair. The dimensionality of the s layer was 8. The learning algorithm pruned the
dimensionality of the h layer to 41 for allies and to 47 for enemies. The models were
learned for 500 sweeps through the data. A linear factor analysis model was learned
with the same data for comparison. A separate collection of 81 board positions with
1576 blocks was used for testing. The status of each block was now hidden from the
model and only the other attributes were known. With inference in the network, the sta-
tus were collectively regressed. As a comparison experiment, the inferences were also
done separately, and combined only in the end. Inference required from four to thirty
iterations to converge. As a postprocessing step, the regressed survival probabilities x̂
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Fig. 2. The leftmost subfigure shows the board of a go game in progress. In the middle, the
expected owner of each point is visualised with the shade of grey. For instance, the two white
stones in the upper right corner are very likely to be captured. The rightmost subfigure shows the
blocks with their expected owner as the colour of the square. Pairs of related blocks are connected
with a line which is dashed when the blocks are of opposing colours.

were modified with a simple three-parameter function x̂new = ax̂b + c and the three
parameters that gave the smallest error for each setting, were used.

Results: The table below shows the root mean square (rms) errors for inferring the
survival probabilities of the blocks in test cases. They can be compared to the standard
deviation 0.2541 of the probabilities.

rms error Linear Nonlinear
Separate regression 0.2172 0.2052

Collective regression 0.2171 0.2037

As expected, nonlinear models were better than linear ones and collective regression
was better than separate regression.

4 Discussion and Conclusion

A traditional Markov network was applied for statically determining the status of the
go board in [2]. Games played by people were used as data. Humans play the game
better, but still, this approach has an important downside. The data contains only one
possible future for each board position whereas a computer player can produce many
possible futures. At the learning stage, all those futures can be used together for the
computational price of one. Also, stones that are provably determined to be captured
under optimal play (dead), might still be useful: By threathening to revive them, the
player can gain elsewhere. When data is gathered with unoptimal play, the stones are
marked as not quite dead, which might be desirable.

NRMN includes a probabilistic model only for the attributes and not for the logical
relations. Link uncertainty means that one models the possibility of a certain relation to
exist or not. Actually one can model link uncertainty using just the proposed method-
ology. All the uncertain relations are assumed to be logically true and an additional
binary attribute is included to mark whether the link exists or not. One only needs to
take into account that when this binary attribute gets the value zero, the dependencies
between the other attributes are not modelled. Also, time series data can be represented
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using relations obs(T ) for the observations at time T and ensues(T 1, T 2) to denote
that the time indices T 1 and T 2 are adjacent. These two examples give light to the gen-
erality of the proposed method. In [12], HNFA is augmented with a variance model.
Modelling variances would be important also in the NRMN setting, because then each
expert would produce an estimate of its accuracy and thus implicitly a weight compared
to other experts. In [9], relational Markov networks were constructed to be discrimina-
tive so that the model is specialised to classification. The same could be applied here.

Conclusion: A model was proposed for data containing both relations and nonlinear
dependencies. The model was built by combining two state-of-the art probabilistic mod-
els, hierarchical nonlinear factor analysis and relational Markov networks by using the
product-of-experts combination rule. Many simplifying assumptions were made, such
as diagonality of the posterior covariance matrix, and separate learning of experts. Also,
learning the model structure (the set of clique templates) was left as future work. Ex-
periments with the game of go give promise for the proposed methodology.
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by the Finnish Centre of Excellence Programme (2000-2005) under the project New
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Abstract. We present a friendly software platform called Marsbase for the 
simulation of human activities on Mars. The interface allows the user to 
command every astronaut activity on Mars, typically exploring the region, 
analyzing rocks or building new facilities. In the AI mode, astronauts' decisions 
and actions are defined by a competition between different basic processes. 
Some human factors such as tiredness or perseverance have been implemented. 

1   Introduction 

A software platform called "Marsbase" has been developed to simulate astronauts' 
activities on the Martian surface. The simulator has been designed with the help of 
experts of human-based space exploration programs [10]. It takes into account a large 
number of objects and enables numerous astronauts' actions. AI modules have also 
been implemented, allowing an interesting interaction of the user with the system. In 
Section 2, the main features of the simulator are described. In Section 3, a brief 
overview of artificial intelligence techniques for simulating virtual characters are 
discussed. We then present the concepts of the AI modules, which are inspired from 
Brooks' subsumption architecture [2]. An application is also presented to show how 
cognitive behaviors can be observed from different implementations of the layers. 

2   Marsbase Simulator 

2.1   Objects and Transformations 

In order to develop a realistic simulator, a large number of objects have been defined, 
such as different kinds of rocks, chemical elements (water, oxygen, silicon, etc.), 
industrial products and tools (photovoltaic cells, bricks, mass spectrometers, 
spacesuits, automatons, etc.), buildings (habitat, greenhouse, chemical unit, nuclear 
reactor, etc.), vehicles and astronauts. An object is defined by a name, a weight, the 
consumption or the supply of a given amount of energy; it can be visible (with a 
picture and a position) or not; it can move with a variable speed; it eventually includes 
other objects; it is eventually included in a containing object, etc. Astronauts are 
defined as particular objects that perform specific tasks. They can "transform" objects, 
move around, carry or put down objects, etc. In addition, they consume oxygen all the 
time, consume water and food a few times per day and need to sleep sometime.  
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Transformations are performed by astronauts, automatons and robots. They have 
been normalized to enable information processing standardization. They are defined 
in text files by a list of resources with their corresponding masses, a list of tools (not 
consumed), a list of products with their corresponding masses, the energy required for 
the transformation and its duration. Most actions are defined as transformations. For 
instance, agriculture is a process that requires seeds, fertilizer and water as sources, a 
greenhouse and a human as tools and produces cereals and fruits. Chemical or 
industrial transformations as well as constructions of new buildings are defined in a 
similar way. An icon is associated with every transformation and all of them are 
accessible in several grids on the action panel. Once an astronaut is selected, the user 
can start a transformation by a click on the corresponding icon, provided that all 
required resources and tools are available. Objects and transformations are defined in 
text-files independently from the code. 

 

 

Fig. 1. Gray-scale snapshot of the simulator. On the planetary surface, from top to bottom: A 
cargo, a habitat, a greenhouse, a nuclear reactor, an astronaut driving a light vehicle (selected), 
an astronaut walking and another light vehicle. The right panel is divided into 3 parts. At the 
top, information on the selected object is available. A journal provides information on current 
events (action completed, oxygen missing, etc.). In the middle, a small grid enables the 
selection of astronauts and at the bottom, transformations icons are displayed in different grids. 
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2.2   Interface and Scenarios 

The interface of the simulator is user-friendly and is inspired from well-known 
simulation/strategic games. As can be observed in Fig. 1, a picture of Mars is used to 
display human-based objects on the planetary surface and a panel allows the user to 
get information about any object and to command astronauts' tasks by means of the 
mouse. Astronauts can move with a spacesuit, enter a vehicle or a building, carry 
objects or start (or stop) a transformation. The time scale of the simulation is 3 
minutes for one sol (1 Martian day) and the scenarios can last an arbitrary number of 
sols. At night, a darker image of the same area is automatically loaded. During the 
simulation, there is a constant interaction with the user. When a transformation starts, 
its icon is slowly redrawn below the astronaut to inform the user of its achievement. 

A scenario is defined by a list of objects located on the map, for instance a habitat, 
a pressurized rover, solar panels, interesting rocks etc. Each object may contain a list 
of smaller objects (oxygen, water, mass spectrometer, etc.) and eventually astronauts.  

The objective of the scenario is presented in a text window at the beginning of the 
simulation. It is usually defined in the scenario as a list of objects in a specific state 
that should exist at the end. It is also possible to use the simulator without specific 
objective. Another option is to start with a preparation phase, in which the user has to 
define the payload of the rocket before it is sent to Mars. 

3   Artificial Intelligence 

3.1   Virtual Characters and Brooks' Principles 

A lot of work has been carried out in the field of artificial intelligence for the 
simulation of human behaviors in artificial environments, in particular in 
strategic/tactical games [4], [7], [8]. There are basically two different approaches to 
the problem of creating virtual characters [5], [6], [7]:  

• The first one is top-down and characters are accurately designed but fixed (Oz, 
Petz, Improv). 

