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Preface 

This volume is the first part of the two-volume proceedings of the International Con-
ference on Artificial Neural Networks (ICANN 2005), held on September 11–15, 
2005 in Warsaw, Poland, with several accompanying workshops held on September 
15, 2005 at the Nicolaus Copernicus University, Toru , Poland. 

The ICANN conference is an annual meeting organized by the European Neural 
Network Society in cooperation with the International Neural Network Society, the 
Japanese Neural Network Society, and the IEEE Computational Intelligence Society. 
It is the premier European event covering all topics concerned with neural networks 
and related areas. The ICANN series of conferences was initiated in 1991 and soon 
became the major European gathering for experts in those fields. 

In 2005 the ICANN conference was organized by the Systems Research Institute, 
Polish Academy of Sciences, Warsaw, Poland, and the Nicolaus Copernicus Univer-
sity, Toru , Poland. 

From over 600 papers submitted to the regular sessions and some 10 special con-
ference sessions, the International Program Committee selected – after a thorough 
peer-review process – about 270 papers for publication. The large number of papers 
accepted is certainly a proof of the vitality and attractiveness of the field of artificial 
neural networks, but it also shows a strong interest in the ICANN conferences. Be-
cause of their reputation as high-level conferences, the ICANN conferences rarely 
receive papers of a poor quality and thus their rejection rate may be not as high as that 
of some other conferences. A large number of accepted papers meant that we had to 
publish the proceedings in two volumes. Papers presented at the post-conference 
workshops will be published separately. 

The first of these volumes, Artificial Neural Networks: Biological Inspirations, is 
primarily concerned with issues related to models of biological functions, spiking 
neurons, understanding real brain processes, development of cognitive powers, and 
inspiration from such models for the development and application of artificial neural 
networks in information technologies, modeling perception and other biological proc-
esses. This volume covers dynamical models of single spiking neurons, their assem-
blies, population coding, models of neocortex, cerebellum and subcortical brain struc-
tures, brain–computer interfaces, and also the development of associative memories, 
natural language processing and other higher cognitive processes in human beings and 
other living organisms. Papers on self-organizing maps, evolutionary processes, and 
cooperative biological behavior, with some applications, are also included. Natural 
perception, computer vision, recognition and detection of faces and other natural 
patterns, and sound and speech signal analysis are the topics of many contributions in 
this volume. Some papers on bioinformatics, bioengineering and biomedical applica-
tions are also included in this volume. 

The second volume, Artificial Neural Networks: Formal Models and Their Appli-
cations, is mainly concerned with new paradigms, architectures and formal models 
of artificial neural networks that can provide efficient tools and techniques to model 
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a great array of non-trivial real-world problems. All areas that are of interest to the 
neural network community are covered, although many computational algorithms 
discussed in this volume are only remotely inspired by neural networks. A perennial 
question that the editors and reviewers always face is: how to define the boundary or 
the limits of a field? What should still be classified as an artificial neural network 
and what should be left out as a general algorithm that is presented in the network 
form? There are no clear-cut answers to these questions. Support vector machines 
and kernel-based methods are well established at neural network conferences al-
though their connections with neural networks are only of a historical interest. Com-
putational learning theory, approximation theory, stochastic optimization and other 
branches of statistics and mathematics are also of interest to many neural network 
experts. Thus, instead of asking: Is this still a neural method?, we have rather 
adopted a policy of accepting all high-quality papers that could be of interest to the 
neural network community.  

A considerable part of the second volume is devoted to learning in its many forms, 
such as unsupervised and supervised learning, reinforcement learning, Bayesian learn-
ing, inductive learning, ensemble learning, and their applications. Many papers are 
devoted to the important topics in classification and clustering, data fusion from vari-
ous sources, applications to systems modeling, decision making, optimization, con-
trol, prediction and forecasting, speech and text analysis and processing, multimedia 
systems, applications to various games, and other topics. A section on knowledge 
extraction from neural networks shows that such models are not always opaque, black 
boxes. A few papers present also algorithms for fuzzy rule extraction using neural 
approaches. Descriptions of several hardware implementations of different neural 
algorithms are also included. Altogether this volume presents a variety of theoretical 
results and applications covering most areas that the neural network community may 
be interested in.  

We would like to thank, first of all, Ms. Magdalena Gola and Ms. Anna Wilbik for 
their great contribution in the preparation of the proceedings. Moreover, Ms. Magda-
lena Gola, Ms. Anna Wilbik, and Ms. Krystyna Warzywoda, with her team, deserve 
our sincere thanks for their help in the organization of the conference. Finally, we 
wish to thank Mr. Alfred Hofmann, Ms. Anna Kramer and Ms. Ursula Barth from 
Springer for their help and collaboration in this demanding publication project. 

 
 

July 2005                W. Duch, J. Kacprzyk, E. Oja, S. Zadro ny 
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J. Regidor Garćıa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Special Session: Projects in the Area of NeuroIT

Deterministic Modelling of Randomness with Recurrent Artificial
Neural Networks

Norman U. Baier, Oscar De Feo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Action Understanding and Imitation Learning in a Robot-Human
Task

Wolfram Erlhagen, Albert Mukovskiy, Estela Bicho, Giorgio Panin,
Csaba Kiss, Alois Knoll, Hein van Schie, Harold Bekkering . . . . . . . . . 261



Table of Contents – Part I XI

Comparative Investigation into Classical and Spiking Neuron
Implementations on FPGAs

Simon Johnston, Girijesh Prasad, Liam Maguire,
Martin McGinnity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

HYDRA: From Cellular Biology to Shape-Changing Artefacts
Esben H. Østergaard, David J. Christensen, Peter Eggenberger,
Tim Taylor, Peter Ottery, Henrik H. Lund . . . . . . . . . . . . . . . . . . . . . . . . 275

The CIRCE Head: A Biomimetic Sonar System
Herbert Peremans, Jonas Reijniers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Tools for Address-Event-Representation Communication Systems and
Debugging

M. Rivas, F.Gomez-Rodriguez, R. Paz, A. Linares-Barranco,
S. Vicente, D. Cascado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

New Ears for a Robot Cricket
Ben Torben-Nielsen, Barbara Webb, Richard Reeve . . . . . . . . . . . . . . . . . 297

Reinforcement Learning in MirrorBot
Cornelius Weber, David Muse, Mark Elshaw, Stefan Wermter . . . . . . . 305

Evolutionary and Other Biological Inspirations

Varying the Population Size of Artificial Foraging Swarms on Time
Varying Landscapes

Carlos Fernandes, Vitorino Ramos, Agostinho C. Rosa . . . . . . . . . . . . . 311

Lamarckian Clonal Selection Algorithm with Application
Wuhong He, Haifeng Du, Licheng Jiao, Jing Li . . . . . . . . . . . . . . . . . . . . 317

Analysis for Characteristics of GA-Based Learning Method of Binary
Neural Networks

Tatsuya Hirane, Tetsuya Toryu, Hidehiro Nakano, Arata Miyauchi . . . 323

Immune Clonal Selection Wavelet Network Based Intrusion Detection
Fang Liu, Lan Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Investigation of Evolving Populations of Adaptive Agents
Vladimir G. Red’ko, Oleg P. Mosalov, Danil V. Prokhorov . . . . . . . . . . 337

Enhancing Cellular Automata by an Embedded Generalized Multi-layer
Perceptron

Giuseppe A. Trunfio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343



XII Table of Contents – Part I

Intelligent Pattern Generation for a Tactile Communication System
C. Wilks, R. Eckmiller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Self-organizing Maps and Their Applications

Self-organizing Map Initialization
Mohammed Attik, Laurent Bougrain, Frédéric Alexandre . . . . . . . . . . . . 357

Principles of Employing a Self-organizing Map as a Frequent Itemset
Miner

Vicente O. Baez-Monroy, Simon O’Keefe . . . . . . . . . . . . . . . . . . . . . . . . . 363

Spatio-Temporal Organization Map: A Speech Recognition Application
Zouhour Neji Ben Salem, Feriel Mouria-beji, Farouk Kamoun . . . . . . . 371

Residual Activity in the Neurons Allows SOMs to Learn Temporal Order
Pascual Campoy, Carlos J. Vicente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Ordering of the RGB Space with a Growing Self-organizing Network.
Application to Color Mathematical Morphology
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Toshimitsu Musha, Sergei L. Shishkin, Rémi Gervais . . . . . . . . . . . . . . . 683

Acknowledgements to the Reviewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697



Table of Contents – Part II

Formal Models and Their Applications

New Neural Network Models

Neuro-fuzzy Kolmogorov’s Network
Yevgeniy Bodyanskiy, Yevgen Gorshkov, Vitaliy Kolodyazhniy,
Valeriya Poyedyntseva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A Neural Network Model for Inter-problem Adaptive Online Time
Allocation

Matteo Gagliolo, Jürgen Schmidhuber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Discriminant Parallel Perceptrons
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Mercedes Fernández-Redondo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Ensemble Techniques for Credibility Estimation of GAME Models
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J.M. Górriz, J. Ramı́rez, C.G. Puntonet, F. Theis, E.W. Lang . . . . . . 541

Back-Propagation as Reinforcement in Prediction Tasks
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Janusz Kacprzyk, Grażyna Szkatu�la . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

A Neural Network for Text Representation
Mikaela Keller, Samy Bengio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

A Fuzzy Approach to Some Set Approximation Operations
Anna Maria Radzikowska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

Connectionist Modeling of Linguistic Quantifiers
Rohana K. Rajapakse, Angelo Cangelosi, Kenny R. Coventry,
Steve Newstead, Alison Bacon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

Fuzzy Rule Extraction Using Recombined RecBF for Very-Imbalanced
Datasets
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Krzysztof Ciesielski, Micha�l Dramiński, Dariusz Czerski . . . . . . . . . . . . 859

Information Retrieval Based on a Neural-Network System with
Multi-stable Neurons

Yukihiro Tsuboshita, Hiroshi Okamoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865

Neural Coding Model of Associative Ontology with Up/Down State
and Morphoelectrotonic Transform

Norifumi Watanabe, Shun Ishizaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873

Various Applications

Robust Structural Modeling and Outlier Detection with GMDH-Type
Polynomial Neural Networks

Tatyana Aksenova, Vladimir Volkovich, Alessandro E.P. Villa . . . . . . . 881

A New Probabilistic Neural Network for Fault Detection in MEMS
Reza Asgary, Karim Mohammadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887

Analog Fault Detection Using a Neuro Fuzzy Pattern Recognition
Method

Reza Asgary, Karim Mohammadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893



XXX Table of Contents – Part II

Support Vector Machine for Recognition of Bio-products in Gasoline
Kazimierz Brudzewski, Stanis�law Osowski, Tomasz Markiewicz,
Jan Ulaczyk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899

Detecting Compounded Anomalous SNMP Situations Using
Cooperative Unsupervised Pattern Recognition
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Abstract. We propose a new biologically motivated novelty analysis model that 
can give robust performance for natural scenes with affine transformed field of 
view as well as noisy scenes in dynamic visual environment, which can play 
important role for an autonomous mental development. The proposed model 
based on biological visual pathway uses a topology matching method of a vis-
ual scan path obtained from a low level top-down attention model in conjunc-
tion with a bottom-up saliency map model in order to detect a novelty in an in-
put scene. In addition, the energy signature for the corresponding visual scan 
path is also considered to decide whether a novelty is occurred in an input scene 
or not. The computer experimental results show that the proposed model suc-
cessfully indicates a novelty for natural color input scenes in dynamic visual 
environment. 

1   Introduction 

Reinforcement learning is a natural way for developmental models. Reinforcement 
signals come from two sources; one is extrinsic sources such as human teachers and 
the other is intrinsic sources such as pain, novelty, boredom, and curiosity. Among 
these sources for reinforcement learning, internal novelty perception plays important 
role for intrinsic motivation so as to extend knowledge and adapt to the changing 
world through external human interaction, which is one of the most important func-
tion of the autonomous mental development model. 

According to physiological experiments, the removal procedure of the two hippo-
campi does not seriously affect the person’s memory for information stored in the 
brain prior to removal of the hippocampi [1]. However, after removal, these persons 
have very little capacity for storing verbal and symbolic types of memories in long-
term memory, or even in short-term memory lasting longer than a few minutes [1]. 
Therefore, these persons are unable to establish new long-term memories of those 
types of information that are the basis of intelligence. The probable answer, why the 
hippocampus is so important in helping the brain to store new memories, is one of the 
important output pathways from the reward and punishment areas of the limbic sys-
tem. Those sensory stimuli, or even thoughts, that cause pain or aversion excite the 
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punishment centers, whereas those stimuli that cause pleasure, happiness, or a sense 
of reward excite the reward centers [1]. All of these together provide the background 
mood and motivations of the person [1]. The hippocampus especially and to a lesser 
degree the dorsal medial nuclei of the thalamus, another limbic structure, have proved 
especially important in making a decision about which of our thoughts are important 
enough on a basis of reward or punishment to be worthy of memory [1]. From these 
experiments, we may conclude that a decision of novelty is an important internal 
motivation for perceiving new things. A number of physiology researches have shown 
the novelty detection mechanism and the critical roles of the hippocampus for novelty 
detection [2-3]. 

Based on these understanding we developed a low level top-down attention model 
that can generate a human plausible scan path through reinforcing or inhibiting visual 
information based on human preference, which can be considered as a specific func-
tion related with the roles of the reward and punishment centers in the limbic system. 
Moreover, we developed a novelty scene detection model that can indicate the novelty 
of the input scene compared with previously experienced ones. This novelty detection 
model can generate internal self motivation which initiates further higher level proc-
essing such as high level scene perception and knowledge representation using infor-
mation obtained from scene perception, which is essential for a developmental  
system. 

In section 2, the proposed scene novelty analysis model will be described. We de-
scribe the experiments of the proposed model in section 3. Conclusion will be made in 
section 4. 

2   Scene Novelty Analysis Model 

In a dynamic environment, it is hard to get an input scene aligned with the previous 
experienced scene. Therefore, in order to develop a scene novelty detection model, it 
is essential to develop a robust scene description model with tolerance for noise and 
for slight affine transformed field of view such as translation, rotation, zoom in and 
zoom out in dynamic vision environment. Such a model can be used to detect novelty 
by comparing the description for the current scene with that for the experienced scene 
like the function of hippocampus in our brain. In the proposed model we developed a 
relative geometrical topology matching method using visual scan paths which is ob-
tained from the low level top-down attention model together with the bottom-up sali-
ency map(SM) model to indicate whether any novelty occurs in a current input scene 
or not. We can describe an input scene very robustly using the visual scan path be-
cause it can preserve the characteristics of input scene with affine transformation as 
well as with noise in dynamic environment. In addition, the energy signatures ob-
tained from the saliency map are also considered to decide whether a novelty is oc-
curred in the input scene or not. Fig. 1 shows the proposed novelty detection model 
for an autonomous mental development. In the proposed model, we did not consider 
the functions of the FEF and pulvinar related with attention and V4/IT and prefrontal 
cortex related with object perception and higher intelligent process. 
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Fig. 1. The proposed biologically motivated  novelty scene detection model for an autonomous 
mental development (I: intensity, E: edge, RG: red-green color opponent, BY: blue-yellow 
color opponent, sym: symmetry, CSD & N: center-surround difference and normalization, I : 
intensity feature map, E : edge feature map, S : symmetry feature map, C : color feature map, 
ICA : independent component analysis, SM : saliency map, LGN: lateral geniculate nucleus, 
LIP: lateral interaparietal cortex, FEF: frontal eye field, IT: infero-temporal area). 

2.1   Scan Path Generation by a Selective Attention Model  

As shown in Fig. 1, the SM is generated by low level top-down reinforcement and 
inhibition model in conjunction with a bottom-up saliency map model. The bottom-up 
saliency map model generates a saliency map based on the primitive 4 input features 
such as intensity, color opponency, edge, and symmetry, which mimics the brain 
visual pathway from retina to primary visual cortex(V1) and lateral intra parietal 
cortex(LIP) thorough lateral geniculate nucleus(LGN) [4,5]. The feature maps ( I , E , 
S , and C ) are constructed by center surround difference and normalization (CSD & 
N) of 4 bases, which mimics the on-center and off-surround mechanism in our brain, 
and then are integrated by an ICA algorithm [4]. The hierarchical fuzzy ART model 
can generate more plausible human like saliency map by reflecting human interests 
incrementally through reinforcing wanted areas and inhibiting unwanted areas [6]. 
Moreover, it is well known that a fuzzy ART network can be easily trained for addi-
tional input patterns without catastrophic forgetting and also can solve the stability-
plasticity dilemma in a conventional multi-layer neural network [7]. During the train-
ing process, the fuzzy ART network learns and memorizes the characteristics of unin-
teresting areas and/or interesting areas decided by a human supervisor. After success-
ful training of the fuzzy ART network, an unwanted salient area is inhibited and a 
desired area is reinforced by the vigilance value of the fuzzy ART network. However, 
as the number of training patterns increases, the fuzzy ART network becomes time 
consuming model to reinforce or inhibit some selected areas. For faster analysis to 
find an inhibition and/or a reinforcement area, we employed the hierarchical structure 
of the fuzzy ART network. The hierarchical fuzzy ART network consists of a 5 con-
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catenate layer structure in which each layer represents a different hierarchical abstract 
level of information [6]. The highest level of the model stores the most abstract in-
formation that represents a highly abstract cluster. The lowest level of the model 
stores more detailed information. Fig. 2 shows the architecture of the proposed train-
able selective attention model during testing mode. 
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Fig. 2. The architecture of the proposed trainable selective attention model during testing mode; 
the square blocks 1, 2 and 3 in SM are salient areas. 

2.2   Scene Novelty Analysis Using Scan Path Topology and Energy Signatures 

The proposed model compares two scan path topologies obtained from the current 
scene and the experienced scene, of which the procedures are as follows; 

1) Input scene is represented as a relative scan path topology vector,        , composed 
of 5 center vectors  ' '

1 5, ,s s⋅⋅⋅  for 5 dominant salient areas obtained from SM. Each 

center vector is relatively represented according to the selected reference vector repre-
senting the most left-top area among 5 salient areas, where '

refs  is a reference vector. 

' ' ' ' '
1 2 4 5[ , , , , ]r

scene refT s s s s s                                            (1) 

2) Compute a measurement score for the topology.  

' '5

' '
1

( , )
_ , :

max( ( , ))
ref i

scene
i ref i

d

d s s
Topology Score d Euclidean distance

d s s=
=                (2) 

3) Detect novelty by comparing topology score of the current input scene with that of 
the previously experienced scene. 

In order to verify novelty detection in the input scene, the proposed model com-
pares the energy signatures of two scenes. The following procedure describes the 
procedure for novelty detection using energy signature comparison. 
4) Energy signature is represented as a vector with 5 components,                 ,   

(3) ' ' ' ' '
1 2 3 4 5[ , , , , ]scene a a a a aE s s s s s ' 1

,
ai

ai

N

ai j
j sai

s SM
N ∈

=

r
sceneT

' '
1 5, ,a as s⋅⋅⋅
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where Nai is the number of pixels in the ith salient area sai and SMj is the degree of 
saliency at pixel j in SM. 
5) Compute energy score using relative energy for the energy signature. 

(4) 

6) Detect novelty by comparing energy score of the current input scene with that of 
the previously experienced one. 

3   Experiments 

Fig. 3 shows the simulation results of the low level top-down attention model together 
with the bottom-up attention model. Fig. 3 (a) shows the scan path generated only by 
the bottom-up attention model. The numbers in Fig. 3 (a) represent the order of the 
scan path according to the degree of saliency. Fig. 3 (b) shows the generated scan path 
after the hierarchical fuzzy ART network for inhibition successfully trained the 4th 
and 5th salient areas in Fig. 3 (a). After training for reinforcement of the 2nd salient 
areas in Fig. 3 (b), the proposed low-level top-down attention model can generate 
more plausible scan path, as shown in Fig. 3 (c). The proposed trainable selective 
attention model can successfully inhibit an unwanted area and reinforce a desired area 
through interaction with the human supervisor.  

 
 
 
 
 
 
 

(a)                                            (b)                                           (c) 

Fig. 3. Scan paths comparison; (a) by the bottom-up saliency map model, (b) by the low level 
top-down attention model after inhibition of the 4th and 5th salient areas in (a), (c) by the low 
level top-down attention model after reinforcement of the 2nd salient area in (b) 

 
                        (a)  time t                    (b) time t + t              (c) time t+ 2 t 

 
(d)  time t                    (e) time t + t              (f) time t+ 2 t 

Fig. 4. Scan path topologies (a, b and c) and corresponding saliency maps (d, e and f) for three 
time different scenes assumed as the same scene having a little affine transformed field of view 
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Fig. 4 shows that the proposed novelty scene analysis model can successfully indi-
cate a scene novelty in dynamic environment. Figs. 4 (a), (b) and (c) show the succes-
sive scenes with similar field of view. Fig. 4 (c) has a novelty, while Figs. 4 (a) and 
(b) do not have any novelty information except slight change of field of view. In dy-
namic environment, it is hard to get the scenes with the exactly same field of view, 
rather than we can get the scenes with affine transformed field of view. Also, Figs. 4 
(a) and (b) show that topology of scan path can be preserved for an affine transformed 
scene, while Fig. 4 (c) has different topology of scan path because of novelty. The 
scan paths in Figs. 4 (a), (b), and (c) are obtained from the corresponding saliency 
maps in Figs. 4 (d), (e), and (f), respectively. Moreover, Figs. 4 (d) and (e) show that 
we can get similar energy signatures in two corresponding SMs. Thus, by considering 
energy signature together with the topology of scan path, we can not only generate the 
correctness of novelty detection but also discriminate two different scenes having the 
similar visual scan path topologies. The proposed model showed good performance 
for indicating the novelty scene in dynamic environments. 

4   Conclusion 

We proposed a biologically motivated model to detect a novelty in natural color input 
scenes getting from an affine transformed field of view. The proposed novelty detec-
tion model might be successfully applied to an autonomous mental development 
model that can mentally grow incrementally through human interaction. 
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Abstract. We set out here, in an effort to extend the capacities of re-
cent neurobiological evidence and theories, to propose a computational
framework, which gradually accumulates and focuses transited energy as
a distribution of incitation in the cortex by means of the interaction and
communication between nerve cells within different attributes. In our
attempts to simulate the human neural system, we found a reproduc-
tion of the corresponding perception pattern from that which is sensed
by the brain. The model successfully projects a high-dimensional signal
sequence as a lower-dimensional unique pattern, while also indicating
the significant active role of nerve cell bodies in the central processing
of neural network, rather than a merely passive nonlinear function for
input and output.

1 Introduction

A phenomenon for proposing the delineation of the mammalian olfactory sys-
tem and demonstrating some biological evidence of the receptor diversity and
specificity is indicated by Buck and Axel [1]. They suggest a model in which
each individual subfamily of receptors binds distinct structural types of odorant
and the sensory neurons then accept significantly diverse signals at the receptor
expression level. The sensory system may use the spatial segregation of sensory
inputs to encode the identity of the afferent stimulus and by recalling the odor-
ant memories in the brain, transduce the eventual sensitive information into a
specific perception such as the smell of lilac flowers.

Recent neurobiological researchers explicitly indicate the narrow field in which
the response of one neuron is confided, and the particular receivable range for
the stimulus is known as “receptive field.” In other words, every neuron has its
own preference for being maximally activated by the certain input signal. Mean-
while, the outline that describes the bell-shaped relationship between external
stimuli and fire rate is called as “tuning curve.” The phenomena for neurons
characterized by distinct receptive fields are generally discovered in all neural
systems, such as diverse responses to the chemical compounds of scents in the
olfactory system [2], the orientations and contours of objects in the vision system
[3], and the moving directions of a arm in the motor system [4].

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 7–12, 2005.
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Not only do neurobiologists show great interests on the behaviors of single
neurons, but they indicate the assumption of population coding [2][4], that the
perception information is coded by a neuron ensemble. In the view of the neural
representation of perception Gilbert et al. give a reasonable idea based on the
procedures of rate code, line label, vector summation, and probability summa-
tion [5]. Lledo et al. also propose the mechanism that in the olfactory system
the pattern dynamics oscillates between reciprocal and lateral synapses [2]. And
they also agree the sparse coding of information items and the dynamic coding
implying correlation and decorrelation. Taking the above conceptions of neuro-
biological mechanism as our theoretical bases, in this study we would depend
on the following two assumptions: (1) In the neuron array, nerve cells with dis-
tinct receptive fields can be partially activated by specific stimulus; (2) In the
way of the diversity processing of units the results of neuron activations can be
combined together to express comprehensive patterns.

2 Computational Model

Motivated by the activities of the human cerebral cortex in neurobiology, many
researchers continued to design computational neural models based on the self-
organization of afferent connections to the cortex, forced by exterior stimuli, for
generating the topographic maps [6],[7]. The model we propose also intends to
imitate the workings of human brain by combining the ideas inspired by the
neurobiological mechanism of the sensory system. Like a typical self-organizing
network, as shown in Fig.1(a), these neurons are placed on the nodes of a lattice.
Via two-way connections, they are all analogous to the phenomenon of synaptic
interactions’ linking to neighbors for laterally exchanging messages after received
signals [8]. Moreover, to avoid the neurons’ sinking into multifarious information
explosions, it is apparently not possible for each of them to connect to input
sources as well as the typical framework of the self-organizing map.

In a two-dimension neural map let the vector ii,j denotes the sum of the
overall signal vectors received by the neuron ni,j either from afferent of lateral
connections, where the subindices i and j serve to the coordinate on the map.
The preference vector pi,j of the neuron ni,j indicates that the stimulation ii,j
can maximize the activation (in the apex of the tuning curve in Fig.1(b)) of the
neuron ni,j if ii,j is equal to pi,j . As Fig.1(c) indicates, the smaller the angle θ
between input signal vector ii,j and preference vector pi,j , the higher the neuron
will be fired. The vicinity of the preference vector in vector space can be also
regarded as a receptive field. Because a nerve cell has a maximal limitation of
response to any stimuli, according to the magnitude of the stimulus, the norm
of the input vector ii,j , the activation of the neuron ai,j can be calculated by

ai,j = F(ii,j ,pi,j) =

{ ii,j ·pi,j

|ii,j ||pi,j | . . . |ii,j | > |pi,j |
ii,j ·pi,j

|pi,j |2 . . . |ii,j | < |pi,j |
(1)

where || means the norm operator and the result is between +1 and −1. If the
strength of input vector is within the maximal limitation to which neurons can
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respond, the activation of neuron is calculated with being multiplied by a linear
diminution.

After the original signal activating neurons, the residual energy is consecu-
tively transited to stimulate other immediate neurons so that the neuron popu-
lation can oscillate and exchange information, if they contain similar receptive
fields [3], and then synthesize the distribution of resonant energy to produce a
perceptual pattern. The concept to retain the portion of input stimulus in ac-
cordance with the attribute of the nerve cell is by projection operation. Because
the neuron’s ability to transfer energy is limited, the norm of the residual signal
ri,j transmitted to lateral neurons can not exceed the norm of the preference
vector pi,j . If the above condition is not satisfied, the residual signal ri,j will
be decreased to the preference vector pi,j . The residual signal ri,j is defined as
follows and r̃i,j is a dummy variable:

r̃i,j = G(ii,j ,pi,j) = ii,j ·pi,j

|pi,j|2 pi,j

ri,j =
{

pi,j · · · |̃ri,j | > |pi,j |
r̃i,j · · · |̃ri,j | < |pi,j |

(2)

It is considerable that after obtaining one external signal in one epoch, the
neural system must push each afferent stimulus to thoroughly vibrate all of the
neurons on the map. In this article, we suppose that the oscillation frequency “F”
of each neuron with neighbors in the time interval between one input stimulus
and the next is the number of synaptic connections between adjacent input
nodes. While external information flows sequentially into the network, the old
residual signals simultaneously participate in the work of activating neurons as
well. The residual activity of energy distribution can resonate with the following
stimulus if the sequence comprises significant relation to the temporal domain.
This phenomenon also indicates that the resultant pattern generated by the
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neural network embraces the temporal information of sequence order. The whole
computation steps can be described as:

– When the nth stimulus s(n) injects into map (t = 1)

ii,j(n, t) = si,j(n) +
∑

rm,n(n− 1, F ) (3)

αi,j(n, t) = αi,j(n− 1, F ) + F(ii,j(n, t),pi,j) (4)
ri,j(n, t) = G(ii,j(n, t),pi,j) (5)

– After the nth stimulus injecting, during the interval of oscillation (t = 2 ∼ F )

ii,j(n, t) =
∑

rm,n(n, t− 1) (6)

αi,j(n, t) = αi,j(n, t− 1) + F(ii,j(n, t),pi,j) (7)
ri,j(n, t) = G(ii,j(n, t),pi,j) (8)

The subindex “m,n” means the location nearby the neuron ni,j , and α represents
the accumulated value of neuron activation during the active period.

Table 1. The attributes of neuron subfamilies and test odorants

The extent of preference regarding
those signals from ten types of odorant receptors

Subfamilies I II III IV V VI VII VIII IX X
The 1st subfamily 0.2 0.8 1 0 0 0 0 0 0 0
The 2nd subfamily 0 0 0 0 0.5 1 0.5 0 0 0
The 3rd subfamily 0 0 0 0 0 0 0 0.6 0.6 0.8

The activating extent of odors
to ten types of odorant receptors

Test odorants I II III IV V VI VII VIII IX X
The 1st test odorant 0 0 0 0.2 0.2 0.2 0 0 0 0
The 2nd test odorant 0 0 0 0 0 0.001 0.001 0.001 0 0

3 Experiment

In this section, we implement the proposed neural model to simulate the human
olfactory perception system as an example, and this model can be also applied
to any other sensory systems. Here we emphasize the interaction of cortical neu-
rons for the population coding of patterns. The scheme of the olfactory sensory
system is showed in the fig.2(a), the diversity of receptors contribute the distinct
activations of corresponding chemical molecules to the cortex[2]. As showed in
Table1, the three subfamilies of cortical neurons possess different preference vec-
tors pi,j , purposely assumed a high-dimension to exhibit the generalization of
this model, for the ten types of the signals from receptors. For each subfamily



The Computational Model to Simulate the Progress of Perceiving Patterns 11

we can, again, create five similar neurons of which the lengths of preference vec-
tors pi,j based on normal distribution. These five neurons are arranged in row
order, and their center means are the values in the corresponding row of Table
1, and the variance is always “one”. However, all the directions of vectors are
the same in a identical subfamily because the directional attributes determine
the preferred characters of neurons. Meanwhile, the attributes of the neurons
near the border are influence by two subfamilies. In order to make the result of
the perceptual pattern more obvious and intuitive we extend neural map to the
size 45 × 45 with the 1 × 15 row basis. Finally, we allow some neurons connect
to afferent axons and be spaced apart by four nodes in such a way that the fre-
quency “F” is fixed to five. Because our map is well developed, similar neurons
are arranged together as like a brick wall in Fig.2(b).

(a)

(b)

(c) (d) (e)

(f) (g) (h) (i) (j)

receptor cells glomeruli

Olfactory Cortex

S
ti

m
u
lu

s 
V

ec
to

rs Family I Family II

Family I Family II

Family III

Family III

Fig. 2. (a)In sensory system the glomeruli gather distinct corresponding signals from a
large number of receptors within the same receptive fields to olfactory cortex. (b)The
brick organization of neurons; the black nodes present the afferent connections. (c)-
(e)The distribution of activation in the z-axis are showed as curved surfaces upon
45 by 45 neurons placed in x and y-axis directions (parts of the graphs). (f)-(j)The
contour maps show the variations of being fired distribution in height, and please note
the differences in the outlines representing the valleys of the activation distribution
(parts of the graphs).

At first we attempt to use three test odors whose ability to activate the ten
receptors are identical to the attribute of the three subfamilies showed in Table1
to stimulate the neural map. The result of the patterns is illustrated respectively
in Fig. 2(c)-(e). They show the distribution of the accumulated activations of
vital neurons, and the z-axis describes the strength of being fired according to
the tuning curve in Fig.1(c). It can be easily observed that the locations of the
peaks indicated by the arrowheads move form left to right reflecting the same
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order of the neuron arrangements. The evidence intensely supports that in those
regions the neurons with the receptive fields similar with the identical input
stimuli are synchronous fired. Moreover, we choose two random odors to test
our map, and the different contours of patterns stimulated by all referred five
odors are presented in Fig.2(f)-(j).

4 Conclusions

In numerous trials, the artificial neural network succeeded to be established in a
simple presentation of mathematics by approximately utilizing the recent neuro-
science findings and theories of the human sensory system and to reproduce the
spatiotemporal perceptual pattern aroused by exterior stimulus. The degrees of
the activations of neuron population are determined by the correlation between
the diversity attribute of cells and the afferent or lateral stimuli in the form of
vectors. Our model perfectly conforms to the fact that if an input signal is near
the receptive field of the nerve cell, it is possible that the cell would be fired.
In the aspect of the neuron interactions the projection function plays a signifi-
cant role as a mediator who brings the opinions coherent with the attribute of
the former neuron to the latter neuron. A synchronous firing would occur when
it satisfies the condition that pairs of cell have similar viewpoints on a certain
topic. Eventually, like other self-organizing maps the high dimensional world
signals through the interactions of neurons can be projected onto the one- or
two-dimensional energy distribution map.
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Abstract. Two recently proposed approaches to recognize temporal patterns have
been proposed by Jäger with the so called Echo State Network (ESN) and by
Maass with the so called Liquid State Machine (LSM). The ESN approach as-
sumes a sort of “black-box” operability of the networks and claims a broad ap-
plicability to several different problems using the same principle. Here we pro-
pose a simplified version of ESNs which we call Simple Echo State Network
(SESN) which exhibits good results in memory capacity and pattern matching
tasks and which allows a better understanding of the capabilities and restrictions
of ESNs.

1 Introduction

Both, ESN and LSM, are three-layered networks consisting of input/hidden/output lay-
ers, which are used in matching tasks using input-output sequences. To solve the task
the input signal is fed into a highly recurrent hidden layer. During the presentation of
the signals the state-vector of the network’s hidden layer is logged. After the complete
input vector was fed into the system the logged activity is used to adjust the output
weights in a way that the network’s output matches the desired output pattern. Whereas
the ESN proposed by Jäger (see e.g. [1]) is a discrete time, nonlinear, recurrent net-
work, the LSM proposed by Maass (see e.g. [2]) is a biologically inspired model with
integrate-and-fire neurons and dynamically adapting synapses. Both approaches were
used to detect temporal patterns with different time lags [1]-[4] between input and out-
put. For reasons of brevity, in the following we just want to describe the main properties
of the two models and refer to the specific publications for the details.

1) They both use a network with an input layer which is connected with a hidden
layer. Maass connects about 30% of the hidden layer with the input layer, Jäger fully
connects the input towards the hidden layer. 2) The hidden layer is heavily recurrent.
Jäger uses a fully recurrent hidden layer, whereas Maass uses a spatial connection topol-
ogy in which the neurons are more densely connected to their local neighbors than to
remote neurons and about 10% of the connections are inhibitory. 3) The connectivity in
both approaches is stochastic. 4) The weights to the output layer are set with a one-step
learning rule, adjusting them in a way that the difference between the actual output and
the desired output over the whole training period is minimized. To achieve this goal,
both approaches use linear regression on the logged states of the hidden layer and the
desired outputs.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 13–18, 2005.
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2 SESN

The coarse structure of a SESN is similar to that of an ESN, also consisting of three
layers. Input layer I contains just a single neuron u. We define u(t) as the input to
the network and u = [u(0), .., u(tmax)]T as the vector of inputs in the time interval
t ∈ [0, tmax]. u is connected to every neuron xv in the hidden layerH (|H | = n) with
weight iv = 1 (v ∈ [1, n]). Each unit xv in H is just connected to itself with weight
dv ∈]0, 1[ randomly taken from a uniform distribution (di �= dj , ∀i, j ∈ [1, n], i �= j).
All hidden units are fully connected to the output layerO. The output layer just contains
a single neuron. The output weights w ∈ Rn from H to O are set in a single learning
step by linear regression as explained later. There are no connections from O to H or to
I , so further readout neurons can be added and analyzed in parallel without affecting the
rest of the system. All neurons have a linear transfer function. The state of the system
is described by the vector x(t) = [x1(t), .., xv(t)]T of the hidden layer. Every unit
xv is updated according to xv(t) = dv xv(t − 1) + u(t). The output unit calculates
its value by o(t) = xwT . The desired output at every time step is defined as ô(t).
The vector ô = [ô(0), .., ô(tmax)]T describes the desired outputs for the time interval
t ∈ [0, tmax]. When the proper output weights have to be calculated, the input signal
u(t) is fed into the system and the state vectors x(t) are logged forming the matrix
X ∈ Rn×(tmax+1)

Xv,t = xv(t) (1)

The pseudoinverseX† of this matrix is then used to calculate the weights by

w = X† ô. (2)

3 SESNs for Memory Reconstruction

We now want to find the output weights ws that allow to recover the past input u(t− s)
(shifted by s) at o(t) for arbitrary inputs, so that the overall network acts as a sort
of delay line. This task can be differently expressed by: The system shall map the
input impulse u = [1, 0, .., 0]T ∈ Rtmax+1 to the desired output sequence ôs =
[0, .., 0, 1, 0, .., 0]T , (os,s = 1) ∈ Rtmax+1. This is a feasible approach because a con-
tinuous linear system can be completely described by its pulse response and the signals
of an arbitrary input are processed by the system by superposition of the signal’s indi-
vidual composing pulses. For the time-discrete SESNs from (2) this still holds approxi-
mately as long as s is of the same order of magnitude as n. With the above assumptions
on u and ôs the matrix X simplifies to Xv,t = dv

t. The output weights ws are then
calculated using (2). We call the discrete response ps(t) of the system on a discrete
impulse δ(t) (δ(1) = 1; δ(x) = 0, x �= 1) its kernel, with

ps(t) = dt ws (3)

and dt the elementwise exponentiation of d. When we now feed the system with an
arbitrary input signal u(t) the output unit’s response can be directly calculated by fold-
ing the input with the kernel so that os(t) = (ps ∗ u)(t) and training time can be
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reduced by several orders of magnitude as compared to standard ESNs. Furthermore,
we can easily calculate the partial (mc(s)) and total (MC) memory capacities for our
network configuration. Jäger defined the total memory capacity [3] as the ability of the
network to extract the variation of former input from the system when it is fed with
white noise input u(t)1:

mc(s) =
(covt(ôs(t), os(t)))2

σ2
t (ôs(t))σ2

t (os(t))
MC =

∞∑
s=0

mc(s) (4)

For SESNs it holds that MC = n and

ps(s) = mc(s) (5)

(for the proof see appendix of [4]) which means that the kernel ps at time step s indicates
how much of the signal u(t − s) can still be retrieved by o(t). We observe that the
maximum peak ps(s) of the kernel response gets smaller with increasing s, meaning
the memory capacity decreases when the time lag grows. This relationship can be seen
in the top left plot of the figure at the end of the paper, were we show 3 kernels ps(t) that
resulted from the system. When we equip the hidden neurons with a nonlinear transfer
function like f(x) = tanh(x) the proper kernel ps cannot be computed in the easy
way explained above, but must be calculated extensively by propagating a white noise
signal u(t) through the network and using formulas (1), (2) and (3), since (5) does not

1 μx(f(x)) = 〈f(i)〉i σ2
x(f(x)) = 〈(f(i) − μx(f(x)))2〉i covx(f(x), h(x)) = 〈f(i) h(i)〉i.
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hold any more. The nonlinearities lower the memory capacity of SESNs, because larger
inputs are squashed and cannot be retrieved by the linear output weights in the same
way smaller input values are retrieved. As a sigmoid behaves almost linearly for inputs
around 0, memory capacity in this case gets dependent on the scaling of the input signal,
being maximal for small scale inputs (linear limit) and decreasing for larger inputs.
The reduction in memory capacity by nonlinearities was already described by Jäger [3]
and can be observed in the bottom left plot of the figure, where we show the memory
capacity as a function of the input scaling for linear and nonlinear SESNs. In the top
right quadrant of our figure we also show a typical partial memory capacity plot which
exhibits a characteristic drop at t ≈ n/4, so that if a network with almost complete
memory reconstruction capability of the last, say, ŝ time steps is desired, one would
have to use a network of size n ≈ 4ŝ.

4 SESNs for Pattern Matching

With the presented mechanism we now want the network to detect an arbitrary binary
temporal pattern g(t) ∈ {0, 1} (t ∈ [0, tg]). We feed the network with the pattern.
At time tg , after the pattern presentation ends, we want ô(tg) = 1 at the output if the
learned pattern was presented and otherwise ô(tg) = 0. To accomplish this task we
take a network of proper size (considering the arguments gained from the empirical
results for memory reconstruction from the previous section we use n = 4tg), so that
the ability to recover the pattern signals at the entire length of the presented patterns is
almost 1. We now superpose the output weights ws, for every time shift s ∈ [0, tg] for
which we want to map the input vector u = [1, 0, .., 0]T to the output vector ôs,g =
[0, .., 0, ks, 0, .., 0]T , with ks = 2 g(s)−1

tg
. By performing this superposition also the dif-

ferent kernels ps are summed to a pattern-detecting kernel p̂. The summed weight vector
wg =

∑tg

s=0 ws now reacts on g with the output o(tg) = 1 and on every other pattern
with a lower excitation. In addition, the systems output is continuous so that small
changes from the original pattern only lead to small reductions in the output excitation.

Nevertheless in this mode of operation the system performs approximately as a
linear filter after learning. To overcome this penalty without adding nonlinearities into
the system itself, we can add another pool of hidden units of the same size as the first
one, which is connected to a further input neuron, which supplies the square (u(t))2 of
the input signal. We also need a further bias unit ub supplying a permanent bias signal
ub(t) = 1 which is connected to the output unit with the weight wb. If we set the kernel
of the first hidden pool to the negative inverse pattern, i.e., p1(t) = −2 g(t − tg) the
second pool to p2(t) = 1 and the bias weight to the summed squared pattern values
(wb =

∑tg

i=0 g(i)
2), we get the following output:

o(t) = (u ∗ p1)(t) + (u2 ∗ p2)(t) +
tg∑

i=0

g(i)2 =
tg∑

i=0

u(t− i) (−2) g(t− i) +

tg∑
i=0

u(t)2 1 +
tg∑

i=0

g(t− i)2 =
tg∑

i=0

(u(t− i)− g(t− i))2 =
tg∑

i=0

(u(i)− g(i))2 (6)
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The resulting total kernel calculates the summed squared distance between the input
pattern and the learned pattern. Thus only the learned pattern produces a maximum
excitation at the output and every other pattern produces less activity.

Another possibility to make SESN capable to detect arbitrary patterns is to add
nonlinearities into the system itself by introducing nonlinear activation functions. To
train the network with n = 100 the system is fed by white noise in which every 50
time steps a pattern g(t) = −(−2 + 4t

tg
)2 with tg = 20 is inserted. Again only at the

end of a pattern presentation the output shall be 1 and otherwise 0. The size of the
training set was 2000 time steps. The calculation of ws has to be done by formulas
(1) and (2). As can be observed in the figure bottom right where as nonlinearity was
introduces by a transfer function which depolarizes the neurons after the threshold 2 is
surpassed performance rises significantly. This suggests that the enhanced capabilities
of the nonlinear network originate from exploiting the nonlinearities in a way that the
network computes higher orders of the input signal internally and computes a similar
distance measure as in (6).

5 Comparing SESN to ESN

When we want to compare ESNs with SESNs it is better to describe the differences
between the two models, because they are very similar: 1) In standard ESNs the hidden
units have a nonlinear, sigmoid transfer function. As we have seen, by introducing non-
linearities in SESNs, the memory capacity is reduced with respect to the input scaling,
but on the other hand the ability to match patterns is enhanced. In our experiments we
have seen that pattern matching performance again decreases, when the input is drasti-
cally scaled down [4]. 2) In ESNs the input weights are drawn randomly from a normal
distribution. In linear SESNs the input weights to each hidden neuron can be multiplied
into the output weight and the input weight itself can be set to 1. 3) In ESNs the hidden
units are highly interconnected with each other. A linearized version of the ESN can
straightforwardly be transformed into a SESN by diagonalizing the ESNs hidden unit
connectivity matrix and multiplying the resulting matricesD andD−1 which occur dur-
ing this process into the input-output-signals. In SESNs, there is no interconnectivity be-
tween the units. 4) In ESNs all recurrent connections are drawn randomly from a normal
distribution, whereas SESNs get their recurrent connections as specified in section 2.

We have seen that linear SESNs have the same (maximal) memory capacity as the
(also linear) ESNs, as shown in the figure bottom left and proved in [3] and [4]. We have
also seen that nonlinear SESNs and nonlinear ESNs behave very similarly in pattern
matching tasks, suggesting that the ESN learning procedure may select the weights
in a way that the ESNs are effectively reduced to the simplified network structures as
suggested in this paper.

6 Comparing SESN to LSM

LSMs are based on a continuous model with biologically inspired integrate-and-fire
neurons. Therefore they are influenced by heavy nonlinearities from different sources
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(e.g. depolarization after firing or saturation of membrane potentials). As the nonlinear
transformations of incoming signals can only be examined with great difficulties, our
conclusions about LSM are based mostly on empirical results.

For comparison, we have implemented SESNs using a continuous time model in
which the hidden layer is replaced by a layer of neurons which are just connected with
their input and their output and no other (also no recurrent) connections. Each neuron
was equipped with a membrane constant that matched that of typical integrate-and-
fire neurons from the LSMs (since the recurrent connection weights d define a kind
of membrane constant τ in the discrete, linear SESN model). Nonlinear effects lead to
a memory capacity reduction. Therefore connections between the neurons with their
nonlinear signal exchanging mechanism would result in a loss of memory capacity.
On the other hand, as nonlinearities help in pattern matching tasks, a small number
of nonlinearities proved to be very useful. In figure bottom right we can see that the
introduction of a nonlinearity by depolarizing the neurons membrane potential when a
threshold is surpassed is useful to improve the capability to recognize patterns. Again,
a SESN implementation with a hidden layer of integrate-and-fire neurons which aren’t
connected at all with each other performed quite well in memorization as well as in
pattern matching tasks in our experiments [4], compared to simulations with LSMs.

7 Conclusions

To better understand the working principles of networks of the ESN and LSM type, we
have introduced a recurrent network model called Simple Echo State Network which in
comparison has a very reduced complexity and learning costs. In particular the empha-
sized role of the recurrent connectivity and the nonlinearities can be nicely studied with
SESNs. Since SESNs perform comparably well to both ESNs and LSMs on memoriza-
tion tasks in the linear operation mode and on pattern matching tasks in the nonlinear
operation mode, we suggest that they provide an insight into understanding the prop-
erties of the two other, much more complex models, and that they give some hints on
detecting the main mechanisms leading to their performance.
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Abstract. The population density approach is a viable method to describe the 
large populations of neurons and has generated considerable interest recently. 
The evolution in time of the population density is determined by a partial dif-
ferential equation. Now, the discussion of most researchers is based on the 
population density function. In this paper, we propose a new function to charac-
terize the population of excitatory and inhibitory spiking neurons and derive a 
novel evolution equation which is a nonhomogeneous parabolic type equation. 
Moreover, we study the stationary solution and give the firing rate of the sta-
tionary states. Then we solve for the time dependent solution using the Fourier 
transform, which can be used to analyze the various behavior of cerebra. 

1   Introduction 

In many areas of the brain neurons are organized in populations of units with similar 
properties. Prominent examples are columns in the visual cortex and somatosensory, 
and pools of motor neurons. Given a large number of neurons within such a column 
or pool it is sensible to describe the mean activity of the neuronal population rather 
than the spiking of individual neurons. Each cubic millimeter of cortical tissue con-
tains about 105 neurons. This impressive number also suggests that a description of 
neuronal dynamics in terms of a population activity is more appropriate than a de-
scription on the single-neuron level. Knight et al [1], [2] introduce a novel approach 
to the modeling and simulation of the dynamics of interacting populations of neurons. 
In this approach, the dynamics of individual neurons, which are described by a state 
vector v , determines the evolution of a density function ( , )v tρ . The density function 
characterizes the behavior of the whole population. The evolution equation in this 
approach is a partial differential integral (PDE) equation, which describes the evolu-
tion of ( , )v tρ  under the influence of neuronal dynamics and a synaptic input. So far, 
most approaches to solve this PDE numerically are based on finite difference schemes 
[3], [4], [5]. Sirovich [6] discussed the solutions of some solvable cases. This paper 
presents a novel view to the population evolution equation. We derive a new popula-
tion evolution equation and give an analytical solution to analyze the firing rate. 
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2   The Population Density Model 

The population model on which this study is based derives from a neuronal dynamics 
described based on the simple integrate-and-fire equation  

( ) ( )
dv

v t s t
dt

λ= − + ;   0 1v≤ ≤ , (1) 

where the trans-membrane potential, v, has been normalized so that v = 0 marks the 
rest state, and v = 1 the threshold for firing. When the latter is achieved v is reset to 
zero. λ , a frequency, is the leakage rate and s(t), also having the dimensions of fre-
quency, is the normalized current due to synaptic arrivals at the neuron.  

Under the statistical approach one considers a population of N neurons, each fol-
lowing (1), so that ( , )N v t dvρ  specifies the probable number of neurons, at time t, in 
the range of states (v, v + dv). ( , )v tρ , the probability density, may be shown to be 
governed by 

( ) ( ) [ ( ) ( , ) ] ( ) ( )

     ( ) ( )( ( , ) ( , )) ( ) ( )

v

v h
J v r t v t v t dv v r t

t v v

v t v h t v t v r t
v

ρ δ λ ρ σ ρ δ τ

λ ρ σ ρ ρ δ τ

−

∂ ∂ ∂ ′ ′= − + = − − + + −
∂ ∂ ∂

∂= − − + − − + −
∂

, (2) 

where h is the membrane voltage jump due to a spike arrival, τ  is the refractory pe-
riod, ( )tσ is the external input rate of spikes, and J is the neuronal flux in the state 
space and r(t) is the firing rate of the population and is given by the flux of neurons 
leaving at the threshold value of the membrane potential 

1

1 1
( ) ( , ) ( ) ( , )v h

r t J t t v t dvρ τ σ ρ= −
′ ′= − = . (3) 

The boundary conditions and initial data are 
1

0
( , ) ( ) 1

( 1, ) 0

( , 0) ( )

t

t
v t dv r t dt

v t

v t q v

τ
ρ

ρ
ρ

−
′ ′+ ≡

= =
= =

. (4) 

Since the number of neurons is preserved, the flux of neurons leaving the interval 
must equal that entering at the resting state 

0

0 0 10
( , ) ( ) ( , ) ( ) ( , ) ( , ) ( )

v

v v vv h
J t v t v t dv t v t dv J t r tρ λ ρ σ ρ σ ρ ρ τ

+

−= = =−
′ ′ ′ ′= − + = = − = . (5) 

This model may be extended to include inhibition, membrane dynamics, a richer set 
of reversal potentials and stochastic effects, as well as more complicated neuronal 
models [2], [3], [4]. 

3   The Modified Population Equation and Its Analytical Solution  

Sometimes we are more interest in firing rate ( )r t than ( , )v tρ . If we solved the firing 
rate ( )r t by equation (2) and equation (3), the computational process would be dis-
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commodious and complicated. In order to overcome the difficulties, we use following 
transformation first: 

( , ) ( , ) ,     ( ,0) ( ) ( )
v v

P v t v t dv P v Q v q v dvρ
−∞ −∞

′ ′ ′ ′= = = . (6) 

Integrating equation (2) from 0 to v on two side, and substituting (6) into (2) derives 

( )( ( , ) ( , )) ( ) ( ),     [0,1]
P P

v t P v h t P v t H v r t v
t v

λ σ τ∂ ∂− = − − + − ∈
∂ ∂

. (7) 

Here H(v) is the Heaviside step function, which equate 0 when v <0, otherwise equate 
1. The firing rate r(t) is  

( ) ( )[ (1, ) (1 , )]r t t P t P h tσ= − − . (8) 

From above, moreover, we can get boundary conditions 

1

( ) ( , )
(0, ) , (1, ) 1 ( ) , 0

( )

t

vt

r t P v t
P t P t r t dt

t vτ

τ
σ =−

− ∂′ ′= = − =
∂

. (9) 

When [0,1]v ∉ , ( , ) 0P v t = . Generally, for the following quasilinear first order partial 
differential equations: 

( , ) ( , )
( ) ( , ) ( , )

v t v t
av b t v t g v t

t v

φ φ φ∂ ∂− = − +
∂ ∂

, (10) 

where ( ,0) ( )v vφ = Θ . We can get its analytical solution: 

( ) ( ) ( ) ( )

0
( , ) ( ) ( , )

t
at t a t t t tv t ve e g ve t e dtη η ηφ ′ ′− − −′ ′= Θ + , (11) 

where 
0

( ) ( )
t

t b t dtη ′ ′= . Then, from (7), we have 

( ) ( ) ( ) ( )

0
( , ) ( ) [ ( ) ( , ) ( )]

tt t t t t tP v t Q ve e t P ve h t r t e dtλ η λ η ησ τ′ ′− − −′ ′ ′ ′= + − + − , (12) 

where 
0

( ) ( )
t

t t dtη σ ′ ′= . Equation (12) gives an iterative approach to solve ( , )P v t for us. 

The value of current state ( , )P v t in each fixed position (v, t) is determined by the inte-
grate value of previous subinterval. From the point of view of signal processing, this 
can be regarded as a spatio-temporal recursion filter. 

However, the above method does not give an immediate analytical solution, and is 
inconvenient to applications for us.  

When 0h → , let us consider the Taylor expansion 
2 2

2

( , ) ( , )
( , ) ( , )

2

P v t h P v t
P v h t P v t h

v v

∂ ∂− ≈ − +
∂ ∂

. (13) 

But, when v h< , ( , ) 0P v h t− = , the equation (13) can not be used for estimat-
ing ( , )P v h t− . We adopt  

2 2

2

( , ) ( , )
( , ) ( , ) ( , )

2
( )

( , ) ( ) (0) ( )
( )

( ) ( ) ( )

h h

h

P v t h P v t
P v h t P v t h h v t

v v
r t

h v t H v P H v
t

H v H v H v h

τ
σ

∂ ∂− ≈ − + +
∂ ∂

−= − = −

= − −

, (14) 
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where ( , )h v t can regard as compensate function when (0, )v h∈ . Substituting (14) into 
(7) yields: 

2 2

2

( , ) ( ) ( , )
( ) ( , )

,     [0,1]2
( , ) ( ) ( )

P P P v t h t P v t
v h t f v t

vt v v v
f v t H v h r t

σλ σ

τ

∂ ∂ ∂ ∂− = − + + ∈∂ ∂ ∂ ∂
= − −

. (15) 

First, let us consider the stationary states. In this case, 0( )tσ σ= , ( , )
0

P v t

t

∂ =
∂

, 

0( , ) ( )P v t P v= , 0( )r t r= , then, from (15) we get  

2 2
0 0 0

02

( ) ( )
( ) ( ) 0

2

h P v P v
v h f v

v v

σ λ σ∂ ∂+ − + =
∂ ∂

. (16) 

where 0( ) ( )f v H v h r= − . The solution of (16) is  

2
2 2 2

2 0 1 1
0 1 1 2 1 1 22 2 2 20 0 0

0

( ) 2 ( ) ( )
( ) exp( ) ( )exp( ) exp( )

2 2 2

v v vv b r v b v b
P v H v h dv dv C dv C

a h a aσ
− − −= − − − + − + , (17) 

where 2
0 / 2a h σ λ= , 0 /b hσ λ= ,C1, C2 are constant and satisfy the boundary conditions 

(9), finally, we obtain 
21

0 1 0
1 1 1 22 20

0 0

2 ( )
( )exp( ) , ( )

2

r v b r
C H v h dv C H v

h aσ σ
−= − = , (19) 

and 

2

211 1
0 1 12 20

1 0
0 2 21

2 1
1 1 22 20 0

2 ( )
[ ( )exp( )

2

( ) ( )
exp( ) ( )exp( ) ]

2 2

v

v b
H v h dv

h a
r

v b v b
H v h dv dv

a a

τ σ
σ

−

−

−+ + −
=

− −− − −

. (20) 

Next, we discuss how to solve the equation (15). It can be expressed as following a 
nonhomogeneous parabolic type equation 

2 2

2

( , ) ( ) ( , )
( ) ( ) ( ), (0,1)

2
( )

( ,0) ( ),     (0, ) ,      (1, ) 1 ( )
( )

t

t

P P P v t h t P v t
v h t H v h r t v

t v v v
r t

P v Q v P t P t r t dt
t τ

σλ σ τ

τ
σ −

∂ ∂ ∂ ∂− = − + + − − ∈
∂ ∂ ∂ ∂

− ′ ′= = = −
 (21) 

This is a mixed problem that possesses initial value and boundary value simultane-
ously. It is a challenge for us to solve. We adopt the following assume 

( , ),    [0,1]
( , ) ( , )[ ( ) ( 1)]

0,             [0,1]

(0, ) (1, )
(0, ) 0,      (1, ) 0v v

P v t v
Y v t P v t H v H v

v

P t P t
P t P t

v v

∈
= − − =

∉
∂ ∂′ ′= = = =

∂ ∂

, (22) 

From (22) we have  

2 2

2 2

( , ) ( , )
[ ( ) ( 1)] [ (0, ) ( ) (1, ) ( 1)]

( , ) ( , )
[ ( ) ( 1)] [ (0, ) ( ) (1, ) ( 1)]

Y v t P v t
H v H v P t v P t v

v v

Y v t P v t
H v H v P t v P t v

v v

δ δ

δ δ

∂ ∂= − − + − −
∂ ∂

∂ ∂ ′ ′= − − + − −
∂ ∂

 (23) 
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Substituting (23) into (21) yields: 

2 2

2

0

( , ) ( , ) ( , ) ( ) ( , )
( ) ( , )

2
( ,0) ( ) ( )[ ( ) ( 1)]

Y v t Y v t Y v t h t Y v t
v h t F v t

t v v v
Y v Y v Q v H v H v

σλ σ∂ ∂ ∂ ∂− = − + +
∂ ∂ ∂ ∂

= = − −
, (24) 

where 

Applying Fourier transform to (24) yields 

2
2( , ) ( , ) ( )

( ( ) ) ( , ) ( , )
2

Y s t Y s t h t
s h t js s Y s t F s t

t s

σλ λ σ∂ ∂+ = − − − +
∂ ∂

. (26) 

where 0( ,0) ( )Y s Y s= . Solving the quasilinear first order partial differential equations 

obtains 

( , ) ( ) ( , ) ( , )
0 0

2 2
2 2

0 0

( , ) ( ) ( , )

( , ) ( ) ( )
2

tt s t t t s t s t

tt tt l l

Y s t Y se e F se t e dt

h e
s t t jshe l e dl s l e dl

λ η λ η η

λ
λ λ λη λ σ σ

′ ′− − − −

−
−

′ ′= +

= − − −
 (27) 

The inversion of  Fourier transform of ( , )Y s t , i.e. 1( , ) [ ( , )]Y v t Y s t−= Γ is 

1 ( , ) ( ) 1 ( , ) ( , )
0 0

2 2
2 2

0 0

( , ) ( ) [ ] ( , ) [ ]

( , ) ( ) ( )
2

tt s t t t s t s t

tt tt l l

Y v t Y ve e F ve t e dt

h e
s t t jshe l e dl s l e dl

λ η λ η η

λ
λ λ λη λ σ σ

′ ′− − − −

−
−

′ ′= ∗ Γ + ∗Γ

= − − −
, (28) 

where ∗  is convolution operator. From (28), we have 

( ) ( )
0 1 1 10

( , ) ( ) ( ( ), ) ( , ) ( ( ) ( ), , )
tt t t t t tY v t e Y ve U v c t t e F ve t U v c t c t t t dtλ λ λ λ′ ′− − − − ′ ′ ′ ′ ′= ∗ + + ∗ + − , (29) 

and the firing rate r(t) 

0 0 1
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1 10

( ) ( )[ (1, ) (1 , )] ( )[ [ ((1 ) ) ((1 ) )] ( ( ), )

              [ ((1 ) , ) ((1 ) , )] ( ( ) ( ), , ) ]

t t t
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−∞

′ ′ ′ ′= − − = − − − − + +
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v
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−
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−
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−
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2

( , ) [ ( ) ( 1)] ( ) ( , )

( )
( , ) ( ( ) )[ (0, ) ( ) (1, ) ( 1)] [ (0, ) ( ) (1, ) ( 1)]

2

F v t H v h H v r t g v t

h t
g v t h t v P t v P t v P t v P t v

τ
σσ λ δ δ δ δ

= − − − − +

′ ′= − − − − − −
 (25) 
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4   Conclusion 

In this paper we have presented a novel analytical approach to study the population 
evolution equation. For computing the firing rate directly, we adopt a transformation 
to the density function ( , )v tρ  and obtain the state function ( , )P v t . We derive a new 
evolution equation from the original equation, and give the approach that deduces its 
analytical solution. We partition the state v into successive subintervals and can solve 
the value of the current state ( , )P v t  from the value of previous state ( , )P v h t− , which 
can be regarded as a spatio-temporal recursion filter. Then we discuss a method to 
solve for the approximative solution, which derive a nonhomogeneous parabolic type 
equation and get a relation of computing firing rate.  
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Abstract. Based on elementary assumptions on the interconnectivity
within a cortical macrocolumn we derive a differential equation system
which models the mean neural activities of its minicolumns. A stability
analysis shows a rich diversity of stationary points and sensitive behavior
with respect to a parameter of inhibition. If this parameter is continu-
ously changed, the system shows the same types of bifurcations as the
macrocolumn model presented in [1] which is based on explicitly de-
fined interconnectivity and spiking neurons. Due to this behavior the
macrocolumn is able to make very sensitive decisions with respect to
external input. The decision making process can be used to induce self-
organization of receptive fields as is shown in [2].

Keywords: cerebral cortex, cortical columns, non-linear dynamics,
stability analysis, bifurcations.

1 Introduction

In [1] a model of a cortical neural module called macrocolumn or segregate [3] was
defined which is based on spiking neurons and columnar interconnectivity. The
model showed neuroscientifically desirable properties and far reaching functional
capabilities such as high sensitivity to external input and fast reaction times.
In this paper we show how a continuous neural dynamics with qualitatively
the same properties can be derived from few elementary assumptions about
macrocolumnar connectivity.

2 Dynamics of Minicolumn Activities

Motivated by neuroanatomical findings (see, e.g., [4,5] or [6,7] for an overview)
we assume a macrocolumn to consist of equal minicolumns and we take each
minicolumn to be equally and inhibitorily coupled to the mean activities pα of
all minicolumns in the macrocolumn, i.e., we assume the dynamics to be invariant
under permutations of minicolumns. An equation system which models such a
macrocolumn is given by1:

d

dt
pα = f(pα, h(p)) , α = 1, . . . , k , (1)

1 Note that we neglect external input to the minicolumns for the moment.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 25–30, 2005.
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with functions f : × → and h : k → . pα is the mean activity
of minicolumn α and h is invariant under all permutations of its arguments
(I = {1, . . . , k}):

∀x ∈ k ∀σ : I → I permutations : h(x1, . . . , xk) = h(xσ(1), . . . , xσ(k)) . (2)

The function h models the inhibitory input to a minicolumn, i.e, it models the
effect of inhibitory postsynaptic potentials (IPSPs) on currently active neurons
of a minicolumn. As explicit inhibitory coupling between the minicolumns we
choose motivated by the inhibition function in [1]:

h(p) = ν max
β=1,...,k

{pβ} . (3)

ν ∈ is an inhibitory gain factor which will play the role of a bifurcation
parameter. Note that (3) satisfies the assumption in (2)2.

Stationary points and stability
To analyze the dynamic behavior of (1) with (3) we first look for stationary
points of the system. Consider the set Q of phase space points for fixed ν ∈
defined as follows:

P0
1 := max{q ∈ | 0 = f(q, νq)},
P0

i := max{q ∈ | 0 = f(q, νq) ∧ ∀j < i : q �= P0
j },

Pj
i := max{q ∈ | 0 = f(q, νP0

i ) ∧ q < P0
i ∧ (∀r < j : q �= Pr

i )},

Qi := {q ∈ k | max
r∈I

{qr} = P0
i ∧ (∀r ∈ I ∃j ∈ o : qr = Pj

i ) },
Q :=

⋃
i Qi,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4)

where I = {1, . . . , k}, o = ∪ {0}, i ∈ , j ∈ o, and r ∈ I. Note that
Pj

i does not necessarily exist for all j. It can be shown that, for a large class3

of functions f , the set Q contains all the stationary points of (1) with (3). An
element of Q, e.g. q ∈ Qi, is of the form:

q = (P0
i , . . . ,P0

i︸ ︷︷ ︸
l(q)

,P1
i , . . . ,P1

i︸ ︷︷ ︸
m1(q)

, . . . ,PJ
i , . . . ,PJ

i︸ ︷︷ ︸
mJ (q)

) , l(q) +
J∑

j=1

mj(q) = k , (5)

or any permutation. For a given q ∈ Q a stability analysis results because of the
symmetries in (1) with (3) in the following eigenvalues of the Jacobian:

λ1 = ( ∂
∂x1

f)(P0
i ,ν P0

i ) + ν ( ∂
∂x2

f)(P0
i ,ν P0

i ) multiplicity 1
λ2 = ( ∂

∂x1
f)(P0

i ,ν P0
i ) multiplicity (l(q)− 1)

λ2+j = ( ∂
∂x1

f)(Pj
i ,ν P0

i ) multiplicity mj(q)

⎫⎪⎬⎪⎭ (6)

2 Note that using suitable coordinate transformation a similar analysis is also possible
with a larger class of functions satisfying (2).

3 Essentially f has to be continuous, continuously differentiable, and has to possess a
finite number of zero points but weaker assumptions are also possible.
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0

0

f̂(p)

p

Fig. 1. Activation function f̂(p) = f(p, νp) of an isolated minicolumn

An explicit minicolumn activation function
We now choose a specific function f : × → for dynamics (1). For k = 1
we expect (1) to model the activity dynamics of an isolated minicolumn. Self-
excitation due to excitatory connectivity within a minicolumn (see [7] for a
review) and bounded activity due to self-inhibition and neural refraction times
suggest an activation function f̂(p) = f(p, νp) as displayed in Fig. 1. Given very
low activity in a minicolumn without input we expect the activity to decay to
zero because of finite neural thresholds. For neural activity above a certain level
we expect the activity to increase until neural refractoriness and self-inhibition
compensate for self-excitation.

A simple choice for f which is consistent with these expectations and Fig. 1
is given by:

f(pα, h(p)) = a pα (pα − h(p) − Θ − b p2
α) , (7)

where a, b > 0, Θ ≥ 0. Note that for k = 1 the function f(p, νp) is a polynomial
of order 3. A special case is to choose b = 1 and Θ = 0 such that we get the
dynamics:

d

dt
pα = a pα (pα − ν max

β=1,...,k
{pβ} − p2

α), where a > 0, and ν ∈ [0, 1]. (8)

Note that the inhibition by other minicolumns cannot drive the activities to
non-biological negative values. Other functions f : × → are also possible
but (7) is especially well analyzable.

For ν > 1
2 we get using definitions (4) P0

1 = 1− ν, P0
2 = 0, P1

1 = 0. If ν < 1
2

we compute P1
1 = ν (instead of zero) and additionally P2

1 = 0. Thus, for ν < 1
2 ,

the stationary points of the system are given by

Q1 ={(P0
1 , . . . ,P0

1︸ ︷︷ ︸
l

,P1
1 , . . . ,P1

1︸ ︷︷ ︸
m1

, 0, . . . , 0︸ ︷︷ ︸
m2

) and permutations | l ≥ 1, m1,2 ≥ 0} ,

Q2 ={(0, . . . , 0)} ,
(9)
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and for ν > 1
2 by

Q1 = {(P0
1 , . . . ,P0

1︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
m

) and permutations | l ≥ 1, m ≥ 0} ,

Q2 = {(0, . . . , 0)} .
(10)

Note that, by applying elementary combinatorics to (9) and (10), we get a num-
ber of (3k − 2k + 1) stationary points for ν < 1

2 and 2k stationary points for
ν > 1

2 . Using (6) the stabilities of the points in Q1 and Q2 are for ν < 1
2 given

by the eigenvalues (together with their multiplicities):

λ1 = a (2(1− ν)P0
1 − 3(P0

1 )2) = −a (1− ν)2 mult. 1
λ2 = a ((2 − ν)P0

1 − 3(P0
1 )2) = a (1− ν) (2ν − 1) mult. (l − 1)

λ3 = a (2P1
1 − νP0

1 − 3(P1
1 )2) = a ν (1− 2ν) mult. m1

λ4 = −a νP0
1 = −a ν (1− ν) mult. m2

⎫⎪⎪⎬⎪⎪⎭ (11)

For ν > 1
2 we get the same eigenvalues except for λ3 which does not exist. The

stationary point (0, . . . , 0) of Q2 has as only eigenvalue λ = 0 and it turns out
to be unstable with polynomial behavior in the vicinity of (0, . . . , 0). Because of
(11) we know that, e.g. for k = 2, the set of points Q++ := {(P0

1 , 0), (0,P0
1 )}

exists and is stable for all ν ∈ (0, 1) and that the stable stationary point
Q+ := {(P0

1 ,P0
1 )} exists for all ν ∈ (0, 1) but is only stable for ν < 1

2 . The
set of points in Q− := {(P0

1 ,P1
1 ), (P1

1 ,P0
1 )} only exists for ν < 1

2 and the points
are unstable. The stationary points in Q− define the subcritical branches with
respect to Q+.

In Fig. 2 we plotted the phase velocity of (8) for k = 2 and two different
values of ν. For ν < 1

2 we get as non-zero stationary points the three stable
points of Q++ and Q+ and the two unstable points of Q−. If ν is increased
to a value greater than 1

2 , the unstable points in Q− merge with the stable
point in Q+ in the point of structural instability νc = 1

2 and we get an unstable
symmetric stationary point (P0

1 ,P0
1 ) for ν > νc. This dynamic behavior exactly

matches the behavior of the macrocolumn model with k = 2 minicolumns as it is
described in [1]. For higher dimensions we know because of the multiplicities in
(11) that all stationary points in a generalized Q+ (points in Q+ have l(q) ≥ 2)
loose their stability for the same value νc (νc = 1

2 in this case). The dynamics,
therefore, generalizes to higher dimensions as the macrocolumn dynamics in [1].
Using (9), (10) and (11) it can further be shown that (2k − k − 1) non-trivial
stable stationary points loose their stability in νc.

3 Conclusion

We derived a neural dynamics motivated by cortical connectivity. In contrast
to [1], in which an explicit connectivity and a time-discrete neuron model was
used, we here derived a dynamics from a small set of more abstract assumptions
on macrocolumn connectivity. The resulting system of differential equations (8)
represents a continuous time version of the difference equation system discussed
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F (p), ν = 0.6
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1 )A

B
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Fig. 2. Phase velocities F (p), Fα(p) = f(pα, h(p)), of dynamics (8). A Phase velocity
for ν = 0.4 < νc. Black points mark stationary points as given in (9). B Phase velocity
for ν = 0.6 > νc. Black points mark stationary points as given in (10).
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in [1]. Dynamics (8) has proven to capture the essential dynamical features of the
model in [1], i.e., it spontaneously breaks the symmetry of minicolumn activities
if the proportionality factor of inhibition ν is increased. If input to the mini-
columns is considered as perturbation of the dynamics, the system breaks the
symmetry on the basis of small input differences. Thus, the system is theoreti-
cally infinitely sensitive to external input. Using an oscillating ν the dynamics
can make sensitive decisions during each oscillation (compare [1]). This behavior
is further exploited in [2] where the dynamics is used to enable self-organization
of RFs of minicolumns with far reaching computational capabilities.

Compared to the system [1] the dynamics presented in this paper is continu-
ous, more compact and easier to handle than its predecessor. At the same time,
it was derived from few assumptions on interconnectivity and is, in a sense, more
independent of the concept of minicolumns and macrocolumn, i.e., any neural
entities and connectivities giving rise to such an equation system possess equiv-
alent information processing capabilities.
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Abstract. We present a system of differential equations which
abstractly models neural dynamics and synaptic plasticity of a cortical
macrocolumn. The equations assume inhibitory coupling between mini-
column activities and Hebbian type synaptic plasticity of afferents to
the minicolumns. If input in the form of activity patterns is presented,
self-organization of receptive fields (RFs) of the minicolumns is induced.
Self-organization is shown to appropriately classify input patterns or to
extract basic constituents form input patterns consisting of superposi-
tions of subpatterns. The latter is demonstrated using the bars bench-
mark test. The dynamics was motivated by the more explicit model sug-
gested in [1] but represents a much compacter, continuous, and easier to
analyze dynamic description.

Keywords: cerebral cortex, cortical columns, non-linear dynamics, self-
organization, receptive fields.

1 Introduction

The minicolumn is believed to be the smallest neural module consisting of
roughly a hundred neurons which are stacked orthogonal to the cortical sur-
face. Axons and dendrites of pyramidal cells in the same minicolumn bundle
together and are assumed to be strongly interconnected [2,3]. Connectivity of
inhibitory cells suggests inhibition between the minicolumns. Minicolumns com-
bine together to what is called a macrocolumn or segregate [4]. Minicolumns of
a macrocolumn receive input from the same source, e.g. a patch of the body
surface, but in the adult brain they react differently to different types of stimuli,
i.e., the minicolumns possess different RFs. At birth afferents to cortical columns
are found to be relatively unspecific (see, e.g., [5]). The subsequent specialization
is believed to be mainly driven by synaptic plasticity and to crucially depend on
sensory input.

In this paper a dynamical system is presented which models the neural dy-
namics of minicolumn activities in a macrocolumn and the specialization of
minicolumnar RFs on the basis of Hebbian plasticity.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 31–37, 2005.
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2 Activity of Minicolumns

Instead of explicitly modeling the neural connectivity within a macro- and mini-
column [1] we consider an abstract dynamics of the activity pα of minicolumn α
in a macrocolumn of k minicolumns1:

d

dt
pα = a pα

(
pα − h(p)− p2

α

)
+ κ Iα + σ ηt , (1)

where a is a time constant, κ the coupling strength to external input Iα, and
where σ2 is the variance of zero-mean Gaussian white noise2 ηt. h is a function
of the activities of all k minicolumns of the macrocolumn p = (p1, . . . , pk).
Dynamics (1) is a simple choice for modeling mini- and macrocolumn properties.
An abstract derivation of (1) and a non-linear analysis of its dynamical properties
can be found in [6]. The different summands on the right-hand-side (rhs) of (1)
can be considered as modeling different neuro-dynamical aspects:

a (pα)2 models self-excitation by excitatory interconnectivity within a mini-
column.

−a (pα)3 models negative feed-back due to neural refraction times which nat-
urally limit the minicolumn activity.

−a pα h(p) models inhibition by the minicolumns of the macrocolumn. The
function h(p) is greater than zero. Note that because of the multipli-
cation with pα this term cannot drive the activity to non-biological
negative values.

If we choose as inhibition function h(p) = ν max
β=1,...,k

{pβ} , it can be shown that

for zero input and zero noise the system possesses exponentially many stationary
points [6]. ν ∈ (0, 1) plays the role of a bifurcation parameter. For ν ∈ (0, 1

2 )
there are (3k − 2k + 1) and for ν ∈ (1

2 , 1) there are 2k stationary points. In the
point of structural instability, 1

2 = νc, 2k − k − 1 non-trivial stable stationary
points loose their stability in subcritical bifurcations. Analytical expressions for
all stationary points and for their stabilities can be derived [6]. The system
qualitatively reproduces the bifurcations observed in the explicit model defined
in [1]: if ν is increased from a value ν < 1

2 to ν > 1
2 and if the macrocolumn

has been in its symmetric stable state (all minicolumns are equally active) the
minicolumns are deactivated via a process of symmetry breakings3 (compare
[1]). For non-zero input the symmetry is broken on the basis of small differences
between the inputs Iα to the minicolumns. The smallest value of ν for which the
deactivation of a minicolumn occurs is a measure for the input strength relative
to the other inputs.

1 pα(t) can be thought of as the fraction of neurons in minicolumn α that have spiked
during a short fixed time-interval around t.

2 Which is taken to be different for each α.
3 Note that for symmetry breakings infinitesimal perturbations are required, e.g., using

a non-zero noise term with very small standard deviation.
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3 Self-organization of Receptive Fields

We operate the system with oscillating inhibitory gain factor ν. An oscillation or
ν-cycle starts with a ν = 0 interval during which the system stabilizes the sym-
metric stable stationary state under the influence of noise (σ > 0). Subsequently,
ν is increased from a value νmin to a maximal value νmax (see Fig. 1).

pE
1 pE

2 · · · · · · pE
N

R1 R2

Inhibition

p2 p3p1

R3

Fig. 1. Sketch of a macrocolumn with k = 3 minicolumns. Interactions are indicated
using arrows. The inhibition between minicolumns is visualized using a symbolic in-
hibitory neuron.

The input to the minicolumns originates from a set of input units pE
1 to pE

N

(pE
j ∈ [0, 1]) and is mediated by afferent connections Rαj : Iα =

∑N
j=1 Rαjp

E
j .

The afferent fibers we take to be subject to synaptic plasticity of the form:

d

dt
Rαj =

(
E pα pE

j − (
N∑

l=1

Epα pE
l )Rαj

)
H(χ−A(t)) , (2)

where H(x) = 0 for x ≤ 0 and H(x) = 1 for x > 0 is a step function and
where E is a synaptic growth factor. The positive term on the rhs of (2) models
Hebbian type synaptic plasticity. It is only greater than zero if minicolumn α and
input unit j are simultaneously active. The negative term insures that

∑
j Rαj

converges to one for all α. The RFs, Rα = (Rα1, . . . ,RαN ), are only modified if
the over-all activity A(t) =

∑k
α=1 pα falls below a threshold χ which ensures that

learning takes place only after a number of minicolumns have been deactivated.
The system is sketched in Fig. 1 and the complete dynamics now reads:

ν(t) =

{
0 if t̃ < Tinit

(νmax − νmin) t̃−Tinit
T−Tinit

+ νmin if t̃ ≥ Tinit
, (3)
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d

dt
pα = a pα

(
pα − ν(t) max

β=1,...,k
{pβ} − p2

α

)
+ κ

N∑
j=1

Rαjp
E
j + σ ηt , (4)

d

dt
Rαj =

(
E pα pE

j − (
N∑

l=1

Epα pE
l )Rαj

)
H(χ−A(t)) , E =

ε

N
, (5)

where t̃ = mod(t,T ), i.e., t̃ = t − nT where n is the greatest integer satisfying
t− nT ≥ 0. ε is the relative synaptic growth factor.

Equations (4) and (5) are a system of non-linear differential equations coupled
to an oscillation given by (3). In simulations the oscillation is chosen to be slow
compared to the dynamics of pα. We study the system behavior by exposing it
to different kinds of input. From a given database with different input patterns
P ∈ [0, 1]N we present a randomly chosen pattern P o during each ν-cycle, i.e.,
P o defines the values of the input units for the duration of a ν-cycle, pE = P o.
An input pattern P is, for visualization purposes, displayed as two-dimensional
grey-level image.

Before we can start simulating the dynamics we have to choose a suitable
set of parameters. To choose a consider an isolated minicolumn without self-
excitation ( d

dtp = −a p3). In this case we expect that, e.g., an activity p = 1.00
rapidly decays to a value close to zero, e.g. p = 0.05, in about 1ms (the order
of magnitude of action potentials and refraction times). For the activity levels
p(0ms) = 1.00 and p(1ms) = 0.05 we get a ≈ 200ms−1. Note that this is a
very coarse estimate due to the arbitrariness in choosing the activities but one
obtains the order of magnitude of a. The value of the coupling κ is taken to be
only a small fraction of the value for a, κ = 1.0ms−1, and standard deviation σ
of the Gaussian white noise is taken to be only a fraction of κ, σ = 0.12ms−1.
For the oscillation of ν (3) we choose a period length of T = 25ms and a time
of Tinit = 2ms with ν = 0 and additional noise to reset the dynamics. After
initialization ν is increased from νmin = 0.3 to a value νmax = 0.55 which is
slightly greater than the critical value νc = 0.5. For the dynamics of Hebbian
plasticity (5) we choose ε = 0.2 and a threshold of χ = 0.55.

4 Simulations

Equations (3) to (5) can now be numerically simulated (e.g., using the Eu-
ler method for stochastic differential equations). In the first experiment we use
the set of 42 input patterns displayed in Fig. 2A (compare [1]). By simulating
dynamics (3) to (5) with k = 6 and parameters as given above we get RF self-
organization as can be observed in Fig. 2B. After random initialization the RFs
specialize to different classes of input patterns. If we have fewer minicolumns
than major classes exist, we get coarser RFs (see Fig. 2C) and if we have more
minicolumns we get RFs with higher specialization degrees (see Fig. 2D).

In the second experiment we use the bars test [7] in order to demonstrate
the system’s ability of learning a distributed code for input consisting of sub-
pattern superpositions. We operate the system using the same parameters as in
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R1 R2 R3 R4 R5 R6R1 R2 R3 R4 R5 R6

Fig. 2. In A the set of input patterns is displayed (N = 16 × 16). During each ν-
cycle one randomly chosen pattern of this set is presented. In B the modification of
the RFs of a macrocolumn with k = 6 minicolumns is displayed. After 1000 ν-cycles
six different pattern classes are represented. The RFs’ degree of specialization further
increases thereafter to a final degree. C RF specialization (after 250 ν-cycles) if an
abstract macrocolumn with k = 3 minicolumns is used with the same input. D RF
specialization (after 10000 ν-cycles) if a macrocolumn with k = 9 is used.

Input patterns:

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Fig. 3. A A selection of 22 typical input patterns (N = 16 × 16) of a bars test with 8
different four pixel wide bars. B Typical example of the self-organization of the RFs of
a macrocolumn with k = 10 minicolumns. During each ν-cycle a randomly generated
input pattern of the upper type is presented.
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the previous experiment and we use a bars test with b = 8 bars. Each bar
occurs in an image with probability 1

4 (see Fig. 3A). As can be seen in Fig. 3B,
RF self-organization results in a representation of all bars. In 200 considered
simulations with k = 10 minicolumns a bars test with above parameters required
less than 600 ν-cycles in 50% of the cases to represent all bars (less than 410 in
20% and less than 950 ν-cycles in 80% of the simulations). The system found a
correct representation for all bars in all simulations and is robust against various
perturbations to the bars test. Note that the results for the bars test show an
improvement compared to the explicit system presented in [1] which requires
more ν-cycles for the same bars test. Thus dynamics (3) to (5) represent not only
an abstraction but, at least in the here discussed bars test, also an improvement
of the explicit dynamics in [1] (also compare [8]). Note that already the system
presented in [1] has on the basis of extensive measurements shown to be highly
competitive to all other systems suggested to solve the bars test.

5 Conclusion

On the basis of recurrent activity in cortical minicolumns, oscillatory inhibitory
coupling between the minicolumns, and phase coupled Hebbian synaptic plas-
ticity of afferents we derived a system of coupled differential equations which
models self-organization of RFs of cortical minicolumns. Self-organization allows
a macrocolumn to represent input using distributed activity of its minicolumns
relative to an oscillation. The model combines most often independently dis-
cussed aspects of neural information processing and is functionally competitive
in a standard benchmark test for feature extraction.
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Abstract. Neurons in visual cortex receive a large fraction of their in-
puts from other cortical neurons with a similar stimulus preference. Here
we use models of neuronal population activity and information theoretic
tools to investigate whether this arrangement of synapses allows efficient
information transmission. We find that efficient information transmission
requires that the tuning curve of the afferent neurons is approximately as
wide as the spread of stimulus preferences of the afferent neurons reach-
ing a target neuron. This is compatible with present neurophysiological
evidence from visual cortex. We thus suggest that the organization of V1
cortico-cortical synaptic inputs allows optimal information transmission.

1 Introduction

A typical neuron in visual cortex receives most of its inputs from other visual
cortical neurons which have similar stimulus selectivity [1,2,3]. For instance,
orientation selective neurons in superficial layers in ferret visual cortex receive
more than 50% of their cortico-cortical excitatory inputs from neurons with
orientation preference which is less than 30o apart. However, this input struc-
ture is rather broad in terms of stimulus-specificity since connections between
neurons with dissimilar stimulus orientation also exist [4]. The organisation of
cortico-cortical connections has received a lot of attention because it may be
involved in the generation of orientation tuning. However, little is yet known on
whether this structure of inputs allows efficient transmission of sensory informa-
tion across cortico-cortical synapses. We have previously addressed this issue by
introducing a population coding model [5] that quantifies the information about
the sensory stimuli that a typical cortical “target” neuron receives through its
cortico-cortical synapses. In this paper we extend the previous analysis by study-
ing numerically in more detail the properties of this model. We find that that,
under a wide range of spread of stimulus preference values, efficient synaptic
information transmission requires that the tuning curve of the afferent neurons
is approximately as wide as the spread of stimulus preferences of the afferent
fibres reaching the target neuron. By meta-analysis of anatomical and physio-
logical data, we argue that this optimal trade-off is approximately reached in
visual cortex. Thus, neurons in visual cortex may be wired to decode optimally
information from their synaptic inputs.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 39–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Modeling the Activity of the Afferent Neural
Population

We assume that the afferent population is made of a large number N of neurons
(N ≈ 10000 in real cortical afferent populations). The response of each neuron
rk(k = 1, · · · ,N) is quantified as the number of spikes fired in a salient post-
stimulus time window of a length τ . Thus, the overall population response is
represented as a spike count vector r = (r1, · · · , rN ). We assume that the neurons
are tuned to a small number D of stimulus parameters, such as e.g. orientation,
speed or direction of motion. The stimulus will thus be described as a vector
s = (s1, . . . , sD) of dimension D. The number of stimulus features that are
encoded by the neuron will be left as a free parameter. In fact, it has been
shown [6] that, when considering large populations with a uniform distribution
of stimulus preferences (such as an hypercolumn in V1 containing all stimulus
orientations) the optimal tuning width of individual neurons depends crucially
on the number of stimulus features being encoded. Thus, it is interesting to
investigate how the optimal arrangement of cortico-cortical synapses depends
on D.

The neuronal tuning function of the k − th neuron (k = 1, · · · ,N), which
quantifies the mean spike count of the k−th neuron to the presented stimulus, is
modelled as a Gaussian distribution, characterised by the following parameters:
preferred stimulus s(k), tuning width σf , and response modulation m:

f (k)(s) = m exp
(
− (s− s(k))2

2σf
2

)
(1)

The Gaussian tuning curve fits well the response of V1 or MT neurons to vari-
ables such as stimulus orientation motion direction [7], and is hence widely used
in models of sensory coding [8,9]. Large values of σf indicate coarse coding,
whereas small values of σf indicate sharp tuning.

Spike count responses of each neuron on each trial are assumed to follow a
Poisson distribution whose mean is given by the above neuronal tuning func-
tion (Eq. 1). The Poisson model neglects all correlations between spikes. This
assumption is certainly a simplification but it is sufficient to account for the ma-
jority of the information transmitted by real cortical neurons [10], and it makes
our model mathematically tractable.

Neurons in sensory cortex receive a large number of inputs from other neurons
with a variety of stimulus preferences. However, the majority of their inputs come
from neurons with roughly similar stimulus preference [1,2,3]. To characterise
mathematically this type of spread of stimulus preference, we assume that the
probability distribution of the preferred stimulus among afferent neurons follows
a Gaussian distribution:

P (ŝ) =
1

(2π)D/2σD
p

exp
(
− (ŝ− ŝ0)2

2σ2
p

)
(2)

In Eq. (2) the parameter ŝ0 represents the the center of the distribution, thus
being the most represented preferred stimulus in the population (we set, without
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loss of generality, ŝ0 = 0). The parameter σp controls the spread of stimulus
preferences of the afferent neuronal population: a small value of σp indicates
that a large fraction of the population have similar stimulus preferences, and a
large value of σp indicates that all stimuli are represented similarly. A Gaussian
distribution of stimulus preferences for the afferent population fits well empirical
data on distribution of preferred orientations of synaptic inputs of neurons in
both deep and superficial layers of ferret primary visual cortex [3].

3 Width of Tuning and Spread of Stimulus Preferences
in Visual Cortex

In order to later compare our results with real parameters in cortex, we per-
formed a meta-analysis by fitting our distributions, Eq. (3) and (4), to published
data. For a target neuron in ferret primary visual cortex tuned to orientation,
the spread of stimulus preferences σp of its inputs is ≈ 20o for layer 5/6 neurons
[3], and 16o [3] for layer 2/3 neurons. The orientation tuning width σf of the
cortical inputs to the V1 target neuron is that of other V1 neurons that project
to it. This σf is 17o for Layer 4 neurons [11], and it is similar for neurons in
deep and superficial layers [3]. For Layer 4 neurons in cat visual cortex tuned
to orientation, σp is 20o [2] and σf is ≈ 17o. When considering a target neuron
in ferret visual cortex and motion direction tuning, the spread of tuning of its
inputs σp is ≈ 30 o [1]. Motion direction tuning widths of macaque neurons is ≈
28o, and this width is similar across species (see [7]).

The most notable finding of the above meta-analysis is that σp and σf ap-
pear to be approximately of the same size and their ratio σf/σp is distributed
around 1, in the range 0.7 to 1.1 for the above data. We will use our model
to understand whether this range of σf/σp corresponds to an optimal way to
transmit information across a synaptic system. It is important to bear in mind
that our model, Eq. (1), considers stimuli as non-periodic values. This is a good
approximation because the experimental values of σp and σf are much smaller
than the period of the stimulus, and therefore the periodic nature of the stimulus
can be neglected to a good approximation. However, this simplification makes
it difficult to compare directly the model results for optimal σp or σf values
with the V1 experimental findings above. It is instead meaningful to compare
the optimal ratio σf/σp (which is independent of the scale introduced by the
period of the angular stimulus variable), and check that this optimal ratio is
approximately constant across a wide range of parameter values.

4 Information Theoretic Quantification of Population
Decoding

To characterise how a target neuronal system can decode the information about
sensory stimuli contained in the activity of its afferent neuronal population, we
use mutual information [12]. The mutual information between a set of stimuli
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and the neuronal responses quantifies how well any decoder can discriminate
among stimuli by observing the neuronal responses, and is defined as follows:

I(S,R) =
∫

dsP (s)
∑
r

P (r|s) log2
P (r|s)
P (r)

(3)

where P (s) is the probability of stimulus occurrence (here taken for simplicity
as a uniform distribution over the hypersphere of D dimensions and ‘radius’
sρ). P (r|s) is the probability of observing a neuronal population response r
conditional to the occurrence of stimulus s, and P (r) =

∫
dsP (s)P (r|s). The

probability P (r|s) is computed according to the Poisson distribution, which is
entirely determined by the knowledge of the tuning curves [13]. The mutual
information is difficult to compute for large populations because it requires the
knowledge of the probability of the large-dimensional response vector r [14].
However, since in our model we assume that we have a very large number of
independent neurons in the population and that the total activity of the system
is of the order of its size, then we can use the following simpler (but still exact
in the large N limit) expression[8]:

I(S,R) = −
∑
s

P (s) log2(P (s))− D

2
log2 (2πe)+

1
2

∫
dsP (s) log2 (|J (s)|) (4)

where J (s) is the Fisher information matrix and | . . . | stands for the determi-
nant. The Fisher information matrix is a D ×D matrix whose elements i, j are
defined as follows:

Ji,j(s) = −
∑
r

P (r|s)
(

∂2

∂si sj
lnP (r|s)

)
, (5)

The Fisher information matrix can be computed by taking into account that
for a population of Poisson neurons is just the sum of the Fisher information
for individual neurons, and the latter has a simple expression in terms of tun-
ing curves [8]. Since the neuronal population size N is is large, the sum over
Fisher information of individual neurons can be replaced by an integral over
the stimulus preferences of the neurons in the population, weighted by their
probability density P (ŝ). After performing the integral over the distribution of
preferred stimuli, we arrived at the following result for the elements of the Fisher
information matrix:

Ji,j(s) =
Nτm

σ2
p

σD−2

(1 + σ2)
D
2 +2

(
δi,j + σ2 (δi,j + ξiξj)

)
exp

(
− ξ2

2 (1 + σ2)

)
(6)

where we have introduced the following short-hand notation σf/σp → σ and
s/σp → ξ; δi,j stands for the Kroneker Delta. From Eq. (6) it is possible to
compute explicitly the determinant |J (s)|, which has the following form:

|J (s)| =
D∏

i=1

λi = α(ξ)D(1 + σ2)D−1 (1 + σ2(1 + ξ2)
)

(7)
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where α(ξ) is given by:

α(ξ) =
Nτm

σ2
p

σD−2

(1 + σ2)
D
2 +1

exp
(
− ξ2

2 (1 + σ2)

)
(8)

Inserting Eq. (7) into Eq. (4), one obtains a tractable expression for I(S,R),
whose behaviour will be investigated next.
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Fig. 1. a)Mutual information as a function of the ratio σf/σp. The curves for each
stimulus dimensionality D were shifted by a constant factor to separate them for vi-
sual inspection (lower curves correspond to higher values of D). The y-axis is thus in
arbitrary units. Parameters are as follows: sρ = 2, rmax = 50Hz, τ = 10ms. b)Plot
of the optimal ratio σf/σp, for which there is maximal information transmission, as a
function of σp and for D = 3, and 4. For a wide range of stimulus spread values, σf/σp

is within the range found in cortex.

We have studied numerically the dependence of the mutual information on
the parameters σf and σp as a function of the number of encoded stimulus
features D 1. We investigated this by fixing σp and then varying the ratio σf/σp

over a wide range. As noted above, since we neglect the angular nature of the
experimental visual stimuli, we can only meaningfully compare the ratio σf/σp

(but not their individual values) to the real V1 data.
Results (obtained for σp = 1) are reported in Fig. 1.a. Unlike the case of

a uniform distribution of stimulus preferences [6], there is a finite value of the
width of tuning σf that maximizes the information for all D ≥ 2. For D ≥ 2 the
range 0.7 ≤ σf/σp ≤ 1.1 found in visual cortex either contains the maximum
or corresponds to near optimal values of information transmission. For D = 1,
information is maximal for very narrow tuning curves. However, also in this
case the information values are still efficient in the cortical range σf/σp ≈ 1,

1 We found (data not shown) that other parameters such as m and τ , had a weak or
null effect on the optimal configuration; see [9] for a D = 1 example in a different
context.
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in that the tail of the D = 1 information curve is avoided in that region. In
Fig. 1b we show the optimal ratio σf/σp, that is the ratio for which there mutual
information is maximal, for stimulus dimension D = 3, and 4 as a function of
σp. Except when σp is very small the optimal ratio between σf and σp is within
the range found in cortex, for a wide range of σp values. Thus, the range of
values of σf and σp found in visual cortex allows efficient synaptic information
transmission of a small number of stimulus features encoded by the neurons.

In conclusion, we have shown that the stimulus-specific structure of cortico-
cortical connections may have also implications for understanding cortico-cortical
information transmission. Our results suggest that, whatever the exact role of
cortico-cortical synapses in generating orientation tuning, their wiring allows
efficient transmission of sensory information.
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Abstract. This paper addresses the problem of signal responses vari-
ability within a single subject in P300 speller Brain-Computer Interfaces.
We propose here a method to cope with these variabilities by consider-
ing a single learner for each acquisition session. Each learner consists of
a channel selection procedure and a classifier. Our algorithm has been
benchmarked with the data and the results of the BCI 2003 competition
dataset and we clearly show that our approach yields to state-of-the art
results.

1 Introduction

Some people who suffer some neurological diseases can be highly paralyzed due
to the fact that they do not have anymore control on their muscles. Therefore,
their only way to communicate is by using their electroencephalogram signals.
Brain-Computer interfaces (BCI) research aim at developing systems that help
those disabled people communicating with machines.

Research on BCI is a fast growing field and several EEG-based techniques
have been proposed for realizing BCI. The BCI framework that is of interest
for us is based on Event Related Potentials (ERP) which appear in response to
some specific stimuli. Hence, this BCI produces an appropriate stimuli for which
the patient is expected to respond. The core principle underlying such system is
then based on the recognition of ERP which corresponds to the stimuli. In other
words, this BCI is essentially based on classification of a EEG signals which is
a difficult problem due to the low signal-to-noise ratio and the variability of the
ERP responses within a single subject.

We propose some solutions for improving the performance of such BCI by ad-
dressing this variability problem through an ensemble approach based on linear
SVMs [6].

The paper is structured as follows : section 2 describes the BCI classification
problem with more details and the methodology that have been used for channel
selection and for building the multiple classifier systems. Section 3 presents the
� This work was supported by grants from the IST programme of the European Com-

munity under the PASCAL Network of excellence, IST-2002-506778.
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Fig. 1. P300 speller matrix with an highlighted column

results that have been achieved whereas section 4 concludes the paper with
comments and perspectives on the work.

2 Methods

The BCI problem we are addressing in this paper concerns the P300 speller.
This speller has been introduced by Farwell and Donchin [3] who developed a
protocol whereby a subject is presented a 6 × 6 characters matrix in which a
row or column is randomly intensified. Then large P300 evoked potentials can
be recorded in response to the intensification of a desired character. Hence the
objective of the problem is to classify these potentials whether they correspond
or not to the desired character . The data that we used in this study comes
from the BCI 2003 competition dataset [1] and they have been provided by
the Wadsworth institute [5]. In the following, we give a short description of
the datasets. The data corresponds to the three separate spelling sessions of
respectively 5,6, 8 words by a single subject. These recordings correspond to 64
channels which have been digitized at 240 Hz. However, in our case, we are only
interested in the part of the signal that follows the intensification of a row or
column. The experimental protocol, which have already been described in [3] is
the following. For selecting a given character, each row and column of the matrix
is highlighted in a random sequence (hence, the desired character appears on 2
out of 12 intensifications) and this procedure is repeated 15 times for the same
character. Then after a short pause, the user has to focus on another character.
In our case, the objective is to predict a word correctly by means of the fewer
sequence repetitions as possible.

Brain Computer Interfaces classification problems are challenging essentially
due to (i) the low signal-to-noise ratio of the signal, (ii) the variability of the
EEG signal for a given user, and (iii) the variability between different users.
Then, in order to achieve interesting results, it is expected that a classification
strategy addresses all these points.

The problem we face is thus the following. We have {xi, yi}i=1,··· ,� examples
where each xi ∈ R

d and yi ∈ {−1, 1}. In our case, d = 64 × 240 × td where td
corresponds to the duration of the signal of interest after intensification. Since we
have fixed td to 0.667s , the number of features is equal to 10240 which suggests
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that a variable selection procedure would be helpful for a least, reducing the
processing time.

According to the competition rules, the first two spelling sessions have been
used for training our system while the last one has been kept for test. Hence, our
training data is composed of 7560 stimuli responses which 1260 of them contain
a true P300 ERP responses.

Signals from channels are. Here, we have filtered each signal using a 8-order
bandpass filter with cut-off frequencies of 0.1 Hz and 20 Hz and then decimated
each signal according to this latter frequency. Since we are interested only in a
time window of 667 ms after intensification, at this stage the data dimension
is 896. At this point, one can directly use the signals from preselected or user-
defined channels as inputs of a classifier. This approach has been investigated
by Meinicke et al. After appropriate scaling of the inputs, they trained a SVM
with equal number of positive and negative examples. In this work, we propose
an approach that tries to take into account the variability of the signals during
different sessions or even during different words spelling in the same session.

The idea is to train a complete recognition stage for each word in the training
set and then to combine the output of all the resulting classifiers for producing
a single score for each signal.

Hence for training a single classifier, we have performed the following steps
for each word spelling session signals:

– signals of each channel are normalized to zero mean and unit variance
– a channel selection is performed in order to retain only the most relevant

channels. Our channel selection algorithm is based on a recursive channel
elimination. The algorithm starts with all channels and then according to a
user defined performance criterion C, the criterion C(−j) ( the criterion when
channel j is removed) is evaluated on all the remaining words of the training
session. In our case, our criterion is defined as C = tp

tp+fp+fn where tp, fp, fn
are respectively the number of true positive, false positive and false negative.
The channel that is suppressed is thus the one which removal maximizes the
criterion C. Then we continue this procedure until all channels have been
removed.
Hence, this channel selection algorithm allows us to rank all the channels
according to the criterion C and only the most relevant channels are subse-
quently used for classification.

– an linear SVM is then trained using all available examples described by the
selected channels for this single word.

In this BCI problem, one should distinguish an evoked potential response
classification (as described above) and a character recognition. Remember that
the character that is spelled is characterized by a row and column of the matrix,
and thus a character recognition is achieved by recognizing as positive a given
row and column. Hence, for a given sequence of all rows and columns matrix
illumination (which corresponds to 12 intensifications), if f(x) is the score of a
given row or columns rc given by our classifier then Src(k) = Src(k − 1) + f(x)
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where x is the input signal associated to the highlighted row or columns rc, f(x)
is the score (SVMs output) associated to x and Src(k) is overall score of rc at
sequence k. Then at a given sequence k, the character that should be recognized
is the one with maximal row and column score. In our approach, we are using
an ensemble approach since we have a classifier for each word of the training
session, the score f(x) is actually : f(x) =

∑n
i=1 fi(x) where fi(x) is the score

given by each classifier to x.

3 Results

Several experiments have been carried out in order to analyze the benefits of our
approach.

All SVM classifiers that we used are linear SVM classifier. We justify this
choice by stating that what makes this problem (and many other biosignal clas-
sification problems) difficult is the variability of the datasets. Thus, we believe
that dealing with a linear classifier will prevent from overfitting the training
data.

Our results are compared to those obtained by BCI competition winner.
We have reported in the table (1), the results obtained by Bostanov [2] and a
result from a similar algorithm than the one described by Meinicke et al. [4]. In
this experiment, we have used the 10 channel proposed by the authors and a
linear SVM (instead of a gaussian kernel SVM) for which the C regularization
parameter is 0.1. We have also evaluated the gain of using a multiple classifiers
system in which each classifier is dedicated to a single word learning. As expected,
taking into account the variability of the P300 within subject by multiplying the
number of classifiers greatly enhances the recognition rate performances. From
table (1), one can see that using all channels achieves a state of the art result
since all words are correctly recognized with only four sequences. This is very
interesting since it confirms our hypothesis that variability of responses play a
very important role in the P300 recognition, and it is necessary to cope with this
variability. Again, if we compare performance of a single SVMs and a mixture of
SVMs approach with the 10 channels used by Meinicke et al., we can see that our
approach only slightly improves performances. This latter point highlights the
need of an appropriate channel selection which, again should take into account
the problem variability.

We have analyzed the channel selection procedure. What we expect from
the channel selection is two-fold : a reduced number of explicative channels and
an increased processing speed, which will be useful in a real-time application
context. First of all, we have analyzed the variability of the channel selection
procedure for a single subject using the P300 speller within different sessions and
runs. Table (2) shows the 10 top ranked channels for a given session according
to the above described criterion tpr/(tpr+fpr+fnr). The first remark that can
be drawn from this table is that only few channels (55, 56, 58, 60 which are also
known as P8 ,Po7 ,POz ,Po8) are considered as equally relevant for almost all
the sessions. This point focuses again the variability of the data and justifies the
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Table 1. Number of mispellings in the test words with respects to the number of
sequences and the algorithm

Nb. of sequences
Algorithms 1 2 3 4 5 6 7 10
Bostanov [2] 11 5 2 1 1 0 0 0
10 preselected channels and single SVM 14 6 6 0 1 0 0 0
all channels and single SVM 14 10 9 5 5 5 1 0
10 preselected channels and 1 SVM per word 13 8 3 1 2 0 0 0
all channels and 1 SVM per word 7 4 3 0 0 0 0 0
4 relevant channels and 1 SVM per word 8 7 4 0 1 0 0 0
10 relevant channels and 1 SVM per word 8 5 5 1 0 1 0 0
26 relevant channels and 1 SVM per word 4 2 0 0 0 0 0 0
30 relevant channels and 1 SVM per word 5 3 0 0 0 0 0 0
optimal relevant channels and 1 SVM per word 4 2 1 0 0 0 0 0
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Fig. 2. Examples of channel selection criterion variation with respect to the number
of channels. On the left, we have two examples for each training word and on the right
we have plotted the averaged criterion value over all the training words.

need of taking into account separately the different word spelling acquisition.
If we compare the channels top-ranked by our channel selection algorithm to
those used by the other competitors of on this datasets [4], we can see that only
few channels are in common. Figure (2) describes the variation of the channel
selection criterion for different words spelling sessions. Again, we can see that
the optimal number of channels differs considerably from a session to another
and on average, the optimal number of channels is between 15 and 30.

Regarding the spelling performance given in table (1), two interesting points
have to be highlighted. First of all, one can see that the if the number of rele-
vant channels to be used is chosen appropriately, then all the words in the test
set can be recognized correctly with only 3 sequences. However, our fully auto-
mated procedure (last line of the table) need 4 sequences for achieving equivalent
performance. The second interesting point is that within 15 and 30 used chan-
nels, the overall performance is rather stable with a number of misspellings and
number of needed sequences varying respectively from 6 to 10 and 2 to 3.
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Table 2. 10 Top Ranked channels for the differents word spelling sessions

Sessions 10 Top Ranked Channels
1 9 15 18 36 40 55 56 59 63 64
2 18 39 53 55 56 58 59 60 61 64
3 9 18 40 48 53 55 56 58 61 64
4 10 18 33 42 46 55 56 58 60 64
5 16 22 39 40 50 56 57 60 61 62
6 2 10 36 42 48 50 55 56 58 60
7 10 17 21 25 31 43 46 51 55 56
8 10 32 41 44 49 52 55 56 60 61
9 10 23 42 48 55 56 58 60 62 63
10 4 10 17 41 42 49 55 56 58 64
11 13 34 41 48 55 56 58 60 62 64

4 Conclusions and Perspectives

We have described in this work a methodology for classifying event related po-
tentials for a Brain-Computer Interface. The strength of our approach is based
on an ensemble SVMs which allows us to deal with the variability of EEG re-
sponses. In this context, we have trained a SVM classifier and selected the most
relevant channels associated to each word spelling sessions signal. This method
yields to state-of-the-art results since with a fully automated procedure, we were
able to correctly recognized all words with only 4 sessions. Our future works now
will deal with the variability of EEG responses within different subjects.
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Abstract. The firing activities of place cells in the rat hippocampus ex-
hibit strong correlations to the animal’s location. External (e.g. visual)
as well as internal (proprioceptive and vestibular) sensory information
take part in controlling hippocampal place fields. Previously it has been
observed that when rats shuttle between a movable origin and a fixed
target the hippocampus encodes position in two different frames of ref-
erence. This paper presents a new model of hippocampal place cells that
explains place coding in multiple reference frames by continuous inter-
action between visual and self-motion information. The model is tested
using a simulated mobile robot in a real-world experimental paradigm.

1 Introduction

Place cells in the rat hippocampus are active only when the rat is in a specific
region within an environment. This location-sensitive firing is influenced by both
internal (e.g. self-motion) and external (e.g. visual) sensory inputs [1]. Electro-
physiological studies reveal that the firing pattern of a place cell is sensitive to
the position of visual landmarks placed around [2], but also within [3] the envi-
ronment. However, using path integration (PI) [4], the animal is also capable of
returning to the starting point of a journey based on internal cues only (i.e. hom-
ing). In this case no external cues are available and place cell activity depends
only on PI [5]. Finally, behavioural experiments with rodents indicate that PI
can be recalibrated using visual information [4].

In order to investigate how external sensory input and internal information
control the location-specific activity of the hippocampal place cells, Gothard et
al. [6] propose an experimental paradigm where rats alternate between a mov-
able box at one end of a linear track and a fixed reward site at the other end.
Depending on the type of information the animal uses to update its spatial rep-
resentation, place cells activity can be aligned to the movable box or to the fixed
visual cues. Their recordings show that in the initial part of the journey, place
cells fire at fixed distances relative to the point of departure (box for outbound,
fixed site for inbound), whereas towards the end of the journey, cells are aligned
with the destination (fixed site for outbound, box for inbound). They conclude

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 51–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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that the spatial representation is initially driven by PI, and, as the rat moves
farther along the track, it becomes tied to the external cues.

This paper proposes a new neural model of the rat hippocampus. A repre-
sentation of space is built by combining visual sensory input and self-motion
information. The model resolves ambiguities in the visual data by means of path
integration, whereas external input is used to prevent the accumulation of errors
inherent to the PI. The interaction between the two sources of information is
evaluated in the experimental paradigm described above using a simulated mo-
bile robot. The firing profiles of modelled place cells exhibit properties similar
to real hippocampal neurons.

2 Model Description

The model architecture (Fig. 1) is based on the anatomy of the rat hippocampal
formation. It is consistent with fundamental electro-physiological properties of
place cells [1]. This work extends previous models [7,8,9] by equipping them with
a new visual system that can deal with realistic sensory input and an adaptive
recalibration mechanism used to combine path integration and visual input.

Visual input Self−motion information

calibrate

CDC

VPC PI

HPC

Fig. 1. Model architecture. It consists of four interconnected populations of rate-coded
neurons. Column difference cells (CDC) store visual stimuli and drive visual place
cells (VPC). Self-motion information drives the path integrator (PI). VPC calibrate PI
and they both project to the combined hippocampal place cells (HPC).

2.1 Visual Place Code

The model’s visual processing is based on low-level feature matching, rather than
explicit object recognition. Complex Gabor wavelets with 8 different orientations
serve as feature extractors. They are evaluated at all points of a rectangular grid.
An example response of this “artificial retina” is shown in Fig. 2.

Each retinal response is translated into neural activity. During an experiment,
cells are “recruited” as needed. Thus the number of cells grows with time. It is
assumed that there are enough cells to represent the entire environment.
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δns s+

Fig. 2. Responses of an artificial 15×3 retina of Gabor filters to an input image of 280◦

horizontal view field. Each point of the grid contains 8 filters of different orientations.
The thick lines indicate the direction and “strength” of edges near each retinal point.
Two retinal columns at positions s and s + δn are highlighted.

During environment exploration, a set of “column difference cells” (CDCs) is
recruited at each time step. CDC n stores the difference dn = f(sn +δn)−f(sn)
between two retinal columns s and s + δ, where f(sn) is the vector of all filter
activities at column s (Fig. 2). At a later time step, CDC n responds to the new
input with a firing rate

rn = k · exp
{
−min

s
[(f (s+ δn)− f(s)) − dn]2

}
, (1)

where k is a normalisation constant. Spatial firing is obtained by combining the
responses of several CDCs one synapse downstream in a population of visual
place cells (VPCs). One-shot Hebbian learning is applied to tune the synaptic
strengths wij between each active CDC j and a newly recruited VPC i to wij =
rj · ri. The new cell should be maximally active (ri = 1) for the current afferent
CDC projection. This is achieved by using a piecewise linear activation function:

ri =

⎧⎨⎩
0 if κihi < θlow

1 if κihi > 1
(κihi − θlow)(1 − θlow) otherwise

(2)

where hi =
∑

j wijrj is the input potential of the VPC neuron i, κi = 1/h0
i

determines the saturation potential of the neuron (with h0
i standing for the

input potential at the time when neuron i was recruited) and θlow = 0.2 is the
minimal input to activate the neuron.

The resulting place code represents the robot’s position Pv within the envi-
ronment, estimated by visual information only. The encoded location is extracted
from the population activity using a population vector:

Pv =
∑

i ri · xi∑
i ri

, (3)

where xi is the position of the robot where VPC i was recruited.
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2.2 Path Integration

The input to the path integrator are the rotation and displacement signals from
the robot’s odometers. After each movement a new estimated position of the
robot in an abstract Cartesian coordinate frame is calculated using standard
trigonometric formulas. In order to neurally represent the position we employ
a population of “path integration cells” (PI) such that each cell j is assigned a
preferred position pj in the abstract frame. Firing rate of the cell is defined as:

rj = e
− (‖Po−pj‖2)2

2σ2
o , (4)

where Po is the internal odometric position estimate.
In order to decrease the mismatch between the estimated positions Po and

Pv, the path integrator is recalibrated using vision at each time step:

P = Po − β · (Po −Pv) , (5)

where β = 0.1 determines the influence of the visual cues.

2.3 Hippocampal Place Cells

VPC and PI place cells project to a layer of hippocampal place cells (HPCs)
(Fig.1). At each time step a place cell is recruited and its afferent connections
from the VPC and PI are initialised using one-shot Hebbian rule. The firing rate
of HPC neuron i is defined by (2) where the afferent cells are the PI and VPC.

3 Results and Conclusions

Gothard et al. [6] proposed an experimental paradigm to study how path inte-
gration and visual input contribute to the hippocampal representation of space.
Rats were trained to shuttle back and forth on a linear track with a movable
box located at one end of the track and a fixed reward site at the other (box1
configuration, Fig. 3(a)). During the journeys from the box to the fixed site (out-
bound journey), the box was moved randomly between five locations (box1 to
box5). Once the animal reached the fixed site, it started the inbound journey to
the box (now located at a new position). Cell recordings show that in the initial
part of the journey place cells fired at fixed distances relative to the point of
departure (box for outbound, fixed site for inbound), whereas towards the end
of the journey cells were aligned with the destination (fixed site for outbound,
box for inbound) [6].

We apply the same experimental setup for our model. The place fields of
four HPCs for the five box configurations are shown in Fig. 3(b). Consistent
with observation in rats, HPCs initially fire with respect to the starting point,
whereas towards the end of the journey, place fields align with the destination.

This change of reference frame in the model is explained by the interaction
between internal and external information: in the inbound and outbound jour-
neys visual information recalibrates the path integrator (PI) to either end of the
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(a)
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Cell7 (S=0.13) Cell42 (S=0.60)Cell118 (S=0.0)Cell146 (S=1.02)

(b)

Fig. 3. (a) Experimental setup of Gothard et al. [6]. The rat shuttles between a fixed
site and a box, which is displaced during outbound journeys to five different locations
(box1 to box5). (b) Firing profiles of four modelled place cells. Two cells are active
during the inbound journey (left), and two during the outbound journey (right) for the
five box configurations. Black dots show the place field displacements with respect to
box1 condition, lines approximate the displacement slopes S (see text).

0

0.5

1

Inbound

0

0.5

1

Outbound

Site
Fixed Movable

Box

(a) (b)

Movable
Box

Fixed
Site

Fig. 4. Displacement slopes of place cells versus the location of maximum firing in the
box1 configuration. Slopes are normalised to be 0 for cells whose place fields do not
shift following the box shift and 1 for cells whose place fields shift together with the
box. (a) Our model. (b) Experimental results in rats (Redrawn from [6]).

well known box1 configuration. After leaving the box in the outbound journey,
a mismatch occurs between vision and PI if the configuration differs from box1.
This inconsistency is gradually reduced by recalibrating PI (5), until the repre-
sentations are congruent near the end of the track. Later, during the inbound
journey, another mismatch appears and again, PI recalibration by vision resolves
the conflicting information. To quantify how the receptive fields of the place cells
shift for the different configurations (box1 to box5) we calculate their displace-
ment slopes [6]. This slope results from a linear fit of the place field shifts of a
cell in box2 to box5 with respect to box1. Shifted positions are determined by
the location of the maximum cross-correlation of the place field with respect to
the box1 condition. The displacement slopes in the HPC population are shown
in Fig. 4(a). Both for inbound and outbound directions, cells firing near the fixed
end in the box1 condition do not exhibit a shift in their receptive fields whereas
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neurons which fire close to the box shift along with the box. These results are
similar to animal experiments (Fig. 4(b)). However, in the outbound case, the
distribution of displacement slopes differs from [6]. One possible explanation is
that this distribution depends on the environment. In particular, the size of the
box may influence its relevance when the rat visually localises itself.

This paper presents a model of hippocampal place cells based on interact-
ing visual and self-motion sensory input. In contrast to previous models, this
proposal is based on a visual system which uses low-level feature matching in-
stead of abstract landmark detection. It is thus capable of working with realistic
visual input. The model is able to build a stable place code. Moreover, it repro-
duces changes in this representation in a conflict situation as the one described
above [6]. The receptive fields encode the agent’s position with respect to two
reference frames: Initially, the place code is aligned to internal coordinates given
by path integration. After some time, the representation systematically shifts
to an external reference frame given by visual cues. This supports the idea of
a competition between the different sources of information in order to keep a
consistent representation of space.
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Abstract. We develop a neural network architecture to help model the creation 
of visual temporal object representations. We take visual input to be hard-wired 
up to and including V1 (as an orientation-filtering system). We then develop 
architectures for afferents to V2 and thence to V4, both of which are trained by 
a causal Hebbian law. We use an incremental approach, using sequences of 
increasingly complex stimuli at an increasing level of the hierarchy. The V2 
representations are shown to encode angles, and V4 is found sensitive to shapes 
embedded in figures. These results are compared to recent experimental data, 
supporting the incremental training scheme and associated architecture. 

1   Introduction 

The problem of creating object representations by learning is basic in building a 
system able to learn new concepts in new environments. We present initial results on 
the coding we obtain using a mixture of hard-wired and trained hierarchically-
connected modules, the former at the lowest level (V1), the latter at higher levels (V2 
and above). Such a split is feasible since V1 appears to act as a template for low-level 
features in scenes. At higher levels in the processing hierarchy we must be prepared 
for ever more environmentally-sensitive templates, so learning must be present.  

There have been many suggested models of V1, both hard-wired and learnt. A 
sequence of increasingly detailed hard-wired models has been proposed for V1, fitting 
experimental features of single cell responses on orientation and temporal sensitivity 
[1, 2, 3]. Not much modeling has been performed in relation to experimental data for 
V2 or beyond, in spite of the data now becoming available [4]. Those models 
available for higher level visual cortical areas are in the main hard-wired versions 
[5,6,7]. One counterexample is the Neocognitron model [8], built by incremental 
learning of a hierarchy of neural modules. However this has been used only for digit 
stimulus recognition and similar problems, not related to any specific brain areas at 
intermediate module levels. There are also a number of models of attention using a 
hierarchy of visual modules, with training of the feed-forward connections from one 
layer to the next [9, 10]. However a number of these use pre-set object codes at the 
temporal lobe level, nor do any relate to known data on V2 or V4 [4, 11, 12]. 

We present our basic architecture in section 2, specifying the parameters defining 
the feed-forward connections of the excitatory population of neurons in one module to 
the inhibitory and excitatory neurons of the next higher module. The results for the 
training from V1 to V2 are presented in section 3, and that of V4 training in section 4.   
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2   Processing Architecture  

We use a feed-forward hierarchical architecture based on a simplified version of 
known anatomical knowledge [13]; its details are given in figure 1.  The model 
consists of a ventral and dorsal visual stream. In the ventral stream V1 is responsible 
for orientation sensitivity whilst 
retaining topography.  We take V1 to 
have hard-wired afferents, and act as a 
bank of orientation filters, using 4 sets of 
orientations (the connectivity is such that 
V1 nodes are preferentially activated by 
length 5 bars). The internal connectivity 
of the V1 layers along with LGN 
efferents serve to generate a reduced 
representation of the the original bar, to a 
strong central length 3 representation 
with some weak surrounding activation. 
Input to V2 is then made up of a 
composite V1 formed by combining the 
four ventral V1 regions such that there is 
a pin-wheel structure for the 4 
orientations, which is repeated 
topographically. The connectivity from 
V1e ->V2e has a Gaussian spread that is 
thresholded and has a very small fall-off 
with distance this allows for highest 
activation in V2e neurons that receive 
input from both components of the 
stimuli, i.e. those neurons that are at the 
overlap of the V1e representations. V4 
receives input from the ventral route V1 and V2, as well as the dorsal route from 
lateral intra-parietal areas (LIP). The major route for topographic information is via 
the fast dorsal route; this route is completely hard-wired such that topographic 
information which at V1 level is reasonably coarse is refined by V5 and finally by 
LIP.  The dorsal route is used to provide low-level activation of V4 neurons, priming 
V4 for the orientation information via the slower ventral route.  

The neurons form two populations, excitatory and inhibitory.  Only the excitatory 
neurons send afferents to the next layer, and in the case of V1 afferents to next but 
one higher layers.  The detailed nature of these afferents are shown in figure 2 for the 
particular case of V1 to V2. Lateral connections are modeled only in the excitatory 
population of each layer (Gaussian spread of 2 neurons with no self-excitation); from 
the excitatory population to the inhibitory population there is a Gaussian spread of 2 
neurons; feedback from the inhibitory to excitatory neurons has a central strong 
spread with radius 8. Hence the inhibitory spread, being larger than the excitatory, 
prevents runaway activation. 

The model has 14*14 neurons in each excitatory and inhibitory population for 
LGN, dorsal V1, V5, LIP and V4; ventral V1 populations are each composed of 
 

 
Fig. 1. The overall architecture of the 
model. The four ventral route V1 layers are 
shown, each preferentially active for one 
type of oriented bar. 
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14*14 nodes giving a total for the composite 
ventral V1 populations of 28*28 neurons, the 
same that compose V2. 

The neurons used are leaky integrate and fire, 
with either only excitatory or inhibitory effects on 
other neurons according to the population of 
excitatory or inhibitory neurons to which they 
belong. All neurons have a spiking threshold of -
52mV, a reset value of -59mV, a resting potential 
of -70mV, shunting inhibition value of -80mV.  

The learning rule used is that of Spike Time 
Dependent Potentiation or STDP [14,15]. STDP 
is used to adapt V1 to V2e connections, V1 to 
V4e connections and V2 to V4e connections 
(these weights are initially 4 times greater than 
V1 to V4e connections). We use a time-window 
of 50ms for long term depression, with 
minimum value of -0.0005 reached at -10ms for 
the difference between post-synaptic spike and 
pre-synaptic spike; for long term potentiation 
the time-window is 25ms with maximum value 
of 0.001 for a 2ms difference. 

3   Training on V2 

The stimuli used to train V2 are based on those of [4], being composed of sets of 
articulating bars, as described by the lengths of the bars, and the angle between them. 
 

For our 4 orientations there is a total of 28 
possible pairs of bars (each bar having length 5), 
indicated in fig. 3. We do not consider gratings or 
crossed bars. 

Figure 4 shows the results of training on all 28 
pairs for a single articulation point, only those 
neurons that show a highly selective response to a 
particular pair of bars are indicated (the non-
preferred pairs have an activation level <65% that 
of maximal response, and most responses to non-
preferred pairs is <50% maximal activation. 
Some V2 neurones have only spontaneous firing-
levels as the stimuli do not impinge on their 
receptive fields, other neurons appear to represent 
a broader range angles, for instance 45° and 90° 
with little difference in firing rates. Generally 
there are more neurons that are preferentially 
active for the acute angles (45° and 90°, 36.5% 
and 34.4%, respectively) than for the obtuse angles 
 

 

Fig. 2. The internal structure of V2, 
composed of an excitatory layer 
(V2e) and an inhibitory layer (V2i) 
and connectivity from V1, all 
regions except for LGN have the 
same 2-layered structure. 
Excitatory weights indicated by 
open arrow-heads, and inhibitory 
by closed arrow-heads. 

 

Fig. 3. The 28 pairs of bars used 
to train the network, the circles 
indicate the articulation point for 
each oriented bar. The 2 lines are 
interchangeable, hence the area 
under the diagonal line is just a 
mirror-image of that above. 



60 N.R. Taylor, M. Hartley, and J.G. Taylor  

(135° and 180°, 21.2% and 
7.9%, respectively). These 
results are slightly different 
to [4] which had: 39.5% of 
recorded neurons responsive 
to sharp angles (30°), these 
are comparable to our 45° 
angles (36.5%); 36.0% 
responsive to wide angles 
(60-150°) which are our 90° 
and 135° angles (55.6%); 
and 16.7% to 180° angles 
for which we had 7.9%. 
These differences are 
reasonably easy to explain 
since our results relate to 
those neurons which are 
highly responsive to specific 
pairs of bars, whilst the 
results from [4] relate to 
neurons that are selective to 
some extent for angles.  It 
can also been seen that there 
are the movements of one  

 

bar or the other, indicated by the grey areas in fig. 4, showing that in some cases similar 
pairs of bars are represented by nearby neurons.  

The response of a particular neurone to all 28 angles is shown in figure 5.  This 
neuron is maximally responsive to an angle formed by the 180° and 315° bars with a 
firing-rate of 40Hz, this is a similar angle chosen in [4] and indicated in their figure 2. 
For non-preferred pairs the highest activation is for pair composed of 180° and 270° 
bars (25Hz, 62.5% firing-rate of the maximal response), and also for the angle formed  
 

by 45° and 225° lines (this is the long  
straight line that lies closest to the centre 
line of the maximal pair, an angle of 
247.5°).  All other responses of this 
neuron require that the pair of bars must 
include one of the 180° and 315° bars (the 
preferred pair) or the 225° bar which lies 
near the centre of the maximal pair.   

To see if the network preserved some 
topography at the V2 level, the next 
training set was composed of the 4 right-
angles required to define a square, with 
articulation points over a central 9*9 
region of LGN.  The results are shown in 
figure 6: each square represents a V2 
 

Fig. 4. The resulting V2 map after being trained on all 28 
possible angles articulated at the same point in LGN 

Fig. 5. The responses of a particular 
neuron to the 28 different angles, all 
other pairs are silent or have a firing-rate 
below spontaneous 

response 40Hz

response 25Hz

response 20Hz

response 10Hz
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neuron, the contents of each squareindicate the particular angle (grey-scale) and the 
centre of the angle input (small black squares) in LGN.  Only the V2 nodes with 
maximal activation to a given input are indicated, where more than one centre of input 
is indicated all responses will be more than 10Hz greater than the largest response by 
that node to another angle. Some topographic invariance exists and some particular 
angles fail to generate a significant response in any V2 nodes (from a total of 324 angles  
23 fail to produce a significant response).   

4   Training on V4 

The stimuli used to test V4 in [11] were of two sorts: complex curves and gratings of 
various forms. To simplify we do not consider the gratings (so do not discuss 
 

theinfluence of shading on object 
representations). For the complex 
shapes we take especially the case 
of arcs of a circle, in other words 
‘C’ shapes. In order to develop V4 
we train it on a set of rectangles, 
and test on both C’s (seen as part 
of the rectangle), single angles and 
whole rectangles. V2 is trained on 
the set of right-angles as in fig. 6 
plus the horizontal and vertical 
long lines.  The rectangles used 
have dimension 9*5 oriented 
horizontally or vertically, leading 
to C's with sides 5*5*5, 5*9*5 
and 9*5*9. Figure 7 indicates the 
activity patterns in V4 for a 
rectangle, the small C, and a 
single right-angle. Greater 
maximal activity is seen for the C 
shape (~100Hz), a similar 
 

maximal firing rate occurs for the single angle, with the rectangle having maximal 
activity ~60Hz.  The larger C's (not shown) have a firing rate lower than the rectangle. 

 

 
 
 
 
 
 
 

 

Fig. 6. V2 map resulting after training on 4 right-
angles 

Fig. 7. V4 firing-rate patterns for: a) rectangle; b) small C-shape (5*5*5); c) right-angle 
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5   Discussion 

We have presented results of the coding of various shapes arising in a model V2 and 
V4, embedded in a hierarchical architecture LGN->V1->V2->V4. The lowest module 
V1 is taken as a set of orientation templates, while the afferents to V2 and V4 are 
trained by STDP, using a suitable connectivity between the excitatory and inhibitory 
neurons present. These results compare very well with experimental data [4, 11].  

Future work will compare representations in higher modules (TE, TEO and 
prefrontal cortical sites) developed by this approach with experimental data, as well as 
explore further properties of the lower-level results (such as their temporal dynamics). 
This will allow improvement of the architecture (such as a multi-layered cortex). The 
question of the importance of feedback for the representations will also be explored, in 
particular by comparison of non-attentive or attentive form, with attention as in [16]. 
Dynamical properties of representations and the role of feedback (clearly important, as 
providing enlargement to cell responses beyond the classical receptive-field properties) 
cannot be treated within the space of the paper and will be considered elsewhere, as will 
the mathematical aspects of the resulting coupled system which is complex.  
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Abstract. While synaptic learning mechanisms have always been a core
topic of neural computation research, there has been relatively little
work on intrinsic learning processes, which change a neuron’s excitability.
Here, we study a single, continuous activation model neuron and derive
a gradient rule for the intrinsic plasticity based on information theory
that allows the neuron to bring its firing rate distribution into an ap-
proximately exponential regime, as observed in visual cortical neurons.
In simulations, we show that the rule works efficiently.

1 Introduction

Individual biological neurons can change their intrinsic excitability through the
modification of voltage gated channels [1,2,3,4,5]. Such plasticity of the intrinsic
excitability, or intrinsic plasticity, has been observed across many species and
brain areas — it is a ubiquitous phenomenon that may play an important role
in shaping the dynamics of neural circuits [6]. Although our understanding of
these processes and their underlying mechanisms remains quite unclear, it has
been hypothesized that this form of plasticity contributes to a neuron’s home-
ostasis of its firing rate level. More specifically the goal of intrinsic plasticity may
be to obtain an approximately exponential distribution of the firing rate level.
Such exponential distributions have been observed in visual cortical neurons and
are thought to allow the neuron to transmit the maximum amount of informa-
tion given a fixed level of metabolic costs [7]. This is because the exponential
distribution has the highest entropy among all distributions of a non-negative
random variable with a fixed mean. The idea that intrinsic plasticity may con-
tribute to this goal was first explored in [8], where a Hodgkin-Huxley style model
with a number of voltage gated conductances was considered. A learning rule
was derived that adapts the properties of voltage gated channels to match the
firing rate distribution of the unit to a desired distribution. We have recently
proposed an intrinsic plasticity rule for a continuous activation model neuron,
which is based on low order moments of a neuron’s firing rate, and showed that it
is effective in producing approximately exponential firing rate distributions [9].
We also showed that there may be a synergistic relation between intrinsic and
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synaptic learning mechanisms and that the two may work together to discover
sparse directions in the input. The intrinsic plasticity rule proposed in [9] was
formulated as a set of simple proportional control laws. The goal of this paper is
to derive a gradient rule for intrinsic plasticity, and to validate its performance
through simulations.

2 Gradient Rule for Intrinsic Plasticity

Let us assume the input to the neuron’s firing mechanism (total synaptic current
arriving at the soma), denoted as x has the distribution fx(x). In our model, x is
passed through the nonlinearity g to obtain the neuron’s output y = g(x) (firing
rate). We assume that g, being a firing rate, is non-negative. Further assuming
that g is strictly monotonically increasing, the distribution of y is given by:

fy(y) =
fx(x)

∂y
∂x

. (1)

As motivated above, we are looking for ways to adjust g so that fy(y) is ap-
proximately exponential, i.e. we would like fy(y) to be “close” to fexp(y) =
1
μ exp(−y

μ ). A natural metric for measuring the distance is to consider the Kull-
back Leibler divergence (KL-divergence) between fy and fexp:

D ≡ d(fy || fexp) =
∫

fy(y) log

⎛⎝ fy(y)
1
μ exp

(
−y
μ

)
⎞⎠ dy (2)

=
∫

fy(y) log(fy(y))dy −
∫

fy(y)
(
− y

μ
− logμ

)
dy (3)

= −H(y) +
1
μ
E(y) + logμ , (4)

where H(y) is the entropy of y and E(y) is its expected value. Note that this
relation directly shows that the exponential distribution is the maximum entropy
distribution among all distributions with a fixed mean: for fixed E(y), the right
hand side of (4) is minimized when H is maximized. The left hand side, however,
because it is a KL-divergence, is non-negative, and is zero if and only if fy(y) =
fexp(y). Another way to look at (4) is that in order to minimize d(fy || fexp) we
need to maximize the entropy H(y) while minimizing the expected value E(y).
The factor 1/μ can be seen as scaling the relative importance of maximizing
entropy vs. minimizing the mean. The constant − logμ does not depend on g
and is thus irrelevant for this minimization.

Now, we would like to derive a stochastic gradient descent rule for intrinsic
plasticity that strives to minimize (4). To this end, we consider a parameterized
non-linearity g and ask how D changes if g changes. Let us consider the sigmoid
nonlinearity given by:

y = g(x) =
1

1 + exp(−(ax+ b))
. (5)
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This nonlinearity depends on two parameters a and b. To construct the gradient,
we must consider the partial derivatives of D with respect to a and b:

∂D

∂a
=

∂d(fy || fexp)
∂a

= −∂H
∂a

+
1
μ

∂E(y)
∂a

(6)

= E

(
− ∂

∂a
log

(
∂y

∂x

)
+

1
μ

∂y

∂a

)
(7)

= −1
a

+ E

(
−x+

(
2 +

1
μ

)
xy − 1

μ
xy2

)
, (8)

where we have used (1) and moved the differentiation inside the expected value
operation to obtain (7), and exploited:

log
(
∂y

∂x

)
= log a+ log y + log(1− y) (9)

in the last step. Similarly, for the partial derivative with respect to b we find:

∂D

∂b
=

∂d(fy || fexp)
∂b

= −∂H
∂b

+
1
μ

∂E(y)
∂b

(10)

= −1 + E

((
2 +

1
μ

)
y − 1

μ
y2
)

. (11)

The resulting stochastic gradient descent rule is given by a := a + Δa and
b := b+Δb, with:

Δa = η

(
1
a

+ x−
(

2 +
1
μ

)
xy +

1
μ
xy2

)
(12)

Δb = η

(
1−

(
2 +

1
μ

)
y +

1
μ
y2
)

, (13)

where η is a small learning rate. This rule is very similar to the one derived
by Bell and Sejnowski for a single sigmoid neuron maximizing its entropy [10].
However, our rule has additional terms stemming from the objective of keeping
the mean firing rate low. Note that this rule is strictly local. The only quantities
used to update the neuron’s nonlinear transfer function are x, the total synaptic
current arriving at the soma, and the firing rate y.

The above derivation can be generalized to other non-linearities with dif-
ferent adjustable parameters. The requirements are that g should be strictly
monotonically increasing and differentiable with respect to y, and the partial
derivatives of log ∂y/∂x with respect to the parameters of g (in the above case
a and b) must exist.

3 Experiments

3.1 Behavior for Different Distributions of Total Synaptic Current

To illustrate the behavior of the learning rule, we consider a single model neuron
with a fixed distribution of synaptic current fx(x). Figure 1 illustrates the result
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of adapting the neuron’s nonlinear transfer function to three different input
distributions — gaussian, uniform, and exponential. We set the unit’s desired
mean activity to μ = 0.1, i.e., a tenth of its maximum activity, to reflect the low
firing rates observed in cortex. The following results do not critically depend on
the precise value of μ. In each case, the sigmoid nonlinearity moves close to the
optimal nonlinearity that would result in an exactly exponential distribution of
the firing rate, resulting in a sparse distribution of firing rates. Since the sigmoid
has only two degrees of freedom, the match is not perfect, however. As can
be seen in the figure, large deviations from the optimal transfer function can
sometimes be observed where the probability density of the input distribution is
low. A closer fit could be obtained with a different nonlinearity g with more free
parameters. It is presently unclear, however, what additional degrees of freedom
biological neurons have in this respect.
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Fig. 1. Dynamics of the intrinsic plasticity rule for various input distributions. a,b:
Gaussian input distribution. Panel a shows the phase plane diagram. Arrows indicate
the flow field of the system. Dotted lines indicate approximate locations of the null-
clines (found numerically). Two example trajectories are exhibited (solid lines) which
converge to the stationary point (marked with a circle). Panel b shows the theoretically
optimal (dotted) and learned sigmoidal transfer function (solid). The Gaussian input
distribution (dashed, not drawn to scale) is also shown. c,d: same as b but for uniform
and exponential input distribution. Parameters were μ = 0.1, η = 0.001.
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The results obtained are very similar to the ones from our previous study [9],
which used a set of two simple control laws that updated the sigmoid nonlinearity
based on estimates of the first and second moment of the neuron’s firing rate
distribution. The current rule leads to faster convergence, however.

3.2 Response to Sudden Sensory Deprivation

The proposed form of plasticity of a neuron’s intrinsic excitability may help
neurons to maintain stable firing rate distributions in the presence of systematic
changes of their afferent input. An interesting special case of such a change is
that of sensory deprivation. Here, we model sensory deprivation as a change to
the variance σ2 of the total synaptic current arriving at the soma. Figure 2 shows
how the neuron learns to adjust to the changed distribution of total synaptic
current. After a transient phase of low variability in its activity, the neuron
gradually re-establishes its desired firing rate distribution.
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Fig. 2. Response to sudden sensory deprivation. The graph shows the unit’s firing rate
y as a function of the number of presented inputs (time t). We only plot the response
to every 20th input. At time step 10000 the standard deviation of the input signal is
reduced by a factor of 10. In response, the neuron adjusts its intrinsic excitability to
restore its desired exponential firing rate distribution.

4 Discussion

Intrinsic plasticity mechanisms that change the membrane properties of individ-
ual neurons represent a fundamental aspect of cortical plasticity. While these
mechanisms are still poorly understood, there is a shared belief that they may
contribute to a neuron’s homeostasis by helping it to keep its firing rate in
a desired regime. More specifically, they may allow the neuron to transmit a
maximum amount of information to downstream targets while minimizing the
metabolic costs to do so. In this paper, we derived a gradient rule for intrin-
sic plasticity that adjusts the parameters of a sigmoid nonlinearity to drive the
neuron’s firing distribution towards an exponential distribution — as frequently
observed in visual cortical neurons [7]. From an information theoretic point of
view, this approach is more principled than the proportional-control-law rules
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we have proposed previously [9], because these control-laws only take the first
and second moments of the distribution into account. In a set of simulations, we
showed that the rule works effectively.

While we have only considered an individual model neuron in this paper
and in our previous work, we think it is very important to explore the effects
of intrinsic plasticity at the network level [6]. What is its role in the learning
of sparse, map-like sensory representations? How will it influence the dynamics
of recurrent networks? At the same time, it will be interesting to develop less
abstract, biophysically plausible models of intrinsic plasticity mechanisms for
spiking neurons [8], and their interaction with spike-timing dependent plasticity.
We feel that in any theory of cortical computation and plasticity, mechanisms
that change a neuron’s intrinsic excitability must play a central role.
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Abstract. We have built a realistic computational model of the cerebel-
lum. This model simulates the cerebellar cortex of the size 0.5mm×1mm
consisting of several types of neurons, which are modeled as conductance-
based leaky integrate-and-fire units with realistic values of parameters
adopted from known anatomical and physiological data. We demonstrate
that the recurrent inhibitory circuit composed of granule and Golgi cells
can represent a time passage by population of active granule cells, which
we call “the cerebellar internal clock”. We also demonstrate that our
model can explain Pavlovian eyelid conditioning, in which the cerebellar
internal clock plays an important role.

1 Introduction

It is known that the cerebellum plays a critical role in procedural learning and
memory. An example is Pavlovian eyelid conditioning [1]. This paradigm involves
repeated presentations of a conditional stimulus (CS; e.g., a tone) paired with
an unconditional stimulus (US; e.g., an airpuff) delayed for a certain time after
the CS onset, which elicits an automatic conditioned response (CR; e.g., an
eyeblink). The subject is tested for learning an association between the CS and
the US, as evidenced by the CR in anticipation of the US. The cerebellum is
known to play a necessary role in learning a well-timed CR in anticipation of the
US. Thus, the cerebellum must have a kind of “memory trace” of the CS that
bridges the interstimulus interval (ISI) to form a CS-US association, but how?

We have theoretically studied a simple random recurrent inhibitory network,
which we call an internal clock [2]. In this model, activity patterns of neu-
rons evolved with time without recurrence due to random recurrent connections
among neurons. The sequence of activity patterns is generated by the trigger of
an external signal and the generation is robust against noise. Therefore, a time
passage from the trigger of an external signal can be represented by the sequence
of activity patterns.

We have previously shown that our internal clock model is derived from the
recurrent inhibitory circuit composed of granule and Golgi cells in the cerebel-
lum. In the present study, we build a realistic computational model of the cere-
bellum. We demonstrate that the realistic model also works as an internal clock.
We then examine if the present model can explain Pavlovian eyelid condition-
ing. We confirm that the anticipatory CR is induced by the combination of the
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internal clock and the long-term depression (LTD) [3] at Purkinje cells. Further-
more, we study the functional role of the cerebellar-precerebellar feedback.

2 Model Description

Figure 1 represents the schematic of known cell types and synaptic connections
in the cerebellum [4].

SYNAPSES
EXCITATORY
INHIBITORY

GOLGI

GRANULE
PURKINJE

CEREBELLAR
NUCLEUS

CLIMBING
FIBER

US
PONTINE NUCLEUS

CS

FIBERS
MOSSY

CR
INFERIOR OLIVE

PARALLEL FIBERS

Fig. 1. Schematic of known cell types and synaptic connections in the cerebellum

The neural signal of the CS comes from the pontine nucleus through mossy
fibers to the cerebellar nucleus, which attempts to elicit spike activity. On the
other hand, the CS signal is also sent to Purkinje cells relayed by granule cells,
and then Purkinje cells inhibit the cerebellar nucleus. Thus, the cerebellar nu-
cleus receives both excitatory inputs directly through mossy fibers and inhibitory
inputs from Purkinje cells. A Golgi cell receives excitatory inputs from granule
cells through parallel fibers and inhibits a set of nearby granule cells. Here we
assume that the connections from granule to Golgi cells are random while these
from Golgi to granule cells are uniform. The neural signal of the US comes from
the inferior olive through climbing fibers to Purkinje cells.

Neurons are modeled as conductance-based leaky integrate-and-fire units.

C
dV

dt
= −gleak(V −Eleak)−gex(V −Eex)−ginh(V −Einh)−gahp(V −Eahp), (1)

where V and C are the membrane potential and the capacitance, respectively.
The membrane potential is calculated by four types of currents specified by the
right-hand side in Eq. (1), they are, the leak, excitatory and inhibitory currents,
and the current representing the afterhyperpolarization which simulates a refrac-
tory period. For each type c ∈ {leak, ex, inh, ahp}, the current is calculated by
the conductance gc and the reversal potential Ec. A conductance is calculated
by the convolution of the alpha function representing the shape of postsynaptic
potentials and spike trains of presynaptic neurons. Neurons elicit a spike when
the membrane potential (V ) exceeds the threshold (θ). After the spiking, V is
reset to the resting potential which is set at the leak potential and a refractory
period follows. For further details, see [5]. Parameter values are adopted from
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known anatomical and physiological data, though they are not shown here due
to the page limit.

The model simulates the cerebellar cortex of the size 0.5mm×1mm for 1sec,
which consists of 512 Golgi cells, 512 granule cells and 1 Purkinje cell, and 1
excitatory neuron in the cerebellar nucleus. The 4th order runge-kutta method
is used to calculate Eq. (1), where Δt = 1msec. CS signals are represented by
Poisson spikes consisting of a transient component of 200Hz for the first 20msec
and a sustained component of 50Hz for 1sec, whereas US signals are assumed to
arrive at the Purkinje cell at 500msec. LTD is simulated by decreasing synaptic
weights of parallel fiber synapses of granule cells which elicit spikes for 20msec
after the US onset, specifically, the synaptic weights are multiplied by 0.8. If the
neuron in the cerebellar nucleus elicits spikes at 500msec, and the time to first
spike is slightly earlier than 500msec, we regard it as the success of learning.

We demonstrate that the activity patterns of granule cells can represent a
time passage, that is, the population of spiking granule cells at one time step is
dissimilar to the population at a different time step when the interval between
the two steps are large. Therefore, we use the following correlation function as
the similarity index.

C(t1, t2) =
∑

i zi(t1)zi(t2)√∑
i z

2
i (t1)

√∑
i z

2
i (t2)

, (2)

where zi(t) = 1 if granule cell i generates a spike at time t, and 0 otherwise.

3 Results

The top left panel in Fig. 2 plots spikes of the first 100 cells out of 512 granule
cells for 1sec. All granule cells were activated for 20msec by the transient com-
ponent of the input signal, which was followed by a quiescent period in which
few granule cells became active. Then, granule cells showed random repetition of
spiking/nonspiking states because of the random recurrent inhibition via Golgi
cells. Thus, the population of spiking granule cells changed with time. The top
middle panel shows the similarity index calculated using Eq. (2). Since Eq. (2)
takes two arguments of t1 and t2, and the simulation was conducted for 1sec with
Δt = 1msec, we obtained a 1000×1000 matrix, where the row and columns were
specified by t1 and t2, respectively. Similarity indices were plotted in a gray scale
in which black indicated 0 and white 1. A white band appeared diagonally. Since
the similarity index at the identical step (t2 = t1) takes 1, the diagonal elements
of the similarity index appeared white. The similarity index decreased monoton-
ically as the interval between t1 and t2 became longer. This was confirmed as
shown in the top right panel, which plots C(200, t), C(500, t) and C(800, t). This
result indicates that the population of spiking granule cells changed gradually
with time without recurrence, and that a time passage from the stimulus onset
can be represented. The bottom panels in Fig. 2 plot the temporal change of
membrane potentials of some granule cells. Different fluctuations of membrane
potentials for different granule cells are evident.
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Fig. 2. Top panels: Raster plot of spiking granule cells (left), similarity index (C(t1, t2))
(middle), plots of C(200, t), C(500, t) and C(800,t) (right). Bottom panels: Plots of
membrane potentials of some granule cells.

We examined how our model learns the CS-US interval and elicits the CR at
the correct timing slightly before the onset of US signals. Top panels in Fig. 3
plot the activity of the Purkinje cell at the 1st, 4th, 7th, and 10th trials, whereas
bottom panels the activity of the cerebellar nucleus neuron at the same trials.
At the 1st trial, the Purkinje cell regularly elicited spikes at about 80Hz, and
hence the nucleus neuron were tonically inhibited for 1sec. Purkinje cell activity
decreased as the trial number increased because of LTD at parallel fiber synapses,
and at the 4th trial the firing rate was as low as 40Hz. Moreover, the Purkinje
cell tended to reduce the spike rate around 500msec. Accordingly, the nucleus
neuron increased activity around 500msec though the neuron was still tonically
inhibited. At the 7th trial, the Purkinje cell completely stopped spiking from 400
to 600 msec and the nucleus neuron elicited a few spikes expressing the CR. The
first spike, however, appeared after 500msec, suggesting that the spike activity
could not be the anticipatory CR against the US. At the 10th trial, the time
window of nonspiking period of the Purkinje cell enlarged and the total spike
activity further decreased. The nucleus neuron elicited more spikes and the time
to first spike shifted as early as 420msec, which is sufficient to anticipate the US.
Therefore the anticipatory CR was expressed.

The bottom rightmost panel in Fig. 3 shows that the nucleus neuron elicited
the first spike at 420msec and the spiking period was sustained up to 650msec.
The early part of the spikes is necessary to induce the anticipatory CR, whereas
the late part may not be necessary and may cause over-expression of the CR.
How do we suppress the occurrence of these unnecessary spikes?

It is known that there is a feedback connection from the cerebellar nucleus to
the precerebellar nucleus which sends inputs to the cerebellum [6]. The feedback
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Fig. 3. Plots of membrane potentials of the Purkinje cell (top panels) and the neuron
in the cerebellar nucleus (bottom panels) at the 1st, 4th, 7th and 10th trials (from left
to right).
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Fig. 4. (From left to right) Plots of membrane potentials of the Purkinje cell which
receive the US signals, the Purkinje cell which does not receive the US signals, the
nucleus neuron in the model without feedback, and the nucleus neuron in the model
with feedback.

connection transmits the activity of the nucleus neuron to Purkinje cells after the
CR onset. Purkinje cells which receive the US signals are not involved because
they are depressed when the feedback signals arrive at. On the other hand,
Purkinje cells which do not receive the US signals would show increasing activity
after the CR onset. Therefore, if we incorporate one more Purkinje cell which do
not receive the US signals into the model and the cell also inhibits the nucleus
neuron, then the nucleus neuron would elicit spikes for the anticipatory CR and
be suppressed after that.

We examined whether the above scenario was possible. We added the feed-
back connection by which the activity of the nucleus neuron was transmitted to
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granule cells through mossy fibers. We also incorporated one more Purkinje cell
in the model cerebellum, which was assumed to receive signals from all granule
cells through their parallel fibers. The parallel fiber synapses were not depressed:
the synaptic weights were unchanged. To compensate the strong inhibition from
the new Purkinje cell to the nucleus, the connection strength from mossy fibers
to the nucleus was increased. The leftmost panel in Fig. 4 plots the activity of
the Purkinje cell receiving the US signals at which LTD was induced. The cell
showed decreasing activity starting at 400msec. The next right panel plots the
activity of the Purkinje cell which was added newly. The cell showed increasing
activity after 500msec. The 3rd panel from the left shows the activity of the
nucleus neuron in the model without feedback, in which, the late spikes after
500msec were evident. The rightmost panel plots the activity of the nucleus neu-
ron in the model with the feedback connection. The late spikes were suppressed
while the time to first spike was still at about 420msec. This result suggests
that the feedback connection plays an essential role for accurate expression of
the CR.

4 Discussion

We built a realistic model of the cerebellum and examined whether the model ac-
counts for the mechanism of Pavlovian eyelid conditioning. We have theoretically
studied the dynamics of the recurrent inhibitory circuit composed of granule and
Golgi cells in the rate-coding scheme and showed that the population of active
granule cells could represent a time passage, which we call the cerebellar internal
clock [2]. In the present study we confirmed that the realistically implemented
spiking neural network also works as the internal clock. We then demonstrated
that the Purkinje cell stopped inhibition to the neuron in the cerebellar nucleus
at the timing of the US onset by LTD at parallel fiber synapses at the Purkinje
cell and hence the nucleus neuron could elicit spikes expressing the CR. Since
the spikes were elicited slightly earlier than the US onset, the CR anticipated
the US. We also studied the functional role of the feedback connection from
the cerebellar nucleus to the precerebellar nucleus. We hypothesized that the
feedback can stop the unnecessary activity of the nucleus neuron after the US
onset by increasing the activity of Purkinje cells which do not receive the US
signals, and confirmed that this scenario was possible. Furthermore, it is evident
that Purkinje cells which receive US signals show decreasing activity at the US
onset, whereas cells which do not receive US signals show increasing activity [7].
Our hypothesis implies that the decreasing activity is due to LTD while the
increasing activity is due to the feedback.

Although we did not show the results, our model is not robust against Poisson
spikes in inputs as it is. We generated two different Poisson spikes of 50Hz
using different random seeds and presented to the model. The obtained two
activity patterns of granule cells were completely different, suggesting that the
time coding is not robust. This problem, however, was resolved by increasing the
number of granule cells. As the number increased two activity patterns became
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similar, and when the number was 1024 times larger, the two activity patterns
were almost identical for 800msec. The reason is as follows. A Golgi cell receives
input signals from granule cells. If the number of presynaptic cells is small, the
activity of a Golgi cell strongly depends on the fluctuation of input signals. On
the other hand, if the number is huge, the net input to a Golgi cell is somehow
averaged and the effect of fluctuation is diminished by the law of large numbers.
Since a Golgi cell inhibits a set of nearby granule cells, these granule cells show
a similar activity pattern. Thus, the activity patterns become similar regardless
of randomness in Poisson spikes. This indicates that the model can become
robust when much more granule cells are incorporated. Hence, in this study
we considered the noiseless case by using one Poisson spikes and simplified the
simulation setting.

Mauk and his colleagues have built a similar cerebellar model as ours [8].
They have demonstrated a nice matching in results between experiments and
simulations on Pavlovian eyelid conditioning [9]. They, however, did not clarify
the mechanism of why/how their model works. On the other hand, we elucidated
the mechanism by focusing on the functional roles of circuits.
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Abstract. We present an approach where we combine attention with value 
maps for the purpose of acquiring a decision-making policy for multiple con-
current goals. The former component is essential for dealing with an uncertain 
and open environment while the latter offers a general model for building deci-
sion-making systems based on reward information. We discuss the multiple 
goals policy acquisition problem and justify our approach. We provide simula-
tion results that support our solution. 

1   Introduction 

There is currently much research interest in developing autonomous agents. One of 
the primary problems in the field is that of multiple goal satisfaction. Approaches 
such as reinforcement learning have provided a general method for modelling the goal 
satisfaction problem for the case of a single goal at a given time [1]. Finding a suit-
able policy for multiple concurrent goals is a generalisation of the previous problem. 
Again reinforcement learning methods can be applied directly. However, the ap-
proach lacks the ability to deal with an ever-changing environment in an immediate 
way. This can be handled by attention. There is much work in recent years that has 
been devoted in understanding attention [2]. It has been modelled in a control theory 
framework by the second author [3]. Inspired by the above developments we have 
developed recently the Attentional Agent architecture [4] which combines a goals-
based computational model with an attention mechanism for selecting priority of 
goals dynamically in run time, for handling novelty and unexpected situations as well 
as learning of forward models based on the level of attention [5]. We now extend this 
model further to allow the attention mechanism to act as an alarm system when we 
approach limiting conditions. This model can be combined with a reinforcement 
learning approach for single goals to provide the solution for multi-goal policy acqui-
sition. The structure of the paper is as follows: In section 2 we present a concrete 
problem statement and we describe the environment used for testing a robotic agent. 
In section 3 we review the Attentional Agent Architecture and its extension to multi-
goal policy acquisition. In section 4 we present supporting simulations.  

                                                           
* Corresponding author. 
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2   Problem Specification 

To test the proposed architecture we select a robot navigation task. The concrete set-
ting is as follows: We assume the existence of a suitable space where the robotic 
agent moves from a point A to a point B transporting some item of interest. The high-
level decomposition of the task is shown in Fig. 1. Transport is the primary agent 
goal. At the same time there is the goal of maintaining itself in a working condition, 
which appears in Fig. 1, as the Power Monitor goal. Inside the space there are a num-
ber of stationary and moving objects. The overall task is to provide the Transport 
service of moving items from point A to B while avoiding collisions with other mov-
ing and stationary objects and also by making sure that the robot always has enough 
power. If the power level drops low the agent should recharge itself and return to the 
previous task. Recharging can take place in the recharge station (Terminal C) or by 
collecting small charges from objects of class Obj+ (by moving to the same grid cell). 
Correspondingly, objects of class Obj- should be avoided as they reduce the power 
level if touched. We assume that objects Obj+ carry a reward of +1, while objects of 
Obj- carry a reward of -1. Moving to goal position B achieves a reward signal of +20. 
All other states are assumed as having zero reward initially. A possible configuration 
of the space is shown in Fig. 2. 

 

Fig. 1. Goals Tree of agent 

In Fig. 1 there are three high-level goals: Transport, Collision-Avoidance and Power 
Monitor. The Transport goal executes a sequential program of four sub-goals {Goto A, 
Get Item, Goto B, Leave Item}. The Goto A goal is further decomposed to Route-
Planning and Move goals. All goals are executed ultimately by calling primitives 
which are not shown in Fig. 1. The Route-Planning goal is responsible for collecting 
the current sensory state and for calculating a new position for moving the agent closer 
to the goal position, based on the value map of the corresponding goal. Then it passes 
this new location to the Move goal to execute it. Internally it uses predictive models 
(Forward Models) for forecasting the possible position of the other moving agents.  

Given that a location is “closer” to the target position and it will not be occupied by 
other agents in the next time instance, the location is selected. During the execution of  
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Fig. 2. A possible configuration of GridWorld. MObj x represent a moving object x. SObj x 
represent static objects. Obj+/- represent objects that are assumed static but having a posi-
tive/negative influence on the power level of the agent if touched. Terminal C is the recharging 
station. Terminals A and B is the start and finish position of the Transport goal. 

the actual move, it might occur that some other agent moved to the calculated loca-
tion, because our movement prediction was wrong. We guard against such a case 
using the Collision-Avoidance goal, which implements a motor attention scheme. 
This goal is normally suppressed by the Transport goal; if however a collision is im-
minent, an attention event is created, which in turn raises the overall Action-Index of 
the goal. The final result is that the Transport goal is suppressed due to losing the 
global attentional competition against the Collision-Avoidance goal. The Power 
Monitor goal monitors the current power level and if low it will re-direct the robot to 
the recharging terminal or to a nearby Obj+ object. The policy is not hard-wired but 
learnt as described in section 3.2. Care is given to avoid objects Obj-. Collision with a 
static or moving object corresponds to a reward of -5 and -10 respectively.  We also 
assume that the maximum power level is 1000 power units, motion expends 1 power 
unit per cell, and touching Obj+ and Obj- increases / reduces the power level by +10/-
10 units with a reward of +1/-1 respectively. 

3   Multiple Goal Policy Acquisition for Attentional Agents 

3.1   Attentional Agent Architecture 

The Attentional Agent architecture was thoroughly discussed in [4]. An Attentional 
Agent is a system which has the following major components: 1. A goal set, organ-
ised in a tree (GoalsTree), see Fig 1; 2. A complex execution unit, called a goal, with 
an internal structure; 3. A global attention-based competition mechanism, which in-
fluences the priority of the goals; 4. A local attention-based mechanism, in the scope 
of a goal, which detects novel states and initiates learning of new models or adapta-
tion of existing ones. The local attention process works in dual modes: sensory and 
motor ones; 5. Each goal contains the following major modules: State Evaluation, 
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Rules, Action Generation, Forward Models, Observer, Attention (local) Controller, 
Monitor, Goals. The first five modules are implemented by models which can be 
adapted if erroneous performance is realised. We consider here that the Rules module 
is a Value Map that is created through reinforcement learning; 6. Partitioning the 
input and output spaces into suitable sub-sets. The input space is the sensory space, 
while the output space is the action space. We extend this model to include in the 
local scope an additional attention process that of the Boundary Attention. This proc-
ess is responsible for raising an attention event when we approach a limiting condition 
in the scope of a goal. For example when the power level is low this can be consid-
ered as a boundary condition that must capture attention and thus increase the priority 
of the goal. This relates to general homeostasis mechanisms of biological agents. 
When a homeostatic variable moves near (or out of) the boundary of its preferred 
range then attention is raised so that appropriate corrective action will be taken.  

3.2   Policy Acquisition for Multiple Goals 

Our proposed solution for multiple goals policy acquisition is based on the following 
ideas: i. Use of attention allows the agent to have fast reaction and deal with novel 
and unexpected situations that develop in a time scale faster than that used for single-
goal policy learning; ii. Instead of learning an overall (joint) policy for the current set 
of goals directly it is simpler to combine individual goal policies to an overall strat-
egy. Learning an overall policy seems unlikely in biological agents as one has to store 
a value map (of the policy) for each combination of goals ever encountered; iii. We 
effectively acquire an overall policy by selecting at each time instance only one active 
goal and the action output of the agent is the action selected in the scope of the active 
goal. The learning of the goal’s policy takes place in an individual basis using a stan-
dard RL method; iv. The scheme for selecting priorities for a set of competing goals is 
based on the following formula: 

ActInd=(W+S-AI+M-AI+B-AI+ ActInd) / (4 + # Contributing Children) (1) 

Formula (1) is an extension of the corresponding formula in [4]. ActInd is the action 
index of goal, which effectively controls the priority of the goal in global competition. 
W is the “intrinsic” weight. S-AI is the sensory attention index (to capture novel and 
unexpected situations), M-AI is the motor attention index (to capture impending dan-
gers), B-AI is the boundary attention index discussed in 3.1. All attention indices and 
the intrinsic weight are bounded in [0,1].  The sum of Action Indices in the numerator 
is over all contributing children in the sub-tree of a goal. A child is contributing if any 
of its corresponding attention indices is non-zero. This allows for the propagation of 
attention events in the goal hierarchy; v. Non-competing goals (due to referring to a 
different sub-region of the action space) are processed in parallel. 

4   Simulation Results 

We use the setting described in section 2, the set of goals in Fig. 1, formula (1) for 
selecting goal priorities and we define the sensory and motor attention indices as in 
[4,5]. The boundary attention index is defined as a sigmoid function over the value 
map of the energy states of the agent, and it is given by (2): 
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B-AI=1/(1+exp[ Val(E(t)-Emax/2) ] ) (2) 

where Val(·) is the value for the corresponding energy state (as the sum of all future 
discounted rewards) – it takes negative values for negative energies -, Emax is the 
maximum energy level (1000 units) and the energy value map has been acquired as all 
other value maps using the Q-learning algorithm [6]. The general methodology for 
training was as follows: We first trained the agent in each sub-problem separately 
using the Q-learning method with parameters of a=0.1 and =0.9 for learning and dis-
count rate respectively. Then we allowed the existence of multiple goals concurrently. 
The selected action at each time step was determined by the currently active goal by 
using its own value map acquired during the separate training. The active goal is the 
goal which wins the attentional competition. The maximum number of training ses-
sions for learning a value map was a million iterations. The intrinsic weights in (1), 
which code the relative importance of goals are given as relative ratios: |ValG|/  |ValG| 
of the values for each goal, in our case: +20 for Transport (point B), +10 for Power 
Monitor (point C), -10 for MObj collision, -5 for SObj collision, +1 for Obj+ collision, 
-1 for Obj- collision and 5 for Collision Avoidance respectively. When approaching 
one of SObj, MObj, Obj+, Obj- closer than a threshold range R=3 cells, we calculate 
the S-AI and M-AI indices as described in [4,5]. Adding their contribution to (1) al-
lows the alternation of priorities of goal execution and thus the determination of the 
currently active goal. The size of the GridWorld was 50x30 cells. We assume that 
when the agent reaches point B it then returns to A for starting another Transport ac-
tion. It continually expends energy. We run 50 simulations to check the probability of 
  

 

Fig. 3. Ratio of path lengths (A-B-C-A) of “best” vs current overall policy against the number 
of iterations for learning a policy. The path includes a recharge event and the current policy 
lengths are averaged over 50 simulations. 
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collisions and switching from the Transport goal to the Power Monitor goal. Each 
simulation session included the execution of 10 Transport commands (so as to deplete 
the energy and force a recharge). The results show that the agent successfully switched 
to the appropriate goal’s value map for action selection in all cases. In some cases 
collisions with moving objects took place due to false predictions regarding the future 
position of the objects. With further training of the predictive models for the motion of 
moving objects, the collisions are decreased, as it was also described in [5].  We used 
from 5-15 moving objects having different paths per simulation as in [5]. The overall 
performance for the agent is shown in Fig. 3. We show a curve that depicts the ratio of 
lengths of path A-B-C-A for the best/current policy against the number of training 
iterations for acquiring the policy (250K, 500K, 750K and 1M). The “best” policy was 
determined by us empirically using the optimal action at each time step. The curve is 
drawn by using the total length of the overall curve from point A to B and back. We 
used only the curves during which we had a recharge event and we averaged the 
lengths over the 50 simulation sessions.  It is clear that as the learnt individual goal 
policies approach their optimal targets the actual length comes closer to the shortest 
length. In Fig. 3 all policies corresponding to goals were trained to the same level. 
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Abstract. This paper provides an analysis of a new class of distributed memo-
ries known as R-nets. These networks are similar to Hebbian networks, but are 
relatively sparsly connected.  R-nets use simple binary neurons and trained 
links between excitatory and inhibitory neurons. They use inhibition to prevent 
neurons not associated with a recalled pattern from firing.  They are shown to 
implement associative learning and have the ability to store sequential patterns, 
used in networks with higher cognitive functions. This work explores the statis-
tical properties of such networks in terms of storage capacity as a function of R-
net topology and employed learning and recall mechanisms. 

1   R-Nets Neural Network Organization  

1.1   Main Concept of R-Nets 

R-nets have been used as components in the modular construction of larger networks 
capable of computations analogous to serial memory, classical and operant condition-
ing, secondary reinforcement, refabrication of memory, and fabrication of possible fu-
ture events.  R-net components of these larger networks appear to be appropriate ob-
jects of more detailed analysis than has been performed [Vogel, 2005].  

R-nets stress biological plausibility and have demonstrated large storage capacities 
with the sparse connectivity of mammalian cortex.  The number of synapses of prin-
cipal cells on interneurons is at least 320 [Sik, Tamamaki, & Freund 1993]; the num-
ber of synapses of interneurons on principal cells is 1000 to 3000 [Freund & Buzsáki, 
1996] and the ratio of interneurons to principal cells is roughly 0.2. The R-net mod-
eled for this paper has 40% of excitatory neuron pairs linked though at least 1 inhibi-
tory neuron [Vogel, 2005]. The detailed network structure is described in previous 
studies [Vogel, 2005]. The biological plausibility of this arrangement is discussed by 
Vogel [2001, 2005] and also by Fujii, Aihara, and Tsuda [2004]. 

Mathematically, R-nets are defined as randomly connected artificial neural net-
works with primary and secondary neurons. The network structure and connections 
between primary and secondary neurons are discussed by Vogel [2001, 2005].  

R-nets implement distributed memories able to recall input patterns. During train-
ing, an input pattern is presented to the R-net by activating a selected cluster C of 
primary neurons. All links between active primary neurons are trained. During recall 
a subset of one of the stored patterns is presented to the input, activating correspond-
ing primary neurons (initial recall set). The initial recall set is expected to activate all 
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neurons of one of the stored patterns that include the activated neurons as a subset. 
Each primary neuron is activated if it is not inhibited.  

During recall, inhibitory neurons linearly sum the weighted projections. 

, , ,i x i e e xa W a=
 

(1) 

where ai,x represents the activity of the ith inhibitory neuron on the xth cycle, ae,x is 
the current activity of the eth excitatory neuron with possible values 0 or 1, and Wi,e is 
the weight of the projection of the eth excitatory neuron onto the ith inhibitory neuron 
with possible values of 1(untrained) or 10(trained). The excitatory neurons are then 
synchronously updated according to the rules [Vogel, 2005]. 

2   Statistical Model of R-Nets  

A series of papers [Vogel and Boos, 1997; Vogel, 1998; Vogel 2001] demonstrated 
the substantial storage capacities of networks progressively approximating the R-nets. 
An R-net with 106 excitatory neurons and brain-like connectivity will store at least 
2x108 bits of information [Vogel, 2005]. In this section, a statistical model of R-nets 
is presented and is compared with simulated R-nets.  

Let us assume that an R-net is characterized by the set of primary neurons P, the 
set of secondary neurons S, the primary neurons’ outgoing sets, kp, and the secondary 

neurons’ outgoing sets, ks.  These numbers are related through sp kSkP ** = . 

Let us define Pci as a set of primary neurons reachable from a primary neuron Ci 

through the secondary neurons, andα  as probability that cij Pc ∈ for a selected pri-

mary neuron cj and a given Pci, so that
P

Pci=α . The expected value of the number of 

different primary and secondary neurons reaching to (or reached from) a secondary 
and a primary neuron, are respectively 
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If the links through other secondary neurons reached from a primary neuron are con-
sidered, the number of primary neurons linked to a given primary neuron is  

ps

kk

ci kk
P

PP
ps

<−−= 1
11* . (3) 

2.1   Eliminating Spurious Neurons 

Spurious neurons are defined as neurons that are not a part of the original pattern and 
that are activated during the recall process. The probability that a potential spurious 
neuron, cj, will be inhibited depends on the probability of the existence of an inhibi-
tory link from an activated primary neuron.  
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The probability that a projection out of a primary neuron in a trained set is trained 
with T patterns stored in the R-net is estimated as:   

1 1 1 1 1

T
C

t
ps

C
P

P k

α= − − − −  (4) 

Pt1 also equals Pt2, the probability of a projection out of a secondary neuron being 
trained with T patterns stored. 

As shown in Fig. 1, a neuron is spurious if it meets both of the following condi-
tions: a) It has no projection from Swa; and b) All its projections from Ssa are trained, 
where Ssa is the strongly activated set of secondary neurons and Swa is the weakly ac-
tivated set of secondary neurons. 

 

Fig. 1. Spurious neurons and activated secondary 

The probability that a secondary node, y, belongs to Sa is the same as the probabil-
ity that a selected secondary neuron is active during recall. 

1 1
spk

r
asr

C
p

P
= − −

 

(5) 

Thus the probability that a node in Sa is strongly activated is approximately  
( 1) 1

11 (1 ) sp srk P

ssa tP P − += − −  (6) 

and consequently the probability that a node in Sa is weakly activated is 1 ssaP− . 

The probability that a potentially spurious node, z, is not linked to any node in Swa is 

(1 (1 )) psk

nwa asr ssaP P P= − −  (7) 

Assume that a node z is not linked to Swa.  The probability that such primary node z 
is connected to a node in Ssa is 

1 (1 )
asr ssa

pssa
asr ssa

P P
P

P P
=

− −
 (8) 
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Using this result, we can obtain the probability that a primary node z has k projec-
tions to Ssa and no projections to Swa, and all of the links to Ssa are trained, thus ob-
taining the probability that z is a spurious node as  

1
0

(1 )
ps

ps

k
k kps k k

z nwa pssa pssa t
k

k
P P P P P

k
−

=

= −
 

(9) 

The increasing probability of spurious neurons with increasing numbers of patterns 
stored limits the maximum number of patterns that can be stored in the R-net mem-
ory. Since, in the recall process, we can tolerate no more than Smax spurious neurons, 
and each neuron in the P-C set has probability of being spurious equal to Pz, then the 
recall set has no more than Smax spurious neurons with the probability 

max

_
0

(1 )
S

i P C i
NO spurious z z

i

P C
P P P

i
− −

=

−
= −

 

(10) 

The analysis is in reasonable agreement with actual simulations of modestly large 
networks, and anticipate that increasing the size of both the networks and the subsets 
used for recall will only make the network stochastically smoother and the analysis 
more accurate. This anticipation does not replicate the error found in Marr [1971] 
(discussed in [Vogel, 2005]). 

2.2   Eliminating Missing Neurons 

A missing neuron is a neuron from C-Cr which is suppressed by an inhibitory projec-
tion to an activated primary neuron.  The following lemma can be established. 

Lemma: Each missing neuron is suppressed by an inhibitory link to a spurious neu-
ron connected through a secondary node w, where w is different from all nodes in Sa, 
as shown in the Fig. 2. 

 

Fig. 2. Creation of missing neurons 

Proof: If m connects to Sa, then there is a node x in Cr such that x and m are linked.  
Since m and x are a part of the same pattern, both parts of their link (projections from 
the primary node x to the secondary node in Sa and from the secondary node in Sa to 
the primary node m) are trained. Obviously the inhibition cannot result from such link. 
Therefore, the inhibitory link to m must pass through a secondary node outside of Sa.   



 Neural Network with Memory and Cognitive Functions 89 

 

To prove the argument that inhibition must come from a spurious neuron we may 
notice that no neuron in Cr can be connected to w and that if a node x in C is con-
nected to w then m and x are connected through a trained link, since they are in the 
same pattern C. Therefore no other node in C can inhibit m.  This leaves, as the only 
option that an inhibitory link to m comes from a spurious node outside of C. 

The probability that a given primary node will be missing due to a single spurious 
node can be estimated to be less than   

sin _ 1 2

1
(1 ) (1 )mis g one t t ps sp asr zP P P k k P P

P
= − −

 
(11) 

By connecting all possible locations of missing neurons, the probability that a sin-
gle primary neuron is missing is 

sin sin _1 (1 )P C
mis g mis g oneP P −= − −

 
(12) 

So the probability that the recall set has no more than Smax missing neurons is  

max
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(13) 

2.3   Results of the Statistical Model 

The statistical model is in a good agreement with simulated R-nets and can be applied 
to estimate the computational performance of very large R-nets.  We simulated the 
storage capacity for 20 to 100 neuron patterns of networks up to 107 primary neurons 
with 1000 projections from each primary neuron to 2x106 secondary neurons with 
5000 projections from each back to primary neurons. Result is shown in Fig. 3. 

 

Fig. 3. Storage capacity of R-net with up to 107 primary neurons 
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In addition, from the conducted analysis of R-net properties based on the presented 
model, we can conclude that their storage capacity grows faster than the number of 
primary neurons and that a slope of growth is close to 10/7 on the logarithmic scale 
which agrees with experimental results reported in [Vogel, 2005]. When the network 
size reaches 109 primary neurons (with average number of projections 104 that is simi-
lar to interconnection density of human brain), the network can store over 109 patterns 
and the optimum storage for these very large memories is achieved with a pattern size 
of about 150 neurons.  

3   Conclusion 

In this paper a statistical model of R-nets was presented and results were compared to 
results observed in simulated R-nets. This model has already demonstrated that work 
on the role of disinhibition in paired-pulse induced long-term potentiation may be of 
fundamental importance to understanding memory and higher cognitive functions. It 
suggests an entirely new understanding of the role of massive projections of excita-
tory neurons onto neurons of distant regions [Vogel, 2005]. These models have pro-
duced computations analogous to serial memory, context dependent classical and op-
erant conditioning, secondary reinforcement, refabrication of memory, and planning. 
They distinguish between perceived and recalled events, and predicate responses on 
the absence as well as presence of particular stimuli. Analysis suggests that the mod-
els may be expected to scale up to brain-sized networks efficiently. 
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Abstract. In this paper we introduce feedback based associative learning in self-
organized learning arrays (SOLAR). SOLAR structures are hierarchically organ-
ized and have the ability to classify patterns in a network of sparsely connected 
neurons. These neurons may define their own functions and select their intercon-
nections locally, thus satisfying some of the requirements for biologically plausi-
ble intelligent structures. Feed-forward processing is used to make necessary cor-
relations and learn the input patterns. Associations between neuron inputs are 
used to generate feedback signals. These feedback signals, when propagated to 
the associated inputs, can establish the expected input values. This can be used 
for hetero and auto associative learning and pattern recognition.  

1   Introduction 

Associative learning has been long recognized as one of the necessary elements of in-
telligence, thus it is desirable that an artificial system that mimics biological intelli-
gence be able to perform both spatial and temporal associations. Associative networks 
were developed as a special class of artificial neural networks to handle associative 
learning and retrieval of information. There are two types of associative networks, 
hetero-associative (HA) and auto-associative (AA). Hetero-associative networks are 
capable of making associations between two or more different types of input signals. 
Auto-associative networks learn associations between elements of the same input vec-
tor. Such networks can learn various patterns, and then recall the pattern based on a 
fractional part of a pattern. Examples of HA networks include multilayer perceptron 
[1], the counter-propagation network [2], the bidirectional associative memory [3] and 
multi-associative spatio-temporal network [4], while the Hopfield network [5] and the 
Vogel associative memories [6,7] are AA. In this paper we present a model of the 
self-organizing learning array that implements both the hetero and the auto-
associative learning.  

Spatio-temporal associations are particularly important in both biological and elec-
tro-mechanical systems. For instance, a spatio-temporal association may trigger a re-
active response in an animal or guide the robot to its target. Time delays have been 
used in Hopfield networks [5] to generate spatio-temporal sequences which are time 
dependent sequences of spatial patterns. Storage and retrieval of spatio-temporal se-
quences was studied in many papers ([8 - 10]). While the proposed approaches 
achieved reasonable storage and retrieval of input sequences, they have some serious 
drawbacks if one wants to implement them in biologically plausible structures. In this 
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paper we take on a different approach to pattern storage and associations. A hierarchi-
cal, multilayer structure based on our self-organizing learning architecture [11] is 
used, and we demonstrate that such structure can make the necessary associations be-
tween patterns using sparsely connected neurons. 

SOLAR (Self-Organized Learning Array) is a regular, two or three-dimensional ar-
ray of identical processing cells, connected to programmable routing channels. Each 
cell in the array has ability to self-organize by adapting its functionality in response to 
information contained in its input signals. Cells choose their input signals from the 
adjacent routing channels and send their output signals to the routing channels. Like 
artificial neural networks (ANNs), SOLAR is inspired by the structure of biological 
neural networks and shares their robust, distributed and parallel signal processing, yet 
it differs from existing realizations of ANNs. It has a deep multi-layer hierarchical 
structure, which helps to handle complexity of target problems, it uses online learning 
with dynamically set neuron functions and dynamically learned sparse connections, 
efficient in hardware realization. Prior study of SOLAR structures reported in [11] 
concentrated on demonstrating its pattern recognition and classification abilities.  In 
this paper we introduce a feedback mechanism with inhibitory connections and asso-
ciative learning to SOLAR. 

This paper has been organized in 4 sections. The second section discusses the 
structure and behavior of the proposed network. Section 3 presents testing results on 
several bench-mark machine learning problems. Section 4 contains conclusions. 

2   Network Structure and Operations 

In this work, the network has been formed as a two-dimensional structure, which is 
pseudorandomly constructed with interconnection structure of small world networks 
[12]. For a recognition task, it is trained with the input features that represent the pat-
terns, and the corresponding codes that represent the classification. The input span, 
defined by the number of rows, is set equal to or greater than the dimensionality of 
inputs. The depth of the network (the number of hierarchical levels) is set according 
to the input span. In a hierarchical structure, each neuron connects only to the neurons 
of the previous layer. Once the learning is completed, a network is capable to make 
necessary associations, such that when presented with the pattern only, it drives feed-
back to the associated inputs to assert the unknown code values. Similar to pattern 
recognition, missing data can be found from feedback traced to the unknown portion 
of the input. 

The outside input should be presented to the network in a binary form ranging from 
0 to 1. The signal strength is measured as the distance between the signal level  
and 0.5. A signal is determinate if it is 0 or 1. It is a low (or high) if it is below (or 
above) 0.5, and is unknown or inactive if it is 0.5. The probabilities of I1 and I2 being 
low or high and their joint probabilities can be recorded in each neuron. The condi-
tional probabilities P(I2 | I1) and P(I1 | I2) can then be computed.  

A simplified confidence interval measure is used for each of the probabilities: 

N

))I|I(1(2
  CI 12P−=

, where N stands for the number of training inputs. The value of  

P(I2 | I1) - CI is then compared against a threshold τ . If larger, we can say that I1 can 
be implied from I2. Likewise, P(I1 | I2) decides whether  I1 can be implied from I2. 
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Definition: Inputs I1 and I2 of a neuron are associated if and only if I2 can be implied 
from I1 and I1 can be implied from I2 simultaneously. Such a neuron is then an asso-
ciative neuron. Otherwise it is a transmitting neuron. 

Fig. 1 illustrates six different situations of I1 and I2 inputs that an associative neu-
ron may receive in training.  

f1 f2 f3

f4 f5 f6  

Fig. 1. Input Distribution to an Associative Neuron 

2.1   Feed Forward Scheme 

For the simplicity of discussion, we assume a fixed interconnection structure where 
each neuron has two inputs I1 and I2 and a single output O. The task of a neuron dur-
ing training is to discover the potential relationship between the two inputs and to re-
member it. The neuron needs to select a proper transfer function f from a predefined 
set F that can best describe the relationship between I1 and I2. It can then generate 
output O using f. Six functions, f1 to f6, are designed to include all the logic relation-
ships between I1 and I2 in an associative neuron, as shown in Fig. 1. In an associative 
neuron, the majority of the training data is either distributed in one dominant quad-
rant, or two diagonal quadrants. f1 to f4 are designed for the four possible locations of 
the dominant quadrant. Their output is always 1 for the dominant quadrant, and 0 for 
all the others. When data points are mostly distributed in two diagonal quadrants, f5 
and f6 are used as shown in Fig. 1. To accommodate noise f5 and f6 are defined only 
based on I1 to include all the data points. For example, 

=
high is Iif1,

 low is Iif0,
)I,I(

1

1
215f

 
(1) 

The neuron output is set “inactive” or 0.5, whenever either one of the inputs is 0.5.  
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If a neuron observes any distribution other than what is included in Fig. 1, it is a 
transmitting neuron. It simply transmits the input with higher entropy, called the 
dominant input, to O, with the other ignored. An input I1 is the dominant input if 

high)) is P(I-low) is abs(P(Ihigh)) is P(I-low) is abs(P(I 2211 <  
(3) 

2.2   Feedback Scheme  

During testing, missing parts of the data need to be recovered from existing data 
through association. For example, in a pattern recognition problem, the neurons that 
are physically connected to the unknown code inputs are responsible for providing 
feedback from the associative neurons and define the values of the code. This, in turn, 
can be used either to classify the input pattern or to recover the uncertain inputs. 

The feedback scheme is an important part of associative learning. Fig. 3(a) shows a 
conceptual view of the network with separated known and unknown inputs. The white 
circles are the neurons that do not participate in signal processing. The black circles 
are actively associating neurons defined below. The gray circles are the remaining 
neurons involved in signal processing. The neurons on the known side generalize the 
information that activates associative neurons, which generate feedback to the un-
known side. In order to explain the working mechanism in single neurons, Fig. 2(b) 
shows a snapshot of the communication among four interconnected neurons.  

a

depth

Inputs

unknown

known
N4

N3N1
N2

b  

Fig. 2. Neuron Feedback Scheme 

When a neuron receives at least one active output feedback, the strongest feedback 
Of triggers the feedback to the neuron’s inputs. The input/output relationship in the 
feedback scheme for each neuron can be described by one of the following types. 

1. Transmitting neurons. A transmitting neuron (e.g. N1 in Fig. 2,) simply passes Of 
back into its dominant input. When the feedback I1f is stronger than the dominant in-
put I1, I1 will be overwritten by I1f.  

2. Associative neurons with determined inputs. If I1 and I2 of an associative neuron 
(e.g. N2 in Fig. 2,) are either 0 or 1, O will consequently be at full strength. Of won’t 
be able to change O. Feedback takes no effect and information passes forward.  
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3. Associative neurons with active feedbacks and inactive input(s). For an associa-
tive neuron that doesn’t have determinate signals on both inputs (e.g. N3 in Fig. 2,) Of 
creates feedbacks I1f and I2f through the function f. If the feedback signals are stronger 
than the original inputs, these inputs will be overwritten. Consequently, overwritten 
inputs become feedback signals to the neurons N1 and N2, to which N3 inputs are 
linked. These neurons pass information backwards and they are not allowed to propa-
gate forward to higher hierarchical layers.  

4. Associative neurons with inactive feedbacks. Some neurons located deeply in 
the network may not receive active feedback at all, (e.g. N4 in Fig. 2). If one of their 
inputs is inactive, it will be overwritten based on its association with the other input 
and the neuron function f. These type of neurons are called actively associating and 
are the backbone of the associative processing in SOLAR. For instance, since I1 is 0.5 
for N4, the feedback to I1 is determined based on the known input I2 and the function 
f5. For neurons that fit scenarios 3 and 4, the input feedback is calculated differently 
for each function, based on the strength of Of and the quality of each neuron’s learn-
ing, which is not described in full details in this paper. 

3   Simulation Results 

Several benchmark classification and missing data recovery tasks have been used to 
test the performance of the proposed network.  