• The second is bottom-up and characters are basically designed but evolving 
(Creatures, Silas, Sims’ creatures).  

    The top-down approach generally requires each behavior to be explicitly defined, 
whereas the bottom-up approach is based on learning techniques such as neural 
networks or genetic algorithms that allow adaptive emergent behaviors.  
Multi-agents systems usually provide the conceptual framework for the design of 
reactive or cognitive behaviors [3], [9]. Reactivity is preferred when there is no need 
to define a complex behavior or when time is too short for a complex decision 
process. Cognitive agents generally embed the required knowledge and know-how for 
an accurate and sometimes complex decision process.  

Brooks suggested that simple principles should be considered to design virtual 
characters [2]: 

• Complex behaviors emerge from hierarchically organized basic behaviors, which 
can be performed by finite state machines.  



1000 J.M. Salotti 

 

• Time constraints can be added for global coherence. 
• Inhibition between different modules provides distributed control. 

    Brooks' ideas are inspired from cognitive science theories, which state that the 
attention process in human brains consists in a complex interaction of several 
hierarchical processes that try to inhibit each other and to monopolize brain resources 
to achieve predetermined behaviors [1], [2]. 

4   Marsbase Decision Layers 

4.1   Five Important Layers 

Our approach is precisely inspired from Brooks' ideas. Five basic astronaut behaviors 
have been identified: 

• Layer 1: The search for oxygen for short term survival. Astronauts have to care 
about the oxygen level when they are exploring the Martian surface with a 
spacesuit, walking or driving a non pressurized rover. If the remaining oxygen 
quantity is less than an adaptive threshold, the astronaut stops all actions and goes 
immediately towards the nearest safe structure. 

• Layer 2: The search for water and food. As it is actually implemented in the 
simulator, water and food are consumed each day at fixed intervals, provided that a 
life support system is available and that enough water and food are present. If the 
right conditions are never encountered after a period of 1 sol (a sol is a Martian 
day, it is equivalent to 24 hours and 40 minutes), the priority of the astronaut is to 
look for the nearest place to fulfill his needs.  

• Layer 3: The search for a comfortable place to rest when he is tired. In order to 
take into account tiredness, astronauts working time can never exceed 1 sol and a 
minimum continuous sleeping time of 8 hours is expected before working again. 
Therefore, after 1 sol of work, whatever the number of short breaks, the astronaut 
immediately goes towards the nearest safe structure where he can rest (life support 
system required). 

• Layer 4: Obedience to user's orders. The user can select any astronaut with the 
mouse and send him anywhere or ask him to work on any transformation. 
However, the astronaut is not a perfect slave. He usually obeys to orders, but he 
might decide to do something else, typically in case of a priority action decided in 
a previous layer. If the user commands the astronaut to go out or to perform a 
specific task, an obedience mode is activated and layer 5 is not processed. The 
obedience mode stops when the astronaut is back in the habitat and rested. 

• Layer 5: Complex automatic actions. Complex actions require cognitive abilities. It 
would be very difficult to implement a coherent strategy for the automatic 
development of a Martian base, building new facilities, extracting ores and setting 
up new industries, trying to organize the cooperation between astronauts. Though it 
is a perspective of that work, only simple behaviors have been implemented in the 
current version, typically exploring the region, analyzing rocks, farming or 
building new facilities, depending on the scenario. 
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4.2   Decision Process 

Such layers are normally ordered according to a priority criterion such that layer N is 
processed before layer N+1, and if an action is required, the successive layers are not 
considered (Brooks' subsumption principle). However, human behaviors are complex 
and priorities of decisions processes are never a priori fixed. It usually depends on the 
context, the motivation and global physiological states. We therefore suggest defining 
the priority of a layer as a subjective variable, which can evolve according to internal 
parameters. In its current version, only two internal parameters have been 
implemented to validate the principles. 

− An important internal parameter is the tiredness. An astronaut is tired (but still 
allowed to work) when the duration of its working activity exceeds a given 
threshold, which depends on the character of the astronaut. In the case of tiredness, 
the priority of all layers is randomly decreased. If all priority levels falls to 0, there 
is neither action nor decision, the astronaut simply stops doing things. 

− Another important internal parameter is the motivation of the astronaut to complete 
his current task. If the objective is close to be achieved, the motivation is increased. 
Humans typically try to finish their action if the remaining time to achieve the 
objective is relatively low, even in the case of alarming signals like little oxygen 
left (providing that there is some margin). In order to observe a similar behavior, 
the remaining time to achieve the objective is computed. If it is a transformation, 
its end is known and if it is a walk towards a specific place, it is inferred from the 
speed and the distance to the location. Then, if the time is below a threshold, the 
motivation to complete that action is set to a high value and the priority is set to the 
maximum. 

5   Experiments and Discussion 

Some experiments have been made to evaluate the global decision architecture. In 
most cases, the hierarchy of the layers is respected and the behavior of the astronauts 
is logical and corresponds to what is expected.  
However, if an astronaut is tired, the observed behavior is unpredictable. As the 
tiredness increase, humans usually become less efficient and the decision process 
takes more time. In Marsbase, if appropriate random functions are used, a tired 
astronaut who is walking around looking for ferrous rocks stops walking several times 
in a random fashion. When the tiredness reaches its maximum, the astronaut finally 
goes back to the habitat for sleeping. 

In the previous version, in which the hierarchy of the layers was fixed, some 
players were complaining that astronauts decide to come back to the base while they 
were very close to take the requested rocks. In a new scenario, astronauts have been 
programmed to explore the region and collect as much interesting rocks as possible. 
The astronaut walks towards the closest ones in order to carry them back to the 
habitat. Now, if the astronaut is very close when the oxygen comes below the 
threshold that triggers the survival process, the priority of the current task is set to 10, 
which is greater than the priority of survival for oxygen. He therefore decides to take 
some samples before coming back safe to the habitat. The new behaviors are now 
more similar to what is expected from intelligent creatures. 
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6   Conclusion 

Marsbase simulator has been implemented like a strategic game with a strong 
emphasis on the quality of the interface and the relevance of simulated human 
activities for the development of a Martian colony. The architecture of artificial 
intelligence modules is based on Brooks' ideas but the priority of layers evolves 
according to internal parameters. The competition between processes is probably a 
key idea to implement human based behaviors, as it simulates in some sense humans' 
decision making process. If the priority of the processes fluctuates according to 
internal parameters, the behavior becomes more unpredictable and it is easier to take 
into consideration physiological or emotional parameters with a global impact. We 
therefore believe that the principles of our architecture could be extended to other 
games and simulations. 
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Abstract. Neural networks are intended to be used in future nano-
electronic systems since neural architectures seem to be robust against
malfunctioning elements and noise in their weights. In this paper we
analyze the fault-tolerance of Radial Basis Function networks to Stuck-
At-Faults at the trained weights and at the output of neurons. Moreover,
we determine upper bounds on the mean square error arising from these
faults.

1 Introduction

Neural networks are used as function approximators for continuous functions
[1,2]. Especially, Radial Basis Function networks are utilized to perform a local
approximation of an unknown function specified by a set of test data. The main
reason why neural networks are used for this purpose is the adaptability of the
network due to the learning process. Moreover, the networks seem to be fault-
tolerant against malfunctioning neurons [2] which can be modeled as Stuck-At
faults and to be robust against noise corrupted weights and inputs [3].

Digital and analog implementations of neural networks have always to face
malfunctioning elements [4], especially in future nanoelectronic realizations [5].
Moreover, when using analog hardware noise is always present due to thermal or
flicker noise [6,7,8] and even if digital hardware is used quantization noise con-
taminates the weights and inputs [9]. Thus, the artificial neural network structure
should handle malfunctioning elements and noise contaminated weights.