Teaching Assistant Evaluation database [13] consists of 151 instances, 5 features 
and 3 equally sized classes.  After a 15-cross validation, the overall correct classifica-
tion rate of SOLAR is 68.33% compared to 67% in [13].  

SOLAR was also tested with the Iris database [14], which has 3 classes, 4 numeric 
attributes and 150 instances. The hierarchical SOLAR network gets an average classi-
fication rate of 75.33% from a 15-cross validation.  An optimal input arrangement 
(using straight sliding bars and merging features and class id code) could further im-
prove the performance to 86%. For comparison, results reported in literature [15] give 
correct classification rate for the Iris database between 91.33% and 97.33%.  

The Glass Identification Database [16] was used to study the impact of the target 
problem’s complexity on the depth of the network. The network was first trained and 
tested with the whole database, which contains 6 classes and 9 features, and then with 
half of the database that only has 3 classes.  It was found that the more classes were 
used, the more layers SOLAR needs in its hierarchical structure. 

In addition, the network has successfully accomplished binary image recovery 
tasks. Although the current setup uses a two dimensional architecture, it is believed 
that a three dimensional network would handle image related problems better. 

4   Conclusions 

This paper presents an associative learning network based on a hierarchical SOLAR 
structure. SOLAR is a biologically inspired machine-learning concept. It is a sparsely 
connected network organized as a fixed lattice of distributed, parallel processing units 
(neurons). The associative learning SOLAR network described in this paper is con-
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structed as a fixed connection network with feedback and inhibitory links. Similar to 
Vogel’s distributed auto-associative memories [7], SOLAR discovers the correlation 
between inputs and establishes associations inside the neurons, without a need to dif-
ferentiate between the associated classification code and data patterns. It is capable of 
handling a wide variety of machine learning tasks including classification and data re-
covery, and is suitable for online learning. The SOLAR organization will be further 
modified towards an advanced machine intelligence system capable of associative 
learning, adaptations, and value driven interaction with environment. 
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Abstract. A review of cognitive processing in the brain is presented, using 
insights from brain science to extract general principles. After discussing the  
nature of cognition, the triumvirate of basic brain functions: attention control, 
reinforcement learning and memory, are explored as to how they could support 
cognitive processes, from which certain cognitive principles are developed. 
Several specific cognitive tasks are discussed and their simulations considered 
which support the effectiveness of the approach. 

1   Introduction 

A global control system is undoubtedly needed to organize overall coherence between 
parts of the brain performing different functions in cognition. There is now good 
evidence that attention is such a system, acting so as to filter out distracters from 
necessary targets in the cluttered world, or emphasize certain actions out of many 
possible. The distinguishing features of attention have become clear through many 
brain imaging and single cell experiments using a range of experimental paradigms. 
So attention is an important component to be included in cognitive models. 

Attention needs to have a value system to guide what it is worth attending to and 
process to a higher level. Memory of reward and penalty is also needed. The nature of 
the storage of reward and penalty in the brain is being systematically uncovered 
through brain science, with the role of dopamine and of various limbic sites becoming 
clarified. A powerful link-up with machine learning in the guise of temporal difference 
and adaptive critic (ACE/ASE) learning has developed apace, so that the 
TD/ACE/ASE system has good evidence for being used in the brain. 

Beside reward memory there is also need for episodic memory in cognitive 
processing. Again considerable progress has been made in understanding a number of 
the features of this, associated especially with the hippocampus, so both reward and 
memory can be used as corner-stones for cognitive modeling.  

In the next section are given a brief discussion of cognition.  Extraction of a general 
architecture and principles for a cognitive agent is given in section 3, after a brief 
discussion, and on the basis of, attention reward and memory. It is then shown in 
section 4 how this framework can be used in specific cognitive tasks; the paper 
finishes with conclusions. 

2   The Nature of Cognition 

The basic components of cognition will be taken here to be: awareness, thinking, 
knowing, reasoning and executive functions. Awareness presents an enormous 
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difficulty, since there is no universally accepted model of its nature, nor we do even 
understand it. A model of awareness, developed from a control model of attention 
using engineering control ideas, will be adopted here [1, 6]. The claim that awareness 
is properly included in such a model has been argued in detail elsewhere [6, 7], and 
will not be considered further here; some such indication is needed for any self-
respecting model of cognition to be worth its salt. 

An important aspect of engineering control is a forward model involving the 
process of prediction: 

                                   x(t+1)=F[x(t),u(t)                                                                    (1) 

where x(t) is the estimated state of the controlled system at time t, and u(t) is a control 
signal at that time, which through the forward model function F[, ] leads to an estimate 
of the state at the next time step. Purely sensory ‘thinking’ can be envisaged as arising 
from the recurrent running of the above forward model, using control signals u(t) 
from, say, the attention control system. The sequence would be concluded when a 
suitable goal state had been reached (as set up initially as part of a reasoning 
problem). More general thinking and reasoning can be achieved using a sensory-motor 
coupled system, with state estimate x being the attended sensory and motor state and 
the forward model run by joint sensory-motor attention control signals (which arise 
from separate parts of the brain, sensory attention in the right hemisphere, motor 
attention from the left). The forward and related models will involve memory codes, 
so as to be more efficient by using previous information of the world. 

3   Attention/Reward/Memory for Cognition 

Attention: This arises from a control system in higher order cortex (parietal and 
prefrontal) generating a signal to amplify a specific target representation in posterior 
cortex. The higher cortical sites generating the control signal (inverse model for attention 
movement) use a bias from prefrontal goals (held in working memory) to amplify (by 
contrast gain) posterior activity in semantic memory sites (early occipital, temporal and 
parietal cortices). This leads to the following ballistic model of attention control: 

Goal bias (PFC)->Inverse model controller (Parietal lobe )->Lower Posterior CX (in 
various modalities)              (2)  

The amplified target activity is then able to access buffer working memory sites in 
posterior cortices (temporal and parietal) which act as attended state estimators. The 
access to this buffer has been modeled in the more extended CODAM model [1, 2] as 
a threshold process, arising from two-state neurons being sent from the down to the 
up-state (more specifically by two reciprocally coupled neurons almost in bifurcation). 
The access to the sensory buffer is aided by an efference copy of the attention 
movement control signal generated by the inverse attention model sited in the brain in 
the SPL. The existence of an efference copy of attention was predicted as being 
observable by its effect on the sensory buffer signal (as represented by its P3) [3]; this 
has been observed in an experiment on the Attentional Blink, where the N2 of the 
second target is observed to inhibit the P3 of the first when T2 is detected [4]. 
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Reward/Value: An organism tries to optimise its experience in the world by taking 
actions on stimuli which maximise its future rewards. The signal for reward, and in 
particular reward prediction error, has been observed as carried in the limbic brain by 
dopamine, with predicted future reward values of stimuli encoded in the OBFC. A 
machine learning model of this has been developed under the guise of TD learning 
and the ACE/ASE system [5]. It allows a further bias to be exerted on the attention 
control system and resulting responses; it also provides a method of enhanced learning 
of stimulus representations as valued goals in prefrontal cortex. 

Memory: There are a range of forms of memory: short-term, long-term, procedural, 
declarative, and so on. We have already considered short-term (working) memory as 
part of CODAM (in both parietal lobes as a buffer system and in prefrontal cortex as 
part of the executive system). Thus we consider only long-term memory, which is 
based on the hippocampus (HC). Numerous models of the HC cell fields exist, as well 
as models with more extensive connections to prefrontal cortex. HC stores memories 
in at least two ways: in afferents to CA1, and in recurrent connections in CA3. These 
are both stored during theta wave activity in HC, and then played back in the HC in 
SWS; finally it appears that playback to cortex, possibly in REM sleep, leads to a 
more permanent code, both of episodic and semantic memories.  These form the basis 
of knowledge codes. 

Cognitive Sub-tasks: In cognition a variety of subtasks are carried out, including:  
1) Storage and retrieval of memories in hippocampus (HC) and related areas;  
2) Rehearsal of content working memory; 3) Transformation of buffered material into 
a new, goal-directed form (such as spatial rotation of an image held in the mind);  
4) Inhibition of pre-potent responses [8]; 5) The learning of forward maps of attention 
in both sensory and motor modalities, so that consequences of attended actions on the 
world can be imagined; 6) Determination of the reward value of sequences of sensory-
motor states as they are being activated in forward model recurrence; 7) Learning 
automatic sequences (chunks) to speed up cognitive processing. 

The rehearsal, transformation, inhibition and retrieval processes are those that can 
be carried out already by a CODAM model [1, 2, 3] (with additional HC for encoding 
& retrieval). CODAM can be used to set up a goal, such as the transformed state of 
the buffered image, or its preserved level of activity on the buffer, and transform what 
is presently on the buffer, by the inverse attention controller, into the desired goal. 
Such transformations arise in CODAM by monitoring if the original image has been 
correctly transformed or preserved under an attention feedback signal, generated by a 
suitably created error signal. Longer term storage of material for much later use would 
be encoded in the HC, under attention control. The comparison process involves yet 
again monitoring in CODAM. The use of forward models like (1) allows for careful 
planning of actions and realization and valuation of consequences. Multiple 
recurrence through the forward models of the form (1) allow further look-ahead, and 
prediction of consequences of several action steps. Automatic process are created by 
sequence learning in the frontal cortex, using basal ganglia as well as cerebellum 
involvement, to learn chunks. Attention agents have been constructed {13], recently 
combined with reward learning [14] involving look-ahead through forward models. 
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Cognitive Principles: We can deduce some principles of cognitive processing: 

P1: There is overall control by attention of the cognitive process, using attention-
based control signals to achieve suitable transformations to solve cognitive tasks; 

P2: Fusion of attention control (in parietal lobe and PFC) and long-term learning in 
HC achieves an expanding set of stimuli and actions, and their attention control; 

P3: The creation of a valuation of goals occurs in PFC to handle reward prediction 
biasing of the processes 1) to 6) above; 

P4: Transformations on buffered stimuli is by suitable PFC goals for required 
transformations being carried out on buffered activities, under attention control; 

P5: Forward models (as equation (1)) are created under attention control so, by 
recurrence, passage through sequences of attended sensory-motor states is 
achieved (as in thinking), to reach a desired goal (as in reasoning) or valued states 
that may correspond to new ways of looking at a problem (as in creativity); 

P6: There is creation of, and ability to access, automated ‘chunks’ of knowledge, so 
they can be inserted into forward model sequences under P5. They are initially 
created by effortful attention at an earlier time (using error-based learning in 
cerebellum) but then gradually transferred to automatic mode by suitable 
rehearsal; 

P7: Attention is employed as a gateway to consciousness, which provides an 
overarching control function of speed-up of attention, with important survival 
value. 

Cognitive Architecture: A possible architecture is a) CODAM as an attention 
controller (with sensory and motor forms) b) Extension of CODAM by inclusion of 
value maps and the reward error prediction delta, as begun in [11]; c) Extension of 
CODAM to include an HC able to be attended to and to learn short sequences d) 
Further extension of CODAM by addition of cerebellum to act as an error learner for 
‘glueing’ chunked sequences together, with further extension to addition of basal 
ganglia to have requisite automated chunks embedded in attended control of 
sequential progression. The goal systems in PFC are composed of basal 
ganglia/thalamus architecture, in addition to prefrontal cortex, as in [12]. 

4   Modelling Cognitive Tasks 

The tasks I will consider are the Wisconsin Card Sorting (WCST) and the Tower of 
Hanoi. These are used to investigate prefrontal deficits in cognitive processing. 

WCST: The WCST task has a pack of cards with 1, 2, 3 or 4 shapes of 4 kinds, with 
each card being in one of 4 colours. Four test cards lie face up on the table. The 
subject’s task is to take a card from the pack and place it on one of the four test cards 
according to a rule (following the matching of colour, shape or number).  If the choice 
fits a rule chosen by the experimenter, unbeknownst to the subject, then the 
experimenter says ‘yes’, otherwise ‘no’ . Either way the subject has to try again. After 
(usually) 10 correct choices by the subject, the experimenter changes the rule, 
although without telling the subject except inthe ‘yes’ or ‘no’ response they give to the 
subject’s choices.  
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Numerous neural models of this task exist, such as [9]. This uses a set of recurrent 
loops (CX ? BG ? Thalamus ? CX) so as to store in working memory the rule 
presently in use by the subject. Receipt of a ‘yes’ continues the rule; a ‘no’ causes the 
WM activation to be destroyed by the amygdala, acting as a punishment device, and a 
new rule is then formulated and tried until the correct new rule is discovered. This 
model captures the essential components of the process, and fits reasonably well with 
brain imaging data ([9]. However the results in [10] indicate the need for further 
development of the recurrent prefrontal lobe loop structure to be more completely 
implemented.  

Tower of Hanoi: This task involves a set of vertical rods arranged, for example, in a 
line, with rings of increasing radius that can fit over each rod. It is not allowed to have 
a larger ring above a smaller one on any rod, and only one ring can be moved at any 
time. The purpose is for the subject to work out the smallest number of moves to take 
the rings from one allowed configurations of rings to another only making allowed 
moves. A standard initial goal state is all the rings on one rod (in a legal 
configuration), with the final goal state they being all on another rod (again in a legal 
configuration); the task usually has only three rods and 3-5 rings. 

There are several executive processes involved in solving the problem: WM encoding 
of the present position and of the ultimate goal state; transformation by a legal move to a 
further arrangement of rings from the initial one; continued transformation from one 
configuration to the next by a legal move: Config(n)?Config(n+1); achievement of the 
goal state by a final configuration reached, Config(N); if not achieved start a new set of 
legal moves from the initial state; repeat until successful. There are more abstract 
approaches to this problem but we are considering here how the task would be solved by 
a person on first acquaintance with it. Thus the most crucial step is the manipulation of 
Config(n)?Config(n+1) in WM, using a suitable legal move as represented in PFC. This 
corresponds to taking a mental image (in WM) of Config(n), and making a mental legal 
move of one ring to the top of the set of rings on another rod, in which the final state 
Config(n+1) is also legal.  Thus a check has to be made that such a move is legal by 
performing the move and then checking that there are no smaller ring below the moved 
ring on the new rod. If not, the move is legal and is made (and also stored in memory); if 
there is a smaller ring then the move is not taken and a new move is tried for its legality. 
We note that in the above processes, attention and memory play a crucial role. Reward is 
involved in setting up the goal, but is not necessarily needed unless complete autonomy 
is needed for the agent to be suitable motivated. 

5   Conclusions  

After a discussion of the nature of cognition in section 2, we considered in the 
following section some details of the brain basis of the three basic functions involved 
in cognition: attention, memory and reward. This led to elaboration of a set of detailed 
component functions of cognition, and thence to principles for cognitive processing in 
the brain and an associated cognitive architecture. In section 4 we analyzed two basic 
cognitive tasks, the WCST and the Tower of Hanoi. There is much more to be done, 
especially by the implementation of language, for developing such high-level 
cognitive processing, beyond the simple cognitive processing discussed here.  
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Abstract. A phenomenological neuronal model based on a coupled
piecewise linear two–dimensional map is presented. The model mimics
many of the neuronal features such as spiking, bursting and subthreshold
activity. The model requires a computational effort lower than most of
the phenomenological or differential neuronal models and its behavior
is coherent with the one present in the other models. The regimes of
synchronization of a pair of coupled maps is also explored.

1 Introduction

In the last few years phenomenological neuron models that allow the replication
of spiking/bursting neural behavior have been proposed [1][2][3]. These models
present a low computational effort in difference with well known differential
models such as the Hodgkin-Huxley model [4], or the Hindmarsh-Rose model
[5] that require a high number of floating point operations to simulate a single
neuron in the network for 1 ms and, therefore, are not suitable for the simulation
of large scale neural networks even for short periods of time.

These new phenomenological models allow the study of biological neural net-
works composed of a large number of neurons. Most of the these phenomenolog-
ical models are based on low–dimensional iterative maps [1][3] or are numerical
approximations to differential maps [2] and most of them lack important biolog-
ical features such as subthreshold oscillations. Subthreshold activity is known to
play an important role in some specific of rhythmic activity vulnerable to noise
[6]. The lack of subthreshold activity in phenomenological models does not allow
the realistic simulation of several kinds of neurons that present such behavior
and recent modifications have been proposed to some of these models in order
solve that lack [7].

In this work we extend the functionality of the model presented at [3] in order
to obtain stable subthreshold neuronal activity without losing previous neuronal
features of the model such as spiking/bursting behavior, spontaneous activity
or response to external neuronal input. The model here presented maintains a
computational effort of two floating points operations in each iteration for the
simulation of neuronal activity and its behavior is coherent with the one found
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in other phenomenological or differential models. We also study the behavior of
coupled neurons. We present a very simplified synaptic model that again main-
tains a low computational effort presenting biological features such as several
regimes of synchronization between neurons for different coupling strengths.

2 A Neuron Model with Sub-threshold Oscillations

Models of neuronal behavior based on bifurcation theory [1][9] allow the mimic of
several types of behavior that occur in neural activity. These models are mainly
based on two–dimensional maps composed of both a slow and a fast variable. In
these models the transition from silence to spiking/bursting activity is provided
by a noninvertible transition as a control parameter (usually an external input)
crosses certain threshold. Even when this situation is typical for some biological
neurons, some other neurons present a soft transition from the regime of silence
to the spiking/bursting regime. These neurons must present oscillations bellow
the spike threshold.

In [3] a neuronal model based on a coupled two–dimensional map with one
fast and one slow variable is presented. This model mimics spiking/bursting
activity and presents a behavior that is consistent with other phenomenological
and differential models that require a higher computational effort. The model
can be modified in order to obtain subthreshold activity, the new map can be
written in the form:

yn+1 =

⎧⎪⎨⎪⎩
H(sn)

B ∗ yn if 0 ≤ yn < B

(yn −B) ∗ K(sn)−H(sn)
C−B +H(sn) if B ≤ yn < C

(yn − C) ∗ T (sn)−K(sn)
D−C + K(sn) Otherwise

(1)

sn+1 =

⎧⎨⎩
0 if sn = 1 and (yn > D or (yn > C − S and yn < C))
1 if sn = 0 and (yn < L or (yn >= C and yn < C + E))
sn Otherwise

(2)

whereH(s) = H0+s∗(H1+σ),K(s) = K0+s∗(K1+σ) and T (s) = T0+s∗(T1+σ)
and B, C, D, S, E, L, H1, H0, K1, K0, T1, T0 are non–negative parameters
verifying the following conditions: L < B < C < D, H0 ≤ B , H1 + H0 ≥ B,
K0 ≤ C , K1 +K0 ≥ C, T0 ≤ D and T1 +T0 ≥ D, σ represents an external total
input to the neuron. The parameter C is the spike threshold. The value of the
slow variable s is modified as the fast variable y, that represents the membrane
potential, crosses the threshold values L, E, S and D. The variable s represents
the re–polarization (s = 0) or de–polarization (s = 1) status of the neuron.
The change in the value of the slow variable s, and therefore in the polarization
status of the neuron, is governed by the crossing of the fast variable y through
the threshold values L, E, S and D. A plot of the map is depicted in Figure 1.

In difference with the model presented in [3] this modified model allows the
presence of subthreshold activity. In Figure 2 the behavior of a bursting wave
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Fig. 2. Behavior under different injection of external input. Subthreshold oscillations
are clearly observed when σ = 0. Parameters are described in the text.

with sub-threshold oscillations under a non-constant injection of external input
is depicted. Observe that in the regime of no external input, the model presents
oscillations below the spike threshold. Once the external input is reestablished,
the model continues its bursting activity. The parameters for the map are: L =
.01, B = .15, C = .3, D = .9, H0 = .14, K0 = .28, T0 = .75, H1 = .02,
K1 = .0199, T1 = .3, E = 0.0085 and S = 0.0001.

Furthermore the model can present a soft transition from the silent mode
to the spiking/bursting mode governed by the external input parameter σ in a
similar way than other phenomenological models do [7]. Observe in Figure 3 the
transition from the silent mode to an spiking mode as the external input σ is
increased.
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Fig. 3. Soft transition from silent to spiking regime. Parameters are described in the
text.

3 Regimes of Synchronization in Coupled Maps

The previous map can be generalized in order to receive synaptic inputs from
other neurons in the network. In the generalized mode, a chemical synaptic
transmission can be modeled by substituting a constant input σ to neuron i by
the total input at time n:

σn,i = σe
i +

1
Γi

N∑
j=1

gijsn−1,jH(yn−1,j −Θ) (3)

where σe
i represents both the external input to neuron i and the action of any

current not explicitly captured by the model. Γi is the number of neighbors of
neuron i, N is the number of neurons in the network, yn,j and sn,i represent
respectively the value of y and s for the neuron j at time n. The parameter gij

is the synaptic coupling coefficient between neuron i and neuron j and H(x) is
the usual Heaviside function. The threshold Θ has been chosen such that every
spike in the single neuron can reach the threshold (Θ = C).

Synchronized neuronal firing has been suggested as particularly relevant for
neuronal transmission and coding. The presence of synchronization has been
demonstrated in special areas such as the olfactory system [11] or the hipocam-
pal region [12]. Real neurophysiology experiments [8,10] show that ensembles of
coupled neurons can present different regimes of synchronization. These regimes
are reproduced both by differential or iterative models [9]. The synchroniza-
tion phenomena in map (1) can be observed in figure 4 for identical interacting
bursting neurons with a symmetric coupling value of g1,2 = g2,1 = .05. As can
be observed in the lower panel of figure 4 the synchronization of the individual
spikes is achieved after a initial transient period. Note that with a low value



Neuronal Behavior with Sub-threshold Oscillations 107

5000 10000
0

0,5

1

1,5

2

Y
n,

2

5000 10000
0

0,5

1

1,5

2

Y
n,

1

5000 10000
n

0

0,5

1

1,5

2

|Y
n,

1-Y
n,

2|

Fig. 4. Synchronization in coupled maps. Parameters are described in the text, g1,2 =
g2,1 = .05 and σe

1 = σe
2 = .001.

5000 10000
0

0,5

1

1,5

2

Y
n,

2

5000 10000
0

0,5

1

1,5

2

Y
n,

1

5000 10000
n

0

0,5

1

1,5

2

|Y
n,

1-Y
n,

2|

Fig. 5. Synchronization in coupled maps. Parameters are described in the text. g1,2 =
g2,1 = .005 and σe

1 = σe
2 = .001.

of the coupling coefficient g1,2 = g2,1 = .005 the synchronization effect is not
clearly obtained as can be seen on figure 5.

4 Results and Conclusions

The following results and conclusions can be established.

– A piecewise linear two–dimensional map that, in difference with most phe-
nomenological models, can present sub-threshold oscillations and
spiking/bursting behavior with a low computational cost is presented.

– The map can present a soft transition from silent mode to a spiking mode
similar to real neurons or differential models.

– The map can be generalized in order to accept input from other neurons in
the network.
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– Coupled maps present a regime of synchronization when enough coupling
strength is considered. Low coupling strength yields no (or slow) synchro-
nization.
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Abstract. Multisite electrophysiological recordings have become a stan-
dard tool for exploring brain functions. These techniques point out the
necessity of fast and reliable unsupervised spike sorting. We present an
algorithm that performs on-line real-time spike sorting for data streaming
from a data acquisition board or in off-line mode from a WAV formatted
file. Spike shapes are represented in a phase space according to the first
and second derivatives of the signal trace. The output of the applica-
tion is spike data format file in which the timing of spike occurrences
are recorded by their inter-spike-intervals. It allows its application to the
study of neuronal activity patterns in clinically recorded data.

1 Introduction

Extracellularly recorded action potentials–the spikes–may appear under a broad
range of waveforms which depend on the type of the neuron that is generat-
ing the discharge and on a number of experimental variables such as the mi-
croelectrode electrical properties, microelectrode geometry, neuropil insulation
properties and, last but not least, the distance and location of the microelec-
trode tip with respect to the neuronal cell body. It is generally assumed that a
neuron that is generating spikes given a similar membrane state during station-
ary recording conditions will produce signals that will appear nearly identical in
shape. Several methods of spike sorting were developed during the past decades.
The main steps of such methods can be summarized as follows: (1) spike detec-
tion, which is a task to cut out a certain time window of raw signal which are
assumed to correspond to the spikes; (2) extraction of the characteristics of the
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detected waveforms; (3) clusterization of the waveforms into several groups, such
that each group should ideally correspond to the spikes generated by one neu-
ron. Step (2) has been extensively studied using principal component analysis
[7], independent component analysis [6], wavelet transform [4] and probabilistic
model [5]. The classification at step (3) directly corresponds to the spike sort-
ing in most of those algorithm, implying that these algorithms are designed for
off-line data processing. Functional human neurosurgery such as embedding a
chronic electrode for deep brain stimulation [2] requires quick characterisation
of the neuronal activity in order to select the optimal target. This need has put
high pressure for the development of on-line real-time spike sorting methods.
One such algorithm requires to add two more steps to the previous methods, i.e.
step (4) finding representative signatures in each cluster, and step (5) sorting
spikes according to the signatures. Then, spikes clustering and spikes sorting
should be separate tasks.

In this report we present a new application for on-line unsupervised spike
sorting based on the method developed by [1]. We use the representative signa-
tures as templates for the template-based spike sorting which can be operated
in either on-line or off-line mode.

2 Methods

2.1 Application Architecture

The proposed application is composed of two parts, i.e., the computation engine
and the user interface. The computation engine was written in ANSI C language,
which was clearly independent from the user interface. The graphical user in-
terface (GUI) was built on Labview 7.1 (National Instrument). Since Labview
is available on several OS platforms, the application developed on Labview can
be multi-platform compatible. We also developed command-line user interface
(CUI), which can work as a batch process.

2.2 Unsupervised Leaning Algorithm

The first and second derivatives were used to detect events instead of the raw
signal. The derivatives were calculated by a convolution of the raw signal and a
kernel function [1]. Since this numerical method has a bandpass filtering effect,
the noise in the derivatives was reduced and long-term trend of the raw signal
was also removed. The event detection threshold was defined as m ± kσ where
m and σ represent the mean and deviation of the first derivatives, respectively,
and k is a coefficient set by users.

A trace which represents a typical shape of a extracellularly recorded neu-
ronal spike is referred to as “template” in this manuscript. Spikes generated by
the same neuron are supposed to be similar in shape to the template of the neu-
ron. Hence it is assumed that all spikes generated by the same neuron will form
a cluster around the template in a phase space spanned by time, the first and
second derivatives of the raw signal [1], in which the measure of the dissimilarity
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Fig. 1. Main window of the application with graphical user inter face. There are several
buttons to control the application at the top of the window. The waveform shows the
raw signal and a small chart just below it indicates occurrences of detected events.

between spikes are defined. The “learning step” is a procedure to form clusters of
detected events and to find an event nearest to the center of mass of each cluster,
which is referred to as a template. This procedure is done automatically without
any intervention by users, hence this is termed as “unsupervised learning”.

Sorting spikes is the process aimed to associate a newly detected event to
one of the “learned” templates. The dissimilarity between the new event to all
templates were evaluated. The event was sorted into the cluster that gave the
minimum dissimilarity to the event, if the minimum dissimilarity was smaller
than a threshold associated to each template. Otherwise the event was not sorted.
Notice that one event can be sorted only into one cluster.

2.3 Performance Test

The performance of the spike sorting can be evaluated by the number of sorting
errors, which include three types of errors, i.e., (I) to miss events that should
be sorted; (II) to sort events which should not be sorted; (III) to sort events
which should be sorted in another template. The performance of our algorithm
was tested with three data sets. The first test set, noiseless data, included three
types of template spikes distributed randomly in time with the firing rate at 7.5
spikes/s for each template. The total duration of the data was 3 min. From this
set we generated two more test sets by adding two different levels of noise, i.e.
high noise (SNR=2.51 dB) and low noise (SNR=3.55 dB).

3 Results

3.1 Application with Graphical User Interface

Users can select one of two data streams, i.e. WAV formatted files in the off-line
operation mode and through a A/D data acquisition board (National Instru-
ments, NI PCI-6250) for the on-line operation mode. Users can shift from one
mode to the other at anytime. In each operation mode, the application provides
three utilities: signal viewer only with event detection, templates learning with
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(a) (b)

Fig. 2. a. Status view of spike sorting. There are six charts numbered 1 to 6, that
display the sorted events, grouped in six different clusters. Notice that in this figure
only the first three templates were detected. Below of each chart, histogram of dis-
tances are displayed. At the bottom of the window, a raster plot (time series of the
event occurrences) is shown. b. A window shows all events which were not classified as
members of any clusters.

error distributions, and spikes sorting, which is available after having run the
templates learning at least once. The main window of the application (Fig. 1)
shows the waveform of the raw signal and the occurrences of detected events.
Spike sorting is performed according to the learned templates. The application
provides a window that displays all spikes which were sorted into clusters with
information about the amount of sorted events, uniqueness index of the cluster,
the firing rate (Fig. 2a). On this window users can manipulate and tune the
value of the template-specific threshold for each template. Besides, there is a
window to show spikes which could not be sorted into any cluster (Fig. 2b). The
application with command line interface (CUI) provides the possibility to work
in batch mode, which is particularly useful for off-line processing of large amount
of data saved into WAV formatted files.

3.2 Performance Test

The performance of the unsupervised spike sorting (USS) was examined using
artificially generated test data. Table 1 shows the dependency of USS perfor-
mance on the threshold for event detection. For the test data with low level
noise, the number of Type I and II errors were kept small. For the test data with
high level noise, sorting with larger threshold showed relatively high percentage
of Type I errors, but Type II error was little.

3.3 Example of Clinical Data

The unsupervised spike sorting was applied to the electrophysiological data
recorded from patients with Parkinson’s disease during the surgical operation
aimed to implant a micro-electrode for chronic deep brain stimulation of STN in
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Table 1. Dependency of USS performance on the threshold for the event detection.
Error types are shown in percentage with respect to the noiseless data test. T1, T2 and
T3 represents templates 1, 2, 3 observed in the noiseless data test. σ represents the SD
used for event detection in the test data set. Notice that Type III error mentioned in
the text never occurred in this test.

High Noise Low Noise
Threshold 1.9σ 2.0σ 2.3σ 1.9σ 2.0σ 2.3σ

T1 1.4 3.7 5.2 1.0 1.0 1.1
Type I error T2 0.4 0.4 0.4 0.5 0.1 0.3

T3 3.1 3.1 4.2 0.1 0.1 0.1
T1 0.0 0.0 0.0 0.0 0.0 0.0

Type II error T2 0.0 0.0 0.0 0.0 0.0 0.0
T3 0.1 0.1 0.1 0.2 0.2 0.2

the University Hospital of Grenoble [2]. The event detection threshold was fixed
at 2σ. Figure 3 shows obtained templates.

4 Discussion

Template based spike sorting techniques are appropriate for real-time applica-
tion but they usually request the users to choose the templates. This implies
that the results of spike sorting depend on the knowledge and experience on
signal analysis by the users. The spike sorting method presented here, USS, can
find templates without user’s supervision. The unsupervised learning algorithm
provides an opportunity for unexperienced users to save time to find templates
and obtain high quality results of spike sorting. Template learning is the most
computationally intensive task, because the algorithm calculates the all-to-all
dissimilarity between all detected events. Conversely, spike sorting consists to
associate a newly detected event to the closest template and requires little calcu-
lation power. This is suited for fast signal processing tasks, e.g. on-line real-time
signal processing.

Event detection and its subsequent classification are crucial for a spike sorter
to work properly. Even if additional types of events, which are not neural spikes,
are wrongly detected this is not relevant if these events are eliminated by the
classification procedure. More events require more computational resources for
their processing, but this becomes not critical because modern computers are
fast enough for this task. However. if events corresponding to neural spikes are
missed, this immediately pulls down the performance of the spike sorter, be-
cause it increases the type I error. This is indeed the main source of potential
trouble due to unsupervised learning and subsequent classification procedures.
The USS presented here has proven to be very robust to this respect in all tests
performed so far. We are looking for additional tests with several types of noise
but we believe that USS sets the premisses for its application in clinical care
conditions.
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Fig. 3. Three clusters identified from the electrophysiological recording in the human
subthalamic nucleus. The raw signal trace is shown in Fig. 1. In the left column, each
panel shows the statistical distribution of the distances from the template to all other
events (the solid curve), and its fit by a Gamma probability density function (dotted
curve) used to calculate the template-specific threshold indicated by a vertical tick.
The raw signal profiles of the representative neural spikes of each cluster are shown in
the center column. In the right column are displayed the orbits in the phase space of
the traces shown in the central column.
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Abstract. In this paper we present a neural sequence machine that
can learn temporal sequences of discrete symbols, and perform better
than machines that use Elman’s context layer, time delay nets or shift
register-like context memories. This machine can perform sequence de-
tection, prediction and learning of new sequences. The network model
is an associative memory with a separate store for the sequence context
of a pattern. Learning is one-shot. The model is capable of both off-line
and on-line learning. The machine is based upon a sparse distributed
memory which is used to store associations between the current context
and the input symbol. Numerical tests have been done on the machine to
verify its properties. We have also shown that it is possible to implement
the memory using spiking neurons.

1 Introduction

Time is important in many real world tasks. Many applications are sequential
in nature, where the time order of events is important. A sequence machine is
a system capable of storing and retrieving temporal sequences of patterns that
represent discrete symbols. Neural models of temporal sequence learning have
been a source of interest [7,1,2]. We are interested in a model that does one-shot
learning, can learn on-line, has good memory capacity, can work with a variety
of sequences and can be implemented using spiking neurons. We do not feel a
model with all these features has been developed earlier.

2 Sequence Learning

One thing we need to consider is that two different sequences may have certain
symbols in common. If we use an associative memory to learn the two sequences,
where the association is between the current symbol and the next symbol, it
cannot decide the next symbol after the common because the two sequences
have different successors of the common symbol. It needs to have some idea
of the context as well. Thus the basic sequence machine needs to have four
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Fig. 1. (a)Shift register model and (b)a separate neural layer as context

components: input, output, main memory and context memory. The ideal on-
line sequence machine is one that can look back from the most recent inputs,
as far as is necessary to find a unique context for deciding the next character to
be predicted. The machine should be able to ‘lock-on’ or converge to a context
(and thus predict the next output) if it has seen it earlier, and to learn the new
association if it has not. It should have infinite look-back, yet should be able to
distinguish between different contexts.

When a new symbol is presented at the input of the on-line sequence machine,
first of all it learns to associate the new input symbol with the present value of
the context. Based on the new input and the present context, it creates a new
context. Finally it predicts the next output by presenting the modified context
to the memory. The above steps incorporate both prediction and learning. If the
memory has seen a similar input and context before, the expected next output
will be predicted. On the other hand, if it is given a new association, it writes it
to the memory. In this case the predicted output will be erroneous, but the new
association written into the memory should improve its performance if a similar
context is encountered subsequently.

2.1 The Shift Register Model

One way to represent the context could be to have a fixed length time window
of the past, and associate the next output with inputs in the time window, as
is done in Time Delay Neural Nets (TDNN)[6]. Such a memory acts like a shift
register. However, the time window is of fixed size, and the number of common
symbols might be greater than this. Fig. 1(a) shows a shift register with look-
back of 2.

2.2 The Context Neural Layer Model

Another approach is to use a separate ‘context’ neural layer, with fixed weights,
to represent the entire history of the sequence. Fig. 1(b) gives the structure of the
context layer based model. The influence of the old context can be modulated
by multiplying the old context outputs by a constant λ and feeding them back
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as inputs. The context encodes the entire past history or ‘state’ of the sequence.
Such a model resembles a finite state machine. A similar model with feedback
was used by Elman [4]. A problem with the context neural layer model is that
to retrieve a sequence we need to start retrieval from the beginning, else the
context will be different.

2.3 Combined Model

The shift register model and the separate context layer model both have their
advantages and disadvantages. We combine the two in a new memory model by
using a separate context layer with modulated context, where the new context is
determined by both the input and a shifted version of the present context. The
new context is formed from the input and old context as follows (see fig. 2(b)):
First we scramble of the old context, which is equivalent to passing it through a
neural layer. Then the old context is mapped on to a high dimension, expanded
and added to the expanded input. The sum is then contracted. The intention is
that the result should be strongly dominated by the present input, but should
have some bits of the past context in it as well.

3 An Implementation Using Sparse Distributed Memory

We implemented the sequence machine using a modified Kanerva Sparse Dis-
tributed Memory (SDM)[3] using N-of-M codes[5]. We used an N-of-M code to
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Fig. 2. shows a sequence machine using an N-of-M Kanerva SDM, having address
decoder, data memory and context neural layers. shows how the new context is created
from the old context and the input in the combined model. The model has aspects of
both the neural layer and the shift register.
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Fig. 3. Compares the performance of three types of sequence memories: Shift register,
neural layer and the combined model. The straight line represents the ideal case, when
the complete sequence is recovered. The combined model(dotted line) performs better
than the others. shows the memory capacity of the combined model in which the
context sensitivity λ has been varied to see what effect λ has on memory performance.
The topmost curve is for λ=1.0 and lowest for λ=0.

encode the symbols, in which N of a total M components are active simulta-
neously to give a valid code. Such memories have been shown to have good
information efficiency, scalability and error tolerance[5].

The N-of-M SDM has two layers of neurons: an address decoder layer, whose
primary purpose is to cast the input symbols into high dimensional space to
make it linearly separable, and a second correlation-matrix layer called the data
store, which associates the first symbol as decoded by the first neural layer, with
the second symbol. Learning takes place only in this layer, while the weights of
the first address decoder layer are set to a constant random value. The complete
system with context is shown in fig. 2(a).

4 Numerical Tests on the Sequence Machine

We conducted some tests on the sequence machines described above, to com-
pare their behaviour with different kinds of sequences. There are three kinds of
sequence machine we are comparing, namely the shift register, context neural
layer and combined model. In each case we used the same SDM of size 512 by
256, with 1024 address decoder neurons. Each input symbol was encoded as an
ordered 11-of-256 code vector. The learning algorithm used in the data store of
the SDM is that the new weight matrix is formed by taking the maximum of
the old weight matrix and the outer product of the two vectors that are being
associated.

Comparison of different models: Here we compare the three models of
sequence machine with optimised parameters and analyse their memory capacity
for different sequence lengths. Repeated characters are guaranteed for sequence
length greater than 15, which is the alphabet size. Figure 3(a) shows the results.
For each point on the figure we started with a blank memory and input the
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sequence twice. The memory learns the sequence on the first presentation of the
input, and in the second time we check the predicted output sequence to see how
accurate the prediction is. We see that the combined model performs the best
of the three and obtains near perfect recall.

Effect of the context sensitivity factor: Here we vary the context sensitivity
factor λ and see the memory performance of the combined model. We see three
clear zones. When lambda is 0, the machine is not at all sensitive to context
and it performs badly. When it is 1, which means that the context is given equal
priority as the current input, it performs quite well, giving near perfect matching.
When it is between these two zones, the combined model behaves effectively like
a shift register. Fig. 3(b) shows one such experiment.

5 Implementation Issues Using Spiking Neurons

In this section we mention a few issues when implementing this sequence machine
using low level asynchronous spiking neurons. One of the reasons we used SDM’s
to create our memory was their suitability to spiking neural implementation. We
define a symbol in our sequence machine as being represented by a burst of spikes
emitted by a layer of neurons, the information being encoded in the choice of
neurons firing and times of firing. When modelling such high level synchronous
systems using low level components, we need to ensure that the stability and
coherence of the symbols is maintained. By stability we mean that the spike
burst should not either die out or saturate when propagated through different
layers, but maintain the same average level. By coherence we mean that the
different bursts should not interfere with each other, else it would destroy the
information being propagated as symbols.

For our modelling we used a modification of the standard leaky integrate and
fire (LIF) neural model [8], in which incoming spikes increment the driving force
or first derivative of the activation, rather than the activation itself. Like in the
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Fig. 4. Is the plot of a typical neural activation with time, when the neuron receives a
single input spike at t=0. plots the average dispersion over 16 runs of a burst of spikes
over a network of 200 feed-forward layers.
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standard model, if the activation exceeds a local threshold, the neuron fires a
spike and the activation and the driving force are reset. Both the activation and
the driving force decay with time, the rates of decay being governed by their
respective time constants. Fig. 4(a) shows the shape of the activation curve
following a single input spike at time 0. We see that the activation at first
increases due to the increased driving force caused by the incoming spike, but
after a time the decay becomes dominant. There is an inherent time lag between
the input spike and the maximum activation reached by the neuron. If the system
contains a feedback loop, such a time lag is necessary, or else at least one input
neuron would have to fire a spike at the same time as an output neuron fires a
spike, and there would be no temporal separation between the input and output
bursts. The standard LIF model cannot achieve this property. This motivated
our choice of neural model.

We then simulated a network of 200 feed forward layers with same average
connectivity but random connection weights. We gave the first layer a random
input spike burst of firings, and propagated the output burst to the successive
layers. We ensured that the bursts were stable through feedback reset inhibition.
We then plotted the temporal separation of the bursts in each layer. The results
of one such experiment are plotted in fig. 4(b). We see that the average burst
width tends to settle around a narrow time range. If we ensure that the separation
between different bursts is large compared to this average time of one burst (by
adding extra delays), we can prevent different spike bursts from interfering. This
shows it is possible for a spike burst to maintain coherence. So by tuning the
delays between the bursts it is possible to implement the sequence machine using
spiking neurons.

6 Conclusions and Further Work

We have developed a model that is capable of on-line sequence learning and
prediction. More work needs to be done on issues of implementation by real time
spiking neurons. Work also needs to be done to develop suitable applications.

References

1. Vocal interface for a man-machine dialog. Dominique Beroule. ACL Proceedings,
First European Conference, 1983.

2. Learning Speech as Acoustic Sequences with the Unsupervised Model, TOM. S.
Durand and F. Alexandre. NEURAP, 8th Intl. conference on neural networks and
their applications, France, 1995.

3. P. Kanerva. Sparse Distributed Memory. MIT Press, 1988
4. J. L. Elman. Finding structure in time. Cognitive Science, 1990, 14.
5. S.B. Furber, J.M. Cumpstey, W.J. Bainbridge and S. Temple. Sparse distributed

memory using N-of-M codes. Neural Networks. 2004, 10
6. K.J. Lang and G. E. Hinton. The development of the time delay neural network

architecture for speech recognition. Tech.Report 88152, Carnegie Mellon, 1988.
7. R. Sun and C.L. Giles (Eds.) Sequence Learning. Springer-Verlag, 2000
8. W. Maass and C.M. Bishop (eds.) Pulsed Neural Networks MIT Press, 1998



ANN-Based System for Sorting Spike Waveforms
Employing Refractory Periods

Thomas Hermle1,2, Martin Bogdan1, Cornelius Schwarz2, and Wolfgang Rosenstiel1
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Abstract. We describe a modification of a growing grid neural net for the pur-
pose of sorting neuronal spike waveforms from extracellular recordings in the
central nervous system. We make use of the fact, that real neurons exhibit a re-
fractory period after firing an action potential during which they can not create a
new one. This information is utilized to control the growth process of a growing
grid, which we use to classify spike waveforms. The new algorithm is an alter-
native to a standard self-organizing map used in our previously published spike
sorting system. Using simulated data, we show that this modification can further
improve the accuracy in sorting neuronal spike waveforms.

1 Introduction

Extracellular recordings in the central nervous system using micro electrodes is an im-
portant technique for investigating the interaction between single neurons or groups of
neurons in the brain. Recordings are done either with a number of single electrodes or
with multi electrode arrays comprising many electrodes.

Each electrode records the superimposed signals of several neurons in proximity
to the electrode. Current multi electrode arrays allow recording from as many as one
hundred neurons [1]. To assess the activity of each neuron, spike waveforms have to be
extracted from the signal and to be classified and assigned to single units.

The importance of this step must not be underestimated. “The accuracy of the spike
sorting critically affects the accuracy of all subsequent analyses”, therefore “develop-
ment of the best possible spike sorting algorithms must be an important goal”[2]. With
increasing number of electrodes, the level of automation becomes an important factor
in addition to the accuracy and fully automated algorithms are required.

In this report, we present our work on a spike sorting system, meeting these require-
ments. An earlier version of our spike sorting system, has already proofed its ability to
classify spike waveforms from tetrode recordings [3] with high accuracy and in a fully
automated way [4]. Our system is able to handle cross-talk between electrodes, a fea-
ture, up to now, not yet found in other spike sorting systems [5]. More results and details
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of the algorithms are about to be published. The focus of the following chapters will be
on possible improvements of the accuracy by observing refractory periods during the
spike sorting process.

2 Methods

Our spike sorting system comprises several processing steps. In the first step, physical
cross-talk between electrodes is removed by applying Independent Component Analy-
sis (ICA). From the resulting signals, spikes are identified by application of an ampli-
tude threshold. Few milliseconds before and after crossing of the threshold are used for
a cut-out containing the complete spike waveform. Cut-outs are stored and clustered us-
ing a self-organizing map (SOM)[6] or, as an alternative, with a modified growing grid
(GG), which is described in this paper. Subsequently, clusters within the trained artifi-
cial neural net (ANN) are identified with an algorithm using distances between SOM–
or GG–neurons.

2.1 Removal of Cross-Talk in Multi Electrode Recordings

Due to capacitive coupling between electrodes, signals recorded on one electrode can
cross-talk and thus be introduced as artifacts on neighboring electrodes. As such arti-
factual spikes can compromise subsequent analyses of spatiotemporal firing patterns,
removal of these spikes is necessary, reconstructing the original signals.

We have tested several ICA-algorithms with simulated and real multielectrode data
[5]. Many of these algorithms were able to successfully remove cross-talk from the raw
signals as well as from the cut-out data. For offline analysis, the Infomax algorithm of
Bell and Sejnowski[7] with the natural gradient feature of Amari, Cichocki and Yang
[8], as implemented in the EEGLAB toolbox [9], provided the best results.

2.2 Classification of Spike Waveforms

Using a two-dimensional SOM with fixed size (10x10) showed already a high accuracy,
which we have quantified earlier using simultaneous intra- and extracellular tetrode
recordings [3]. We could show, that in many cases, cut-outs can be mapped onto a two-
dimensional SOM without significant folding. Often however, the structure of the data
might be represented better by a rectangular map instead of a square map and therefore
we investigated the use of Growing Grid [10].

To further improve the accuracy of spike sorting and in order to use all information
available, we modified the original GG algorithm to include timing information of the
spikes. The fact, that the firing of real neurons exhibits a refractory period should be
used to improve the quality of single unit isolation.

Growing Grid Employing Refractory Periods. GG is basically a growing SOM,
which adapts the size of the map according to the structure of the data during an unsu-
pervised growth process starting with a 2x2 map and inserting new rows or columns. In
each step, a part of the data is used to train the map for few iterations in order to collect
information about the structure of the data and to determine the best place to insert a
new row or column.
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Fritzke proposed to use the hit frequency or the quantization error of GG–neurons to
determine the region which is not yet represented well enough. Starting from the GG–
neuron with the highest hit frequency or the highest quantization error, a new row or
column is inserted in direction to the neighboring GG–neuron with the biggest Euclid-
ean distance.

Growth can be stopped, when most of the GG–neurons have similar hit frequencies
or when the quantization error is below some threshold or if a fixed total number of
GG–neurons is reached. Following the growth, a regular SOM training is used for fine
tuning.

Our modified GG–algorithm uses statistics about spike timing to determine GG–
neurons which unite spikes from several single units. Whenever two spikes following
each other within a period less than the refractory period share the same winner GG–
neuron, a counter for this GG–neuron is incremented. The GG–neuron with the highest
number of refractory period violations is the starting point for growth.

The spikes originating from several single units should be covered by new or sur-
rounding GG–neurons to improve single unit isolation. Therefore we choose the nearest
neighbor instead of the most distant neighbor for insertion of a new row or column. To
measure the distance between GG–neurons, the Mahalanobis distance is used if ap-
plicable.

For a set of N spike cut-out vectors xt(1 ≤ t ≤ N) and associated spike times
zt(1 ≤ t ≤ N) the modified GG–algorithm is:

1. Initialization
Set k = 2 and m = 2. Create a k ×m grid A = [aij ](1 ≤ i ≤ k, 1 ≤ j ≤ m) of
GG–neurons. Initialize the associated n-dimensional reference vectorswc(1 ≤ c ≤
k ·m) with small random numbers. Set the counter for violations of the refractory
period ρc to zero.

2. Training During Growth Phase
Use λg ·k ·m training vectors and fixed neighborhood width σ and learning rate εg.
For every training vector xt determine the winner unit s with ‖ws − xt‖ ≤ ‖wc −
xt‖(∀c ∈ A) and adapt all weight vectors wc by �wc = εg exp

(
− d2(c,s)

2σ2

)
(xt −

wc), where d(c1, c2) = |i1− i2|+ |j1− j2| for neurons c1, c2 ∈ A with c1 = ai1j1

and c2 = ai2j2 .

3. Insertion of New Rows and Columns
Determine the winner unit for all training vectors used, ordered by their spike times.
Whenever a GG–neuron c is the winner unit for two training vectors xtk

and xtk+1

whose spike times differ by less than the refractory period (e.g. 2 ms), increment
ρc by 1.
Select the GG–neuron f with ρf ≥ ρc(∀c ∈ A) for inserting new GG–neurons in
order to increase the density of reference vectors in the vicinity of f .
Determine the neighboring GG–neuron h with the smallest Mahalanobis or Euclid-
ean distance to f . If f and h are in the same row, then insert a new column between
f and h, else insert a new row between f and h.
Initialize the new reference vectors with the mean value of the previous neighbors.
Adjust k and m and reset the counters τc and ρx.
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If the stopping criteria (e.g. number of GG–neurons) is not yet met, continue with
Step 2.

4. Fine Tuning
Do a standard SOM training with λf ·k ·m vectors and decreasing learning rate εf .

Standard parameters are: λg = 30, σ = 0.7, εg = εf = 0.005 and λf = 100.
After the SOM training in the fine tuning phase, the resulting map has to be ana-

lyzed in order to identify clusters. Spikes originating from one single unit are usually
distributed over several neighboring GG–neurons forming a cluster within the trained
map. Identification can be done manually by visual inspection of the waveforms and
the Euclidean distances between GG–neurons. Several methods have been developed
to ease identification of clusters like using hit frequencies [11] or the u-matrix [12] to
visualize cluster borders, or fully automated algorithms like clusot [13] or our new al-
gorithm esort, using the local contrast of distances to determine cluster borders (to be
published). GG– or SOM–neurons with few hits, which do not clearly belong to one of
the identified clusters, can be marked automatically as outliers for later inspection.
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Fig. 1. Six template waveforms (depicted with different line styles) have been extracted from
real recordings in rats’ CNS. Multi-unit data has been simulated by mixing these templates to-
gether with colored noise. Spike waveforms have been inserted into the simulated recording at
frequencies between 4 and 35 Hz observing refractory periods while allowing superposition of
waveforms originating from different templates.

Data Generation. In order to assess the performance of the new modified GG, a syn-
thetic data set has been generated. Real multi electrode recordings from rats’ CNS have
been analyzed to extract 6 template waveforms with similar amplitudes (see Fig. 1).
Adding noise to these template waveforms and subsequent filtering allows to create
synthetic waveforms showing similar shape and variability like the original data.

Two data sets have been constructed by using colored noise with frequencies be-
tween 10 and 3000 Hz, similar to the one observed in the real recordings and by insert-
ing the generated waveforms at random times with the according firing frequency while
assuring refractory periods.

Firing frequencies of the six simulated neurons ranged from 4 Hz to 35 Hz. For the
two data sets, different levels of overlap have been used. While in the first data set (d0),
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full superpositions of an arbitrary number of spikes are allowed, in the second data set
(d1) spikes only overlap up to 1 ms (which is half of a cut-out).

Although the simulated data looks very comparable to real data, our goal was not an
exact reproduction but a synthetic data set with known spike labels and characteristics
reasonably similar to real recordings.

Implementation. The spike sorting algorithms and the user interface have been imple-
mented in MATLAB R©(The MathWorks, Inc) and C, ensuring compatibility with other
tools for waveform or spike train analysis on different platforms. Many data analysis
algorithms are freely available from different groups as MATLAB R©toolboxes, from
which we have used EEGLAB’s runica() [9] for independent component analysis.

3 Results and Conclusion

We have compared the accuracy of our modified Growing Grid algorithm employing
refractory periods to the previously employed SOM using simulated data. A total num-
ber of 3092 spike waveforms has been classified, from which 820 spike waveforms
contained superpositions of two or more spikes. The signal-to-noise ratios have been
very low, between 1.4 and 4.3. This together with the high similarity between the spike
prototypes renders this data set an extremely difficult task. However, our standard sys-
tem using a 10x10 SOM has been able to achieve a good recall of 92.05% for d1 and of
80.92% for d0. Using our modified growing grid, we could improve this to 94.37% for
d1, with a 10x10 grid and to 83.76% for d0 with a 12x9 grid. Furthermore, for d1, all
false negatives have been marked for inspection. There have been no false positives. In
addition, the new algorithm has been able to identify the correct number of single units,
while the algorithm using a fixed size SOM has split up two clusters into subclusters.
Even for d0, the false positives have been below 5% in both cases.

We have presented a new clustering technique for our spike sorting system, which
uses refractory periods in order to improve the quality of spike sorting. Information
about refractory periods has previously only been used in few works (e.g. [14]) or in
order to do manual merging or splitting of clusters after application of a clustering al-
gorithm [15]. We think that this information must not be neglected and can lead to im-
provements in accuracy. Further quantification of the improvement will be investigated
in future studies.
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Abstract. We studied the emergence of cell assemblies out of a locally
connected random network of 10,000 integrate-and-fire units distributed
on a 100×100 2D lattice. The network was composed of 80% excitatory
and 20% inhibitory units with balanced excitatory/inhibitory synaptic
weights. Excitatory–excitatory synapses were modified according to a
spike-timing-dependent synaptic plasticity (STDP) rule associated with
synaptic pruning. In presence of a stimulus and with independent ran-
dom background noise (5 spikes/s), we observed that after 5 · 105 ms of
simulated time, about 8% of the exc–exc connections remained active
and were reinforced with respect to the initial strength. The projec-
tions that remained active after pruning tended to be oriented following
a feed-forward converging–diverging pattern. This result suggests that
topologies compatible with synfire chains may appear during unsuper-
vised pruning processes.

1 Introduction

Massive synaptic pruning following over-growth is a general feature of mam-
malian brain maturation [1]. Pruning starts near time of birth and is completed
by time of sexual maturation. Trigger signals able to induce synaptic prun-
ing could be related to dynamic functions that depend on the timing of action
potentials. Spike-timing-dependent synaptic plasticity (STDP) is a change in
the synaptic strength based on the ordering of pre- and post-synaptic spikes.
This mechanism has been proposed to explain the origin of long-term poten-
tiation (LTP), i.e. a mechanism for reinforcement of synapses repeatedly acti-
vated shortly before the occurrence of a post-synaptic spike [2]. STDP has also

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 127–132, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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been proposed to explain long-term depression (LTD), which corresponds to
the weakening of synapses strength whenever the pre-synaptic cell is repeatedly
activated shortly after the occurrence of a post-synaptic spike [3]. The rela-
tion between synaptic efficacy and synaptic pruning [4], suggests that the weak
synapses may be modified and removed through competitive “learning” rules.
Competitive synaptic modification rules maintain the average neuronal input to
a post-synaptic neuron, but provoke selective synaptic pruning in the sense that
converging synapses are competing for control of the timing of post-synaptic
action potentials [5].

The originality of our study stands on the size of the network, 10,000 units,
the duration of the experiment, 500,000 ms, and the application of an original
bio-inspired STDP modification rule compatible with hardware implementation
[6]. In this study the synaptic modification rule was applied only to the exc–exc
connections. This plasticity rule might produce the strengthening of the connec-
tions among neurons that belong to cell assemblies characterized by recurrent
patterns of firing. Conversely, those connections that are not recurrently acti-
vated might decrease in efficiency and eventually be eliminated. The main goal of
our study is to determine whether or not, and under which conditions, such cell
assemblies may emerge from a large neural network receiving background noise
and content-related input organized in both temporal and spatial dimensions.

2 Model

The complete neural network model is described in details in [7] and we present
here only a sketch description of the model. 10,000 integrate-and-fire units (80%
excitatory and 20% inhibitory) were laid down on a 100×100 2D lattice ac-
cording to a space-filling quasi-random Sobol distribution. Sparse connections
between the two populations of units were randomly generated according to
a two-dimensional Gaussian density function such that excitatory projections
were dense in a local neighborhood, but low probability long-range excitatory
projections were allowed. Edge effects induced by the borders were limited by
folding the network as a torus. The state of the unit (spiking/not spiking) was
a function of the membrane potential and a threshold. The states of all units
were updated synchronously and the simulation was performed at discrete time
steps corresponding to 1 ms. After spiking, the membrane potential was reset,
and the unit entered a refractory period lasting 2 time steps. For the simulation
runs presented here each unit received a background activity following an in-
dependent Poisson process and the “spontaneous” mean firing rate of the units
was λ = 5 spikes/s.

It is assumed a priori that modifiable synapses are characterized by discrete
activation levels that could be interpreted as a combination of two factors: the
number of synaptic boutons between the pre- and post-synaptic units and the
changes in synaptic conductance as a result of Ca2+ influx through the NMDA
receptors. In the current study we attributed a fixed activation level (meaning
no synaptic modification) Aji(t) = 1, to exc–inh, inh–exc, and inh–inh synapses
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while activation levels were allowed to take one of Aji(t) = {0, 1, 2, 4} for exc–exc
synapses, Aji(t) = 0 meaning that the projection was permanently pruned out.

3 Simulation

The simulator was a custom, Open Source, C program that relies on the GNU
Scientific Library (GSL) for random number generation and quasi-random Sobol
distribution implementations. With our current implementation and setup at
the University of Lausanne, a 10,000 units network simulation for a duration
of 5 · 105 time steps lasted approximatively 3 hours, depending on the network
global activity. A complete simulation lasted for 5 · 105 discrete time steps, cor-
responding to about 8.5 minutes of simulated time. After a stabilization period
of 1000 ms without any external input, a 200 ms long stimulus was presented
every 2,000 ms for the rest of the simulation duration, i.e. 250 presentations of
the stimulus. The stimulus was composed of 10 vertical bars uniformly distrib-
uted over the 100×100 2D lattice surface, each bar being 1 column wide. At
each time step, the 10 bars were simultaneously moved one column to the right,
such that each bar slipped over the complete surface of the network twice per
presentation. The stimulus applied on a particular unit provoked a strong de-
polarization that always induced the unit to discharge except if the stimulation
occurred during the refractory period. For each input unit, one stimulus presen-
tation corresponded to a sequence of 20 external inputs regularly distributed in
time every 10 ms. At network level, each stimulus presentation resulted in 10
groups of about 80 synchronously spiking excitatory units repeating 20 times a
10 ms long spatio-temporal sequence. The two following presentation protocols
have been applied:

Fixed stimulus. Before simulation started, 10% of the excitatory units (800
units) were randomly chosen to become permanently the input units of the
network for the entire simulation.

Random stimulus. Before each stimulus presentation, 10% of the excitatory
units (800 units) were randomly chosen to become the input units of the
network for that particular presentation only.

4 Results

The complete status of the network was dumped at fixed intervals, providing
information on the strength of the connections after the STDP–driven synaptic
plasticity and pruning. Network activity was recorded as a multivariate time
series formatted like a multi site spike train recordings at a resolution of 1 ms.
The firing pattern of each unit could be characterized by first- and second-order
time domain analyses using the programs and tools accessible from the Ope-
nAdap.Net project1. We performed all simulations with both fixed and random

1 http://www.openadap.net/
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Fig. 1. Example of the location of strongly interconnected units as a function of the
intensity of the fixed stimulation. Some units of this pool appeared already at low
stimulation intensities but an increasing number of units appeared with an increase of
the stimulation intensity.
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Fig. 2. Response of 2 sample strongly interconnected units responding to 50 presen-
tations of the fixed stimulation between time t = 450 and t = 500 seconds from the
simulation start. (a) and (b) peri-event densities (psth) for the last 50 presentations
of the stimulus; (c) and (d) corresponding raster plots.

stimuli, using identical parameters and pseudo-random number generator seed.
The emergence of stimulus-driven cell assemblies was determined by the compar-
ison of the networks obtained after fixed stimulation vs. random stimulation. We
considered the 7,200 excitatory units that were not directly stimulated. Among
these units we could identify a group that maintained throughout the whole sim-
ulation run at least one strong (i.e., Aji = 4) incoming and one strong outgoing
projection from and to other units showing the same properties. We dubbed these
units strongly interconnected units. The count of strongly interconnected units
was strongly dependent on the type of stimulation. An increase of the intensity
of the fixed stimulation provoked a increase in the count of strongly intercon-
nected units as shown in Fig. 1. On the opposite, the intensity of the random
stimulation had a weak effect on the count of strongly interconnected units.
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Fig. 3. Selected strongly interconnected units appear to be embedded into a layered
circuit. The left panel shows the connections at the begin of the simulation and the
right panel at the end. See text for more details.

The majority of the strongly interconnected units (79%) were excited by the
fixed stimulation (e.g. Fig. 2b) despite none of these units was directly stimu-
lated. The remaining strongly interconnected units (21%) showed a significant
inhibition during the presentation, followed by an offset inhibition generally ex-
tending nearly 50 ms after the offset of the stimulus (e.g. Fig. 2a). The other
units, that were not directly stimulated neither belonging to the strongly inter-
connected group, were mainly inhibited during the stimulation presentation, as
the balanced network reacted to the large stimulation input by increasing the
inhibition.

Fig. 3 shows the evolution of the interconnections among a group of strongly
interconnected units, two of which were represented at Fig. 2. The left panel
shows that at the begin of the simulation the assembly is interconnected by a
mixture of feed-forward and feed-back projections. These projections were indeed
set at random according to the topographic rules described elsewhere [7]. After
500,000 ms the effect of synaptic pruning driven by the stimulus and by STDP let
emerge an oriented feed-forward topology because only feed-forward connections
remained active.

5 Discussion

Synfire chains are diverging / converging chains of neurons discharging synchro-
nously to sustain the propagation of the information through a feed-forward
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neural network [8]. This theoretical model has proven to be very efficient for the
transmission of precisely timed information through the cerebral cortex but the
mechanisms that may underlie its appearance in the mature brain have never
been deeply investigated. This work is aimed at investigating whether synfire
chains partially embedded in a large circuit characterized by initial “random”
connections may emerge following activity-driven mechanisms. The rationale is
that selected synaptic pruning may drive the emergence of synfire chains fol-
lowing certain stimulus patterns. Our results suggest that topologies compatible
with synfire chains may appear during unsupervised pruning processes but fur-
ther investigation is required to determine if self-sustained synfire activity may
appear in the emerging networks that we have observed [9].
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Abstract. Statistical measures for analyzing neural spikes in cortical ar-
eas are discussed from the information geometrical viewpoint. Under the
assumption that the interspike intervals of a spike sequence of a neuron
obey a gamma distribution with a variable spike rate, we formulate the
problem of characterization as a semiparametric statistical estimation.
We derive an optimal statistical measure under certain assumptions and
also show the meaning of some existing measures, such as the coefficient
of variation and the local variation.

1 Introduction

Recently, the characteristics of neurons in cortical areas have been discussed
based on the statistical properties of the interspike intervals (ISIs) of a spike
sequence, such as the coefficient of variation, CV , and the skewness coefficient,
SK [1, 2, 3, 4]. Especially, the local variation, LV has been reported to be useful
for classification of individual neurons in cortical areas since LV is robust against
changes of the spike rate [4]. However, the statistical meaning of the LV measure
has yet to be clarified. This is a cause of some difficulty for finding an optimal
criterion from the information-theoretic viewpoint [5].

It is known that ISIs can be modeled as a gamma distribution [6]. From the
information-geometrical viewpoint, gamma distributions form a two-dimensional
e- and m-flat manifold S since they are an exponential family with two parame-
ters [7,8]. Since the spike rate fluctuates in time and hence is useless in general,
we should refer to a statistical parameter orthogonal to the parameter corre-
sponding to the spike rate for analyzing individual neurons. In this paper, we
formulate the characterization task in an information-geometrical manner and
derive natural criteria from a statistical viewpoint. We also clarify the meanings
of some existing measures, CV , SK and LV .

2 Interspike Intervals in Spiking Neurons

When a spike sequence is given and its N ISIs are t1, t2, . . . , tN , the CV and SK

measures are defined as

CV =
√
V

t̄
, SK =

1
N − 1

N∑
n=1

(tn − t̄)3
/
V 3/2, (1)
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where

t̄ =
1
N

N∑
n=1

tn, V =
1

N − 1

N∑
n=1

(tn − t̄)2. (2)

Since they are based on the average t̄, both CV and SK tend to take a large
value when the spike rate is modulated [9]. Due to this property, they are not
suitable for classifying such neurons in cortical areas that change their spike rate
in time.

To overcome this problem, the LV measure is proposed in [4], defined as

LV =
1

N − 1

N−1∑
n=1

3(tn − tn+1)2

(tn + tn+1)2
, (3)

where the factor 3 is taken so that the expectation of LV becomes 1 when the
sequence obeys a stationary Poisson process. Since the LV measure reflects the
stepwise variability of ISIs, LV can take a small value even for a sequence with
a variable spike rate. They confirmed that LV does not undergo a large change
but CV does for a sequence generated by a time-dependent Poisson process.

Although LV is effective in classifying neurons, it is rather heuristic except for
the invariance in the time-scaling and symmetry in time [5]. Hence a theoretical
background is necessary to guarantee performance and to find better criteria.

3 Information Geometry of Interspike Intervals

3.1 Information Geometry of Gamma Distributions

Information geometry [7, 8] is a general framework of Riemannian manifolds
with dual affine connections, and has widely been applied to statistical infer-
ence, information theory, neural networks, and other areas. Since the manifold
S of gamma distributions is an exponential family with one variable t and two
parameters λ and z, we can introduce dual affine coordinate systems, the natural
parameters (θ1, θ2) and the expectation parameters (η1, η2), with the Rieman-
nian metrics gij and gij and the dual connections ∇(e) and ∇(m) which make the
manifold dually flat [7, 8]. An important property of dual affine coorinate sys-
tems is biorthogonality, that is, the coordinate curves of θi and ηj for i �= j are
orthogonal at any point in S. This leads us another coordinate system (η1, θ2)
called the mixed coordinate system [10, 11]. This coordinate system is useful
when we discuss projection or decomposition by virtue of biorthogonality.

The log likelihood of a gamma distribution is indeed written as

p(t;λ, z) =
λz

Γ (z)
tz−1 exp(−λt), (4)

l(t;λ, z) = − log t− λt + z log t+ z logλ− logΓ (z) (5)

= f(t) + θ1x1(t) + θ2x2(t)− Ψ(θ1, θ2), (6)
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where Γ (z) is the gamma function and

θ1 = −λ, x1(t) = t, η1 = E[x1(t)], (7)

θ2 = z, x2(t) = log t, η2 = E[x2(t)]. (8)

Since the average of ISIs is E[t] = E[x1(t)] = η1, it is always orthogonal to θ2 = z
in the mixed coorinates. In the following, for brevity, we denote η1 and θ2 by
η and z, respectively. When we want to exclude the effect of the average η in
ISI analysis, we can simply consider z. In other words, we project a point in S
into the e-flat submanifold M defined as η = η0 along an m-geodesic which is
orthogonal to M due to the generalized Pythagoras theorem [7, 8], where η0 is
a positive constant (Figure 1). For example, if we evaluate the distance of two
points p and q in S, represented as (η(p), z(p)) and (η(q), z(q)) in the mixed
coordinate, without the effect of the average, then we should consider only z(p)
and z(q) along the submanifold M . Note that the Riemannian metric g of M is
written as

g(z) = E
[
− d2l

dz2

]
= ψ′(z)− 1

z
≈ 1

2z2 (9)

where ψ(z) and ψ′(z) are the digamma and the trigamma functions, respectively,
and the approximation is given by ignoring the last term of the Binet formula

logΓ (z) =
(
z − 1

2

)
log z − z +

1
2

log(2π) + 2
∫ ∞

0

arctan(y/z)
e2πy − 1

dy. (10)

The distance of two points p and q, respectively represented as (η0, zp) and
(η0, zq), in the one-dimensional submanifold M , is naturally defined as the length
of the curve and hence is written as∫ zq

zp

√
g(z)dz ≈ 1√

2
(log zq − log zp). (11)

Note that the average η must be constant in the above formulation even
though it does not appear in (9). If we assume its variability, we need another
formulation, as discussed in the next subsection.

M (η =η  )0

m-geodesic

Fig. 1. Estimates (black circles) are projected to the points (white circles) on an e-flat
submanifold M along m-geodesics
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3.2 Semiparametric Formulation

In order to treat a variable η in time, we assume that each of interspike in-
tervals tn, n = 1, . . . ,N , independently obeys a gamma distribution with pa-
rameters (η(n), z) in the mixed coordinate (η, z) where the parameters η(n),
n = 1, . . . ,N , are randomly chosen from a fixed unknown probability density
function k(η(1), . . . , η(n)) whereas z is fixed. We would like to ascertain only z
and take no interest in η(n) or k(η). Such a problem is called semiparametric
statistical estimation. It is known that the maximum likelihood method does not
work well for this kind of problems. Instead, the estimating function method was
proposed [12, 13], which has also been exhaustively studied from the informa-
tion geometrical viewpoint [14]. However, it is still difficult to find an estimating
function and to date we have not found one for ISI analysis.

4 Statistical Measures of ISIs

The difficulty of semiparametric estimation results from the total randomness
of η(n). If we make some more assumptions on η(n), we can estimate and utilize
them for estimation of z. In the following, we discuss how we should estimate
z under a certain assumption and clarify the meaning of the CV , SK and LV

measures.

4.1 Spike Rate Is Constant Through Sequence

Suppose that the parameter of the spike rate, η, is fixed through a given se-
quence and that all ISIs are independently identically distributed. As discussed
in Section 3.1, we should estimate the parameters (η, z) in the mixed coordinates
from the given data and use only z in such a case. Since MLEs (η̂1, η̂2) of (η1, η2)
in the m-affine coordinates are the optimal estimators in terms of the variance
of an unbiased estimator [7, 8], we calculate (η, z) from (η̂1, η̂2) by coordinate
transformation where

η̂1 =
1
N

N∑
n=1

x1(tn) =
1
N

N∑
n=1

tn, η̂2 =
1
N

N∑
n=1

x2(tn) =
1
N

N∑
n=1

log tn. (12)

This means that the estimate ẑ of z is the solution of

log η̂1 − η̂2 = log ẑ − ψ(ẑ) (13)

and an approximate solution using (10) is

ẑ =
1

2(log η̂1 − η̂2)
. (14)

From a statistical viewpoint, for estimating z it is optimal to transform the
MLEs (η1, η2); however, the CV measure instead employs the following two un-
biased estimators

ζ1 =
θ2

−θ1 , ζ2 =
θ2

(θ1)2
, (15)
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instead of the MLEs (η1, η2), and evaluates

CV =
√
ζ2
ζ1

=
1√
z

(16)

[4] instead of the optimal criterion log z from (11). For the SK measure, in a
similar way,

ζ1 =
θ2

(θ1)2
, ζ2 =

2θ2

−(θ1)3
, SK =

ζ2
(ζ1)3/2 =

2√
z
. (17)

Note that the assumption that the parameter of the spike rate is fixed through
a given sequence does not hold when analyzing spike sequences of neurons in
cortical areas although log z is a good measure under the assumption.

4.2 Pairwise Data Have the Same Spike Rate

We assume here that every two adjacent interspike intervals are drawn from
the same distribution; in other words, the nth pair of data, t2n and t2n+1, in
2N ISIs, t0, . . . , t2N−1, obey a gamma distribution with (η(n), z) in the mixed
coordinates. Under this assumption, we can estimate (η̂(n), ẑ(n)) of (η(n), z) from
t2n and t2n+1. Applying (14) to two-data cases, an approximated optimal ẑ(n) is

log ẑ(n) = − log log
(t2n + t2n+1)2

4t2nt2n+1
. (18)

Now we have N estimates of ẑ. A reasonable way to make ẑ from ẑ(n)’s is to
minimize the sum of the squared distances. Hence, the optimal estimate ẑ under
this assumption is expressed as

log ẑ =
1
N

N∑
n=1

log ẑ(n) =

[
N∏

n=1

log
(t2n + t2n+1)2

4t2nt2n+1

]−1/N

. (19)

Next, we consider the meaning of an approximate L̃V of LV , defined as

L̃V =
1
N

N−1∑
n=0

3(t2n − t2n+1)2

(t2n + t2n+1)2
, (20)

in which each interval appears only once. Since the summand is expressed as a
function of η̂1 and η̂2,

3(t2n − t2n+1)2

(t2n + t2n+1)2
= 3

[
1− exp(2η̂2)

η̂2
1

]
, (21)

L̃V can be regarded as a solution of estimation under the assumption that every
two adjacent interspike intervals are drawn from the same distribution. Since the
summand is an unbiased estimate of 3

2ẑ(n)+1 [4], L̃V is the arithmetic average of
N estimates 3

2ẑ(n)+1 , n = 0, . . . ,N − 1. This is equivalent to employing

g(z) =
36

(2z + 1)4
(22)

as the metric in (11) instead of (9).
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5 Conclusions

Based on the fact that ISIs can be modeled as a gamma distribution, we derived
the optimal measure and discussed the meaning of several statistical measures
from the information geometrical viewpoint. Since ISIs of neurons in cortical
areas have a time-variant spike rate, the characterization becomes a problem
of semiparametric statistical estimation. It is, in general, difficult to solve the
problem, however, if we add certain assumptions to the model, we can derive
an optimal solution according to the assumptions. These assumptions are also
useful to clarify the meaning of the existing measures, CV , SK and LV .
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Abstract. The binding problem is a problem on the integration of per-
ceptual properties in our brains. For describing this problem in the ar-
tificial neural network, it is necessary to introduce the temporal coding
of information. In this paper, we propose a neural network model that
can represent the bindings of external stimuli, based on the network that
is capable of figure-ground segmentation proposed by Sompolinsky and
Tsodyks. This model adopts the coupled oscillators that can represent
the temporal coding and the synchronization among them.

1 Introduction

The binding problem in visual system is a problem of conjunctions of represent-
ing perceptual properties[1]. Our brains can naturally solve this problem but its
mechanism has not been clarified. Since Malsburg formulated the binding prob-
lem as a theoretical one[2], much attention has been attracted to this problem
by researchers among different disciplines[3,4,5,6,7].

In the early stage of the visual system, sensory signals from external sources
are separated into several kinds of information with different properties. Each
one of them flows into different pathways and is processed in a different region
of our brains. Though several attributes of the sensory signals are processed in-
dependently in our brains, we can perceive distinct objects without discrepancy.
The binding problem is that how our brains “bind” these different attributes of
one object coherently.

The temporal coding of the information is necessary for describing this prob-
lem in artificial neural networks[8]. The neural network models that are made
up of conventional neuron models have difficulties for the temporal coding, be-
cause these neurons adopt the mean firing rate as neural activities and cannot
represent the timing among activities of neurons. Instead of using conventional
neurons or neural network models, the coupled oscillatory neurons are important
candidates as the model of description for the binding problem. In the coupled

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 139–144, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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oscillatory neurons, the phase of oscillation is used for the activity of neurons,
so it can handle the timing of neurons.

There are a lot of coupled oscillatory systems; we focus on the model proposed
by Sompolinsky and Tsodyks[9] that realizes Figure-Ground discrimination of
visual perception among them. While neurons of many other oscillatory models
are all coherent and information is encoded only on the difference of phases
among neurons, this model also utilizes the degree of coherence of neurons so
that each of neurons has more flexibility.

2 Model and Method

In this section, we first recapitulate the oscillatory model proposed in [9] and
then extend it to the model of perceptual binding.

Figure 1(a) shows the structure of the segmentation network. A network con-
sists of oscillatory clusters and each one of them has its phase ψi. The connection
between clusters is denoted by JRi,Rj where Ri and Rj are the indices of the
clusters i and j, respectively. A cluster is made up of neurons each of which has
its preferred orientation θ that satisfies 0 ≤ θ ≤ π. The feature of input stimuli
at the cluster R is also a form of orientation, denoted by θ0

R.
This network works as a kind of associative memory. The connection weights

are determined by the stored patterns into the network, then the input pattern

ψ
2

R=2

ψ
N

R=N

ψ
1

R=1 θR θR θR

θR θR θR

θR θR θR

Cluster Connection Weight : J
Neuron

(a) A Network composed of clusters and neurons

Network for ’Shape’ Network for ’Color’

Connection of clusters: J

Connection of clusters: I

(b) Two networks with inter-network connection I

Fig. 1. The structure of our proposed network
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is imposed on the network. The phases of clusters are interacting with those of
other clusters in the network. In this model, the figures can be discriminated
from the background by measuring the coherency of cluster phases.

Our proposed model is an extension of this network model, shown in Fig. 1(b).
This model deals with two kinds of separated information, named ‘color’ and
‘shape’, thus there are two networks, i.e., ‘color network’ and ‘shape network’.
We introduce the connection weight I as the connection of clusters between these
networks. The phases of clusters are denoted by ψRs and ψRc where Rs and Rc

are indices of the cluster in the network of shape and color, respectively. The
dynamics of the cluster phase in the shape network ψRs is described by

˙ψRs = ηRs(t)−
∑

R′
s �=Rs

JRs,R′
s
sin[ψRs(t)− ψR′

s
(t)]

−α
∑
Rc

IRs,Rc sin[ψRs(t)− ψRc(t)], (1)

where JR,R′ is a connection weight between the cluster R and R′ in a network,
IRs,Rc is a connection weight between clusters in different networks, η is a white
gaussian noise, and α is a constant. The cluster phase in the color network ψRc

can also be described similarly.
The connection weights JR,R′ and WR,R′ are defined as

JR,R′ =
∑
θ,θ′

V (θ − θ0
R)WR,R′(θ, θ′)V (θ′ − θ0

R′), (2)

WR,R′(θ, θ′) =
1
nN

P∑
μ=1

ξμ
Rξ

μ
R′ Ṽ (θ − θμ

R)Ṽ (θ′ − θμ
R′), (3)

where N and n are the number of clusters and the number of neurons in a
cluster, respectively, and P is the number of stored patterns in a network. ξR
defines the properties of the stored pattern, ξR = 1 and ξR = 0 mean that there
exist ‘figure’ and ‘ground’ at R of the stored pattern respectively. The functions
V (x) and Ṽ (x) are defined as follows:

V (x) =
{

1 |x| ≤ a

−2a/(π − 2a) a < |x| < π/2
(4)

Ṽ (θR) = V (θR)− 1
n

∑
θ′

R

V (θ′R). (5)

Connections between clusters of different networks, IRS ,RC , WRS ,RC , are defined
as:

IRs,Rc =
∑

θRs ,θRc

V (θRs − θ0
Rs

)WRs,Rc(θRs , θRc)V (θRc − θ
0Rs

Rc
) (6)

WRs,Rc(θRs , θRc) =
Q∑

ν=1

P∑
μ=1

ξν
Rs
ξμ
Rc
Ṽ (θRs − θν

Rs
)Ṽ (θRc − θμ

Rc
) (7)

where P (= Q) is the number of stored patterns of shape and color information
and θ

0Rs

Rc
is the information of colors at Rc, corresponding to the cluster Rs of

shape information.
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3 Simulation Result

The behavior of the proposed model is shown in this section. The clusters of the
networks are 6× 10 for the shape network and 2× 10 for the color network. The
number of neurons in each cluster is 100. Figure 2 shows the stored patterns for
the shape and color networks, and the input stimuli imposed on the networks are
made up of the superposition of stored patterns for each property. Note that, for
the input stimuli, the patterns that have the same index for both properties are
of the same object, i.e., for example, if the patterns 1, 2, and 3 of shape represent
‘triangle’, ‘square’, and ‘square’, respectively, and if the pattern 1, 2, and 3 of
color represent ‘red’, ‘blue’, and ‘yellow’, respectively, then the input stimuli to
be imposed are ‘red triangle’, ‘blue square’, and ‘yellow square’, respectively.

In our model, the degree of binding information is evaluated by using the
spins of clusters SRs and SRc . The spins of clusters are defined as SRs =
(cos(φRs), sin(φRs)) and SRc = (cos(φRc), sin(φRc )). If the phases of two clusters
are synchronized, the time averages of their spins have a similar orientation. The
representation of binding is accomplished by calculating spins of clusters in color
and shape networks.

Figure 3 shows the cluster phases for the shape and color networks. A dot in
the cluster expresses its cluster phase. These phases are calculated by the time-
average of phases that are expressed in the form of the rectangular coordinates.
We see that the phases within each of the objects are synchronized and the
phases at clusters without objects(non-shaded clusters) are not synchronized,
thereby the extraction of objects is realized. The phases for each of the patterns
in the networks are coherent by comparing the phases between color and shape
networks, thus the binding of information can be described.

The auto and cross correlograms are introduced for evaluating the degree of
coherency between cluster phases. The auto-correlogram of a cluster is defined
as

AR(τ) = CR (τ) cos (ωτ) , (8)
CR (τ) = 〈cos [ψR (t)− ψR (t + τ)]〉,
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Fig. 2. Stored patterns in the shape and color networks
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Fig. 3. Time-averaged phases of clusters
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Fig. 4. Auto-correlogram of clusters in
the shape and color networks

where τ and ω are the time deviation and the frequency of the cluster, re-
spectively. Figure 4 shows the auto-correlograms of clusters that belong to the
patterns and the background in the networks of color and shape. Since clusters
belonging to a pattern have strong correlation while clusters of the background
have weak correlation, discrimination of figures from the background can be
realized as in the Sompolinsky’s model.

The cross-correlogram between clusters is defined as

CrR,R′ (τ) = CR,R′ (τ) cos [ωτ + χR,R′ (τ)] , (9)

CR,R′ (τ) =
√
a2 + b2,

χR,R′ (τ) = arctan (a/b) ,
a ≡ 〈sin [ψR (t)− ψR′ (t+ τ)]〉,
b ≡ 〈cos [ψR (t)− ψR′ (t+ τ)]〉.

Figure 5 shows the cross-correlograms of clusters belonging to the three patterns
and the background with respect to a cluster belonging to pattern 1 in the shape
network. The strongest correlation exists between clusters of the pattern 1 among
them, clusters of the patterns 1 and 2 or of patterns 1 and 3 have moderate
correlations, but little correlation is found with respect to the background. We
also confirm that the cross-correlogram of clusters in the case of the color network
shows similar tendencies as that in the case of the shape network.

Finally, we show the cross-correlogram of clusters that belong to the patterns
and the background in the shape network with respect to a cluster that belongs
to pattern 1 in the color network in Fig.6. We see that clusters that correspond
to the same pattern, i.e., clusters belonging to pattern 1, have stronger corre-
lation than clusters belonging to other patterns. This shows that integration of
information between the shape and color networks is occurred, thus the binding
of different attribute corresponding to the same object is accomplished.
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4 Conclusion

A neural network model for the binding problem is proposed in this paper. It
adopts the coupled oscillators whose activities are expressed by their phases,
thereby the temporal coding can be realized. This model contains two networks
of neurons, each one of the networks being responsible for the corresponding
property of the input stimulus, and where interactions of the networks are in-
troduced. Numerical results show that in this model, objects in the scene are
extracted by the synchronization of neurons in a network, and the conjunctions
of properties for a certain object are expressed by the coherency between net-
works. Resultant dynamics exhibits the binding of information, thus this model
would be a solution for the binding problem.
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Abstract. In this article we consider ReSuMe - a new supervised learn-
ing method for the Spiking Neural Networks. We present the results of
experiments, which indicate that ReSuMe has the following properties:
(1) it can learn temporal sequences of spikes and (2) model object’s I/O
properties; (3) it is scalable and (4) computationally simple; (5) it is fast
converging; (6) the method is independent on the used neuron models,
for this reason it can be implemented in the networks with different neu-
ron models and potentially also to the networks of biological neurons.
All these properties make ReSuMe an attractive computational tool for
the real-life applications such as modeling, identification and control of
non-stationary, nonlinear objects, especially of the biological neural and
neuro-muscular systems.

1 Introduction

Previous works on the supervised learning methods in the Spiking Neural Net-
works (SNN) have focused on the gradient-following approach [1],[2],[3],[4]. Yet,
the explicit calculation of the gradient in SNN is problematic. In order to over-
come this problem usually special simplifications are postulated. However, this
constrains severely the use of the gradient-following learning methods.

Here we consider ReSuMe [5] - a new method that represents a definitely
different approach to supervised learning in SNN. ReSuMe performs the goal
oriented learning by adapting the idea of the learning window known from un-
supervised techniques [6]. We show experimentally that ReSuMe has many in-
teresting properties that make this method an attractive computational tool.

The goal of ReSuMe learning is to impose on a neural network the desired
input-output properties. In order to describe the learning algorithm let us con-
sider a single neuron excited simultaneously with a number of patterns through
multiple synapses. The patterns may be any sequences of spikes. Consider also a
single signal with the predetermined timing of spikes. This is the signal desired
at the neuron output. In order to achieve the learning goal, the synaptic weights
� The work was partially supported by the State Committee for Scientific Research,

project 1445/T11/2004/27.
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Fig. 1. (A) Basic learning neural structure consists of a presynaptic nin
k and a post-

synaptic neuron nout
i as well as a teacher neuron nd

j . The neurons nin
k and nout

i are
connected via synapse wki (solid lines). The synaptic efficacy is influenced by the firing
of the teacher and output neurons (dashed lines). (B),(C) Illustration of the learning
rules modifying the synaptic weights. The rules are exponential functions of the time
difference Δt between the desired td,(f) and input tin,(f) spike times (B), as well as
between output tout,(f) and input tin,(f) spike times (C).

should be modified in such a way that the given input patterns driving the neu-
ron should result in the firing of the learning neuron at the times specified by the
desired signal. In ReSuMe this is achieved by balancing two opposite rules deter-
mined over each synapse. These rules are expressed as functions (called learning
windows) of the relative time between input and desired spikes, as well as be-
tween input and output spikes, respectively. The first rule is applied whenever
a spike in the desired signal is expected. According to this rule, the excitatory
(inhibitory) synapses are facilitated (depressed) if they deliver spikes directly
before the desired spike time (Fig.1.B). The second rule is applied each time the
learning neuron generates a spike at its output. In this rule, the excitatory (in-
hibitory) synapses are depressed (facilitated) if they respond directly before an
output spike (Fig.1.C). The synaptic weights remain unmodified in other cases.
For the formal definition of the learning rules see [5].

The learning rules are local. The desired signal can be assigned to any learning
neuron separately. Therefore the learning procedure presented here holds for any
learning neuron in the network.

It can be shown that the combination of the described two learning rules leads
to the stable solution satisfying the goal of learning. In the presented method a
neuron that delivers the desired signals (a teacher neuron) is not directly con-
nected with the learning neural structures. However, this neuron supervises the
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learning synapses, i.e. it determines the synaptic weights modification. For this
reason the proposed learning approach is called a Remote Supervised Method
(ReSuMe).

2 Experiments

We present a set of experiments that confirm high universality of ReSuMe and
its ability to impose the desired input-output properties on the learning neural
network.

In our experiments we applied ReSuMe to the modified Liquid State Machine
(LSM) network architecture [7],[5]. In all experiments the network consisted of
a single input neuron nin, the neural microcircuit (NMC) [7] with 800 units,
a set of output neurons Nout and a corresponding set of teacher neurons Nd

(the number of output and teacher neurons is specified in each experiment in-
dividually). The NMC receives input signals Sin(t) from nin and transforms
it into a vector of signals Ŝin

i (t) which are presented to the adequate output
neurons nout

i ∈ Nout [5]. The particular teacher neurons nd
j ∈ Nd deliver to the

network signals Sd
j (t) to be taught by the output neurons. The teacher neurons

are not directly connected with any other structure, however the correlation of
Sd(t) with the Ŝin

i (t) determines the modification of the synaptic efficacy of the
connections between the NMC and the nout

i .
The simulations were performed in CSIM: A neural Circuit SIMulator [8].

All neurons were modeled as Leaky Integrate-and-Fire (LIF) units, if not stated
otherwise. In all experiments the networks were trained over 100 learning ses-
sions. A learning session is a process of learning, during a single presentation of
a pair: input-desired output patterns.

For the l-th learning session we define a performance index P (l) as an integral
over a simulation time of the difference between the low-pass functions of the
desired spike train Sd(t) and the output spike train Sout(t) generated in the
l-th session [5]. The performance index can be treated as a metrics of distance
between the considered spike sequences.

We also define a spike-shift error e(t) as a vector of pairs (td,(f), Δt(f)), where
td,(f) is a time of the f -th spike in the desired spike train Sd(t) and Δt(f) is a
time difference between td,(f) and time of the nearest spike in Sout(t).

2.1 Multiple Patterns Learning

The goal of this experiment is to verify an ability of ReSuMe to learn multiple
patterns and hence to model the desired input/output properties (Fig.2.A).

A single-input, single-output network has been driven with 3 different input
patterns Sin(t)=#1,#2,#3 each of length 100 ms (Fig.2.B). To each input pat-
tern a separate desired output signal has been assigned (Fig.2.D). The patterns
have been presented to the network alternately.

The output signals before and after the training are depicted in Fig.2.C and
Fig.2.E, respectively. The trained output sequences are visually undistinguish-
able from the desired patterns. All spikes are recalled correctly. The maximal
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Fig. 2. Multiple patterns learning. (A) The network of 800 LIF neurons with a single
input and single output is trained with 3 different pairs of input (B) and desired output
(D) spike patterns �1, �2, �3 (each of length 100 ms). The training is performed over 100
learning sessions. The spike trains generated at the network output before the training
(C) differ significantly from the desired sequences (D). After the training output signals
(E) are undistinguishable from the desired ones. (F) The spike-shift errors calculated
after the training are drawn as a function of the simulation time. In all three cases the
maximal absolute error does not exceed 0.6 ms and an average error does not exceed
0.15 ms. Such errors are negligible as compared to 10 ms of the minimal distance
between the spikes in the desired signal.
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absolute spike-shift errors after the training are: 0.43, 0.38, 0.59 ms for the pat-
terns #1,#2,#3, respectively (Fig.2.F). In all three cases an average value of an
absolute error does not exceed 0.15 ms. Such errors are negligible as compared
to 10 ms of the minimal inter-spike interval in the desired signal.

2.2 Multi-tasking

Consider a network with multiple readout neurons. Due to the locality of Re-
SuMe learning, each of the readout in this network can be trained to produce
individually assigned output patterns in response to the common input signal
(Fig.3.A). This is an interesting property enabling the network to perform dif-
ferent computational tasks simultaneously.

In our experiment the network with a single input and three readout neurons
was driven with an input pattern Sin(t) of length 300 ms (Fig.3.B) resulting
in the NMC state trace Ŝin(t) (Fig.3.C). The readouts were trained to produce
individually assigned signals Sd

i (t), i = 1, 2, 3 (Fig.3.D). Already after 50 learning
sessions all spikes were correctly recalled at the network outputs (Fig.3.E). The
spike-shift errors after the training (Fig.3.F) are an order of magnitude smaller
than the minimal inter-spikes intervals of the desired spike sequences and can
be neglected in many applications.

2.3 Neuron Model Independence

Since the ReSuMe learning method is based only on the spike times, it is ex-
pected that the method should work correctly independently on the used spiking
neuron models. In order to verify this hypothesis we compare the results of the
experiments in which ReSuMe is applied to the Leaky Integrate-and-Fire (Fig.4,
left panel) or to the Hodgkin-Huxley (HH) model of neuron [6] (right panel).

In these experiments the networks with the single LIF and HH learning units
were driven with the same input signals Sin(t) of the length 200 ms (Fig.4.A).
The generated state of NMC (Fig.4.C), the same one in both cases, was projected
on the learning units. The networks were trained to produce the same spike trains
Sd(t) (Fig.4.B).

We present the output spike sequences Ŝout(t) after that training, the cor-
responding internal state time courses Vm(t) (”neuron membrane potential”) of
the learning units, the spike-shift errors e(t) and the performance quality P (l)
(Fig.4. D,E,F,G respectively).

The diagrams of Vm(t) reveal rich dynamics and qualitatively different char-
acters of the internal processes at the LIF and HH learning units. This had an
effect on the learning process, which is manifested by the different courses of the
performance index P (l) in the consecutive learning sessions and by the differ-
ent spike-shift errors e(t) calculated after the training (with an average of the
absolute error: 0.01 ms and 0.5 ms for the LIF and HH models respectively).

Nevertheless the quantitative differences of errors the learning process for
both models converged toward the desired pattern and already after 80 learning
sessions all spikes of the desired sequence were correctly recalled at the output
of LIF as well as HH neuron model.
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Fig. 3. Multi-tasking. This experiment demonstrates that ReSuMe learning enables
the network to perform different computational tasks simultaneously. (A) The readouts
are trained to produce individually assigned output patterns in response to the common
input signal of length 300 ms. (B) An input signal and (C) the resulting NMC state
trace. The consecutive rows of points indicate the spike trains generated by the NMC
neurons (labeled here with numbers). (D) A set of the desired patterns and (E) the
adequate output sequences after the training. (F) Spike-shift error e(t) between the
desired and output signals, with the average of the absolute error: 0.25, 0.46, 0.32 ms
for the outputs 1,2,3 respectively.
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Fig. 4. Illustration of the neuron model independence of the ReSuMe learning. The
learning method was applied to 2 networks with the output neurons emulated by the
Leaky Integrate-and-Fire (LIF) and the Hodgkin-Huxley (HH) models respectively.
Both networks where trained with the same pairs of input (A) and desired output
(B) patterns of the length 200 ms. The generated state of NMC (C), the same one in
both cases, was projected on the learning units. The results of learning are displayed
separately for the LIF model (left panel) and for the HH model (right panel). (D)
The output signals after 100 learning sessions. (E) The corresponding internal states
(”membrane potentials”) of the output units reveal different characters of the inter-
nal dynamics of both outputs. The horizontal dashed lines indicate the approximate
threshold values at which the neurons fire. (F) The spike shift error (with average val-
ues: 0.01 ms for LIF and 0.5 ms for HH model). (G) In both cases the performance
index P (l) decreases gradually in the consecutive learning sessions l, indicating that
the distance between the desired and output signals vanishes.
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3 Discussion

In a set of experiments we demonstrated some learning properties of ReSuMe.
The results prove that our method is able not only to learn the temporal se-
quences of spikes with the desired accuracy, but also to model input/output
properties of static objects. Moreover ReSuMe implemented in the LSM net-
work architecture enables assigning different tasks to the individual network
outputs and hence enables the parallel real-time computing. Another advantage
of ReSuMe is that the method is independent on the used neuron models. For
this reason it can be implemented in the networks with the combined different
neuron models and potentially also to the networks of the biological neurons.

The experiments presented here confirm the suitability of ReSuMe for the
eventual applications to the real-world applications in modeling, identification
and control of non-stationary, nonlinear objects, especially of the biological
neural and neuro-muscular systems.
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Abstract. We investigated the relevance of single-unit recordings in the context 
of dynamical neural systems with recurrent synapses. The present study focuses 
on modeling a relatively small, biologically-plausible network of neurons. In 
the absence of any input, the network activity is self-sustained due to the 
resonating properties of the neurons. Recording of single units reveals an 
increasingly complex response to stimulation as one proceeds higher into the 
processing stream hierarchy. Results suggest that classical analysis methods, 
using rate and averaging over trials, fail to describe the dynamics of the system, 
and instead hide the relevant information embedded in the complex states of the 
network. We conclude that single-unit recordings, which are still extensively 
used in experimental neuroscience, need to be more carefully interpreted. 

1   Introduction 

For a long time, single-unit recordings have been the only available method of 
recording in experimental neuroscience. Technical difficulties imposed constraints on 
the experimental setups, such that recording with only a single electrode has already 
posed tremendous challenges for experimentalists. By using one electrode however, 
one can record spikes from only one cell (in the case of intra-cellular recording), or, at 
best, from a few cells separated by spike-sorting (when recording with an extra-
cellular electrode). Only relatively recently, multi-unit recording has been introduced 
and used on a larger scale [9,10]. 

When recording from a single unit, one reliable way of analyzing the spiking 
activity is to observe the firing rate of the neuron. In the absence of any other 
information about the spiking of neurons in the surrounding populations, it seems 
plausible to characterize the response of single cells in terms of rate-responses to 
stimulation [3]. Within this framework, many categories can be defined depending on 
the response properties of a cell (“stimulus-presence” cell, “delayed-stimulus-
presence” cell, “don’t care” cell, etc).  

To compensate for the variability of the spike-trains, a frequently used method is to 
average the response of the cell over multiple trials, thereby characterizing its 
response properties in terms of the average response. However, this method assumes a 
stationary response embedded into a randomly fluctuating signal (noisy signal). As 
we shall see, in the case of ongoing, non-random, history-dependent activity, the 
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assumption of stationary responses is not holding anymore, especially for cells 
strongly coupled with populations less driven by the input (mostly cells strongly 
modulated by feed-back). 

In order to assess the relevance of single-unit recordings, we investigated a model 
network of 40 neurons by tracing the activity of only one member of the simulated 
network at a time (in analogy to single unit recording). Although we do not claim that 
our model is completely biologically relevant, the results suggest that single-unit 
recordings have to be very carefully interpreted for a class of systems similar to our 
model. This might indicate that describing the dynamics of a recorded piece of cortex, 
consisting of a large population of cells, by a single rate response profile is a very 
poor approximation. 

2   The Model 

The artificial neural system consists of a microcircuit composed of 4 layers of neurons 
Interconnected in a recurrent fashion and an additional stimulation “input” layer of 
neurons (Fig. 1). Each layer contains 10 neurons, “resonate-and-fire” neurons [4] and 
“chattering” neurons [6]. The resonance properties of the neurons facilitate the self-
sustained activity of the network, even in the absence of any input (there are no 
nonspecific background currents modeled). Although resonating neurons have been 
considered in only a few simulation studies so far, there is accumulating evidence that 
some types of real neurons exhibit resonance properties [2]. One important aspect to 
keep in mind is that the microcircuit activity is self-sustained without being 
stimulated with random non-specific background currents, so there is no added 
external noise. 

 
Fig. 1. The model consists of a 4-layer microcircuit with recurrent synapses and a stimulation 
“input” layer. Each layer is composed of 10 neurons randomly connected to higher-, lower- and 
same-layer neurons, with certain distributions. 

The properties of the system can be summarized as follows: 

1. The system has a recurrent hierarchical neural architecture. 
2. The synaptic connectivity is mainly retinotopic (for ascending fibers), but lateral 

connectivity is also present. A neuron in one layer is connected via random 
synapses to higher, lower and same-layer neurons, within a local neighborhood 
(except feedback). 

Recurrent 
microcircuit 
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3. The receptive-field sizes increase from early to late stages of processing. 
4. The neural system never rests; even in the absence of stimulation, there is 

spontaneous self-sustained activity. 
5. Synaptic connections and strengths are randomly distributed to match the 

retinotopic criteria. Post-synaptic currents are modeled as exponentially decaying 
alpha functions, with time constants in the range of 10-20 ms. 

6. The neural dynamics are mainly characterized by subthreshold oscillations near an 
Adropov-Hopf bifurcation [5]. 

7. Neuron parameters were chosen to fit cortical neuron dynamics with a distribution 
of 80% resonator and 20% chattering neurons (see ref. [6] for details). 

8. The input signal consists of a fixed firing frequency (50 Hz) mapped onto the 
“input” layer (see Fig. 2). 

 

Fig. 2. A plot of the system’s dynamics. The top 4 spike rasters show the activity in the 4 layers 
of the microcircuit. The “Input” raster displays the activity of the “input” layer, whereas the 
lower spike raster plots the activity of a recorded neuron from the microcircuit. In the first 500 
ms, the system has self-sustained dynamics. Then, at 500 ms it is stimulated with a regular 
input spike-train of 50 Hz. Please note that the system has always ongoing activity, such that 
the time of 0 ms in the plot corresponds to 500 ms before stimulus presentation (not a real 
simulation time). 

The dynamical system contains only 40 neurons having non-trivial dynamics 
(activity cannot be described in terms of classical filter responses). An important 
observation is that the complexity of neural activity increases with the size of the 
network (by complexity we mean the irregularity of the rate response). Connections 
are random; 80% are excitatory and 20% are inhibitory. Reversal potentials at 
synapses are 0 mV for excitatory and –90 mV for inhibitory synapses. Resting 
potential is around –70 mV, however, the thresholds are dynamic, depending on the 
history of stimulation (see [6]). Neurons show adaptation, occasional bursting, post-
inhibitory rebound, synchronization, and other interesting biologically-plausible 
behavior. The simulation is continuous; between 2 stimulations, the system is not shut 
down, but allowed to evolve freely, self-sustained. During recording, a one second 
window is chosen and the stimulus is presented at the half time (500 ms). Stimulation 
lasts for 1500 ms, then the system is allowed to evolve for at least 2 seconds between 
two stimulations (to avoid short-term memory effects). The microcircuit is more 
realistic than other models in the sense that it “lives” between 
experiments/stimulations (i.e. the system has self-sustained activity), and the activity 
ceases only after the circuit is “killed”. 
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For one particular microcircuit experiment, we stimulate and then record one neuron 
at a time, systematically from all layers, choosing the targets at random. The firing rate 
of the target neuron is estimated by convolving the spike train with a gaussian kernel 
(sd = 15 ms) [1]. Each neuron is recorded during at least 10 trials and the mean-rate 
activity is computed. Analysis reveals many important aspects both on the measured 
effects and on the method-dependence of the results, as will be shown next. 

3   Results 

The activity in the first layer (analogous to V1) is strongly dependent on the input. 
The responses are quite sharp, with little delay. The activity is mainly driven by the 
input (Fig. 3). 

 

Fig. 3. Mean firing rate (average over 10 trials) of neuron #4 in layer 1. The response to the 
input is sharp although the neuron is strongly modulated by feedback and has quite an elevated 
spontaneous activity. 

A small percentage of the neurons in the primary layers can show more 
complicated dynamics which cannot be described in terms of stimulus-locked rate 
increase. This is mainly due to the strong coupling with the higher layers and lateral 
interaction (Fig. 4). 

 

Fig. 4. Mean firing rate of neuron #1 in layer 1. In analogy with experimental data, the input 
has a modulatory rather than driving effect. This cell is involved in highly-dynamic processing 
and, averaging over many trials seems to hide the dynamic computation that is going on. 

As we proceed to the higher layers, other phenomena can be observed. A smaller 
number of cells still have a sharp signaling profile (similar to Fig. 3). However, 
another type of cell emerges: the “dynamical computation” cell. These cells do not 
have a significant or sharp change in the rate response when the system is stimulated 
(Fig. 5). It seems that the worst way of analyzing their activity is to average over 
different trials. This is because the stationary response assumption is not fulfilled, 
making averaging ineffective. These cells have more a non-stationary, phase/rate 
variable response to the stimulation. Interpreting the averaged activity in Fig. 5 is 
probably a misleading method of analysis since sharp peaks and high fluctuations 
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Fig. 5. Trial #10 (top) and average over 10 trials (bottom) rates for neuron #1 in layer 2. 
Analysis of the average rates over 10 trials reveals an inconsistent transient response (between 
550–800 ms) which is only obtained by averaging over certain trials. The mean rate strongly 
depends both on the number of trials that are averaged (10 being a statistically low number of 
trials) and on the delay between two stimulations, which is reflecting a strong dependence on 
the history of the system. The sharp inhibition at 550 ms is either present or totally absent in 
different trials. Its presence in the averaged rate is only due to the fact that in the 10-trial-
average, this inhibition peak was more frequent, although in a 15-trial-average experiment, it 
may vanish for example. 

with variable phase are all averaged together. In single trial measurements however 
the cell’s activity is obviously not changed but merely modulated. 

As the neural dynamics get more and more complex, measuring the averaged rate is 
a less and less reliable method of analysis. We might classify the cell in Fig. 5 as a 
“don’t care” cell, expressing that there is no obvious link between the input and the 
cell’s rate response. However, experiments on the model show that shutting down such 
neurons can dramatically affect the dynamics of the entire system and its response to 
the stimulus. It might be that either rate is not a relevant parameter to measure for such 
 

 

Fig. 6. Complex dynamics of an apparently “don’t care cell” in layer 3. Again, the mean rate is 
totally irrelevant for the type of processing at the cell. It can only be inferred that the cell 
receives some inhibitory delayed effects from another population of neurons. 
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Fig. 7. Delayed signaling cell in layer 3. Mean rate response (average over 10 trials). 

 

Fig. 8. An interesting cell in layer 4 that can be classified as an intermediate cell between inputs 
and later stages. Mean rate response (average over 10 trials). 

neurons or that the activity of the neuron was critical for the overall processing 
performed by the population, thus indirectly influencing the response to the stimulus. 

An enormous diversity of neural responses can be found in the later stages of 
processing due to the complexity of neural interactions (Figs. 6-8). 

4   Discussion 

Average rate response and neural function are an elusive pairing for complex neural 
interactions. It seems that rate analysis and individual neuron recordings are 
potentially misleading as one tries to explain the activity in higher areas (where 
activity is complex). When the system has nontrivial dynamics, which is the case for 
the neocortex, single-unit recordings and function interpretation seem to be 
incompatible. On one hand, averaging does not emphasize a stable rate response since 
fluctuations are not random and independent but related to the network dynamics and 
history. On the other hand, in many cases, even single trial rate responses might 
reveal no obvious link to the function of the neuron. This is the case when rate is not 
the relevant parameter to measure (ie. rate is not coding the information). Analysis of 
temporal patterns might prove more important in such situations [9]. 

For the complex activity that is going on in high visual areas like V4, we need novel 
methods of analysis. Complex interactions among neurons cannot be simply assumed 
to underlie certain functions unless we understand the entire picture. As an example, a 
simple readout neuron (connected to a recurrent high-dimensional microcircuit) can be 
trained to respond in a stable manner to the highly complex patterns of activity 
whenever a stimulus is presented, although understanding the highly complex 
dynamics of the individual neurons in the microcircuit seems elusive [7]. Moreover, it 
seems that such systems are highly effective computational “devices”, and the key to 
the power of processing is the micro-level cellular and synaptic diversity [8]. In 
conclusion, we suggest that in the future, single-unit recordings and analyses with 
averaging techniques must be interpreted with great care. 
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Abstract. One focus of recent research in the field of biologically plau-
sible neural networks is the investigation of higher-level functions such
as learning, development and modulatory functions in spiking neural
networks. It is desirable to explore these functions in physical neural
network systems operating in real-time. We present a framework which
supports such research by combining hardware spiking neurons imple-
mented in analog VLSI (aVLSI) together with software agents. These
agents are embedded in the spiking communication of the network and
can change the parameters and connectivity of the network. This new
approach incorporating feedback from active software agents to aVLSI
hardware allows the exploration of a large variety of dynamic real-time
spiking network models by adding the flexibility of software to the real-
time performance of hardware.

1 Introduction

Much recent research in biologically plausible, spiking neural networks focuses
on the dynamic properties of network models such as learning algorithms based
on synaptic plasticity and global reward signals, development of connectivity,
and modulatory functions such as gain control. It is desirable to explore such
properties in a physical system in real-time: first, because such a system forces
the model to include the real-time timing properties that are important for
biological systems; and second, only a system that interacts with its physical
environment can demonstrate that the model being studied works correctly un-
der real-world conditions. In order to achieve this real-time behaviour, aspects
of network models are often implemented in hardware [1].

We present a framework that allows the exploration of the dynamic properties
of network models in real-time neural networks by combining hardware spiking
neurons and software agents. Local analog and continuous-time computation is
performed in the hardware, while higher-level functionality is implemented in
software. By higher-level functionality we understand whatever algorithms are
not implemented in the currently available hardware, e.g. learning algorithms
based on synaptic plasticity and global reward signals, development of connec-
tivity, and modulatory functions such as gain control. This new approach allows
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a wide variety of algorithms to be tested quickly and will enable real-time sys-
tems with large computational power to be assembled.

Several projects have focused on combining hardware based spiking neu-
rons with dynamically reconfigurable connectivity: the Silicon Cortex (SCX)
project [2] proposed connecting multiple chips using spiking communication and
already incorporated the possibility of building integrated hardware and soft-
ware models of the kind we propose here, although no such models were ac-
tually implemented at that time due to the presence of a critical bug in the
host communication channel of the SCX. Similar systems are used by vari-
ous groups. The IFAT system [3] aims for a similar goal to that of this work,
however, we separate the hardware and software parts to achieve greater flex-
ibility, higher performance and easier implementation of the algorithms
(e.g. in Matlab).

2 System Architecture

Hardware systems implementing the analog and continuous-time computation
performed by neurons and synapses in transistor circuits have long been a subject
of research and many examples can be found in the literature, e.g. [4]. The
circuits approximate models of biological neurons which are then integrated in
large arrays on a chip using Very Large Scale Integration (VLSI).

The connectivity between neurons is implemented by the transmission of
spikes over a multiplexed bus using the address-event representation (AER) pro-
tocol [5]. Each spike is represented by the address of the source neuron or the
receiving synapse and is transmitted asynchronously. A mapper translates the
addresses of the sending neurons to lists of receiving synapse addresses using
a look-up table, thus allowing for arbitrary intra- and inter-chip connectivity
between neurons. Various networks and input sensors can be combined to form
a real-time multi-chip system (see Fig. 1). A monitor translates spikes from
hardware to software, while a sequencer provides the reverse translation. The
mapper, monitor and sequencer are integrated on a PCI-AER board [6] which
plugs into a PCI slot in a desktop computer.

Software agents embedded in this system perform the higher-level functions
as defined in section 1. In this framework, an agent is an independent software
process that implements a particular higher-level algorithm. At present, there
are agents for analysis, on-line display, learning, modulation functions and stim-
ulation. Multiple agents can run concurrently. Each agent communicates with
the hardware neural network by receiving spike trains or activity from the net-
work, and can change the synaptic connectivity and adjust the parameters of
the neurons. Agents can also stimulate the network with artificial spike trains,
providing input from parts of the system which are not implemented in hard-
ware. Event-based agents, i.e. agents that perform computation based on single
events, are implemented in C++, while agents that operate on the statistics of
the activity of the network (as discussed in section 2.1) and do not require a low
latency, can also be implemented in Matlab.
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Fig. 1. Overview of the system architecture. Real-time spiking neural networks are
implemented in VLSI and integrated on a chip (top). As examples, a retina, a feed-
forward network and a recurrent network are shown. The neurons communicate using
the address-event representation (AER) protocol (black arrows). A PCI-AER board
monitors, sequences and remaps the spikes to implement the connectivity. Higher-level
functions such as on-line analysis, learning algorithms, modulatory functions and ar-
tificial stimulation are implemented in C++ software agents (bottom). The agents
transmit and receive spikes to and from the hardware using AER network packets and
can change the connectivity and parameters of the network by modifying the mapping
table and bias voltages (dashed arrows). Analysis agents transform the spike trains
into a frame-based format which represents the activity of a neuron population in the
chosen coding scheme (gray arrows). This allows agents implemented in slow environ-
ments such as Matlab to be integrated into the framework. As an example, a 3D bar
chart displaying the instantaneous firing rate is shown.

2.1 Software AER and Frame-Based Representation

In the software, a spike is represented by a data structure containing an address
and a timestamp recorded when the spike is captured. The timestamp is required
to preserve timing information when the spikes are buffered. The monitor agent
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sends blocks of spikes including their timestamps as network packets to receiving
agents. We chose UDP for this software spiking communication because it is fast
and allows several agents to receive the spike trains at the same time using
multicasting.

For many applications, we are not interested in the spike train itself, but
rather in the statistics of the activity of the neurons in the network. Depending on
the chosen coding scheme, this can be an instantaneous spike rate, a spike count,
time-to-first spike, or any other suitable measure. Analysis agents transform the
spike train into one of these activity-based representations.

An agent further along the processing chain can request this activity. To do
so, it first specifies the addresses of the neurons it is interested in. The analysis
agent then transmits the activities of these neurons as a vector. We call this a
frame-based representation. In contrast to conventional frame-based representa-
tions, the timing is asynchronous since the frame can be requested at any time
and the analysis agent will calculate the contents of the frame at that time.
Frames are transmitted between the agents using a TCP network connection.

The frame-based representation makes it possible to include agents in the
framework that have such a long response time that they could not keep up
with the real-time spike train. This allows agents to be implemented in slow
environments such as Matlab. As an example, an on-line display agent can
request frames and display them with a fixed refresh rate independently of the
amount of spikes received.

2.2 Learning Agents

The framework allows a variety of learning and modulation algorithms to be
explored by implementing them as agents. An example of an event-driven agent
is an agent that implements spike-time-dependent plasticity (STDP) [7]. The
agent is configured with the addresses of the post-synaptic neurons and their pre-
synaptic afferents. All incoming spikes are buffered and the agent checks whether
a post-synaptic neuron spiked. If so, the buffer is scanned for spikes from pre-
synaptic neurons that fall within the time window around the post-synaptic spike
and long-term depression or potentiation is calculated. The synaptic efficacy
is then changed on the fly in the mapper’s look-up table using burst length
variation [8]. Exploring STDP with this software-based approach has advantages
over a hardware implementation in that the implementation time is shorter and
testing is easier, since no new hardware has to be added on chip and all of the
algorithm’s variables are accessible.

2.3 Performance

Fig 2 shows the performance of the framework in the current state. We show
both maximal values for standalone agents and values for a typical setup using
an agent implementing STDP learning and a display agent. The main limitation
is transferring data (spikes and synaptic weight updates) over the PCI bus.
The driver for the PCI-AER board does not yet support interrupts, and the
current board does not support bus mastering. Even with these limitations,



A Hardware/Software Framework for Real-Time Spiking Systems 165

Maximum values (standalone agent)

rate [s−1] avg.(max.) latency CPU load [%]
AER communication (up to 4 chips) 1.2MSpikes 1.2μs -
Monitoring 310kSpikes 10 (80) ms 97
Synaptic efficacy updates 129kUpdates - 98

Typical setup (multiple agents)

Monitor agent 53kSpikes 15 (90) ms 8
STDP spikes of postsynaptic neurons 24kSpikes 35

synaptic efficacy updates 16kUpdates 44 (220) ms
Spike-rate to frame conversion 53kSpikes 25 (120) ms 3
On-line display (Matlab/X) 2.3 - 24

Fig. 2. Performance measurements. All rates given are maximal rates at which no or
very few spikes are lost (< 1 packet in 1s). ’latency’ denotes the mean (maximum)
latency from a spike being recorded by the PCI-AER board until it is received and
processed by an agent. All measurements were done on a standard PC (2.4GHz Pen-
tium IV, Linux kernel 2.4.26).

the measured throughput is sufficient for many experiments because it refers to
the continuous spike rate, whereas biologically plausible networks typically have
short high-frequency bursts of spikes, and the average spike rate remains well
below the maximum throughput.

3 Conclusion and Outlook

With its modular architecture, our framework supports multiple agents using
event or activity based computation. Software spike trains are broadcast to mul-
tiple receivers and statistics relating to different spike coding schemes can be
requested in a frame-based representation. Thanks to the use of standard net-
work protocols, the system is scalable and can be distributed across several
computers.

New hardware interfaces that implement the individual functionalities of the
PCI-AER board in single hardware modules are being developed as part of a
current project [9]. These hardware modules can be inserted where needed into
the data flow of the system. They will also support much higher spike rates than
the current PCI-AER board, of up to 32MSpikes/s.

The framework can be used to quickly explore higher-level functionality in
a real-time system. Through the use of software agents, it provides a rapid pro-
totyping tool to test learning and modulation algorithms in a real-time system.
With input sensors such as a silicon retina, it can be used to build more com-
plex spike-based neural network systems than presented here that are capable
of reacting to their real-world environment.
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Abstract. Sensory data extracted by neurons is often noisy or ambiguous and
a goal of low-level cortical areas is to build an efficient strategy extracting the
relevant information. It is believed that this is implemented in cortical areas by
elementary inferential computations dynamically extracting the most likely pa-
rameters corresponding to the sensory signal. We explore here a neuro-mimetic
model of the feed-forward connections in the primary visual area (V1) solving
this problem in the case where the signal may be idealized by a linear generative
model using an over-complete dictionary of primitives. Relying on an efficiency
criterion, we derive an algorithm as an approximate solution which provides a dis-
tributed probabilistic representation of input features and uses incremental greedy
inference processes. This algorithm is similar to Matching Pursuit and mimics the
parallel and event-based nature of neural computations. We show a simple imple-
mentation using a network of integrate-and-fire neurons using fast lateral interac-
tions which transforms an analog signal into a list of spikes. Though simplistic,
numerical simulations show that this Sparse Spike Coding strategy provides an
efficient representation of natural images compared to classical computational
methods.

1 Cortical Processing as Solving Inverse Problems

The primary visual area in the human (V1) is a cortical area specialized in low-level
visual processing from which the majority of the visual information diverges to higher
visual areas. It may be regarded as a "blackboard" analyzing images so as to represent
them efficiently and versatilely, as well for the detection of familiar faces than to detect
complex motions. In fact, for any image, V1 has to rapidly (in the order of a fraction
of a second) represent a set of features relevant to any natural image. The resulting rep-
resentation, including for instance the location and orientation of the edges that outline
the shape of an object, is then relayed to higher level areas to allow, for instance by
grouping features, a recognition of useful patterns. Over a longer period (in the order
of hours to years), the V1 area should adapt to "reverse-engineer" these scenes so as to
progressively build a "model" of their structure. The success of both these learning and
coding algorithms over the long term (in the order of days to generations) allows then
to validate the model that was learned through the pressure of evolution. We focus in
this paper on the coding algorithm and we will propose an implementation using the
computational bricks provided by neural computations: parallel dynamical processing,
integration of local information and event-based computations.
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We will first define the fixed internal image model as a Linear Generative Model
(LGM) as is often assumed for natural images [1]. It defines the space of all observed
natural images I = {x} that we wish to characterize as the superposition of N images
of the "primitive shapes"1 Aj = {Aij}1≤i≤M from a dictionary A defined as the matrix
A = {Aj; 1 ≤ j ≤ N} at different intensities which correspond in our framework
to scalar "hidden states". The image will be written x = {xi}1≤i≤M over the set of
spatial positions denoted by their address i and will correspond to a set of scalars s =
{sj}1≤j≤N .

x =
∑

1≤j≤N
sj.Aj (1)

In fact, particular care should be put on the dictionary. A robustness constraint to usual
transform of the image suggests that the dictionary should be over-complete [2], i.e. that
the number of dictionary elements should be of several orders of magnitude larger than
the dimension of the image space (that is N >> M ). The resulting inverse problem —
finding s knowing x— is in this case ill-posed.

2 Sparse Spike Coding Using a Greedy Inference Pursuit

Focusing on the event-based nature of axonal information transduction and in order to
reflect the parallel architecture of the nervous system, we will here propose a solution
for the inverse problem using successively two steps: Matching (M) and Pursuit (P).

(M) Neurons compete in parallel to find the most probable single source component
by integrating evidence and the first source to be detected should be the one cor-
responding to the highest activity.

(P) We take into account this information before performing any further computations
and then resume the algorithm for a new match (M).

2.1 Matching: Detection of the Most Probable Source Component

First, given the signal x ∈ I, we are searching for the single source s∗.Aj∗ ∈ I that
corresponds to the maximum a posteriori (MAP) realization for x (and knowing it is a
realization of the LGM as defined in Eq. 1). We will address in general a single source
by its index and strength by {j, s} so that the corresponding vector in S corresponds to
a vector of zero values except for the value s at index j. The MAP is defined by:

{j∗, s∗} = ArgMax{j,s}P ({j, s}|x) (2)

To compute the likelihood we will first assume that knowing one component {j, s}, the
only "noise" from the viewpoint of neuron j is the combination of the unknown sources
αk, 1 ≤ k ≤ N .

x = s.Aj + ν with ν =
∑

k
αk.Ak (3)

For enough sources, this noise is gaussian with a covariance matrix characteristic of
natural images. We may use another metric to yield a normalized spherical probability

1 In the following, we will denote vectors and matrices by bold characters.
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distribution centered around the origin [2]. From P (x|{j, s}) = P (x− s.Aj) = P (ν)
and the definition of conditional probability, it follows (we assume here an uniform
prior across sources and scalar values)

{j∗, s∗} = ArgMax{j,s}[logP (x|{j, s}) + logP ({j, s})]
= ArgMin{j,s}[s

2.‖Aj‖2 − 2.s. < x,Aj >] (4)

so that we found

j∗ = ArgMaxj < x,
Aj

‖Aj‖ > and s∗ =
< x,Aj∗ >

‖Aj∗‖2 (5)

Finally, as defined in Eq. 2, the source component that maximizes the probability is the
projection2 of the signal on the normalized elements of the dictionary.

2.2 Pursuit: Lateral Interaction and Greedy Pursuit of the Best Components

As we found the MAP source knowing the signal x, we may pursue the algorithm by
accounting for this inference on the signal knowing the element that we found, that is on
the residual signal. In this recursive approach, we will note as n the rank of the step in
the pursuit (which begins at n = 0 for the initialization). The first scalar projection that
we have to maximize —and which will serve as the initialization of the algorithm—is
given by3 :

(Initialization) C
(0)
j =< x,Aj > (6)

While the energy is greater than a threshold (for instance an estimate of the measure-
ment noise), we compute :

(Matching) j(n) = ArgMaxj [C
(n−1)
j ] (7)

(Pursuit) C
(n)
j = C

(n−1)
j − C

(n−1)
j(n) .Rj,j(n) (8)

where Rj,j(n) =< Aj ,Aj(n) > is the correlation of any element j with the winning
element j(n) and relates to the reproducing kernel in wavelet theory. The greedy pursuit
therefore transforms an incoming signal x in a list of ranked sources {j(n), s(n)} such
that finally the signal may be reconstructed as

x =
∑

k=1...n
s(k).Aj(k) + x(n)

which is an approximation of the goal set in inverting Eq. 1 as the norm of the residual
signal x(n) converges to zero (see this theorem and other properties of the MP algorithm
in [2]).

2 By symmetry, we could choose the absolute value to modelize ON and OFF neurons with
similar receptive profiles.

3 Since the choice of j∗ is independent of the norm of the filters, we have normalized them
all to 1 for clarity. However, we can weight the preference for different neurons by adding a
multiplicative gain in Eq. 7.
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2.3 Implementation Using Integrate-and-Fire (IF) Neurons

We will derive an implementation of this algorithm using a network of spiking neu-
rons based on the same feed-forward architecture as the perceptron but implementing
the greedy pursuit using lateral interactions. The activity is represented by a driving
current Cj(t) that drives the potential Vj of leaky Integrate-and-Fire neurons [3] from
the initialization time. For illustration purposes, the dynamics of the neurons will here
be modeled by a simple linear integration of the driving current Cj (other monotonic
integration schemes lead to similar formulations):

τ.
d

dt
Vj = −Vj + R.Cj (9)

where τ is the time constant of membrane integration and R a gain (in Ohm if Cj is
a current). Neurons generate a spike when their potential reach an arbitrary threshold
that we set here to 1. In our framework, the image is presented at an initial time and
the activities are constant for t ≥ 0 (see Eq. 6). From the monotonous integration and
while at least one activity is greater than one, the next neuron to generate a spike will be

j∗ = ArgMaxj [Cj ] (10)

with an interspike interval of

t∗ = τ. log(
1

1− 1/Cj∗
) (11)

To implement the greedy algorithm, we then need to implement a lateral interaction on
the neighboring neuron similar to the observed lateral propagation of information in V1
by updating activities of all neurons by

Cj ← Cj − Cj∗ .R{j,j∗} (12)

and therefore of the potential of every neuron by Cj∗/R{j,j∗}.(1 − e−t∗/τ ), that is
simply:

Vj ← Vj −R{j,j∗} (13)

and then resume the algorithm. This lateral interaction is here immediate and behaves
as a refractory period on the winning neuron (Cj∗ ← 0 and Vj∗ ← 0) but also on
correlated neurons. In this case, piecewise jumps of activity will lead to piecewise ex-
ponential traces for the membrane potential, interrupted at the spike times. We have
shown that this simple architecture provides an explanation for some complex behavior
of cooperation in the cortex as the constancy of the selectivity tuning of simple cells in
V1 [4]. Finally, we have shown that this simple implementation implements the Match-
ing Pursuit algorithm that we defined in Eq. 7 and 8.

3 Results: Efficiency of Sparse Spike Coding

We compared the method we described in this paper with similar techniques used to
yield sparse and efficient codes such as the conjugate gradient method used by Ol-
shausen [1]. We used a similar context and architecture as these experiments and used in
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Fig. 1. Efficiency of the matching pursuit compared to conjugate gradient. We compared here
the matching pursuit (’mp’) method with the classical conjugate gradient function (’cgf’) method
as is used in [1] for different dictionaries. We present the results for the coding of a set of image
patches drawn from a database of natural images. These results were obtained with the same fixed
dictionary of edges for both methods. We plot the mean final residual error for two definitions
of sparseness: (Left) the mean absolute sum of the coefficients and (Right) the number of active
(or non-zero) coefficients (the coding step for MP). For this architecture, the sparse spike coding
scheme appears to be adapted to efficiently code natural images and in particular to compress the
information needed to code the image.

particular the database of inputs and the dictionary of filters learned in the SPARSENET

algorithm. Namely, we used a set of 105 10 × 10 patches (so that M = 100) from
whitened images drawn from a database of natural images. The weight matrix was com-
puted using the SPARSENET algorithm with a 2-fold over-completeness (N = 200) that
show similar structure as the receptive of simple cells in V1. From the relation between
the likelihood of having recovered the signal and the squared error in the new metric,
the mean squared reconstruction error (L2-norm) is an appropriate measure of the cod-
ing efficiency for these whitened images. This measure represents the mean accuracy
(in terms of the logarithm of a probability) between the data and the representation. We
compared here this measure for different definitions and values for the "sparseness".

First, by changing an internal parameter tuning the compromise between recon-
struction error and sparsity (namely the estimated variance of the noise for the conju-
gate gradient method and the stopping criteria in the pursuit), one could yield different
mean residual error with different mean absolute value of the coefficients (see Fig. 1,
left) or L1-norm. In a second experiment, we compared the efficiency of the greedy
pursuit while varying the number of active coefficients (the L0-norm), that is the rank
of the pursuit. To compare this method with the conjugate gradient, a first pass of the
latter method was assigning for a fixed number of active coefficients the best neurons
while a second pass optimized the coefficients for this set of "active" vectors (see Fig. 1,
right).

Computationally, the complexity of the algorithms and the time required by both
methods was similar. However, the pursuit is by construction more adapted to provide a
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progressive and dynamical result while the conjugate gradient method had to be recom-
puted for every set of parameter. Best results are those giving a lower error for a given
sparsity or a lower sparseness (better compression) for the same error. In both cases, the
Sparse Spike Coding provides a coding paradigm which is of better efficiency as the
conjugate gradient.

4 Conclusion

We presented here a model for neural processing which provides an alternative to the
feed-forward and spike-rate coding approaches. Focusing on the parallel architecture of
cortical areas, we based our computations on spiking events which represent successive
elementary decision processes. We propose a simple implementation which exhibit ef-
ficient and complex dynamics. This model thus provides an algorithm of Sparse Spike
Coding which is particularly adapted to understand computational aspects of the neural
code for low-level visual tasks.

This simple strategy thus suggest that the inherent complexity of the neural activity
is perhaps not the consequence of the computational complexity of detailed models of
neurons but may rather be the consequence of the parallel event-based dynamics of the
neural activity. Although our model is a simplistic caricature compared to the behavior
of biological neurons, it provides a simple algorithm which is compatible with some
complex characteristic of the response of neuronal populations. It thus proposes a chal-
lenge for discovering the mechanisms underlying the efficiency of nervous systems by
focusing on the emergent computational properties of large-scale networks of spiking
neurons.

Reproducible Research. Scripts reproducing the figure may be obtained from the au-
thor upon request.
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Abstract. Many approaches have emerged in the attempt to explain
the memory process. One of which is the Theory of Neuronal Group Se-
lection (TNGS), proposed by Edelman [1]. In the present work, inspired
by Edelman ideas, we design and implement a new hierarchically cou-
pled dynamical system consisting of GBSB neural networks. Our results
show that, for a wide range of the system parameters, even when the
networks are weakly coupled, the system evolve towards an emergent
global associative memory resulting from the correlation of the lowest
level memories.

Keywords: Hierarchical memories, Coupled neural networks, Dynami-
cal systems, Artificial neural networks, TNGS.

1 Introduction

Presently, studies in neuroscience have revealed, by means of experimental evi-
dences, that memory process can be described as being organized, functionally,
in hierarchical levels, where higher levels would coordinate sets of functions of
the lower levels [1] [2]. One of the theories that is in compliance with these studies
is the Theory of Neuronal Group Selection (TNGS) proposed by Edelman [2].

TNGS establishes that correlations of the localized neural cells in the cortical
area of the brain, generate clusters units denoted as: neuronal groups (cluster
of 50 to 10.000 neural cells), local maps (reentrant clusters of neuronal groups)
and global maps (reentrant clusters of neural maps).

A neuronal group (NG) is a set of tightly coupled neurons which fire and oscil-
lates in synchrony. Each neuron belongs only to a single neuronal group, which
is spatially localized and functionally hyper-specialized. According to TNGS,
NG are the most basic structures in the cortical brain, from which memory and
perception processes arise, and can been seen as performing the most primitive
sensory-effector correlations.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 173–178, 2005.
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A local map is a composition of NG, also spatially localized in the cortical
area. Two local maps, functionally different, can develop reentrant connections,
resulting in what Edelman [1] calls categorization. Edelman [1] states that a
significant number of different neuronal groups could have the same functionality
within a given map, that is, could respond to the same stimuli.

A global map is a dynamic structure containing multiple reentrant local maps
which are capable of interacting with non-mappable areas of the brain, such as
the limbic system [2]. A global map is a set of connected local maps and perform
“categorizations” (correlations) of local maps. They are not spatially localized
but, in fact, they are spread throughout the cortex. Global maps provide a
“global or emergent behaviour” of the cortical activities (perception in action)
and generate a complete experience in the world, i.e., an experience with qualia.
A continuous selection of existing local maps in a global map by selection of
additional reentrant connection allows forming new classification couples.

Inspired by these ideas, a model of hierarchically coupled dynamical system,
using GBSB (Generalized-Brain-State-in-a-Box) neural networks is described in
this paper, which integrates the concepts of dynamical systems theory, TNGS
and Artificial Neural Networks (ANNs) aiming at building multi-level memories.

This paper is organized as follows. In Section 2 we propose a model of coupled
GBSB neural networks and show how multi-level memories may arise within it.
Section 3 illustrates the use of the algorithm developed in Section 2 with an
example from the literature [3] [4]. Finally, Section 4 concludes the paper and
presents some relevant extensions of this work.

2 Proposal for the Construction of Multi-level Memories

In order to develop this new model we use an extension of the original BSB -
Brain-State-in-a-Box [5] called GBSB (Generalized-Brain-State-in-Box ) [6].
The behaviour of the neural network energy in a discrete BSB model was studied
by Golden [7]. Cohen and Grossberg [8] discussed a continuous BSB model based
on Liapunov equations, while Hui and Zak [6] discussed the stability of the GBSB
model in a non-symmetric diagonally dominant weight matrix case.

The GBSB model was chosen due to the fact that its characteristics, which
are, in short: asymmetric synapses, different bias and maximum and minimum
fire rates, redundancy, non-linear dynamics and self-connection for each neuron.

In our proposed model we build a two level hierarchical memory where, in
accordance with figure 1, each one of the GBSB networks (A, B and C) plays the
role of a neuronal group or, in our case, a first-level memory. In a given cluster,
each neuron performs synapses with each other neuron of the same cluster, i.e.,
the GBSB is a fully connected asymmetric neural network. Beyond this, some
selected neurons in a cluster are bidirectionally connected with some selected
neurons in the others clusters [4]. These inter-cluster connections can be repre-
sented by a weight correlation matrix Wcor, which accounts for the contribution
of one cluster to another one due to coupling. An analogous procedure could be
followed in order to build higher levels in the hierarchy [1].
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A
B

C

W(i,a)(j,a) WCor(i,a)(j,b)

Neural Groups

GBSB Nets

Local Maps

i j

Wcor(j,b)(i,a)

Fig. 1. Network design

Our proposed coupled GBSB model extends the GBSB model for single net-
works discussed in [6], by means of adding a fourth term that represents the
inter-group connections. Consequently, our new model can be defined by the
equation:

xk+1
(i,a) = ϕ

(
xk

(i,a) +
Na∑
j=1

β(i,a)w(i,a)(j,a)x
k
(j,a) + β(i,a)f(i,a)+

+
Nr∑
b=1
b�=a

Nq∑
j=1

γ(i,a)(j,b)wcor(i,a)(j,b)x
k
(j,b)

⎞⎠ ,

(1)

where the three first terms represent the equations of a GBSB model for Na

uncoupled GBSB networks, meaning in our model intra-group synapses (i.e.,
in the ath network or neuronal group). The sum over j, in the fourth term,
labels the Nq neurons in the bth neuronal group that have correlation to neuron
i in the ath neuronal group. The strength or density of the inter-group synapses
are parameterized by γ(i,a)(j,b). The activation function ϕ is a linear saturating
function whose ith component is defined as follows:

xk+1
(i,a) = ϕ(yk

(i,a)), ϕ(yk
(i,a)) =

⎧⎪⎨⎪⎩
+1 if yk

(i,a) > +1
yk
(i,a) if −1 ≤ yk

(i,a) ≤ +1,
−1 if yk

(i,a) < −1
(2)

where yk
(i,a) is the argument of the function ϕ of the equation 1.

In order to complete our model we present now a Lyapunov function (energy)
of the coupled system, which can be defined as [9]:

E = − 1
2

[
Nr∑
a=1

Na∑
i,j=1

β(i,a)w(i,a)(j,a)x(i,a)x(j,a)

]
−

Nr∑
a=1

Na∑
i=1

β(i,a)f(i,a)x(i,a)

−
Nr∑

a,b=1
a�=b

Na∑
i=1

Nq∑
j=1

γ(i,a)(j,b)wcor(i,a)(j,b)x(i,a)x(j,b),

(3)
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where the first term represents the energy of the individual neuronal groups. The
second term gives the contribution to energy due to external factors (i.e., the bias
field). Finally, the third term in equation 3 is due to the inter-group connections.
A detailed mathematical analysis of equation 3, describing the energy of the
coupled system can be found in [9], where it was shown that it presents two
important features: the whole system evolves to a state of minimum energy,
even when the neuronal groups are weakly coupled; the inter-group coupling,
which establishes the second-level correlations, does not destroy the first-level
memories structures.

3 Coupled GBSB Experiments

Computational experiment consisting of three GBSB networks connected (Fig.
1) were conducted and the results were compared with the ones presented in [4].
Although the experiment presented here is a quite simple one, it is intended
to make it clear the procedure for the construction of multi-level associative
memories. More complex computational experiments will be presented elsewhere.
In our simulations each network or neuronal group contains 10 neurons and we
selected 6 out of 1024 possible patterns to be stored as our first-level memories.
The weight matrix of the individual networks followed the definition proposed
in [3]. The selected set of patterns stored as first-level memories was:

V1 = [ -1 1 1 1 1 1 -1 -1 -1 -1 ] V2 = [ 1 1 -1 -1 -1 1 -1 -1 1 -1 ]
V3 = [ -1 1 1 1 -1 -1 1 -1 -1 -1 ] V4 = [ -1 1 -1 -1 -1 -1 1 -1 1 1 ]
V5 = [ 1 -1 -1 1 1 -1 1 1 1 -1 ] V6 = [ 1 1 -1 1 -1 1 1 1 -1 -1 ]

(4)

Each network A, B and C was carefully designed to present the same asymp-
totically stable fixed point structure presented in [3]. To design these networks
we followed the approach of [4]. In addition, amongst the 63 = 216 possible
combinations of the 3 sets of first-level memories, we have chosen 2 triplets or
global patterns to be our second-level memories (local maps). The arrangement
of the global patterns determines the inter-group correlation matrix Wcor by a
generalized Hebb rule.

The system was initialized in one of the networks A, B or C, randomly, and
in one of their first-level memories that establish a correlation in accordance
with table 1. The two other networks, in turn, were initialized in one of the 1024
possible patterns, also, randomly. Then, we measured the number of times that
the system converges to a configuration of triplets1, considering networks totally
or partially coupled. Neurons that took part of the inter-group connections was
chosen randomly. Points in our experiments were averaged over 1000 trials for
each value of γ.

In our experiment a typical value of β was chosen (β = 0.3) and the number of
correlation (triplets) obtained, as a function of γ, was measured considering that
0%, 20%, 60% and 100% of the inter-group neurons were connected. The results
1 Triplet is one of the global patterns selected that constitutes a second-level memory.
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Table 1. Hebbian rule for correlation of the first-level memories, where V(i,ath) - V(j,bth)

is the correlation between the ith and the jth pattern of the ath and of the bth network,
respectively

Inter-Groups V(j,A) V(j,B) V(j,C)

V(i,A) V(1,A) - V(3,B) V(1,A) - V(5,C)

V(2,A) - V(4,B) V(2,A) - V(6,C)

V(i,B) V(3,B) - V(1,A) V(3,B) - V(5,C)

V(4,B) - V(2,A) V(4,B) - V(6,C)

V(i,C) V(5,C) - V(1,A) V(5,C) - V(3,B)

V(6,C) - V(2,A) V(6,C) - V(4,B)

Global Patterns Selected
V(1,A) - V(3,B) - V(5,C) or V(2,A) - V(4,B) - V(6,C)
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can be seen in Fig. 2, which shows that even when only 20% of the inter-group
neurons were connected, our model presented a recovery rate of global pattern
close to 80%. However, when 60% of the inter-group neurons were connected the
number of triplets obtained was close to 100%, in practice, the same result of
a completely coupled network. We compared our results with the ones achieved
in [4] and we observed that in [4], the recovery capacity of global patterns was
close 90% for a completely coupled network, while in our model and for a typical
value of β, namely β = 0.3, the recovery capacity was close to 100%, even with
a network having only 60% of inter-group neurons connected.

We have, also, analyzed the influence of the number of correlation (triplets),
for a wide range of the parameter β, as a function of β

γ relation (Fig. 3). We
observed that when β value increases it is necessary an increase of the γ value
in such way to improve the recovery capacity. Furthermore, we could, also, infer
that a typical value of β

γ relation is 0.075, for an specific value of β, namely
β = 0.1.
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4 Conclusions

In this paper, we have presented a new proposal of construction of multi-level as-
sociative memories using GBSB neural networks that was inspired by TNGS [1].
We derived a new equation for the whole coupled system that extends previous
models by means of a term that represents the inter-group connections.

We performed numerical computations of a two-level memory system and
obtained a recovery rate of global patterns close to 100%, even when the networks
are weakly coupled showing that it seems possible to build multi-level memories
when new groups of ANNs are interconnected.

This present work is currently being generalized in order to include the effects
due to different γ values (strength of the inter-groups synapses), such that the
model would become more biologically plausible.
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Abstract. This paper proposes an improved discrete Hopfield Neural (HN) 
network, balance algorithm, to optimize the Point-Feature Labeling 
Placement (PFLP) problem. The balance algorithm attains the balance 
between penalty function and original objective function based on the 
principle of weight balance, and can converge to the solution with better 
stability. This improved algorithm also allows HN network to be competitive 
with other traditional algorithms such as Genetic Algorithm (GA) and 
Simulated Annealing (SA) algorithm in solving PFLP problem and other 
constrained problems. 

1   Introduction 

The general aim of constrained optimization is to transform the problem to be solved 
into some easier solvable sub-problems which then are used as the basis of iterative 
process. A typical characteristic of the large number of early methods was the 
translation of constrained problems into basic unconstrained problems, in which a 
penalty function was determined for those constraints near or beyond the constraint 
boundary. Thus the constrained problem could be solved with a sequence of 
parameterized and unconstrained optimizations which would converge to the 
constrained problem in the limit (of the sequence). However, if using this method to 
solve a problem, the weighting factors for penalty functions should be sufficiently 
large in order to ensure the method to converge to a feasible solution. As the influence 
of the penalty term’s effect becomes stronger, the solutions are found to be much 
affected by the penalty terms than by the original objective; then the problem 
becomes ill-conditioned. 

This paper proposes a new balance algorithm to find proper weighting factors for 
penalty functions. Then the Hopfield Neural (HN) network with a typical penalty, is 
improved by using this balance algorithm, and applied in solving Point-Feature Label 
Placement (PFLP). The results are compared with those obtained by conventional 
Hopfield Neural Network (CHN), Genetic Algorithm (GA) and Simulated Annealing 
(SA) algorithm. 
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2   Balance Algorithm 

2.1   Balance Principle in Constraint Optimization 

A general constraint optimization problem can be converted into a non-constraint 
problem by adding penalty function to original objective, as expressed by Eq.(1). The 
original objective function f and penalty function g should be balanced in order to get 
optimal and feasible solution.  

gfF ⋅+⋅= βα  (1) 

Therefore we assign two weighting factors  and  to each function, respectively to 
maintain the balance condition, which is quite similar to a commonly used balance in 
physical experiments. According to the weighting principle of balance, the weights 
are usually added onto the lighter side of the balance from large to small in sequence 
until the balance scales reach the critical position. In the proposed problem, we treat  
and  as weights and try to obtain the balance between f and g by regulating the 
weights accordingly. Here we assume the scales reach balance if the optimization 
solution is feasible. 

Because the described algorithm includes optimizing process for many times, a 
much faster optimization algorithm is necessary to implement since optimization is a 
time-consuming work. The Conventional Hopfield Neural (CHN) network proposed 
by the physicist John J. Hopfield in1982 [1], which was based on gradient descendent, 
will be used as the optimization algorithm considering its simple way and short 
calculation time.  

However, the gradient descendent property of CHN network makes itself easily 
end up with infeasible solution or traps into local optimal solution [2].Therefore in 
this paper, the CHN will be adopted as the basic optimization algorithm to set up the 
balance algorithm, which is referred as Improved HN (IHN) network, to keep balance 
between original function and penalty function. 

2.2   Balance Algorithm 

The whole process of balance 
algorithm is shown by Fig.1. Small 
weights  and  are assigned to build 
CHN network at first. If such a 
network cannot find a valid solution, 
increase weight  of constraint 
function smoothly and rebuild the 
CHN network until valid solution is 
available. Then the number of times 
of obtaining optimal solution n is 
counted as the evaluation parameter, 
and if n is larger than the certain 
predefined value Nmax, the calculation 
stops. The final valid solution is 
output as optimal. Otherwise, 

n = n+ 1

   In it iali ze
, , n, Nm ax

Map F on C HN

Opt imization
    by C HN

  Check
 solut ion

n > Nmax?

feasibl e

yes

no End

Increase 
  = 1.1*

Increase 
  = 1.2*

infeasible

Fig. 1. Balance algorithm flow chart 
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increase the weight  of objective function and rebuild the CHN network to seek for a 
better solution.  

3   Optimization Model of PFLP 

PFLP is an optimization problem occurring frequently in production of informational 
graphics, though it arises most often in automated cartography [3]. Complexity 
analysis reveals that the basic PFLP problem and the most interesting variant are NP-
hard [4].  

The PFLP problem can be modeled into the combinatorial optimization stated as: a 
set of n points is given; each of the points must be labeled by assigning its label to one 
of m predefined positions. A complete label placement is represented by a 
vector x

r
=(x1, x2,…,xn), and each component xi {1,2,…,m} (i=1,2,…,n)  identifies the 

assigned position of point i, as shown in Fig.2. 
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Fig. 2. Possible label positions and their desirability relative to a given point 

Two objects are of particular importance [5]: Minimizing the degree to which 
labels overlap and obscure other features; maximizing the degree to which labels are 
unambiguously and clearly associated with the features they identify. We define 
Conbi, Conp and Conli to express the state for a specific label placement overlaps map 
boundary, other feature point and other label placement respectively; and use A, B and 
C as corresponding penalty. D is a position penalty related to desirability rank of each 
actual label position. The objective function for evaluating a label placement is given 
by Eq.(2) [6], [7].  
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In addition, the constraint conditions which limit each point to own and only own 
one label placement can be express by Eq.(3) [8]:  
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Substitute Eq.(2) and Eq.(3) into Eq.(1), optimization function can be obtained. 
Then comparing with the standard energy function of Hopfield neural network, refer 
to [1], PFLP can be mapped onto CHN and weight ijmn and bias ij is given by Eq.(4) 
accordingly [9]: 
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4   Test Verifications 

4.1   Setting for Test 

Tests on the PFLP problem were carried out in order to verify the proposed IHN 
network in solving PFLP problem. The optimization model is described as the 
following: N point features with fixed-size labels (30×7 units) are randomly placed on 
a region with size of 792×612 units. Optimization is run for N = 100, 200… 1000. 
Labels were allowed to be placed in the eight positions (M = 8) around the point 
feature as Fig.2 shows. 

In simulation, parameters in Eq.(2) and Eq.(3) are defined as: A=100, B=200, 
C=16, D=1. In GA and SA, Eq.(2) is used as objective function. When using IHN 
network to optimize, Eq.(3 is used as objective function, and parameters  and  in 
Eq.(4) should be dynamically adjusted to obtain valid solutions. Final solutions of all 
algorithms are converted into calculate result using Eq.(2). 

SA using in test is based on section 3.6 of [6], all control parameters are same 
configured as this paper. The implementation of GA was carried out by a software 
package named Galib (version 2.4.5) (http://lancet.mit.edu/ga/), which was 
instantiated to implement a steady-state genetic algorithm, with 1% of the population 
replaced each generation. The genetic operator was an edge recombination crossover 
operator (partial match crossover was also tried, but performed poorly). The 
population size was specified as 100. The optimal solution was obtained when the 
difference between two best solutions from consecutive populations was smaller than 
a predefined error tolerance of 0.01.  

4.2   Comparisons 

First test is to compare the stability of CHN and IHN. The optimization is carried out 
for 100 times for a map consists of 100 point features. It is to be noted that although 
the CHN networks can be ensured to convergent to valid solutions by setting large 
values to the weight ratio of /  in Eq.(3), the solution will become very bad since the 
constraint condition is too much emphasized, and the stability comparison would be 
of no significance. On the contrary, this ratio should not be too low for similar reason. 
The values of  and  can be determined through repeated tests, from which it is 
deduced that when =1 and =5, most of the produced solutions by CHN is valid and 
of good quality.  

Table 1 compares the test results in stability and convergence time by IHN and 
CHN. It is can be seen that solutions of IHN are valid obviously, and they are more 
stable and better than CHN. But the calculation time of IHN is much longer than 
CHN because it will call CHN for many times during optimization. 
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Table 1. Comparison Stability and convergence time 

 Valid times Best result covariance Average solution Average time 
CHN 77% 334 14082.24 367 15 ms 
IHN 100% 18 164 20 397 ms 

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

T
ho

us
an

ds

Point number N

O
bj

ec
ti

ve
 v

al
ue

IHN
CHN
SA
GA

 

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400

100 200 300 400 500 600 700 800 900 1000
Point number N

C
al

cu
la

ti
on

 T
im

e 
(S

IHN
CHN
SA
GA

 

Fig. 3. Average solution and calculation time  

 
            (a) IHN                                 (b) CHN 

 
             (c) SA                                (d) GA 

Fig. 4. A sample map of 700 point-features with labels placed by four different algorithms 
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Furthermore, 10 maps which include different numbers of point-feature (N=100, 
200, …, 1000) are randomly created. Optimization process is carried out 20 times for 
each map respectively, and the result is the average value of these 20 results. Fig 3 
gives comparison the average result of objective value and calculation time. As the 
figures show, the IHN performed surprisingly well. The solution quality of IHN is 
much better than CHN and GA; and is as good as that of SA, and eventually better 
than SA. Moreover, its calculation time is shorter than that of GA and SA.  

Four optimized maps contented 700 points as examples show the same conclusion. 
Fig.4 indicates the map with optimized label-placements obtained from each 
algorithm. Labels printed in solid marks overlap other labels, points or boundary of 
the map. Labels printed in open marks are free of overlaps. 

5   Conclusion 

This paper proposes an algorithm that applies balance principle on CHN networks to 
solve constraint optimization problems. On this basis, an IHN network was set up and 
applied to deal with a typical combinatorial optimization problem: PFLP. Result 
shows that IHN successfully overcome the disadvantages of CHN network such as: 
unstable, invalid or bad solution. In addition, this IHN network demonstrates 
surprisingly good performance in solution quality and convergence time compared 
with CHN network or traditional optimization algorithms such as GA and SA. 
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Abstract. Associative memories are one of the popular applications of neural
networks and several studies on their extension to the complex domain have been
done. One of the important factors to characterize behavior of a complex-valued
neural network is its activation function which is a nonlinear complex function.
We have already proposed a model of self-correlation type associative memo-
ries using complex-valued neural networks with one of the most commonly used
activation function. In this paper, we propose two additional models using differ-
ent nonlinear complex functions and investigated their behaviors as associative
memories theoretically. Comparisons are also made among these three models in
terms of dynamics and storage capabilities.

1 Introduction

In recent years, there have been increasing research interests of artificial neural net-
works and many efforts have been made on applications of neural networks to various
fields. As applications of the neural networks spread more widely, developing neural
network models which can directly deal with complex numbers is desired in various
fields. Several models of complex-valued neural networks have been proposed and their
abilities of information processing have been investigated.

One of the most useful and most investigated areas of applications of neural net-
works addresses implementations of associative memories. Among them associative
memories of self-correlation type are easy to implement and have been extensively
studied. Some models of complex-valued associative memories of self-correlation type
have been proposed [1,2,3,4,5,6].

One of the important factors to characterize behavior of a complex-valued neural
network is its activation function which is a nonlinear complex function. In the real-
valued neural networks, the activation is usually chosen to be a smooth and bounded
function such as a sigmoidal function. In the complex region, however, there are several
possibilities in choosing an activation function because of a variety of complex func-
tions. In [7] the properties that a suitable activation should possess are discussed for
complex-valued backpropagation of complex-valued feedforward neural networks. [8]
discusses the properties of activation functions from the standpoint of existence of an
energy function for complex-valued recurrent neural networks.
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The purpose of this paper is to present models of self-correlation type associative
memories using complex-valued neural networks and to investigate their qualitative
behaviors theoretically. We have already presented a model of complex-valued self-
correlation type associative memories using one of the most commonly used complex
functions in complex-valued neural networks [2,3]. In this paper we propose two addi-
tional models of complex-valued self-correlation type associative memories using dif-
ferent complex functions We treat the models of complex-valued associative memo-
ries as nonlinear dynamical systems and study their qualitative behaviors theoretically.
In particular, we investigate the structures and asymptotic behaviors of solution orbits
near each memory pattern. Comparisons are also made among these three models in
terms of asymptotic behaviors of solution orbits near each memory pattern and storage
capabilities.

In the following, the imaginary unit is denoted by i (i2 = −1). The n-dimensional
complex (real) space is denoted by Cn(Rn) and the set of n ×m complex (real) ma-
trices is denoted by Cn×m(Rn×m). For A ∈ Cn×m (a ∈ Cn), its real and imaginary
parts are denoted by AR (aR) and AI (aI ), respectively.

2 Complex-Valued Associative Memory of Self-correlation Type

2.1 Models

Let m be the number of memory patterns to be stored and each memory pattern be an
N dimensional complex vector, denoted by s(γ) ∈ CN , γ = 1, 2, · · · ,m. Suppose
that the set of memory patterns satisfies the following orthogonal relations.

s(γ)∗s(l) =
{

N, γ = l
0, γ �= l

(1)

|s(γ)
j | = 1, j = 1, 2, · · · ,N (2)

for all γ, l = 1, 2, · · ·,m where s∗ is the conjugate transpose of s and s
(γ)
j is the jth

element of s(γ).
Consider a complex-valued neural network described by difference equations of the

form:

xj [t+ 1] = f(
N∑

k=1

wjkxk[t]), j = 1, 2, · · · ,N (3)

where xj [t] ∈ C is the output of the jth neuron at time t, wjk ∈ C is the connection
weight from the kth neuron to the jth neuron and f(·) is the activation function which
is a nonlinear complex function (f : C → C).

Let us determine the weight matrix W = {wjk} ∈ CN×N and the activation
function f(·) so that the neural network (3) can store the set of memory vectors and act
as an associative memory.

The weight matrix W is determined after the model of conventional real-valued as-
sociative memories of self-correlation type as follows. Taking account of the orthogonal
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structure of the set of memory vectors {s(γ)}, we determine the weight matrix W by
the sum of the autocorrelation matrix of each memory vector s(γ):

W =
1
N

m∑
γ=1

s(γ)s(γ)∗ (4)

One of the important factors to characterize behavior of a complex-valued neural
network is its activation function f(·). In the real-valued neural networks, the activation
is usually chosen to be a smooth and bounded function such as sigmoidal functions. In
the complex region, however, there are several possibilities in choosing an activation
function because of a variety of complex functions. As a candidate of the activation
function f(·), we will choose a complex function which satisfies the conditions:

(i) f(·) is a smooth and bounded function by analogy with the sigmoidal function of
real-valued neural networks, and

(ii) each memory vector s(γ) becomes an equilibrium point of the network (3).

The condition (ii) is accomplished if the following condition hold.

f(s(γ)
j ) = s

(γ)
j , j = 1, 2, · · · ,N, γ = 1, 2, · · · ,m. (5)

In regard to the condition (i), we recall the Liouville’s theorem, which says that ‘if f(u)
is analytic at all u ∈ C and bounded, then f(u) is a constant function’. Since a suitable
f(u) should be bounded, it follows from the theorem that if we choose an analytic
function for f(u), it is constant, which is clearly not suitable [7]. In place of analytic
function we choose functions which have the continuous partial derivatives ∂fR/∂uR,
∂fR/∂uI , ∂f I/∂uR and ∂f I/∂uI where f(u) = fR(uR, uI) + if I(uR, uI).

We consider the following three complex functions as the activation function of (3).

•Model A: f(u) :=
ηuR

η − 1 +
√

2|uR| + i
ηuI

η − 1 +
√

2|uI | , (6)

•Model B: f(u) :=
η|u|

η − 1 + |u| exp
[
i{argu− 1

2n
sin(2n argu)}

]
,

−π ≤ argu < π (7)

•Model C: f(u) :=
ηu

η − 1 + |u| (8)

where η is a real number satisfying η−1 > 0. Note that, in the function (6) the real and
imaginary parts of an input go through the nonlinear function separately, and in (7) the
magnitude and the phase of an input go through the nonlinear function separately, and
in (8) only the magnitude of an input go through the nonlinear function with the phase
being unchanged. The functions (6) and (8) have been often used as activation functions
in complex-valued neural networks. The function (7) is obtained by extending the acti-
vation function used in [6] so as to satisfy the condition (i), that is, it becomes a smooth
function. The functions (6), (7) and (8) are all not analytic, but have the continuous
partial derivatives ∂fR/∂uR, ∂fR/∂uI , ∂f I/∂uR and ∂f I/∂uI and are bounded. We
call the complex-valued associative memory described by (3), (4) and (6) Model A, by
(3), (4) and (7) Model B, and by (3), (4) and (8) Model C, respectively. Model C was
already proposed and its dynamics was studied in [2].
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2.2 Memory Patterns

For Models A, B and C of complex-valued associative memories, each memory vector
s(γ) to be stored is demanded to becomes an equilibrium point of the network (3) and
(4), which is accomplished if the condition (5) holds. This requirement makes each
element of the memory vectors s(γ), (γ, l = 1, 2, · · · ,m) being only allowed to take

restricted values satisfying |s(γ)
j | = 1. In Model A, each element sγ

j of the memory

vectors s(γ) is allowed to take the values

sγ
j ∈ {eiπ/4, ei3π/4, ei5π/4, ei7π/4}, j = 1, 2, · · · ,N (9)

and, in Model B, each element sγ
j of the memory vectors s(γ) is allowed to take the

values

sγ
j ∈ {ei0π/2n

, eiπ/2n

, . . . , ei(2n−1)π/2n}, j = 1, 2, · · · ,N. (10)

In Model C each element sγ
j of the memory vectors s(γ) is able to take all the values

satisfying |s(γ)
j | = 1. Figure 1 shows the values which each element sγ

j of the memory
vectors is allow to take in Models A, B and C, respectively. Note that, in Model B, the
number of the allowed values can be increased arbitrarily by increasing n.
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Fig. 1. The values which each element s
γ
j of the memory vectors is allowed to take

By choosing such values for each element, each memory vector s(γ) becomes an
equilibrium point of the network (3) and (4). For Models A and B, it is easy to check
that each memory vector is an isolated equilibrium point of the network. On the other
hand, in Model C, each memory vector s(γ) is not an isolated equilibrium point of the
network as is discussed in [2], because the function (8) satisfies

eiαs
(γ)
j = f(

N∑
k=1

wjke
iαs

(γ)
k ), j = 1, 2, · · · ,N (11)

for any real number α. This implies that s(γ) is a point in the set of equilibrium points
defined by

Φ(γ) = {eiαs(γ) : ∀α ∈ R} ⊂ CN (12)
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which is a closed curve in the complex N dimensional state space CN . From this fact
we identify all the points in the equilibrium set Φ(γ) and regard Φ(γ) as a memory
pattern for Model C [2].

3 Qualitative Analysis of Behaviors Near Memory Patterns

In this section we will study qualitative behaviors of Models A, B and C of the complex-
valued associative memories. Especially, we investigate asymptotic behaviors of solu-
tion orbits near each memory pattern s(γ).

3.1 Linearized Models Near Memory Patterns

The qualitative behavior of a nonlinear dynamical system near an equilibrium point
can be studied via linearization with respect to that point. We will derive the linearized
model at each memory vector s(γ). Note that the activation functions f(u) in (6), (7)
and (8) are not differentiable with respect to u for all u ∈ C, but their real and imaginary
parts, fR and f I , are continuously partially differentiable with respect to uR and uI . It
is, therefore, possible to derive the linearized model by separating each model into its
real and imaginary parts.

We linearize Models A and B at each memory vector s(γ) and Model C at a point
q(γ) = eiαs(γ) of each equilibrium set Φ(γ) where α is a real number. Let Δxi[t] :=
xi[t]− s

(γ)
i and define y[t] ∈ R2N by

y[t] = (ΔxR
1 [t], ΔxR

2 [t], · · · , ΔxR
N [t], ΔxI

1[t], Δx
I
2[t], · · · , ΔxI

N [t])T (13)

where (·)T denotes the transpose of (·). The linearized model for Models A and B is
obtained as

y[t + 1] = J(s(γ))y[t], γ = 1, 2, · · · ,m (14)

where J(s(γ)) = F (s(γ))Y ∈ R2N×2N . The matrices F (s(γ)) ∈ R2N×2N and Y ∈
R2N×2N are given as follows.

F (s(γ)) =
[
FRR FRI

FIR FII

]
Y =

[
WR −W I

W I WR

]
where

FRR = diag(
∂fR

∂zR

∣∣∣∣
z=s

(γ)
1

,
∂fR

∂zR

∣∣∣∣
z=s

(γ)
2

, · · ·, ∂f
R

∂zR

∣∣∣∣
z=s

(γ)
N

)

FRI = diag(
∂fR

∂zI

∣∣∣∣
z=s

(γ)
1

,
∂fR

∂zI

∣∣∣∣
z=s

(γ)
2

, · · ·, ∂f
R

∂zI

∣∣∣∣
z=s

(γ)
N

)

FIR = diag(
∂f I

∂zR

∣∣∣∣
z=s

(γ)
1

,
∂f I

∂zR

∣∣∣∣
z=s

(γ)
2

, · · ·, ∂f
I

∂zR

∣∣∣∣
z=s

(γ)
N

)

FII = diag(
∂f I

∂zI

∣∣∣∣
z=s

(γ)
1

,
∂f I

∂zI

∣∣∣∣
z=s

(γ)
2

, · · ·, ∂f
I

∂zI

∣∣∣∣
z=s

(γ)
N

)
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and the elements of F (s(γ)) are given by

∂fR

∂uR

∣∣∣
u=sγ

j

=
∂f I

∂uI

∣∣∣
u=sγ

j

= 1− 1
η
,

∂fR

∂uI

∣∣∣
u=sγ

j

=
∂f I

∂uR

∣∣∣
u=sγ

j

= 0

for Model A and

∂fR

∂uR

∣∣∣
u=sγ

j

=
(

1− 1
η

)
(sγR

j )2,
∂f I

∂uI

∣∣∣
u=sγ

j

=
(

1− 1
η

)
(sγI

j )2

∂fR

∂uI

∣∣∣
u=sγ

j

=
∂f I

∂uR

∣∣∣
u=sγ

j

=
(

1− 1
η

)
sγR

j sγI
j

for Model B. The linearized model for Model C is obtained as the same form as (14)
with J(s(γ)) being replaced by J(q(γ)), where the elements of F (q(γ)) are given by

∂fR

∂uR

∣∣∣
u=qγ

j

= 1 +
−1 + (qγI

j )2

η
,

∂f I

∂uI

∣∣∣
u=qγ

j

= 1 +
−1 + (qγR

j )2

η

∂fR

∂uI

∣∣∣
u=qγ

j

=
∂f I

∂uR

∣∣∣
u=qγ

j

=
−qγR

j qγI
j

η

3.2 Structure of Solution Orbits Near Memory Patterns

We now analyze the qualitative behavior and structure of the solution orbits near each
memory pattern. This can be done by investigating the eigenvalues and eigenvectors of
the coefficient matrix J(s(γ)) (or J(q(γ))) of the linearized model (14). Let λi(J(s(γ)))
be the ith eigenvalue of J(s(γ)) The following theorems are obtained for Models A, B
and C.

Theorem A.1. All the eigenvalues of the coefficient matrix J(sγ) of Model A are real
and satisfy the following condition:

|λj(J(sγ))| ≤ (η − 1)/η < 1, j = 1, 2, · · · , 2N. (15)

Theorem A.2. The matrix J(sγ) of Model A has 2m eigenvalues (η−1)/η and 2(N−
m) eigenvalues 0. Two of the corresponding eigenvectors to the eigenvalue (η − 1)/η
are

r(γ) :=
(
(s(γ)R)T , (s(γ)I)T

)T

(16)

p(γ) :=
(
({is(γ)}R)T , ({is(γ)}I)T

)T

. (17)

Theorem B.1. All the eigenvalues of the coefficient matrix J(sγ) of Model B satisfy
the following condition:

|λj(J(sγ))| ≤ 1− 1/η < 1, j = 1, 2, · · · , 2N (18)
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Theorem B.2. The matrix J(sγ) of Model B has at least one eigenvalues (η−1)/η and
at least one eigenvalue 0. The corresponding eigenvector to the eigenvalue (η− 1)/η is
r(γ) and the corresponding eigenvector to the eigenvalue 0 is p(γ).

Theorem C.1. [2] All the eigenvalues of the coefficient matrix J(sγ) of Model C are
real and satisfy the following condition.

|λj(J(qγ))| ≤ 1, j = 1, 2, . . . , 2N (19)

Theorem C.2. [2] The matrix J(q(γ)) has at least one eigenvalue 1 and at least one
eigenvalue (η − 1)/η. It also has 2(N −m) eigenvalues 0. The corresponding eigen-
vector to the eigenvalue 1 is

p(γ) = (({iq(γ)}R)T , ({iq(γ)}I)T )T (20)

and that to the eigenvalue (η − 1)/η is

r(γ) = ((q(γ)R)T , (q(γ)I)T )T . (21)

Note that Theorems A.1 to C.2 hold for all the memory vectors s(γ) (q(γ)), γ =
1, 2, · · · ,m. The proofs of Theorems A.1, A.2, B.1 and B.2 are omitted due to the
space limitation.

3.3 Discussions

It is known that qualitative behavior of solutions near an equilibrium point of a nonlinear
dynamical system is determined by its linearized model at the point if it is hyperbolic (in
a discrete time system, the coefficient matrix of the linearized model has no eigenvalues
of unit modulus) [9]. From the theorems obtained in the previous subsection, Models A
and B are both hyperbolic, on the other hand, Model C is not hyperbolic.

For each model, it is required that all embedded memory vectors are at least asymp-
totically stable equilibrium points of the network for correct recalling as associative
memories. From Theorems A.1 and B.1, each memory vector s(γ) of Model A and B is
an asymptotically stable equilibrium point because all the eigenvalues of the coefficient
matrix J(sγ) are less than one. Therefore every solution starting in the neighborhood
of the vector s(γ) tends to s(γ) as t → ∞. For model C, [2] investigates the structure
of solution orbits near memory patterns Φ(γ) based on the center manifold theory [9].
It is shown that, if J(q(γ)) has only one eigenvalue 1, each memory pattern Φ(γ) is as-
ymptotically stable, that is, every solution starting in the neighborhood of Φ(γ) tend to
Φ(γ) as t→∞. Therefore it is concluded that in Model A and B all embedded memory
vectors s(γ), γ = 1, 2, · · · ,m are asymptotically stable and they all could be recalled.
On the other hand, in Model C, all the embedded memory vectors are not necessar-
ily asymptotically stable and it is necessary to evaluate eigenvalues of the coefficient
matrices J(qγ) to check their stability.

As stated in Section 2, a set of the vectors to be stored s(γ) ∈ CN , γ = 1, 2, · · · ,m
are specified so as to satisfy the conditions (1) and (2), and in Models A and B each
element of the memory vectors s(γ) is only allowed to take restricted values in (9) for
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Model A, and in (10) for Model B. There is a difference among Models A, B and C in
choosing such a set of vectors. A question arises: how many vectors can we choose such
vectors in N dimensional space for Model A, B and C ? For Model C, it can be shown
that, for any N there always exist N vectors satisfying the conditions (1) and (2) in
the N dimensional space. On the other hand, there not always exit N vectors satisfying
the conditions (1) and (9) for Model A, and the conditions (1) and (10) for Model B
in the N dimensional space. The problems of how many vector can we choose such
vectors for Models A and B are equivalent to the existence problems of the complex
Hadamard matrices and the generalized Hadamard matrices, respectively, which are
partially solved but not completely solved.

4 Conclusions

In this paper we presented models of self-correlation type associative memories using
complex-valued neural networks and studied their qualitative behaviors theoretically.
One of the important factors to characterize behavior of a complex-valued neural net-
work is its activation function. We presented three kinds of models with different ac-
tivation functions and investigate the structures and asymptotic behaviors of solution
orbits near each memory pattern. We compared three models in terms of asymptotic
behaviors of solution orbits near each memory pattern and storage capabilities.
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Abstract. Introducing partial connectivity to an associative memory
network increases the variance of the dendritic sum distributions, reduc-
ing the performance. A coding scheme to compensate for this effect is
considered, in which output patterns are self-organised by the network.
It is shown using signal-to-noise ratio analysis that when the output pat-
terns are self-organised the performance is greater than in a network with
a higher connectivity and random patterns, in the regime of low connec-
tivity and a high memory load. This analysis is supported by simulations.
The self-organising network also outperforms the random network with
input activity-dependent thresholding mechanisms in simulations.

1 Introduction

Low levels of connectivity are typical in brain structures that can be described
as feedforward associative memory networks. When random partial connectivity
is introduced into a binary associative memory network with a constant level
of activity in the input layer [1], the number of active inputs to the output
cells moves from a constant value to a binomial distribution. Variations in this
input activity to each cell result in an increase in the variance of the dendritic
sum distribution. The capacity of the network is then significantly lower than is
otherwise predicted when this effect is not taken into account [2].

Marr [3] proposed a thresholding mechanism to improve the performance
of such a network. The dendritic sum is divided by a cell specific inhibitory
term proportional to the cell’s input activity, reducing input activity-dependent
variations in the dendritic sum. Subsequent related thresholding schemes have
been developed to improve the performance of partially connected associative
memory networks [4, 5]. None have satisfactorily explained how the input activity
to each cell can be measured in a biological network during recall. It is also
difficult to see how sufficiently accurate inhibitory thresholds can be set for each
cell given the low proportion of neurons that are inhibitory interneurons, roughly
10% in the hippocampus [6] for example.

Marr [3] also proposed and implemented another solution to this problem: an
algorithm for creating output representations. During the storage phase, the net-
work self-organises the output pattern by choosing to be active the output cells

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 193–198, 2005.
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with the highest number of active inputs. Marr asserts that his algorithm chooses
the ‘best suited’ cells for representing the output. This paper provides support
for this claim, through signal-to-noise ratio (SNR) analysis and simulations.

2 Methods

Analysis. The network consists of N2 binary output units each connected to a
fraction Z of N1 input units. The synapses are binary and modified using an
all-or-nothing Hebbian rule [1]. The dendritic sum of cell i, di and input activity,
ai, are given by

di =
∑

j wijcijsj and ai =
∑

j cijsj

where cij denotes a synapse from cell j, wij is the synaptic weight and sj is the
state of cell j (cij , wij , sj ∈ {0, 1}). In each pattern pair stored in the network,
there are M1 units active in the input layer, and M2 units active in the out-
put layer. In the input activity-dependent thresholding scheme proposed by [3]
considered later and used by [4, 5], neuron i is active only if

di/ai ≥ f and di ≥ t

where t is the subtractive threshold, and f is an additional divisive threshold.
In the algorithm proposed by Marr [3], the input pattern is associated with

the M2 output units with the highest input activity. Superscripts are used to refer
to the network when the output patterns are chosen in this way: in the random
network the dendritic sum signal is denoted by drnd

s , and the dendritic sum noise
by dso

n in the self-organised network. Buckingham [2] established the following
accurate approximations for the dendritic sum signal and noise distributions:

P (drnd
s = x|a, r) = B(x;M1, Z

rnd) (1)

P (dso
s = x|a, r) =

{ 1
α2
B(x;M1, Z

so) if a ≥ T

0 otherwise.
(2)

P (drnd
n = x|a, r) = B(x; a, ρrnd(r)) (3)

P (dso
n = x|a, r) =

{ 1
1−α2

B(x; a, ρso(r)) if a < T

0 otherwise
(4)

where r is the number of times a neuron is active in a pattern, α2 is the activity
level in the second layer(M2/N2), T the input activity threshold used in self-
organising the patterns, ρ(r) the probability that a synapse has been modified
in the storage of r patterns, and B denotes a binomial distribution. In the pattern
self-organisation algorithm, the neurons with the highest connectivity are chosen
to be associated with the input pattern. This is incorporated in the analysis
by assuming the signal neurons have a higher effective connectivity, Zso

s . The
neurons not chosen have a lower average connectivity, Zso

n , such that

Zso = α2Z
so
s + (1− α2)Zso

n . (5)
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The modification of their synapses results in a higher proportion of modified
synapses, ρ(r):

ρrnd(r) = 1− (1− α1)r and ρso(r) = 1− (1 − Zs

Z α1)r

where α1 is the activity level in the first layer (M1/N1).

Simulations. In the simulations, the parameters are as follows: N1 = N2 = 4000,
α1 = α2 = 0.03, and 1000 patterns pairs are stored.

3 Analysis

We consider two networks, one with random and one with self-organised output
patterns. The parameters are identical except that the connectivity in the ran-
dom network is lower, so that Zso

s = Zrnd. For a noiseless, full-sized recall cue,
the means of the dendritic sum distributions are well approximated by

μrnd
s = M1Z

rnd (6)
μso

s = M1Z
so
s (7)

μrnd
n (r) = M1Z

rndρrnd(r) (8)
μso

n (r) = M1Z
so
n ρso(r). (9)

Since r is distributed identically for both the networks, μrnd
n > μso

n . The
relative magnitude of μso

n and μrnd
n is not obvious since Zso

n < Zrnd, but ρso(r) >
ρrnd(r). By induction, it will be shown that μso

n < μrnd
n . When r = 1,

μrnd
n (1) = M1Z

rndα1 and μso
n (1) = M1

Zso
n Zso

s

Zso α1.

By design, Zso
s = Zrnd, and also Zso

n < Zso so μso
n (1) < μrnd

n (1). For any
given r,

μrnd
n (r) = μrnd

n (r − 1)(1− α1) +M1Z
rndα1 (10)

μso
n (r) = μso

n (r − 1)(1− Zso
s

Zso
α1) +M1

Zso
n Zso

s

Zso
α1. (11)

Now Zso
s > Zso, so (1 − Zso

s

Zsoα1) < (1 − α1). As was the case for calculating
the inequality of μn(1), Zso

s = Zrnd and Zso
n

Zso < 1, so M1Z
rndα1 > M1

Zso
n Zso

s

Zso α1.
Therefore if μrnd

n (r − 1) > μso
n (r − 1), then μrnd

n (r) > μso
n (r). Since μrnd

n (1) >
μso

n (1), by induction μrnd
n (r) > μso

n (r).
The variance of the dendritic sum signal in the self-organised network is in-

tuitively small, as the variance of the upper tail of the input activity distribution
must be less than across the whole distribution (figure 1a). The dendritic sum
signal variances are

(σrnd
s )2 = M1Z

rnd(1 − Zrnd) (12)

(σso
s )2 =

1
α2

∑
a=T

B(a;M1, Z
so)(a−M1Z

so
s )2. (13)
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We next consider the parameter ranges of ρ(r) and Z that constrain the
relative magnitudes of σrnd

n and σso
n . The variance of the self-organised dendritic

sum noise is well approximated by a ρso(r)(1−ρso(r)), since α2 � 1. The random
dendritic sum noise variance is a ρrnd(r)(1 − ρrnd(r)). When ρrnd(r) ≥ 0.5,
ρrnd(r) > ρso(r). Thus σrnd

n (r| a) > σso
n (r| a) when ρrnd(r) ≥ 0.5.

The input activity variances are σso
a =M1Z

so
n (1−Zso

n ) and σrnd
a = M1Z

rnd(1−
Zrnd). Now Zso

n < Zrnd, when Zrnd ≤ 0.5. Thus μrnd
a > μso

a and σrnd
a > σso

a

when Zrnd ≤ 0.5. If σa is increased, it can only increase σn(r| a):

σ2
n(r) =

∫ ∫ ∫
((d2

n − E2
a,ρ[dn] +E2

a,ρ[dn])P (dn|a, ρ)P (a)P (ρ)da dρ d(dn)

−
[∫ ∫ ∫

dn P (dn|a, ρ)P (a)P (ρ)da dρ d(dn)
]2

(14)

= σ2
ρ(μ2

a − μa) + μa(μρ − μ2
ρ) + σ2

a(σ2
ρ + μ2

ρ) (15)

where E2
a,ρ[dn] is the expected value of the dendritic sum noise, dn, conditioned

on a and ρ. From equation 15, it is clear that σn must increase when σa is
increased. In addition, increasing μa must also increase σn, because μa > 1.
Therefore σrnd

n (r) > σso
n (r) when ρrnd(r) ≥ 0.5 and Zrnd ≤ 0.5.

Putting all the inequalities together, μrnd
s = μso

s , μrnd
n > μso

n , σrnd
s > σso

s and
σrnd

n (r) > σso
n (r) if Zrnd ≤ 0.5 and ρrnd(r) ≥ 0.5. Therefore, SNRso > SNRrnd

if Zrnd ≤ 0.5 and ρrnd(r) ≥ 0.5.
It should be noted that the dispersion has not been included in the calcu-

lation of the SNR [7]. Due to the large number of output neurons used during
simulations, the correlations in signal output activity between patterns are very
small and have been neglected. It should also be noted that the inequalities are
derived from accurate but ultimately approximate expressions. For instance, the
connectivities of the signal and noise units are treated as averages rather than
distributions.

4 Simulations

From the analysis, the performance of a self-organising network is better than
an equivalent random network with a greater connectivity of Zrnd = Zso

s for
high loads ρrnd(r) ≥ 0.5 and low connectivity Zrnd ≤ 0.5 when dendritic sum
thresholding is used. This result is supported for one parameter set with ρrnd =
0.60 in figure 1b. For low Z, the SNR is higher as predicted. As Z increases, a
performance advantage remains until as Z → 1, the random and self-organising
network SNRs tend to the same values. The value of ρrnd can be decreased by
decreasing the activity levels or the number of patterns stored. In simulations,
these changes increased the SNR for both networks, but did not significantly
change their qualitative relationship (data not shown).

Implementing input activity-dependent thresholding greatly improves the
SNR of the random network, as expected (figure 1b). It also decreases the per-
formance of the self-organised network: the reduction in the difference between
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Fig. 1. (a) Dendritic sum distributions from a simulation, when Zso
s = Zrnd, requiring

Zso = 0.50 and Zrnd = 0.61. (b) Network performances as a function of Z, with and
without input activity-dependent thresholding, using noiseless recall cues. All data
points are means and error bars are the mean standard deviation over 100 trials.

the means is greater than the reduction in the dendritic sum noise variance
for this parameter set. The SNR of the random network with input activity
thresholding is lower over the full range of connectivity values. In simulations,
this performance advantage is maintained for lower values of ρrnd and for noisy
recall cues (data not shown).

5 Discussion

The results demonstrate that coding schemes provide a novel way to recover
performance when random partial connectivity introduced. When the output
patterns are self-organised according to the algorithm proposed by Marr [3], the
signal variance is extremely low, as the active units are taken from the upper tail
of the connectivity distribution. The higher effective connectivity of the chosen
output neurons, and the correspondingly lower average connectivity of the other
neurons, ensures that the mean signal and the mean noise components of the
dendritic sum are further separated than in the random network.

Using input activity-thresholding in the self-organised network reduces the
noise variance, but also eliminates this increased separation of the means. Within
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the parameter ranges explored in simulations, the self-organised network using
just dendritic sum thresholding outperformed the random network using input
activity thresholding, as judged by the signal-to-noise ratio.

How output representations are formed is a relevant problem for biological
examples of feedforward associative memory networks. The projection from CA3
to CA1 in the hippocampus has been argued to be an associative memory net-
work [8]. How patterns of activity are formed in CA1 of the intact hippocampus
remain unknown [9]. The implementation of the algorithm for self-organising
output patterns [3] remains an open question.
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Abstract. The important task of generating the minimum number of se-
quential triangle strips for a given triangulated surface model is motived
by applications in computer graphics. This hard combinatorial optimiza-
tion problem is reduced to the minimum energy problem in Hopfield nets
by a linear-size construction. First practical experiments have confirmed
that computing the semi-optimal stripifications by using Hopfield nets
is a promising approach. In this work we provide a theoretical justifi-
cation of this method by proving that the classes of equivalent optimal
stripifications are mapped one to one to the minimum energy states.

1 Sequential Triangular Strips and Hopfield Nets

Piecewise-linear surfaces defined by sets of triangles (triangulation) are widely
used representations for geometric models. Computing a succinct encoding of
a triangulated surface model represents an important problem in graphics and
visualization. Current 3D graphics rendering hardware often faces a memory bus
bandwidth bottleneck in the processor-to-graphics pipeline. Apart from reducing
the number of triangles that must be transmitted it is also important to encode
the triangulated surface efficiently. A common encoding scheme is based on se-
quential triangle strips which avoid repeating the vertex coordinates of shared
triangle edges. Triangle strips are supported by several graphics libraries (e.g.
IGL, PHIGS, Inventor, OpenGL). A sequential triangle strip (tristrip) of length
m− 2 is an ordered sequence of m ≥ 3 vertices σ = (v1, . . . , vm) which encodes
the set of n(σ) = m−2 different triangles Tσ = {{vp, vp+1, vp+2} ; 1 ≤ p ≤ m−2}
so that their shared edges follow alternating left and right turns as indicated in
Figure 1.a (dashed line). Thus a triangulated surface model T with n trian-
gles that is decomposed into k tristrips Σ = {σ1, . . . , σk} requires only n + 2k
(rather than 3n) vertices to be transmitted. A crucial problem is to decompose
a triangulation into the fewest tristrips which is NP-complete [2].

A new method of generating tristrips Σ for a given triangulation T with n
triangles has recently been proposed [7] which is based on a linear-time reduction
to the minimum energy problem in Hopfield network HT having O(n) units and
connections. First practical experiments [5,7] have confirmed that HT powered
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and the Institutional Research Plan AV0Z10300504.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 199–204, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



200 J. Š́ıma
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Fig. 1. (a) Tristrip (1,2,3,4,5,6,3,7,1) (b) Sequential cycle (1,2,3,4,5,6,1,2)

by simulated annealing (i.e. Boltzmann machine) can be used for computing the
semi-optimal stripifications offline. For example, for “grid” models composed
of 2312 triangles this method produced 297 tristrips on the average within 1–2
minutes as compared to 373 tristrips generated on-line by a leading stripification
program FTSG [7]. In this paper the correctness of this reduction is formally
shown providing a theoretical justification of the method. We prove a one-to-one
correspondence between the classes of equivalent optimal stripifications of T and
the minimum energy states reached by HT during any sequential computation
starting at the zero state (or HT can be initialized arbitrarily if one asymmetric
weight is introduced [7]). This provides another NP-completeness proof for the
minimum energy problem in Hopfield nets [1,8]. A possible direction of further
research is a generalization of the method for tristrips with zero-area triangles [2].

Hopfield networks [3] represent a very influential associative memory model
which is connected to the much-studied Ising spin glass model in statistical
physics [1]. Part of the appeal of Hopfield nets also stems from their natural hard-
ware implementations using electrical networks or optical computers, and their
application in combinatorial optimization [4]. A Hopfield network is composed
of s units (neurons), indexed as 1, . . . , s, that are connected into undirected
graph, in which each connection between unit i and j is labeled with an integer
symmetric weight w(i, j) = w( i,j ). The absence of a connection indicates a zero
weight, and vice versa. Further assume w(j, j) = 0 for j = 1, . . . , s. The network
state y(t) = (y(t)

1 , . . . , y
(t)
s ) ∈ {0, 1}s is updated at time instants t = 0, 1, . . .. The

initial state y(0) may be chosen arbitrarily, e.g. y(0) = (0, . . . , 0). At discrete time
t ≥ 0, the excitation of any neuron j is defined as ξ(t)j =

∑s
i=1 w(i, j)y(t)

i − h(j)
including an integer threshold h(j) local to unit j. At the next instant t+ 1, one
(e.g. randomly) selected neuron j (sequential mode) computes its new output
y
(t+1)
j = H(ξ(t)

j ) by applying the Heaviside activation function H , that is, j is ac-
tive when H(ξ) = 1 for ξ ≥ 0 while j is passive when H(ξ) = 0 for ξ < 0. For the
remaining units y(t+1)

i = y
(t)
i , i �= j. A Hopfield net reaches a stable state y(t∗) at

time t∗ ≥ 0 if y(t∗) = y(t∗+1) provided that any unit in the network is updated.
The fundamental property of a symmetric Hopfield net is that its dynamics is
constrained by energy function E(y) = − 1

2

∑s
j=1

∑s
i=1 w(i, j)yiyj +

∑s
j=1 h(j)yj

which is a bounded function defined on its state space whose value decreases
along any nonconstant computation path (ξ(t)j �= 0 is assumed without loss
of generality). It follows that starting from any state the network converges
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towards some stable state corresponding to a local minimum of E [3]. Thus the
cost function of a hard combinatorial optimization problem can be encoded into
the energy function of a Hopfield net which is then minimized in the course of
computation. Hence, the minimum energy problem of finding a network state
with minimum energy is of special interest which is NP-complete [1,8].