In this paper we analyze the Radial Basis Function network with respect
to errors based on Stuck-At-Faults. In [10] these properties are demonstrated
for sigmoidal feedforward networks. First, a short overview about the analyzed
neural network architecture is given. The fault-tolerance against different types
of Stuck-At-Faults is analyzed afterwards. Section 4 determines upper bounds
on the mean square error for Stuck-At-Faults occuring in the weights and output
of neurons and necessary restrictions are introduced leading to bounded errors.
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2 Radial Basis Functions

In this section a short overview about the architecture of a Radial Basis Function
network is given. The network consists of an input vector with dimension dim x =
n. At a second step m different Basis Functions which have different centers xi

are superposed and denoted by a weight αi to produce the output.
The Radial Basis Function network (RBF) can be used for local function

approximation [11]. Basing on the regularization theory the quadratic error
is minimized with respect to a stabilizing term [12]. Due to this stabilizer the in-
terpolation and approximation quality is controlled in order to achieve a smooth
approximation. Based on this stabilizer different Basis Functions can be per-
formed for superposition. As a consequence, the network function can be ex-
pressed as

fm(x) =
m∑

i=1

αihi (‖x− xi‖) (1)

where m denotes the number of superposed Basis Functions.
The function hi(z) can be any function related to a (radial) regularization

stabilizer. Here, the stabilizer leading to a Gaussian function is considered, thus
it follows

hi(z) = exp
(
−z2

2σ2
i

)
(2)

and therefore

fm(x) =
m∑

i=1

αi exp
(
−‖x− xi‖2

2σ2
i

)
(3)

Moreover, the parameters xi are the individual centers of each Basis Function,
σ2

i resembles the variance of each Gaussian function and αi are the weights from
each neuron to the output neuron, which performs a linear superposition of all
Basis Functions.

3 Stuck-At-Faults in Radial Basis Function Networks

In future nanoelectronic systems one major problem will be the massive amount
of malfunctioning elements [5]. Therefore, fault-tolerant architectures have to
be established in order to achieve reliable systems and predictable system be-
havior. From biology it is well known that the human brain allows the loss of
several neurons because of the redundancy in its structure [2,13]. However, it
was proven that sigmoidal feedforward neural networks are not fault-tolerant
against Stuck-At-Faults [10,14]. Here, the fault-tolerance of an RBF network is
analyzed against Stuck-At-Faults at the output weights, at the Basis Function
centers and at the variance of the Gaussian Basis Function.
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3.1 Stuck-At-Fault at the Output Weight

First, it is assumed that the Stuck-At-Fault occurs in the weights from the neuron
to the output αi. In order to achieve a universal expression it is assumed that
the weight is sticking at the value μ. Moreover, with loss of generality only one
weight from the whole Basis Functions is imposed by this fault. Thus, it follows
for the difference of both network outputs

fm (x)− f̂m (x) =
m∑

i=1

αi exp
(
−‖x− xi‖2

2σ2
i

)
−

m∑
i=1

α̂i exp
(
−‖x− xi‖2

2σ2
i

)
(4)

=
m∑

i=1

(αi − α̂i) exp
(
−‖x− xi‖2

2σ2
i

)
(5)

where f̂m(x) denotes the network function due to the Stuck-At-Fault at the k-th
neuron. Since nearly all αi are identical to α̂i the difference vanishes except of
the k-th term where the weight is sticking at the value μ. Therefore, under the
assumption that only one weights is imposed by a Stuck-At-Fault (5) leads to

fm (x)− f̂m (x) = (αk − μ) · exp
(
−‖x− xk‖2

2σ2
k

)
(6)

3.2 Stuck-At-Fault at an RBF Center

Here, the Stuck-At-Fault occurs in the center of a Basis Function resulting in
an unintentional movement of the center. The k-th neuron is interfered by a
Stuck-At-Fault at the ν-th entry of the vector xk, and therefore this produces
a faulty output behavior of the neural network. The difference between both
network responses can be expressed

fm (x)− f̂m (x) =
m∑

i=1

αi exp
(
−‖x− xi‖2

2σ2
i

)
−

m∑
i=1

αi exp
(
−‖x− x̂i‖2

2σ2
i

)
(7)

= αk

[
exp

(
−‖x− xk‖2

2σ2
k

)
− exp

(
−‖x− x̂k‖2

2σ2
k

)]
(8)

= αk exp

⎛⎜⎝−
∑n

j=1
j �=ν

(xj − xkj)2

2σ2
k

⎞⎟⎠× (9)

[
exp

(
− (xν − xkν )2

2σ2
k

)
− exp

(
− (xν − μ)2

2σ2
k

)]
(10)

where xkj denotes the j-th entry in the center of the k-th Basis Function.

3.3 Stuck-At-Fault at the Variance of a Gaussian Basis Function

Now, it is assumed that the variance of a certain Basis Function is affected by a
Stuck-At-Fault at μ. Here, the k-th Basis Function is disturbed, leading to
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fm (x)−f̂m (x)=
m∑

i=1

αi exp
(
−‖x− xi‖2

2σ2
i

)
−

m∑
i=1

αi exp
(
−‖x− xi‖2

2σ̂2
i

)
(11)

= αk ·
[
exp

(
−‖x− xk‖2

2σ2
k

)
− exp

(
−‖x− xk‖2

2μ2

)]
(12)

4 Bounds on the Mean Square Error

In this section we analyze the fault-tolerance of an RBF network against the
Stuck-At-Faults. Hence, for the three different types of Stuck-At-Faults necessary
restrictions are introduced to achieve an upper bound on the mean square error
of the difference between both network functions. Therefore, the input vector
is assumed to be a random variable with a certain distribution function. In the
following E denotes the expected value.

Concerning (6), the mean square error due to a Stuck-At-Fault at the output
weights is determined by

mseα = (αk − μ)2 ·E
[

exp
(
−‖x− xk‖2

σ2
k

)
︸ ︷︷ ︸

≤1

]
(13)

Equation (13) can be estimated by the mean value theorem of integral cal-
culus [15] resulting in a mean square error of

mseα ≤ (αk − μ)2 (14)

Thus, if the weights of the RBF network are not bounded rather arbitrary
the mean square has no upper bound. Moreover, the error is depending on the
Stuck-At value. The value of the Stuck-At-Fault is a consequence of the technical
implementation. In analog hardware μ can be restricted to any continuous value
in a certain interval which is determined by operating conditions [6,8]. In the case
of a digital realization μ can only adopt discrete values leading to a quantized
error. However, in both implementations μ is restricted by an upper bound and
with restricted weights

|αi| ≤ B ∀ i = 1 . . . n (15)

equation (14) can be further evaluated

mseα ≤ (B + |μ|)2 (16)

In the same way equation (10) and (12) can be determined leading to

msexi
= α2

kE

[(
exp

(
−‖x− xi‖2

2σ2
i

)
− exp

(
−‖x− x̂i‖2

2σ2
i

))2
]

≤ α2
k (17)

mseσ = α2
kE

[(
exp

(
−‖x− xi‖2

2σ2
i

)
− exp

(
−‖x− xi‖2

2μ2

))2
]

≤ α2
k (18)
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From equation (17) and (18) can be concluded that both mean square errors
have no upper bound since the weights of the neural network can be arbitrary.
In contrast to (14) the mean square errors do not depend on the technical real-
ization. If the weights are restricted by an upper bound |α| ≤ B both errors are
restricted by an upper bound

mse ≤ B2 (19)

5 Conclusion

Artificial neural networks are intended to be fault-tolerant against noise con-
taminated inputs and malfunctioning elements like biological neural networks.
However, it was shown in [10,14] that sigmoidal feedforward networks are not
fault-tolerant. In this work the fault-tolerance against malfunctioning elements
is determined for Radial Basis Function networks. These interferences can be
modeled as Stuck-At-Faults at the output weights and at the output behavior
of the neurons.

As in the case for multilayer perceptrons the Radial Basis Function network
is not immune to malfunctioning elements. If arbitrary weights can be used no
upper bound on the mean square error exists. Therefore, a well-defined system
behavior due to sticking elements can not be guaranteed. Furthermore, if the
error occurs in the output weights of a neuron the mean square error is depending
on the sticking value and thus on the technical realization.

The technical implementation of neural networks in analog or digital hard-
ware provides restrictions on the weights which are resulting in fault-tolerant
networks. As the weights are bounded by an upper bound (15) the mean square
error is restricted (cf. (16) and (19)). In the case of analog hardware the Stuck-
At-Fault can be assigned to any continuous value within a certain interval de-
termined by the operating conditions. For digital implementations the Stuck-At-
Fault are restricted to ’1’ and ’0’ leading to quantized steps of the error.

However, both technical implementations provide upper bounds on the Stuck-
At-Faults as was shown in section 4. Therefore, technical realizations of an RBF
network are still fault-tolerant against malfunctioning elements. By providing
adequate bounds on the weights a reliable network response can be guaranteed.
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Abstract. Spike-timing dependent synaptic plasticity (STDP) circuitry
is designed in 0.35μm CMOS VLSI. By setting different circuit parame-
ters and generating diverse spike inputs, we got different steady weight
distributions. Through analysing these simulation results, we show the
effect of membrane threshold and input rate in STDP adaptation.

1 Introduction

Synaptic plasticity in biological neurons is widely believed to be important in
memory storage and other brain functions [1,2]. Recently, significant interest has
centred on synaptic learning rules that rely upon spike timing (Spike Timing
Dependent Plasticity, STDP). Such rules are most obviously of interest in the
context of vision processing and robotics [3,4].

STDP rules adapt synaptic weights by pairing pre- and postsynaptic action
potentials within a time window (Fig.1). A weight is increased when a pre-
synaptic spike precedes a post-synaptic spike and the weight is decreased when
the post-synaptic spike arrives first.

Earlier experimental results have shown that on-chip neurons with STDP
could detect and amplify spike-timing synchrony and create bimodal weight
distributions [5]. However, a recent study indicates that timing is not the only
determinant factor of plasticity [6] and the steady weight distribution is affected
by many other factors.

We report further experiments with analog circuit in a 0.35μm process, to
explore the role of membrane threshold and spike firing rate in STDP learning
and characteristics of this circuit. We show that change of these factors could
lead to different weight distribution. Comparing to [5], model used in this paper
is simpler, one neuron connected with several learning synapses. The number of
input synapses is uncertain and adapted to the number of input spike trains.

2 Method

The circuit is based on that in [5], translated and re-designed from a 0.6μm
process to a 0.35μm process.
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Fig. 1. Learning Window for STDP. Δt = tpre − tpost, ΔW refers to the amount
of weight change. (a) Weight dependent STDP, within which ΔW depends upon the
magnitude of W. (b) Change in (capacitive) weight voltage in our STDP circuits.
Weight voltage change is inverse to weight change. The closer the value of Vw is to
GND, the stronger is the synapse.
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Fig. 3. Synapse and weight change circuit. Cw is discharged through N2 & N3
and charged through P6&P7.

The leaky Integrate & Fire neuron model circuit is shown in Fig. 2. The
synaptic current (IsynArray) is integrated by the membrane capacitor Cm and a
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postsynaptic spike is generated, when the activity voltage V passes the threshold
Vth.

Fig. 3 shows the synapse and weight modification circuit. The prominent
characteristic of this circuit is weight dependent. Vw is stored on MOS capacitor
Cw. When a postsynaptic spike fires shortly after a presynaptic spike, Cw is
discharged through N2 and N3. The amount of discharge is determined by P4
and P5 connected with Vw to control the voltage on Cpot. Consequently, when
the synaptic weight is increasing, the discharging current (Isyn) is proportional
to Vw. The decaying current, Idep, which controls the weight depression, comes
from a causal circuit switched on by postsynaptic spike. Details of the connection
and the rest parts of the circuit could be found in [5].

2.1 Membrane Threshold and Synaptic Current

To understand the effect of the membrane threshold to STDP in our circuit,
we generate four input spike trains from inhomogeneous Poisson processes. Two
cases are discussed and compared with each other. In case one, we set Vth=1V,
Isyn=1.5μA. These values are selected from a parameter space, where no bifur-
cation occurs. In case two, we set Vth=600mv, Isyn=10μA, which comes from
another parameter space where bifurcation occurs. The other circuit parameters
and input presynaptic spike trains in both cases are the same.

2.2 Input Firing Rate

To explore the effects of variable firing rate synthetically, there are two simula-
tions in this section. The first one uses 5 uncorrelated poisson spike trains with
rates ranging from 10 to 40Hz. The presynaptic inputs produced by an inho-
mogeneous poisson processes in the second simulation have different standard
deviations (STD) ranging from 0 to 0.55 times the mean rate of 25Hz.

3 Simulation Results

3.1 The Effect of Vth and Isyn

Since in section 2.1, the input spike trains are independent of each other, the
correlation between them is nearly nonexistent. Thus the weight’s potentiation
or depression is unpredictable. Although the input spike trains are unchanged, in
Fig. 4(a) the steady weight distribution appears to be random while in Fig. 4(b)
the weight distribution is clearly bimodal. The reason of the difference between
these simulations is that in case one, no matter whether the synapse is weak or
strong, the input synaptic current is very weak, so integration is the only way to
make the membrane potential achieve the threshold voltage. In contrast to case
one, in case two the Isyn is very high and Vth is low when the synapses become
strong. Fig. 4(d) shows that postsynaptic firing rate is higher than Fig. 4(c) in the
first 3 seconds, during which S4 wins the competition by random chance. Here is
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Fig. 4. Simulation results of uncorrelated poisson spike trains. (a) Case one
with Vth=1V, Isyn=1.5μA, the weight distribution is random without obvious tendency.
(b) Case two with Vth=600mv, Isyn=10μA, the weight distribution is bimodal. (c) The
membrane potential and postsynaptic spikes of case one. (d) The membrane potential
and postsynaptic spikes of case two.

a bifurcation point in the parameter space of Vth and Isyn, which distinguishes a
region of the steady bimodal weight distribution from one of non-bimodal weight
distribution. After the bifurcation point, S4 persistently fires a postynaptic spike
by itself. Eventually, the weight of S4 gets the maximum value and the circuit
serves like the “winner-take-all” schema.

From the points above, Vth and Isyn could determine the final weight distri-
bution in the circuit. We could conjecture that the value of Vth and Isyn even
affect the number of synapses whose weights will reach the upper boundary.
These values are fixed in the biological neuron model, but in fact, they are ex-
perimental inductions from biological experiment with fluctuation depending on
the circumstances [7]. Our simulation shows the importance to reconsider the
scale of Vth and Isyn when a neuron is being trained by STDP.

3.2 The Effect of Variable Firing Rates

It can not be directly seen from Fig. 5(a), (b) whether synapses firing at either
faster or slower rates are preferentially strengthened by STDP. The results are
consistent with [3], within the rate range presented 10 to 40Hz, STDP mod-
ification is insensitive to the firing frequency and degree of variability of the
presynaptic input.
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Fig. 5. Simulation results of firing rates. (a) Result of first simulation, whose
presynaptic input have different rates ranging from 10Hz to 40Hz. (b) Result of second
simulation, whose variable firing rates of presynatpic inputs with standard deviation
ranging from 0 to 0.5 times the mean rate.

4 Conclusion

As our circuit is redesigned from [5] under 0.35μm process, 4 metals and 2
poly. The upper boundary of weight voltage is reduced by 25% and the value
of weight modification is decreased proportionally. The simulation results tell
us that the membrane threshold, correlation and firing rate jointly determines
the steady weight distribution. First, low membrane threshold and high synaptic
current could produce weight bifurcation, although the input spike trains are in-
dependent. Furthermore, for all input spike trains, the number of strengthened
or weakened synapses could be influenced by different vaule of Vth and Isyn.
The similar characters could be found in the relationship between membrane
potential and postsynaptic firing rate of the cat visual cortex, which has been
investigated in [10]. Changes of the membrane potential threshold could sharp
orientation tuning of visual cortex and then modify the postsynaptic spike fre-
quency. As is known, enhanced ability of a given synapse to rapidly evoke a
postsynaptic spike will lead to synapse strengthening through STDP.

Second, our STDP circuit is insensitive to firing rate value and variability in
the range of 10 to 40Hz, which is consistent with biological findings [11].