2 The Reduction

Let T be a set of n triangles that represents a triangulated surface model home-
omorphic to a sphere in which each edge is incident to at most two triangles.
An edge is said to be internal if it is shared by exactly two triangles; otherwise
it is a boundary edge. Denote by I and B the sets of internal and boundary
edges, respectively. A sequential cycle is a “cycled tristrip” which is an ordered
sequence of vertices C = (v1, . . . , vm) where m ≥ 4 is even, encoding the set
of m − 2 different triangles TC = {{vp, vp+1, vp+2} ; 1 ≤ p ≤ m − 2} so that
vm−1 = v1 and vm = v2. Also denote by IC and BC the sets of internal and
boundary edges of C, respectively, that is, IC = {{vp, vp+1} ; 1 ≤ p ≤ m − 2}
and BC = {{vp, vp+2} ; 1 ≤ p ≤ m − 2}. An example of the sequential cycle
is depicted in Figure 1.b where its internal (dashed line) and boundary (dotted
line) edges are indicated. Let C be the set of all sequential cycles in T . For each
C ∈ C one unique representative internal edge eC ∈ IC can be chosen as follows.
Start with any C ∈ C and choose any edge from IC to be its representative
edge eC . Observe that for a fixed orientation of triangulated surface any internal
edge follows either left or right turn corresponding to at most two sequential
cycles. Denote by C′ the sequential cycle having no representative edge so far
which shares its edge eC ∈ IC ∩ IC′ with C if such C′ exists; otherwise let C′

be any sequential cycle with no representative internal edge or stop if all the
sequential cycles do have their representative edges. Further choose any edge
from IC′ \ {eC} to be the representative edge eC′ of C′ and repeat the previous
step with C replaced by C′. Clearly, each edge represents at most one cycle be-
cause set IC′ \ {eC} �= ∅ always contains only edges that do not represent any
cycle so far. If it were not the case then another sequential cycle C′′ different
from C would obtain its representative edge eC′′ from IC′ ∩ IC′′ and hence a
representative edge would already be assigned to C′ before C is considered.

Hopfield network HT corresponding to T will now be constructed. With each
internal edge e = {v1, v2} ∈ I two neurons �e and re are associated whose
states either y�e = 1 or yre = 1 indicate that e follows the left or right turn,
respectively, along a tristrip. Let Le = {e, e1, e2, e3, e4} with e1 = {v1, v3}, e2 =
{v2, v3}, e3 = {v2, v4}, and e4 = {v1, v4} be the set of edges of the two triangles
{v1, v2, v3}, {v1, v2, v4} that share edge e. Denote by Je = {�f , rf ; f ∈ Le ∩ I}
the set of corresponding neurons. Unit �e is connected with all neurons from
Je via weights w(i, �e) = −7 for i ∈ J�e = Je \ {re2 , �e, re4} except for units
re2 (if e2 ∈ I), �e, and re4 (if e4 ∈ I) whose states may encode a tristrip that
traverses edge e by the left turn. Such a situation (for Le ⊆ I) is depicted in
Figure 2.a where the tristrip together with associated active neurons re2 , �e, re4

are marked. Similarly, unit re is connected with i ∈ Jre = Je \ {�e1 , re, �e3} via



202 J. Š́ıma
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Fig. 2. The construction of Hopfield network HT

w(i, re) = −7 corresponding to the right turn. Hence, the states ofHT with these
negative weights that enforce locally the alternation of left and right turns encode
tristrips. For each eC , C ∈ C, define jC = �eC if eC follows the left turn along
C or jC = reC if eC follows the right turn along C. Denote J = {jC ; C ∈ C}
and J ′ = {�e, re �∈ J ; e ∈ I}. Define the thresholds of underlying neurons as
h(j) = −5 + 2be(j) for j ∈ J ′ and h(j) = 1 + 2be(j) for j ∈ J where e(j) = e for
j ∈ {�e, re} and be = |{C ∈ C ; e ∈ B′

C}| ≤ 2 for B′
C = BC \ LeC .

Hopfield networkHT must avoid the states encoding cycled strips of triangles
around sequential cycles [2] which would have less energy E than those encoding
the optimal stripifications. Thus two auxiliary neurons dC , aC are introduced
for each C ∈ C. Unit dC computes the disjunction of outputs from all neurons
associated with boundary edges B′

C of C which, being active, enables the ac-
tivation of unit jC associated with eC . Hence, any tristrip may pass through
eC along the direction of C only if a boundary edge of C is a part of another
tristrip crossing C. This ensures that the states of HT do not encode sequential
cycles. Unit aC balances the contribution of dC to energy E when jC is passive.
Figure 2.b defines the weights and thresholds of dC , aC for C ∈ C. This com-
pletes the construction of HT . Observe that the number of units s = 2|I|+ 2|C|
(similarly the number of connections) in HT is linear in terms of n = |T | because
|C| ≤ 2|I| = O(n) since each internal edge can belong to at most two cycles.

3 The Correctness

Let ST be the set of optimal stripifications with the minimum number of tristrips
for T . Define Σ ∈ ST is equivalent with Σ′ ∈ ST , i.e. Σ ∼ Σ′ iff {Tσ ; σ ∈ Σ} =
{Tσ′ ; σ′ ∈ Σ′}. Two equivalent optimal stripifications may differ in a tristrip σ
encoding triangles Tσ = TC of sequential cycle C that is split at two different
positions. Let [Σ]∼ = {Σ′ ∈ ST ; Σ′ ∼ Σ} and denote by ST /∼ = {[Σ]∼ ; Σ ∈
ST } the partition of ST into equivalence classes.

Theorem 1. Let HT be a Hopfield network corresponding to triangulation T
with n triangles and denote by Y ∗ ⊆ {0, 1}s the set of stable states that can
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be reached during any sequential computation by HT starting at the zero state.
Then each state y ∈ Y ∗ encodes a correct stripification Σy of T into k tristrips
and has energy

E(y) = 5(k − n) . (1)

In addition, there is a one-to-one correspondence between the classes of equiva-
lent optimal stripifications [Σ]∼ ∈ ST /∼ having the minimum number of tristrips
for T and the states in Y ∗ with minimum energy miny∈Y ∗ E(y).

Proof. Stripification Σy is decoded from y ∈ Y ∗ as follows. Denote I0 = {e ∈
I ; y�e = yre = 0} and let I1 = I \ I0. Set Σy contains each ordered sequence
σ = (v1, . . . , vm) of m ≥ 3 vertices that encodes n(σ) = m− 2 different triangles
{vp, vp+1, vp+2} ∈ T for 1 ≤ p ≤ m− 2 such that their edges e0 = {v1, v3}, em =
{vm−2, vm}, and ep = {vp, vp+1} for 1 ≤ p ≤ m − 1 satisfy e0, e1, em−1, em ∈
I0 ∪ B and e2, . . . , em−2 ∈ I1. We will prove that Σy is a correct stripification
of T . Observe first that every j ∈ J ∪ J ′ is passive if there is active i ∈ Jj .
This ensures that each σ ∈ Σy encodes a set Tσ of different triangles whose
shared edges follow alternating left and right turns and that sets Tσ, σ ∈ Σy,
are pairwise disjoint. In particular, for each j ∈ J ∪ J ′ the number of weights 2
from some dC contributing to ξj is at most be(j) ≤ 2 which are subtracted within
threshold h(j). Hence, if all i ∈ Jj are passive then ξj ≤ 5 for j ∈ J ′, and ξj ≤ 6
for j ∈ J which may include weight 7 from dC . Thus, active i ∈ Jj contributing
to ξj via weight −7 makes j passive due to y is a stable state. Further, we check⋃

σ∈Σy
Tσ = T . It suffice to prove that there is no C = (v1, . . . , vm) ∈ C such that

ep = {vp, vp+1} ∈ I1 for all p = 1, . . . ,m− 2. Suppose that such C exists which
implies BC ∩ I ⊆ I0. Then jC ∈ J associated with eC could not be activated
during sequential computation of HT starting at the zero state since h(jC) can
be reached only by weight 7 from dC which computes the disjunction of outputs
from units i for e(i) ∈ B′

C ∩ I ⊆ I0. Hence, eC ∈ I0 which is a contradiction.
This completes the argument for Σy to be a correct stripification of T .

Let Σy contain k tristrips. Each σ ∈ Σy is encoded using n(σ)−1 edges from
I1. The number of active units in J ′∪J equals |I1| =

∑
σ∈Σy

(n(σ)− 1) = n−k.
We will prove that each active j ∈ J ′∪J is accompanied with a contribution of−5
to energyE which gives (1). Active j ∈ J ′∪J makes all i ∈ Jj passive. Neuron j is
also connected to be(j) active units dC for e(j) ∈ B′

C computing the disjunctions
that include active j. Thus active j ∈ J ′ produces contribution− 1

2be(j)w(dC , j)−
1
2be(j)w(j, dC)+h(j) = −be(j)w(dC , j)+h(j) = −5 to E. Similarly, active jC ∈ J
assumes active dC and makes aC passive, which contributes −be(jC)w(jC , dC)−
w(dC , jC) + h(jC) + h(dC) = −5 to E. Unit aC balances the contribution of
active dC to E when jC is passive, that is, −w(aC , dC) + h(dC) + h(aC) = 0.

Optimal stripification Σ ∈ ST is encoded by state y ofHT so that Σ ∈ [Σy]∼.
Equivalent Σ′ ∼ Σ is used to determine y such that Σy = Σ′. Each σ ∈ Σ
encoding triangles Tσ = TC of some C ∈ C is replaced with σ′ = (v1, . . . , vm) ∈
Σ′ having Tσ′ = Tσ so that σ′ starts with representative eC = {v1, v2}. Let �e
or re from J ′ ∪ J be active iff there is σ = (v1, . . . , vm) ∈ Σ′ such that its edge
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e = {vp, vp+1} for some 2 ≤ p ≤ m−2 follows the left or right turn, respectively.
Further, unit dC for C ∈ C is active iff there is active i ∈ J ′ ∪ J for e(i) ∈ B′

C

while aC is active iff dC is active and jC is passive. It follows that y is a stable
state of HT . It must still be proven that y ∈ Y ∗.

Define a directed graph G = (C,A) where (C1, C2) ∈ A is an edge of G iff
eC1 ∈ B′

C2
. Let C′ be a subset of all vertices C ∈ C with yjC = 1 that create

directed cycles in G. Suppose that units i are passive for all e(i) ∈ ⋃
C∈C′ B′

C\EC′

where EC′ = {eC ; C ∈ C′}. For each C ∈ C′ units i for e(i) ∈ BC ∩ LeC are also
passive due to active jC . It seems that such a stable state y could not be reached
during any sequential computation by HT starting at the zero state since jC ,
C ∈ C′, can be activated only by dC , C ∈ C′, which can be activated only by
active jC , C ∈ C′. Since Σy ∈ ST the underlying tristrips follow internal edges of
C ∈ C′ as much as possible being interrupted only by edges from

⋃
C∈C′ BC \EC′ .

Any σ ∈ Σy crossing some C1 ∈ C′ (i.e., ∅ �= Tσ ∩ TC1 �= TC1) has one its end
within C1 because σ may enter C1 only through eC2 ∈ BC1 (i.e., yjC2

= 1) which
is the only representative edge of C2 ∈ C′ that σ follows. It can be proven [6] that
there exists C ∈ C′ containing two σ1, σ2 ∈ Σy such that Tσ1 ⊆ TC and Tσ2 ⊆ TC .
Hence, Σ′

y with fewer tristrips can be constructed from Σy by introducing only
one σ∗ ∈ Σ′

y such that Tσ∗ = TC (e.g. yjC = 0) instead of the two σ1, σ2 ∈ Σy
while any σ ∈ Σy crossing and thus ending within C is shortened to σ′ ∈ Σ′

y
so that Tσ′ ∩ TC = ∅ which does not increase the number tristrips. This is a
contradiction with Σy ∈ ST , and hence y ∈ Y ∗. Obviously, [Σy]∼ with the
minimum number of tristrips corresponds uniquely to y ∈ Y ∗ having minimum
energy miny∈Y ∗ E(y) according to equation (1). ��
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6. Š́ıma, J.: Tristrips on Hopfield networks. Technical report V-908, Institute of Com-
puter Science, Academy of Sciences of the Czech Republic, Prague (2004)
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Abstract. We present a biophysical model of saccade initiation based on 
competitive integration of planned and reactive cortical saccade decision signals 
in the intermediate layer of the superior colliculus. In the model, the variable 
slopes of the climbing activities of the input cortical decision signals are 
produced from variability in the conductances of Na+, K+, Ca2+ activated K+, 
NMDA and GABA currents. These cortical decision signals are integrated in 
the activities of buildup neurons in the intermediate layer of the superior 
colliculus, whose activities grow nonlinearly towards a preset criterion level. 
When the level is crossed, a movement is initiated. The resultant model 
reproduces the unimodal distributions of saccade reaction times (SRTs) for 
correct antisaccades and erroneous prosaccades as well as the variability of 
SRTs (ranging from 80ms to 600ms) and the overall 25% of erroneous 
prosaccade responses in a large sample of 2006 young men performing an 
antisaccade task. 

1   Introduction 

In the brain, climbing activity is a prominent profile of neuronal activity observed in 
the thalamus, superior colliculus, primary motor cortex, prefrontal cortex and other 
brain areas and it is found to be related to the anticipation of forthcoming events and 
to the generation of movements. Climbing activity spans from hundreds of 
milliseconds up to tens of seconds [1]. In the frontal eye fields of monkeys there are 
populations of visuomotor neurons that begin to fire in advance of saccades, with 
their activity rising linearly upon presentation of a suitable target stimulus [5]. 
Buildup cells in the monkey’s superior colliculus (SC) begin to linearly build up their 
activity after the signal to make a saccade is presented [8]. The rate of rise varies 
randomly from trial to trial and the saccade is initiated when this activity reaches a 
fixed threshold [5], [6]. 
                                                           
* Corresponding author. 
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The model presented in this paper is an attempt to model the biophysical 
mechanisms underlying the generation of slowly varying climbing, temporal 
integrator-like activity of the reactive and planned input decision signals of a SC 
model in an antisaccade task [9]. This work combines and extends previous 
biophysical models [1], [9], [10].  

2   Materials and Methods 

2.1   Basis of the Model 

In a modeling attempt of the antisaccade task [4], Cutsuridis and colleagues [9] 
hypothesized that the preparation of an antisaccadic eye movement consisted of two 
cortically independent and spatially separated decision signals representing the 
reactive and planned saccade signals, whose linearly rising phases are derived from 
two normal distributions with different means and standard deviations. These two 
cortical decision signals were then integrated at opposite colliculi locations, where 
they competed against each other via lateral excitation and remote inhibition. A 
saccade was initiated when these decision processes, represented by the neuronal 
activity of SC buildup neurons with nonlinear growth rates varying randomly from a 
normal distribution, gradually build up their activity until reaching a preset criterion 
level. The crossing of the preset criterion level in turn released the “brake” from the 
SC burst neurons and allowed them to discharge resulting in the initiation of an eye 
movement. The model’s main prediction was that there is no need of a top-down 
inhibitory signal that prevents the error prosaccade from being expressed, thus 
allowing the correct antisaccade to be released. Moreover, the model offered a 
functional rationale at the SC neuronal population level of why the antisaccadic 
reaction times are so long and variable and simulated accurately the correct and error 
antisaccade latencies, the shape distributions and the error probabilities. 

Our intention in this study is to model the biophysically plausible mechanisms that 
can produce climbing activity with adjustable slope. We extend the SC model by 
adding two cortical modules that will generate the planned and reactive decision 
signals. The decision signals will be derived from the population activities of 
networks of pyramidal neurons and inhibitory interneurons. We will use Hodgkin-
Huxley mathematical formulations to explore the biophysical mechanisms that give 
rise to the randomly varying climbing activities of the cortical decision signals. These 
decision signals will then drive the SC model and generate correct antisaccade and 
error prosaccade reaction time (RT) distributions as well as response probabilities. 
These simulated RT distributions and error probabilities will be compared to 
psychophysically derived latency distributions and error probabilities [3], [7]. 

2.2   Architecture  

Standard Hodgkin-Huxley modeling techniques were used to simulate networks of 
single compartmental models of cortical pyramidal neurons and cortical inhibitory 
interneurons (IN). Pyramidal neuron membrane potential obeyed  
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injGABANMDAAMPAAHPDRCHVAKSNaPNaleak IIIIIIIIIIIIdtCdV +++++++++++−= )(/    (1) 

with Cm = 1 μF cm-2. GABAergic inhibitory interneuron membrane potential obeyed  

injGABANMDAAMPADRNaleak IIIIIIIdtCdV ++++++−= )(/  (2) 

with Cm = 1 μF cm-2. Ionic currents INa, INaP, IKs, IC, IDR, and IHVA were modeled as in 
[10], whereas IAHP was modeled as in [1]. Table 2 of [10] provided a summary of the 
gating variables and their respective powers for all ionic conductances used in this 
study. The synaptic currents (IAMPA, INMDA, and IGABA) were given by double 
exponential functions exactly as in [1]. Synaptic short term dynamics were 
determined by the available synaptic efficacy (R) and a utilization variable (u) exactly 
as in [1]. We simulated low spontaneous background activity in the network, by 
delivering random noise to all pyramidal and GABAergic cells, generated from 
Poisson processes convolved with the AMPA, NMDA and GABA synaptic 
conductances. Because very little is known about the detailed connectivity of neurons 
and the associated synaptic strengths in the frontal cortices, we intentionally kept the 
network model as general as possible. Two networks of 10 pyramidal cells and 5 
GABAergic interneurons each were simulated. In each network, we assumed that all 
pyramidal cells and GABAergic interneurons were fully connected [10]. The output 
of each network was the average population activity of a homogenous population of 
neurons with identical connections. These outputs were then used as the input drives 
of the superior colliculus (SC) model [9]. 

2.3   Implementation 

The simulations were performed on a Pentium IV 3.2 GHz PC with MATLAB’s 
version R13 installed. The whole system of differential and algebraic equations was 
implemented in MATLAB (The MathWorks, Inc, Natick, MA). The differential 
equations of the cortical neural integrator model were integrated numerically using 
one of the MATLAB ordinary differential equation solvers (mainly ode23s, a one step 
solver based on modified Rosenbrock formula of order 2 [2]) with time step t = 
0.001 ms. The differential equations of the SC model were integrated numerically 
using one of the MATLAB ordinary differential equations solvers (ode45, an implicit 
solver based on the Dormand-Prince pair method [2]) with time step t = 0.001 ms). 
Relative (error) tolerance was set to 10-6. 

3   Experiments and Results 

3.1   Experimental Setup 

The data used in this study were collected in an antisaccade task [3], [7]. Details of 
the experimental procedure used for the collection of these data are described therein 
[3], [7]. Briefly, 2006 conscripts of the Greek Air Force were instructed to perform 
eye movements in the opposite direction from the location of a stimulus that appears 
in their right or left peripheral visual field while they are fixating on a central 
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stimulus. The correct or error saccade reaction time (SRT) was measured in each trial 
for every subject. Trials with reaction times < 80 ms were excluded as anticipations 
and trials with reaction times > 600 ms were excluded as no response trials. The 
median RT and the inter-quartile range for antisaccades and error prosaccades of all 
2006 conscripts were grouped into ten virtual groups after performing clustering 
analysis using the STATISTICA software version 5.5 (StatSoft, Inc, Tulsa, OK). The 
purpose of the cluster analysis was to partition the observations into groups 
("clusters") so that the pairwise dissimilarities between those assigned to the same 
cluster tend to be smaller than those in a different cluster. We demonstrate below the 
results from all ten clusters. 

3.2   Results 

The observed variability in the rising phase (slope) of the average firing rates of the 
pyramidal neurons was found to be due to noise in the conductances of the INaP and 
INMDA currents. Noise in the conductances of IKs, IDR, IC and IHVA currents didn’t 
produce any variability in the rising phase of the average firing rate. The slope of the 
climbing activity was carefully adjusted so that the simulated correct and error RT 
distributions and the error probabilities to approximate the experimental ones in an 
antisaccade task (see Table 1). We estimated the slopes of the rising phases of the 
average firing rates of two cortical networks of neurons in each trial by fitting to them 
a straight line. We used these slope values as values of the slopes of the rising phases 
of the planned and reactive inputs of [9]. The slope values of the reactive and planned 
inputs were sorted in ascending order, so that the slope of the reactive input was 
always greater than the slope of the planned input. The threshold was adjusted, so that 
the simulated error rate closely matched the observed. Its value was set to a different 
value for each group, but it was kept fixed across trials for each group [9].   

Table 1. (Columns 2-4) Simulated correct median, error median, and error rate for average and 
all ten groups. Values in parentheses stand for experimental values. Units: correct SRT (ms), 
error SRT (ms). (Columns 5-6) Values of χ2 test of homogeneity between correct and error 
experimental and simulated percent density distributions for antisaccades and error 
prosaccades. χ2 values marked with an asterisk indicate a significant difference between the 
simulated and the observed RT distributions.  Rejection region: χ2 ≥ χ2

0.05 (37.65). The degrees 
of freedom were 25. 

 Median  
RT 

of antisaccades 

Median 
RT of error 
prosaccades 

% antisaccade 
error rate 

antisaccade 2 
value 

 

prosaccade  
2 value 

 
G 1 254.80 (242.40) 212.99 (216.66) 24.27 (17.02) 35.21 24.18 
G 2 282.38 (288.44) 188.10 (193.66) 23.93 (28.86) 31.82 27.97 
G 3 263.10 (251.79) 180.63 (175.53) 20.87 (24.79) 30.34 21.82 
G 4 365.69 (349.42) 218.99 (221.36) 37.00 (34.58) 36.46 35.67 
G 5 218.20 (213.58) 177.85 (172.77) 27.36 (24.92) 35.21 24.18 
G 6 294.174 (288.16) 279.541(265.20) 13.04 (16.15) 36.15 34.92 
G 7 276.50 (279.21) 202.97 (201.96) 38.62 (39.07) 90.5* 33.56 
G 8 281.89 (280.91) 212.54 (201.92) 20.15 (23.73) 32.16 32.89 
G 9 251.30 (249.27) 209.90 (211.65) 12.41 (12.02) 56.06* 96.24* 

G 10 327.56 (307.5) 331.07 (326.99) 20.05 (21.81) 33.88 83.57* 
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The SC model was allowed to run for 1000 trials in each group. We recorded the 
simulated median antisaccade and error prosaccade RT values and the error rates for 
each group (see Table 1). In order for each group to compare the SRT distributions of 
the real experimental data with the simulated SRT distributions, we normalized the 
SRT distribution of each subject data and then added the normalized distributions for 
all subjects belonging to the same group.  More specifically, the time interval between 
the 80 ms and 600 ms was divided into twenty-six categories, each lasting 20 ms (e.g. 
category 1 was between 80 ms and 100 ms, category 2 between 100 ms and 120 ms, 
and so forth). For each category we calculated its percent relative frequency of 
response times. The mean frequency for all subjects in a group was then calculated. 
The discrepancy in each category between the simulated and experimental correct and 
error distributions was measured by the squared difference between the observed 
(simulated) and the expected (experimental) frequencies divided by the expected 
frequency ((Observed – Expected) 2 / Expected). The χ2 value was the sum of these 
quantities for all categories. The rejection region was set at χ2 ≥ χ2

0.05. The χ2 test of 
homogeneity tested the null hypothesis of whether the simulated and experimental 
normalized distributions of SRTs for antisaccades and error prosaccades differ 
between them and showed a significant difference in 2 of the 10 comparisons for 
antisaccade RT distributions and 2 of the 10 comparisons for the error prosaccade RT 
distributions (see Table 1). 

4   Conclusion 

The simulations of the model presented here show that the randomly varying climbing 
activities of the input decision signals of a SC model in an antisaccade task are due to 
the interplay of K+, Na+, and Ca2+ activated K+ currents as well as due to variability of 
NMDA synaptic currents. The model is successful at predicting the correct 
antisaccade and error prosaccade RT distributions as well as the response probabilities 
from a population of 2006 subjects. There are further paradigms and architectures to 
which this model can be extended to. For instance, in this study we assumed that the 
internal properties of all pyramidal neurons in the network were the same 
(homogenous) and that the connectivity was symmetric. However, real populations of 
neurons will always have a certain degree of heterogeneity in their internal parameters 
and in their connectivity patterns. For this reason, we are in the process of examining 
other more realistic cases of neuronal connectivity in our network.  Finally, we are 
investigating in a more systematic way which ionic conductances have the strongest 
effects on the rising phase of the average firing rate of the pyramidal neurons and 
what are the mechanisms that cause the variability in the climbing activities. 
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Abstract. Dynamic neural filters (DNFs) are recurrent networks of bi-
nary neurons. Under proper conditions of their synaptic matrix they are
known to generate exponentially large cycles. We show that choosing the
synaptic matrix to be a random orthogonal one, the average cycle length
becomes close to that of a random map. We then proceed to investigate
the inversion problem and argue that such a DNF could be used to con-
struct a pseudo-random generator. Subjecting this generator’s output to
a battery of tests we demonstrate that the sequences it generates may
indeed be regarded as pseudo-random.

1 Introduction

Dynamic Neural Filters (DNFs) [1] are recurrent networks that transform input
space into spatiotemporal behavior. Their dynamics are defined by

ni(t) = H(
∑

j

wijnj(t− 1)− θi) (1)

where ni(t) is the i-th neuron’s activation state at time t, H is the Heaviside
step function, wij is the synaptic coupling matrix and θi are the neuronal thresh-
olds. This one-step dynamics defines a relation between a state of the system
(ni)i=1...N at time t− 1 and the state of the i-th neuron at time t.

It is well known that symmetric synaptic matrices lead only to fixed points
or two-cycles [2] whereas anti-symmetric ones can lead up to four cycles [3].
The largest cycles may be expected from asymmetric matrices, i.e. ones whose
asymmetry α = wijwji

wijwij
is close to zero, and indeed these matrices have been

shown to result in cycles that are exponentially long in N , the size of the system
[4,5]. Furthermore, it has been shown that the choice

θi =
1
2

∑
j

wij (2)
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guarantees that the output of this network will have the largest cycle that a
given DNF may possess [1].

In this paper, we show that choosing random orthogonal weight matrices
results in significantly longer cycles, the average length of which approaches that
of a random mapping. Motivated by this result, we next consider these networks
as pseudo-random generators (PRGs) and test the quality of the sequences they
generate. Previously known PRGs based on simpler, Hopfield-like networks have
been subjected only to partial testing with short generated bit sequences [6].
Other PRG candidates are Cellular Neural Networks [7] however they necessitate
a fairly complicated emulation of cellular automata.

2 Optimal Choice of the Weight Matrix

Given the optimal threshold (2) let us prove that, for each neuron, the space of
states is naturally divided into two halves: the number of activating states (i.e.
the ones whose occurrence at t − 1 implies ni(t) = 1) is equal to the number
of inactivating ones. Assume s to be an activating state. Its complement s̄,
where s̄i = 1 − si will then be inactivating. This follows from the fact that
if
∑

j wijsj > θi = 1
2

∑
j wij then

∑
j wij(1 − sj) <

∑
j wij − 1

2

∑
j wij = θi.

Obviously the complement of every inactivating state will be an activating one1

thus completing the proof.
This leads us to suggest imposing orthogonality on the weight matrix by

applying the Gram-Schmidt orthogonalization process to N initial row vectors
drawn randomly from a Gaussian distribution. The intuition behind this is that
it serves to guarantee maximum lack of correlation between outputs of different
neurons at any given time. Moreover, since each neuron’s hyperplane divides the
state-space into two halves in an independent manner, the partitions defined over
all the neurons in the system are optimally small; this reduces the probability of
closing a cycle in each step, allowing for the production of longer sequences. Nu-
merical testing shows that the largest partitions created by random orthogonal
matrices are never larger than about 2

3N states.
Figure 1 compares the average length L of cycles as function of N , the to-

tal number of neurons, for three different choices of weight matrices: random
Gaussian matrices, asymmetrized matrices and random orthogonal matrices.
All show exponential increase of the cycle length L with N . Using the para-
metrization L = eβN+β0 (choosing N = 20, 25, 30 to avoid the finite size effect
reported in [5]), we find β values of .215 for the random matrices, .243 for the
asymmetrized matrices (compare with [5]), and .320 for the random orthogonal
weight matrices. The latter is closer to the exponential coefficient for completely
random maps log2

2 = .347. This result is very encouraging given the fact that
the DNF is after all a deterministic system.
1 These statements of complementarity are true for all but a negligible set of matrices

where an equality, rather than inequality, can be obtained for some neuron i and
some state s. When dealing with integer matrices this can be explicitly avoided by
requiring the sum of each row in the weight matrix to be odd.
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Fig. 1. Dependence of DNF sequence length on N for 3 different methods of generating
weight matrices: Averages and standard errors over 100 trials for each system size are
shown, with regression lines.

3 Can DNFs Generate Pseudo-Random Sequences?

Pseudo-random generators are functions that expand short, random bit se-
quences (‘seeds’) into long pseudo-random bit sequences [8,9] that are compu-
tationally indistinguishable from truly random sequences; in other words, the
next bit should not be predictable with probability significantly different from
1
2 . PRGs are important primitives in cryptology, and they can be used as a
source of effective randomness in the so-called one-time pad cryptosystem (see,
e.g., [10]).

PRGs can be constructed using one-way functions (OWFs), by using a hard-
core predicate of the OWF (see, e.g., [11] section 3.3.3). Such a construction
can be implemented by iteratively applying the function to its own output, and
outputting the hardcore predicate at each iteration. For one-to-one length pre-
serving OWFs (bijections of the state-space onto itself), the parity of a certain
subset of the bits of the input comprises a hardcore predicate of these functions
([12]).

Is the DNF-step function an OWF? Computing one step of a given DNF
dynamics is a simple task, amounting to polynomial time complexity given the
digital encoding of a particular DNF. On the other hand, inverting one step of
the dynamics, i.e. finding a source state for a given target state, is equivalent
to the NP-complete problem Integer Programming (IP), finding x ∈ {0, 1}n

such that Wx ≥ b for some matrix W and vector b. Clearly, the fact that a
function is NP-complete does not imply that it is also a OWF, but we will,
nevertheless, try to provide evidence for the validity of our conjecture, i.e. that
the DNF dynamics function is hard to invert in most cases, qualifying it as a
good candidate for a OWF.

To do so, we rely on the well developed field of IP algorithms (see, e.g., [13],
[14]). Since these methods were developed to solve general IP problems we use
them as a benchmark for the hardness of our problem. Fig. 2 shows the results
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Fig. 2. Dependence of the log inversion time of DNF-step on the size of the system (N).
For each N , 100 initial states were randomly chosen for a single random orthogonal
DNF and one step was calculated. The mean log time taken by GLPK to find an initial
state given the second state is presented as a function of N .

of applying the linear programming package GLPK [15] to inverting the step
function of DNFs with randomly generated orthogonal weight matrices. The
dependence of average solution time on the number of neurons in the system
is clearly exponential, testifying to the hardness of solution by this algorithm.
We can implement a construct that outputs the parity of a certain subset of
bits within the bounds of the DNF model by a DNF ‘parity-gadget’, which
can be added to a given DNF in order to compute the parity of the chosen
set of k bits in two steps. The parity gadget consists of a block of k neurons,
the i-th of which calculates after one step whether the previous state of the
original DNF contained more than i activated neurons, and a parity neuron
with a weight vector of (1,−1, 1,−1...) and threshold θ = 1, which uses only
inputs from the k-neuron block to calculate the parity of the original DNF two
steps previously.

We stress that until we find a weight-matrix construction algorithm that
generates preimages of size 1, making the DNF-step function a 1-1 length pre-
serving function, the construct does not necessarily constitute a PRG, even if
the DNF-step function is one-way. Nevertheless, we will show some evidence that
this construct might still be able to generate pseudo-random sequences, despite
this shortcoming.

4 Performance of the DNF Generator

Although our random orthogonal DNFs are not 1-1 functions of the state-space,
the DNF generator construct can generate sequences that pass statistical pseudo-
randomness tests. We tested this with a comprehensive battery of such tests,
available from NIST (http://csrc.nist.gov/rng/) [16,17] as a means of detecting
non-randomness in binary bit sequences generated by pseudo-random generators
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for cryptographic applications. Generally speaking, consistent failures in any of
the 189 listed tests (including multiple variants of several tests) immediately
suggests an attack scheme, either explicitly outlined by the test itself, or by the
theorem relating unpredictability to indistinguishability from a truly random
sequence [8,9]. For each test, the suite generates randomness p-values for all the
tested sequences and then uses two final tests to check for deviation from ran-
domness over the set of all 70 bit sequences. The first is a goodness-of-fit test
for uniformity of the p-values, and the second is the proportion of sequences
that failed each particular test with a 0.01 rejection rate (i.e. p < 0.01 for that
test).

We used the NIST test suite on 70 1Mbit DNF generator sequences with
parity gadgets computing the parity of 5 arbitrary bits. Out of a total of 189
uniformity of p-values and 189 proportion of failure tests, only 2 of the former
and 3 of the latter failed. This result is similar to results for other well-tested
PRGs such as the Blum-Blum-Shub generator and the RSA generator.

An important point to be made here is that this test suite does not make
any use of the information available in the weight matrix. There might still
exist, therefore, other ways to ‘break’ the DNF generator based on this, de-
spite the results shown in Fig. 2. On the other hand, this might also suggest
that the DNF generator construct, without the weight-matrix being publicly
available, is strong enough to generate cryptographically safe pseudo-random
sequences.

5 Discussion

Unpredictability is a desired feature of animal behavior in many pursuit-evasion
scenarios, with countless examples for such behavior found in nearly all animal
groups [18]. Apparently, generating seemingly random sequences of behavior
is an innate ability of humans when placed in a competitive situation where
unpredictability is an optimal strategy [19], and this ability can also be enhanced
by feedback [20,21].

In a presumably deterministic brain, the use of unpredictability as a strategy
for survival or evasion must assume a deterministic mechanism of generating
unpredictable behavior, in other words, a pseudo-random behavior generator.
The model we present suggests that this can be implemented by a simplified
neural network without any stochasticity assumptions.

Besides its obvious and straightforward applicability in encryption schemes,
the conjectured ability of DNFs to generate pseudo-randomness also holds im-
plications for current-day paradigms of experimental neural research. Namely,
partial knowledge of the dynamics of a simple neural system is not always suffi-
cient for effective extrapolation beyond the given data. This is still possible even
if the dynamics are fully known for a subset of the neurons and the connectivity
of the system is given. Put in another way, recording activity from a few neurons
in a large neural system does not guarantee any effective generalization of these
data.
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Abstract. In this paper, a new competition mechanism for neural fields
is proposed, as well as first experimental studies of its robustness. The
computational properties of this algorithm are discussed, arguing that
such properties are suitable for neural architectures, where some restric-
tions of the usual neural fields competition methods are not acceptable.

1 The Role of Competition

From a functional and computational point of view, neural fields are bi-dimensio-
nal fields, tiled with identical elementary computational units. Some lateral con-
nections, linking neurons to their neighbors in the field, gives the global compu-
tation an intrinsically bi-dimensional nature. This structure is clearly inspired
by the anatomy of the cerebral cortex, that has been described as a sheet, tiled
with elementary neural circuits, the cortical columns, as reviewed in [1]. The
very nature of cortical computation seems to be grounded on that bi-dimensional
topology. A well known example is orientation selectivity in V1 [2]. These obser-
vations have lead to self-organizing computational architectures, whose central
point is the setting of a competition over the neural field. That competition can
be viewed as a distributed decision process, contrasting activities in the field [1].

Self-organization is a computational property that has been stressed by early
studies in artificial neural networks. This property is in most cases the result of
a competitive learning among computational units that owns a preferred value.
The activation of a unit depends on the fitting of the input it receives to its
preferred value (matching), and this activation is used to perform competition
among units. The basic idea is that units learn by adapting their preferred
input according to the actual one they receive, but the key point is that such
a learning is modulated by competition. The result is the setting of preferred
inputs so that units represent at best the actual (and a priori unknown) input
distribution. These general terms apply to all unsupervised learning techniques
in the field of neural networks, but also to statistical methods as k-means.

Recently, we have proposed a multi-map architecture [3,4], where such a local
competitive processes is crucial, since it is responsible for the global coordination
of activities in the different maps. Details of this work are out of the scope of the
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Fig. 1. (a) Black grid is the i(t) values, and gray surface is the resulting u(t) bubbles.
(b) The frame of a bubble is the smallest frame including a contiguous set of u values
over the threshold θ. The frames that contain u values that are all under threshold τ

are ignored in experimental measurements. (c) Approximation of a sigmoid function.

present paper, but the design of such an architecture has been the motivation to
propose a new competition algorithm that overcomes the weaknesses of existing
techniques in that context.

2 Setting Up Competition

In this section, the most commonly used competition mechanisms are presented,
stressing their computational advantages and limits. Their plausibility as a bio-
logical model, that sometimes motivates these mechanisms, is not discussed since
this paper rather focuses on computational properties.

The fastest competition mechanism is the winner-takes-all mechanism used
in the Self Organizing Maps (SOMs) [5] by Kohonen. Once the winner is found, a
Gaussian-shaped learning rate kernel is applied around it, so that the winner and
its close neighbors learn. In this approach, competition consists of an explicitly
search for the best matching unit. The drawbacks are mainly twofolds. First,
this search breaks intrinsic neural parallelism, that some implementation would
take advantage of [6]. Second, it chooses only one winner in thefield, and is thus
not suitable for large fields where many learnings should stand in parallel, at
separated places in the neural surface.

Another way to perform competition over a bi-dimensional neural field is the
setting up of two sets of lateral connections. The first one contain short range
excitatory connections, whereas the second one contains inhibitory longer range
connections. This view is close to biology, and has lead to early modeling of
self-organizing processes [7]. Let us denote ik(t) the matching value of a unit k
at time t. The value ik(t) is high when the current input at unit k is close to its
preferred one. We will also call uk(t) the activation of unit k at time t, and ω+

kl

(resp. ω−
kl) the excitatory (resp. inhibitory) connection weights to unit k from

neighboring units l. Each of the ω+
kl and ω−

kl usually form a Gaussian-shaped
positive distribution of weights over the neural field, centered around unit k. Let



Making Competition in Neural Fields Suitable 219

ωkl = ω+
kl −ω−

kl be the resulting lateral influence, that commonly has a Mexican
hat-shaped distribution. This defines a so-called on-center off-surround lateral
influence. Last, let f [.] be a sigmoid-type non linearity. The purpose of such
an architecture is to make the distribution of uk at equilibrium form patches
of activities around the best matching units. Thus, the learning process, that is
modulated by u, consists of a learning at best matching units and their close
neighborhood. These patches are also referred as “bubbles” of activity over the
neural field.

Kohonen has proposed a competition mechanism based on a differential equa-
tion, with a convergence proof. This equation leads to the selection of a single
winner unit in the field, and a Gaussian learning kernel around it has then to
be applied. Moreover, some extra mechanism has to be added for allowing the
setting of new bubbles, as current bubbles are very stable and must be destroyed
when new input comes.

Another area of the study of neural field, and certainly one of the most sig-
nificant, is the continuum neural field theory (CNFT) introduced by Amari [8]
and generalized later to the case of bi-dimensional neural fields [9]. These ap-
proaches are based on the analysis of differential equations over a continuous
2D field, where units k are the points in the field. The weights are given by a
Maxican hat-shaped weight kernel ω(|k − l|). The dynamics of the neural field
are given by equation 1.

duk

dt
(t) = −uk(t) +

∫
l

ω(|k − l|)f [ul(t)] dl + ik(t) + h (1)

The behavior of the neural field, i.e. its ability to form bubbles and the ability of
a bubble to be self-sustained when matchings are reset, depends on the bounds
of the primitive W (r) =

∫
|k|<r ω(|k|)dk, and h. Proofs have been found mainly

or the cases of an uniform distribution of the ik(t).
All these on-center off-surround methods have the advantage of relying on the

very distributed nature of the competition processes in neural fields. Thus, they
are more suitable for a parallel approach, that is mandatory for large distributed
architectures. Moreover, such methods compute local competitions in the neural
field, allowing the rising of more than one bubble, which overcomes the winner-
takes-all limitation.

The drawbacks of these methods are mainly twofolds. First, the computation
of the lateral influence as well as the relaxation process for the uk(t) is time con-
suming, and this is why we work on efficient parallel implementations [6]. Second,
as equations involve the sum of lateral influences, the dynamics of the competi-
tion mechanism are strongly dependent on that sum, as reveals the convergence
requirements of the CNFT. Thus, side effects may have dramatic consequences,
on the border of the maps for example, where the weight kernel is modified. It
can be observed that bubbles rise on corners of the neural field whatever the
entries, since those places are much less inhibited than “regular” ones. This is
usually avoided in simulations by making the topology of the field torus-like.
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3 Designing Competition from “Top” Operator

Current work on multi-map self organization [4,3] has stressed the need of com-
petition algorithms that have the smartness of the CNFT, but that are tractable
from a computational point of view, without side effects, since the neural fields
may have any shape, and the number of lateral connection may change from
a unit to another. Moreover, the bubble formation process has to be robust to
the input noise. As our approach is based on the maximum function and non
linearities, we are not able to give formal stabilization proofs, but an empirical
study of the properties of that competition process is provided here.

3.1 Principle and Properties

One main drawback of the usual neural field competition techniques is the sum
operator (or integral) that is sensitive to the actual distribution of lateral connec-
tions. In order to free from this sensibility, the mechanism proposed in this paper
is rather based on the computation of maxima, whose values are not dependent
on the number of elements in the collection they are computed from.

Let us use previously defined notations, and note {.}top k the sum of the
k highest values of a set. Let us build a neural field of n × n units, provid-
ing separate excitatory and inhibitory connections. The weights are Gaussian,
ω+

ij = exp(−(i− j)2/σ2
+) and ω−

ij = exp(−(i− j)2/σ2−), and weight values under
threshold ρ are ignored to save connection resources. At each time step, each
unit in the neural field is updated according to equation 2.

Δuk(t)← λ.f
[
α
{
ω+

kl.ul(t)
}top n+

l
− β

{
ω−

kl.ul(t)
}top n−

l
+ γik(t)− δuk(t)

]
(2)

The u values are kept in [0, 1] by a supplementary saturation mechanism, and
matching rules are supposed to provide values of i(t) in [0, 1] as well. This mech-
anism allows the rising of bubbles at locally best matching places (see. fig. 1-a)
as the CNFT does. The sigmoid function f [x] is approximated by a linear func-
tions (see. fig. 1-c) to save computation time. Last, and this is the key point of
our approach, the {.}top k operator isn’t sensitive to the number of connections,
as opposed to the sum operator, and the lateral influences do not change the
dynamics at the border of the neural field, avoiding the dramatic side effects
observed with the CNFT.

3.2 Experiments

First empirical studies are presented here, with the following framework. At each
computation cycle, equation 2 is applied to each unit in a random order (asyn-
chronous evaluation). Every 100 cycles, a new distribution i(t) of inputs is forced
in the neural field, and kept constant during the 100 next cycles. Measurements
are made before changing the i(t) distribution, and 200 measurements are made
for each experiments (20000 cycles). The given i(t) distributions are composed
of a Gaussian μ exp(−x2/σ2), centered at a random place in the neural field,
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Fig. 2. Experimental results. ν is the noise value, and ξ the connection probability. See
text for detail.

with a random amplitude μ ∈ [.5, 1] and σ = 2. A noise is added to this input,
by adding at each place in the field a random value taken in [−ν, ν]. Last, ro-
bustness to damage in lateral connectivity is tested, since we use a probability ξ
to actually create a lateral connection, for both excitatory and inhibitory cases.
When damaging connections, bubbles are formed by dense group of peaks, that
would be considered as many small close bubbles by the process described in
figure 1-b. That is why a diffusion process is added in order to blur u(t) so that
group of close peaks are seen as a continuous bubble in our experiments. So
the u′i(t) used for experiments is u′i(t) = max(ui(t), ρmaxj u

′
j(t)), where index j

describes the four neighbors of unit i in the grid.
Histograms of the following values are given on figure 2. First the distance

between the center of the Gaussian and the center of gravity of the closest bubble
is measured. This shows how well the bubble represents the significant Gaussian
component of the input. Second, the number of bubbles is measured, and third
the shortest distance (separation) between center of gravity of bubbles in the
neural field. This latter shows the effect of inhibition, that scatters bubbles over
the field. It can be seen that several bubbles are allowed, because of noise, but
that there is always a patch of activity around the input (distance column). Lat-
eral connection can be damaged severely, thus saving computation time, without
preventing bubbles from being well separated. With ξ = .1, many units have no
excitatory links at all, and fail to raise bubbles from noisy inputs. This is the
reason why the number of bubbles decreases, as well as the separation between
them increases. All these measurements are made by using the frames defined
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by figure 1-b to distinguish bubbles in the u′ distribution. Experimental values
are ρ = .1, σ+ = 2, σ− = 10, n+ = 2, n− = 5, α = .2, β = .1, γ = .2, δ = .2, λ = .5,
θ = .2, τ = .3, ρ = .6, and the size of the neural field is 41× 41.

4 Discussion

We can see on figure 2 that the mechanism is robust to both high levels of noise
in the input activity and intensive connection damage. Robustness can be seen
by the results on the “distance” column on figure 2, since in all cases, there is a
bubble near the center of the noisy Gaussian. Moreover, the neural field is able
to provide several bubbles, allowing the learning at different separate places.
Robustness to lateral damage is the cue point, since it allows to manage few
connection, which saves most of the computation time. Moreover, this compu-
tation of lateral influences is the one that alterates most parallel performances.
Last, as the mechanism is insensitive to the actual sum of lateral weights, it can
be used in a context where lateral weights are adaptive, as in some recent mod-
els of V1 [10], that are to use computational shortcuts to overcome side effects.
Many supplementary experimental studies are currently at work to test sensitiv-
ity to all parameters, since these first results are encouraging, and promote the
use of multi-max operator {.}top k for lateral influence in actual computational
architectures.

The authors would like to thank the Lorraine region, the Robea program of
the CNRS and the European MirrorBot project for their support.
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Abstract. Recent binary signal detection theory and neural network assembly 
memory model's optimal data-decoding/memory-retrieval algorithm exists si-
multaneously in functionally equivalent neural network (NN), convolutional, 
and Hamming distance forms. In present paper this NN algorithm has been 
specified to provide decoding/retrieval probabilities at both positive and nega-
tive neuron triggering thresholds needed, in particular, for ROC curve computa-
tions. Examples of intact and damaged NNs are considered, model neuron re-
ceptive fields are introduced, a comparison between NN and analytic computa-
tions of decoding/retrieval probabilities is also performed. 

1   Introduction 

Using the energy (or Lyapunov) function approach, J.J.Hopfield [1] has introduced 
fully interconnected single-layer recurrent neural networks (NN) where autoassocia-
tive content addressable memories may exist. They correspond to minima in the 
network's energy landscape and their main virtue is their ability to restore the previ-
ously learned memory vector (trace) from an initial, corrupted or incomplete, binary 
vector but corresponding NNs with zero-diagonal weight matrices do not ensure 
that the nearest memory trace is associated to a distorted initial pattern. In a similar 
way, B.Kosko [2] has demonstrated that Hopfield feedforward associative memory 
is a special case of more general feedback bidirectional associative memories 
(BAM) and that every real matrix is a BAM. A bidirectional memory is a two-layer 
NN and it may correspond to a kind of S.Grossberg’s adaptive resonance [3]. As 
Hopfield NNs and BAMs allow spurious memories, they are not the 'ideal' associa-
tive memories. 

On the basis of the data coding/decoding algorithm introduced in [4], an optimal 
binary signal detection theory, BSDT [5], and neural network assembly memory 
model, NNAMM [6,7], were developed without any optimization procedure. Their 
data-decoding/memory-retrieval algorithm exists simultaneously in functionally 
equivalent NN, convolutional, and Hamming distance forms and provides the best 
decoding/retrieval performance [5-7]. The price paid for the NNAMM optimality is 
that it places each memory trace in its own assembly memory unit. Such an intact 
autoassociative NN has no spurious memories and might be considered as the 'ideal' 
autoassociative memory. The NN algorithm mentioned will be specified and studied 
for the case of negative neuron triggering thresholds in more details below. 
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2   Positive Threshold NN Computations 

First, let us remind BSDT/NNAMM basic definitions [5-7]: x, N-dimensional vectors 
with components xi

 = ±1 (the third, zero, component may also exist but it manifests 
itself only when damaged NNs are considered); x0, reference vector that represents 
information stored or that should be stored in an NN; xr, random vector or binary 
noise (the signs of its components are randomly chosen with uniform probability, ½); 
x(d), damaged reference vector with components  

=
=

=
1,

,0,
)( 0

i
i
r

i
i

i
uifx

uifx
dx     ,Nud i=     ,,...,1 Ni =     (1) 

where d is the damage degree of x0 and in d magnitudes of marks ui (0 or 1) may ran-
domly be chosen with uniform probability, ½. For particular x(d), m is the number of 
marks ui = 1, d = m/N, 0  d  1; x(0) = x0 and x(1) = xr; q = 1 – d is a fraction of 
intact components of x0 in x(d) or intensity of cue, 0  q  1; q + d = 1, d and q are 
proper fractions. For a given d = m/N, the number of different vectors x(d) is 2mCN

m, 
CN

m = N!/(N – m)!/m!; for d ranged 0  d  1, complete finite set of all vectors x(d) 
consists of 2mCN

m = 3N items (m = 0,1,…,N). 
Equation 1 defines the data coding algorithm used [4]. For the decoding of data 

coded as described, we use a two-layer NN with N McCalloch-Pitts model neurons in 
its entrance and exit layers; these neurons are linked as in Fig. 1a, 'all-inputs-to-all-
outputs.' Such NNs are served by vectors x = x(d) [as the set of vectors x(d), consist-
ing of 3N items, is complete, each vector x may be written as x = x(d)].  

For a learned NN, its synapse matrix elements, wij, are defined as  

,00
ji

ij xxw ξ =     (2) 

where   > 0 is a parameter (  = 1 below), xi
0 and xj

0 are the ith and the jth components 
of x0, respectively. w, which is not a zero-diagonal matrix, is defined by vector x0 and 
Equation 2 unambiguously. We refer to w as the perfectly learned or the 'ideal' NN 
and it is of crucial importance that it remembers only one pattern x0. It is also postu-
lated that the NN's input vector xin = x(d) is decoded successfully if the learned NN 
transforms xin into the NN's output xout = x0; an additional 'grandmother' neuron, GN, 
checks this fact (GN is an integrate-and-fire coincidence neuron responding only to a 
previously defined precise combination of its inputs, x0).  

The weighted sum, hj, of all input signals vi received by the jth exit-layer neuron is  

= ,vwh iijj   ,,...,1 Ni =     (3) 

where vi = xi
in is an input/output signal of the ith entrance-layer neuron which plays 

the role of a fan-out that conveys its input, xin, to all exit-layer neurons. The sum hj 
may be interpreted as a current value of the jth exit-layer neuron's membrane potential 
or the jth component of the GN receptive field, RF (see Fig. 1). 

For the jth exit-layer neuron, its output, xj
out, is produced by the binarization of hj, 

using a rectangular response function with the neuron’s triggering threshold  (as one 
can see in Fig. 1, such a binarization, or spike generation in other words, could take 
place either in soma of exit-layer neurons or in dendrites of the GN): 
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where for hj =   the value xj
out = –1 is arbitrary assigned (cf. Table 1). 

 

 
Fig. 1. The NN architecture in the considered (a) and in a Hopfield-like (b) forms. Designa-
tions: small open circles, entrance-layer neurons (fan-outs); large open circle, GN learned to 
respond to x0; filled circles, exit-layer neurons; arrows, destinations of spike propagation; N, the 
number of neurons in a layer. Connections (the set of arrows) between entrance- and exit-layer 
neurons are a milieu where x0 is stored in the form of a balanced arrangement of weights, wij = 
±1. If in panel a the lengths of vertical arrows go to zero (conserving the original arrangement 
of all wij) then a fully interconnected Hopfield-like single-layer architecture will be obtained 
(panel b). That is why, roughly speaking, the NN in panel a may be called a 'two-layer Hopfield 
NN' (as in [7]) and it may be assumed that its entrance-layer neurons specify processes in den-
drite arbors of exit-layer neurons in part. 

For the jth exit-layer neuron, Equations 2 and 3 give: hj = wijx
i
in = xj

0 xi
0x

i
in

 = 
xj

0Q where Q = xi
0x

i
in is a convolution of x0 and xin, –N  Q  N. Of hj  = Qxj

0 fol-
lows that h = Qx0 or hj = ±Q. Thus, the patterns h have either original (as the pattern 
x0, h  = Qx0, Q  0) or reverse (reverse to x0, h = –|Q|x0, Q < 0) form. For patterns of 
the original form, the substitution of hj = Qxj

0 in the first row of Equation 4 gives  
Qxj

0 > . Consequently, xj
out = xj

0 if Q >  and  > –Q (cf. Fig. 2a) but any original h-
pattern (appearing for each possible Q, odd and even N, or intact and damaged NNs) 
will only be identified, if   0. That means that xout = x0 and an input xin is decoded 
(x0 is extracted) successfully, if Q(d) > ;   0 is Q0, a threshold of the discrete value 
of Q, and, simultaneously, the neuron’s triggering threshold. Hence, for perfectly 
learned intact NNs, NN and convolutional decoding algorithms are equivalent.  

Since Q(d) >  and D = (N – Q)/2 where D(d) is Hamming distance between x0 and 
x(d), the inequality D < (N – )/2 is also valid and NN, convolutional, and Hamming 
decoding algorithms mentioned are equivalent. As Hamming distance decoding algo-
rithm is the best (optimal) in the sense of statistical pattern recognition quality (that is, 
no other algorithm can better recognize x0 in xin), NN and convolutional algorithms 
described are also the best. 

The network in Fig. 1a is a kernel of an NN/convolutional local feature discrimina-
tion (peak identification) algorithm [8]; it is also a part of the NNAMM's assembly 
memory unit, AMU [7, Fig. 2], where a two-layer NN (a counterpart to real cortical 
networks) is repeatedly tested by different xin and the result of testing, xout, is verified 
by the corresponding GN located in additional reference memory (it is, probably, a 
counterpart to a neuron in the hippocampal regions). 

b)a)
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3   Negative Threshold NN Computations 

If  = 0, then for a false alarm (identification of x0 in noise, xr) or a free recall (recol-
lection of x0 initiated by noise, xr) probability, the NN decoding/retrieval algorithm 
gives either F = ½ (N is odd) or F = ½ – F(N) (N is even, F(N)  0 if N  ) and 
the more the  the less the F is [6]. As ROCs are functions of F, 0  F  1, from 
above results only a half of an ROC may be plotted. To complete the ROC, let us use 
the fact that the set of vectors analyzed, xin = x(d), is finite and contains n(d) = 2mCN

m 
items among which there are those producing original as well as reverse patterns h 
(RFs). For example, in case of determining F (m = N, a pure noise analysis), n(1) = 
2N. Thus, a complete ROC includes points reflecting recall/recognition probabilities 
obtained as a result of analysis of those xin that produce both original and reverse RFs 
and the latter are identified, using negative neuron thresholds. As many cortex neu-
rons may reverse the polarity of their RFs [9], this is a biologically plausible situation 
(from our consideration follows that for a given cell the form of its RF depends on a 
reference pattern x0, the number and arrangement of NN damages, and xin; original 
and reverse RF patterns are, in general, equally probable).  

Table 1. Rules for the binarization of components, hj, of neuron RFs according to the NN 
recall/recognition algorithm considered1 
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Table 1 specifies NN binarization rules needed to identify original and reverse 
RFs, h. P( ), the correct decoding probability of inputs xin which is valid for positive 
as well as negative , is defined by the equation P( ) = POr( ) + PRv( ); POr( ) and 
PRv( ) are decoding probabilities of vectors xin producing original and reverse RFs, 
respectively. If   0, then PRv( ) = 0; if  < 0, then POr( ) = POr(0). These assertions 
are illustrated in Fig. 2. 
                                                           
1 Equation 4, concerning the decoding/retrieval algorithm based on an intact NN, and corre-

sponding convolutional and Hamming algorithms (Section 2) are placed in cell A; for other 
versions of these algorithms see B; for damaged NNs, convolutional and Hamming algorithms 
should separately be derived for each specific arrangement of NN damages; if hj = 0, then 
Equations A, a, and b may give xj

out = –1 while Equations B, c, and d may give xj
out = 1. 
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Fig. 2. All possible types of 1D profiles (patterns) of neuron RFs, h, appearing when an intact 
NN with N = 5 (a) or the same one damaged (b) analyzes a complete set of 2N = 32 different 
noise vectors xin = xr (m = N = 5 ). For the damaged NN, two, (1,2) and (4,5), of its N2 = 25 
connections (entrance-layer neuron, exit-layer neuron) are disrupted: w12 = w45 = 0; for the 
intact NN (a) and the damaged NN (b) their original and reverse RFs are respectively shown as 
gray and white histograms, h = (h1,h2,h3,h4,h5); the NNs and their GNs (Fig. 1) are learned to 
remember the pattern x0 = (–1,1,1,1,–1), left-most histogram in panel a; arrows in panel b de-
note sets of patterns obtained by means of the splitting (due to NN damages) of corresponding 
h-patterns related to the intact NN (panel a); open circles denote the cases where hj = , the 
values of  considered as an example are shown as dashed lines; asterisks and triangles point 
out patterns identified by Equations A (   0) and a (  < 0) adopted from corresponding cells of 
Table 1; the digit near each pattern is the number of such patterns in a complete set of them; 
F( ) = POr( ) + PRv( ), false-alarm (or free-recall) probability at different values of . 

4   Comparison of NN and Analytic Computations 

NN (Sections 2 and 3) and analytic ([6], Equations 7 and 8) computations of decoding 
probabilities are compared in Table 2 where names of columns coincide with indices 
of NN binarization rules in Table 1. Equation A of Table 1 is used at   0 and  < 0; 
at  < 0 for intact NNs Equation A together with any of the equations in column 2 of 
Table 1 gives equivalent results, for damaged NNs it produces results depending on 
the choice of binarization rules (a, b, c, or d). There are essential distinctions between 
ROCs found for intact and damaged NNs: the former have a given form not depend-
ing on x0 [5]; for the latter even the number of values of F depends on the NN damage 
arrangements, reference pattern x0, and NN binarization rules (e.g., in Table 2 there 
are columns containing 9 and 10 different values of F, 0  F  20/32).  
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Table 2. F( ) calculated analytically and by NN algorithms defined in the legend to Fig. 2 (  = 
Q0, neuron thresholds; values of F( ) found in the figure are shown in bold face) 

Intact NN, N = 5 Damaged NN, N = 5, w12 = w45 = 0, x0 Q0 
or  Analytic, [6] A a b c d 

-6 32/32 32/32 20/32 20/32 20/32 20/32 
-5 31/32 31/32 19/32 20/32 19/32 20/32 
-4 31/32 31/32 18/32 19/32 18/32 19/32 
-3 26/32 26/32 14/32 18/32 14/32 18/32 
-2 26/32 26/32 13/32 14/32 10/32 14/32 
-1 16/32 16/32 10/32 13/32 10/32 10/32 
0 16/32 16/32 10/32 10/32 10/32 10/32 
1 6/32 6/32 6/32 6/32 6/32 6/32 
2 6/32 6/32 2/32 2/32 2/32 2/32 
3 1/32 1/32 1/32 1/32 1/32 1/32 
4 1/32 1/32 0/32 0/32 0/32 0/32 
5 0/32 0/32 0/32 0/32 0/32 0/32 

5   Conclusion 

For intact and damaged NNs, NN computations of decoding/retrieval probabilities are 
specified and studied at  < 0. Using different binarization rules, conditions are found 
under which such NNs produce ambiguous and unambiguous computation results.  
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Abstract. Delay activity (DA) is the increased firing rate of a cortical
population, which persists when the stimulus that induced it is removed.
It is believed to be the neural substrate for working memory, and as such
highly relevant for theories of cognition. The cortex is highly recurrent,
mainly excitatory, and finding stable attractors for DA at low firing rates
for realistic neuronal parameters has proven to be hard. Most models for
DA use recurrent excitation. Here a model with recurrent disinhibition is
presented, which is manifestly stable. This model requires a cortical cir-
cuit that is slightly more complex than circuits in models using recurrent
excitation, but circuits of comparable complexity have been found in cor-
tex. Since delay attractors can not be observed directly, it is important
to consider all theoretical possibilities.

1 Introduction

Delay activity (DA) is the increased firing rate with respect to baseline of a popu-
lation of neurons, which is caused by a stimulus and which persists once the stim-
ulus is removed. DA is believed to be the neural substrate of working memory and
therefore a good model of DA is of prime importance for models of higher cogni-
tion. Experimental results indicate that DA is in the order of 10-20 Hz, whereas
the normal cortical background rate is in the order of 1-10 Hz. Since the cortex
is a highly recurrent network, which consists primarily of excitatory neurons, this
is remarkable and it turns out to be challenging to create realistic models of cor-
tical dynamics of DA that remain stable at rates which are far below maximum
firing rates. The problem was clearly defined by Amit and Brunel [1] and their
model produced stable rates for a small stimulus sensitive excitatory population,
which was embedded in a larger local pool of excitatory neurons, and which where
both controlled by a local inhibitory pool. Delay activity was sustained by a higher
potentiation of efficacies between neurons in the stimulus sensitive population,
together with the contribution from the non-stimulus specific excitatory back-
ground, i.e. by recurrent excitatory feedback. Recently Latham and Nirenberg [2]
have shown that the model of Amit and Brunel (and others based on similar mod-
eling assumptions) produces reasonable rates, for biologically plausible neuronal
and network parameters, but that these rates are extremely sensitive to the choice
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of these parameters. To solve this problem Latham and Nirenberg extended the
original analyis from [1] considerably, and they went beyond the sparse coding
limit. In the sparse coding limit, the stimulus sensitive group of neurons is as-
sumed to make out such a small fraction of the local excitatory background, that
it does not influence the background populations significantly. Latham and Niren-
berg found that low rate, stable DA is possible beyond the sparse coding limit, i.e.
when DA influences the local cortical background rates significantly. Network pa-
rameters were chosen such that the local background state is effectively inhibitory
and an increase in DA is matched by an increase in the inhibitory background,
which ensures the systems stability.

This is a strong assumption: an attractor that corresponds to a specific work-
ing memory state may involve many DA populations, and the implication of the
model of Latham and Nirenberg is that the local background is increased signif-
icantly (and is effectively inhibitory) in the entire cortical area that sustains the
attractor. This may actually be what happens, but as Latham and Nirenberg
point out, attractors cannot be observed directly and inferences must be made
about their existence by comparing experimental data with model predictions.
It is therefore important to consider possible alternatives.

In this paper, I will argue that it is possible to implement delay activity
be recurrent disinhibition, rather than recurrent excitation and that the only
excitatory activity necessary in this model is feedfoward. A cortical circuit that
is implemented in this way is manifestly stable at low and plausible firing rates,
but is slightly more complex than the ones considered in [1] and [2]. In the
next section, I will introduce the model, and in the last section I will discuss
the differences between the various models for DA and their implications for
experimental data.

2 The Model

The main modeling assumptions are the same as in [1] and [2]: cortical neurons
receive a large and unspecific background from remote cortical areas, a local
excitatory and a local inhibitory population. The stationary population firing
rate of population i is given by:

νi = φi(μi, σi), (1)

where:

φi(μi, σi) ≡
{
τref,i +

√
πτi

∫ μi−θi
σi

Vreset,i−μi
σi

du [1 + erf(u)] eu2

}−1

(2)

μi = τi
∑

j

JijNijνj , (3)

σi =
√∑

j

τiJ2
ijNij . (4)
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τi, τref,i are the membrane time constant and the absolute refractory period,
respectively, in s, θi and Vreset,i the threshold potential and the reset potential,
respectively, in V, all for neurons in population i. Nij is the effective number of
neurons from population j seen by a neuron in population i and Jij the effective
efficacy from a spike in population j on a neuron in population i in V. These
equations form a closed system which can be solved in νi. In practice, one does
this by introducing a pseudo-dynamics:

τi
dνi

dt
= −νi + φ(μi, σi), (5)

and selecting initial values νi(0).
The circuit has a structure as shown in Fig. 1. The neuronal, network and

connectivity parameters are given in Table 1. Although the number of parameters
is quite large, many are already familiar from [1]: g, x, JEE , JIE , JEI and JII

are chosen such that an unspecific cortical background rate νext, which is input
to all populations, is replicated in the local excitatory pool E, while the the
local inhibitory pool I fires at a slightly higher rate. About half of the input
of any given neuron comes from the cortical background (x = 0.5). E and I
are stimulus insensitive, to a first approximation. A small number of neurons
are distinguished by the fact that they receive slightly more potentiated input
from the other neurons in E and they constitute a subset of E, denoted by DA.
Normally, they would fire at a higher rate than neurons in E, but it is assumed
that these neurons receive more potentiated input from a subset of I, denoted
by SUP and therefore they will typically fire at the same rate as neurons in
E. Neurons in SUP can be inhibited by neurons in DIS, which are typically
inhibited rather strongly by I and therefore do not influence SUP under non-
delay conditions. Hence, SUP will fire at the same rate as I, and DA will fire
at the same rate as E.

E

I

DA

DIS

SUP

Control

Fig. 1. Local circuit for delay activity. Excitatory populations are white, inhibitory
populations are grey. White (black) triangles indicate excitatory (inhibitory efficacies).
The relative sizes give a rough indication of the number of neurons involved.
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Table 1. The circuit parameters. τexc is the membrane time constant for the excitatory
parameters: E and DA, τinf for the inhibitory populations: I, SUP and DIS. All
populations receive an extra cortical background rate νext, with connection parameters
{xCE,JEE}.

Neuronal parameters
τexc = 20 ms, τinh = 10 ms, τref = 2 ms, Vreset = 0 mV, θ= 20 mV

Network parameters
CE = 20000, CI = 2000, x = 0.5, g = 5, νext = 3 Hz, νE = 3 Hz, νI = 5.1 Hz

xDA = 0.02, γDA = 1.25, xSUP = 0.02, γSUP = 3, xSUP,DA = 0.07, γSUP,DA = 3
xDIS = 0.1, γDIS =2.5, xC = 0.03, γC = 1.9, xDA,DIS = 0.1, γ2.2, γI,DIS = 2.2

Connectivity table
i E I DA SUP DIS CONT

NEi x(1 − xDA)CE (1 − xSUP )CI xxDACE xSUP CI 0 0
JEi θ/193.4 gJEE JEE JEI 0 0
NIi x(1 − xDA)CE (1 − xSUP )CI xxDACE xSUP CI 0 0
JIi θ/120 gJIE JIE JII 0 0

NDAi xCE (1 − xSUP )CI 0 xSUP,DACI 0 0
JDAi γDAJEE JEI 0 γSUP,DAJEI 0 0

NSUPi x(1 − xDA)CE CI xxDACE 0 xDISCI 0
JSUPi JIE JII JIE 0 γDISJII 0
NDISi CEx(1 − xC CI xxDA,DISCE 0 0 xCCE

−xDA,DIS)
JDISi JIE γI,DISJII γDA,DISJIE 0 0 γCJIE

Now consider the situation where DIS is stimulated rather strongly by an
external control signal and therefore will inhibit SUP, which results in turn
in the disinhibition of DA, which responds by a higher firing rate. Moreover,
DA excites DIS. Under no-delay conditions DA’s firing rate, which is equal to
that of E, is not able to overcome the hard inhibition of I on DIS. But, if it its
higher, disinhibited, firing rate is able to keep DIS active, even when the control
stimulus is removed, then the elevated firing rate of DA will persist and is delay
activity. This state will only return to the original one if DIS will be inhibited
again, for instance due to another control signal, or if one if the populations that
fire at an elevated rate (DA, DIS) is affected by adaptation.

3 Results

In Fig. 2 we see this happen: at t = 0.40 s, the rate of CONT is raised by an
external stimulus, which lasts for 0.05 s. The result is that for a brief while DIS is
firing at a high rate (approximately 70 Hz), which inhibits SUP. The inhibition
of SUP, allows the higher potentiated DA population to fire at a higher rate of
approximately 18 Hz. Its excitation of DIS is strong enough to keep it firing at
approximately 7 Hz, which is strong enough to keep SUP inhibited.

For this mechanism to function, the SUP neurons must inhibit the DA neu-
rons rather specifically. This is reflected in the relative high values of xSUP,DA
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E I DA

SUP DIS CONT

Fig. 2. For each histogram, the horizontal axis represents time t: 0 < t < 1 s. The
vertical axis represents firing rate f , 0 < f < 25 Hz. The peak in DIS briefly extends
to 70 Hz.

and γDA. The values for xSUP,DA and γSUP,DA are chosen such that DA fires at
rate νext in the non-delay condition, i.e. at the same rate as the rest of module
E. It is assumed that there is not much interaction between the SUP and the I
module. Other than the specific connections from SUP to E and from DIS to
SUP, there is no distinction between these neurons and neurons of I, and SUP is
assumed to fire at the same background rate as I, νI in the non-delay condition.
DIS neurons must inhibit the SUP neurons rather specifically, shown by the
relatively high values of xDIS and γDIS . Importantly, the DA neurons must not
be able to overcome the inhibition on DIS at the normal firing rates, but must
inhibit DIS when firing at delay rates. The values of the other x and γ parame-
ters is uncritical, and might have been taken zero instead. They have been chosen
to demonstrate that small interactions between other populations than the ones
described above, which are to be expected, do not disrupt the mechanism.

It turns out that parameter space is large and other reasonable values for
firing rates can easily be found: for example if one choses γDA = 1.13, γSUP,DA =
1.6 and γDA,DIS = 3.5 one finds delay rate at 10 Hz, rather than at 18 Hz, with
the other rates close to the ones shown in Fig. 2. The explanation is simple: the
lower value for γDA leads to a lower firing rate in case SUP is inhibited. γSUP

must be decreased, so as to keep DA firing at the background rate νE in the
non-delay condition, and the lower delay firing rate of DA must be compensated
by an increased potentiation γDA,DIS

The parameter space is substantially enlarged by inhibiting DIS. This ba-
sically decouples DA from DIS and SUP in the non-delay condition. If DIS
were firing at background rate νI , changes in the rate of DA will be fed back
to DA via DIS and SUP and it becomes harder to find parameters that give a
desired delay rate.

4 Discussion

This model uses almost the same modeling assumptions as [1]. Particularly im-
portant is the idea that every neuron receives a large number of input spikes,
even if it is not directly stimulated and only receives baseline rates from other
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neurons. I use this idea as well, but in a different way: the values in Table 1 show
that a moderately higher potentiation of a relatively small fraction of its input
synapses can lead to a firing rate which is significantly higher than baseline
activity. Hence, it is possible that spontaneous firing rates significantly above
baseline could emerge in such a population, if there is no compensating extra
potentiation of its inhibitory inputs. This possibility is crucial for the model de-
scribed here. A large number of parameters is necessary to describe local pools
E, I, which are firing at stable and low firing rates, but this part of the model
is the same as in [1] and [2].

The crucial departure from these models consists in the assumption that
there is structure in the I population, which functions as a disinhibition circuit.
Such disinhibition circuits have been shown to exist in cortex [3]. Although at
first sight this model involves a more complicated structure than [1] and [2], it is
simpler in dynamical terms. This is because there is only feedfoward excitation
in delay conditions, and in non-delay conditions the DA and SUP are integral
parts of the E and I populations, respectively. Moreover, it is not necessary
for DA neurons to couple to themselves. Finally, the inhibition of DIS under
non-delay conditions prevents even indirect feedback of DA onto itself.

To play a part in cognitive processes, working memory must be controlled: it
must be selected, information must be stored into it and retrieved from it, and it
is likely that the control of such operations is performed by gating circuits which
are very much like the ones described in this model. It is also well known that
inhibition plays a role in working memory and that disruptions of its function can
result in substantial cognitive impairment. This suggests that inhibition plays a
more important role than just rate control.

Earlier experience with large scale cortical modeling [4] has shown that stabil-
ity of dynamics in local circuits is essential to ensure stability in a large network.
This has been the prime motivation for this model, but in the end experiment de-
cides. The predictions of this model for experiments that involve DA are clearly
different from [2]: in our model only specific subsets of neurons fire at elevated
rates in the delay condition, whereas in [2] the entire area that sustains the at-
tractor is involved. In the former case it should be easy to find neurons that fire
at baseline activity, whereas this should be more difficult in the latter.
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Abstract. We investigated the connection between electrophysiological
properties of neural populations and their ability to discriminate between
the presence of one and two stimuli in a two-alternative forced choice
task. The model is based on maximum likelihood estimation in a stim-
ulus space that allows for the presence of multiple stimuli. Repetitive
presentation of virtual stimuli yields receiver–operator–characteristics
(ROC) curves and psychometric functions from noisy neural responses.
For the case of one-dimensional stimuli like the movement direction of
a random dot cloud we tested two coding strategies for discriminative
ability. It turns out that narrow tuning curves and a variability of tuning
widths within the neural population yields a high percentage of correct
responses in the simulated psychophysical discrimination task. These re-
sults are similar to findings about the localization of single stimuli by
neural populations: The examined encoding strategies lead to both an
improvement of single stimulus estimation and discrimination between
one and two stimuli.

1 Introduction

How does the brain efficiently represent information about the world? It is nowa-
days accepted that the brain processes information in a distributed way by neural
populations, which encode stimulus features such as direction, spatial frequency,
or contrast. Much literature has been devoted to determine the representational
accuracy of a single stimulus value by a neural population. For example, an
estimation-theoretic framework employing Bayes’ theorem or Fisher informa-
tion has proven to be effective for stimulus estimation [7] and investigation of
coding strategies that lead to increased representational accuracy. Aspects of
these strategies include trial-to-trial variability in the stimulus encoding proce-
dure (e.g. additive, proportional, or multiplicative noise, background activity)
[11], correlations in neural firing variability [1,11], width of tuning curves and
dimensionality of the stimulus that is being encoded [13]. Furthermore, research
has been performed to investigate hyperacuity phenomena in vision [8].

However, stimuli in the real world usually do not consist of only one direction
and the analysis in above-mentioned work is tailored for the case that only one
stimulus is presented at some time. Multiple stimuli may occur in the recep-
tive field of a neuron, especially in higher processing areas like visual area MT,
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Fig. 1. Encoding and decoding scheme applied in the simulations. The tuning curve of
a neuron is depicted in Figure (a). The mean response to two stimuli φ1 and φ2 is given
by the mean of the respective tuning curve values. The mean response f2(φ1, φ2) drives
a poisson process. Figure (b) in the lower right corner shows the response of a neural
population to the presentation of (φ1,φ2). The x–axis denotes the preferred direction
of the respective neuron. The likelihood for all possible stimuli in a compound stimulus
space is calculated (c) and the distance dML of the maximum to the main diagonal
is determined. Repetitions of the poisson process lead to the probability distribution
p(dML) in Figure (d).

where receptive field sizes allow for the existence of more than one stimulus at
the same time. For example, responses of neurons in macaque visual area MT
and psychophysical discrimination performance of humans to moving random
dot clouds were measured, where the dots were divided in two subpopulations
with different movement directions [9]. In a further experiment Dinse et al. [4]
investigated the tactile discrimination performance of humans to stimulation of
finger tips for stimulation by one or two needles. How can physiological and psy-
chophysical data be described theoretically, and which physiological constraints
influence perception?

To our knowledge, only few theoretical works tried to extend the framework
for the estimation of single stimulus values to the presentation of multiple stimuli.
Zemel et al. [12] showed that it is possible to adapt the encoding scheme of the
Bayesian approach to include multiple stimulus values at the same time and
estimate a whole stimulus distribution. Eurich [5] introduced a framework based
on Fisher-information in a compound space, where neural responses are described
by tuning curves which allow for the presence of two stimuli.

Here we perform a numerical Maximum Likelihood analysis in a compound
stimulus space [5] to determine receiver–operator–characteristics (ROC) curves
and psychometric functions for the discrimination between the presentation of
one and two stimuli.

2 Maximum Likelihood Estimation in a Compound Space

The coding and decoding scheme of our model is depicted in Figure 1. Let us
consider a population of N independent neurons that respond selectively to
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the direction of moving random dot clouds. Every neuron of the population is
characterized by its tuning curve f1(φ). The subscript denotes that f1(φ) is the
average response of the neuron to a single stimulus presentation φ. Tuning curves
are defined as

f1(φ) = Fmaxζ + Fmax(1 − ζ) exp
(

(φ− φopt)2

2 σ2

)
, (1)

and are functions of the favorite direction φopt, the width of the gaussian σ,
the maximal firing rate Fmax and the baseline ζ (0 ≤ ζ ≤ 1). In order to
model the mean response of a neuron to the presentation of a stimulus pair
(φ1, φ2) we assumed that the mean responses to the single stimulus values are
averaged: f2(φ1, φ2) = 1

2 (f1(φ1) + f1(φ2)). This assumption is taken over from
experimental findings in visual areas MT and MST of macaque monkeys [6] and
in cat area 17 [10]. The subscript of f2 now denotes that f2 is the average neural
response to the simultaneous presentation of two stimuli φ1 and φ2. The mean
firing rates of the neurons drive poisson processes which generate randomized
responses n = (n1, . . . , nN) of a neural population upon the presentation of
(φ1, φ2) (see Figure 1b). The probability of observing the response n in the time
window T is given by

P (n|φ1, φ2) =
N∏
i1

(f2,i(φ1, φ2)T )ni

ni!
e−f2,i(φ1,φ2) T (2)

Now we can determine the stimulus pair (φ1,ML, φ2,ML), which is most likely
to have elicited the response n by using the knowledge about how our model
generated the responses to the stimulus: We perform a Maximum Likelihood
(ML) estimation in the space of all possible stimulus combinations (φ1, φ2).
Note that the case φ1 = φ2 corresponds to the presentation of a single stimulus
φ. For single stimulus presentations the distance dML = φ1,ML − φ2,ML of the
stimulus estimate from the main diagonal in the compound space is determined.
By repeating the realization of the poisson process several times we estimate
the probability distribution p(dML) for single stimulus presentations. We also
determined p(dML) for stimulus pairs (φ1, φ2) with d = |φ1 − φ2|, which are
centered around the value of the single stimulus. ROC curves [2] can be calculated
from the comparison of the probability distributions for presentation of φ (single
stimulus) and (φ1, φ2) as a function of d. The informational content of the ROC
curves is summarized by the psychometric function, which denotes the fraction
of correct responses in a two-alternative forced-choice task.

3 Results

Figure 2 shows likelihood distributions for a neural population of 50 neurons
with equally distributed preferred directions φopt, tuning width σ = 30 deg,
maximal firing rate Fmax = 40 Hz, baseline ζ = 0. The likelihood values are
color–coded for stimuli (φ1, φ2) with d = 0, 8, 16, 24 deg from (a) to (d). The
stimulus space is restricted to φ1 ≥ φ2. Large likelihood values are shifted from
the main diagonal for increasing d.
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Fig. 2. Maximum likelihood estimation in the compound space spanned by (φ1, φ2).
Likelihoods were averaged for 50 repetitions of the Poisson process and rescaled to fit
the range [0,1]. The likelihood values are color–coded. In (a) the likelihood estimation is
presented for a single stimulus presentation. Likelihood estimates for two stimuli with
distance d=8,16,24 deg are shown in (b)–(d), respectively (neural population: N=40,
σ=30 deg, ζ=0, Fmax=40 Hz).

3.1 Discrimination Ability of a Neural Population

In Figure 3a ROC curves are shown for the neural population used for Figure
2. For a single ROC curve the ability to discriminate between a single stimulus
φ and a stimulus (φ1, φ2) with a fixed d is examined. The two stimulus condi-
tions are represented by their probability distributions p1(dML) und p2(dML)
(see Fig. 1d). In the ROC curves hit rates are plotted as a function of false
alarms, where hit rates are defined as the probability for correct classification of
a single stimulus φ and false alarms are the probability of classifying a stimulus
(φ1, φ2) as single stimulus (for details about the ROC analysis method see [3]).
The area below an ROC curve corresponds to the fraction of correct decisions
in a two-alternative forced choice task and is plotted in Figure 3b as a function
of the distance d of the respective (φ1, φ2) pair. A fraction correct of 0.5 corre-
sponds to random decision. The sample population exhibits a strong increase of
classification quality as a function of d.

3.2 Coding Strategies for Discrimination

We used our framework to test different coding strategies. First we examined the
impact of the tuning curve baseline ζ on psychometric functions. The parameters
of the neural population were N = 180, Fmax = 40 Hz, σ = 30 deg. ζ was varied
in the range 0 − 0.5. The result depicted in Figure 4a shows that the baseline
has a negative impact on classification performance and that this influence is
considerably large: The psychometric function for ζ = 0.5 (solid grey line) is
below the light grey dotted line, which denotes the function for a population
with N = 20 and ζ = 0, where other parameters have not been altered. Figure
4b shows the dependency of psychometric functions on the tuning width σ (N =
180, Fmax = 40 Hz, ζ = 0). Obviously, narrow tuning curves are better suited
for the discrimination task. In a third examination we tested the influence of
jittered tuning curve widths on classificaton performance. The widths σ of the
tuning curves were varied randomly around a mean value σmean according to
a gaussian distribution with standard deviation σj . Figure 4c shows that the
stronger the jitter the better the discriminative performance.
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Fig. 3. (a) ROC curves for the population used in Fig.2. Each ROC curve plots hit
rates as a function of false alarms for the discrimination between a single stimulus
φ and two contemporaneously presented stimuli (φ1, φ2). Different curves result from
different distances d. (b) Psychometric function resulting from the ROC curves in (a):
Every point of the function denotes the area below an ROC curve.
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Fig. 4. Influence of different parameters in the encoding scheme on psychometric func-
tions. (a) shows the influence of baseline firing rate of the neurons. The light–colored
dotted line shows the psychometric function for a population of N=20 neurons, while
the solid curves were calculated for N=180. Note that introducing a baseline of 20 Hz
(ζ = 0.5) and reducing the neural population from N=180 to N=20 results in similar
impairment of discriminative ability. Figure (b) shows the influence of tuning width
on discrimination: Narrow tuning curves perform better than large ones. Figure (c)
shows the influence of jitter of tuning width around a fixed mean value: Strong jitter
performs better than uniform tuning width.

4 Discussion
We examined the discrimination between the presence of one or two stimuli
at the same time by a neural population in a model which employs Maximum
Likelihood estimation in a compound space (φ1, φ2). The model proved to be
well–suited for the topic in combination with an ROC analysis. We found that
discriminative ability is strongly impaired by an increase of the baseline ζ of
the tuning curves: For ζ = 0.5 the discrimination was worse than obtained by
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reducing the number of coding neurons from 180 to 20. We also found that nar-
row tuning curves are better suited for discrimination than large ones. Jitter
of tuning width within the population also leads to better classification per-
formance. These results are all in perfect accordance to the findings for the
localization of single stimuli [11], indicating that the same coding strategies lead
to an improvement for both stimulus estimation and discrimination between one
and two stimuli. More coding strategies can be tested as the influence of stim-
ulus dimension, noise correlations, and different noise models. It would also be
interesting to find a link between our numerical analysis and results obtained
with Fisher information for the same compound space [5]. Finally, our model
extends the framework for single stimulus estimation, but is subjected to a sim-
ilar constraint by assuming a fixed number of stimuli in the analysis. For the
general case, where the number of stimuli is not fixed, reconstructions of a stim-
ulus distribution can be performed as done in [12]. In that case the examination
of coding strategies has to be adopted for the stimulus distribution estimation
method resulting in other measures for discriminability.
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Abstract. Humans can recognize biological motion from strongly impoverished 
stimuli, like point-light displays. Although the neural mechanism underlying 
this robust perceptual process have not yet been clarified, one possible explana-
tion is that the visual system extracts specific motion features that are suitable 
for the robust recognition of both normal and degraded stimuli. We present a 
neural model for biological motion recognition that learns robust mid-level mo-
tion features in an unsupervised way using a neurally plausible memory-trace 
learning rule. Optimal mid-level features were learnt from image motion se-
quences containing a walker with, or without background motion clutter. After 
learning of the motion features, the detection performance of the model sub-
stantially increases, in particular in presence of clutter. The learned mid-level 
motion features are characterized by horizontal opponent motion, where this 
feature type arises more frequently for the training stimuli without motion clut-
ter. The learned features are consistent with recent psychophysical data that in-
dicates that opponent motion might be critical for the detection of point light 
walkers.  

1   Introduction 

Humans can recognize biological motion (e.g. human actions like walking and run-
ning) accurately and robustly; even from stimuli consisting only of a small number of 
illuminated dots that move like the joints of a human actor (“point light walkers”) [6]. 
The neural mechanism that underlies the robust generalization from normal to point-
light stimuli remains largely unclear. A possible explanation is that the brain extracts 
specific motion features that are shared by both stimuli classes. The nature of these 
features is unknown, and it has been discussed whether they are based predominantly 
on motion or form information [7]. In a recent study, combining methods from image 
statistics and psychophysical experiments, it was shown that robust recognition can be 
accomplished based on mid-level motion features [2].  

Neurophysiological studies in monkeys and imaging studies in humans suggest that 
the perception of biological movements and actions involves both the ventral and the 
dorsal visual processing stream (see [5] for a review). A recent computational model 
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for biological motion recognition tries to account for a variety of the existing experi-
mental data using relatively simple physiologically-plausible mechanisms [5]. The 
model is based on a feed-forward architecture which has been derived by extending a 
“standard model” (SM) for the recognition of stationary objects in the visual cortex 
[8]. Like other models for object recognition in the cortex [4, 8], our model represents 
complex movements in terms of learned prototypical patterns that are encoded by 
model neurons that respond to complex body shapes.  

We apply in this paper a new biologically inspired algorithm, the “Memory Trace” 
(MeT) learning rule, to optimize model mid-level features for motion recognition. 
Originally the MeT algorithm was devised for the learning of mid-level in the context 
of the SM [9]. It has been demonstrated that by application of this learning algorithm 
the detection performance of the model for real-world stimuli could be substantially 
improved, resulting in performance levels which exceed the ones of several state-of-
the-art computer vision systems for object detection [9]. Here we use the MeT algo-
rithm in the context of a model for the recognition of biological movements and ac-
tions in order to optimize mid-level motion features for the detection of walkers.  

Our paper first describes the model and the learning algorithm. We then present the 
results for the detection of walkers and show that learning of optimized mid-level 
motion features improves the performance, in particular in presence of motion clutter.  

2   Methods 

2.1   Model for Biological Motion Recognition 

Our model corresponds to the motion pathway of the model in [5]. It consists of a 
hierarchy of neural detectors that are selective for motion features with different lev-
els of complexity (fig. 1a). The first level of the model is formed by local motion 
energy-detectors whose responses are derived from the optic-flow fields of the stimuli 
assuming physiologically plausible tuning characteristics (see [5]). The model con-
tains detectors for 70 x 43 different spatial positions and for 4 different directions. It 
turned out that for the feature learning it is critical that the outputs of the motion en-
ergy units are temporally smooth. We assume a simple linear low-pass filter with a 
time constant of τ = 228 ms, corresponding to the differential equa-
tion ( ) ( ) ( )u t r t u tτ = − , where r(t) is the motion energy signal and u(t) the detector 

output. In the second layer, motion simple (MS2) units encode prototypical motion 
features of intermediate complexity. They combine the responses of the motion en-
ergy detectors with different direction preferences on the previous layer within a lim-
ited spatial region. These neurons are modeled by Gaussian radial basis function 
(RBF) units. The centers ck of these RBFs are determined by the MeT algorithm. The 
responses of these neural detectors depend on the similarity of the local motion en-
ergy patterns from the present stimulus, that is given by the vectors ek, and these 

learned centers through the relationship: 2 2exp( / 2 )
k k k

x = − σe c . For modeling posi-

tion-invariant recognition, each mid-level motion detector is realized multiple times 
centered at different random spatial locations. Motion complex (MC2) units pool the 
responses of all mid-level motion detectors of the same type within a limited spatial 
receptive field using a MAXIMUM operation. The responses of these units are par-
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tially position-invariant. They define the input of a classifier that detects the presence 
or absence of a walker in the stimulus sequence. We tested different types of classifi-
ers (cf. section 2.4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. a) Illustration of our model. See text for explanation. b) Activations of the local motion 
detectors tuned to 4 different directions (white arrows) for a walking frame shown as grey-
coded maps. c) Optic-flows, with directions encoded as grey levels, for two positive (top) and 
two negative (bottom) examples. Zero motion energy is encoded by the dotted background 
(white dots on black). 

2.2   “Walker-Detection” Task 

The performance of our system was evaluated using a walker detection task. We used 
stimuli with uniform background, and with motion clutter. Stimuli were generated 
from five actors whose joint trajectories were tracked from videos (one gait cycle with 
42 frames) [5]. The walking sequences of five different actors were used as positive 
examples, and other human actions (e.g. running, boxing, jumping) as negative exam-
ples. We selected randomly different sets of these sequences for training and testing 
the system. To introduce motion clutter for the same stimuli we added 100 moving 
squares (3x3) at random positions in each stimulus frame, defining random motion 
with uniform distribution of motion energy over the different directions.   

2.3   Feature-Learning with the “Memory Trace” (MeT) Algorithm 

Motion features with intermediate complexity were learnt using the MeT algorithm 
[9] (cf. Fig. 1a). The MeT algorithm is a biologically inspired mechanism for the 
unsupervised learning of frequently occurring features. The algorithm is inspired by 
previous work [3] that exploits a simple trace rule for the learning of shift invariance. 
Our trace rule assumes that the MS2 units keep record of their recent synaptic activity 
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by an internal memory trace signal. In addition, it is assumed that the different  
features compete for the activations that a given stimulus produces. Successful activa-
tion of a feature results in an increase of its memory trace signal. Otherwise, the trace 
signal decays. Features whose memory trace falls below a fixed threshold are elimi-
nated, and replaced by new features. New features are generated by choosing a ran-
domly positioned local region in the visual field and taking the outputs of the motion 
energy detectors within this region for the present stimulus as feature vector.  
(See [10] for details). Learning is online since new features can be selected for each 
training step. 

2.4   Classification Stage 

To test the validity of the learned mid-level features for the detection of biological 
movements, we classified the outputs of the MC2 layer using different types of classi-
fiers: 1) The “Maximally Activated Unit” (MAU) classifier that is biologically plausi-
ble. It corresponds to a radial basis function unit whose center is trained with the 
output signals from the MC2 level for the learned movements. If the activation of this 
unit is higher than a particular threshold the stimulus is classified as the particular 
action. Otherwise the classification result is negative. 2) k-Nearest Neighbor (k-NN), 
a standard technique for classification, was also implemented using RBF units whose 
centers were learned in the same way as the centers of the MAU classifier. During 
classification, the label of a test example is set to the label of the majority of the k 
nearest neighbors of the training set (we tested for k = 1 and k = 5). 3) Support Vector 
Machine (SVM) classifiers [13], as used in many recent machine vision systems (e.g. 
[9]). Although SVMs are not biologically plausible, they provide a typically well-
performing classification back-end, which is useful to derive a measure for the quality 
of the learned features. 