The work in this paper helps us to produce circuits with better matching for
STDP in the future. With this circuit and the discussion of the weight distri-
bution above, it is possible to organise a dynamic I&F network with different
synapses which are sensitive to different input patterns.The network can be po-
tentially used in pattern segmentation and classification tasks. The immediately
related new work is to find the mechanism of weight bifurcation presented in
section3.1.
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Abstract. The paper is focused on partial parallel realization of retrieving phase 
as well as learning phase of Kohonen neural network algorithms. The method 
proposed is based on pipelined systolic arrays – an example of SIMD architec-
ture. The discussion is realized based on operations which create the  following 
steps of learning and retrieving algorithms. The data which are transferred 
among the calculation units are the second criterion of the problem. 

1   Introduction 

Kohonen maps algorithms were in different way implemented using dedicated neuro-
computers [3] [6]. A main problem related to the hardware implementation is focused 
on necessary modifications of algorithms to fit them to neuro-computer architecture 
[5] [6] [9]. The experiments were successful [2] [3] and it was possible to use imple-
mented Kohonen maps in serious industrial applications [4] [6]. The paper proposes 
systolic approach to retrieving phase as well as learning phase of Kohonen neural 
network algorithms. The method is based on the most classical description of Koho-
nen algorithms with no modifications. The main goal is to divide the whole algorithm 
into subtasks. The subtasks can be realized by software or hardware simulator of 
Kohonen map. The presented method is based on Data Dependences Graphs [7]. 
Elementary processors which are defined after linear projection of Data Dependence 
Graphs onto lattice of points can be realized by processes or real device. The details 
related to processor construction are not available yet. 

2   Kohonen Neural Network Algorithms 

2.1   Learning Algorithm 

The learning algorithm is based on the Grossberg rule [6] [7]. All weights are modi-
fied according to the following equation: 

))()(,,,()()()1( kwxjijikkwkw lijl
ww

lijlij −Λ+=+ η  (1) 

where: 
k - iteration index, η - learning rate function, xl - component of input learning vector, 
wlij - weight associated with connection from component of input learning vector xl 

and neuron indexed by (i, j), 
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Λ   - neighborhood function, (iw ,jw) - indexes related to winner neuron, (i, j) - indexes 
related to single neuron from Kohonen map. 

    The learning rate η we assume as a linear decreasing function. Learning rate func-
tion is responsible for the number of iterations - it marks the end of learning process. 
The presented solution is based on the following description of the neighborhood 
function [1]: 
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where: 
a - neighborhood parameter,  
r - distance from winner neuron to each single neuron from Kohonen map, calculated 

by indexes of neurons as follow: 
 

(3) 

    The learning procedure is iterative: weights are initialized by random values; posi-
tion of winner neuron for each learning vector is calculated by ordinary Kohonen 
retrieving algorithm using random values of weights; weights are modified using 
Grossberg rule (1); the learning rate is modified, the neighborhood parameter a (2) is 
modified and if the learning rate is greater than zero weights are modified by the next 
learning vector, else the learning algorithm stops [7]. 

2.2   Retrieving Algorithm 

During the retrieving phase the Euclidean distance: the weights vector and the output 
vector is calculated. The winner neuron is characterized by the shortest distance [6] 
[7]. Each neuron from Kohonen map calculates the output value according to the 
classical weighted sum: 

−

=

=
1

0

),(
N

l
lijl wxjiOut  (4) 

where: 
Out(i, j) - output value calculated by single neuron of Kohonen map indexed by (i, j). 

3   Data Dependence Graphs for Kohonen Neural Network 

A Data Dependence Graph is a directed graph that specifies the data dependencies of 
an algorithm. Nodes of the Data Dependence Graph represent computations and arcs 
specify the data dependencies between computations [7]. 

3.1   Data Dependence Graph for Learning Algorithm 

For 1-D Kohonen map neurons are placed is single line, each neuron has two 
neighbours, excluding neurons at the ends of line. For such topology there are (N × K) 

22 )()( jjiir ww −+−=
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weights if we assumed N-element input vector and K neurons which create the Koho-
nen map. 1-D Kohonen map ought to be described by rectangular Data Dependence 
Graph (Fig. 2.). Each node of the graph is responsible for single weight calculation. 
using Grossberg rule (1) (Fig. 1.). The current value of the weight is stored in the 
local memory of each node. The node decreases the learning rate in automatic way. 
The size of the graph equals to the size of the weight matrix. Each node of the graph 
is loaded by two signals. The neighborhood function is calculated using sinus func-
tion. We propose to place the values of sinus in a table and store them in a local 
memory of each node. The neighborhood parameter a (2) is also stored in the local 
memory and is sequential reduced by negative counter. 

3.2   Data Dependence Graph for Retrieving Algorithm 

1-D Kohonen map is described by rectangular Data Dependence Graph (Fig. 3.). Each 
node of the graph calculates the component of the weighted sum (4) (Fig. 1.). The 
necessary weight value is stored in a local memory of the node. The size of the graph 
equals to the size of the weight matrix. 

  

Fig. 1. Single node of Data Dependence Graph for learning algorithm (left side)and single node 
of Data Dependence Graph for retrieving algorithm (right side) 

4   Mapping Data Dependence Graphs onto Systolic Array 

The Data Dependence Graphs for retrieving and learning algorithms are local and 
composed by the same number of nodes. The single neuron operations are described 
by the column of the graph [7]. Multi-dimensional Kohonen map is described by the 
set of 1-D Data Dependence Graphs (Fig. 2.) (Fig. 3.). It means that the slabs work in 
parallel [1] [8]. The graphs can be converted to an universal structure able to imple-
ment learning algorithm as well as retrieving algorithm using processors with 
switched functions (Fig. 4.) [3] [1]. The systolic arrays are the result of the linear 
projection of Data Dependence Graphs onto lattice of points, known as processor 
space. The elementary processor combines operations described by nodes taken from 
single vertical line of the graph [7]. 
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Fig. 2. Data Dependence Graph for learning algorithm of multi-dimensional Kohonen map 

 

Fig. 3. Data Dependence Graph for retrieving algorithm of multi-dimensional Kohonen map 
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Fig. 4. Systolic array for learning algorithm of multi-dimensional Kohonen neural network 

5   Efficiency of Proposed Approach 

An efficiency of proposed approach is estimated using the algorithm proposed by 
Kung [7] and modified for MANTRA computer analysis [6]. The estimation is based 
on the dimensions and organization of the Data Dependence Graphs. A computation 
time for retrieving algorithm equals: 

τ)KN(T 1−+=  (5) 

where τ - processing time for elementary processor. 
The computation time for learning algorithm: 

ητM)KN(T 1−+=  (6) 

where M - number of learning vectors. 
Speed-up and processor utilization rate are exactly the same for retrieving and 

learning algorithms - assuming possible sequential computation time: 
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Of course it is necessary to verify the estimated values of efficiency after the imple-
mentation of proposed structures in silicon. The implementation is started but is not 
finished yet. 

6   Conclusion 

Summarizing, the paper proposed a methodology for Kohonen neural network simula-
tion based on systolic array structure. The methodology is based on classical and not 
modified algorithms related to Kohonen maps. It is possible to realize the obtained 
subtasks by software processes, but also using dedicated neuro-computers like 
MANTRA [6] or to create your own elementary processors in PLD or FPGA. 
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Abstract. A real-time, large scale, leaky-integrate-and-fire neural net-
work processor realized using FPGA is presented. This has been de-
signed, as part of a collaborative project, to investigate and implement
biologically plausible models of the rodent vibrissae based somatosensory
system to control a robot. An emphasis has been made on hard real-time
performance of the processor, as it is to be used as part of a feedback
control system. This has led to a revision of some of the established
modelling protocols used in other hardware spiking neural network pro-
cessors. The underlying neuron model has the ability to model synaptic
noise and inter-neural propagation delays to provide a greater degree of
biological plausibility. The processor has been demonstrated modelling
real neural circuitry in real-time, independent of the underlying neural
network activity.