3   Results 

Performances (Area Under the Receiver Operator Characteristic (ROC) curve) for all 
classifiers.are shown in Table 1 using the MeT algorithm (MeT) without and with 
motion clutter in the background (Clutter). For comparison we also show the results 
for stimuli in motion clutter when the mid-level features were defined by selecting 
randomly positioned regions from the stimuli (Rand)1.  

Fig. 2 (I) and (II) show the “best” features for the walker detection task for the 
simulations without and with motion clutter. An important observation is that many of 
these best features are characterized by horizontal opponent motion. The ROC curves 
for the three test conditions are shown in Fig. 2 (III).  Performance after training with 
the MeT rule without clutter is almost perfect. This is not only true for state-of-the-art 
classifiers but also for simpler classifiers such as NN and MAU. Even in presence of 
clutter the MeT rule is significantly better than for randomly selected features. (The 5-
NN outperforms SVM classifier, probably due to overfitting). This robust perform-
ance is consistent with recent results from the shape pathway [9]. It suggests a key 
                                                           
1 Since we were interested mainly in recognition with cluttered background, we did not com-

pare the MeT algorithm with a random selection of features for the other case. 
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role for plasticity in intermediate and higher visual areas of cortex for the realization 
of robust recognition. 

Table 1. Performances (Area under the ROC) of the system for walker detection. Bold numbers 
indicate the classifier that gives the best performance for each experiment 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. I) Best four features for the stimuli without and with (II) clutter. Features were ranked 
according to the area under the ROC (numbers on top) computed separately for each individual 
feature. Features are plotted as optic-flow fields over the corresponding spatial windows.  Black 
arrows indicate the values for local motion detectors that are selective for motion from left to 
right, and grey arrows indicate detectors selective for motion in opposite direction. The arrow 
length indicates the corresponding detector activation. III) ROC curves for the system with 
SVM classifier, for the MeT algorithm without (a) and with clutter (b), and for random selec-
tion of features (c).  

4   Discussion 

We have presented simulations using local learning rule for the optimization of mid-
level motion features in a hierarchical model for the recognition of biological move-
ments. The most important contribution of this rule compared to other approaches 
(e.g. [11]) relies in its neural plausibility. We found that learning of optimized mid-
level features substantially improves the performance of the model, in particular in 
presence of motion clutter. Similar results have been obtained with a model for shape 
processing in the ventral pathway using the same learning rule. This suggests a key 
role of visual experience and plasticity throughout the whole visual cortex. Further 
work in this direction should implement neurally plausible mechanisms for the classi-
fication stage. 

In addition, we found that for the detection of walkers, our algorithm learned opti-
mized motion features that are characterized by horizontal opponent motion, for train-
ing with and without motion clutter. In principle, the same technique could be applied 

Performances (Area Under the ROC) 
Mode MAU SVM k-NN (k=1) k-NN (k=5) 

MeT 0.977 0.999 0.981 0.962 
MeT + Clutter 0.869 0.912 0.957 0.972 
Rand + Clutter 0.726 0.795 0.876 0.890 
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to optimize form features for the recognition of biological movements from body 
postures [2]. The importance of opponent motion features seems to be supported by 
psychophysical an imaging results that show that opponent horizontal motion might 
be a critical feature for the recognition of walkers, and degraded point light stimuli. 
Electrophysiological experiments indicate the existence of opponent motion-selective 
neurons, e.g. in monkey areas MT and MST [1, 12].  
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Abstract. The Computational Neuroscience has as main goal the un-
derstanding of the computational style of the brain and developing arti-
ficial systems with brain capabilities. Our paper belongs to this field. We
will use an Hebbian neural ensemble which follow a non-linear differen-
tial equation system namely Hebbian System (HS), which represent the
neurodynamics and the adaptation in accordance with the Hebb’s postu-
late, to study the influence of the NO diffusion in the Hebbian learning.
Considering that the postsynaptic neurons provide retrograde signals to
the presynaptic neurons [1] we suggest the NO as a probable biological
support to the Hebb’s law propounding a new mathematical formulation
of that learning law, the diffusive Hebb’s law. We will present a study
of the behavior of the diffusive Hebb’s law using a Diffusive Hebbian
System (DHS).

1 Introduction

The notion that underlying mechanisms of the learning processes are based in
some modifications at cellular level, which depend on correlation activities, dates
back to neural habit law [2]. Afterward, Tanzi [3] and Ramon y Cajal [4] were
whom suggested that learning arises from synaptic change. This conception pre-
cedes both biological learning and the neural network models of learning. In both
cases it is necessary to establish exact connections between the neurons which
are participating in the process. Later, Hebb gave the first explicit statement of
the physiological learning rule for synaptic modification in 1949 [5].

The main objective of our work is studying the influence of the NO diffusion
in the Hebbian learning and propounding a new mathematical formulation of
Hebb’s law. We suggest the presence of the retrograde cellular messenger NO
as a probable biological support to the Hebb learning law. NO is a free radical
gas, which once synthesized, it freely diffuses through membranes affecting all
neighbouring cells, including the pre-synaptic one and the cell that released
it, and having an influence on the long-term potentation (LTP) [6] and in the
formation of long-term memory (LTM) [8]. Because of this we must take into
account a new conception of the meaning of the Hebb law; it is not a correlation’s
postulate any more.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 247–253, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



248 C.P.S. Araujo et al.

We will work with Hebbian neural ensembles which follow a general mathe-
matical scheme corresponding to non-linear differential equation systems namely
Hebbian Systems (HS) and an extension, the Diffusive Hebbian Systems (DHS),
which represent the neurodynamics and the adaptation in accordance with the
Hebb’s postulate [5]. We study the dynamics of these systems, in rest state and
when they receive constant inputs, using bifurcation theory. Our developments
belong to Global Study Framework of Diffusion messenger NO (GSFNO) specif-
ically in the Theoretical Framework (TF) [6].

2 The Nitric Oxide Effect in the Hebbian Learning

2.1 Neural System Model

The study of the underlying mechanisms in the learning processes, in Biological
and Artificial Neural Network (BNN/ANN) have been performed using a model
of simplified Neural System (NS) which consists of monodimensional Hebbian
neural ensembles, Fig. 1a. The pre-synaptic ensembles with activation states
{SA} and inputs {XA}, and the postsynaptic ensembles with activation states
{SB}, {SC}, {SD}. The strengths of wire connections and lateral interactions
are {WAB} and {UCB}, respectively. The wireless connections are the virtual
(diffusive) weights {VDB}, which establish the Diffuse Neighbourhood (DNB) of
neurons [6], which synthesize NO, in the post-synaptic side. We are considering
a 2-nearest neighbours DNB.

Fig. 1. a) Neural System Model (NS). b) Neural Micro-surround used in the study.

The neurodynamics and the learning processing of this system, without lat-
eral interactions, are mathematically represented by Hebbian System, Eq. (1), in
accordance with the Hebb’s postulate.

ṠB = f(SB, SA,WAB)
ẆAB = h(WAB, SA, SB)

(1)
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We propose an extension of this HS, the Difussive Hebbian System (DHS),
introducing the NO effect, Eq. (2).

ṠB = f(SB, SA,WAB) + g(SB, SC , V DB)
ẆAB = h(WAB, SA, SB, ΔCBA, ΔCBD)

V̇ DB = θ(V DB, SA, SB, CB)
ĊB = −λCBCB −DB

∑
i ΔC

BD
i −DBAΔC

BA
i + F

(2)

In this paper we will dedicate our efforts to study the Hebbian learning process-
ing in the DHS, postponing the analysis of a complete DHS for future works.

2.2 Analysis of the Diffusive Hebb’s Law

The dynamics of weights for the Hebbian systems responds to the Hebb’s law [5].
There is not direct evidence of the cause of the postulated change of the efficiency
between two connected cells, A and B. We propose as a probable biological sup-
port to the Hebb’s law the presence of a retrograde cellular messenger NO. Our
developments try to show that the Volume Transmission (VT), by means of NO
diffusion, is capable to transport the appropiate information from post-synaptic
to pre-synaptic neuron cooperating in the emergence of Hebbian learning. There-
fore, the NO may underlie a form of non-local, non-synapse-specific learning and
a new non-correlation character of Hebb’s law. This new conception of the Hebb’s
rule implies a reformulation for its general mathematical expression, where the
gradient of NO concentration between post- and pre-synaptic sides must be con-
sidered as a new variable, with an important role in the learning process. We
started from the generalized Hebbian algorithm activity product rule with a
quadratic weight dynamics [2], [6]. We will study the NO effect not only as a
neuromodulatory influence [7], [9], but embodiments the information from post-
synaptic side as a function of the gradient of NO concentration between post- and
pre-synaptic side, Eq. (3). and considering that it is not a correlation expression
and it would represent a non-synapse-specific learning.

ẆAB = c[ΔCBA]{αφ[SA]−WAB} (3)

Where α is the learning rate and φ[SA] is a function of the pre-synaptic
neuron activation. We have empirically obtained a simple and effective ΔCBA

dependence for the function c[ΔCBA], Eq. (4). In this way the final expression
for diffusive Hebb’s law is given in Eq. (5).

c[ΔCBA] = ΔCBA/ΔCBA
max (4)

ẆAB = {ΔCBA/ΔCBA
max}{αφ[SA]−WAB} (5)

Where ΔCBA
max is a constant with the maximum value which is reached for

the gradient during the whole process of weight modification.
For studying the behavior of the diffusive Hebb’s law we define our model

of NS containing the pre- and post-synaptic neuron ensembles with five neurons
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Fig. 2. Results of the Mode A. a) dynamics of weights. b) ΔCBA/ΔCBA
max in the neural

micro-surround (1-1) (solid line), and profiles of NO in the post-synaptic (dash-dot line)
and pre-synaptic (dashed line) compartment of the neural micro-surround (1-1). c) NO
concentration in post-synaptic neural ensembles. d) NO concentration in pre-synaptic
neural ensembles.

each one and with a constraint, only the post-synaptic neural ensemble consists
of NO neurons, that is to say, neurons which can synthesize NO. In our devel-
opments we will use the compartmental model of NO diffusion [10], where a
theoretical abstraction denominated compartment is the principal element for
the diffusion process and it has its biological equivalent in a neuron. Further-
more, we can define a framework for studying the evolution of hebbian weights,
namely neural micro-surround i-j, Fig. 1b, where i belongs to the post-synaptic
area and j to the pre-synaptic area. The neural micro-surround is the minimal
set of compartments containing all neurons and synapses implicated in a diffu-
sion process. The concentration of NO and the different modes for NO spreading
are associated to each compartment and neural micro-surround, respectively.

We will consider three different modes for spreading the NO from post-
synaptic to pre-synaptic neural ensembles in the NS: Mode A, B and C. The
information environment of our experiments consist of ten different input data,
which are randomly presented to the NS, five times during five seconds. A bio-
logical constraint in the NO neurons is the existence of a refractory time for the
synthesis processing. In our study all experiments have been performed consid-
ering NO saturation in time.

Mode A.- The NS is considered as an isotropic environment for NO diffusion,
where the DNB and Diffusive Hybrid Neuromodulation (DHN) [6], effects are
present. In this mode the NO concentration reached by the pre-synaptic neurons
is the same. The NO diffusion is represented by the Eq. (6).

ĊB
i = DB{CB

i+1 + CB
i−1 − 2CB

i } −DBA{CB
i − CA

j } − λCBCB
i + Fi

ĊA
j = DBA{CB

i − CA
j } − λCACA

j

(6)
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Fig. 3. Results of the Mode B. a) dynamics of weights. b) ΔCBA/ΔCBA
max in neural

micro-surround (1-1) (solid line), and profiles of NO in the post-synaptic (dash-dot line)
and pre-synaptic (dashed line) compartment of the neural micro-surround (1-1). c) NO
concentration in post-synaptic neural ensembles. d) NO concentration in pre-synaptic
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Where the C are the NO concentrations in the compartments, DB and DBA

are the diffusion constants of the NS, the terms with λCB and λCA represent
the self-regulation of NO production and Fi is the NO synthesis function which
depends on activation state of the NO neuron with a maximun value of one.

The dynamics for this mode A are given in the Fig. 2. We can observe the
information transported by the NO from post-synaptic to pre-synaptic side pro-
viding a slighter evolution of weight than the classical Hebb’s law. When the
NO saturation in time is considered, complex structures emerge.

Mode B.- The NS is considered as an anisotropic environment for NO diffusion.
This anisotropy is present only in the pre-and post-synaptic gap of the neural
micro-surrounds and it will be represented by the diffusion constant which is in
terms of the correlation of neural activities. The DNB and the DHN effects are
present and the NO diffusion is represented by the Eq. (7).

ĊB
i =DB{CB

i+1 + CB
i−1 − 2CB

i } −Ni

∑
j g[S

B
i ]φ[SA

j ]{CB
i − CA

j } − λCBCB
i +Fi

ĊA
j = Nig[SB

i ]φ[SA
j ]{CB

i − CA
j } − λCACA

j

(7)
The dynamics for this mode B are given in the Fig. 3. We can observe the

emergence of sharper complex structures than in mode A and the information
transported by NO is less homogeneous than in that mode. The origin is the
anisotropy of the NS.

Mode C.- The NS is considered as an anisotropic environment for NO diffusion
in the same structural level than the mode B. This anisotropy will be in terms
of a constant value (F/3). The only effect present in this mode is the produced
by DHN. Here the NO diffusion is represented by the Eq. (8).
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ĊB
i = DB{CB

i+1 + CB
i−1 − 2CB

i } − {(Fi/3)− CA
j } − λCBCB

i + Fi

ĊA
j = {(Fi/3)− CA

j } − λCACA
j

(8)

The dynamics for this mode C is more similar to the mode A dynamics and
the weight dynamics is affected because the DNB effects are not considered. All
comparative studies between classical Hebb’s law and new Hebb’s law supported
by retrograde neuromessenger NO effect, can be observed in the Fig. 4. We
can conclude that the diffusive Hebb’s law presents a best learning capacity in
whatever analised mode, Fig. 4b.

3 Conclusions

In this paper we have reached important conclusions on the new kind of neural
communication, VT, by the NO and its effect on Hebbian learning, in both
biological and artificial neural networks. We have confirmed our preliminary
studies on the establishment of a new and more general framework of neural
learning, which is based on synaptic and diffusive terms [6].

We have showed that the NO diffusion effect in a Hebbian neural system
can be an underlying mechanisms for supporting the Hebb’s learning law, show-
ing the capacity of NO diffusion for the transmission of neural information. We
have proposed a new mathematical expression for the Hebb’s learning law, the
diffusive Hebb’s law, with points of stable convergence in the space of weights.
This new expression embodiments the post-synaptic effects as a function of the
gradient of NO concentrations between post- and pre-synaptic side. From the
comparative study between the classical Hebb’s law formulation and the diffu-
sive Hebb’s law we can deduce that our proposal is biologically more plausible
presenting best learning capacity. We confirm the non-local and the non-synapse-
specific character of the Hebbian learning. We have also study the effect of NO
saturation in time in the learning processing and in the emergence of complex
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neural structures. We have confirmed the important effect of the DHN in the
neural architecture and learning processing. We have demonstrated the goodness
of our compartmental model of the NO diffusion and the theoretical abstraction
of the compartment, for explaining the diffusion process of NO in relation to
learning.
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6. Suárez Araujo, C.P. Study and Reflections on the Functional and Organisational

Role of Neuromessenger Nitric Oxide in Learning: An Artificial and Biological
Approach. (2000). Computer Anticipatory Systems, AIP 517, 296-307.
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Abstract. It is shown that deterministic (chaotic) systems can be used
to implicitly model the randomness of stochastic data, a question arising
when addressing information processing in the brain according to the
paradigm proposed by the EC APEREST1 project. More precisely, for a
particular class of recurrent artificial neural networks, the identification
procedure of stochastic signals leads to deterministic (chaotic) models
which mimic the statistical/spectral properties of the original data.

1 Introduction

Recently amethod for the “chaos-basedmodelling of diversity and synchronisation-
based categorisation of approximately periodic signals” has been proposed [1]; this
method combines theoretical results about generalised synchronisation of chaotic
systems [2, 3] with nonlinear dynamical systems identification [4] and, by means
of the implicit diversity and self-similarity of chaotic trajectories, exploits chaos to
represent the uncertainty of signals and, afterwards, chaos synchronisation for cat-
egorising them into distinct classes. Clearly, key point of this method is the identifi-
cation of a chaotic system given example data: the identified model must implicitly
account for data diversity via the self-emerging chaos diversity [4].

Founding on these results, the European project APEREST1, out of which
we are presenting some results here, investigates whether or not neuronal erratic
(chaotic) behaviour is similarly involved in representing diversity. Under such
hypothesis, neuronal chaos is required to model knowledge and stimuli diversity
also when this diversity is non deterministic.

Here, also in view of building new bio-inspired information systems, we ad-
dress this point by resorting to artificial modelling; hence, the above key re-
quirement translates to the need for chaos to emerge in artificial neural net-
works also when identifying random processes. In particular, we investigated
this point considering a recently proposed recurrent artificial neural network
(RANN) paradigm [5, 6], called either “Liquid State Machine”(LSM) or “Echo
State Networks” (ESN). Since this paradigm has been argued to be biologically
plausible, it has been a good candidate for artificially investigating the emer-
gence of chaos, when randomness is to be modelled, keeping a foundation of
biological plausibility.
1 APEREST: IST-2001-34893 and OFES-01.0456. http://aperest.epfl.ch

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 255–260, 2005.
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2 The “Echo State Networks” (ESN)

The general topology of ESN [7] is as shown in Fig. 1 and has state equations

xk+1 = αxk + β tanh(Wintxk +Wbackyk +B) (1)
yk = tanh(Woutxk) ; (2)

where the value at the nodes at time k is given by the state vector

xk =
[
x1,k, x2,k, . . . , xn,k, . . . , xN,k

]T ; (3)

the tanh(·) is meant elementwise, i.e. the activation function is a sigmoid, scaled
by β and its arguments are the contributions of the other nodes and a bias B;
and, finally, the memory of the nodes is controlled by the parameter α.

ESN are recurrent artificial neural network (RANN) consisting of a layer of
internal nodes and an output node, in turn fed back into the internal nodes. The
internal nodes are interconnected with weights held in the matrix Wint, while
the feedback from the output is weighted by Wback. In the ESN paradigm these
weights are determined once in the beginning, independently of the application,
and remain fixed; which is the novelty of ESN compared to traditional RANN
[5, 7]. During the identification, only the output weights (Wout) are trained.

To identify the model of a given time series the output connections are broken
and, instead of the signal at the output node, the training sequence ytrain is
fed into the network generating a state sequence Xtrain. The identification is
performed solving the output equation (2) for Wout [7]. If the activation function
is invertible, this is performed by means of a least square regression, i.e.

Wout = atanh(ytrain)XT
train

(
XtrainXT

train
)−1

. (4)

The connection weights, other than the output connections assigned during
the identification, are usually assigned randomly out of few possible values [7].
Since the paradigm assume sparse connectivity (few parameters), we have per-
formed an almost exhaustive search in the parameter space to determine optimal

x1

xN y

internal nodes

output

x

node

2

Fig. 1. General topology of Echo State Networks. Arrows indicate internal (solid, Wint),
feedback (dashed, Wback), and output (dash-dotted, Wout) connections, respectively.
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parameter settings [8]. As result, a network dimension of 60 was chosen; the bias
vector B has been set with 25% of the values at 0.14, 25% at −0.14, and the re-
maining at 0; the final connection probability of the internal connections (Wint)
was 1.33 · 10−2 and the maximal eigenvalue of Wint did not exceed the value 1;
finally, the scaling variables were α = 0.604, β = 0.44, as proposed by Jaeger [7].

3 Deterministic and Stochastic Diversity

In the Introduction we have presented the aim of this work, i.e. implicitly mod-
elling the stochastic diversity of approximately periodic time series with deter-
ministic chaos. Here it will be explained what is meant by diversity. We start by
considering the deterministic chaotic time series shown in Fig. 2(a,b): (a) shows
few pseudo-periods of a time series generated by the Colpitts oscillator [9]; in
(b) the same time series is represented in a so called stroboscopic plot, i.e. the
pseudo-periods (grey lines) are plotted on top of each-other. From this latter
the approximate periodicity of the signal can clearly be identified; however, it
is also clear that the pseudo-periods are diverse around the black line, which
represents the mean stereotype, i.e. the temporal mean value of the grey lines.
Chaotic time series represent an extreme case of perfectly structured diversity,
where the value of the time series at a given time is completely deterministic
and uniquely determined by its previous values.

On the other extreme there are purely stochastic signals, e.g. a signal pro-
duced by a stochastic process followed by a filter, as that shown in Fig. 2(c,d).
In this case the diversity is completely unstructured. Although there is a certain
similarity between the structured and the unstructured cases, in the latter all
correlation within the time series has been introduced by the filter and the time
series is non-deterministic, while it is in the former.

Other signals, falling between these two extreme cases, can easily be con-
ceived. Close to the completely structured case, time series surrogates of de-
terministic signals can be imagined [10]: constructed by taking a deterministic
time series and adding phase noise to it. They destroy every determinism while
preserving the spectral properties, i.e. the amplitude spectrum of the surrogate
signal is the same as that of the original signal, but the diversity is now unstruc-
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Fig. 2. Structured (a,b) and unstructured (c,d) diversity view in the time domain
(a,c) and in the stroboscopic plots (b,d)
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tured. Oppositely, close to the purely stochastic case, periodic signals corrupted
by noise with assigned spectral properties can be conceived, e.g. corrupted by
red-like noise, where the power scales in frequency as 1

fγ and γ is referred as
noise colour.

4 Self-emergence of Chaos in RANN Identification

We have investigated whether it is possible that deterministic systems (RANN)
can identify stochastic data producing a deterministic (chaotic) model, whose
structured diversity mimics the statistical (spectral) properties of the unstruc-
tured diversity of the original data. Here are reported our results on this question.

ESN have already been shown capable of identifying chaotic behaviour [7].
Hence, not surprisingly, they can also correctly identify time series from the
Colpitts oscillator [8]. Though, it has never been shown whether the identifica-
tion works because the time series is deterministic and the diversity structured,
or whether the algorithm described in Section 2 could also identify time series
with similar spectral properties but stochastic in nature. This point has been
addressed identifying surrogates of chaotic signals, constructed from the Col-
pitts oscillator time series as described in the previous section. The results are
summarised in Fig. 3. Figure 3(b) shows that the output of identified system
has its own diversity; since the ESN used is completely deterministic, this di-
versity can only be generated by the nonlinear dynamical complexity of the
system, i.e. complex tori or chaos. Unfortunately, given the high dimensional-
ity of the system, a numerically computed Lyapunov spectra would not allow
to distinguish the two cases. Though, the unimodal and fractal nature of the
peak-to-peak plot and analysis (cf. Fig. 3(c)) corroborate the chaotic nature of
the identified system [11]. Furthermore, visual inspection of Figs. 3(a), (b) and
(c), and a deeper analysis [8], shows that the identified system mimics the spec-
tral/stochastic properties of the original signal, whose diversity is, however, not
structured, but stochastic.
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Fig. 3. Identification of surrogates of chaotic signals. Stroboscopic plot of: (a) – iden-
tifying surrogate signal; (b) – signal from the identified system; (c) – peak-to-peak
map of the identified system; (d) – comparison of the spectral properties of identifying
(grey) and identified (black) signals.
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To qualify the extent to which a chaotic (deterministic) system can mimic a
stochastic behaviour, periodic time series corrupted by noise with assigned power
spectrum (red-like noise) have been considered. The spectra of the identifying
and identified signals, with respect to the colour and intensity of the corrupting
noise, are reported in Fig. 4. From a visual inspection emerges that for ambiguous
noise (shaded) the identified system does not mimic the spectral properties of
the identifying signals. However, for intense highly coloured noise (in white) the
identification provided a deterministic system whose spectral properties mimic
those of the original data, independently from their stochastic nature; not shown
here for lack of space, a peak-to-peak analysis of the corresponding identified sys-
tems corroborate the chaotic origin of emerging diversity, whilst a stroboscopic
plots analysis confirms the similarity between identifying and identified diversity.
Finally, note that the spectra at low frequencies are not always well mimicked,
this is due to the spectral properties of the emerging invertible chaos, which do
not admit sudden jumps.

Concluding, chaotic deterministic RANN can mimic signals whose spectra are
not necessarily physically plausible, as it is the case of surrogate chaotic time
series, and indeed time series with some arbitrary spectra can be mimicked.
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Fig. 4. Identification of stochastic signals. Spectra of the identifying (grey) and iden-
tified (black) signals with respect to colour and intensity of the corrupting noise.
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Though, the diversity of the considered signals has to be persuasive; on the
contrary, when the diversity is too noise-like, i.e. too weak or too white, the
identified system is likely to not mimic it correctly.

5 Conclusions

It has been shown that chaos can indeed be used to model randomness, a question
arising when addressing information processing in the brain according to the
paradigm proposed by the APEREST project.

This result completes a recently introduced technique of classifying approx-
imately periodic time series [4, 2, 3]. Indeed, in these previous works chaos has
been observed emerging when identifying irregular behaviour; though, it has not
been shown whether this happens also when identifying purely stochastic signals.

As mentioned in the Introduction, the identification technique discussed here
can be complemented with chaos synchronisation [2, 3] to perform classification.
This is out of the scope of this communication and will be presented elsewhere;
however, it can be anticipated that the achieved results are indeed good also
when compared to other techniques [8].
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Abstract. We report results of an interdisciplinary project which aims
at endowing a real robot system with the capacity for learning by goal-
directed imitation. The control architecture is biologically inspired as
it reflects recent experimental findings in action observation/execution
studies. We test its functionality in variations of an imitation paradigm
in which the artefact has to reproduce the observed or inferred end state
of a grasping-placing sequence displayed by a human model.

1 Introduction

In robotics research imitation has attracted a lot of attention in recent years
since it is considered a promising learning mechanism to transfer knowledge
from an experienced teacher (e.g. a human) to an artificial agent. Most work
has been focused on motor learning paradigms in which the imitating robot
has to match as close as possible the kinematics and dynamics of an observed
movement (for review see [1]). However, a growing body of experimental findings
in imitation studies with humans indicate that the imitator most likely does
not encode the full detail of the observed motions but the interpretation of
those motions in terms of the demonstrator’s goal. Very often differences in
embodiment (e.g., child-adult) and/or task constraints (e.g., obstacles) simply
do not allow for a matching on the level of the movement trajectory. In the
goal-directed theory of imitation proposed by Bekkering and colleagues [2,3],
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imitative behavior can be considered successful whenever the end state of the
witnessed action is reproduced. The action means, on the other hand, may or
not coincide with the observed ones.

In the work reported here: (a) we present a robot control architecture for
goal-directed imitation which reflects processing principles discovered in recent
experimental findings of action observation/execution studies, (b) we propose a
biologically plausible learning scheme for establishing the links between means
and goals during development and practice, (c) we test the complete control
architecture in variations of an imitation paradigm in which a robot tries to
reproduce the observed or inferred outcome of a grasping and placing sequence
displayed by a human, (d) we show that knowledge about the meaning of an
object may be transferred to the robot by imitation.

Goal-directed imitation requires of course that the imitator understands the
action of the model. The neuro-cognitive mechanisms underlying action under-
standing are currently topic of an intense debate (e.g., [4,5]). A growing body
of empirical evidence supports the notion that the production and perception
as well as the interpretation of others’ actions rely on a common distributed
neural system. The ‘direct matching hypothesis’ proposed by Rizzolatti and col-
leagues [5] based on their discovery of the mirror system states that an action is
understood when its observation activates the motor representations controlling
the execution of the same action. However, the correspondence problem between
dissimilar embodiments challenges an explanation purely based on a simple and
direct resonance phenomenon of the motor system. Moreover, humans and mon-
keys are able to infer goals without a full vision of the action by integrating
additional contextual cues.

The proposed model architecture for action understanding and goal-directed
imitation in artefacts is based on the theoretical framework of dynamic fields
[6,7]. It aims at implementing the idea that inferring motor intention is a con-
tinuous process which combines sensory evidence, prior task knowledge and a
goal-directed matching of action observation and action execution.

2 Experimental Setup

For the robotics work we adopt a paradigm which has been developed to ex-
perimentally investigate in humans the idea that actions are organized in a
goal-directed manner (van Schie and Bekkering, in preparation). The paradigm
contains two objects of different color that must be grasped and then placed at
one of two laterally presented targets that differ in height. The possible hand
trajectories are constrained by an obstacle in form of a bridge (see Panel A in
Fig. 1). Depending on the height of the bridge, the lower target may only be
reached by grasping the object with a full grip and transporting it below the
bridge. Placing the object at the higher target, on the other hand, may require
combining a precision grip and a hand trajectory above the bridge.
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Panel A Panel B

Fig. 1. Panel A: Bridge Paradigm. Panel B: Robot control architecture.

3 The Control Architecture

The artefact used in the imitation study consists of an industrial robot arm
(Kuka with 6 DOFs) with a four-fingered anthropomorphic robot hand (Graal-
Tech, University of Genova) and a real-time vision system. Three interconnected
modules define the robot control architecture (Panel B in Fig. 1).

The vision module provides the environmental variables of the task setting
(shape and position of bridge, position of object and targets etc.) by means
of a semi-automatic calibrated stereo camera system. In addition, it tracks the
detected object(s) and the hand of the instructor, classifies the demonstrated
action in terms of grip and trajectory type, and identifies the placing target. All
outputs are globally available for the other modules.

In the cognitive module, decisions about the action goal and the means to
achieve that goal are made. Its layered architecture is biologically inspired, as it
represents the basic functionality of neuronal populations in interconnected brain
areas known to be involved in action observation/execution tasks (for details see
[8]). The core part consists of three reciprocally connected layers, STS, PF and
F5, representing the mirror circuit. The fundamental idea is that within this cir-
cuit the matching of action observation and action execution takes place on the
level of motor primitives which abstract from the fine details of the movements
[5]. Concretely for the bridge paradigm, we distinguish two types of grasping
primitives (precision (PG) and full (FG) grip) and two types of transporting
primitives for avoiding the obstacle (below (BT) or above (AT) the bridge). The
visual description of the observed action is stored in STS. In the motor layer
F5 the representations of the respective primitives become active both during
action observation and action execution, that is, we assume that those primi-
tives already exist in the motor repertoire of the robot. The representations in
the intermediate layer PF reflect recent neurophysiological findings in brain ar-
eas PF/PFG that suggest a goal-directed organization of action means. Using
a sequence task, Fogassi and colleagues [9] described a population of grasping
neurons which showed a selective response in dependence of the final goal of
the action (eating or placing) to which the grasping act belongs. For the bridge
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paradigm, we abstract this finding by assuming representations of specific com-
binations of primitives (e.g., PG-AT) which allow achieving a specific goal. Layer
PF is reciprocally connected with a prefrontal area (PFC) in which the goals pa-
rameterized by their height relative to the bridge are encoded. A goal represen-
tation may be triggered or influenced by visual input (placed object), through
the links to PF, and/or learned associations to representations of object cues
(e.g., color) and memorized task information (e.g., number and probability of
goals).

In the path planning module, the abstract primitives of layer F5 are trans-
lated into a movement plan generating the right kinematics. We assume that the
path planning takes place in posture space. This requires that a model of the in-
verse kinematics for the arm-hand system is known. For the planning we employ
the framework of wave expansion networks [10] with nodes representing stored
arrays of joint angles. The sequence of postures defining a collision-free path
for the robot arm-hand is found by propagating an activity wavefront between
nodes encoding the initial and the desired goal postures. Posture nodes which
are impossible due to the obstacle are inhibited. They are found by explicitly
testing for spatial overlap in Cartesian space between the to-be-assumed pos-
ture and the bridge (forward maps). Moreover, the ensemble of nodes which can
become part of the wavefront is further constrained by the motor primitives in
F5. For instance, we use again forward maps to check whether a particular node
represents ‘all links in a high position’ as required by an AT-trajectory. This
integration of prior information together with the inherent parallelism of the
wavefront operations makes a real-time path planning for artefacts with higher
degrees of freedom feasible.

4 Hebbian Learning of the Synaptic Links

Each layer of the cognitive module is formalized by a Dynamic Field [6,7] in
which self-sustained patterns of excitation encode task specific information. The
layer dynamics is governed by the following equation:

τ
δ

δt
u(x, t) = −u(x, t) + g(u(x, t))

[∫
w(x − x′)f(u(x′, t))dx′−

−winhib

∫
f(u(x′, t)dx′

]
+ h +

∑
i

Si(x, t) (1)

where τ > 0, h < 0 and winhib > 0 are constants. The non-linear functions f(u)
and g(u) are of sigmoid shape, the excitatory connections, w(x, x′), are modelled
as a Gaussian profile. The excitation patterns evolve under the influence of mul-
tiple information sources,

∑
i Si(x, t), representing input from the visual module

and from excitation in connected layers. Recurrent inhibition in each layer cre-
ates a competition between response alternatives (e.g., type of grasping) and
guarantees the stability of the decision process represented by the excitation
patterns.
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To develop the goal-directed organization within the distributed network
model, the synaptic links between the various layers have to be established during
practice. We apply a correlation based learning rule for the synaptic connections,
a(x, y), between any two neurons x and y belonging to two different layers (for
a discussion in the context of action understanding see [4]):

τs
δ

δt
a(x, y, t) = −a(x, y, t) + η f(ū1(x))f(ū2(y)) (2)

where τs � τ , η > 0 and ū1, ū2 denote the equilibrium solutions of the relax-
ation phase in layer 1 and layer 2, respectively. Importantly, we assume that
an internally generated reinforcement signal representing a successful path plan-
ning toward the desired goal posture defines the time window for the learning.
As a result, the matching of action observation and action execution becomes
goal-directed, since the metric for the learning is not defined by the similarity
in the kinematics but the similarity in the end state [11].

5 Experimental Results

A set of imitation experiments within the Bridge paradigm has been performed
which differ mainly in the amount and nature of the visual information avail-
able to the robot. In the first experiment, a complete visual description of the
teacher’s action in terms of the grasping and transporting behavior exists and

Fig. 2. Example of an imitation task in which the robot reproduces the placing on the
higher goal using the means displayed by the human teacher (PG-grip, AT-trajectory).
The upper row depicts the visual analysis of the world configuration (left) and the
teacher’s action (right). On bottom, decisions for goal and means represented in the
dynamic field model (left) and two snapshots of the robot in action are shown.
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the visual system identifies the goal. The visual description in STS resonates via
the matching mechanism in the mirror circuit with the congruent motor primi-
tives in PF and F5. If the covert path planning toward the desired goal-posture
turns out to be successful, the observed response strategy can be associated with
the goal for future use by the learning procedure described above. Figure 2 illus-
trates the result of this learning by imitation in an example in which the robot
copies the demonstrated precision grip and the trajectory above the bridge to
place the object at the higher goal. By using objects with different properties
(e.g., color), the robot may acquire additional knowledge in repeated imitation
trials by learning an association between object cues and the goal where to place
a particular object (‘object meaning’). For instance, yellow objects have to be
placed at the higher and blue objects at the lower target.

The second experiment shows that the learned link from the mirror circuit
to the goal representation is crucial. The bar of the bridge is removed for the
human teacher but not for the robot (Panel A in Fig. 3). Because of this change
in the environmental constraints, the teacher now uses a full grip for placing the
yellow object at the higher target. For the robot, a direct matching on the level
of motor primitives would result in a collision with the bridge. As shown in the
snapshot of the stable state of the network dynamics in Panel A of Figure 3, the
decisions in layer F5 represent the motor primitives PG (grip) and AT (trajec-
tory) previously associated with the higher goal parameterized by the smaller

Panel A

Panel B

Fig. 3. Panel A: Conflict in the grasping behavior: the teacher uses a full grip for
placing the object. As shown in layer F5 of the field model, the robot decides to use
a precision grip to reproduce the end-state. Panel B: Inference task: only the grasping
behavior is observable, the transpor ting and placing is hidden from view. The stable
state in layer PFC of the field model represents the inferred goal.
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spatial gap relative to the bridge. The observation of the placing triggers the
respective goal representation which in turn biases the decisions in PF and F5
toward the PG-AT sequence. The input from PFC may override the direct map-
ping in the mirror circuit since in known task settings the goal representations
in PFC evolve faster compared to the visual motion representations in STS (for
details see [8]).

The third experiment reflects a situation which is very common for agents
acting in cluttered and dynamic environments. Only partial visual information
about the action displayed by another agent is available and the observer has
to infer the action goal by integrating additional contextual cues and prior task
information. Again we assume that the underlying mechanism for discerning
motor intention is a goal-directed motor simulation. Consistently, it has been
recently reported that grasping mirror neurons fire when the crucial final part of
the demonstrated action is hidden but the monkey knew that there is a graspable
object behind the occluding surface (for review [5]). In Panel B of Figure 3 we
show a snapshot of the model dynamics in an inference task in which only the
grasping with a full grip was observable and the rest of the action was hidden
from view. Despite the missing visual information, the dynamics has relaxed
in each model layer to a stable peak solution. The representation of the lower
goal (parameterized by the larger spatial gap relative to the bridge) is triggered
via the learned STS-PF-PFC pathway. Note that for the specific height of the
bridge, the FG-BT sequence is the only sequence including the FG-grip which
is associated with a particular goal. If the robot and the human model already
share the knowledge about the meaning of the object, the color information
serves as an additional, redundant input for the goal representation in PFC.

6 Discussion

The experiments with the real robot system illustrate some of the advantages
of a goal-directed organization of imitative behavior compared to other current
approaches which emphasize a matching on the trajectory or path level [1,11].
It allows coping with differences in embodiment and task constraints known as
the correspondence problem [12] in robot imitation. Most importantly, it en-
ables the robot to infer the purpose of the observed movement which is crucial
for transferring specific knowledge from the model to the imitator. The idea
that the movement production system is essentially involved in action under-
standing has been proposed in the context of robotics research several times
in the past (for review [1]). For instance, Demiris and Hayes [13] used internal
forward models known from motor control theory to predict the sensory conse-
quences of observed actions in an imitation task. However, the use of forward
models implicitly requires that imitator and demonstrator share similar bod-
ies. Wolpert and colleagues [14] have recently proposed a computational scheme
which also includes hierarchically higher levels of motor control in the simulation
loop for action understanding. On this view, the goal-directed organization of
action means in layer PF may be seen as part of an abstract forward model for
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interpreting an ongoing action. We have recently shown that the goal-directed
control architecture may even allow acquiring the meaning of an observed motor
act which is not strictly in the motor repertoire of the observer [8].

In our current work, we consider paradigms that involve a richer set of motor
primitives and more complex goal-directed sequences.
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3. Wohlschäger, A., Gattis, M., and Bekkering, H.: Action generation and action
perception in imitation: An instantiation of the ideomotor principle. Phil. Trans.
R. Soc. Lond. B. Vol. 358 (2003)501-515

4. Keysers, C., and Perrett, D. I.: Demystifying social cognition: a Hebbian perspec-
tive. Trends in Cognitive Science. Vol.8 (2004)501-507

5. Rizzolatti, G., Fogassi, L., and Gallese, V.: Neurophysiological mechanisms under-
lying the understanding and imitation of action. Nature Reviews. Vol.2 (2001)661-
670

6. Amari, S.: Dynamics of pattern formation in lateral-inhibitory type neural fields.
Biological Cybernetics. Vol.27 (1977)77-87
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Abstract. The current growth of neuron technology is reflected by the 
increasing focus on this research area within the European research community. 
One topic is the implementation of neural networks (NNs) onto silicon. FPGAs 
provide an excellent platform for such implementations. The development of 
NNs has led to multiple abstractions for various generations. The different 
demands that each generation pose, present different design challenges. This 
has left ambiguous decisions for the neuroengineer into what model to 
implement. The authors have undertaken an investigation into four commonly 
selected neuron models, two classical models and two formal spike models. A 
software classification problem is combined with hardware resource 
requirements for FPGAs, implemented utilising a novel design flow. This 
provides an overall comparative analysis to be made and identification of the 
most suitable model to implement on an FPGA. 

1   Introduction 

Neural networks have evolved vastly from the first generation McCulloch and Pitts 
(1943) neuron model [1], to the more biologically realistic spike models [2]. A 
neuroengineer is now confronted with a much wider choice and ambiguity in his/her 
decision into which model to employ. Classical non-spiking neuron models still 
remain the most popular choice. Spiking neurons (SNs) are more biologically 
plausible neuron models that offer new information processing paradigms for 
neuroengineers. Voltage spikes are used to temporally and spatially encode 
information. In this paper the application of two classical models, the multilayer 
perceptron (MLP) and radial basis function (RBF) along with two formal spike 
models, namely the leaky integrate and fire (LIF) and spike response model (SRM) 
are analysed. Section 2 contains an overview of the chosen neuron models. Section 3 
presents the results for the first part of the investigation, the models development in 
software to solve a non-linearly separable classification problem. Section 4 contains 
the second part of the investigation, the hardware implementations of the various 
models onto an FPGA. Individual models and their equivalent networks are 
examined. Section 5 concludes with an overall comparative analysis and selection of 
most proficient model.  
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2   Models 

Spike models introduce a new level of biological sophistication absent from classical 
models. Different levels of abstractions for these models exist. The complex 
biophysical neuron abstractions, such as compartmental and the Hodgkin and Huxley 
models [2] render them impractical for large scale simulations and implementations, 
being computationally too demanding. This has promoted the development of simpler 
formal spike models. Two such models are the (SRM) and (LIF). These models 
consist of two important features: a) stimuli are integrated over time and b) if a 
threshold is surpassed, a voltage spike is generated. Although classical models lack 
this biological refinement they are still the most popular neuron choice and have been 
implemented successfully in a greater number of applications in comparison to spike 
models. For these reasons two of the most popular classical neuron models have been 
selected to be compared with two commonly selected spike models.  

2.1   Classical Models 

The first classical model chosen was the feedforward MLP trained using back 
propagation (BP), in a supervised manner. Mathematically it can be described by (1).  

1

( )
m

k kj j k
j

y f w x b
=

= + . (1) 

where x represent the input features : w  are the synaptic weights of the neuron k : bk  
is the bias : f(.) is the activation function : yk  is the neuron output. 

A sigmoid activation function was employed for the MLP networks, Equation (2). 
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1 axf x
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where a is the slope parameter of the sigmoid function. 
RBF neurons are also arranged as multilayer feedforward networks but use a 

different Gaussian type activation function, expressed by (3).  
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where   is the spread : μ  is the centre : ||.|| represents Euclidean distance. 

2.2   Spike Models 

For full mathematical notations and descriptions of the LIF and SRM model equations 
(c.f. [2]). The internal dynamics of the LIF neuron is modelled by the differential 
equation (4). 

( ) ( )
( )

du t u t
c I t

dt R
+ =  . (4) 

where C represents the capacitance : R the resistance : u the potential : I(t) the current. 
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The SRM is a generalisation of the LIF model, where the parameters are made time 
dependent instead of voltage dependent. SRM is not defined using differential 
equations instead the membrane potential is considered as the integration of input 
spikes.  Mathematically it is defined as (5).  

( ) ( )( ) ( ) ( )f f
i i ij ij j

j f

u t t t w t tη ε= − + −  . (5) 

where μi(t) is the membrane potential of neuron i : t, time since last spike output : tj
(f), 

spike time of presynaptic neurons j :  (.) the kernel to model refractory period : ij (.) 
kernel to model post synaptic potential of neuron i induced by a spike from neuron .j: 
wij the synaptic strength. 

3   Comparative Evaluation of Models in Matlab 

The first stage of this investigation focuses on determining the ability of the selected 
models to successfully classify the Iris dataset benchmark problem. The models were 
arranged into specific network topologies to suit the problem and a supervised 
learning algorithm was employed. All software models were developed and 
implemented in Matlab v7.0. For the MLP networks, the default training method basic 
gradient descent (BP) was used. For the RBF networks the default ‘newrb’ was 
applied which adds neurons to the hidden layer until the desired MSE is reached. 
With respect to the spike models, supervised training was achieved by employing an 
evolutionary strategy (ES) [3].  

3.1   Iris Dataset 

The Iris dataset contains 3 classes, which two are not linearly separable. The dataset 
contains 150 samples of 4 input variables. The 150 samples were divided into an 
equal training and test set of 75 samples each. A 1-D encoding scheme employed by 
Belatreche [3] was utilised, this pre processing scheme allowed 4 inputs to be 
temporally encoded using 4 receptive fields. This same pre processing was used for 
all the networks.  

A network of 4x4x1 was sufficient for the MLP and the spike models to solve the 
Iris dataset. The RBF required a larger network size of 4x8x1. Both classical models 
used a MSE 0.01 as a stopping criterion. With concern to the spike models, target 
firing times of 6, 10 and 14 ms were chosen to classify the three respective species of 
flowers. A weight range of [-10, 10] and a delay range of [0, 9] was used for the spike 
models. Table 1 displays the Iris dataset results.  

These results suggest that for such static a classification problem the choice of 
model is not well defined, as they all possess high classification accuracy. Therefore 
 

Table 1. Iris classification accuracy 

  Accuracy % 
Model Algorithm Hidden Training set Test set 

LIF ES-Approach 4 98.67 96 
SRM ES-Approach 4 98.67 96 
MLP Matlab BP 4 100 94.67 
RBF Matlab newrb 8 100 96 
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the choice in selection would stem greater on the models efficiency with respect to 
hardware implementation evaluations, for such problems. 

4   Hardware Investigation 

The second stage of the investigation is the hardware design, simulation and 
implementation of the selected models onto an FPGA. The approach uses Xilinx 
System Generator (XSG) for the simulation and implementation of the neuron models 
and their networks, as previously investigated in [4]. This flow was employed to 
facilitate the development of novel hardware equivalent circuits of the selected 
models. 16 bit representation was used for all models. 

4.1   MLP Implementation 

The MLP neuron employs a sigmoid activation function as described in 2.1. A second 
order non-linear function exists which can be used as a satisfactory approximation for 
the sigmoid function [5], detailed and implemented previously by Blake [6].This same 
expression was implemented in XSG, the sigmoid function circuit was then combined 
with the necessary block to develop the MLP neuron model shown below. 

Fig. 1. MLP nex on circuit 

Regarding RBF networks, it is acknowledged that these particular networks may 
require a greater number of neurons to accomplish the same classification as standard 
MLP networks using BP, although they train much faster. This fact was encountered 
in the software investigation. Therefore as time is not a criterion it would serve no 
purpose to develop their hardware equivalent circuits for this investigation i.e. due to 
the increased number of neurons (8 hidden neurons), as their hardware evaluation is 
measured only in area consumption. 

4.2   SNN Implementations 

Both spike models contain exponential components in their synapses. Figure 2 is the 
hardware equivalent synapse and soma circuit for the LIF neuron. It can be observed 
that the synapse is modelled as a weighted first order recursive filter. The output of 
the synapse is fed into the soma. This value is compared with a threshold value, which 
is user definable. If greater than the threshold a spike is produced and the circuit will 
enter a refractory period.  
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Fig. 2. LIF neuron circuit 

Figure 3 below shows the SRM hardware equivalent synapse. In direct comparison 
to the LIF synapse, a multiplier, counter and other combinational logic are required as 
extra hardware for the circuit. 
 

Fig. 3. SRM synapse circuit 

Multipliers are expensive in hardware real estate terms therefore, the amount of 
circuitry required by the LIF synapse is smaller, see Tables 2 and 3. Real-time 
functional verification of the models in hardware was carried out by the Xilinx debug 
tool, ChipScope Pro 6.1i [7].  

Table 2. Model hardware requirements on a Virtex II xc2v4000 

Unit Synthesised # CLB slices
LIF    synapse 35
SRM synapse 195
2 input soma 20
MLP neuron 248

The network connectivity implemented in the designs is fully parallel. For the 
spike models, a synapse is needed for each physical connection and a multiplier for 
each MLP connection. Therefore, the number of combinational logic block (CLB) 
slices is given for each respective spike synapse, separate to the spike neuron (soma), 
as illustrated in Table 2. 

The amount of resources consumed by the SRM synapse is clearly much higher than 
that of the LIF model. The MLP consumes the greatest amount of resources, but this 
contains the full neuron circuit. When the models are placed into their respective networks 
a more realistic conclusion can be drawn, as the network results of Table 3 illustrate.  
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Table 3. Network hardware requirements on a Virtex II xc2v4000 

Network Synthesised # CLB slices IRIS
LIF 1656

SRM 4448
MLP 2193

The SRM model significantly consumes the most hardware resources. This 
facilitates a clear comparison, highlighting the LIF model as the best choice in terms 
of resources consumed. 

5   Conclusion 

Four different models have been reviewed. All models were capable of solving the 
selected benchmark problem to a high accuracy. For the purpose of this paper these 
results highlight that the latest generation of SNs are just as capable, in comparison to 
the classical models, in solving a non-linearly separable problem. These factors 
coupled with the significant decrease in hardware real estate, suggests the LIF model 
as the most suitable model to implement on FPGAs.  

Concerning spike models, the SRM is a function approximation of the more 
biologically realistic response of a neurons synapse. This investigation has 
demonstrated that this response does not provide any advantage over the less complex 
LIF response. This would therefore indicate that the emphasis lies in how the actual 
spike models communicate and not the complexity of post synaptic potential.  

The presented work provides a valuable insight into NNs for neuroengineers and 
others involved in the selection of neuron models. A continuation of the research will 
involve the ability to solve more complex problems, including network robustness 
and a comparison to other implementations. 
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3 Mobile Robotics Research group, Institute of Perception,
Action and Behaviour, University of Edinburgh

Abstract. The HYDRA work provides insight into the exploitation of
holistic behavioural and morphological adaptation in the design of new
artefacts. The potential of the new design principle has been exemplified
through the construction of robotic systems that can change morphology.
Two prototype building block systems has been developed, HYDRON
for a fluid scenario, and ATRON for a terrestrial scenario. In the HY-
DRON case, the individual module can perform 3D motion and is able to
arrange in clusters of specific formation without the necessity of physical
connections. In the ATRON case, the modules are individually simpler,
attach through physical connections, and perform 3D motions by col-
lective actions. Control mechanisms identified from cellular biology has
been successfully transferred to the physical building blocks.

1 Introduction

The HYDRA project focuses on the design of building blocks for self-reconfigu-
rable artefacts. The building blocks allow robust and efficient morphological de-
velopment of artefacts, in order to allow end-users to design new artefacts in an
easy manner. Inspired by biological principles, the HYDRA project realises engi-
neering structures with the properties of differentiation and self-reconfiguration.

Investigations of biological principles reveal that the cell is an appropriate
basis for this work, so we investigate building blocks modeled as cells. This leads
to control mechanisms based on inspiration from cellular mechanisms such as
cell division, cell motion, cell death, cell adhesion, change of cell shape, and cell
differentiation and induction [6].

By exploring different possible building blocks in software and hardware de-
velopment, the project defines physical building blocks that allow development of
systems comprising hundreds of basic building blocks that exhibit self-assembly,
self-repair, and shape-change. The potential of the new design standard has been
exemplified through the construction of two robotic systems that can change
morphology.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 275–281, 2005.
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Fig. 1. Left: Example of gene regulation. Structural genes (A and I), are controlled by
responsive elements (RE). A is here a transcription factor regulating its own synthesis
and activating also inhibitor I. Right: Interactions of genes, morphogens and cellular
physics. Physical strains of cells are controlled by the two chemical gradients, shown
in a) and b). a) alone produces the shape in d), while their combination produces the
shape shown in e). From [3].

The controlling mechanism found in simulation has been modified, imple-
mented and tested as control for the physical building blocks. Especially, the
abstract gradient-based control mechanisms from the simulations has proven
useful to control real hardware systems. The HYDRA hardware includes 20 HY-
DRON modules for aquatic use and 100 ATRON modules for terrestrial use,
both systems capable of self-reconfiguration in 3D.

2 Cellular Biology

The biological mechanisms of self-assembly and self-repair were investigated and
modeled within an artificial evolutionary system in the context of cellular sys-
tems. Generic principles identified from these developmental mechanisms were
used to implement control algorithms for the two HYDRA hardware platforms.

Having chosen the cell as our level of abstraction, our main task was to
identify those developmental processes, which allowed an artificial evolution-
ary system to mimic growth and regeneration [4] in a cellular context. For this
purpose, different developmental processes were simulated and explored by evo-
lution. A set of basic cellular mechanisms was identified, which could be used to
simulate a wide range of higher level mechanisms such as pattern generation or
co-evolution of morphology and behaviour.

All the biological mechanisms that are essential for development, cell divi-
sion, growth, differentiation, pattern formation and morphogenesis are mediated
ultimately by proteins. They act either directly or as enzymes to produce other
molecules. These proteins are encoded by genes, so development is controlled
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to a large degree by gene expression. The pattern of gene expression in the
embryo determines where, when and in what quantity particular proteins are
made and therefore governs the properties of each cell. Since proteins play such
an important role for development, the mechanism ligand-receptor interactions
was implemented, which can mimic many specific interactions among proteins
abstractly. A receptor is usually a large protein, folded in a way to be able to
recognize specifically a partner molecule. For a ligand (a signaling molecule) to
be useful it must act selectively on particular targets such as gene regulators or
receptors. This means that a receptor will only recognize ligands of a certain
precise type and ignore closely related molecules. This principle of binding-site
and ligand specificity can be found almost everywhere in multicellular organisms.
This complementary specificity, which is based on the very exact molecular recog-
nition properties of molecules, is central to explaining many of the phenomena
of developmental biology.

The basic mechanisms identified in cells - cell division, cell death, cell adhe-
sion, expression of receptors, and production of signaling molecules - were used
to evolve and simulate higher-level processes such as cell differentiation, pattern
generation, morphogenesis, growth of neural networks with inter-neuronal com-
munication and co-evolution of morphology and behaviour. Figure 1 provides an
overview of the simulated cellular mechanisms.

3 The HYDRON Module

A HYDRON unit is shown in figure 2. Each unit is roughly spherical, with
a diameter of approximately 11 cm, suspended in water, and actuated in the
horizontal plane. A HYDRON unit has four nozzles which expel water drawn
through an impeller at the bottom of the unit when activated, and which are
selected by a rotating collar. A syringe draws or expels water through the bottom
of the unit to control unit buoyancy, and thereby actuate the unit along the
vertical axis. Each units hull also supports a small set of switchable optical
sensors and emitters capable of transmitting data over short ranges. Optical
sensors and transmitters were chosen because they provide a simple and flexible
underwater communication mechanism.

Simulation work on a Cellular Adhesion Molecule (CAM) based control ap-
proach [8] shows how this simple, biologically-inspired approach to decentralized
multi-robot control can be used for forming a variety of spatial patterns, as
shown in figure 2. This can be achieved in modules with limited capacity for
communication and locomotion. The simulation results are also consistent with
the predictions of Steinberg’s Differential Adhesion Hypothesis for sorting of
biological cellular aggregates [9]. The approach is flexible and robust, and the
design of the controller permits easy transfer to the real HYDRON robots.

The combination of the CAM controller with the Genetic Regulatory Net-
work (GRN) controller [10] shows that the GRN can be evolved to produce
time-varying expression of CAMs on a robots (virtual) membrane in order to
achieve specific behaviours. Especially for more complex tasks (such as react-
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Fig. 2. Left: The HYDRON hardware. Right: Cellular Adhesion Control in 2D of a
small group of simulated HYDRON modules. By changing the attractive and repulsive
force between types of cells, different configurations can be achieved.

ing to an external signal, or producing differentiated behaviour from an initially
homogeneous cluster), the evolutionary power of the combined GRN-CAM con-
troller is able to produce better performance than could be achieved by either
of the primitive controllers individually.

4 The ATRON Module

The ATRON modules, shown in figure 3 and further described in [5], are lattice
based self-reconfigurable robot modules for 3D operation in land environments.
Greatly simplified, an ATRON module is composed of two hemispheres joined
together by a rotation mechanism

ATRON modules can connect using mechanical hooks which attach to an
arrangement of bars on a neighbour, similarly adhesion proteins bind to ligands
on the surface of an adjacent cell. On each half module, there are two female
(bars) and two actuated male connectors (hooks). The novel mechanical connec-
tor design, ensures a strong and reliable connection. A module may communicate
with neighbouring modules through IR communication.

When placed in the surface-centred cubic lattice structure, the modules can
self-reconfigure to achieve different overall arrangements or movements. The
shape allows one module to move to an adjacent hole in an otherwise fully packed
structure (without colliding with other modules). Indeed, the design was guided
by considerations on how to reduce control complexity of self-reconfiguration,
while having a simple module design. However, compared to biological cells and
the HYDRON module, the ATRON has very hard constraints on motion. Grav-
ity related restrictions include static stability of the configuration, not exceeding
motor torque limits, and obeying structural stiffness. Also, care should be taken
during self-reconfiguration to avoid module collisions and to maintain structural
connectivity. The system also has similarities with cellular systems, in that a
cluster of ATRONs is composed of many identical semi-autonomous units. The
question is how the principles from biology should be transferred to suit the hard
constraints of the ATRON hardware.
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Fig. 3. a) Exploded view of the ATRON CAD drawing, and b) a photo of the final
hardware. c) Experiment on the ATRON platform showing three white modules as a
meta-module in the process of migrating on a substrate of modules. d) The simulated
migration of ATRON meta-modules permits approximation of the target shape defined
as attraction points.

In [1] we describe a GRN-style system, where each module is controlled by
simple rules of the form {precondition, action}, based on the local neighbour-
hood and the modules actuators. The activation of rules is determined by the
hormone gradients, such that the effort of each individual module is orchestrated
from organism scale chemical gradients. Work along these lines have shown that
such simple rules based on local morphology can generate scalable and robust
behavior at organism level, such as cluster walk, obstacle avoidance and terrain
following [7].

Chemical gradients are known to guide migrating cells [6]. In order to achieve
a desired self-reconfiguration, this mechanism has been transferred to the ATRON
platform [2]. ATRON modules can use their IR-based neighbour-to-neighbour
communication to simulate a gradient that attracts other modules. Migration
is achieved using a meta-module consisting of three modules, see 3 c). Such a
meta-module has the ability to move relatively freely on the substrate of other
modules. Meta-modules emerge from the structure of modules, migrate based on
cues from its environment, and die when reaching their target, once again be-
coming part of the substrate. This approach is similar to the division and death
of biological cells. The combination of gradients and migrating meta-modules
enable the system to change its shape, see figure 3 d), and thereby adapt to the
required functionality of the system.

5 Conclusion

The HYDRA work provides insight into the exploitation of holistic behavioural
and morphological adaptation in the design of new artefacts.
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Investigations of biological principles have revealed that the cell is an appro-
priate level of abstraction, so the building blocks are modeled as cells. This leads
to control mechanisms based on inspiration from cellular mechanisms such as cell
division, cell motion, cell death, cell adhesion, change of cell shape, and cell differ-
entiation and induction. HYDRA simulation work shows how such mechanisms
can be used to control the morphological creation of forms. The controlling mech-
anism found in simulation has been modified, implemented and tested as control
for the physical building blocks. In addition, gradient-based control mechanisms
have been abstracted from the simulations.

20 HYDRON modules and 100 ATRON modules have been produced, and
experiments has been been performed on these modules. The robotic system’s
ability to reconfigure in 3D has been high on the agenda. The successful outcome
of the project has been videotaped for presentation and the physical modules
demonstrations have been showcased at various PR events and scientific events
worldwide.
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Abstract. The investigation of biomimetic perception is part of the
broader research field of biorobotics which aims to investigate biologi-
cal sensorimotor control systems by building robot models of them. The
intent of bio-inspired engineering is to distil from the principles found
in successful nature-tested mechanisms specific ”crucial functions” [1].
In addition to its interest for engineers, we believe that the CIRCE bio-
mimetic sonar system, a robotic system which reproduces, at a functional
level, the echolocation system of bats, is a unique experimental tool for
biologists to systematically investigate how the world is not just per-
ceived but actively explored by bats.

1 Introduction

Despite an ever increasing speed of technological achievements, biological sys-
tems still outperform technical systems in many ways. Part of the explanation
why biological systems show superior performance in less structured environ-
ments lies in nature’s ability to create well-integrated systems comprised of many
components, each of which contains evolutionarily embedded knowledge about
the particular tasks it performs. In particular, the bats sonar system outperforms
man-made sonar technology in its ability to support autonomous navigation as
well as a variety of other tasks in demanding natural environments. As such,
bats are a clear example of how the use of intertwined acoustic and neural signal
processing with various feedback control loops spanning these stages can lead to
unparalleled performance.

In order to obtain a better understanding of the role of the different sonar
system components and their interplay in a highly coupled system, an attempt
is made to reproduce this system -at a functional level- with a robotic model:
the CIRCE head. The primary objective for this biomimetic bat head is to
provide hypotheses for biological function. The applicability of these hypotheses
can then be tested in experimental work performed with real animals. Besides
this objective in basic science, a biomimetic sonar system that would exhibit
a bat′s navigation and prey-capture skills would lead to orders of magnitude
improvements in all areas where technical sonar systems are used nowadays.

� This work is supported by the European Union, IST-LPS Initiative (IST-2001-
35144). The CIRCE work reviewed here is the collective effort of the consortium.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 283–288, 2005.
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2 The CIRCE Biomimetic Bathead

The starting point of the CIRCE project is that the processing required to turn
acoustic field information into useful information about the environment is done
both in the acoustic and in the neural domain. Hence, it is important to accu-
rately model the acoustic field around the bats head. Consequently, the ratio
of the size of the most significant head structures and the sound wavelength
has to be kept constant. Hence, the CIRCE head has to combine in a small
space ( =4-8 cm) actuated antennae for emission and reception, transducers
(one transmitter, two receivers) and signal conditioning electronics in a way
that meets a demanding set of functional specifications. This results in vari-
ous technological challenges, the remainder of this section describes our current
status in confronting those.

2.1 Biomimetic Antennae Shapes

The approximately 1000 species of bats have evolved a highly diverse set of baffle
shapes which surround the sites of sound emission (mouth or nose) and reception
(ears). These shapes act as beamforming antennas, optimized to suit the different
sonar tasks these animals have to solve. As detailed shape information on these
structures was not available prior to the CIRCE project, we have developed
a micro-tomography based toolset that can be used to build 3D-CAD model
descriptions of the morphology of those shapes (s. Fig. 1(a)) for different species
of bats.

Fig. 1. Pinna shapes: (a) Scanned bat pinnae (micro-CT), (b) Nylon pinnae (selective
laser sintering)

Next, a functional analysis of these shapes was performed making use of a,
time-domain, finite element numerical simulation of the diffraction effects around
them. The results, after transformation into the frequency domain, are used to
estimate the ear’s directivities. These simulations have shown that the tragus, a
frontal flap which can be very prominent in certain bat species, has a systematic
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effect on the shape of the directivity pattern. Furthermore, in experimenting
with simpler shape models it has become apparent, that there is an interaction
between the effect of the tragus and the presence of a surface ripple on the inner
surface of the pinna.

To validate these results a family of artificial ear shapes was designed and
fabricated (s. Fig. 1(b)) which use the basic shape of an obliquely truncated horn
proposed as an idealized pinna model [2] and augments it with a flap modelling
the tragus and a ripple pattern. The fabricated ear shapes are made out of Nylon
7000 using a rapid prototyping tool (selective laser sintering) and are mounted
on the transducer using a snap-fit allowing for easy switching between them.

2.2 Transducer Technology

Bats are able to produce high-energy sonar pulses in a very efficient manner.
In addition, bats can rely on the superb sensitivity of the mammalian hearing
system on the receiver side. Transducer specifications based on reasonable ap-
proximations of the proven capabilities of biological sonar systems: flat response
over 20-200 kHz, transducer diameter < 1-1.5 cm, generated sound pressure level
of 80-100 dB at 1m, equivalent acoustic noise level < 45 dB can not be achieved
by commercially available in-air ultrasonic transducers. Hence, new transducer
technology is required.

EMFi is a polypropylene film, thickness 30-70 μm, that has a cellular struc-
ture which results from its manufacturing process [3]. During manufacturing
voids created in the non-polar material are internally charged by inducing micro-
plasma discharges. The resulting build up of internal charge at the surfaces of
the voids turns the latter into macroscopic dipoles. EMFi foils are light, thin and
flexible making them easy to process. In addition, the good impedance match
between EMFi and air guarantees a much more efficient transduction than is
possible with standard piezo materials.

A prototype comprising a patch of EMFi (15x15mm) mounted on a copper
plate as backing (s. Fig. 2(a)) was used for investigating the properties of the
EMFi material. Actuated with an a.c. voltage of up to 600Vpp, the films de-
flection (thickness mode oscillation) was measured as a function of frequency
(s. Fig. 2(b)) clearly showing the broadband capabilities of this technology.

The reciprocal nature of the transduction mechanism allows the use of the
same material for designing broadband receivers (Fig. 2(c)). In order to minimize
the size of the receiver, a low noise preamplifier circuit is implemented on the
bottom PCB of the sandwich structure shown in Fig. 2(d). One of the pinna
shapes described in the previous section is mounted on top of this broadband
receiver (s. Fig. 2(e)).

2.3 Actuation

Many bat species posses the capability to orient/deform their outer ears at will,
enabling them to adapt their perception apparatus to the task at hand.
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Fig. 2. (a) EMFi transmitter (15x15 mm); (b) frequency response of transducer surface
displacement. (c) The sandwich structure of the ultrasonic receiver. (d) The EMFi-
transducer foil acting as a receiver is glued to the top layer of the sandwich. (e) The
biomimetic head prototype.

The actuation subsystem of the biomimetic head (s. Fig. 2(e)) needs to pro-
vide the means for duplicating the essential features of such real bat head ac-
tuation capabilities in a volume comparable to that of a real bat head (sphere
 =40-80 mm). In particular, we have chosen independent panning and tilting
of each of the two outer ears (specifications: range=60◦, bandwidth=1-10Hz,
accuracy < 0.1◦) for reproduction in the biomimetic bat head.

The prototype design which meets all specifications makes use of a differen-
tial architecture combining the movements of two motors to move each ear with
the required two rotational degrees of freedom. A very flexible 0.6 mm stainless
steel cable is woven through the differential pulleys in such a way that the satel-
lite pulley performs a pan movement when both motor pulleys are driven in the
same sense and that it performs a tilt movement when the motor pulleys are
driven in opposite senses. The pre-tensioned cable system exhibits zero-backlash
behaviour. Combined with especially designed zero-backlash connections from
motor shaft to motor pulley and from motor pulley to cable, this allows a de-
termination of the exact position (pan and tilt) of the mounted pinna at the
motorside.

2.4 Neuromimetic Signal Processing

The bat’s auditory system is structured in the same way as that of other mam-
mals [4]. In the cochlea, transduction from sound stimuli into neural activity is
performed by the inner hair cells (IHC). Each of the 700-2200 [5] non-spiking
inner hair cells synapses with up to 20 spiral ganglion cells of which there are
13000-55000. The latter are spiking neurons and their axons form part of the
auditory nerve that transfers their spiking responses into the bat’s brain.

We have preferred a simple, efficient cochlear model, which selectively re-
produces functionally significant features of the neural code that emphasizes a
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quantitatively correct representation of the code in the auditory nerve as this
allows for the study of code properties on a neural population level. The CIRCE
neuromimetic cochlea as implemented on Xilinx Virtex II FPGA hardware [6]
consists of a pipelined parallel architecture for a filterbank containing 750 band-
pass filters with a frequency span from 20-200 kHz per ear. Demodulation is
performed in each frequency channel by a combination of half-wave rectification
and low-pass filtering. After automatic gain control these analog signals are con-
verted into a spike code representation by applying multiple thresholds to each
frequency channel output.

3 System Evaluation in Biosonar Tasks: 2D Target
Localization

Observing biosonar systems shows that a large amount of information can be
extracted from a single measurement [7]. In addition, bat sonar is an active
system, i.e. the bat can control its perception apparatus in such a way as to
simplify subsequent feature extraction.

We reconstruct the environment, i.e. localize the reflecting targets, by com-
paring the returned echoes with predefined spectral templates corresponding
with echoes from different angles (s. Fig. 3).

Fig. 3(a)-(d) shows how echoes arising from spatially separated point reflec-
tors in a 2D environment do indeed reveal the position of the reflectors through
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Fig. 3. (a) Cochlear time-frequency representation of picked up call + echoes from two
spatially well separated reflectors. (b) Cochlear output after call induced delay variation
has been compensated for. (c) The correlation calculated for the cochlear output shown
in (a). (d) The estimated positions (larger gray dots) and the true positions (black dots)
of the reflectors. (e) A 2D extended reflector (multiple reflecting facets). Reconstructed
environment (f) rotation sonarhead = −5◦, (g) rotation sonarhead = −25◦.
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correlation with the angular templates, i.e. the normalised cochlear output for
an isolated reflector at a particular angle θ. Various extensions of this powerful
approach can be considered. In Fig. 3(e)-(g) we show how the same approach
can be applied to more complex distributions of reflectors, as models of natural
vegetation. In [8] we show how active control of the ear configuration allows
binaural sonar systems to eliminate most of the interpretation errors that occur
in such more realistic environments with a monaural system. In [9] it is shown
how the same mechanism can be extended to 3D localization of isolated targets
for a binaural sonar system.

4 Conclusion

The biorobotics approach, in particular the biomimetic CIRCE head described
in this paper, provides the opportunity to tap into the large pool of biosonar
experience built by millions of years of natural selection. Hence, we propose
it presents a valuable extra source of information for robotic sensor designers
attempting to build the next generation of more advanced robotic echolocation
systems.

In addition to the technological innovations resulting from the building/using
of the biomimetic bat head, as described here, the head makes possible the
systematic study of active sensing strategies evolved by bats for coping with the
complex echoes arising while flying/hunting in the foliage.
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neuromimetic cochlea for a bionic bat head. LNCS 3203, J. Becker, M. Platzner and
S. Vernalde (Eds.), (2004) 1073-1075.

7. Suga N.: Cortical computational maps for auditory imaging. Neural networks, 3,
(1990) 3-21.

8. Reijniers J. and Peremans H.: Towards a theory of how bats navigate through foliage.
In: Proc. of the 8th Int. Conf. on the Simulation of Adaptive Behaviour, (2004) 77-
86.

9. Peremans H., Walker A. and Hallam J.: 3d object localisation with a binaural sonar-
head, inspirations from biology. Proc. of the IEEE Int. Conf. on Robotics and Au-
tomation, (1998) 2795-2800.



 

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 289 – 296, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Tools for Address-Event-Representation Communication 
Systems and Debugging 

M. Rivas, F. Gomez-Rodriguez, R. Paz, A. Linares-Barranco, 
S. Vicente, and D. Cascado 

Departamento de Arquitectura y Tecnología de Computadores, Universidad de Sevilla, 
Av. Reina Mercedes s/n, 41012-Sevilla, Spain  

{mrivas, gomezroz, rpaz, alinares, satur, danic}@atc.us.es 
http://www.atc.us.es 

Abstract. Address-Event-Representation (AER) is a communications protocol 
for transferring spikes between bio-inspired chips. Such systems may consist of 
a hierarchical structure with several chips that transmit spikes among them in 
real time, while performing some processing. To develop and test AER based 
systems it is convenient to have a set of instruments that would allow to: 
generate AER streams, monitor the output produced by neural chips and modify 
the spike stream produced by an emitting chip to adapt it to the requirements of 
the receiving elements. In this paper we present a set of tools that implement 
these functions developed in the CAVIAR EU project.  

1   Introduction 

Address-Event-Representation (AER) was proposed in 1991 by Sivilotti [1] for 
transferring the state of an array of neurons from one chip to another. It uses mixed 
analog and digital principles and exploits pulse density modulation for coding 
information. The state of the neurons is a continuous time varying analog signal.  

Fig. 1 explains the principle behind the AER. The emitter chip contains an array of 
cells (like, e.g., an imager or artificial retina chip) where each pixel shows a state that 
changes with a slow time constant (in the order of milliseconds). Each pixel includes 
an oscillator that generates pulses of minimum width (a few nanoseconds). Each time 
a pixel generates a pulse (called "event"), it communicates with the periphery and its 
address is placed on the external digital bus (the AER bus). Handshaking lines 
(Acknowledge and Request) are used for completing the communication. 

 

Fig. 1. AER inter-chip communication scheme 
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In the receiver chip the pulses are directed to the pixels or cells whose address was 
on the bus. This way, pixels with the same address in the emitter and receiver chips 
will "see" the same pulse stream. The receiver cell integrates the pulses and 
reconstructs the original low frequency continuous-time waveform.  

Transmitting the pixel addresses allows performing extra operations on the images 
while they travel from one chip to another. For example, inserting memories (e.g. 
EEPROM) allows transformations of images.  

There is a growing community of AER protocol users for bio-inspired applications 
in vision and audition systems, as demonstrated by the success in the last years of the 
AER group at the Neuromorphic Engineering Workshop series [2]. The goal of this 
community is to build large multi-chip hierarchically structured systems capable of 
performing complicated array data processing in real time. The CAVIAR EU project 
has the objective to demonstrate this technology by targeting and following a moving 
ball. The planned AER system under CAVIAR uses the following AER chips: one 
Retina, four Convolutions, four Winner-Take-All (Object) and one Learning chip. To 
make possible the right communication of these chips and for debugging purposes it 
is essential to have a set of instruments that would allow to: 

− Sequence: Produce synthetic AER event streams that can be used as controlled 
inputs while testing and adjusting a chip or set of chips. 

− Monitor: Observe the output of any element in the system. 
− Map: Alter the stream produced by an emitter and send the modified stream to a 

receiver  

 

Fig. 2. AER tools usage scenario 

For these purposes we have designed and implemented two different instruments: a 
PCI board capable of sequencing and monitoring events at a rate of over 15Mevents/s 
and a versatile board that can be used for sequencing, monitoring and mapping. This 
last board can be used either in a stand alone mode or connected to an external 
computer through a USB bus. A possible scenario for these tools is shown in Fig. 2 
where a computer with a PCI-AER board produces output for AER chip1. The output 
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from this chip is remapped by a USB-AER board and fetched to AER chip 2. The 
stream produced by chip 2 is monitored by another USB-AER board which can send 
its output directly to a VGA monitor or to a computer through USB bus. 

To be useful for debugging an AER tool should be able to receive and also send a 
long sequence of events interfering as little as possible with the system under test.  

As neurons have the information coded in the frequency (or timing) of their spikes, 
the pixels that transmit their address through an AER bus also have their information 
coded in the frequency of appearance of those addresses in the bus. Therefore, inter-
spike-intervals (ISIs) are critical for this communication mechanism. Thus, a well 
designed tool shouldn’t modify the ISIs of the AER. 

Sections 2 and 3 present the PCI and the USB solutions and their applications in 
AER testing. Section 4 presents a Switch-AER. Section 5 presents a small version of 
a USB board with lower capabilities and performance, but very simple to use. And 
finally in section 6 we conclude with two examples of connectivity. 

2   PCI-AER Interface 

Before the development of our tools the only available PCI-AER interface board was 
developed by Dante at ISS-Rome (See [3]). This board is very interesting as it embeds 
all the requirements mentioned above: AER generation, remapping and monitoring. 
Anyhow its performance is limited to 1Mevent/s approximately. In realistic 
experiments software overheads reduce this value even further. In many cases these 
values are acceptable but, currently many address event chips can produce (or accept) 
much higher spike rates. 
    As the Computer interfacing elements are mainly a monitoring and testing feature 
in many address event systems, the instruments used for these purposes should not 
delay the neuromorphic chips in the system. Thus, speed requirements are at least 10 
times higher than those of the original PCI-AER board. Several alternatives are 
possible to meet these goals: extended PCI buses, bus mastering or hardware based 
Frame to AER and AER to Frame conversion. 
    The previously available PCI-AER board uses polled I/O to transfer data to and 
from the board. This is possibly the main limiting factor on its performance. To 
increase PCI bus mastering is the only alternative. The hardware and driver 
architecture of a bus mastering capable board is significantly different, and more 
complex, than a polling or interrupt based implementation. 
    The theoretical maximum PCI32/33 bandwidth is around 133Mbytes/s. This would 
allow for approximately 44Mevent/s considering 2 bytes per address and two bytes 
for timing information. Realistic figures in practice are closer to 20Mbyte/s. Thus, in 
those cases where the required throughput is higher a possible solution is to transmit 
the received information by hardware based conversion to/from a frame based 
representation. Although this solution is adequate in many cases, there are 
circumstances where the developers want to know precisely the timing of each event, 
thus both alternatives should be preserved. 
    The physical implementation of all the steps is equal. They differ in the VHDL 
FPGA code and in the operating system dependent driver. The first design was a 
VIRTEX based board which was completely redesigned after the first tests. It was 
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established that most of the functionality, demanded by the users, could be supported 
by the smaller devices in the less expensive SPARTAN-II family. The Spartan 
Version of the board is shown in Fig. 3. 
    Currently a Windows driver that implements bus mastering is being tested. The 
Linux version with bus mastering is still under development. An API that is 
compatible, as much as permitted by the different functionality, with that used in the 
current PCI-AER board has been implemented. MEX files to control the board from 
MATLAB have also been developed. 

Current performance of PCI-AER board is around 15 Mevents/second using PCI 
mastering capabilities. 

 

Fig. 3. CAVIAR PCI-AER board 

3   USB-AER 

The CAVIAR PCI-AER board can perform Address Event sequencing and 
monitoring functions but has no hardware mapping capabilities. Although software 
based mapping is feasible a specific device for this purpose is needed if we want to 
build AER systems that can operate without requiring any standard computer. This 
standalone operating mode requires to be able to load the FPGA and the mapping 
RAM from some type of non volatile storage that can be easily modified by the users. 
MMC/SD cards used in digital cameras are a very attractive possibility. However in 
the development stage the users prefer to load the board directly from a computer and, 
for this purpose USB seems the most suitable solution. 
    Many AER researchers would like to demonstrate their systems using instruments 
that could be easily interfaced to a laptop computer. This requirement can also be 
supported with the USB-AER board as it includes a relatively large FPGA that can be 
loaded from MMC/SD or USB, a large SRAM bank and two AER ports. Thus the 
board can be used also as a sequencer or a monitor. Due to the bandwidth limitations 
of full speed USB (12Mbit/s) hardware based event to frame conversion is essential in 
this board for high, or even moderate, event rates. 
    The USB-AER board is based around a Spartan-II 200 Xilinx FPGA, with a 
512K*32 12ns SRAM memory bank. The board uses a Silicon Laboratories 
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C8051F320 microcontroller to implement the USB and the MMC/SD interface. A 
simple VGA monitor interface is also provided to allow the board to act as a monitor 
(frame grabber).  
    The board will act as a different device according to the module that is loaded in 
the FPGA either through a MMC/SD card or from the USB bus. Currently the 
following Modes are implemented: 

− Mapper: 1 event to 1 event and 1 event to several events. 
− Monitor (frame-grabber): using either USB or VGA as output. For the VGA output 

there are two possibilities: B/W VGA, using the VGA connector of the board. And 
Gray VGA, using a VGA-DAC board connected to the out-AER connector of the 
board. 

− Sequencer: based on hardware frame to AER conversion using the Random or 
Exhaustive methods [4][5][6]. Can produce up to 25 Mevents/second. (40 ns per 
event). 

− Datalogger: allows to capture sequences of up to 512K events with timestamps and 
send them to the PC offline through USB bus. 

− Player (under development): to play up to 512Kevents with their timestamps.  

These two modules are very interesting when a researcher wants to use the output 
stream produced by a chip from another researcher (probably in other country) as 
input to his or her chip. 
    This new board was interfaced in Telluride 04 [7] to the current version of the 
CAVIAR retina and to an imager developed at JHU. Later in the CAVIAR meeting in 
September 04 it was interfaced to the remaining project chips. The USB-AER board 
is shown in Fig. 4. 

 

Fig. 4. USB-AER Board 
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    A simple interface to control this board is available under windows. It allows 
loading modules into the FPGA, uploading or downloading data to the FPGA, and 
showing the received images when the board acts as a monitor. There is also available 
a MATLAB interface that support the same functionality. 
    A Linux driver for the USB-AER is currently under test. With this driver the USB-
AER board can be easily integrated with several MATLAB applications developed at 
INI [8]. 

4   AER-Switch Board 

A 4 to 1 and 1 to 4 AER-switch is presented in this paper. This board allows: 

- The connection of more complex AER systems. 
- An easier debugging by inserting PCI-AER or USB-AER board without 

modifying the structure of the global system to be tested. 

This board has a CPLD as a communication centre, that manages the different modes 
and controls asynchronously the protocol lines. It can work in 2 different modes: 4 
input, 1 output mode and 1 input, 4 output mode, both in unicast mode (selecting one 
output) or broadcast mode. This functionality should be configured by jumpers. There 
are 5 different AER ports, where one of them works  always as an output, and another 
as an input. The others three are bidirectional. Fig. 5 shows the current version of this 
board.  

  

Fig. 5. AER-Switch Board 

5   Mini-USB Board 

For those tests or applications where it is not needed high speed performance, a small 
version of the USB board is available. This one doesn’t have FPGA, nor MMC/SD 
card. This board can be connected to the PC through the USB bus, and all the 
functionality (Monitor or Sequencer) has to be programmed into the microcontroller 
under C code. Fig. 6 shows the current version of this board. The board has been 
developed also under CAVIAR project by INI partner and authors. 
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Fig. 6. AER-Switch Board 

  

Fig. 7. Two demonstration Scenarios 

 

Fig. 8. Scenario Photograph 

PCI-AER 
Random 
generator 

WTA chip

USB-AER 
framegrabber 



296 M. Rivas et al. 

 

6   Conclusions 

A set of tools has been developed that allow efficient testing and demonstration of 
address event based systems. Two demonstration scenarios are shown in Fig. 7. In the 
left case a PCI-AER board is generating a stream of events from a digital frame, using 
a hardware synthetic method. This sequence is used to feed a WTA filter chip, 
developed at INI. The output of the WTA chip is captured using a USB-AER board 
configured as a frame-grabber. A photograph of this scenario is shown in fig. 8.  

On the right a USB-AER is working as a frame to AER sequencer to feed a AER 
chip. This chip receives also the transformed output of another AER chip using the 
AER-Switch. The output of the second chip can be viewed in the laptop screen, using 
another USB-AER as a monitor. 

In this scenario only the presented tools are shown. In real world cases the tools are 
used to evaluate or tune neural chips. In the CAVIAR project the chips have been 
interfaced to two different retinas, a convolution chip, a winner take-all (object) chip 
and a learning chip. 
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Abstract. Cricket females perform phonotaxis towards the specific
sounds produced by male crickets. By means of a well-tuned periph-
eral auditory system the cricket is able to extract directional informa-
tion about the sound, and the neural system can recognize the species
specific characteristics of the song. Crickets use sounds coming from at
least four body openings to derive the directional signal. A new artificial
four-input apparatus which implements a detailed model of the cricket’s
peripheral auditory system, together with our most recent model of the
neural system are used for this study. A series of experiments is con-
ducted to validate the new auditory input device and to benchmark the
neural model. This study shows that (i) the new auditory input device
provides the robot with realistic inputs, and, (ii) most behavioral fea-
tures ascribed to previous neural models still hold for the new neural
model. The relevant differences are discussed.

1 Introduction

Female crickets are known to track a calling song made by male crickets as part of
the mating process. The cricket’s auditory system is evolutionarily tuned for this
purpose and enables the cricket to efficiently recognize and localize the calling
song [1]. The peripheral auditory system consists of two ear drums (tympanal
membranes) located on the forelegs and connected through a system of tracheal
tubes. One extra sound opening on each side of the cricket body (the spiracle)
is also connected to the tracheal tubes. The trachea allow sound coming from
one side to travel to the other side (Figure 1, left). This way, both ear drums
receive “sound on the external surface and sound on the internal surface coming
from at least three different pathways” [2]. The amplitude of vibrations of the
tympanal membrane depends on the phase of the sounds converging on either
side of the ear drum. The relative phases depend on the frequency and direction
of the sound [1].

Our previous cricket robots were equipped with an auditory input appara-
tus that functionally mimicked the peripheral auditory system, i.e. acting as a
pressure difference receiver [3] so that, for sounds of a specific carrier frequency,
the gradient to the sound source can be determined. However, it used only two
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Fig. 1. Left diagram: placement of the tympana and spiracles. The circles represent
the sound inputs and the tubes represent connecting tracheal tubes. The tracheal tube
between the ipsilateral spiracle (IS) and the contralateral spiracle (CS) connects both
sides; the tympana (IT and CT) are located on the forelegs and in connection with
the other sound openings by the tracheal tubes. Right diagram: block diagram of the
electrical circuit used for amplifying and phase delaying the sound inputs.

sound inputs. This study enhances the previous implementation by using a new
auditory mechanism with four sound inputs, closely based on cricket morphology.

An essential aspect of the cricket’s behavior that must be reproduced by the
robot is the preference for a specific calling song. Preference is mainly determined
by recognition of songs with correct temporal features. The carrier frequency of
the song is also important since frequencies of around 5kHz are required to
obtain a directional signal. Carrier frequency ‘preference’ may be implicit in
the frequency dependence of directionality in the peripheral auditory system
[3]. But the preference for temporal features is a property of the subsequent
neural processing. Using the new auditory device, this paper tests the behavior
of a robot controlled by a neural model first presented in [4]. The aims are: to
validate the new four-input implementation; to compare the behavior of the two-
input and four-input systems; and to determine whether the new neural model
accounts for the same range of cricket behavior as a previous model [5].

2 Methods

Robot Model. The robot model consists of (i) a standard Khepera robot
with mounted auditory input device and (ii) the neural networks running on an
attached workstation. Two auditory input devices are used in this report: a two-
input device (described and tested in [3]) and a new enhanced four-input device.
The latter is a based more closely on the cricket morphology, with four micro-
phones mimicking the four sound entrances which contribute to the directional
hearing of the cricket. These are positioned to preserve the spatial relationships
between the real sound entrances (Figure 1, left). The analog input from the
microphones is amplified and phase delayed in order to get a directional signal,
as illustrated in Figure 1 (right). Settings for the internal gains and delays are
taken from laser vibrometry measurements of these properties in real crickets [2].
The exact settings for the placement of the microphones, the amplifications and
delays can be found in [6]. The analog signal produced by the electrical circuit
is then converted to Poisson spike trains which are fed into the neural network.
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Fig. 2. Neural controller. Signals come from the tympana into the auditory network
(left) and go on to the motor network (right) which passes signals out to the motors.

The neural networks used in this study are shown in Figure 2; more details of
the model can be found in [4]. The difference with the previous model [5] lies in
the enhancement of the auditory model and the extension of motor network.

Experimental Setup. The experiments are conducted according to the Kramer
treadmill paradigm [7] with the subject at a fixed distance from the sound source;
sensory feedback is obtained by rotating in the sound field. The stimuli consist
of a computer generated calling song with configurable temporal features and
carrier frequency of 4.7kHz. Analysis of the robot behavior is mostly done by
examination of the neuronal activity recorded at every time step. A quantitative
measurement is needed to compare our results with previous experiments and
biological evidence. The length vector and its direction are adopted from [5] and

defined as L =
√

(
∑

cos θ)2 + (
∑

sin θ)2/N , and, D = arctan (
∑

sin θ/
∑

cos θ).
θ is defined as the cumulative sum of the instantaneous angles of the robot which
are directly derived from the wheel encoders on the robot: θ = (vl−vr)Δt

r .

3 Results

Taxis to Cricket Song. A basic test of the complete phonotactic behavior is
whether the robot reliably tracks toward a cricket song. The tracking experiment
is set up to match the criteria used for cricket in [7]: the robot should turn
toward the sound and oscillate around the direction of the sound, and whenever
the sound changes direction the robot should follow. Two speakers are placed
on the azimuth with a separation of 90◦ at a distance of 20cm from the robot.
The song is first played from one side for 10s, switched to the other side for
10s and finally switched back for 5s. Figure 3 (left) illustrates the results. The
top diagram illustrates a run with the two-input implementation, the bottom
diagram illustrates a run obtained by the new four-input implementation. Both
robot models meet this criteria for phonotaxis.

Selectivity for Different Syllable Rates. Cricket phonotaxis is selective
toward certain calling song patterns, and the syllable repetition interval (SRI)
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is regarded as the most important temporal feature, e.g. Gryllus bimaculatus
show reduced phonotaxis as calling songs differ from their optimal SRI of 42ms.
Following the biological tests of [7], the robot was tested with SRI 10-98 in steps
of 8ms. The phonotactic response [5] measure defined for crickets in is used for
the analysis of the results: PR = L·turn%·cos (α− η). L is the length vector (see
methods), turn% is the percent of time the robot spends turning, and (α− η)
is the difference between the heading of the robot and the sound direction.

Figure 3 (right) shows results obtained by both the two-input and four-input
implementation. Reduced phonotaxis is observed for SRI smaller than 26ms, and
the response tends to decrease as the SRI increases beyond 74ms. The selectivity
is slightly more pronounced in the four-input implementation, but is still rather
less selective than the cricket. It is also less selective than was found for the
previous neural model [5], where the robot only responded for SRI 26-66.

Fig. 3. Left: Heading angle of a robot implementation performing phonotaxis; top left
diagram is a reference run taken obtained by the two-input implementation; the bottom
left diagram is obtained by the four-input implementation. Right: Phonotactic response
obtained by both robot models.

As well as comparing robot and cricket behavior, we can compare neural
activity, for example the response of the simulated brain neurons to data recorded
in the cricket by [8]. Figure 4 illustrates the neural activity recorded in the BNC2
neuron in the two-input and four-input implementation as the SRI is varied from
10-98ms. Both models have a firing-rate pattern that resembles the behavioral
results obtained by [7], and the shape and magnitude of the firing-rate in the
four-input model is directly comparable to the firing-rate found in the BNC2a
neuron of the cricket [8]. However it appears this selectivity at the neural level
has, in the robot, been lost in the translation into a motor response, due to
the tuning of the RT and LT neurons in the motor network. As illustrated in
Figure 5, these neurons will fire once per chirp in response to any activity in
the BNC2 neurons, and this results in a turn lasting approximately the length
of a chirp. For longer SRIs, the BNC2 response is reduced but not absent (see
Figure 4) so the RT or LT neuron still fires, and the motor response still occurs.
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Fig. 4. The firing-rate measured in the BNC2 neuron when calling songs with different
SRI are presented. The left diagram illustrates the results obtained by the two-input
implementation, the right diagram illustrates the results from the four-input imple-
mentation.

Fig. 5. Source of discrepancy between neural and behavioral selectivity. The top dia-
grams show the response of the BNC2, left and right respectively. The lower diagrams
show the response of the LT and RT, neurons. For the four right diagrams the calling
song was composed of 21ms syllables alternating with a gap length of 25ms; for the left
side diagrams the calling songs was composed with 21ms syllables and a gap length of
41ms. The BNC2 neuron fires more to faster songs but the LT + RT response remains
the same.

Previous experiments with this neural circuit [4] did not test the selectivity of
the robot behavior so this limitation of the model was not apparent.