1 Introduction and Background

The hardware processor detailed in this paper can model large networks of
Leaky-Integrate-and-Fire (LIF) neural processing nodes (described in numerous
sources, e.g., [1], [2]) which are themselves based on the observed phenomenolog-
ical function of biological neurons. Additional biologically plausible features of
the model used here include synaptic and membrane threshold noise, inter-neural
propagation delays, and individual membrane potential and post synaptic cur-
rent decay constants. The hard-real-time constraints that are encountered in the
field of embedded computing is an area which has been applied to artificial neu-
ral networks before [3]. However, to the best of our knowledge, this has not been
used in relation to ‘Spiking’ artificial Neural Network (SNN) implementations.

SNNs differ from more conventional rate-coded artificial neural networks in
that the information passed between neurons is expressed as temporally sepa-
rated discrete events, or spikes. SNNs and Pulse Coded Neural Networks (PC-
NNs) [4] can generate behaviours and reproduce coding schemes closely anal-
ogous to biological neural systems [5]. They are consequently used extensively
by computational neuroscientists in experiments to model and obtain insights
into the operational functionality of the brain. Typically these models are sim-
ulated using software simulators, such as [6], compiled to conventional Personal
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Computers (PC) or parallel High Performance Computing (HPC) systems such
as Beowulf clusters [7]. These simulators utilise the inherent characteristics of
biologically plausible neural networks (low average network activity and sparse
inter-neural connectivity [2]) to maximise the utility of the processing space and
minimise simulation time. This approach is also adopted by dedicated biologi-
cally plausible hardware neural network accelerators, for example, [8], [9]. To test
neural network models for robustness in real-world control environments, such
as mobile robotics, the underlying network processing platform must guarantee
hard-real-time performance. The computationally efficient, activity dependant
approach to network modelling, as described above, can not guarantee this per-
formance at all levels of network activity. Therefore, a new SNN processing
architecture, which trades some network complexity for a guaranteed temporal
performance at all levels of SNN activity, is preferential for the stable on-line
control of, for example, a mobile robot.

2 The Neuron Model

The neuron model used in this processor is a single point (or single compartmen-
tal) model which exhibits class I excitability [10]. The weight of each synapse can
be subjected to multiplicative Rayleigh distributed noise. Gaussian distributed
noise can also be injected additively to the magnitude of the membrane thresh-
old potential. The noise distributions used here were chosen to best fit the model
output to empirical biological data. A variable inter-neural delay is associated
with each synapse which is used to model spatially distributed networks. Both
the absolute and the relative refractory periods of each neuron are also modelled.
The use of floating point arithmetic to represent and manipulate these parame-
ters is not available to FPGA without incurring a substantial cost in silicon real
estate. For this reason, fixed point, 16-bit integers have been used to approximate
the more accurate representation of these floating point values.

3 The Processor Architecture

The architecture of this design is best described as a Single Instruction path,
Multiple Data path (SIMD) array processor, Fig. 1. It consists of an array of
Processing Elements (PE) operating concurrently on the same instruction, is-
sued from a central sequencer, using locally stored data. The input stimulus
to the processor is ported via 2 input modules which can read in data asyn-
chronously. Similarly there are also 2 output modules. The neurons and synapses
are implemented in what we have called Neural Processing Elements (NPE).
The SIMD neural processor, detailed in this report, has 10 NPEs, each of which
emulates 120 virtual neurons and 912 synapses. The update period of the pro-
cessor is set at 500μS which is regulated by a real time counter in the sequencer
module.
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Fig. 1. Block diagram of SIMD neural processor topology

4 Module Specifics

The Sequencer maintains the real time performance and coordinates the ac-
tivity of all the concurrently operating PEs of the processor. This coordina-
tion is performed using a 2 bit control channel and a 16 bit data bus between
each of the elements.

The input module has a 64-bit input port (multiplexed onto 384 input chan-
nels) which can be connected either to physical pins or an appropriate in-
ternal interface using the logic array of the host FPGA. Handshaking lines
facilitate asynchronous operation and allow communications across different
clock domains. The 384 input channels are passed onto the internal 16 bit
data bus of the module and consequently stored in the current state memory.

The output module has a similar architecture and operation to the input
module but with an additional block of RAM containing a list of the network
outputs.

The Neural Processing Element contains a hardware implementation of a
neuron and a single synapse, Fig. 2. The contextual information of 120 ‘vir-
tual’ neurons and 912 synapses are stored locally in 4 banks of RAM. The
context for each neuron and synapse are sequentially multiplexed onto the
hardware at super-real-time. A copy of the state of the entire network is
stored locally in each NPE (as in the output module) which serves as the
input stimulus for the virtual neurons/synapses. The updated state of each
of the neurons in the NPE are stored in the local next state memory space
and is subsequently broadcast to the other PEs.
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5 Results

An existing model of part of the Basal Ganglia [11] was used to test the perfor-
mance of the system. The parameters, generated from a floating point software
simulator, were translated into fixed point integers. Tests were conducted, using
a C++ coded hardware simulator, to assess the degradation in the network per-
formance compared to the original floating point model. These parameters were
then passed into the physical synthesis process of the FPGA design flow and the
subsequent bit stream was used to configure the device. The target FPGA was
a Xilinx Virtex-II (XC2V1000-4), 1 million gate equivalent, clocked at 50MHz
and situated on a Celoxica RC200 development board. The raster plot shown in
the top panel of figure 3, is from 1200 hardware implemented neurons over a 400
millisecond time period (800 operational epochs) buffered from the FPGA via
an RS232 serial port. The histogram, shown in the lower panel, was generated
from the spike event data taken from the raster plot and clearly indicates the
periods of peak neural activity during this trial.

In a previous study it was found that floating point SNN simulator software
compiled and executed on a Pentium 4 based PC 1 could maintain real-time
performance whilst modelling a network of 7000 neurons with an average net-
work activity of 50 spike events per neuron per second (50Hz) and an average
divergence of 16 synapses per neuron. This equates to a total of 350,000 spike
events per second or 175 per update period (500μS), above which this processing
paradigm will require more than 500μS to update the state space of the network.
To assess whether a neural network can be modelled in real time a metric which
establishes a measure of peak activity, size of the network itself and the required
update period was derived. This was referred to as the activity quota of the net-
work; peak number of spike events per neuron per update period. Therefore, a
1 3GHz processor, utilising Microsoft Windows XP operating system.
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network of 7000 neurons generating a constant spike activity of 175 spike events
per update period can be categorised as requiring an activity quota of 0.025
from the underlying processing modality to remain operating in real-time. In
figure 3, the histogram shows that the network used in this test, of 1200 neu-
rons, has instances of network activity in excess of 30 spike events per update
period. This network therefore requires an activity quota greater than 0.025 to
remain operating in real-time. Were the network size to be increased to 7000,
and the activity quota remained high as shown in Fig. 3, this network could not
be modelled in real-time by the PC. The processor described in this paper has
been designed to maintain real-time performance up to a network activity quota
of 1, i.e., it is activity independent.
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Fig. 3. Raster plot and corresponding activity histogram of 1200 neurons modelling
the Basal Ganglia over a 400mS period

6 Discussion and Conclusion

The architecture has been designed to accommodate a substantial size increase
in the near future. Further, the hardware has been designed from the outset
to cater easily for cascading processor cores, either on the same FPGA or via
physical pins to separate devices. Thus, very large networks could be generated.
In fact, a matrix of 6 interconnected processor cores could simulate a network
of almost 7000 neurons in hard real-time independent of network activity.

The work reported on in this paper has demonstrated that a large SNN
model, based closely on the observed behaviour of biological neurons, can be
simulated in real-time using a single FPGA. The emphasis on hard real-time



1026 M. Pearson et al.

performance has resulted in a re-evaluation of some of the existing optimisa-
tion techniques which take advantage of the temporal and spatial characteris-
tics of biologically plausible SNNs to provide hardware acceleration for off-line
modelling.
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Abstract. We characterize the first hardware implementation of a self-
organizing map algorithm based on axon migration. A population of
silicon growth cones automatically wires a topographic mapping by mi-
grating toward sources of a diffusible guidance signal that is released by
postsynaptic activity. We varied the diffusion radius of this signal, trad-
ing strength for range. Best performance is achieved by balancing signal
strength against signal range.

1 Introduction

Neuromorphic engineers seek to migrate the computational efficiency of neuro-
biological systems into engineering applications by building silicon chips that
faithfully reproduce neural function. For example, silicon retinae now emulate
up to thirteen different cell types to encode distinct stimulus properties in four
types of spiking ganglion cell output [1]. This level of detail is possible because
the biological retina is relatively accessible experimentally. However, no compa-
rable circuit description exists for higher order processing centers.

Where circuit details are lacking, a viable alternative is to leverage recent
rapid progress in developmental neuroscience to design systems that can self-
organize their own connectivity. During development, neurons wire themselves
into their mature networks by sprouting axonal and dendritic precursors called
neurites. Each neurite is tipped by a sensory structure called a growth cone that
uses local chemical cues to guide the elongating neurite. Growth cones move
by continually extending and retracting finger-like appendages called filopodia
whose dynamics are biased by diffusible ligands [2].

Adopting this developmental approach, we previously described the first self-
organizing map chip that is based on neurite outgrowth [3]. Our chip’s neuro-
morphic cells are equipped with growth cone circuits that enable them to wire
themselves into a mature network automatically, without an explicit blueprint.

Although analogous self-organizing algorithms have been successfully imple-
mented digitally, previous analog implementations required high precision com-
ponents that are expensive in chip area (e.g., [4],[5]). By contrast, neurobiological

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 1027–1034, 2005.
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systems achieve tolerable performance with low precision components. By mim-
icking their growth cones, our neuromorphic approach realizes the low power
benefit of analog implementation without the associated cost in chip area.

We previously described the design of the Neurotrope1 chip and its ability to
self-organize topography [3]. Here, we extend those results by illustrating how
topographic self-organization depends on the range of the diffusible growth cone
guidance signal. Section 2 introduces the learning algorithm, Section 3 describes
the neuromorphic implementation, and Section 4 presents chip measurements
from a topographic self-organization task. We find that performance on this
task is optimized by balancing signal strength with signal range.

2 Neurotropic Axon Guidance

In our implementation, an active growth cone’s filopodia bind a diffusible guid-
ance signal called neurotropin that is released by active target cells (Fig. 1). The
growth cone measures the local concentration gradient by comparing the rates
at which its filopodia accumulate neurotropin, and maximizes its neurotropin
uptake by climbing the measured gradient. Since filopodial neurotropin binding
is gated by presynaptic activity and neurotropin release is gated by postsynaptic
activity, neurotropic gradient ascent implements a Hebbian update rule under
which cells that fire at the same time wire to the same place.

This algorithm for the self-organization of connections from one layer of neu-
rons to another is formally described as follows. Source cells occupy nodes of a
regular two-dimensional (2D) lattice, while growth cones and target cells occupy
nodes of separate regular 2D lattices that are interleaved. Nodes are indexed by
their positions in their respective layers, labeled by Greek letters in the source
layer (e.g. α ∈ Z

2) and by Roman letters in the target layer (e.g. x, c ∈ Z
2).

Target cell x fires at a rate aTC(x) that is proportional to its excitation:

aTC(x) =
∑
α

aSC(α)A(c(α) − x)

�

����

����

�

a b c d

Fig. 1. Neurotropic attraction model. a. A stimulus coactivates a contiguous patch of
source cells α, which fire spikes down their axons to induce their growth cones c(α)
to excite nearby target cells x. b. Active target cells release neurotropin n(x) into the
extracellular medium. c. Neurotropin spreads laterally before being bound by active
growth cones, which measure the direction of the local gradient, indicated by the arrow.
d. Active growth cones climb the gradient by displacing other growth cones.
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where aSC(α) is the activity of source cell α, and A(c(α) − x) is the branch
density of the excitatory arbor elaborated by the growth cone-tipped axon trunk
projected by source cell α to target site c(α). A(c(α)− x) decreases with target
layer separation ‖c(α)− x‖.

Active target cells release neurotropin, which spreads laterally until consumed
by constitutive scavenger processes, establishing a concentration

n(x) =
∑

y

aTC(y)N(x− y)

that sums contributions from all active target cells y, weighted by a spreading
function N(x− y) that decreases with ‖x− y‖.

An active growth cone located at c(α) uses a local winner-take-all function
to identify the node

c′(α) = arg maxx∈C(c(α))n(x)

that contains the most neurotropin during the growth cone’s activity, where C(x)
contains x and its nearest neighbors. Upon identifying c′(α), the growth cone
swaps nodes with the growth cone currently occupying c′(α), moving the entire
axon arbor with it, thereby increasing its neurotropic uptake while maintain-
ing a constant axon density. Growth cones initiate swaps independently, at a
rate λ(α) ∝ aSC(α)maxx∈C(c(α)) n(x). Swaps are serviced asynchronously, in the
order in which they arrive.

Software simulation of similar equations yields self-organized topography
when driven with appropriate presynaptic correlations [6]. In this paper, we
probe the effect of varying the width of N(x− y) in a hardware implementation.

3 Neuromorphic Implementation

We implemented this model in a full custom VLSI chip that interleaves a 24×40
array of growth cone circuits with a 24 × 20 array of target cell circuits and a
neurotropin spreading network. The Neurotrope1 chip was fabricated through
MOSIS using the TSMC 0.35μm process, and is 11.5 mm2 in area. Axons are
implemented as entries in an off-chip lookup table that are updated by Neu-
rotrope1 activity, as described in Subsection 3.1. Subsection 3.2 explains how
Neurotrope1 computes these updates from neurotropin in the spreading network
and Subsection 3.3 explains how the spreading network circuit shapes N(x− y).

3.1 Axon Remapping

Chips in our system exchange spikes encoded in the address-event representation
(AER) [7], an asynchronous protocol that pools spikes from all the cells on the
same chip onto a shared data link. AER tags each spike with the address of its
originating cell body for transmission off-chip onto the data link. Each spike is
filtered through a forward lookup table that translates the source layer address of
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Fig. 2. Axon remapping. a. Cell bodies tag their spikes with their source layer ad-
dresses, which are decoded through the forward lookup table into the target layer
addresses of their growth cones. b. Migrating growth cones decode their target layer
addresses through the reverse lookup table into the source layer addresses of their cell
bodies, which index their entries in the forward lookup table. c. Growth cones swap
locations by modifying their four entries in the forward and reverse lookup tables.

its origin into the target layer address of its destination (Fig. 2a). The receiving
chip uses the delivered address to route the spike to the appropriate target.

An axon is remapped to a new target site simply by updating its entry in
the lookup table. Updates are requested by Neurotrope1 growth cone circuits
and communicated as address-events to a Ubicom ip2022 microcontroller for
processing. Each update request identifies a pair of adjacent growth cones whose
target layer addresses are to be swapped. These addresses are translated through
a reverse lookup table that decodes target layer growth cone addresses into the
source layer cell body addresses that index the forward lookup table (Fig. 2b).
Axons migrate by modifying their entries in each lookup table (Fig. 2c).

Both lookup tables are stored in a random access memory (RAM) chip (Fig.
3a). The ip2022 processes the axon updates computed by the growth cone circuits
and overwrites the appropriate RAM cells. The ip2022 also supports a universal
serial bus (USB) over which a computer can write to and read from the RAM.
Any AER-compliant device can implement the source cell population; in this
paper, we simulate the source layer with a second ip2022.

3.2 Axon Updates

Axon updates are computed by Neurotrope1 using the growth cone circuits de-
scribed in [3]. Each growth cone occupies one node of the neurotropin spread-
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Fig. 3. a. Neurotrope1 system. b. Neurotrope1 cell mosaic. The neurotropin spreading
network (grey) is interleaved with the array of target cell circuits (TC). Each growth
cone circuit (GC) occupies one node of the spreading network and extends filopodia to
the three adjacent nodes, expressing neurotropin receptors (black) at all four nodes.
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ing network and extends filopodia to the three adjacent nodes, expressing neu-
rotropin receptors at all four sites (Fig. 3b). Neurotropin is represented as charge
in the spreading network. During a presynaptic spike, receptor circuits tap charge
from their nodes of the spreading network and store it on separate capacitors.
The first capacitor voltage to cross a threshold triggers an update request and
resets all the growth cone’s capacitors. If the receptor at the growth cone body
won the race to threshold, no action is required and the request is dropped. If
one of the filopodial receptors won, the growth cone transmits a request off-chip
to swap places with the growth cone currently occupying the winning node.