Songs from Above. This experiment uses an omnidirectional stimulus to repli-
cate cricket experiments that are intended to show whether the localization and
recognition of sound are independent processes. If a song is played from directly
above the cricket, no consistent directional information is available. The fact
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Fig. 6. Robotic behavior in the overhead sound experiment.Top: The sound is started
after five seconds and both robots detect the undirectional signal. Bottom: both robots
turn away from the added pure tone after a short delay. Note that the y-axis scale
differs in the diagrams.

that crickets respond as though attempting to track the song has been presented
as evidence that an independent recognition mechanism has ‘switched on’ the
phonotaxis response, although the sound cannot be localized [9]. On the other
hand, the addition of an unpatterned sound from one side in this paradigm
causes the cricket to turn away from the side where the combined sound is loud-
est, and toward the side where the song pattern is clearer. This suggests a serial
process in which recognition of the signal on each side feeds into a comparator to
localize the sound. However, our previous robot model could replicate the cricket
behavior described above [5], despite the absence of any independent recogni-
tion mechanism or explicit comparison. Figure 6 illustrates the results obtained
for the new neural model, using both the two-input and four-input systems. In
the top graphs, when sound is presented from above, the robot starts turning
as though performing an undirected phonotaxis. In the bottom graphs, when a
continuous tone is presented at 45◦ in addition to the overhead sound, both the
implementations turn away from the direction of the pure tone to start tracking
the opposite direction. This replication of the cricket behavior suggests that the
overhead sound paradigm cannot be considered a definitive test for the indepen-
dence or otherwise of recognition and localization processes in the cricket.

Split-Song. In [5] it was found that the previous neural model failed to repli-
cate cricket behavior when presented with the split-song stimuli used in [10] to
investigate the interactions between the localization and recognition tasks. In
this experiment two speakers are placed on the azimuth with a separation of
135◦. An unattractive song with a SRI 84 (composed with a syllable length of
21ms and a gap length of 63ms) is played simultaneously from both speakers,
with one delayed by 42ms. In a region around the bisector of the speakers, the
two songs are superimposed and form one attractive song with SRI 42. Crickets
are reported to track the direction of the bisector [10]. Figure 7 illustrates the re-
sults obtained by the two-input and four-input implementation. The four-input
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Fig. 7. Robot response to a split-song with a correct composite song. The left and right
diagram illustrate the result obtained by the two-input and four-input implementation,
respectively. The horizontal axis denotes the time.

implementation is clearly tracking the direction of the bisector while the two-
input implementation is not responding at all to the split-song stimulus. The
main reason for this difference, which can be confirmed by examining the model
neuron responses, is that the two input implementation of the auditory system is
more strongly directional than the four input implementation. The latter results
in some ‘cross-talk’ between the two sides, sufficient for the combined SRI 42ms
pattern of syllables to be intermittently represented in the auditory interneurons
on one side or the other, and hence recognized and responded to by the robot.
The two input implementation only encodes the respective SRI 84ms signal on
each side, producing a weak recognition response on both sides, which cancels
out resulting in no motor response.

4 Discussion

This study is one of a series of implementations of robot models of cricket be-
havior. In each iteration, we have attempted to improve the biological accuracy
of the model. The robot described here combines a new version of the peripheral
auditory processing (closely based on cricket morphology) with our most recent
model of the neural processing (incorporating more of the known neurophysio-
logical data) and is tested on a range of tasks derived from cricket experiments.
A particular aim was to determine whether the full range of behavioral capa-
bilities demonstrated with an earlier, and simpler, neural model [5] could also
be demonstrated with the new, biologically more plausible, neural model. The
results of all the tests performed in this validation process and a detailed analy-
sis can be found in [6]. The selection of tests reported here illustrate a broad
similarity of capability, with a few interesting differences. The robot could track
cricket song, could show a selective response to different song patterns, and re-
sponded in the same way as the cricket to complex stimulus paradigms such as
song from above and split song.

For most of the tests there was not a significant difference between the imple-
mentations with two inputs and four inputs. The exceptions to this are revealing:
the two sound input produced stronger lateralization of the sound than a cricket
but as a consequence failed to respond in the same way as a cricket to a split
song stimulus. This suggests that the ‘tuning’ of the peripheral auditory system
in the cricket may involve a tradeoff between strong lateralization (to better
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locate the sound) and weaker lateralization (to improve the chances of sound
detection and recognition).

The robot behavior did not match the cricket as well as expected for its se-
lectivity to different SRIs. This failure could be attributed to the way in which
the motor circuit responded to the output of the auditory circuit. This motor
circuit design was highly speculative, as there is almost no neurophysiological
data on the output side for cricket phonotaxis. It was designed to account for
the descriptions of cricket motor responses given in [11,12]. However, very recent
experiments on the cricket (Hedwig and Poulet, personal communication), an-
alyzing phonotaxis behavior at a high time resolution, suggest a very different
mechanism for motor control. It now appears likely that there is a direct connec-
tion from the AN1 or ON1 interneurons to the motor interneurons responsible
for producing turns, such that every syllable encoded in the auditory interneu-
ron response causes a small deviation in the path. This ‘fast’ pathway is then
modulated on a much slower time scale (i.e. over several chirps) by the output
of the ‘recognition’ circuit, represented in our model by BNC2. We are currently
testing a new neural model based on these results.

Acknowledgments. The authors thank the Dutch Ministry of Economic Af-
fairs, grant nr: BSIK03024 (ICIS project) and the UK Biotechnology and Bio-
logical Sciences Research Council for funding the research in this paper.
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Abstract. For this special session of EU projects in the area of NeuroIT,
we will review the progress of the MirrorBot project with special empha-
sis on its relation to reinforcement learning and future perspectives. Mod-
els inspired by mirror neurons in the cortex, while enabling a system to
understand its actions, also help in the solving of the curse of dimension-
ality problem of reinforcement learning. Reinforcement learning, which
is primarily linked to the basal ganglia, is a powerful method to teach
an agent such as a robot a goal-directed action strategy. Its limitation is
mainly that the perceived situation has to be mapped to a state space,
which grows exponentially with input dimensionality. Cortex-inspired
computation can alleviate this problem by pre-processing sensory infor-
mation and supplying motor primitives that can act as modules for a
superordinate reinforcement learning scheme.

1 Introduction

Brain-inspired computation has the prospect of unprecedented control of artifi-
cial agents in addition to giving insights into neural processing. In the MirrorBot
project, cortical mirror neurons which link perception and action have been cho-
sen as a topic of study and a source of inspiration for building artificial systems.
Mirror neurons which have been found in the motor cortex of the monkey are
not only active when a monkey performs an action, but also when it observes
the corresponding action being performed by somebody else (e.g. [1]). Thus,
they have sensory neuron properties. This justifies that we generalise models of
the sensory cortex, in particular from vision, to the motor cortex. Such models
can learn, instead of a representation of a visual image, a representation of a
sensory-motor mapping that has been given as input during learning and that
may originate from a reinforcement learner. In reinforcement learning, the input
state space grows exponentially if actions are extended. Here a motor cortex
module can become a replacement. The hierarchical structure of the cortex fur-
thermore suggests a capability of action organisation, and if given motivational
input such as the reward (or Q-value) used for reinforcement learning [2] then the
cortex might represent and act in response to such values. A view emerges that
a reward-driven reinforcement module is surrounded by a cortex that not only
pre-processes its input but also learns to understand, duplicate and anticipate
it. We use a simple, but expandable robot docking manoeuvre as an example of
a real world demonstration.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 305–310, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 A Visually Guided Robotic Docking Task

Grasping of an object is a fundamental task for monkeys and humans. The robot
equivalent is the docking, where it has to approach a table in a fashion that it
can grasp an object lying on it. Figure 1 shows the geometry. A video can be
seen at: http://www.his.sunderland.ac.uk/robotimages/Cap0001.mpg.

We have managed to control the robot performing this task based almost
entirely on neural networks. Figure 2 shows the model. This consists of several
modules which have partially been trained independent of each other.

First, the lower visual system consists of the mapping from the raw pixel
image I to the hidden feature representation u. This is trained unsupervised
according to a generative model. Accordingly, the image has to be generated
from the hidden code via feedback weights which are used only during training.

Second, the location associator weights from u to the area representing the
perceived location p are trained supervised with the target object position given
during training. After training the location can be filled in if it is missing, thus
the attractor network does pattern-completion to localise the object.

Third, an action strategy is learnt by reinforcement using an actor-critic
paradigm. Its input is the state f which is constructed as the outer product of
p and a vector representing the robot angle ϕ w.r.t. the table. The critic value
c represents the goodness of the current robotic state which is rewarded if the
target object is at a graspable position, i.e. perceived near and in middle of view,
and while ϕ = 0. During learning, the motor actions acquire a strategy to reach
this goal [3]. In the following we will show that an alternative module can copy
this action strategy to replace the reinforcement learner after task acquisition.

ϕ

Fig. 1. Left, the PeopleBot robot aiming to grasp an orange fruit from a narrow table.
Its camera is below the top-plate and is assumed fixed throughout learning and per-
formance. Right, the geometry of the scenario with the table and target, above, and
the robot with its grippers, below. The robot’s input is the visual field (outlined by a
dotted rectangle) and its angle ϕ to the table, obtained from internal odometry.
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Fig. 2. The neural network which performs visually guided docking. The information
flow is as follows: An RGB colour image I from the robot camera is given as input. A
representation u is obtained on what we would identify as a V1 visual area, and from
this we obtain the perceived location p of the target object within the image. This
location and the rotation angle ϕ of the robot, together contain the information which
is collated as state space vector f . This is evaluated during learning by the critic c,
and the motor actions m drive the robot’s wheels. After task acquisition, the motor
cortex representation r binds sensory-motor associations, and can produce actions m

based on inputs p and ϕ by itself. This makes the state space available for learning
other tasks. Thick arrows represent trained weights, the lighter of which are used only
during learning. Shaded areas are supposed to belong to the cortex.

3 Motor Cortical Neurons Performing Docking

A further fourth module is a cortical representation r which associates this area’s
inputs p, ϕ and m. The combined input allows it to perform the stimulus-
response mapping already performed via the state space. The intra-area at-
tractor network connections are trained for prediction, allowing the network
in addition to perform mental simulation. The idea is that automatic perfor-
mance of the motor primitive by the motor cortex module makes the state
space redundant and thereby makes it available to learn other tasks. A video
showing the robot controlled by the simulated motor cortex can be seen at:
http://www.his.sunderland.ac.uk/supplements/NN04/MOV01065.MPG

We propose to identify the model’s state space with the basal ganglia, as
these have been linked with reinforcement learning. There is biological evi-
dence that the basal ganglia are active only during early phases of task
acquisition [4].
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4 Mirror Neurons for Multiple Actions

One advantage of the cortical modular motor action over reinforcement-trained
agents is that cortical representations can easily be structured hierarchically,
allowing multiple and composed actions to be represented. We produced three
simulated robotic actions, “pick” which corresponds to the docking, “lift” during
which (after picking an object) the robot would move back and turn and “go”
during which the robot avoids objects and wanders around. We designed the
environment and the robotic perception so that all behaviours act based on the
same sensory input. The robot rotation angle ϕ and the distance to the wall and
object p are contained in a “high-level vision” sensory input array.

Figure 3 shows the network architecture which performs these tasks which
we have implemented on a simulator [5]. A top level area is added containing a
vector s, implemented as a SOM [6], which binds language input l together with
a representation r that performs previously acquired sensory-motor bindings.
Given language as input and thereby influencing the winner among s will influ-
ence the sensory-motor mapping. Vice versa, if complete sensory-motor stimuli
are given, then the winner among s identifies the action which is being per-
formed. Production and recognition share the same neural substrate as is the
case for mirror neurons [1]. Also, action words are topographically arranged [7].

5 Extension of Docking via a Long-Range Strategy

The visually guided docking described in Section 2 requires that the robot is
very close to the table and that the target object is visible. We are currently im-
plementing a long-range table approach by reinforcement learning. While the ro-
bot’s camera cannot find and identify the target object from a large distance, the
table can be identified. This is particularly easy by an additional omni-directional
camera fitted on top of the PeopleBot robot. Several design implementations are
considered to integrate long-range and short-range docking.

(i) A straightforward approach is a monolithic state space spanning long- and
short-range sensory input. In this case, however, the state space would become
too large. In order to overcome these problems, it has been proposed to use
adaptive state recruitment schemes [8][9].

(ii) A second approach is to train long-range and short-range behaviours
separately using separate modules and to combine them sequentially. While this
specific partitioning scheme might sound arbitrary, the switch between the use
of the omni-directional camera for the long-range and the standard robot cam-
era for the short-range clearly marks a boundary for the behaviour change. In
humans, the switch might not be determined by the use of different sensors,
but of actuators instead, such as the use of legs for long-range approach and of
arms for the short range. Having defined behaviour modules, or partial policies
which accomplish subtasks, it has been proposed to hierarchically implement a
superordinate reinforcement scheme that acquires a policy for optimally switch-
ing between the subtasks as if they were primitive actions [10][11], see also [12].
This scheme, however, seems too powerful if there are just two modules.
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Fig. 3. a) The model architecture for multiple actions. The sensory-motor area rep-
resenting r and binding sensory inputs (p, ϕ) with motor actions m stems from the
model in Figure 2. New is the top-level SOM area where s associates language input l

with a certain motor program r. b) Left, the sensory-motor area and its innervation
from the four motor area units. Each motor unit projects only onto a small (circled)
region on this area. Right, the sensory-motor area and its combined innervation from
the sensory inputs. One can see that the four areas which receive motor input (circled)
are avoided by sensory input. c) Receptive fields of four SOM area units in the sensory-
motor area. It can be seen that each SOM unit receives innervation from patchy regions
in the sensory-motor area. The leftmost unit contains a sub-region (circled) that also
receives input from the “left” motor unit, while the rightmost unit has a coinciding
region (circled) with the “forward” motor unit. Thus the SOM area units perform
dynamical feature binding, associating slightly different sensory input with different
motor actions. The four units shown are all active during the “go” action; SOM units
corresponding to different actions perform different bindings.

(iii) Contributing to such a hierarchical implementation, a behaviour module,
or action sequence may be represented on the motor cortex, as we have proposed
in Section 3. In this case the motor cortical units coding for that action sequence
would be addressable by the reinforcement module just as single motor units
are in the canonical implementation. The state space then would not need to
consider any input that is accounted for by the cortical units. Both, long-range
and short-range docking could be implemented by such motor units.

6 Discussion

Mirror neurons may play a major role in a distributed language representation of
actions [7] by their multimodality [1]. In the MirrorBot project, also a modular
neural architecture was devised to parse and understand a sentence [13] which
we will integrate with the model described here. Further improvements have
been done on attractor network models for visually focussing objects [14].

We have seen in Section 2 that a visual cortex-inspired module can deliver an
object representation as required as input to a state space. This requires a fixed
camera so that a visually perceived position can readily be used in the robot’s
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motor coordinates. We are currently developing a coordinate transformation
attractor network which will allow the camera to be rotated while the robot
is docking. It associates (i) the visually perceived object location and (ii) the
camera pan-tilt angle with (iii) the body-centred position of the target object.
This is another strategy to extend the action range and limiting the state space.

In Section 3 we have seen that a motor-cortex inspired module can obviate
the reinforcement module, and Section 4 demonstrated the potential of cortical
action organisation. Our cortical models are inspired by the theory of generative
models which reconstruct training data. Therefore, a “teacher” module, such as
the reinforcement trained module, is required for any new action that the cortex
then performs habitually. If the cortex receives the motivational, reward value
used for reinforcement learning as additional input, then it is able to specifically
perform such state-action associations which lead to a high reward [2]. With its
associative and predictive capabilities, the cortex might directly use incoming
stimuli to predict motivations of the agent, and enable a teleological behaviour.

Acknowledgements. This work is part of the MirrorBot project supported by the
EU in the FET-IST programme under grant IST-2001-35282.
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Abstract. In this paper we present a Swarm Search Algorithm with varying 
population of agents based on a previous model with fixed population which 
proved its effectiveness on several computation problems [6,7,8]1. We will 
show that the variation of the population size provides the swarm with mecha-
nisms that improves its self-adaptability and causes the emergence of a more 
robust self-organized behavior, resulting in a higher efficiency on searching 
peaks and valleys over dynamic search landscapes represented here by several 
three-dimensional mathematical functions that suddenly change over time.  

1   Introduction 

Swarm Intelligence (SI) is the property of a system whereby the collective behaviors 
of unsophisticated entities interacting locally with their environment cause coherent 
functional global patterns to emerge. SI provides a basis with which it is possible to 
explore collective (or distributed) problem solving without centralized control or the 
provision of a global model. The well-known bio-inspired computational paradigms 
ACO (Ant Colony Optimization [1]) and PSO (Particle Swarm Optimization [4]) are 
just two among many successful examples. To tackle the formation of a coherent 
social collective intelligence from individual behaviors we will address the adaptation 
of a social community to a cultural or informational dynamical landscape, represented 
here by several three-dimensional mathematical functions that change over time. 
Also, unlike past works [6,7,8], the size of our swarm population varies over time. We 
believe that Swarms with Varying Population Size (SVPS) provide a better model to 
mimic some natural features, improving not only the population ability to evolve self-
organized foraging behavior as obtained in the past [6]1, while maintaining a self-
regulated population adapted in real-time to different constraints in different search 
landscapes.  
                                                           
1 Reference [6] is available at http://alfa.ist.utl.pt/~cvrm/staff/vramos/Vramos-BMM.pdf, as 

well as [7,8] and some related animated .AVI movies (check figure 6) at the main site.  
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2   The Swarm Landscape Foraging Model 

The Swarm with Fixed Population Size (SFPS) model is described in [6] and it is 
based on the algorithm presented in [2,7,8]. The model simulates a population of ants 
evolving on 3D landscapes - (x, y, z) -, where z is the value of a mathematical func-
tion, quantized to fit on an [x,y] toroidal grid (discrete search space). The swarm, by 
means of pheromone deposition and evaporation (each ant tends to follow pheromone 
trails), evolves to higher/lower (maximization/minimization) regions of the landscape. 
A set of parameters ( ,σ,η k,p) controls the swarm behavior  – see [6] for details and 
[2] for a complete parameter analysis. Figure 1 shows the description of the model 
and the result of a run over function F0a [6]. First, the ants are randomly placed on 
the cells of the habitat. On each iteration, and for each ant, the probability Pik (Eq. 1) 
to move to one of the surrounding cells is computed, according to the result of W( ) 

(Eq. 2). Once the ant is put on the new cell, the pheromone of that site is increased 
according to its height z. In the P(c) function, max = | zmax – zmin |, being zmax the 
maximum altitude found by the colony so far on the function habitat, and zmin the 
lowest altitude. The other term [c] is equivalent to (if our aim is to minimize any 
given landscape): [c] = | zc – zmax |, being zc the current altitude of one ant at cell c. If 
on the contrary, our aim is to maximize, then we should instead use [c] = | zc – zmin |. 

 

3   The Swarm Model with Varying Population Size 

In this paper we propose and aim to analyze the behavior of a Swarm with Varying 
Population Size (SVPS). This characteristic is achieved by allowing ants to reproduce 
and  die  through  their  evolution  in  the landscapes.  To be  effective,  the  process of  

F0a - 3D  F0a - 2D  

  
t = 0 t = 100 

  
t = 300 t = 500 

High-level description of the original Swarm Model 

For all agents do place agent at randomly selected cell  
End For  
For t = 1 to tmax do  /* Main loop */ 
   For all agents do 
      Compute W( ) and Pik /* According to Eq. 1 and 2 */ 

 Move to a selected neighboring cell not occupied by other agent 
 Increase pheromone at cell c  
                         P(c)= P(c)+[η+p( (c)/ max)]) 

   End For 
   Evaporate pheromone by K, at all cells 
End For 
 
/*  = 7; σ = 0.2; η = 0.07; k = 1.0; p = 1.93; 
 space [100, 100]; ants = 2000) */ 

Fig. 1. Model high-level description and maximization of F0a during 500 iterations [6] 
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Fig. 2. High-level description of the reproduction procedure and P*(n) function 

variation must incorporate some kind of pressure towards successful behavior, that is, 
ants that reach peaks/valleys must have some kind of reward, by staying alive for 
more generations – generating more offspring - or by simply having a higher prob-
ability of generating offspring in each time step. In addition, the population density in 
the area surrounding the parents must be taken into account during a reproduction 
event. When one ant is created (during initialization or by the reproduction process) a 
fixed energy value is assigned to it (e[ant] = 1). Every time step, the ant’s energy is 
decreased by a constant amount of 0.1. The ant’s probability of survival after a time 
step is proportional to its energy during that same iteration, which means that after ten 
generations, this and other ants will inevitably die (e[ant] = 0). Within these settings 
one ant that is, for instance, 7 iterations old, has a probability of 0.3 to survive 
through the current time step. Meanwhile, for the reproduction process, we assume 
the following heuristic: an ant (main parent) triggers a reproduction procedure if it 
finds at least another ant occupying one of its 8 surrounding cells (Moore neighbor-
hood is adopted). The probability Pr of generating offspring – one child for each re-
production event – is determined as in fig. 2. Notice that when n = 0 or n = 8 no re-
production takes place and that higher/lower (if maximization/minimization) ants 
have more chance to reproduce ( (c) and max as in section 2).  

4   Results 

From the set of functions used in [6] to test the fixed population size swarm, we chose 
F0a (fig. 1), and Passino F1 (fig. 2) to compare the performance of the two models. 
The functions were adapted to a [100,100] toroidal grid. Parameters σ,η, k, p were set 
to 0.2, 0.1, 1.0 and 1.9 respectively, following previous tests conducted in [2] and [6]. 
Maintaining these values constant during all runs, we tested several configurations of 
SFPS and SVPS with  between 1 and 15 and initial population size (IPS) between 5 
and 50 percent of the habitat size (10000 cells). By observing the results we con-
cluded that SVPS clearly outperforms the fixed sized swarm when searching for 
peaks/valleys of the test functions, as well as the Bacterial Foraging Optimization 
Algorithm, BFOA, presented earlier by Passino [5], also compared in [6]. Comparing 
figure 1 and figure 2, we see that SVPS converges much faster to the desired regions 
of the habitat. We also notice that the variation of population mechanism’ eliminates 
the wandering ants and drives the entire swarm towards peaks or valleys, simultane-
ously self-regulating the population when need it (e.g., peaks with a small area).  

For all ants do 
     If ant meets ant do 
          Compute n   /* number of occupied surrounding cells */ 
          Determine P*(n)  
          Compute reproduction probability  Pr = P*(n) [ (c)/ max] /*c is the cell of the main parent*/ 
          If random [0, 1] < Pr 
                 Create an ant and place it randomly on one of the free cells surrounding the main parent 
     End if 
End For 
/* P*(0) = P*(8) =0; P*(4) = 1; P*(5) = P*(3) =0.75;  P*(6) = P*(2) =0.5; P*(7) = P*(1) = 0.25 */ 
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 = 7; σ = 0.2;  
η = 0.07; k = 1.0; 
p=1,9; IPS = 10% 

t = 0 t = 20 t = 100 t = 300 t =500  

Fig. 3. Evolution of the SVPS over F0a during 500 iterations (maximization) 

Such a clear difference between the performances of the two models may lead to 
the wrong idea that the population dynamics (Reproduction) is the sole responsible 
for the good performance of the SVPS and that pheromone fields (Self-Organization) 
are playing a back role. To investigate this possibility we tested SVPS with different 
values of β, from 1 (corresponding to a very low or absent tendency to follow phero-
mone) to 15. By analyzing the evolution of the median height of the swarm on the 
landscape we concluded that pheromone following is essential to a fast and self-
organized convergence to peaks/valleys. Figure 4 shows the median height of our 
swarm over several time steps, for the maximization of F0 and the minimization of 
Passino F1. In the first case the difference is not so obvious although a closer inspec-
tion reveals the poorer performance of β=1 configuration. Meanwhile the Passino F1, 
with its multiple peaks and valleys, creates more problems to the colony and truly 
reveals the utility of the positive (pheromone reinforcement) and negative feedbacks 
(evaporation) introduced by the pheromone fields [6]. These results show that al-
though pheromone following and varying population mechanisms can lead the 
swarms to the desired regions, the cooperation between the two processes result in a 
much powerful system. 

By plotting the evolution of the population size of SVPS, we concluded that for 
each function and task (minimization/maximization) the population tends to evolve 
until it stabilizes around a specific value. In figure 5a) we can see this behavior when 
minimizing Passino F1, as  remains fixed and the initial population size varies from 
10% to 30% of the habitat size. Also, the final values of the population size differ 
between functions and tasks: within Passino F1 the population becomes stable 
around300 agents while the swarms minimizing F0a evolved populations with near 
600 individuals; if we try to maximize Passino F1 or evolve the swarm into other 
functions we see that the populations become stable around different values. That is, 
the mechanism here introduced is able to self-regulate the population according to the 
actual foraging environment (swarms adapt to it).  

This pattern, however, is broken when the value of  decreases (representing a less 
self-organized behavior). As we can see in figure 5b),  equal to 1 leads the swarm to 
an unpredictable behavior. The limits to the population growth are imposed by the 
search space itself because only one ant may occupy each cell. Under these condi-
tions, it is impossible to observe exponential growing of population size. On the other 
hand, mass extinction is possible. Almost all the extinctions observed in the exhaus-
tive SVPS testing were related to models with =1. These results emphasize the role 
of Self-Organization while evolution occur trough any requested aim (our task), en-
hancing the increasing recognition that Natural Selection (here coded via the repro-
duction process) and Self-Organization (here coded via the pheromone laying proc-
ess) work hand in hand to form Evolution, as defended by Kauffmann [3]. 



 Varying the Population Size of Artificial Foraging Swarms 315 

 

Fig. 4. Median height of the ants when maximizing F0a (a) and minimizing Passino F1 (b). 
(500 iterations;  equal 1, 3.5, 7, 15; IPS = 20% ants for all configurations) 
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Fig. 5. Population growth (500 iterations) when minimizing Passino F1: a) IPS = (10%, 20%, 
30%) and  = 7; b) IPS = 20% and  = (1, 3.5, 7, 10) 

One of the features of SFPS discussed in [6] was the ability to adapt to sudden 
changes in the roughness of the landscape. These changes were simulated by abruptly 
replacing one test function by another after the swarm reaches the desired regions of 
the landscape. Another way of simulating changes in the environment consists on 
changing the task from minimization to maximization (or vice-versa). The swarm 
performance was convincing and reinforced the idea that the system is highly adapt-
able and flexible. In here, we followed and conducted similar tests using SVPS and 
concluded that varying population size increases the capability of the swarm to react 
to changing landscapes. Figure 6 shows SFPS (6a) and SVPS (6b) trying to find the 
lower values of Passino F1 until t=250, and then searching for the higher values.  

 
    3D                2D                      t=10                             t=250                          t=260 

   
            t=280                                t=300                        t=320                           t=500 

Fig. 6. SFPS (left) and SVPS(right) evolving on Passino F1. From t=0 to t=250 the swarm is 
induced to search the valleys of the landscape. After t=250 the task changes and the swarm 
must find the higher values of the function. 
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Notice, by observing the 2D and 3D representation of the function and the maps in 
figure 6, how SVPS uses the landscape specific characteristics to emerge a distinctive 
migration process (as a flocking behavior) after t=250: the swarm climbs the 
neighboring peak (local optima) on the left and from that point finally reaches the 
higher peak of the landscape, where it remains while self-regulates the population; by 
some complex mechanism the swarm does not climb the peak on the right side of the 
valley (which is higher) avoiding the valley that stands between that local optima and 
the desired region. We can see that SVPS not only evolves faster to valleys as it re-
adapts better to the changing goal. In fact, at t=500, SFPS is still migrating to the 
higher peak in the landscape while SVPS has already performed the task. 

5   Conclusions and Future Work 

We showed that adding a mechanism of varying population size to a self-organized 
swarm search algorithm increases not only its capability to search/find peaks and 
valleys of fitness landscapes, but it also provides the system with some unexpected 
self-regulated behavior – for instance, population growth to predictable values even 
with rather different  and initial population size values. SVPS also proved to be more 
effective when evolving over changing dynamic landscapes. The connection between 
SVPS and co-evolutionary artificial life models is worth inspecting since species have 
to adapt to constant changes in the fitness landscape caused by mutations in other 
species. The ability revealed by SVPS to quickly readapt to changing environments 
suggests its utility in the study of co-evolutionary systems dynamics.  
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Abstract. In this paper, Lamarckism and Immune Clonal Selection Theory are 
integrated to form a new algorithm, Lamarckian Clonal Selection Algorithm 
(LCSA). In the novel algorithm, the idea that Lamarckian evolution described 
how organism can evolve through learning, namely the point of “Gain and 
Convey” is applied, then this kind of learning mechanism is introduced into 
Standard Clonal Selection Algorithm (SCSA). In the experiments, ten 
benchmark functions are used to test the performance of LCSA, and the impact 
of parameters for LCSA is studied with great care. Compared with SCSA and 
the relevant evolutionary algorithm, LCSA is more robust and has better 
convergence. 

1   Introduction 

Antibody Clonal Selection Theory is a very important concept in the immunology. 
Clone means reproduction or asexual propagation. A group of genetically identical 
cells descended from a single common ancestor, such as a bacterial colony whose 
members arose from a single original cell as a result of binary fission. 

Prior to Charles Darwin’s evolution theory of natural selection, Jean Baptiste 
Lamarck proposed that characteristics could be acquired and passed on to their 
offspring during an organism’s life [1], which means the experiences adapting to the 
environment can be inherited, and it has been known as Lamarckian evolutionary 
theory, namely Lamarckism. Although discredited in biology [2], Lamarckian 
evolution has been proven to be a effective concept for improving artificial 
intelligence algorithms [3]. In fact, Lamarckism has shown powerful performance in 
computing [4]. 

Learning mechanism is introduced into Standard Clonal Selection Algorithm 
(SCSA) [5], and Lamarckian Clonal Selection Algorithm (LCSA) is presented in this 
paper. Based on the idea “gain and convey”, LCSA makes full use of the experiences 
gained during the learning process to enhance the information communication among 
individuals, and improve the performance of algorithm. Relative function 
optimization experimental results shows that compared with SCSA and relative 
evolutionary algorithm, such as IGA [6], LCSA have better performance in global 
search and computing efficiency. 

The rest of this paper is organized as follow. Section 2 describes the basic skeleton 
of SCSA as well as some problems in it. Section 3 illustrates LCSA and its 
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implementation steps. Section 4 discusses the experimental results of LCSA, SCSA 
and relative evolutionary algorithm on 10 2-dimensional multimodal functions, and 
the impact of parameters on the performance of LCSA is analyzed. Finally, Section 5 
concludes the paper with a short summary and gives a discussion for our future work. 

2   Standard Clonal Selection Algorithm (SCSA) 

Based on the antibody clonal selection in immunology, we have proposed the SCSA 
[5] in Fig.1. 

Simple Clonal Selection Algorithm (SCSA) 
Step 1 k = 0; Initialize antibody population (0)A at random and set the 

parameters of algorithm, then calculate the affinity of initialized population. 
Step 2 According to the antibody affinity and the clone size, get a new antibody 

population ( )kA  by Clonal Selection Operator. 

Step 3 k = k + 1; if the halted condition is satisfied, the iteration is terminated, 
otherwise, return to Step2. 

Fig. 1. The skeleton of SCSA 

By introducing learning mechanism into SCSA, evolution and learning are 
combined well and supplement each other, with the unification between the time and 
space and between the genotype and phenotype, thus evolving the population under 
the guide of learning and making algorithm find the global optima fast and efficiently. 

3   The Skeleton of LCSA 

According to the fitness distribution in population, several subpopulations are formed. 
Then  the main steps of LCSA in this paper is shown in Fig. 2. 

Lamarckian Clonal Selection Algorithm (LCSA) 
Step 1 k=0; Initialize the population randomly, set the algorithm parameters; 
Step 2 According to the fitness distribution in the population, divide the 

population into several parts;  
Step 3 Through clonal selection operating, a new population is formed; 
Step 4 Get Heroes’ Experiences (HE) and Successful Civilians Experiences 

SCE, then Convey HE and SCE, the next generation is generation completely; 
Step 5 k = k + 1; Check the halted condition of algorithm if the halted condition 

is satisfied, the iteration is terminated, otherwise, return to Step2. 

Fig. 2. The main steps of LCSA 

In general, the whole candidate population is divided into two parts: high-fitness 
subpopulation Heroes and low-fitness subpopulation Non-Heroes. Furthermore, Non-
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Heroes can be divided into Employees evolving by conveying the Heroes’ 
Experiences (HE) and Civilians evolving by themselves. After iterations, some 
individuals in Employees can go into Heroes, which are called Successful Employees 
(SE), while the others are named Unsuccessful Employees (USE). In the same naming 
way, Civilians can be divided into Successful Civilians (SC) and Unsuccessful 
Civilians (USC), and USC can get Successful Civilians Experiences (SCE) from SC. 

Heroes with high fitness dominate the whole population and guide the evolution 
direction of the whole candidate population. During the process of learning, HE is the 
most important factor; on the other hand, SCE from a small population is a good 
helper of HE, which also should be noticed. 

4   Validation of LCSA 

4.1   Experimental Results 

In order to prove the effect and efficiency of proposed algorithm, the similar type of 
evolutionary algorithm Immune Genetic Algorithm (IGA)[6] with prior knowledge is 
introduced. We regard the global hits(the percentage of the global maximum found) 
as the primary objective achieved by the algorithm and function evaluations as the 
second objective[7]. For 10 functions[8], the parameters of SCSA, LCSA are set as: 
population size n=50, the clone size nc=5, coding length l=40, the maximum number 
of iteration 200, and the required precision 0.01. For comparisons, the parameters of 
IGA are fixed as: population size n=250, the others are set the same as two algorithms 
above. The statistical results of three algorithms out of 20 runs respectively are 
summarized in Table1. For f3, f4, f5, f6, the evolutionary process of three algorithms 
are shown in Fig.3. Where f3 is Needle-in-a-haystack Function, it has uncountable 
local optima and only one global optimum. 

Table 1. The results of IGA, SCSA and LCSA on f1- f10,. “G.hit” is the global hits. “Eval” is 
the number of average evaluations out of 20 runs. 

Prob IGA SCSA LCSA 
 G. hit Eval G. hit Eval G. hit Eval 

f1 16/20 12504 20/20 2315 20/20 1605.8 
f2 20/20 1539.2 20/20 1805 20/20 1700 
f3 20/20 11479 20/20 13385 20/20 10915 
f4 14/20 18756 19/20 12035 20/20 8720.9 
f5 18/20 7044.1 20/20 3335 20/20 2797.8 
f6 20/20 15794 19/20 24050 20/20 19927 
f7 18/20 11180 20/20 8015 20/20 10340 
f8 20/20 2372.9 20/20 6155 20/20 2822.9 
f9 14/20 18022 20/20 4955 20/20 3952.3 
f10 13/20 24624 20/20 10970 20/20 5659.1 

And it is indicated from Table 1 that for all test functions, LCSA can find the 
global optima out 20 runs, namely the on the primary principle “G.hit” is 20/20, 
which shows its good robustness. For f1, f4, f5, f7, f9 and f10, IGA can’t find the global 
solution. For f4, f6, SCSA can’t achieve the global hits 20/20. These indicate LCSA 
outperforms SCSA and IGA with respect of global search. In terms of the second 
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objective “Eval”, for functions f2, f6, f7 and f8 LCSA need a little more computer cost 
than SCSA and IGA, but for the others, the computer cost of LCSA outperforms is 
much less that two of them. Those are caused by the loss of diversity in the later 
evolutionary stage in LCSA. Finding better techniques to improve this weakness will 
be our future research. 

4.2   The Analysis of Parameters 

In LCSA, the main parameters are the population size n, the clone size nc, the coding 
length l , the Civilians size cn, Employees size en and mutation probability pm. To test 
the impact of each parameter on the global convergence (Global hits) and the number 
of function evaluations (Eval) of our algorithm, 7 parameters are generally fixed as 
n=50, nc=5, l=40, hn=5, pm=0.025, cn and en vary randomly in range [2, n-hn-2] and [2, 
n-hn-2] respectively, and the sum of cn and en is 45. Since cn and en are random 
numbers, actually there are only 5 parameters here. In experiment, we let one of them 
changeable, and set 4 of them as above fixed values. Taking  f3 for example, the 
number of function evaluations (“Eval”) are acquired out of 20 runs for each value of 
parameter. 

A) Influence of population size n 
Sample n by the interval of 10 from 10 to 200. It is shown in Fig.3(a) that in case that 
n=10, “Eval” is the least, and with the increase of n, it increases and the converges 
speed slower, but relevant number of iteration becomes smaller. Those suggest that 
some candidate solutions that contribute less to generating the optimal solutions due 
to the increase of n. 

B) Influence of clone size nc 
Sample nc by the interval of 1 from 2 to 21 and the result shown in Fig.3(b) indicates 
”Eval” is the least when nc=4. While with nc’s increase, the convergence speed is 
slower, and the relative number of iteration becomes smaller. It indicates that after nc 
increases to some level, some candidate solutions contributing less to generating the 
optimal solutions, which is similar to the influence of n in term of this point. 

C) Influence of coding length l 
Sample l by interval of 10 from 10 to 100, from the result shown in Fig.3(c), l lying 
between 30 and 200 has a little influence on “Eval”. In addition, it should be note that 
with bigger coding length, the computer cost also gets more during decoding process. 

D) Influence of Heroes size hn 

Sample hn by interval of 2 from 1 to 45. It is implies from Fig.3(d) that hn between 1 
and 45 influence on “Eval” is not very obvious, and the values are about 10000, 
which is mainly caused by the random value of cn and en, thus making the learning 
active and showing the advantage of learning to avoid the similarity between gaining 
and conveying of experiences. 

E) Influence of mutation probability pm 
For the analysis, sample pm by interval 0.01 from 0.01 and 0.3, but not set it as the 
reciprocal of coding length l in algorithm. It is suggested from Fig.3(e) that “Eval” 
doesn’t change a lot in the range of 0.01 and 0.1 which is a reasonable interval. But 
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 (a)     (b) 

 
(c) (d) 

 
     (e) 

Fig. 3. The main parameters population size n, clone size nc, coding length l, Heroes size hn and 
mutation probability pm’s impacts on the global search and numbers of function evaluations of 
LCSA, which are shown respectively in (a), (b), (c), (d) and (e). The horizontal axis is the 
tested parameter values, and the vertical axis is the average numbers of evaluation function out 
of 20 runs. 

beyond this interval, bigger pm destroys the current population solution, thus making 
the evolution stagnate and “Eval” bigger. 

On the analysis of parameters, the parameters in LCSA only can influence the 
convergence speed, but a little the global convergence, which shows good robustness 
of algorithm. It should be noted that those parameters sets are not the best options, but 
we still get good global performances.  
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5   Conclusions 

Based on immune clonal selection theory and Lamarckism, Lamarckian Clonal 
Selection Algorithm (LCSA) is presented in this paper,. The LCSA improves some of 
the drawbacks of the SCSA. The comparisons of the algorithms’ performances are 
made considering the global hits and the function evaluations. The LCSA can provide 
more efficient performance with better reliability on most 2-D multimodal functions 
in test. Hence, using new techniques to make LCSA better will be included in our 
future work. 
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Abstract. In this paper, we analyze characteristics of GA-based learn-
ing method of Binary Neural Networks (BNN). First, we consider coding
methods to a chromosome in a GA and discuss the necessary chromo-
some length for a learning of BNN. Then, we compare some selection
methods in a GA. We show that the learning results can be obtained
in the less number of generations by properly setting selection methods
and parameters in a GA. We also show that the quality of the learning
results can be almost the same as that of the conventional method. These
results can be verified by numerical experiments.

1 Introduction

The binary neural network (ab. BNN) is a feedforward network in which input
and output signals are binary. The BNN can realize a desired boolean function if
a sufficient number of hidden neurons exist [1][2]. The BNN can be implemented
easily by logic VLSI, and such an approach has been presented [3]. Application
examples of BNN include pattern recognition [4], and error correcting codes [5].
As fundamental of these applications, many studies on the learning methods of
BNN have been actively carried out. Ref.[2] presents an expand and truncate
learning (ab. ETL) which is a simple and fast geometrical learning method.
Ref.[6] presents the GAETL which is based on the ETL and uses a genetic
algorithm (ab. GA) [7] to determine network parameters of BNN. The GAETL
can reduce the number of neurons in the hidden layer and can suppress dispersion
of parameters. However, detail analysis for the characteristics of GAETL has not
been sufficient so far. Therefore, there have been some problems as follows.
1. Investigation of searching ability of a GA for BNN
2. Consideration of coding methods to a chromosome in a GA, selection meth-

ods and parameters in a GA
3. Calculation time of the GAETL

In this paper, we analyze learning characteristics of the GAETL for BNN.
First, we consider coding methods for BNN, and discuss the necessary length
of a chromosome in a GA for learning. We show that the chromosome length is
enough if sufficient combination numbers for network parameters are expressible.
We also show that a gray coding is more suitable than a binary coding for coding
methods to a chromosome. Then, we compare some selection methods in a GA.
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We show that for a complex function, the method including elitism and inverse-
elitism [8] as selecting strategy can reduce the number of hidden neurons better
than other selection methods. Finally, we show that the learning results can be
obtained in the less number of generations by properly setting selection methods
and parameters in a GA. We also show that the quality of the learning results
can be almost the same as that of the conventional method. These results can
be verified by numerical experiments.

2 Binary Neural Networks

In this paper, we deal with a three-layer BNN. Then the BNN is described by
Eq.(1).

y = S

(
M∑
i=1

wo
i zi − T o

)
, zi = S

⎛⎝ N∑
j=1

wh
ijxj − T h

i

⎞⎠ , S(X) =

{
1 if X ≥ 0
0 if X < 0

(1)

where x ≡ (x1, · · · , xN ) is an input, z ≡ (z1, · · · , zM ) is a hidden layer output,
y is an output and xj , zi, y ∈ {0, 1}. wh

ij is a connection parameter between j-th
input and i-th hidden neurons and wo

i is a connection parameter between i-th
hidden and output neurons. T h

i and T o are threshold parameters of i-th hidden
and output neurons, respectively. All the parameters can be integer values by
using the ETL or the GAETL introduced in the next section.

3 GA-Based Learning Method of Binary Neural
Networks

In this section, we introduce basic concepts of the ETL [2] and the GAETL [6].
In the ETL, N -bit teacher signals are represented by the coordinates of an N -
dimensional space. Each input vector corresponds to a vertex in the space. Let
a true vertex (respectively, a false vertex) be the vertex whose desired output
is one (respectively, zero). The ETL determines a set of the hyperplanes which
linearly separate true and false vertices. Then, the number of the separating
hyperplanes (ab. SHPs) corresponds to the number of hidden layer neurons.

The GAETL uses a GA in determining the SHPs in the ETL. In the GAETL,
a connection parameter set wh

i ≡
(
wh

i1, · · · , wh
iN

)
is encoded to a binary string

with length ηN , where η denotes the number of genes in the genotype of wh
ij .

This binary string is a chromosome in a GA. Fig.1 shows the flowchart of the
GAETL in determining the SHPs. The overall algorithm of the GAETL is as
follows. Step 1: Generate the initial population consisting of population size Mg

with random initial values. Step 2: Calculate threshold parameters T h
i (p) for

every chromosome, where p is the suffix of chromosome in the population. The
threshold parameter T h

i (p) is determined such that each hyperplane correspond-
ing to each chromosome can separate true vertices as much as possible. Step 3:
Let Li(p) be the number of separated true vertices for the p-th chromosome, and
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Fig. 1. The flowchart of the GAETL in determining the
SHPs

(a) 7-bit function

(b) Two spirals
problem

�1 �0 �don’t care�1 �0 �don’t care

Fig. 2. Examples of
teacher signals

Li(p) is used as the fitness. Steps 4 to 6: Apply selection, crossover and muta-
tion to the chromosome in the population as operations of a GA. Step 7: Repeat
Steps 2 to 6 for constant generations T . Step 8: Determine the chromosome
having the best fitness as network parameters of a single neuron in the hidden
layer. Then, the separated true vertices are declared as ”don’t care”. Step 9: If
all true vertices can not be separated in the hidden layer neuron, then increment
a neuron in the hidden layer and go to Step 1. The learning of the GAETL will
continue until all true vertices are separated.

4 Numerical Experiments

In order to investigate searching ability of a GA for BNN, we perform numerical
experiments. At first, we focus on generation-fitness characteristics in the case
where the first neuron in the hidden layer is determined. Moreover, we compare
the number of hidden layer neurons in learning results. We use ”7-bit function
[6]” in which N = 7 and ”Two spirals problem [6]” in which N = 8 as examples
of teacher signals. Fig.2 illustrates these functions.

We select the same parameters in a GA as the conventional method [6];
population size with Mg = 50, uniform crossover with rate Rc = 0.85 and
normal mutation with rate Rm = 0.01.

4.1 Investigation of the Necessary Length of Chromosome for the
Learning

First, we investigate fitness characteristics for the parameter η. We fix gener-
ations T = 5000 and the roulette selection method in the experiments. Figs.3
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and 4 show simulation results for 7-bit function and two spirals problem, re-
spectively. Fig.5 shows the fitness values at 5000 generations in changing the
parameter η from 2 to 11. These values are the average calculated by 100 trials.
Figs.3 and 4 show that the convergent values of the fitness are low as the parame-
ter η is small. As η increases, the combination numbers for network parameters
increase. Then, the convergent values of the fitness increases. As η increases fur-
ther, the combination numbers increase intensively. Then, calculation time in the
GAETL increases intensively. In addition, convergence of the fitness can be slow
as shown in Fig.3. These experimental results described above indicate that the
chromosome length is enough if η can express sufficient combination numbers
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for network parameters. Also, Figs.3 to 5 show that the gray coding has better
performance than the binary coding in the meaning of searching ability for the
better network parameters.

As η and T increase, calculation time in the GAETL increases intensively.
Hereafter, we fix η = 7 and T = 100 in which we can obtain reasonable fitness
values as shown in the above results.

4.2 Comparison of Selection Methods in a GA

Next, we compare some selection methods in a GA. Adding to the roulette
selection method, we consider ”elitism” and ”inverse-elitism” as the strategy.
The inverse-elitism is a technique that prevents trapping local minimum [8]. A
inverse elite individual is generated by reversing all bits of the genotype of an
elite individual having the best fitness. Here, we also consider an inverse-elitism
represented by reversing sign of the phenotype of an elite individual. We select
one elite individual and one inverse elite individual in each generation. These
individuals are certainly selected in the next generation. Based on the above
condition, we compare the following six selection methods:

(a) roulette selection method (conventional method [6])
(b) (a) + ’elitism’
(c) (a) + ’inverse-elitism (all bits reversing)’
(d) (a) + ’inverse-elitism (sign reversing)’
(e) (a) + ’elitism’ + ’inverse-elitism (all bits reversing)’
(f) (a) + ’elitism’ + ’inverse-elitism (sign reversing)’

Figs.6 and 7 show generation-fitness characteristics for 7-bit function and two
spirals problem, respectively. These fitness values are the average calculated by
2000 trials. Both Figs.6 and 7 show that the methods (b), (e) and (f) including
elitism have better performances than the methods (a), (c) and (d). The effect of
the inverse-elitism is not confirmed in case of determining only the first neuron
in the hidden layer. Comparing coding methods, for 7-bit function, performances
of the gray coding and the binary coding are the almost same as shown in Fig.6.
However, for two spirals problem, the gray coding has better performance than
the binary coding as shown in Fig.7.

4.3 Comparison of the Number of Neurons in the Hidden Layer

Next, we investigate the statistics of M which is the number of neurons in the
hidden layer in the end of learning for each method described above. The results
are shown in Table 1. These values are the average calculated by 1000 trials. In
the table, Min, Ave, and Dev denote minimum, average, and standard deviation,
respectively. Table 1 shows that the method (e) or (f) has the best performances
for each problem. Comparing coding methods, for 7-bit function, performances
of the gray coding and the binary coding are almost the same. For two spirals
problem, the gray coding has better performances than the binary coding. Two
spirals problem is complex function as compared with 7-bit function. Therefore,
the performances for each method might differ for more complex functions.
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Table 1. Statistics of the number of hidden layer neurons in learning results

Problem 7-bit Function Two spirals problem
Coding Gray Coding Binary Coding Gray Coding Binary Coding

Statistics Min Ave Dev Min Ave Dev Min Ave Dev Min Ave Dev
(a) T=100 2 2.238 0.4420 2 2.201 0.4343 19 25.03 3.105 19 26.08 3.253
(b) T=100 2 2.073 0.2787 2 2.050 0.2313 19 24.02 2.905 19 25.22 3.067
(c) T=100 2 2.220 0.4354 2 2.159 0.3738 19 24.86 3.084 20 26.00 3.165
(d) T=100 2 2.274 0.4764 2 2.166 0.4030 19 24.52 2.863 20 25.92 2.971
(e) T=100 2 2.065 0.2584 2 2.036 0.2018 19 23.96 3.050 19 24.86 2.825
(f) T=100 2 2.078 0.2755 2 2.058 0.2421 19 23.75 2.878 19 24.88 2.836

Finally, we discuss the number of generations in the GA. Ref.[6] has cho-
sen the number of generations as T = 5000, and has gotten Min= 2 in 7-bit
function and Min= 19 in two spirals problem. However we fix T = 100, almost
the same performances can be obtained by properly setting selection methods
and parameters in a GA. These results indicate that learning results for higher
dimensional functions can be obtained in reasonable calculation time.

5 Conclusions

We have analyzed learning characteristics of GAETL for the three-layer BNN.
First, we have shown that the chromosome length is enough if sufficient combi-
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nation numbers for network parameters are expressible. We have also shown that
the gray coding is more suitable than the binary coding as coding methods for
BNN. Moreover, we have shown that for a complex function, the method includ-
ing elitism and inverse-elitism can reduce the number of hidden layer neurons
better than other selection methods. Finally, we have shown that the learning
results can be obtained in the less number of generations by properly setting se-
lection methods and parameters. Also, we show that the quality of the learning
results can be almost the same as that of the conventional method.

Future problems include (1) analysis of learning characteristics of the GAETL
to the BNN for more complex problems, (2) extension of learning algorithm to
multi-bit output functions, and (3) applications to practical problems.
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Abstract. The ICSA (Immune Clonal Selection Algorithm) based structure and 
parameter learning of wavelet network for intrusion detection is proposed. The hi-
erarchical structure is used in the coding scheme, thus we can realize evolution of 
topologic structure and the parameter learning of the wavelet network meanwhile. 
The experimental results show that the method based on ICSA can get higher true 
rate of IDS (Intrusion Detection System) than advanced wavelet network and 
Immune wavelet network. At the same time, the method proposed can reduce the 
false rate of IDS and has faster convergence speed in experiment. 

1   Introduction 

The problem of network intrusion detection is a division between the normal behav-
iors and the abnormal ones by network data stream ultimately. Therefore, it can be 
considered as a problem of pattern recognition. In most Neural Network (NN) appli-
cations, we will inevitably face the following problems: the network structure and 
other parameters lack the available theory guarantee. In this paper, we use the wavelet 
network .The wavelet space is regarded as the feature space for signal classification, 
the feature rules of signal are extracted by the NN classifier.  

Learning process of an input-output mapping in the wavelet network can be re-
garded as the process of searching optimization. Then the optimum algorithm is the 
key for getting better performance of the wavelet network. Recently more and more 
scholars have proposed many new methods, such as Schaffer, J.D. [1], Mak, M.W. 
[2], Yao X. [3]. In these papers, genetic algorithm or evolutionary computation is 
applied to the learning of NN. A related research area, concerned with learning of 
network model, has been developing rapidly [4] [5] [6] [7].This paper describes a 
wavelet network model that uses ICSA to learn the parameters and structures. 

2   Model of Wavelet Network (WN Model) 

Zhang, Q.H [8] firstly presents a new type of network called wavelet network which 
is inspired by both the feed-forward neural networks and wavelet decomposition.  
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An input signal x(t) can be approximated by daughters of a mother wavelet ha,b(t) : 

ˆ
K

k
k

k = 1 k

t - b
x(t) = w h( )

a
 

(1) 

where x̂(t)  is the simulated signal of x(t), h(t) is the mother wavelet and wk, bk, ak are 

the weight coefficients, shifts, and dilations for each daughter wavelet. According to 

this, we presume the output of the n th unit of the p th sample p
ny as following: 

K M
p p m k

n n k m
k = 1 m = 1 k

t - b
y = f w x ( t ) h

a
, (2) 

in which ( ) 1

1 e x p ( )
f z

z
=

+ −
, where 

nkw is weight value between the k th unit in 

hidden layer and the nth unit in output layer.  

 

Fig. 1. The structure of wavelet networks 

This approximation can be illustrated as Fig.1 which contains wavelet nonlineari-
ties in the artificial neurons rather than the standard sigmoid nonlinearities. The hid-
den layers and the connection manner are alterable and the wavelet function selects 
Morlet wavelets. 

The aim of learning algorithm in this WN model for intrusion detection is to adjust 
the energy function to the minimum. We employ the Least Mean Squares (LMS) 
energy for signal representation Min E(wk, bk, ak) :  

2

1 1

1
ˆ( )

2

Q N
p p

n n
p n

E y y
= =

= −
.

 (3) 

3   The Theory of Immune Clonal Selection Algorithm (ICSA) 

Clonal selection is an important part of the artificial immune system and ICSA has 
been presented by Jiao, L.C. [9], Du, H.F. [10], etc. Using the mechanism of clonal 
selection in the artificial immune system, they construct the clonal operator suitable to 
the artificial intelligent, such as immune operator, remembered operator, forgetting 
operator, etc. The main steps of ICSA are as following: 
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Step 1:  k=0, initialize the antibody population )0(A , set the algorithm’s parameters and 

calculate the affinities of the initializing population; 

Step 2:  According to the affinities and the given integer relating to the scale of the clone, 

carry out the clonal operation, clonal mutation operation and clonal selection op-

eration, obtain the new antibody population )(kA ; 
Step 3:  Calculate the affinities of the current population; 

Step 4:  k=k+1 if a stop condition is satisfied, stop the algorithm, else go to step2. 

4   Immune Clonal Selection Wavelet Network for IDS 

4.1   The Hierarchical Structure of the Chromosome Coding Scheme [11] 

The structure of chromosome is arrayed by a series of genes hierarchically. Some 
genes control the status of others, called hierarchical structure. Shown in Fig 2, L is 
the maximum number of units in the hidden-layers. In this paper, every unit in the 
hidden-layers of wavelet network is coded as control genes of chromosome, and the 
weights and the wavelet parameters are coded as parameter genes accordingly.  

 

Fig. 2. Control genes and parameter genes in the hierarchical structure 

4.2   Affinity Function and Related Operations 

We need calculate the value of affinity function on each generation and each individ-
ual in the current population. So we set the affinity function as: 1/f E= . 

 Conal Operation  

1 2( ( )) [ ( ( )) ( ( )) ( ( ))]C C C C T
c c c c nT A k T A k T A k T A k= where

1

( ( )

( ( ))

i
i c n

j
j

f A k
q Int N

f A k
=

= × , 

Nc>n, Int(x) represents the minimum integer bigger than x. The clonal scale is adap-
tively adjusted according to the affinity between antibody and antigen. Then the anti-
body population changes into 1 2( ) { ( ), ( ), ( ), , ( )}nA k A k A k A k A k′ ′ ′ ′= , where  

'
1 2 1( ) { ( ), ( ), , ( )}, ( ) ( ), 1,2, , 1

ii i i iq ij i iA k A k A k A k A k A k j q−= = = −  

 Clonal Mutation Operation
Unlike the general mutation operator in GA, in order to save the information of the 

original population, the clonal mutation is not performed on 'A A∈ . We carry out 
mutation operation on the current population which we get from the clonal operation 
according to the given probability of i

mp , ))(()( kATkA C
g ′=′′ .  
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 Clonal Selection Operation 
For i=1,2,…,n, if existing the antibody after mutation: B={ '

ijA (k)|max f( '
ijA ), 

j=1,2,…, qi-1}, then the probability in which B replaces the Ai(k)∈  
__

A  (k) is as  
follows. 
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p α

<
−− ≥

≥

= and

and

 
(4) 

where >0  is a value relating to the diversity of the population. The greater the 
diversity is, the larger the value of the  is. 

5   Experimental Results 

The MIT lpr system calls [12] are used to test the method. Firstly, we preprocess the 
data to get the short sequences of the traces (i.e. the k-length window is used to slip 
the system calls. Here k=6 according to Lee’s research [13]). Secondly, the data is 
classified into two sets: training set and test set. We choose 500 normal traces ran-
domly, and every trace contains 168 data to make up of 13850 data for training. For 
test set, we choose 100 traces that do not contain in the training set. The true rates and 
the false rates of the IDS are calculated on the test set.  

In order to prevent the function from working in the plain region, we suggest the 
data should be transformed to be between 0.1~0.9 with the following formula.  

m a x
m a x m i n m a x m i n

0 .9 0 .1 0 .9 0 .1
( 0 .9 )y x x

x x x x

− −= + −
− −

 
(5) 

In the experiments, the clonal scale Nc is a given integer relating. Here Nc = 20. In 
the clonal selection algorithm, the probability of mutation is set to 0.5 and  0.2. 
When the maximum iterative generation number equals to 1000 or not any improve-
ments in the qualities of the network parameter values in the continuous t iterations 
(set t=40), the program stopped.  

In order to express more clearly, we define the following parameters first: Detec-
tion Rate (the percentage of abnormal), False Positive (errors which normal data are 
identified as anomalous), False Negative (errors which intrusions are not identified), 
and False Rate (the sum of False Positives and False Negatives). The results of the 
following six algorithms are showed in Table 1, Fig. 3, Fig. 4 and Fig. 5. Each result 
is the statistical mean value of 50 runs. From Table 1 and Fig. 3, we can see that 
ICSA+WN and Hierarchical ICSA+WN have higher detection rate, lower false rate 
and lower test rate than the other four methods. 

From Fig. 4, we can find that ICSA+WN and Hierarchical ICSA+WN have higher 
convergence speed than the other methods. Experiment results show that the method 
of ICSA based Wavelet Networks for Intrusion Detection is feasible and effective. 
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Table 1. The comparison of the six algorithms 

 

(a) Test Error          (b) Detection Rate      (c) False Rate 

Fig. 3. Comparison of the six algorithms mentioned above 

 

Fig. 4. The relationship between the object function and the number of generations 

               

Fig. 5. The relationship between Detection Rates and False Negatives under different α (left), 
the relationship between Detection Rates and False Positives under different α (right) 

Method Test rate Net error Detection rate False rate 
BPNN 0.261 7.55% 82.1% 3.73% 
BP+Moentum 0.186 7.26% 82.1% 3.73% 
WN 0.187 5.21% 86.9% 3.06% 
Immune+WN [14] 0.148 3.39% 92.5% 2.87% 
ICSA+WN 0.129 3.10% 92.5% 2.87% 
Hierarchical ICSA+WN 0.127 2.99% 94.7% 2.13% 
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Under the real conditions, however, it is impossible to find a training data that in-
cluded all the normal actions. In this paper, we account the unsuitable number or 
proportions of system call sequences and we think this action abnormal, if it is larger 
than the given threshold α. Certainly, we wish to minimize False Rates (both False 
positives and False Negatives). But in most conditions, it is not realistic. Then we 
should try to find a balance point (i.e. threshold α ) to obtain the best effects accord-
ing to the practical questions and requests. From Fig.5, we can see the relationship 
between Detection rates, False Positives and False Negatives under different α . 
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Abstract. We investigate an evolution model of adaptive self-learning agents. 
The control system of agents is based on a neural network adaptive critic de-
sign. Each agent is a broker that predicts stock price changes and uses its pre-
dictions for action selection. We analyzed different regimes of learning and 
evolution and demonstrated that 1) evolution and learning together are more ef-
fective in searching for the optimal agent policy than evolution alone or learn-
ing alone; 2) in some regimes the Baldwin effect (genetic assimilation of ini-
tially acquired adaptive learning features during the course of Darwinian evolu-
tion) is observed; 3) inertial switching between two behavioral tactics similar to 
searching adaptive behavior of simple animals takes place during initial stages 
of evolutionary processes. 

1   Description of the Model 

We investigate an evolution model of self-learning agents; the control system of the 
agent is based on a neural network adaptive critic design (ACD). The ACD includes 
two neural networks (NNs), model and critic. The model predicts the state of the 
environment for the next time step, and the critic is used to select actions on the basis 
of model predictions. These NNs can be optimized by both learning and evolution.  

In comparison with other research of agents optimized by learning and evolution 
[1,2], our study concentrates on self-learning agents. Though our work is similar to 
that of Ackley and Littman [1], the control system of our agents is more advanced, 
because it is based on the well-investigated temporal difference algorithm [3]. As 
compared to other works on evolutionary optimization of NNs for reinforcement 
learning (see e.g. [4]), we pay the main attention to analysis of interaction between 
learning and evolution. 

Agent Task. Inspired by [5], we consider an adaptive agent-broker. The agent capital 
C(t) is distributed into cash and stocks. The fraction of stocks in the net capital of the 
agent is equal to u(t). The environment is determined by the time series X(t), t = 
1,2,…, where X(t) is the stock price at the moment t. The goal of the agent is to in-
crease its capital C(t) by changing the value u(t). The capital dynamics is 
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(t+1) = (t) [1 + u(t+1) X(t+1) / X(t)] ,   (1) 

where X(t+1) = X(t+1) - X(t). Following [6], we use the logarithmic scale for the 
agent resource, R(t) = log C(t). The current agent reward r(t) is defined by the expres-
sion: r(t) = R(t+1) – R(t): 

r(t) = log [1 + u(t+1) X(t+1) / X(t)] . (2) 

For simplicity, we assume that the variable u(t) takes only two values, u(t) = 0 (all 
in cash) or  u(t) = 1 (all in stock).  

Agent Control System. The agent control system is a simplified ACD that consists of 
two NNs: model and critic (see Fig.1).  

 

Model 

Critic 

Critic 

 X pr(t+1)

{ X(t), u(t)}  V(t)

{ X(t-m+1),…, X(t)}

 { X pr(t+1), u}  Vpr
 u (t+1)

 V(t+1) { X(t+1), u(t+1)}

 

Fig. 1. Our ACD. The model predicts changes of the time series. The critic (the same NN is 
shown in two consecutive moments) forms the state value function V(S) for the current state 
S(t) = { X(t), u(t)}, the next state S(t+1) = { X(t+1), u(t+1)}, and its predictions Spr

u(t+1) =       
{ Xpr (t+1), u} for two possible actions, u = 0 or u = 1. 

The goal of the adaptive critic is to maximize utility function U(t) [3]: 

,...2,1,)()(
0

=+=
∞

=

tjtrtU
j

jγ   (3) 

where r(t) is a reward obtained by the agent, and  is the discount factor (0 <  < 1).  
We suppose that the ACD state S(t) at moment t is characterized by two values, X(t) 
and u(t): S(t) = { X(t), u(t)}.  

The model predicts changes of the stock time series. The model output Xpr(t+1) is 
based on m previous values of X: X(t-m+1),…, X(t), which are used as the model 
inputs. The model is implemented as a multilayer perceptron (MLP) with one hidden 
layer of tanh nodes and linear output. The critic is intended to estimate the state value 
function V(S) (estimate of U in (3)). The critic is also a MLP of the same structure as 
the model.  
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At any moment t, the following operations are performed: 

1) The model predicts the next change of the time series Xpr(t+1).   
2) The critic estimates the state value function for the current state V(t) = V(S(t)) 

and the predicted states for both possible actions Vpr
u(t+1) = V(Spr

u(t+1)), where 
Spr

u(t+1) = { Xpr (t+1), u}, and u = 0 or u = 1.  
3) The -greedy rule is applied [3]: with the probability 1 -  the action correspond-

ing to the maximum value Vpr
u(t+1) is selected, and an alternative action is selected 

with the probability  (0 <  << 1).  
4) The selected action is carried out. The transition to the next time moment t+1 

occurs. The current reward r(t) is calculated in accordance with (2) and received by 
ACD. The value X(t+1) is observed and compared with its prediction Xpr (t+1). 
The NN weights of the model are adjusted to minimize the prediction error using the 
error backpropagation with M  > 0 as the model learning rate.  

5) The critic computes V(t+1). The temporal-difference error is calculated: 

(t)  = r(t) +  V (t+1) – V (t) .   (4) 

6) The weights of the critic NN are adjusted to minimize the temporal-difference 
error (4) using its backpropagation and the gradient descent with C  > 0 as the critic 
learning rate. 

Scheme of Evolution. An evolving population consists of n agents. Each agent has a 
resource R(t) that changes in accordance with values of agent rewards: R(t+1) = R(t) + 
r(t), where r(t) is calculated in (2). At the beginning of any generation, initial resource 
of all agents is equal to zero. 

Evolution passes through a number of generations, ng=1,2,… The duration of each 
generation is T time steps. At the end of each generation, the agent having the maxi-
mum resource Rmax (ng) is determined. This best agent gives birth to n children that 
constitute a new (ng+1)-th generation. The initial synaptic weights of both NNs form 
the agent genome G. The genome G does not change during agent life; however, 
temporary synaptic weights of the NNs W are changed during agent life via learning. 
At the beginning of (ng+1)-th generation, we set for each newborn agent G(ng+1) = 
Gbest(ng) + mutations, W0(ng+1)=G(ng+1). A normally distributed random value with 
zero mean and standard deviation Pmut is added to each synaptic weight at mutations.  

2   Results of Simulations 

The described model was investigated by means of computer simulations. We used 
two examples of model time series:  

1) sinusoid:  

 X(t) = 0.5[1 + sin(2 t/20)] +1 ,  (5) 

2) stochastic time series from [5, Example 2]:  

X(t) = exp[p(t)/1200] ,   p(t) = p(t-1) + β(t-1) + k λ(t) ,  β(t) = αβ(t-1) + γ(t) ,  (6) 

where λ(t) and γ(t) are two random normal processes with zero mean and unit vari-
ance, α = 0.9, k = 0.3. 
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Some parameters were set to the same values for all simulations. Specifically, we 
set, γ = 0.9, m = 10, αM = αC = 0.01, NhM = NhC = 10, where NhM and NhC  are numbers 
of hidden neurons of the model and critic. Other parameters ( , Pmut , n, T) were set to 
different values, depending on the simulation, as specified below.  

We analyze the following cases: 1) case L (pure learning); in this case we consider 
a single agent that learns by means of temporal difference method; 2) case E (pure 
evolution), i.e., evolving population without learning; 3) case LE, i.e., evolution com-
bined with learning, as described above. 

We compare the agent resource values attained during 200 time steps for these 
three cases of adaptation. For the cases E and LE, we set T = 200 (T is generation 
duration) and record the maximal value of agent resource in a population Rmax(ng) at 
the end of each generation. For the case L, we have just one agent whose resource is 
reset R(T(ng-1)+1) = 0 after the passing of every T  = 200 time steps; the index ng is 
incremented by one after every T time steps, i.e., Rmax(ng) = R(T ng). The plots Rmax vs. 
ng  for the sinusoid (5) are shown in Fig. 2. In order to exclude the decrease of the 
value Rmax(ng) due to the random choice of actions when applying the -greedy rule 
for the cases LE and L, we set  = 0 after ng = 100 for the case LE and after ng = 2000 
for the case L.   

Under the optimal policy, the agent buys/sells stocks when stock price rises/falls. 
Analysis of agent behavior demonstrates that both pure evolution and evolution com-
bined with learning are able to find the optimal policy. With this policy, the agent 
attains asymptotic value Rmax = 6.5 (see Fig. 2). For the case L, the asymptotic value 
of Rmax is only 5.4. Analysis reveals that the pure learning is able to find only the 
following satisfactory policy. The agent buys stocks when stock price rises (or falls 
by a small amount) and sells stocks when stock price falls significantly. So, the agent 
prefers to keep the capital in stocks. 
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Fig. 2. The plots of Rmax(ng) for the sinusoid (5).  The curves LE, E and L correspond to the 
cases of evolution combined with learning, pure evolution and pure learning, respectively.  
Each point of the plots represents the average over 1000 simulations; n = 10, T = 200,  = 0.05, 
Pmut = 0.1. 
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Fig. 3. The time dependence of the resource Rmax(t) of the best agent in the population; the 
stochastic time series with parameters  = 0.015, Pmut = 0.03, n = 10, T = 2500; the case LE. 
The ends of generations are shown by vertical lines. During the early generations (generations 3 
to 7), any significant increase of the agent resource begins only in the second half of the agent 
life. During the later generations (generations 9 to 12), the increase of the resource begins at the 
start of each generation, demonstrating that the advantageous policy becomes inherited. 
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Fig. 4. Time dependence of action selection u(t) for the best agent in the population (solid line) 
during the first stages of evolution (without learning) with parameters Pmut = 0.1, n = 100, T = 
200. Time series X(t) is also shown (dashed line). The agent has a rough policy that reflects 
only general features of changing environment. 

Thus, pure learning is imperfect in our simulation, nevertheless, learning helps 
evolution to attain larger values of Rmax faster (see curves E and LE in Fig.2). We also 
confirm that learning helps evolution to find a good policy by some other simulations. 
For example, Fig. 3 demonstrates that during initial stages of evolution (ng = 2-7) a 
satisfactory policy is found only in the second half of the agent life (via learning). 
During later stages of evolution (ng = 9-12) the agents exhibit a satisfactory policy 
right from the beginning of the generation. This phenomenon is known as the Bald-
win effect [1,2,7], i.e., initially acquired features become inhered.  

For the case of evolution alone, an interesting type of behavior is observed in the 
first stages of evolution. The agent has a rough policy that reflects only general fea-
tures of changing environment (Fig. 4). The agent buys/sells stocks when the stock 
rises/falls significantly, and it ignores small and short-term variations of the stock 
price. There exists an inertia in switching between two tactics of behavior (sell stocks 
and buy stocks). This inertial behavior is very similar to that of simple animals, such 
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as caddis fly larvae [8]; it helps an animal to react adaptively to only general large-
scale patterns in environment.  

Acknowledgments 

The authors thank Dr. Valentin A. Nepomnyashchikh for consultations on caddis fly 
larvae behavior, as well as three anonymous reviewers for many helpful comments. 
This work is supported in part by the Russian Foundation for Basic Research, Grant 
No 05-07-90049. 

References 

1. Ackley, D., Littman, M.: Interactions between Learning and Evolution.  In C. G. Langton, et 
al (Eds.), Artificial Life II. Reading MA: Addison-Wesley (1992) 487-509 

2. Suzuki, R., Arita, T.: Interactions between Learning and Evolution: Outstanding Strategy 
Generated by the Baldwin Effect. Biosystems, 77 (2004) 57-71  

3. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction.  Cambridge: MIT Press 
(1998)  

4. Braun, H., Ragg, T.: Evolutionary Optimization of Neural Networks for Reinforcement 
Learning Algorithms. In: ICML96, Workshop Proceedings on Evolutionary Computing and 
Machine Learning, Italy (1996) 38-45  

5. Prokhorov, D., Puskorius, G., Feldkamp, L.: Dynamical Neural Networks for Control. In  J. 
Kolen and S. Kremer (eds.) A Field Guide to Dynamical Recurrent Networks. IEEE Press, 
(2001) 23-78 

6. Moody, J., Wu, L., Liao, Y., Saffel, M.: Performance Function and Reinforcement Learning 
for Trading Systems and Portfolios. Journal of Forecasting, 17 (1998) 441-470 

7. Baldwin, J.M.: A New Factor in Evolution. American Naturalist, 30 (1896) 441-451 
8. Nepomnyashchikh, V.A.: Selection Behaviour in Caddis Fly Larvae. In R. Pfeifer et al. 

(eds.) From Animals to Animats 5: Proceedings of the Fifth International Conference of the 
Society for Adaptive Behavior. Cambridge, USA: MIT Press (1998) 155-160 



Enhancing Cellular Automata by an Embedded
Generalized Multi-layer Perceptron

Giuseppe A. Trunfio

University of Calabria,
Center of High-Performance Computing, Rende (CS), Italy

trunfio@unical.it

Abstract. A hybrid approach combining Cellular Automata (CA) and
Artificial Neural Networks (ANNs), capable of providing suitable dy-
namic simulations of some complex systems, is formalized and tested.
The proposed method allows to incorporate in the CA transition func-
tion the available a priori knowledge of the interaction rules between the
elementary system constituents. In order to effectively describe the re-
maining unknown local rules, an embedded ANN is exploited. The ANN
component of the transition function is designed, on the basis of the
available data about the emerging behavior of the system to be simu-
lated, by an evolutionary strategy involving both the architecture and
weights.

1 Introduction and Model Formalization

Computer simulation of the dynamic evolution of complex systems has become
a fundamental tool for many scientific activities. To this end the Cellular Au-
tomata (CA) approach was successfully applied in different areas, including ecol-
ogy, biology, geology, medicine, urban studies and many others. Actually, CA are
good candidates for modelling complex dynamical systems whose evolution de-
pends on the local interactions of their constituent parts. As it is well known,
the main issue in CA modelling is often represented by the elicitation of the
local interaction rules. In order to cope with the situation in which not enough
prior system’s knowledge is available, many approaches have been exploited. In
particular some researchers have proposed, for specific applications, the use of
an Artificial Neural Network (ANN) to model the local interactions (e.g. see
[1]). In this paper a quite general method for embedding an ANN into the CA
transition function is formalized and used in a test case. The proposed approach
exploits an effective evolutionary procedure to design the ANN [2,3].

In order to allow the modelling of “real” systems, the adopted CA model is
more general than the classical one. In particular, let D ∈ R

d be a d-dimensional
domain and D = {c1, c2, ..., cn} its discretisation in n cells, each one representing
a space site specified by a d-dimensional index vector ci ∈ Z

d. Every relevant
characteristic, relative to the space portion corresponding to a given cell, let be
described as a scalar variable si belonging to a nonempty set R(si) [4]. Thus, to
each cell c it corresponds a vector state s = s(c) = [s1, . . . , sm]T belonging to the
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set R(s1)× · · · ×R(sm). A p-dimensional sub-state of a cell, with p ≤ m, let be
defined as the sub-vector u collecting only a subset of the variables included in
s. Given a generic set of cells Y ⊆ D, with | Y |= k, let us define the p×k matrix
ΩY u whose columns are the vectors u(cj), ∀ cj ∈ Y , as the configuration of Y
with respect to the p-dimensional sub-state u. In the following, ΩY u with u ≡ s
will be simply indicated as ΩY . The cell states of the set DA ⊂ D of active cells,
simultaneously evolve in discrete steps. To each c ∈ DA a set N ⊂ D\{c} called
neighbourhood is associated: the states of the cells belonging to N can influence
the evolution of s(c). At each time-step the state of a cell is updated using
its state and the neighbourhood configuration ΩN from the previous time-step,
according to the transition function

s(t+1) = ϕ(s(t),Ω
(t)
N ) (1)

where the superscripts refer to the time step. Let us suppose that Eq. (1) results
from the sequential application of nt elementary local transformations

s(t,j) = φj(s(t,j−1),Ω
(t)
N ), j = 1...k − 1 (2)

s(t,k) = ψ(s(t,k−1),Ω
(t)
N ,W) (3)

s(t,j) = φj(s(t,j−1),Ω
(t)
N ), j = k + 1...nt (4)

where s(t,0) = s(t), s(t+1) = s(t,nt). Functions φj incorporate the knowledge of
some local interactions, whereas ψ uses an ANN with connection-weights W.

1.1 Neural Component of the Transition Function

In this work the local transformation ψ is based on the generalized multi-layer
perceptron shown in Fig. 1 [2]. The ANN’s inputs are a p-dimensional sub-state
u(t,k−1) of the current cell, updated by the k − 1 local transformations φj , and
the neighbourhood configuration with respect to a r-dimensional sub-state z(t),
i.e. Ω

(t)
Nz = [σ(t)

ij ], given by the previous time step. The output is a q-dimensional
sub-state v(t,k) of the cell. In order to account for their potentially different range
of variations, the transformations Fyi : S(yi)→ [0, 1] are preliminary applied to
each scalar input yi. Thus, the ANN is initialized as

x(j−1)×r+i = Fzi(σ
(t)
ij ), i = 1 . . . r, j = 1 . . . b, with b =| N |

xb×r+i = Fui(u
(t,k−1)
i ), i = 1 . . . p

besides the bias unit xni = −1, where ni = b × r + p + 1. Units xi with i > ni

can take inputs from units xj with j < i and are updated as follows

xi =
1

1 + e−y
, for i = ni + 1 . . . ni + nh + q, where y =

i−1∑
j=1

wijxj (5)

being nh the number of hidden units. Finally from the units up to the (ni+nh)-th
the outputs is the sub-state v(t,k) of the cell

v
(t,k)
i = F−1

vi
(xni+nh+i) , i = 1 . . . q (6)
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Fig. 1. The transformation ψ implemented as a generalized multi-layer perceptron

1.2 Design Phase

All the local transition functions (1), acting simultaneously on each cell, can be
thought as an overall transition function Φ which acts on the entire automaton
and gives the global configuration at the step t + 1 as Ω

(t+1)
D = Φ(Ω(t)

D ,W).
Thus the iterative application of the function Φ to the successive configurations,
starting from an initial one Ω

(0)
D , leads to the dynamic process

Ω
(0)
D

Φ−→ Ω
(1)
D

Φ−→ · · · Φ−→ Ω
(t)
D (7)

representing the automaton evolution. For a given set Y ⊆ D we can write

Ω
(t)
Y = Φt

Y (Ω(0)
D ,W) (8)

expressing the configuration of Y at the time step t as a function of the initial
global configuration and the connection weights, being fixed the other automa-
ton characteristics (i.e. the model structure). Supposing Ω

(0)
D be assigned, we

can think at (8) as a nonlinear relation, parameterized by W, which relates the
input Ω

(0)
D and the output Ω

(t)
Y at time step t. Clearly the automaton evolu-

tion (7) can be, in general, significantly influenced by the neural component (3)
of the local transition function. Therefore the ANN must be characterized by
proper architecture and connection weights, in order to correctly and efficiently
reproduce the real system behavior starting from an input Ω

(0)
D . In particular,

especially in this dynamic context, a very suitable feature of the ANN is its gen-
eralization capability with respect to the possible neighbourhood configurations:
the number of such configurations being very high in general, the ANN used as
transition function must very often cope with a number of unknown inputs dur-
ing simulations. Another critical characteristic is related to the computational
cost: since the ANN is invoked for every automaton cell and time step, the num-
ber of invocations per simulation may easily reach the order of many millions.
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Hence, a little optimization in the ANN structure may result in a big economy
of the required computational resources.

In this work we attempt to obtain the desirable ANN characteristics listed
above, exploiting an evolutionary learning procedure, in which both the structure
and connection weights are evolved. Let us suppose that a number ne of exper-
iments of the real system behavior has been performed, each one characterized
by the initial automaton configuration and a series of consequent configurations

Ω̄
(i,j)
D , j ∈ {0, τ1, ..., τnc(i)}, i = 1...ne (9)

where τ indicates the time step in which a configuration is known and nc(i) is
the number of known configurations from the i-th experiment. In general, the
desired time granularity of the simulation is smaller than that resulting from
the frequency of the available experimental configurations, i.e. τi+1 > τi + 1,
and hence no cell state transition examples are explicitly available. This makes
appropriate to design the ANN using a supervised indirect approach, which in
this work is represented by an evolutionary process driven by the global error
between the emerging simulated behavior and the experimented one. To this
end for a given set of cells Y ⊆ D we can introduce a misfit function Θ giving a
measure of the error as

e
(i,j)
Y = Θ

(
Ω

(i,j)
Y ; Ω̄

(i,j)
Y

)
= Θ

(
Φj

Y (Ω̄(i,0)
D ,W); Ω̄

(i,j)
Y

)
(10)

The model error over the subset Y , also accounting for the use of a particu-
lar ANN in the transition function, can be computed introducing two proper
aggregation (e.g. maximum, minimum or some kind of average) functions

εY =
ne

Γ
i=1

nc(i)
Λ

j=1
e
(i,j)
Y (11)

where Γ aggregates errors over experiments and Λ over configurations. In order
to improve the generalization ability of the evolved networks, the cell set D is
partitioned (e.g. trough a uniform random sampling) into a training set T and
a validation set V . Thus, using the equations (10) and (11), for a given ANN
the errors εT and εV can be computed performing ne simulations. The adopted
evolutionary strategy is similar to that proposed by Yao and You in [2], with
the difference that in the present case the training of an individual is not based
on a direct approach, being instead performed exploiting the evolutionary pro-
cedure based on the Cauchy mutation proposed in [3]. In the design algorithm,
na sub-populations of nw individuals (i.e. ANNs) are evolved, where each sub-
population is composed by individuals with the same architecture and different
connection weights. Since both architectures and weights are evolved, a direct
encoding scheme is used, that is, the ANN is represented by the connectivity
matrix K, the connection weight matrix W and the hidden node vector h. In
particular, the evolution of the connection weights is performed on the basis of
the training set, while the evaluation of the sub-population goodness is based on
the validation set as follows: (i) as a result of the weights evolution procedure, the
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best sub-population individual (i.e. the one having the smaller εT ) is available;
(ii) the sub-population error is defined as the value of εV error of the so selected
ANN. The procedure uses rank-based selection and five mutation: (i) connection
weights change, which is obtained through a few generations of the evolutionary
procedure mentioned above; (ii) node deletion; (iii) connection deletion; (iv)
node addition; (v) connection addition. The mutations are attempted sequen-
tially and if one mutation leads to a better ANN it is regarded as successfull and
no other mutations are applied, promoting in this way compact ANNs [3].

2 A Preliminary Application

The proposed framework was applied to the simulation of the wildfire spreading
in the complex orography represented in Fig. 2 and in presence of heterogeneous
fuels. It is known that fires show a higher propagation velocity when they climb
up an up-ward slope, whereas fires show a smaller velocity when they descend
a downward slope. Besides, wind speed and direction as well as the fuel charac-
teristics, greatly affect the spreading. In order to exploit the performance of the
hybrid ANN-CA in this case, the data used for the learning phase were obtained
as outcomes of the “standard” CA model described in [5], which is based on
the knowledge of empirical relations experimentally derived. The ANN-CA used
here is composed of squared cells and the neighbourhood pattern includes a dou-
ble order of squares around the cell (i.e. b =| N |=24). The cell state is defined
by the following variables: (i) the cell altitude z; (ii) the wind speed components
wx and wy ;(iii) the fuel kind fk which can take 13 different values; (iv) the po-
tential spread rate r0, i.e. a real number representing the spread rate on a flat
terrain and without wind; (v) the fuel virtual temperature tv, assuming values
in the interval [0, 1]; (vi) the combustion state cs which takes one of the values
“inflammable” and “burning”. The first local transformation φ1 is devoted to
the computation of r0: if cs �=“burning” r0 = 0, otherwise it is computed using
an empirical relation [5] based on the fuel kind characteristics defined by the
variable fk (i.e. the reaction intensity, the propagation flux ratio, the heat of
pre-ignition, the ovendry bulk density and the effective heating number). Then,
if cs=“inflammable”, the neural component ψ is used for the computation of tv,
taking as input the sub-states z = [z, r0]T and u = [z, wx, wy]T , where each vari-
able is rescaled to between 0.0 and 1.0 by a linear function. Finally, it is applied
the transformation φ2 defined as follows: if tv > 0.5 then cs=“burning”. The
ignition cell is initialized setting tv = 1 and cs=“burning”. The ANN takes 52
inputs and gives a single scalar output. In the performed test the automaton was
composed of 80× 140 square cells of side 20 m, while the simulation time steps
were 96. The ANN evolutionary design phase was based on the knowledge of four
configurations (i.e., the initial one plus three) in two experiments characterized
by different ignition cell and wind conditions (i.e., eight configurations in total).
The functions Γ and Λ in equation (11) were defined as arithmetic means, while
the error Θ was defined as Θ = 1−| B ∩ B̄ |/| B ∪ B̄ |, where B ⊆ D and B̄ ⊆ D
are the simulated and “real” set of cells with cs=“burning”, respectively. The
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Fig. 2. The tested orography and
fire spreading

Fig. 3. Evolution of ANN’s connections
and accuracy

evolutionary strategy was based on a population of na = 20 sub-populations,
each one composed by nw = 20 individuals with the same architecture but dif-
ferent connection weights. Fig. 3 reports the results of the ANN design procedure
averaged over 20 runs. All runs took less than 80 generation to finish, producing
an ANN with an average error on the validation set of 0.18. The best ANN in
terms of error was composed of 22 hidden units and 384 connections and had
the error of 0.16 on the validation set. After the design phase, this ANN was
exploited in 30 test cases randomly generated in terms of ignition cell and wind
conditions, obtaining an average error on the final configuration of 0.24.

3 Conclusions and Future Work

The first application has shown that the proposed approach can become useful
in improving the CA modelling abilities. Although the learning phase is quite
time consuming, it needs to be carried out only once and nowadays parallel
computing resources are very commonly available. Clearly, further insights are
required in order to assess the effectiveness and the reliability of the method.
Possible future developments may include the explicitation of global parameters
(e.g., the cell or the time step sizes) and the use of neural network ensembles.
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Abstract. In this paper, we present an optimization method for a learning algo-
rithm for generation of tactile stimuli which are adapted by means of the tac-
tile perception of a human. Because of special requirements for a learning algo-
rithm for tactile perception tuning the optimization cannot be performed basing
on gradient-descent or likelihood estimating methods. Therefore, an Automatic
Tactile Classification (ATC) is introduced for the optimization process. The re-
sults show that the ATC equals the tactile comparison by humans and that the
learning algorithm is successfully optimized by means of the ATC.

1 Introduction

In this paper the generation of tactile stimulus/information assignments that can be
used for communication is discussed. The challenge is to develop and optimize a learn-
ing algorithm that can be used for tuning tactile pattern in order to obtain the stimu-
lus/information assignments.

Fig. 1. Principle of learning induced tactile communication

The principal schema of tactile tuning is shown in figure 1A. It consists of the
technical system (TS) and the human himself (HU). The tactile encoder (TE) generates
different tactile patterns TP1 - TPN and stimulates the fingertips of the human. The
human rates the evoked perceptions to each other and gives a feedback to the learning
module LM. Depending on this feedback the LM changes the tactile patterns TP1 -
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TPN and presents the patterns again to the human. It is in this iterative way that the
tactile patterns are generated according to the idea of the human. In this paper it is
discussed how the LM changes the tactile patterns TP1 - TPN in order to adapt them to
the human and how to minimize the iteration time. A detailed description of the setup
is given in [1]

2 Specific Requirements for Learning Algorithms for Tactile
Perception Tuning

– Upper bound of iteration time
Due to loss of attention and concentration the human can only interact with the
TS for a limited time period. Psychophysical tests recommend an interaction time
of about 30 minutes as an upper bound. A human needs about 2s - 4s to rate a
tactile pattern. Derived from this the upper bound for the number of iterations n is
niteration = 30min

3s = 600.
– Incomplete data

Patterns used to develop the system are only a subset of all features of the tactile
stimulator. So the learning algorithm has to be able to produce new kinds of tactile
patterns that were not considered during the development of the system.

3 Methods

During the optimization a lot of different parameters have to be tested to find optimal
parameters and therefore many more than 600 iterations are performed. When searching
optimal parameters constant conditions are needed to reproduce a result and to compare
different parameters. Both requirements, the great number of iterations and the constant
conditions, cannot be achieved when the human is involved.

Therefore an automatic rating routine has to be implemented to optimize the learn-
ing algorithm. Once the learning algorithm is optimized the human can interact with
the optimal learning algorithm.

The optimization of the learning algorithm for tactile tuning is divided into two
phases:

1. Creation of an automatic tactile classification (ATC)
The human rates given target patterns to each other and the ATC is adapted to
reproduce these ratings.

2. Optimization of the learning algorithm.
Figure 1B shows the setup of the optimization of the learning algorithm by means
of the ATC. The ATC is subdivided into two subsystems, a Tactile Classification
and a Tactile Feature Comparison.

4 Implementation

4.1 Automatic Tactile Classification

The basis of the automatic rating routine is a tactile pattern classification. Now the ques-
tion is, how the tactile sense classifies tactile stimuli. The tactile neural information are
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processed by the somatosensory system of the human. It passes different parts of the
tactile memory whereas the neural information are differently represented in the dif-
ferent parts of the memory [3]. The sensory registers are the input storage of neural
information, where the information are only stored for some ms. The next part is the
tactile working memory [4][5]. Here, the information loss depends on an internal re-
hearsal. If there is an internal representation and a rehearsal is possible, the information
can be stored in the working memory much longer. In case of rehearsal the information
can be passed to the third part of the memory model, the long-term memory.

P. Mahrer und C. Miles investigated the question of what kind of internal represen-
tation is used for tactile stimuli and found out, that the human applies a representation
that is visual-spatial- or verbal-based [6]. Thus, the features of the tactile classification
are derived from the visual-spatial and verbal features. Additional features of the tactile
sense are added to the list of tactile classification features, shown in table 1.

Table 1. List of tactile classification features

visual-spatial verbal tactile

Movement of a stimulus, Length of a stimulus, Stimulus of different fingers,

Intensity of a stimulus, Rhythm of a stimulus, Division of one finger into 4 areas,

Activity of a stimulus

The tactile stimulator consists of 40 tactile actuators with each actuator having two
activation states, up(1) and down(0). The time resolution of a tactile pattern is 20 ms.
At a given time t the tactile pattern is defined by the activity of the 40 actuators which
are parameterized by time frames such as a(t) = at

1 . . . a
t
40, ai ∈ {0, 1}, whereas ai

is the actuator activity, px(i) and py(i) are the x/y-position of the i-th actuator. From
this parametrization a time series of the features of table 1 is calculated.

1) Center of movement cmx and cmy of a stimulus

cmx = cmx

na
, cmx(t) =

40∑
i=0

xi,

{
xi = px(i), if a(t, pi) = 1
xi = 0 otherwise

cmy = cmy

na
, cmy(t) =

40∑
i=0

yi,

{
yi = py(i), if a(t, pi) = 1
yi = 0 otherwise

na= number of active actuators (a(t, pi) = 1)

2) Length of a stimulus
l = maximum number of time frames a(t) of a tactile pattern

3) Order of stimulation of fingers
The fingers are labeled from f1(thumb) to f5(little finger).

ffinger(t) =
5∑

i=1
fi,

{
fi = 2i if finger i is stimulated at t
fi = 0 otherwise
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4) Rhythm of a stimulus
A perception of a rhythm is evoked if the time frames of a tactile pattern change as
follows:
• N1 constant time frames
• change of the time frame
• N2 constant time frames
• change of the time frame
• ...
• Nn constant time frames

Therefore, the number of constant time frames is counted and stored in a time series
frhythm(t) = [N1..Nn].

5) Division of one finger into four areas
The fingertips are divided into four spatial areas. Labeled from fingertip(4) down
to the palm(1).

farea(t) =
4∑

i=1
fi,

{
fi = 2i if finger area of one finger is stimulated
fi = 0 otherwise

6) Intensity of a stimulus
The intensity of a tactile pattern corresponds to the number of active actuators per
time.

intensity(t) =
40∑

i=0
icount,

{
icount = 1 if a(t, pi) = 1
icount = 0 otherwise

7) Activity of a stimulus
The activity of a tactile pattern is the difference between the intensity for t+1 and t.
activity(t) = intensity(t+ 1)− intensity(t).