Gradient measurements are noisy, so we require the ip2022 to process multi-
ple requests from the same pair of adjacent growth cone circuits before actually
executing the swap. We maintain a running count in the RAM of accumulated
requests for each pair, and only execute a swap after its count exceeds a prepro-
grammed threshold. An executed swap resets the counts of five affected growth
cone pairings among the two growth cone circuits and their four neighbors. The
effect is to screen out spurious update requests and brake growth cone velocity.

3.3 Neurotropin Spreading Circuit

The neurotropin spreading function N(x− y) is shaped by the transistor circuit
in Fig. 4a, which implements a neighborhood function similar to [8]. Transis-
tors M1 and M2 are gated by a facilitation circuit that only allows charge to
be injected into the spreading network during a burst of postsynaptic activ-
ity, since ~tb requires several consecutive spikes to bring it low enough to open
M1, although ~ts allows individual spikes to open M2. Similarly, a growth cone
can only sample charge during bursts of presynaptic activity through transistors
M3-5. (The sampled current INT is limited by bias Vb.)

Between spikes, charge spreads laterally through the unnumbered pFETs
until shunted to ground through one of the unnumbered nFETs located at each
lattice node. The two gate biases Vspread and Vshunt control the distance to which
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Fig. 4. a. Neurotropin spreading circuit. b. SPICE simulation of node voltages Vr

during a neurotropin release pulse, as a function of distance r from the release site.
Vspread = 2.0V .
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charge can spread from its injection site. Vshunt gates the shunt transistor hosted
by each lattice node. This transistor enters saturation as the node voltage rises
and becomes a constant current sink. Incoming current in excess of this sink
charges the node capacitance until the node voltage exceeds Vspread, allowing
the remaining current to flow outward to as many nodes as needed to sink all
the injected current. Larger shunt currents sink the injected current closer to
the release site, so increasing Vshunt reduces the spreading range (Fig. 4b).

4 Topographic Self-organization

To induce the growth cone population to self-organize a topographic image of
the source layer, we drive them with bursts of presynaptic spikes from contigu-
ous patches of coactive source cells. Each patch consists of a randomly selected
source cell and its three immediately adjacent neighbors, a presynaptic activity
correlation kernel with sufficient structure to instruct topographic ordering [9].

We trace the evolution of the growth cone population by sampling the con-
tents of the forward lookup table every five minutes, an interval long enough to
present each of the 24 × 20 possible patches about once per sample. Starting
from a random projection at n = 0 (Fig. 5a), small chunks of local topography
are visible by n = 20. These local crystals eventually merge into the larger, more
global clusters observed at n = 200. A similar endstate is reached by a perfect
initial projection as it relaxes to a more sustainable topographic level (Fig. 5b).

We evaluate performance quantitatively by defining an order parameter Φ(n)

whose value measures the relative topography at a source cell’s location at time
n. One definition of topography is that adjacent source cells extend axons to
adjacent target sites, so we choose Φ(n) for a given source cell to be the average
target layer distance separating its growth cone from those of its three nearest
source layer neighbors in the nth sample. (In a perfectly topographic projection,
Φ(n) = 1.) The population average 〈Φ(n)〉 converges to similar values from both
random and perfect initial projections (Fig. 6a), so sustainable topography is not
limited by the initial conditions, but by some intrinsic property of the system.
This intrinsic limit depends on the neurotropin spreading range, which we control
with the shunt bias Vshunt. At equilibrium, 〈Φ(n)〉 is minimized by an intermediate
value of Vshunt that corresponds to an optimal spreading range (Fig. 6b).

To investigate this optimal spreading range, we examine the probability
P (n)(Φ) that a pair of growth cones projected by adjacent source cells is sep-

n�0 n�20 n�200 n�0 n�20 n�200

a b

Fig. 5. Topographic self-organization. a. Source layer maps generated from random
initial projection at time steps n. Source cells are colored by the target layer locations
of their growth cones. b. Source layer maps generated from perfect initial projection.
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Fig. 6. a. Order parameter Φ evolution from random (black) and perfect (grey) ini-
tial projections. b. Average equilibrium order parameter 〈Φ(100)〉 dependence on neu-
rotropin spreading range, as controlled by Vshunt. c. Instantaneous order parameter
probability P (n)(Φ) measured during evolution from random initial projection. Grey:
P (0)(Φ); black: P (200)(Φ).

arated in the target layer by a distance Φ in the nth axon projection sample.
We construct P (n)(Φ) from the relative frequency with which each value of Φ
is observed within the nth sample of the population ensemble of growth cone
positions downloaded from the RAM. Perfect growth cone guidance elicits a
P (∞)(Φ) that is 1 at Φ = 1 and 0 elsewhere. Unguided growth cones are dis-
tributed in proportion to the number of target sites located a distance Φ from
a given attractor (grey in Fig. 6c). This number initially increases as 2πΦ, but
falls to zero at large Φ, since growth cone separations cannot exceed the finite
array dimensions. The actual distribution achieved by our physical system lies
somewhere between these two extremes (black in Fig. 6c).

The optimal spreading range balances a neurotropin release site’s ability to
hold growth cones with its ability to attract them (Fig. 7a). For short spreading
ranges, P (100)(Φ) resembles a random distribution except for a small peak at
low Φ that captures growth cones that manage to fall within each other’s detec-
tion horizon. Increasing the spreading range allows growth cones to lure coactive
peers from greater distances, siphoning P (100)(Φ) into a peak at low Φ. However,
as the spreading range approaches the array size, the ability of larger attraction
basins to rope in more distant growth cones is outweighed by the inability of cap-
tured growth cones to localize within the basin. Consequently, for long spreading
ranges, P (100)(Φ) broadens and shifts toward the random distribution.

We dissociate the attraction and confinement aspects of guidance by tracking
the topographic evolution of the 25% of growth cones that are furthest from and
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Fig. 7. Optimal neurotropin spreading range. Left: short (Vshunt = 0.40V ); middle:
medium (0.30V ); right: long (0.20V ). a. Equilibrium distribution P (100)(Φ). Dashed
line indicates 〈Φ(100)〉. b. Evolution of 〈Φ(n)〉 within full growth cone population (black
solid line) and growth cone subpopulations with the 25% highest and lowest Φ(n) values
(black dashed lines). Grey lines plot the corresponding 〈Φ〉 for a random distribution.
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closest to their topographic neighbors (black dashed lines in Fig. 7b). Proximate
growth cones do better at short spreading ranges, but distant growth cones
do better at long spreading ranges. The optimal spreading range improves the
performance of both proximate and distant growth cones.

5 Conclusions

We characterized the first hardware implementation of a self-organizing map al-
gorithm based on axon migration. We varied the range of the neurotropic signal
that guides the silicon growth cone population to automatically wire a topo-
graphic map when driven by correlated activity. Long neurotropin spreading
ranges attract distant growth cones but cannot hold them to their targets, while
short neurotropin spreading ranges hold growth cones to nearby targets but
cannot rescue distant growth cones. This tradeoff between recovery and con-
finement implies that future systems should address these aspects separately,
perhaps through other developmental mechanisms like synaptogenesis, to con-
solidate accurately placed growth cones, and pruning, to eliminate outliers.
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J. Żurada



Author Index

Abdullah, Ahsan I-611
Abdullah, Rudwan II-351
Abe, Shigeo II-571
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González-Mendoza, Miguel II-613
Gopych, Petro I-223
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Grüning, André II-547
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Valls, José M. I-665
van de Giessen, Martijn I-469
van Schie, Hein I-261
Verleysen, Michel II-279, II-625
Vialatte, François I-683
Vicen-Bueno, R. II-917
Vicente, Carlos J. I-379
Vicente, S. I-289
Vieira, Armando II-691
Vieira, José II-359
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Erratum

Editorial Board

Abstract. The title of this volume was not correct in the original online
version. It should be “Artificial Neural Networks: Formal Models and
Their Applications – ICANN 2005”.
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