Two tactile patterns are compared by comparing the time series of each feature by
means of the dynamic time wrapping algorithm (DTW)[7]. There are weighting coeffi-
cients of the features g1 - g7 which are defined by adaptation to real user data. The hu-
man and the ATC have to arrange 2 tactile patterns P1 and P2 with respect to similarity
to a third pattern P3. If the rating orders are not equal, an error counter is incremented.
The weighting coefficients g1- g7 for the different features are set by minimizing this er-
ror value. The minimization is implemented by a systematic parameter search between
[0..10] with a step size of 0.5.

4.2 Learning Algorithm

A learning algorithm based on a gradient descent cannot be used because of the missing
objective function. A statistical learning algorithm is not applicable due to the limited
number of data. Thus, the learning algorithm consists of heuristic methods, such as
evolutionary strategies, and the resulting evolutionary algorithm consists of operators,
such as selection, recombination and mutation [8][9][10].

The main problem with using an evolutionary algorithm is to define the evolutionary
operators. Theories which predicate the convergence of an algorithm (such as Schema
theory, the Building-block theory or the Price theory) only exist for constraints like
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infinite optimization iterations and for toy problems. Therefore, it is impossible to cal-
culate optimal evolutionary operators for tactile perception tuning and the evolutionary
operators are optimized by means of the ATC.

A target pattern is introduced and the rating of the human is replaced by the ATC.
Starting from initial patterns the learning algorithm and the ATC have to find target pat-
terns. After a predefined number of optimization iterations the process is stopped and
the convergence of the learning algorithm is rated. During this procedure different evo-
lutionary algorithms can be compared and the evolutional operators can be optimized.
To check the ATC a human has to compare the perception evoked by the found patterns
of the evolutionary algorithm with the perception evoked by the target patterns.

5 Results

5.1 Automatic Tactile Classification

The minimized g1 - g7 coefficients are shown in table 2.

g1 g2 g3 g4 g5 g6 g7

Human a 1.0 4.5 1.0 0.0 0.0 2.0 1.5
Human b 0.5 4.5 2.0 0.0 0.5 0.5 4.5
Human c 2.5 5.0 0.0 0.0 1.0 5.0 2.0

Table 2. Minimized g1-g7 coefficients Fig. 2. Comparison of the human and the automatic
tactile classification

The weighting coefficients g1 - g7 are different for each human, only g4 equals zero.
This means that the intensity of a tactile stimulus was not the crucial factor for the
human tactile ranking.

Figure 2 shows the classification difference between three humans and the ATC.
The humans were not familiar with the tactile device. The occurrence of correct (the
tactile comparisons of the humans and ATC are matching) and incorrect classifications
are represented on the y-axis. The incorrect classifications are subdivided into the rating
difference (RD) between the two patterns P1 and P2 of the human, e.g RD = 1 - human
rates P1 and P2 very similar, RD = 8 - human rates P1 and P2 not similar.

Figure 2 illustrates the results of 3 different humans. The human- and the ATC
classification are the same in 88% (human c), 90% (human b) and 94% (human a).

Incorrect classifications are about 5% if RD equals 1 and about 1% up to 5% if RD
equals 2. If RD is greater than 2 the incorrect classifications can be ignored.

This result shows that incorrect classifications are only observed if the human rates
the tactile pattern very similar. Therefore, the tactile comparison of the ATC equals the
tactile comparisons of the humans very well.
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5.2 Tactile Pattern Generation

The learning algorithm has to generate tactile patterns that were not considered during
the development of the system. Therefore, the evolutionary algorithm has to generate
any possible solution for the tactile pattern. One way to obtain this is to start with an
optimization algorithm only consisting of selection and mutation (continual improve-
ment).

To study the effect of different selection and mutation mechanisms the following
operators are used.

Stochastic Universal Sampling (SUS). The probability to select an individual is pro-
portional to the fitness of the individual.

Rank-Based Selection (RS). A ranking of the individuals is executed and the three
best individuals are marked. The probability to select one of the three individuals is the
same. The selection probability does not depend on the absolute fitness value.

Mutation (M). The mutation is implemented by adding activities to and erasing activ-
ities from a tactile pattern. This contains the following actions:

– Increment, decrement and keep the number of time frames a(t). All operators are
chosen with the same probability.

– Add or erase activities of actuators in N time frames. N is a random number but
new activities must have a spatial neighborhood, e.g. activation of an actuator of
a(t+1,pi) must be next to activation of an actuator of a(t,pi).

Spatial Mutation (SM). In addition to the first mutation M spatial filters like rotation,
translation and time scaling are added and the amount of the spatial filters are randomly
chosen. The order of the operators is randomly chosen, too.

Spatial Direction Mutation (SDM). SDM is a special variant of SM. The order of
operators is no longer random but fixed. If a generation does not produce a better indi-
vidual, the next operator is applied.

The convergence of the algorithm is measured by area A under the learning curve.
The less is A, the better is the algorithm. A minimal statistic is made by repeating each
run 10 times. A learning algorithm is evaluated for 15 different target patterns (tp) by

Aalgorithm = 1
15

1
10

15∑
tp=1

10∑
i=1

Ai,tp.

Figure 3 shows the normalized Aalgorithm for different combinations of selection
and mutation operators.

There are differences of 30% between the best and the worst algorithms. Comparing
the two selection methods it can be observed that RS is better than the fitness propor-
tional selection. Furthermore, all learning algorithms with spatial mutation have a better
convergence than those without spatial mutation. The best algorithm consists of RS and
SDM.



Intelligent Pattern Generation for a Tactile Communication System 355

Fig. 3. Comparisons of different learning
algorithm

Fig. 4. Comparison of evoked perception of tar-
get and final patterns

5.3 Comparison of Final Patterns and Target Patterns

The learning algorithm and the ATC have found tactile patterns (final patterns) that are
similar to the target pattern. Now it is analyzed if the evoked perception of the final
patterns and the target patterns is also similar. If the ATC rates the patterns similar to
the human, the final patterns and the tactile patterns should evoke the same perception.
To prove this the human has to rate the final pattern and the target pattern with respect
to similarity.

In figure 4 the results of the comparison of all three humans are added. The human
has once again nine different classifications of similarity, 1-very similar and 9-not sim-
ilar. The human rates about 20% as very similar and about 25% only one classification
lower than very similar. For the classifications 3 to 9 the occurrence is constantly de-
creasing from 15% to 3%. Only classification number 5 varies with a low occurrence
of 3%.

6 Discussion and Conclusion

– The evolutionary learning algorithm is successfully optimized in respect of the con-
vergence of the learning algorithm (minimal iteration steps) and in respect of the
tactile perception evoked by the final patterns (that are similar to the perception
evoked by the target patterns).

– The ATC matches about 90% with the rating of three humans. These results are
based on training data. The ability of generalization is proved by the tactile pattern
tuning. During the tuning process many unknown tactile patterns are presented and
have to be compared. The final tactile patterns are generated basing on these com-
parisons of unknown patterns. The similarity of the evoked perceptions of the final
patterns and the perceptions of the target patterns shows the ability of generaliza-
tion and that the human is successfully replaced by the ATC during optimization of
the learning algorithm.

– A conspicuous result of comparing the final patterns to the target patterns is the
low occupance of classification number 5. This could be caused by the fact that the
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default position of the graphical user interface of the rating dialog is classification
number 5. Starting from this position the human has to move the slider to the left
(classification numbers 1-4) or to the right (classification numbers 6-9). Thus, the
first classification strategy could be to rate similar patterns to the left and not similar
patterns to the right. Afterwards, these rough classification is improved. The sum
of the occurrence of classification numbers 1 to 4 is 73%, and of the classification
numbers 6 to 9 it is 24%. Thus, the human rates 73% as similar and 24% as not
similar.
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Abstract. The solution obtained by Self-Organizing Map (SOM)
strongly depends on the initial cluster centers. However, all existing SOM
initialization methods do not guarantee to obtain a better minimal so-
lution. Generally, we can group these methods in two classes: random
initialization and data analysis based initialization classes. This work
proposes an improvement of linear projection initialization method. This
method belongs to the second initialization class. Instead of using regular
rectangular grid our method combines a linear projection technique with
irregular rectangular grid. By this way the distribution of results pro-
duced by the linear projection technique is considred. The experiments
confirm that the proposed method gives better solutions compared to its
original version.

1 Introduction

The Self-Organizing Map (SOM) is a widely used tool in exploratory data analy-
sis for discovering groups and identifying interesting distributions in the under-
lying data. The most important characteristics of the SOM are the ability to
extract topological structure hidden in data and the ability to visualize of com-
plex data in a two or three dimensional display. As well as all the clustering
methods, SOM converges to one numerous local minima. This technique is sen-
sitive to initial conditions: number of clusters, initial cluster centers, number
of iteration and neighborhood function. Learning speed and shapes of resultant
clusters may differ with respect to these initial conditions [1].

In this work we interested only in cluster center initialization problem. In the
literature two initialization approaches are found for clustering methods, namely
supervised initialization approach and unsupervised initialization approach. The
first one is a supervised selection which assumes that a small subset of samples
data can be labeled in accordance with a tentative classification scheme. The sec-
ond is generally preferred because of its better computational behavior, without
the manual effort to label unlabeled subset of data [2].

We propose to group the unsupervised initialization methods for SOM in two
classes: the random initialization class and the data analysis based initialization
class :
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Random Initialization was found to be a preferable initialization approach
for its simplicity. This approach follows a naive way to initialize the cluster
centers. It is not necessarily the best approach, especially for producing a rapid
convergence to a stable state [3,4,5,6]. It can be performed in a number of ways:
(1) random component: each component of a reference vector is chosen randomly
from the range of values observed in the data. (2) random selection: it uses sample
data. It has the advantage that the samples automatically lie in the same part
of the input space of data [7,8]. (3) random perturbation around mean values:
it initializes the cluster centers by slightly perturbing the mean or the global
centroid of the inputs.

In order to improve the SOM solution, multiple restarts (random initializa-
tion) can be used in the first step and in the second step. Morever, the model
which present a better classification performance is selected [9,10]. We can also
create the initialization diversities by using different initialization methods in
the goal to select the better SOM solution.

Data Analysis Based Initialization uses some methods resulting from the
statistical data analysis and data classification to initialize SOM. Several meth-
ods can be developed for clustering initialization. We can find in the literature
two main methods for SOM initialization (1) for data classification: K-means
based initialization involves three stages. In the first stage, we use the K-means
algorithm to select N ×M (i.e. the size of the feature map to be formed) clus-
ter centers from a dataset. Then a heuristic assignment strategy is employed to
organize the N ×M selected data points into an N ×M neural array so as to
form an initial feature map. If the initial map is not good enough then it will be
fine-tuned by the traditional Kohonen self-organizing feature map algorithm un-
der a fast cooling regime in the third stage [11]. (2) for statistical data analysis:
linear projection data based initialization combines a linear projection method
with regular rectangular grid. The most known linear projection method is Prin-
cipal Component Analysis (PCA). PCA is an unsupervised approach whose the
perpose is to find the most salient features of a dataset. By an optimal linear
transformation from a high dimensional space to a low dimensional subspace,
PCA retains the most important relations of the sample data [12]. The clus-
ters are initialized to lie in the same input space that is spanned by the first
eigenvectors corresponding to the largest eigenvalues of the input data. The re-
constitution algorithm is used to estimate the sample values corresponding to
the empty cell of the regular grid [13].

Linear initialization method based on regular rectangular grid has defect
that it does not take into account the distribution of linear projection results
and also produces several empty cells which implies to use more reconstitution
algorithm.We propose to replace regular grid by irregular grid in order to im-
prove the initialization by taking into account the distribution of linear projection
results.
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Algorithm 1 LIG-Init
1- Project the data on the significant axis by using linear method;
2- Build the irregular rectangular grid by using algorithm (2);
3- For each cell containing data calculate its gravity center;
4- Estimate the gravity center for each empty cell by using equation (1).

2 Linear Method with Irregular Grids for Initialization

The proposed method is called Linear method with Irregular Grids for Initializa-
tion (LIG-Init). It is a qualitative representation of geometric based on density
distribution concept. It takes the form of a irregular grid partitioning the do-
main for each axis. We describe this method by Algorithm 1. The detail of the
algorithm used by our method are detailed below:

– Irregular Grid Algorithm. To produce an irregular rectangular grid we
propose an algorithm (Algorithm 2) based on the cumulative distribution
function (cdf) called CDF-Grid. For each axis, this algorithm divides the
cloud samples in an equal distribution. The intersections of the various axis
give the irregular rectangular grid. We note that for a continuous function,
the probability density function (pdf) which is the probability that the vari-
ate has the value x, can be expressed mathematically as:

∫ b

a
f(x)dx = Pr[a ≤

X ≤ b]
and the cumulative distribution function (cdf) which describes the probabil-
ity that a variate X takes on a value less than or equal to a value x, can be
given by: F (x) =

∫ x

−∞ f(μ)dμ.
– Reconstitution Algorithm. After linear projection on the rectangular

grid, we can have empty cells i.e. cells without data. Reconstitution algorithm
is used to estimate the sample values corresponding to this empty cell [14].
Suppose that X is represented by a cloud of n samples in Rp. The best
representation of the p variables in subspace of dimension q is generated
by the orthonormal eigenvectors v1, v2, . . . , vq of XX′ associated with the
eigenvalues μ1 ≥ μ2 ≥ . . . ≥ μq: (i) in Rp, we have: X′Xμα = λαμα and
(ii) in Rn: XX′vα = μαvα. The transition formulas between two spaces, Rp

and Rn:

uα =
1√
λα

X′vα vα =
1√
λα

Xuα

exact reconstitution is given by: X =
∑p

α=1

√
λαvαu′

α

and approximate reconstitution is given by:

X ! X∗ =
q∑

α=1

√
λαvαu′

α (1)
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Algorithm 2 CDF-Grid

1- Choose the number of clusters for each axis;
2- Build density distribution function for each axis;
3- Build the cumulative density distribution function for each density function;
4- Build the grid by applying the intersection enters the various axis.

3 Evaluation of Cluster Center Initialization

Evaluating the quality of SOM solution is a non-trivial and often ill-posed task.
Generally, two approach are used for SOM solution evaluation:

– Quality Measures Based on the Distance: The classical evaluation
measures for the quality of a classification are based on the intra-class inertia
and the inter-class inertia [15]:

• intra-class inertia, measures the distance between the closest members
of the clusters:

1
|C|

∑
c∈C

1
|c|

∑
d∈c

‖pc − pd‖2 (2)

• inter-class inertia, measures the distance between the centroids of the
clusters:

1
|C|2 − |C|

∑
ci∈C

∑
cj∈C,cj �=ci

‖pci − pcj‖2 (3)

(|.| is the counting measure and ‖.‖ is the Euclidean distance) where C rep-
resents the set of classes associated to the classification, d represents a class
member and px represents the profile vector (center) associated to the ele-
ment x.

Thanks to these two measures, a clustering is considered as good if it pos-
sesses low intra-class inertia as compared to its inter-class inertia. However,
these measures are often biased in several ways as well as, the sensitivity to
the empty classes, that these last are regarded as intermediary classes by
SOM.

– Visualization Evaluation: The most characteristic property of the SOM
solution is the preservation of topology. The goal of visualization is verify-
ing this characteristic. Generally, U-matrix and Sammon mapping are used
for visualization. The Unified distance matrix (U-matrix) makes the 2D vi-
sualization of multi-variate data possible using SOM’s code-vectors as data
source. By U-matrix we can detect topological relations among neurons and
infer about the input data structure. High values in the U-matrix represents
a frontier region between clusters, and low values represent a high degree of
similarities among neurons on that region [16]. Sammon mapping computes
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the location of neurons in two or three-dimensional space from their connec-
tion weights. It is useful to use this mapping for assisting the interpretation
of the 2-D or 3-D distance map [17].

The figures (Fig. 1) and (Fig. 2) represent the comparison between regular
and irregular grids for clusters initialization by using an artificial dataset gener-
ated randomly. For the same number of cells, irregular grid represents well the
data distribution and shows that the irregular grid is clearly better than the
regular grid for performance evaluation.

4 Conclusion

We presented in this work different initialization methods associated with the
SOM cluster centers. We also discussed some difficulties that arise in the eval-
uation SOM solution. We shown how the initialization with repetition method
based on diversity in different random initialization methods can be used to find
the good solution. The model search involves a considerable increase in the com-
putational cost, but in serious data mining, the major concern is the reliability
of the results for making decision. We proposed an approach based on linear
projection and irregular grid which takes into account the distribution of results
produced by the linear projection method compared to using regular grid. It
outputs a quasi-null number of empty cells. Accordingly, it gives a “good” ini-
tialization for SOM. Moreover, it deals with any dimensionality size of SOM, i.e.
2D, 3D, etc.
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Abstract. This work proposes a theoretical guideline in the specific area
of Frequent Itemset Mining (FIM). It supports the hypothesis that the
use of neural network technology for the problem of Association Rule
Mining (ARM) is feasible, especially for the task of generating frequent
itemsets and its variants (e.g. Maximal and closed). We define some
characteristics which any neural network must have if we would want
to employ it for the task of FIM. Principally, we interpret the results of
experimenting with a Self-Organizing Map (SOM) for this specific data
mining technique.

1 Introduction

Association Rule Mining (ARM), introduced by Agrawal et. al. [11], may be
divided into two-subprocess activities: a) finding frequent itemsets and b) the
generation of association rules to tackle the problem of discovering significant
association rules among the items (attributes, components, etc.) of a collection
of data (e.g. Basket shopping data) which must satisfy user constraints (e.g.
Support and confidence thresholds). During the last decade, the first step of
ARM, better known as Frequent Itemset Mining (FIM) [4], has been the mo-
tivation for the development of a large number of algorithms [5], of which the
most frequently cited and better-known is Apriori [1]. The majority of the pro-
posals are based on the use of diverse data structures (e.g. Hash tables, trees)
and the exploitation of the Apriori anti-monotone property: if any k pattern is
not frequent in the database, its extensions, (k+1) super-patterns can never be
frequent to avoid the complexity of the problem.

At the same time, the technology of neural networks, which has been success-
fully employed for tasks of pattern recognition [2], already has been introduced
for data mining problems such as classification and prediction [3,10], but it has
not been applied seriously to problems such as FIM. This work analyzes the
use of neural network technology for the problem of association rule mining,
especially for the task of generating frequent itemsets. In particular, this work
� Supported by The Central Bank of Mexico (BANXICO) and The National Council
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explores how a self-organizing map could be employed for FIM. The remainder
of this paper is organized as follows: Section 2 describes the problem of Fre-
quent Itemset Mining (FIM). Section 3 defines the minimal characteristics that
a neural network must have if we want to use it for FIM. In Section 4, we present
an analysis of the experiments using SOM for FIM. Some conclusions are pre-
sented in Section 5. We decide not to include information about Self-Organizing
Maps (SOM) for space limitations but details of this technology can be found
in [8].

Fig. 1. Lattice representing the data space formed by a 4-itemset and its subsets

2 Problem Definition: Frequent Itemset Mining (FIM)

Let Γ be a set of items. An itemset I is any subset of items such as I ⊆ Γ . Let
D be a set of transactions T . A transaction T is defined by the couple (tid, I)
where tid is an unique transaction identifier and I is its corresponding itemset.
A transaction T = (tid, I) is said to support an itemset X only if X ⊆ I.

An itemset X is said to be frequent if its support s is greater than or equal
to a given minimum threshold σ. The support value of an itemset can be defined
by the number of elements (transactions) in the set S = {tid | (tid, I) ∈ D, X
⊆ I }. In other words, this support value, s = ‖S‖

‖D‖ , is the probability that X
appears among the possible transactions contained in D.

The goal then is to mine a given database D in order to identify all the
frequent itemsets (FI) based on a defined minimal support threshold σ. The
complexity of this problem is the size of the search space (data space) that can
be formed by a set of items Γ . This mining activity simply becomes unfeasible
when the number of items grows to be large. For instance, a frequent k-itemset
(k is the size) implies the presence of 2k − 1 frequent itemsets (all of them are
combinations or subsets of the k-itemset). In figure 1 we show a lattice describing
the search space formed by a 4-itemset in order to have a better idea of this.

3 A Hypothetical Neural Network for FIM

Neural networks have been used successfully for many different pattern recog-
nition problems. If we consider the similarity between an itemset and a pattern
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definition, then the way in which neural networks can be applied becomes clear.
FIM may be seen as the task of detecting patterns (itemsets) that occur with
certain frequency in some dataset and that have to be identified and counted by
some neural-network model. We have named this activity pattern counting.

Although the range of FIM algorithms in the literature is large, there are few
works directly related to the hypothesis of employing a neural network for ARM.
The work presented in [7] introduces neural network technology to the problem of
ARM. In this work, the authors promote the use of an n x p Hopfield network to
discover frequent itemsets based on the premise that this neural model has been
used previously for combinatorial optimization problems. Secondly, the use of
SOM for this specific data mining problem was proposed in [14] but no analysis
was presented and its authors only make an assumption that a SOM can be
employed for FIM because of its clustering feature.

The characteristics of the current FIM algorithms, the definition of the prob-
lem itself and the lack of formal work on the use of neural networks for FIM,
lead us to search for a model in the domain of the neural network technology
that can fulfill the requirements to became a frequent itemset miner. We pro-
pose that a neural network must have the following characteristics to tackle this
problem:

– A neural network, which supports unsupervised training must be considered
initially for this data mining task because we do not know the number of
different patterns (itemsets) than can be found in a dataset.

– The weight matrix obtained as a result of the training of the neural network
must contain information from which we can obtain a reasonable support
metric for any pattern (itemset) in our original data space.

– It is essential that this neural model deals with n-dimensional patterns with
large n, particularly with data that could be formatted as binary arrays.

– This neural-network model must be able to learn new patterns without for-
getting past knowledge. This characteristic will help to keep the support of
the patterns updated and avoid using tree-party processes which are em-
ployed normally for this purpose [9].

– It will suggest which parts of the data lattice are important to mine depend-
ing on the threshold provided by the user.

– The size of the weight matrix formed must be much smaller than the size of
the training dataset. This characteristic will allow us to run different min-
ing exercises (e.g. Setting different support threshold values) on the neural
network without having to rebuild or retrain it.

Employing neural networks gives the advantage of reusing the weight ma-
trix for other mining reasons such as clustering or classification. In addition, the
portability of the weight matrix makes the use of neural networks for distributed-
data-mining processes realizable. Based on the number of requirements ful-
filled and on the features that SOM has to form maps of clusters representing
the data distribution of a dataset, the SOM is a suitable network for further
investigation.
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4 Experimentation and Analysis

In this section, we present the results obtained from training a SOM for FIM.
For all these experiments, a batch-training-mode SOM was employed from the
toolkit developed by [12,13]. The default training parameters1 were used. Six
synthetic binary datasets2 were also created. It is important to state that even
if we could have used real datasets for this experimentation, we decide not to
employ them, because they normally do not include every possible combination
of their items and the aim of this first experimentation is only to analyze how a
SOM behaves when the distribution of the data is being controlled (e.g. One of
our datasets was formed to represent all patterns that form a 4-itemset lattice
as in Figure 1). Thus, we initially train the SOM using the synthetic datasets in
order to identify whether there are any characteristics on the maps, formed by a
training process with binary-input patterns, that could be used to discover either
frequent, maximal or closed patterns. The maps shown in Figure 2 are the results
of the SOM training process from which we make the following observations:

Formation of big clusters. In every case, the resulting map is composed of
the formation of four large clusters which model the distribution of the pat-
terns contained in each dataset created for this analysis. The presence of
these four clusters can also be verified by the visualization of their corre-
sponding U-matrix in which the absence of colour describes a group of nodes
and the existence of colour defines a division between these groups. This U-
matrix is the result of calculating the distance (e.g., Euclidean distance)
among all the nodes in the map. The size of the maps and clusters depends
directly on the number and definition of input patterns contained in the
datases. Although parameters such as the radius defined for the process can
affect the resulting map, the four-cluster formation observed in all cases will
be always present due to the fact that the two-dimensional representation
(compressing representation) of our input data (binary vectors) can be de-
scribed by data points arranged closely to the four vertexes of a square figure.

Identification of winners and hit histograms. A competitive process is ex-
ecuted by all the nodes in the map during the training that controls the
manner in which the modifications of the map will be made. This process,

1 In a batch training mode, parameters such as the neighborhood function and the size
of the radius have to be mainly defined. In this particular case, we have employed
the Gaussian function to modify the neighborhood and set the radius to one for
the entire process. More details on the variations of these parameters can be found
in [12,13].

2 Our synthetic data consists of six datasets which contain a)16, b)64, c)256, d)1024,
e)4096 and d)65536 transactions respectively. Within each dataset, the transactions
correspond to the all possible combinations of a)4, b)6, c)8, d)10, e)12 and d)16
items (attributes, columns). Thus, the total number of transactions is equal to 2k,
where k is the number of items used to form them. Binary vectors represent the
content of each dataset.
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Fig. 2. Maps formed after training a SOM with all the possible combinations of: (a
4, (b 6, (c 8, (d 10, (e 12 and (f 16 items. In each column of maps, the maps on the
right group their nodes based on the similarities of their components in which colours
are used to visualize the formation of four clusters. The maps on the left (black and
white maps) illustrate the corresponding U-Matrix which is formed from the results of
calculating the distance metric among all the nodes of a map. The absence of colour
in these maps means that the distance among the corresponding nodes is minimum.
The dark sections define a division among either the clusters of the map or the bmus
of a cluster. More techniques on how to understand the clusters formed by a SOM
can be found in [6]. It is important to point out that all these maps are formed with
a constant neighborhood size equal to one. Even if a modification of this parameter
(neighborhood size or radius) can give different sizes of the clusters as a result, the
formation of four clusters will always be present in the resulting map.

better known as the Best Matching Unit (BMU) selection, leads the training
because it determines which nodes will be turned into winners. The com-
ponents of each winner and its neighbourhood will be updated in order to
approximate their values to those that form part of all input patterns that
hit this node. With this feature, the SOM splits the input data universe into
several winners that form clusters. A winner has the characteristic that it is
chosen as a BMU by some input patterns during the training. This informa-
tion can be seen by using hit histograms as in Figure 3, which represent the
number of times that a node was chosen by input patterns. It is important
to mention that this feature in the SOM resembles the support metric for
an itemset defined for the problem of FIM.

Dependency among clusters (The grouping of input patterns). Inside
of each of the winners an interesting characteristic occurs.This property
refers to the existence of a dependency among all the input patterns that
have chosen the same node as a winner. This dependency can be seen if a
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Fig. 3. Visualization of hit histograms on the U-Matrix for the detection of winners
for the datasets containing: (a 4, (b 6, (c 8, (d 10, (e 12 and (f 16 items. The size of
each red hexagon represents the total number of times that a node was hit by the input
patterns. The number of hits among the winners can be different since the grouping
of the input patterns is done by calculating the similarities among them by using a
distance metric. Any node chosen by the input patterns is known as a Best Matching
Unit(BMU) or winner.

tree data structure is built using the patterns accumulated in the winner
with the following rules:

Let A and B be two binary patterns in the winner node X and ∨ be an
OR bitwise operator such that the operation A ∨ B can give us the following
dependencies:

– They are related directly only if (A ∨ B) gives either A or B as a result
such that A is considered the parent of B, (A ∨ B) = A, defining that
B ⊆ A, otherwise A will be considered the child of B, (A ∨ B) = B,
defining that A ⊆ B.

– A partial or null dependency is defined when (A ∨ B) gives neither A nor
B as a result, defining that a possible dependency among the clusters on
the map exists.

Figure 4(b), shows a basic example of the hierarchical tree built by patterns
of the dataset formed with 4 items that have hit the same winner within
the cluster C1. A more complex structure can be formed if all of the ele-
ments from all of the clusters are considered to give a lattice such as the
one illustrated in Figure 4(c). An important conclusion of this task is the
relevant manner in which the SOM splits the data space so that a novel
manner of traversing the lattice can be defined by this method. As a first
thought, it could help to determine which group of patterns could be con-
sidered interesting when a support threshold is provided. This decision can
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Fig. 4. Visualization of the dependency among the four clusters formed by training
a SOM using the dataset containing all itemsets derived from a 4-itemset. Figure A
illustrates the formation of the clusters with their winners. Each winner contains more
than one input pattern. A basic hierarchical tree is shown in Figure B which has been
formed with the input patters accumulated by the winner in the cluster C1 for instance.
In figure C, a lattice is built using the distribution of the input patterns in the map.
This lattice describes the dependency existed among the clusters. Four colours are used
in the lattice to illustrate which input patterns share or belong to the same winner (The
dependency among the clusters).

be made if a record of the support value of each itemset is stored and a
modified version of the anti-monotone property of Apriori is employed such
as: If cluster is frequent, then some of its members called winners could be
frequent also, depending on their hit histogram values.Using this method, we
will be identifying those sectors of the data space which are not relevant for
our mining process.

5 Conclusions

This work outlines the use of neural network technology for the problem of
association rule mining, especially for the task of generating frequent itemsets.
In particular, this work explores how a self-organizing map could be employed
for frequent itemset mining. This work reinforces the hypothesis that the use of
neural network technology for the problem of association rule mining is feasible.
Analysis of our experimentation with synthetic datasets has shown that a self-
organizing map may become a frequent set miner. We also show a novel way of
traversing the data space formed for this type of data ming task could be also
implemented if we consider the dependency among the patterns accumulated in
each winner node on the map.
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Abstract. The temporal dimension is very important to be considered in many 
cognitive tasks involving a decision making or a behavior in response to spatio-
temporal stimuli, such as vision, speech and signal processing. Thus, the capac-
ity of encoding, recognizing, and recalling spatio-temporal patterns is one of the 
most crucial features of any intelligent system either artificial or biologic. If 
some connexionnist or hybrid model integrates the temporal data as spatial in-
put, few other models take them into account together internally either in train-
ing or in architecture. Temporal Organization Map TOM is one of the latest 
types. In this paper, we propose a model gathering saptio-temporal data coding, 
representation and processing based on TOM map, and yielding to a Spatio-
Temporel Organization Map (STOM). For spatio-temporal data coding, we use 
the domain of complex numbers to represent the two dimensions together. 
STOM architecture is the same as TOM, however, training is ensured by the 
spatio-temporal Kohonen algorithm to make it able to manage complex input.  

1   Introduction  

Most connectionists or even hybrid models process spatial and temporal information 
within two methods: 1- Extrinsic: temporal information is coded with spatial one at 
the level of inputs. Here we have three cases: either time is introduced to the model as 
spatial data and this is used in serial-parallel transformation [18] and TDNN [6, 12], 
or spatial information is encoded in temporal form, we found this in spiking neuron 
models [7], or the two dimensions are grouped together in a spatio-temporal coding  
approach, which is the case of STAN model[11] 2- Intrinsic: models take into  
account internally the two dimensions at the same time. Here also we have two cases: 
either temporal dimension is supported by the whole architecture of the model, yet the 
training remains spatial. This case enters in the category of recurrent network [16], or 
they are embedded at the basic unit of the model, which is represented by TOM map 
[5]. TOM map could be seen as an interesting alternative for spatio-temporal  
representation facing models of classical inspiration like ANN or hybrid one. In fact, 
TOM offers a better understanding of the self-organization map and the structure of 
cortical signal, because its design and functioning are inspired from cortical column 
and area [1, 2] of the human cortex. So within a biological frame work, TOM reveals 
how dynamic connectionist networks can self-organize to embed spatial signal and 
their temporal context in order to realize a meaningful representation of dynamic 
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phenomena. While TOM encodes internally time and space, training processes sepa-
rately these two dimensions. Indeed, it is done on two steps: first step for fixing the 
spatial masks using a self-organization algorithm. The second step for training the 
temporal occurrence (context) of learned masks with a specific temporal algorithm. 
Thus, temporal training is realized when the spatial one is accomplished. Therefore, 
input of different learning steps does not interact spatio-temporally inside the map 
yielding a passive input representation. At this level, several questions could be 
raised: is it possible to learn spatial and temporal dimension at the same time? Or at 
least, could temporal learning put back in cause or refine certain aspects of spatial 
learning? We think that with the integration of spatio-temporal training, one will cer-
tainly have more significant learning of spatio-temporal events. As consequence of 
training, TOM inputs are given to the map sequentially, the spatial then the temporal 
data. With spatio-temporal training, STOM inputs embed space and time together. 
This fact is done by the spatio-temporal coding approach presented by Gilles Vaucher 
[11]. This approach is proposed to introduce a spatio-temporal coding for the STAN. 
It is based on complex numbers because they are the only numbers offering two de-
gree of freedom encoding the two dimensions. Using this approach and with a spatio-
temporal training, STOM will be an extrinsic and intrinsic model at the same time. 
STOM is tested in speech recognition for two aims. First, to see if the map can cor-
rectly conserve the topology of the human auditory cortex [9, 10]. Thereby, high 
frequency signals are neighborly encoded with respect to their time occurrence; the 
same phenomena must be observed for low frequency signals. Second, to see the 
performance of STOM regarding to TOM, since TOM was applied to this application.  

2   The Spatio-Temporal Coding Approach 

The big amount of information that stochastic signal transports, is enclosed in a space 
of representation (amplitude x time).  
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Fig. 1. The Spatio-Temporal coding approach 

The correlation between time and space at the level of input data could be repre-
sented by the spatio-temporal coding approach proposed by Gilles Vaucher. This ST 
approach takes its roots from the work undertaken by neurobiologists to model  
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passive electric properties of the dendrites trees [17]. The spatio-temporal coding 
approach (Fig.1.) was introduced for the aim to provide the classical artificial neurons 
the capacity of processing sequences in asynchronous manner, leading to the emer-
gence of STANN (Spatio Temporal Artificial Neural Networks) [14, 15]. It consists 
on adding the delay; at the level of input; to introduce temporal information. It im-
proves the work of 'Integrate and Fire' neuron [4] using the field of complex numbers. 
The spatio-temporal coding is done as following: Each input produces a train of im-
pulses, for each impulse or spike I characterized by its amplitude Iμ and the temporal 

delay Id  which separates the current instant of time from the time at which the im-

pulse has been occurred, a complex number Iz  is assigned. Iz Contains Iμ  as its 

module and I  as its phase as following: 

)arctan( Idtμ

eμz

I

I
i

II

=

=
 (1) 

To incorporate the concept of ‘Integrate and Fire’ neuron into the approach, the am-
plitude of one input is attenuated with the passage of time. This attenuation is meas-
ured between tcurrent  and tarrival as following: 

Isdμ
II eμμ −=

0
 (2) 

Where 
0Iμ is the initial amplitude of the input, ts μμ ,  are two constants allowing the 

control of the characteristics of the model. 

3   The Spatio-Temporal Organization Map 

3.1   TOM Architecture 

From the technical point of view, TOM is a cortical map[3] whose goal is to learn 
special signs and their temporal sequences in asynchronous manner. TOM is com-
posed of  Super Unit (SU) (Fig. 2) having an invariant architecture, different kind of 
inputs and different small interconnected units for the activity propagation through the 
map. Each SU has three kinds of connections. First, feedforword connections deter-
mine how spatial stimuli without additional temporal relation are represented by SU. 
Second, lateral or local connections determine the spatial topology of the map and 
represent the neighbored function. Third, temporal or intra-map connections link 
small units inside the SU. Unit activation depends on if the suitable stimulus of the 
SU is presented and if its contextual activity is correct, that is at least one unit is acti-
vated in its Receptor Field (RF). The later is represented by the intra-map links. The 
connections between different units of different SU define the temporal topology 
inside the map and constitute its Short Term Memory. This STM is ensured by a de-
creasing activation of units, while the SU has a binary activation. In fact, if the input 
corresponds to the stimuli coded by the SU, and if its temporal context is right (one 
unit is activated in the RF), then the corresponding unit is activated and the SU ‘fire’. 
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Fig. 2. The TOM Super Unit 

3.2   STOM Architecture 

STOM has the same architecture as TOM, however, the SU (Fig. 3) will receive spa-
tio-temporal input coded using the approach cited in section 2. Therefore, to represent 
spatio-temporal data inside SU two cases could be mentioned depending on the appli-
cation used. 
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Fig. 3.  STOM Super Unit  

1st case: The SU code any input equals or near to the amplitude 1w at the phase 1ϕ , 

2w at the phase 2ϕ ,.., nw at the phase nϕ  (figure 2 a). Therefore, the weighting vector 

is: 
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2nd case: The SU code a known spatial representation 1w , 2w ,.., nw which could oc-

cur at the phase 1ϕ , 2ϕ ,..., nϕ . The weighting vector is, therefore: 
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The function and activation of each STOM SU remain identical to those of TOM SU.  

4   Spatio-Temporal Training 

TOM training is done in two steps and works with the decision 'Winner takes all' and 
Kohonen algorithm. Applying the spatio-temporal complex coding approach to en-
tries, we will have input vectors in Cn, thus we need to extend the Kohonen algorithm 
to deal with complex numbers. We use for that, the Spatio-temporal Kohonen pro-
posed by Mozayyani [13]. ST-Kohonen works in the same manner as Kohonen; how-
ever, the winner is chosen according to the hermitienne distance instead of the Euclid-
ian one: 

( ) ( )( )ii
t

ii WXWXWXWX −−=−=,  (5) 

The adaptation rule for ST-Kohonen is the same as the one presented in Kohonen, yet 
we manage complex numbers instead of reels. With the application of ST-Kohonen to 
STOM, we will update three types of connections. Feedforward and lateral connec-
tions are updated using the same rule as kohonen algorithm. The neighborhood func-
tion is fixed as prior. The ntra-map connections are binary connections used to create 
and update the RF of one unit. They are modified using the same algorithm proposed 
for TOM [5]. Different approaches have been developed to embed spatio-Temporal 
information in the SOM algorithm: The most direct way is to include time-delayed 
version of the input vectors in the input layer or to add a second layer of processing 
neurons that captures the spatial dynamics of the first layer [21]. Other research has 
focused on Dynamic Leaky Integrator, first on the level of processing neurons [22], 
later on the level of input vectors [23]. These works address the problem of spatio-
temporal pattern classification: neurons code whole sequences of stimuli and allow 
distinguishing the learned sequence. The ambiguity of a presented spatial pattern is 
resolved by incorporating network memory representing preceding spatial patterns. 
Contrarily, the aim of STOM is to be an intrinsic and extrinsic model that is to embed 
Spatio-Temporal relation at the level of inputs, architecture and processing. This aim 
permits the model to generate first spatio-temporal feedforward weight vectors that 
capture the essential invariances and serve as reasonable templates for further stimu-
lus and second  a more meaningful spatio-temporal representation of these templates. 
Another spatio-temporal algorithm is available. The training presented by Wiemer [8] 
is an algorithm that extends the common self-organization map (SOM) from the proc-
essing of purely spatial signals to the processing of purely spatio-temporal signals. 
The algorithm aims at transforming the temporal interval between two consecutive 
stimuli into distance representation. This transformation is done at the level of proc-
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essing and not inputs. Thus, time is not conserved and treated as a dimension a part 
but transformed into spatial distance, which does not match STOM architecture and 
coding approach.  

5   Experimentation and Results 

For reasons mentioned in the introduction, the application used in this paper is the 
speech recognition. The map is trained and tested with isolated words of TI-Digit 
database. The number of speakers contributing to the application is 110 distributed as 
55 men and 55 women pronouncing the ten digits and the word 'oh'. We use the Mel 
Frequency Cesptral Coefficients (MFCC) vectors [20] to represent speech signal. To 
permit the spatio-temporal coding, we suppose that all coefficients for one MFCC 
vector have the same time of occurrence. Thus, complex MFCC vectors will have the 
following form: 
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The proposed speech recognition model is composed of one STOM map connected to 
11 neurons representing the digits to be recognized. The map contains 30 (5x6)  
spatio-temporal super units. ts μμ ,  are both chosen inverse to the temporal window 

according to Baig [15]. To compare TOM and STOM we have used a ST-Kohonen 
algorithm with an STOM SU architecture shown by the figure 3 b), because and as 
mentioned above, we suppose that all coefficients of one MFCC vector have the same 
time of occurrence. The result is shown in the following table: 

Table 1. Digits Recognition 

0 1 2 3 4 5 6 7 8 9 oh

0 106 0 0 0 0 0 0 0 0 0 4

1 0 110 0 0 0 0 0 0 0 0 0

2 0 0 110 0 0 0 0 0 0 0 0

3 0 0 0 110 0 0 0 0 0 0 0

4 0 0 0 0 108 2 0 0 0 0 0

5 0 0 0 0 0 110 0 0 0 0 0

6 0 0 0 0 0 0 110 0 0 0 0

7 0 0 0 0 0 0 1 109 0 0 0

8 0 0 0 0 0 0 0 0 110 0 0

9 0 0 0 0 0 0 0 0 0 110 0

oh 7 0 0 0 0 0 0 0 0 0 103   

As shown in the above table, the recognition rate reaches the level 100% except for 
the 0 (resp 4, 7 and ‘oh’) where 4 (resp 2, 1 and 7) cases were confused to ‘oh’ (resp 
5, 6 and 0). The recognition step has reached with TOM map the rate of 95% but 
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Fig. 4. Spatio-temporal topology of STOM 

never 100%. Moreover, STOM has preserved the topology of the input, in fact we 
have taken randomly two weights of STOM weighting vector and we have plotted 
them (Fig. 4). We have observed that digits with high frequencies are represented by 
SU closely near each other. The same result is obtained for low frequencies.  

We know that Hidden Markov Model (HMM) is one of the most powerful statisti-
cal tools available for designing the automatic speech recognition [19]. However, this 
model does not have any biological foundation. So regarding to HMM, STOM gives 
the same result (reaches a learn rate of 100% for the majority of digits) yet, with a 
biological plausibility.  

6   Conclusion 

The Spatio-Temporal Organization Map proposed in this paper is an extension of 
TOM map to spatio-temporal domain. It’s an intrinsic and extrinsic model because it 
embeds the two dimensions together at the level of input architecture and processing. 
For more conformity to the cortex, neurons proposed in the model could be replaced 
by an STOM map and further research could be focused on the feedforward and 
backward links between two or more STOM maps.  Furthermore, the activation of 
one Super Unit could be complex instead of real, which express more the spatio-
temporal representation and allows a more meaningful interaction between Super 
Units.  
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Residual Activity in the Neurons Allows SOMs
to Learn Temporal Order
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Abstract. A novel activity associated to the neurons of a SOM, called
Residual Activity (RA), is defined in order to enlarge into the temporal
domain the capabilities of a Self-Organizing Map for clustering and clas-
sifying the input data when it offers a temporal relationship. This novel
activity is based on the biological plausible idea of partially retaining the
activity of the neurons for future stages, that increases their probability
to become the winning neuron for future stimuli. The proposed paper also
proposes two quantifiable parameters for evaluating the performances of
algorithms that aim to exploit temporal relationship of the input data
for classification. Special designed benchmarks with spatio-temporal re-
lationship are presented in which the proposed new algorithm, called
TESOM (acronym for Time Enhanced SOM), has demonstrated to im-
prove the temporal index without decreasing the quantization error.

Keywords: Time sequence learning, SOM, intrinsic dimensionality.

1 Introduction

In most real problems the time sequence of the input data is relevant for its
correct classification and therefore also relevant in the training phase. The aim
of standard SOMs can be seen as a reduction of the dimensionality of the input
data into an output map of a reduced dimension, generally a bi-dimensional
map but as the intrinsic dimensionality of the input data is rarely of dimension
two, different output maps can be produced by a particular SOM. Since in most
real applications every stimulus is related to the preceding and ulterior one, it is
plausible that two input data that occur one after the other should be considered
similar to each other. If this assumption is to be learned by a SOM, it yields to
the fact that two subsequent input data (i.e. similar) have to activate neighbor
neurons in the output space, implying the similarity of the input data.

2 Previous Related Works

The idea of integrating time information into Self Organizing Maps has already
been undertaken by some authors using several approaches. Some of the earlier
attempts were based on the addition of time information into the input data
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themselves [5], [7], where exponential averaging and tapped delay lines were
tested. Other later approaches consist on using layered or hierarchical SOM in
which a second map tries to capture the spatial dynamics of the input mov-
ing through the first map [4], [6] that increases the dimensionality of the net-
work size. As an alternative to the leaky integration methods discussed above,
Voegtlin [8] proposes a recursive SOM by adding time-delay feedback. Biolog-
ically plausible local communication techniques have increasingly been used in
neural networks, as proposed by Ruwish [1] where the learning algorithm includes
an active medium using diffusion that can be implemented in analog hardware.
Also using the reactive-diffusion mechanism Principe and Euliano [2] propose
the SOMTAD architecture, whose key concept is the activity diffusion of the
neurons through the output map, including an auto-feedback that provokes that
the activity decreases A new structure of the same authors [3] is the GASTAS
algorithm that suppress the imposition of a predefined (spatial) neighborhood
structure on the output space by creating an auxiliary connection matrix trained
in the learning phase. An alternative to incorporate network memory represent-
ing spatial patterns is introduced by Wiemer [9] in the TOM algorithm, where
the temporal stimulus relations is used to generate feed-forward weight vectors
that capture essential invariance and serve as reasonable templates for further
stimulus processing and to arrange these templates in a topographically mean-
ingful way.

3 Equations of the Learning Algorithm

The best matching criterion proposed in this paper takes into account not only
the distance in the input space of the input instance to each neuron (i.e. the ”spa-
tial” similarity), but also the Residual Activity containing information about the
time since it learned a previous input data (i.e. the ”temporal” similarity). Let
first define the diverse activities associated with each neuron and their equations:

– Instantaneous Activity IAi(k) of neuron i − th at time k. This activity
is provoked at each neuron depending on its neighborhood to the input
instance.

– Vicinity Activity VAi(k) of neuron i−th at time k. This activity is provoked
at each neuron depending on its neighborhood to the winning neuron at time
k. the weights of the neurons at each step of the learning phase.

– Residual Activity RAi(k) of neuron i − th at time k. This activity is pro-
voked at each neuron depending on its neighborhood to the previous winning
neurons and depending on the period of time since it lays within the neigh-
borhood of the previous winners, calculated as:

RAi(k) = 1−
k−tm∏
j=k−1

[1−DF (k, j)VAi(j)] (1)

where DF (k, j) is the damping function at time k−th of the Vicinity Activity
produced at previous time j − th. This DF is aimed to be stronger (closer
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to 0) when the previous time j− th is far away from the present time k− th
of the learning phase and thereafter the value of the temporal horizont tm
is not relevant. One possible equation to evaluate DF is:

DF (k, j) = e
− (k−j)2

2σ2
t (k) (2)

where σt indicates the temporal propagation of the VA at instant j− th into
the future instant k − th when the RA is being evaluated and it typically
decreases over the time.

– Total Activity TAi(k) of neuron i− th at time k. This activity is composed
of the Instantaneous Activity and the Residual Activity of each neuron at
each time of the training phase. The Total Activity represents therefore a
composition of the “spatial similarity” to the input instance and the “tem-
poral similarity” to previous data. In classical SOM learning algorithm the
Total Activity is exactly the same as the Instantaneous Activity. In the new
proposed learning scheme, the Total Activity can be calculated by:

TAi(k) = 1− [1− IAi(k)][1−RAi(k)] (3)

The winning neuron at each stage is therefore that one having the highest
value of the Total Activity calculated accordingly to equation 3. The Vicinity
Activity is calculated then using a well known type of function which decreases
over the distance in the output map to the winning neuron, such as:

VAi(k) = e
−−d2

i (k)

2σ2
v(k) (4)

where di(k) is the distance in the output map of neuron i − th to the winning
neuron in moment k − th and where σv(k) indicates the spatial propagation of
Vicinity Activity around the winning neuron, where the value of σv(k) typically
decreases over the time. Then the winning neurons and its neighbors learn the
new instance of the input data in the same way as in the standard SOM.

4 Results

In order to be able to visually compare the results of both algorithms, a bi-
dimensional benchmark has been designed where the input data suffer a high
time correlation. The input data have two dimensions x(k) = [x1(k) x2(k)]T

that cover a whole unitary square, as seen in figure 1(a), but at any given time k
the input instance x(k) can only lay on the neighborhood of the preceding input
instance k − 1, The first input instance has a uniform probability function over
a 0.1x0.1 square on the bottom-left corner. Recursively the probability function
at each time k is a uniform distribution area 0.1x0.1 square adjacent to the
probability square associated to the previous input data at instant k− 1. These
adjacent squares move over the time following the winding line of figure 1(a) until
the 100 − th input instance in the upper-left corner. The described benchmark
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(a) Iinput data (b) SOM output map (c) TESOM output map

Fig. 1. Visual results of SOM versus TESOM algorithms. Nodes represent the final
value of the neurons and links are their neighbour relationship in output map.

has the remarkable feature that any point within the unitary square has the
same probability to become an actual piece of input data, but at the same time
the input data presents a well defined time order.

In any one of the obtained results the output map obtained by a classical
SOM follows the sequential order of the input data, as it could be expected.
When using same benchmark for testing the here proposed TESOM algorithm,
in which a damping Residual Activity remains in the activated neurons for fu-
ture learning stages, the obtained results can be seen in figure 1(c) for the same
values of the common parameters of SOM. In order to quantify the results ob-
tained by the new proposed algorithm TESOM for classifying input data with
temporal relationship, the following two indexes are proposed for this evaluation
propose:

1. Quantization Error (QE). This index is intended to measure how well the
input data are represented by the winning neurons in the execution phase,
in other words this index quantifies how well the output map is distributed
over the input space, calculated by:

QE =
∑

i

(x(i) − ww(i))2 (5)

x(i) is input data and ww(i) are the weights of the winning neuron.

2. Time Enhancement Index (TEI ). This index measures how close are the win-
ing neurons to the previous winning one in the output map, when the input
data follows the learned sequential order. The probability of every position
increment in the output space of the winning neuron is firstly evaluated using
the test data:

p(Δ(i)) =
f(Δ(i))
N − 1

(6)

f(Δ(i)) denotes the number of times (i.e. frequency) the value Δ(i) is the
distance in the output space of two consecutive winning neurons.
N is the number of instances in the test data set.
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Now the Time Enhancement Index TEI is calculated as the Entropy of the
above calculated frequency distribution by:

TE = −
n∑

i=−n

p(Δ(i))log2(p(Δ(i))) (7)

where n is the number of neurons in the output map.
It is interesting to note that the obtained TEI denotes the number of bits
necessary to transmit the information of the present winning neuron related
to the previously winning one.

The results obtained using SOM and TESOM depend on the values selected
for the tunable parameters σv0 and α0, common for both algorithms, and on
the value of σt0 in the case of the TESOM algorithm. The experiments on the
benchmark have been carried out for a wide range of mentioned three parameters.
Since in the case of TESOM the results are also affected by σt0, a good value of
this parameter has to be selected depending on the values of σv0 and α0, that
means that the time influence (parameterized by σt0) is related to the spatial
influence (parameterized by σv0), as it could be expected.

(a) QE of SOM and TESOM for
σv0 = 0.5

(b)TEI of SOM and TESOM for
σv0 = 0.5

Fig. 2. QE and TEI of TESOM and SOM versus α0

As it can be seen in figure 2 the results obtained by TESOM have smaller
TEI than those of the SOM algorithm for every value of σv0 and α0 within
the whole range of these parameters, while at the same time the results of both
algorithms are very similar in terms of QE. Therefore it can be conclude that
the TESOM algorithm yields to a good distribution of the neurons all over the
training data, as good as the SOM does, but accomplishing simultaneously the
goal that consecutive input data activate neighbor neurons, that is measured by
the TEI index defined above.
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5 Discussion and Conclusions

This paper demonstrates through a practical benchmark and quantitative in-
dexes that the novel idea of a Residual Activity in the neurons can improve
SOM algorithms for mapping purposes when the input data present a sequential
order (i.e. the input data are time related). This Residual Activity increases at
each neuron each time it is activated by the input instance and it decreases over
the time. This Residual Activity is used in the learning phase to increase the
Total Activity of each neuron and therefore to increase its probability to become
the winner and therefore to learn the incoming input instance.

The results of the TESOM algorithm have been tested using a specially de-
signed benchmark with a spatio-temporal relationship in the input data. The
presented results have demonstrated that the TESOM algorithm distributes the
output map over the input data as well as the standard SOM does, but it has
the additional advantage that the neurons in the output map follow the same
sequential order than the input data do, this is the feature that is to be ex-
ploited in the execution phase for better classification. These two parameters
have allowed to quantify the results of section 4 that clearly demonstrate that
the TESOM and SOM are equally distributed over the input data space (i.e.
same QE) and that the TESOM has always lower values of TEI.
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Abstract. Mathematical morphology is broadly used in image processing, but it 
is mainly restricted to binary or greyscale images. Extension to color images is 
not straightforward due to the need of application to an ordered space with an 
infimum and a supremum. In this paper a new approach for the ordering of the 
RGB space is presented. The adaptation of a linear growing self-organizing 
network to the three-dimensional color space allows the definition of an order 
relationship among colors. This adaptation is measured with the topographic 
product to guarantee a good topology-preservation of the RGB space. Once an 
order has been established, several examples of application of mathematical 
morphology operations to color images are presented.  

1   Introduction 

Mathematical morphology (MM) has been broadly used in image processing. MM 
must be applied to a set provided with an order and with a supremum and an infimum 
pertaining to that order [1]. This is the reason why MM has been mainly applied to 
binary or grayscale images. Extension to color images is not straightforward, because 
those two requirements are missing in color spaces, where there is not an order rela-
tionship among colors. 

Several techniques have been developed to extend MM to color images, getting 
partial or total orderings of different color spaces (RGB, HSI, YIQ, CIELAB,...). In 
marginal ordering [2] MM operations are applied to each image channel, recombining 
the partial results to get the final image. This method is not generally valid because 
different or new colors can appear due to this separate filtering. 

Another strategy is to treat the color at each pixel as a vector. Order is established 
by reducing each multivariate color to a ranked single value [3], [4], [5], [6].  

2   Ordering of the RGB Space with a Self-organizing Network 

Self-organizing neural networks carry out a reduced representation of a vector space 
in order to achieve some goals [7]: quantization error minimization, entropy maximi-
zation, feature mapping, clustering,… 
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Adaptation of a network of less dimensionality than the input space causes the 
creation of folders given that the network tries to preserve its topology. In case of a 
one-dimensional network the final result is similar to a Peano space filling curve [8].  

This effect will allow the ordering of the three-dimensional RGB space with a lin-
ear self-organizinf network. A modification of the Growing Cell Structure model [9] 
will be used, setting two neurons at points representing black and white colors in the 
RGB space. 

2.1   Ordering Growing Self-organizing Network 

In the RGB space, each color is represented by three components, each one of them 
taking real values in the range [ ]0 1, . 

The ordering neural network is composed of: 

− a set A  of nodes (neurons). Each neuron c A∈  has an associated reference vector 

[ ]3 30 1,cw ∈ ⊂ . The reference vectors can be regarded as positions in the RGB 

space of their corresponding neurons, 
− a set C  of edges (connections) between pairs of neurons. Those connections are 

not weighted and their purpose is to define the topological structure. 

The learning algorithm to approach the network to the RGB space is as follows: 

1. Initialize the set A  with three neurons  

{ }0 1 2, ,A c c c=  (1) 

where ( )0 0 0 0, ,c = , ( )1 1 1 1, ,c =  and 2c  is randomly chosen from the RGB space. 

Neurons 0c  y 1c  will be the extremes of the network, placed in the black and white 

colors respectively. 
2. Connection set C  is initialized joining the extremes to neuron 2c , such that the 

network is one-dimensional: 

( ) ( ){ }0 2 1 2, , ,C c c c c=  (2) 

3. Generate at random an input signal [ ]∈ 30 1,ξ  with a uniform distribution. 

4. Determine the nearest neuron (winner neuron) s : 

( ) arg minc A cs wξ ξ∈= −  (3) 

5. Add the squared distance between the input signal and the winner neuron to an 
error variable sE : 

2

s sE wξΔ = −  (4) 

6. Adapt the reference vectors of s  and its topological neighbors (neurons connected 

to s ) towards ξ  by a learning step sε  and nε , respectively, of the total distance: 
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( ) { }0 1, ,s s sw w s A c cε ξΔ = − ∈ −  (5) 

( ) { }0 1, ,n n n sw w n N c cε ξΔ = − ∀ ∈ −  (6) 

where  sN  denotes the set of neighbors of s . 

7. Every certain number λ  of input signals generated, insert a new neuron as fol-
lows: 

• Determine the neuron q  with the maximum accumulated error: 
arg max c A cq E∈=  

• Insert a new neuron r  between q  and its further neighbor f : 

( )fqr ww.w += 50  (7) 

• Insert new edges connecting the neuron r  with neurons q  and f , remov-
ing the old edge between q and f . 

• Decrease the error variables of neurons q and f multiplying them with a 
constant α . Set the error variable of r with the mean value of q and f . 

8. Decrease all error variables by multiplying then with a constant β . 

9. If the net size is not yet achieved, go to step 3. 
 

Figure 1 shows the result of the adaptation of different networks to the RGB space 
and the sequence of reference vectors from black to white color. 
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(a)                                                                            (b) 
 

   
          (c)                                                                        (d) 

Fig. 1. Adaptation of a growing self-organizing network to the RGB space: (a) 16 and (b) 256 
neurons; and their corresponding color orderings: (c) 16 and (d) 256 reference vectors 
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2.2   Color Order 

A mapping of the RGB space onto the neural network is obtained once the learning 
process is finished : 

[ ] [ ] ( )3 3
: 0,1 , 0,1φ → ξ ∈ → φ ξ ∈  (8) 

where ( )φ ξ  is obtained from: 

( ) ii c A cw min w∈φ ξ − ξ = ξ −  (9) 

However, two different colors can be mapped to the same neuron. This fact estab-
lishes a preorder relationship, not being able to ensure the uniqueness of infimum or 
supremum in a mathematical morphology operation. 

In order to avoid this problem, color order is defined as:  

( ) ( )
( ) ( )

< = =
<

= = ∧ − < −
1 2

1 2
1 2 1 2

,i j

c c

i j c c
if

c w w

φ ξ φ ξ
ξ ξ

φ ξ φ ξ ξ ξ
 (10) 

Even so, two colors could be at the same distance from the reference one. To solve 
this problem, one possible criterion is choosing the first point found in the calculation 
of the infimum or the supremum [10] (figure 2). 

 
 1 2 3 

4 5 6 

7 8 9 
 

Fig. 2. Calculation route with a structuring element of size 3x3 

3   Application to Color Mathematical Morphology 

Once a color order φ  has been defined, thereby allowing the choice of a supremum 

and infimum from a set of vectors; one can define the basic morphological operators. 
The erosion of a digital image 2 3I : →  at point ( )x, y  by structuring element 

B  is 

( )

( )
( ) ( )

∈
= + + −,

,

inf , ,I x y
B

s t B

I x s y t b s tε φ  (11) 

and the corresponding dilation is 

( )

( )
( ) ( )

∈
= − − +,

,

sup , ,I x y
B

s t B

I x s y t b s tδ φ  (12) 
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Usually, when been applied to images, ( ) ( )b s, t 0, s, t B= ∀ ∈ , getting the so-

called function-and-set-processing (FSP) filters: 
( )

( )
( )

∈
= + +,

,

inf ,I x y
B

s t B

I x s y tε φ  (13) 

( )

( )
( )

∈
= − −,

,

sup ,I x y
B

s t B

I x s y tδ φ  (14) 

From these elementary operations there can be defined a wide set of morphologic 
operations as opening, closing, gradients or top-hats. 

4   Results and Experimentation 

One million networks have been adapted, taking the following learning parameters: 
size=256 neurons, ε1=0.1, ε2=0.01, λ=10000, α=0, β=0. Quality of the adaptation can 
change due to the random behaviour of the learning process. So, topology-
preservation has been calculated with the topographic product [11]. 

The best result has been employed for obtaining the reduced ordering of the RGB 
space. The examples in this section use an image of the painting “Le chanteur” by 
Joan Miró and a square structuring element of size 5x5. Figure 3 shows the results of 
applying different color morphological operations. 

    
                                    (a)                                    (b)                                   (c) 
 

   
                                    (d)                                    (e)                                   (f) 

Fig. 3. (a) Original image, (b) erosion, (c) dilation, (d) opening, (e) closing and (f) gradient by 
erosion 
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5   Conclusions and Current Works 

In this paper a new method for the ordering of the RGB space is presented, mainly 
directed to its later application to mathematical morphology. This ordering is better, 
in sense of topology-preservation, than other methods; and can be easily implemented 
in a parallel hardware architecture in order to ensure a fast image processing.  

Nowadays, works are focused on the extension of this approach to other color 
spaces as HIS or YIQ; studying the right learning parameters to be used in each case. 
Next, ordering will be carried out to other image feature spaces, for instance, to tex-
tures. 

Outcoming orderings will be applied to different image processing applications as 
hand gesture recognition, robotics and automatic visual inspection, in which my re-
search laboratory is involved. 
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Abstract. This paper aims to propose an extension of SOMs called an “SOM of
SOMs,” or SOM2, in which the mapped objects are self-organizing maps them-
selves. In SOM2, each nodal unit of the conventional SOM is replaced by a func-
tion module of SOM. Therefore, SOM2 can be regarded as a variation of a mod-
ular network SOM (mnSOM). Since each child SOM module in SOM2 is trained
to represent a manifold, the parent SOM in SOM2 generates a self-organizing
map representing the distribution of the group of manifolds modeled by the child
SOMs. This extension of SOM is easily generalized in the case of SOMn, such
that “SOM3 as SOM of SOM2s.” In this paper, the algorithm of SOM2 is intro-
duced, and some simulation results are reported.

1 Introduction

The self-organizing map (SOM) as introduced by Kohonen has provided us with a pow-
erful tool for data mining, classification, analysis, visualization, etc.[1]. In the case of
labeled training samples, SOM should be one of the best techniques available for vi-
sualizing the distribution of each class. In such a case, an SOM shows how the sample
vectors of each class are distributed in the high dimensional data space by transforming
them to low dimensional map space while preserving their topological relationships.
This means that, if the map is generated appropriately, a distance between two points
in the map space signifies either similarity or difference between the corresponding
two vectors in the data space. Though this characteristic of SOMs is effective in many
applications, some cases require the visualization of such relationship between the dis-
tributions of classes, i.e., to what degree two class distributions are similar or different.
Unfortunately, however, an SOM does not provide such information. An SOM provides
a map of data vectors, but it is not a map of class distributions.

The aim of this paper is to propose a method of mapping classes which can represent
the relationships between their distributions. In other words, the mapped objects of an
SOM are no longer vectors but class distributions that form manifolds in the data space.
Since the distribution of each class, i.e., each manifold, can be represented by a basic
SOM, all the classes can be modeled by a group of basic SOMs. Thus, the method
involves the generation of a self-organizing map of a group of self-organizing maps,
that is, an “SOM of SOMs.”

� This work was supported by a COE program (center #J19) granted by MEXT of Japan.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 391–396, 2005.
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Parent SOM

Child SOMs

Data vector space

Class i1

Class i2

Class i3

Class i4

Fig. 1. The architecture and the scheme of SOM2 as an “SOM of SOMs”

Previously, we have proposed a generalization of an SOM called a “modular net-
work SOM” (mnSOM), in which each nodal vector unit is replaced by a function mod-
ule of a neural network[2,3]. Such a generalization was first proposed by Kohonen as
an “Operator Map”[4]. However, even further generalization is possible by adopting the
idea of a modular network because various types of trainable architectures, including
the case of the SOM itself, can be chosen as modules. Therefore, an “SOM of SOMs”
can be realized by SOM-module-mnSOM as an example of a generalized SOM.

2 Architecture and Algorithm of SOM2

The architecture of an “SOM of SOMs” is simple — just a replacement of vector units
by the basic SOMs, as is shown in Fig.1. In this paper, let us abbreviate this architecture
as “SOM2.” Each child SOM learns to represent a manifold in the data space, whereas
the parent SOM is expected to generate a map of the manifolds represented by the
child SOMs. The learning processes of both levels of SOMs progress in parallel. As
in the case of the basic SOM, the algorithm of SOM2 consists of three processes: the
competitive process, the cooperative process, and the adaptive process.

Now suppose that there are I classes, each of which has J sample data. Further,
let Di be the ith dataset, which consists of {xi,1, . . . ,xi,J}, and let us assume that
SOM2 consists of K child SOMs, each of which has L codebook vectors W k =
{wk,1, . . .wk,L}. (Here, the superscripts represent the indexes of SOM2, while the sub-
scripts represent the indexes of classes or data vectors.)

In the competitive process, each class dataset is first picked up one by one. Then the
child SOM that minimizes the total quantization error is chosen as “the best matching
map (BMM)” (i.e., the winning child SOM) of the class. The BMM of the ith class k∗i
is defined as follows.

k∗i = arg min
k

Ek
i = arg min

k

J∑
j=1

ek∗
i,j (1)

Here, Ek
i denotes the total quantization error of the kth child SOM for the ith class,

which is the sum of the square error ek∗
i,j between xi,j and the best matching unit (BMU)

of the kth child SOM. Thus,
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ek∗
i,j =

∥∥∥wk,lk∗
i,j − xi,j

∥∥∥2
(2)

lk∗i,j = arg min
l

∥∥wk,l − xi,j

∥∥2
(3)

Here, lk∗i,j is the index of BMU of the kth child SOM for the data vector xi,j . This
process is repeated for all the classes.

In the cooperative process, the learning rates {Φk
i } and {φl

i,j} are calculated by
using the neighborhood functions as follows.

Φk
i =

g[d(k, k∗i ),T ]
I∑

i′=1

g[d(k, k∗i′),T ]

(4)

φl
i,j =

h[d(l, l∗∗i,j),T ]
J∑

j′=1

h[d(l, l∗∗i,j′),T ]

(5)

Here, g[·, ·] and h[·, ·] are the neighborhood functions of the parent and the child SOMs,
respectively, which shrink with the calculation time T . d(·, ·) refers to the distance
between two nodes in the map space, while l∗∗i,j denotes the index of the BMU of the

BMM, i.e., l∗∗i,j = l
k∗

i ∗
i,j .

In the adaptive process, all the codebook vectors of the entire child SOMs are inno-
vated by using the learning rates Φk

i and φl
i,j . Now suppose that Vi = {v1

i , . . . ,v
L
i } is a

set of codebook vectors only for the ith class. In other words, Vi represents the tentative
estimation of the ith manifold. By adopting the algorithm of the batch learning SOM,
{vl

i} are defined as follows.

vl
i =

J∑
j=1

φl
i,jxi,j (6)

Each child SOM is innovated so as to be the weighted interpolation of the estimated
manifolds, i.e., the interpolation of {Vi} with the learning rates Φk

i . Thus,

wk,l =
I∑

i=1

Φk
i v

l
i (7)

By combining (6) and (7) together, the adaptive process is formulated as follows.

wk,l =
I∑

i=1

Φk
i

⎧⎨⎩
J∑

j=1

φl
i,jxi,j

⎫⎬⎭ =
I∑

i=1

J∑
j=1

Φk
i φ

l
i,jxi,j (8)

Equation (8) has a recursive structure like a Russian doll, in which the adaptation algo-
rithm of the basic SOM is nested into itself. Therefore it is easy to extend to the case of
SOMn, such as SOM3 as the SOM of SOM2, through further nesting.
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SOM2 is expected to work in the following way. If the number of classes is larger
than the number of child SOMs, i.e., I > K , then each child SOM is expected to
be assigned to one or more classes as their BMM. In such a case, each child SOM
learns the data vectors of the assigned classes in such a way that they can represent
their average distribution. On the other hand, in the case of I < K , I out of K child
SOMs become BMMs, each of which learns the distribution of the corresponding class,
whereas the rest of (K − I) child SOMs, which are not BMMs, are trained to represent
the intermediate distributions by interpolation of the given classes. Since the number of
class depends on the task, SOM2 is expected to work well in both cases. These situations
were reproduced in this study in the first simulation using artificial manifolds (Fig. 2
and Fig. 3).

3 Simulations and Results

3.1 A Case of Artificial Datasets

Two sets of artificial manifolds shown in Fig. 2 were used to validate the ability of
SOM2. In the first set (Fig. 2a), there was a small number of classes (I = 9), while
each class had a large number of data vectors (J = 400) that were sampled randomly.
The shapes of the manifolds were all congruent triangles, the positions and orientations
of which were changed gradually. On the other hand, the second set (Fig. 2b) had a
large number of classes (I = 400), each of which consisted of a very small number
of samples (J = 4). The shapes of the manifolds were all congruent triangles just as
in the first case, some of which are shown in Fig. 2b with dashed triangles. Unlike
the first case, however, it is difficult to recognize the shapes of the manifolds due to the
deficiency of the samples. Furthermore, the manifolds of the second set overlapped with
each other in such a way that the sample vectors were distributed evenly over the area
without forming clusters. In addition, the positions and orientations of the manifolds
were changed in the same manner as in the first case. The number of the child SOMs
was fixed in both cases (K = 8× 8), while the number of codebook vectors was 6× 6
for each child SOM. Thus, I < K in the first case, and I > K in the second case.

Fig. 3 shows the simulation results. In the figure, the dots plotted in each box indi-
cate the map generated by the corresponding child SOM. In the case of the first manifold
set (Fig. 3a, corresponding to Fig. 2a), every child SOM represented the triangle shape
well. Furthermore, the positions and orientations varied gradually in such a way that a
continuous map of the manifolds was formed successfully in the parent SOM. This re-
sult also shows that the unknown intermediate manifolds were appropriately estimated
by interpolation. The result was almost the same in the case of the second manifold set
(Fig. 3b, corresponding to Fig. 2b). The parent map was well organized with good con-
tinuity, i.e., the positions and orientations of the child maps varied continuously. SOM2

also succeeded in estimating the distributions, even though the number of samples per
class was very small. Though not shown in the figure, the child maps were aligned so
that the codebook vector of each child SOM with the same index corresponded to a
congruent point of each manifold. For example, the BMUs which corresponded to the
apex of the triangles had the same index in the child SOMs. Therefore it is possible to
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(a) (b)

Fig. 2. The two sets of artificial manifolds used in the first simulation

(a) (b)

Fig. 3. The maps of the manifolds generated by SOM2 from the dataset of Fig. 2

observe how the manifold gradually varied its shape by tracing the codebook vectors
with the same index.

3.2 Classification of 3D Objects from 2D Images by SOM2

The task of the second simulation was to generate a map of 3D objects from 2D pro-
jected images. Put more clearly, the task was to make a self-organizing map of 3D
objects from a set of photo albums, each of which contains several photographs of one
object from various viewpoints. Since a set of 2D images of a 3D object projected from
different viewpoints form a manifold in the high dimensional data space, the distribu-
tion of the 2D images can be modeled by a basic SOM. Therefore an assembly of basic
SOMs such as SOM2 would be expected to represent a group of 3D objects. Please
notice that SOM2 does not know how 3D objects can be reconstructed from their 2D
images.
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(a)

(b) (c)

Fig. 4. A map of 3D objects generated by SOM2 from 2D projected images

The 13 objects shown in Fig. 4a were used in the simulation, and 49 2D images
from various viewpoints were prepared for each object. The objects are assumed to be
flexible grids, and each data vecotor consisted of a set of coordinates of the lattice points
on a 2D image. Fig. 4b is the map of the 3D objects generated by the parent SOM, while
a map of a child SOM (corresponding to the thick box in Fig. 4b) is presented in Fig. 4c.
The parent map was generated successfully, showing a good continuity of varying 3D
shapes. This result also means that SOM2 created 2D images of unknown intermediate
3D objects by interpolating between the given objects. Furthermore, all child SOMs
were aligned with each other in such a way that all codebook vectors with the same
index were assigned to the images taken from the same viewpoint.

4 Conclusion

In this paper we have proposed an extension of SOMs called SOM2. SOM2 provides
a method for the topological mapping of classes by comparing their distributions in-
stead of comparing individual vectors. The simulation results suggest that SOM2 will
be a powerful tool for class visualization and analysis. Further extensions of SOM2 are
currently being developed for datasets without class labels.
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Abstract. We create a new form of topographic map which is based
on a nonlinear mapping of a space of latent points. The mapping of
these latent points into data space creates centres which are equivalent
to those of the standard SOM. We relate this mapping to the Generative
Topographic Mapping, GTM. We then show that it is rather simple
and computationally inexpensive to grow one of these maps and that a
probabilistic interpretation of these maps facilitates our investigation of
alternative algorithms.

1 Introduction

We create a new form of self-organising map which is based on an assumption
(implicit in the SOM [4], but made explicit here) that the data have been gener-
ated by a set of underlying causes. Thus we call this mapping the Topographic
Product of Experts (ToPoE).

While this network uses a gradient ascent method to learn parameters, it is
closer to the Generative Topographic Mapping [1] (which uses the EM algorithm
to optimise parameters) than the SOM and so we review this method in order
to highlight the differences between the two generative methods.

2 The Topographic Product of Experts

We envisage that the underlying structure of the data can be represented by
K latent points, t1, t2, . . . , tK . To allow local and non-linear modeling, we map
those latent points through a set of M basis functions, f1(), f2(), . . . , fM (). This
gives us a matrix Φ where φkj = fj(tk). Thus each row of Φ is the response of
the basis functions to one latent point, or alternatively we may state that each
column of Φ is the response of one of the basis functions to the set of latent
points. One of the functions, fj(), acts as a bias term and is set to one for every
input. Typically the others are gaussians centered in the latent space. The output
of these functions are then mapped by a set of weights, W , into data space. W is
M×D, where D is the dimensionality of the data space and is the sole parameter
which we change during training. We will use wi to represent the ith column of
W and Φj to represent the row vector of the mapping of the jth latent point.
Thus each basis point is mapped to a point in data space, mj = (ΦjW )T .

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 397–402, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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We may update W either in batch mode or with online learning. To change
W in online learning, we randomly select a data point, say xi. We calculate the
responsibility of each latent point for this data point using

rij =
exp(−γd2

ij)∑
k exp(−γd2

ik)
(1)

where dpq = ||xp −
∑

k(φqk.wk)||, the euclidean distance between the pth data
point and the projection of the qth latent point (through the basis functions and
then multiplied by W). If no weights are close to the data point (the denominator
is zero), we set rij = 1

K , ∀j.
We calculate mkd =

∑M
m=1 wmdφkm, the projection of the kth latent point

on the dth dimension in data space and then use this in the update rule

Δnwmd =
K∑

k=1

ηφkm(xd −mn
kd)rkn (2)

so that we are summing the changes due to each latent point’s response to the
data points. Note that, for the basic model, we do not change the Φ matrix
during training at all. It is the combination of the fact that the latent points are
mapped through the basis functions and that the latent points are given fixed
positions in latent space which gives the ToPoE its topographic properties.

3 Comparison with the GTM

The Generative Topographic Mapping (GTM) [1] is a probabilistic model which
treats the data as having been generated by a set of latent points. We also have
a set of K latent points which are mapped through a set of M basis functions and
a set of adjustable weights to the data space. The parameters of the combined
mapping are adjusted to make the data as likely as possible under this mapping.
The GTM is a probabilistic formulation so that if we define y = ΦW = Φ(t)W,
where t is the vector of latent points, the probability of the data is determined
by the position of the projections of the latent points in data space and so we
must adjust this position to increase the likelihood of the data. More formally,
let

mi = Φ(ti)W (3)

be the projections of the latent points into the feature space. Then, if we assume
that each of the latent points has equal probability

p(x) =
K∑

i=1

P (i)p(x|i) =
K∑

i=1

1
K

(
β

2π

)D
2

exp
(
−β

2
||mi − x||2

)
(4)

where D is the dimensionality of the data space. i.e. all the data is assumed to
be noisy versions of the mapping of the latent points. It is the combination of
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the fact that the latent points are mapped through a smaller number of basis
functions and that the latent points are given fixed positions in latent space
which gives the GTM its topographic properties.

In the GTM, the parameters W and β are updated using the EM algorithm
though the authors do state that they could use gradient ascent.

Hinton [3] investigated a product of K experts with

p(xn|Θ) ∝
K∏

k=1

p(xn|k) (5)

where Θ is the set of current parameters in the model. Hinton notes that us-
ing Gaussians alone does not allow us to model e.g. multi-modal distributions,
however the Gaussian is ideal for our purposes. Thus our base model is

p(xn|Θ) ∝
K∏

k=1

(
β

2π

)D
2

exp
(
−β

2
||mk − xn||2

)
(6)

If we allow latent points to have different responsibilities depending on the
data point presented, we have:

p(xn|Θ) ∝
K∏

k=1

(
β

2π

)D
2

exp
(
−β

2
||mk − xn||2rkn

)
(7)

where rkn is the responsibility of the kth expert for the data point, xn. Thus all
the experts are acting in concert to create the data points but some will take
more responsibility than others.

4 Simulations

Figure 1 shows the result of a simulation in which we have 20 latent points
deemed to be equally space in a one dimensional latent space, passed through 5
Gaussian basis functions and then mapped to the data space by the lineaer map-
ping W which is the only parameter we adjust. We generated 60 two dimensional
data points from the function x2 = x1 + 1.25 sin(x1)+μ where μ is noise from a
uniform distribution in [0,1]. We use 10000 iterations of the learning rule (ran-
domly sampling with replacement from the data set) with β = 2, γ = 20, η = 0.1.
The final placement of the projections of the latent points is shown by the aster-
isks in the figure and we clearly see the one dimensional nature of the data. We
have similar results when we use a batch method, presenting all the data and
not updating the weights till we have accumulated all the changes.

We have similar experiments with higher dimensional data and grids e.g.
with 400 latent points arranged in a two dimensional grid (20×20) and 5×5
basis functions.
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Fig. 1. The projections of 20 latent points into data space is shown by the asterisks.
The training data are the other points.

5 Discussion

In this section we consider two extensions of the basic mapping but first we
discuss one property of the method.

5.1 Projections

As a visualisation technique the ToPoE has one advantage over the standard
SOM: the projections of the data onto the grid need not be solely to the grid
nodes. If we project each data point to that node which has highest responsibility
for the data point, we get a similar quantisation as the SOM. However if we
project each data point onto pk ∗ rkn, we get a mapping onto the manifold at
intermediate points. Figure 2 shows the responsibilities which 20 latent points
have for 60 data points (arranged in ascending order of their position along the
manifold) and the subsequent re-projection of the latent points to the data space
when taking these responsibilities into account.

5.2 Growing ToPoEs

One advantage of this method is that we can easily grow a net: we train a net
with a small number of latent points and then increase the number of latent
points. We spread the latent points evenly in latent space between -1 and 1:
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Fig. 2. Left: the responsibilities of the 20 latent points for 60 data points which
are arranged in approximately increasing distance along the manifold. Right: the re-
projection of the 60 data points onto the manifold.
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Fig. 3. The growing map. Top left : 7 latent points. Top right: 11 latent points. Bottom
left: 16 latent points. Bottom right: 20 latent points.

thus 5 points are positioned at [-1,-0.5,0,0.5,1] while when we grow to 6, these
are positioned at [-1,-0.6,-0.2,0.2,0.6,1]. Note that we have to recalculate the Φ
matrix but need not change the W matrix of weights which can simply go on
learning. An example is shown in Figure 3 in which we use 5 basis functions (+
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a bias term) and increase the number of latent points from 7 to 20. The mapping
becomes increasingly smooth.

5.3 Different Noise Models

An alternative model based on a Laplacian distribution is

p(xn) =
(
β

2π

)D
2

exp

(
−β

2

K∑
k=1

(||mk − xn||1rkn)

)
(8)

where ||.||1 signifies the 1-norm [2]. In this case, we derive the learning rule

Δnwmd =
K∑

k=1

ηφkmsign(xd − pn
kd)rkn (9)

where sign(t) = 1, if t > 0 and sign(t) = −1, otherwise.
While this rule may be more appropriate for rather more kurtotic noise than

in the above simulations, it can be used with data which is corrupted by Gaussian
noise or even uniform (and hence far from kurtotic) noise. Simulations on exactly
the same data as used for Figure 1 have shown similar convergence to that
achieved in that figure.
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Abstract. In this work, Self Organizing Map (SOM) is used in order to classify 
the types of defections in electrical systems, known as Power Quality (PQ) 
events. The features for classifications are extracted from real time voltage 
waveform within a sliding time window and a signature vector is formed. The 
signature vector consists of different types of features such as local wavelet 
transform extrema at various decomposition levels, spectral harmonic ratios and 
local extrema of higher order statistical parameters.  Before the classification, 
the clustering has been achieved using SOM in order to define codebook vec-
tors, then LVQ3 (Learning Vector Quantizer) algorithm is applied to find exact 
classification borders. The k-means algorithm with Davies-Boulding clustering 
index method is applied to figure out the classification regions. Here it has been 
observed that, successful classification of two major PQ event types corre-
sponding to arcing faults and motor start-up events for different load conditions 
has been achieved. 

1   Introduction 

Nowadays, the increasing demands to the highly sensitive electronic devices in broad 
kind of area and the considerably big investments to the technological equipments 
require a good quality of power. The Power Quality (PQ) concept hence started to 
take attraction of researchers and technologically related people. One of the most 
common PQ events of voltage sag is the drop off effective value of the voltage be-
tween 10%-90% of its nominal value. The distribution system faults or switching on 
large loads have significant effects on the voltage waveform and disturbances can be 
observed as voltage sags. Also arcing faults or starting of motors in the energy grid 
can cause similar abnormalities on the quality of power. From the point of view of 
maintenance of the complex systems, the events possessing imperfections have to be 
classified and the related precautions have to be taken into consideration. In the pre-
vious work on PQ event detection and classification problem, wavelets were used for 
the detection purpose and FFT (spectral harmonic analyses) was used for the dis-
crimination of event types. Due to the lack of other discriminative parameters, the 
event discrimination success was arguably limited [1]. 

Since PQ term broadly refers to pure sinusoidal waveform, it conglomerates differ-
ent research areas such as power engineering, signal processing and neural networks. 
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Each discipline has its own contribution in order to either delineate the principle 
couses of the defections in the waveform or classify the possible reasons of them  
[1],[2]. 

Kohonen’s Self Organizing Map (SOM) is a neural network which projects the 
higher dimensional input vector space onto one or two-dimensional array in a nonlin-
ear fashion [3]. It is a valuable non-parametric pattern clustering and classification 
technique which can be adapted to wide spectrum of fields of science and technology. 
The SOM network is composed of "neurons", their associated "weights" (roughly, the 
cluster centroids) and an algorithm for updating the weights, given incoming data. 
Actually the neurons are the codebook vectors connected in planar lattice structure. 
The codebook vectors without any neighborhood information constitute a vector 
quantizer, however the organization of the neurons in two-dimensional lattice with a 
neighborhood formation gives us a clustering information between the input data set. 

In this work a classification technique based on SOM has been used in order to dis-
criminate the arcing fault type events from motor start-up events. Although the two 
PQ event types look similar from the point of view of voltage sag type waveform, the 
causes and the results are quite different. Here, in order to discriminate those types of 
voltage waveforms causing disturbance in the power quality, the data has been ac-
quired from experiments carried on low voltage system by introducing arcing fault 
and induction motor start up events. The key point after getting the voltage wave-
forms is determining and extracting the features from data which can be used in the 
cluster analyses.  

In section 2, the proposed method to develop a multi-dimensional feature vector is 
introduced in detail. Here the time window that contains not only the instant data but, 
pre and post events will be analyzed and put into the consideration by using a well 
formulated signal processing methods including local wavelet extrema, short-time 
spectral harmonics, and local higher order statistical parameters extrema. In section 3, 
the SOM is introduced and the method to classify the events is explained. In section 4, 
the results showing the excellent classifications of the events are shown and the dis-
cussion on the results is given. 

2   PQ Events and Determination of Feature Vectors 

The feature vector we have used in this work consists of scalar numbers obtained by 
three major methods; wavelets, spectrum analysis, and higher order statistical parame-
ters. The instrumentation in our experimental system acquires the voltage and current 
waveforms and their 50 Hz. Notch filtered versions at a sampling rate of 20 KHz for 
each waveform. We selected local estimation window size as twice the fundamental 
period length, which corresponds to a size of 800 samples. 

The feature vector used has a length of 19. The first eight numbers inside the fea-
ture vector correspond to the wavelet transform extrema for the four-level decomposi-
tion of voltage waveform using the Daubechies-4 (db4) orthogonal wavelet. These 
four levels depict time-frequency localized signatures at different frequency resolu-
tions. The extrema are simply the maximum and the minimum transform values 
around the instance of a PQ event. It was previously shown by several authors that the 
transform domain values exhibit high energy at or around PQ event instances. Usually 
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simple thresholding of these coefficient magnitudes is enough to detect the existence 
of a PQ vent. However, classification between different classes of PQ events, more 
waveform signatures, as well as sophisticated classifiers are required. In order to 
verify the usefulness of several decomposition level transform coefficients, we have 
taken both the minimum, and the maximum values corresponding to four decomposi-
tion levels. At decomposition levels higher than four, the time resolution is decreased 
beyond a factor of 32, which is below the desired time-resolution level.  

The ninth coefficient of the feature vector was selected according to a classical 
spectral analysis. We have evaluated the signal energy exactly at the line frequency 
(50 Hz), proportioned it to the remaining spectral energy at all other frequencies, and 
took its reciprocal: 

( ) ( )
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∞
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where ν is the feature vector and ν9 corresponds to its 9 element, and ν ( ) is the 
power spectral density of the voltage waveform, v(t). The remaining ten coefficients 
are obtained from the higher-order statistical parameters of 50 Hz. notch filtered volt-
age waveforms including the local central cumulants of order 2, 3, and 4, and skew-
ness and kurtosis. For this parameter estimation, it is reasonable to keep the estima-
tion window size a small integer multiple of the fundamental period length. The se-
lected local estimation window size as twice the fundamental period length is statisti-
cally long enough to accurately estimate statistical parameters, and short enough to 
accurately resolve time localization. 

The motivation behind selecting higher order statistical parameters is that, each PQ 
event can be modeled as a noise contribution over the voltage waveform. In fact, in 
[4], it was shown that the power system voltage waveform can be modeled as a com-
bination of a pure sinusoid and noise components imposed upon to that sinusoid. The 
sinusoidal component is not the informative part in terms of an event detection or 
classification, but its existence greatly perturbs local statistical parameters. On the 
other hand, the noise component contains valuable information in case of PQ events 
and transients. For that purpose, during the data acquisition, we removed the 50 Hz 
sinusoid of the voltage waveform using Frequency Devices ASC-50 programmable 
filter adjusted to a very sharp (20 order Elliptic) 50 Hz notch filter. Under event-
free operation conditions, the output waveform of the filter can be modeled as Gaus-
sian. This model is pretty accurate, because the voltage waveform may be noise-
corrupted due to the ambient conditions such as EMI generating loads running on or 
near the system. From the central limit theorem, the combination of independent ran-
dom sources adds up to a Gaussian process as the number of sources grows. 

3   SOM as a Classifier 

Kohonen's SOM is Neural Network, which projects the data vectors Λ∈ belong to 
higher dimensional input space n into m many codebook vectors of size n organized 
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in a two dimensional lattice structure. SOM provides two fundamental issues: the first 
is the clustering of data and the second is the relationship between the clusters. The 
clustering is an unsupervised learning period which can be formulated as: 

( ) ( 1) ( ) ( , , )( ( ) ( 1))     1
i i i

M k M k k i c k k M k i i mα β= − + ⋅ Λ − − ∀ ≤ ≤ (2)

where α(k) is the learning rate parameter which is changed during the adaptation 
phase and β(i,c,k) is the neighborhood function around c where c is the Best Matching 
Unit index which can be found during training as:   

arg min ( ) ( )
i

i

c k M k= Λ − (3)

The relationship between clusters can be seen in the planar surface by checking the 
distances between the codebook vectors. Although it is difficult to deduce exact rela-
tionship between those, since the codebook vector size is much greater than the planar 
surface size of 2, this gives us an insight about the classification regions.  

In this work the feature vectors Λ∈  where n = 19 has been used to train the SOM 
of 5x5 neurons connected in hex-lattice structure. The whole data set is obtained by 
120 experiments. The 60 experiments have been carried out for arcing faults. The 30 
experimental data of them have been obtained only for inductive and resistive loads. 
The other 30 experiments have been conducted by introducing adjustable speed drives 
connected to the experimental settings in order to test the quality of classification. 
Another 60 data also obtained from the experiments of motor start-up events in simi-
lar manner data obtained for arcing faults. Consequently, a data set of 4 classes is 
formed as: 

Class 1: Arcing fault with adjustable speed drives load.  
Class 2: Arcing fault without adjustable speed drives load. 
Class 3: Motor start-up with adjustable speed drives load. 
Class 4: Motor start-up without adjustable speed drives load. 

The set of 120 data is divided into two in order to obtain the training and the test-
ing sets. For training set, 20 different random data have been selected from each class. 
The remaining 40 data are used to test the results. After codebook vectors obtained 
using SOM training algorithm, the map is partitioned into subspaces to discriminate 
the classification regions by Learning Vector Quantization (LVQ3) algorithm. LVQ 
algorithm is the classification algorithm based on adjusting the Gaussian borders 
between the centers of possible classification regions represented by codebook vec-
tors obtained in SOM[3]. In literature there are several ways of implementation of 
LVQ. In essence, the algorithms attempts to move the codebook vectors to positions 
that reflect the centers of clusters in the training data in supervised manner. Actually 
the aim is finding the Gaussian borders between the codebook vectors belonging to 
different classes by decreasing the miss-classification ratio. In LVQ1 algorithm the 
training has been done in roughly, however in LVQ2 and LVQ3 algorithms, much 
adequate approaches have been developed for well tuning. 
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The LVQ3 algorithm can be explained as: 
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where Mi and Mj are the two closest codebook vectors to Λ(k), whereby Λ(k) and Mj 
belongs to the same class, while Λ(k) and Mi belong to different classes respectively; 
furthermore Λ(k) must fall zone of a window defined as; 
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where d1 and d2 are the distance between codebook vectors Mi - Λ(k) , and Mj - Λ(k).
Also it is necessary to have: 
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where Mi and Mj are the two closest codebook vectors to Λ(k), whereby Λ(k) and Mj

and Mi belong to same classes. The μ(k) and ε(k) parameters are learning rates in the 
algorithm. 

4   Classification Results 

There are several techniques to visualize the results of SOM in literature. A well 
known one is the U-matrix. This method identifies distances between neighboring 
units and thus visualizes the cluster structure of the map. Note that the U-matrix visu-
alization has much more rectangles that the component planes. This is because in U-
matrix, not the codebook vectors but distances between the vectors are shown. High 
values indicate large distance between neighboring map units, and identify possible 
cluster borders. Clusters are typically uniform areas of low values. Refer to colorbar 
to see which colors mean high values in Fig. 1. In the map, there appear to be two 
clusters. A rough inspection on the U-matrix which is given in Fig. 1 gives idea about 
possible two classification regions after training. Here the dark regions show the close 
connections in the component plane which represent the clusters and the light areas 
comprises the cluster borders. 

In order to delineate the exact borders, after LVQ3, Davies-Boulding clustering in-
dex method is used. Actually this method is a k-means clustering which denotes the 
classification borders between the clusters.  

Testing the classes found after SOM and LVQ3 methods, using the 40 point test 
set, it has been observed that 100% correct classification could be obtained (Fig1). 
Here, the same analysis has been done with different map size, and similar classifica-
tion results have been obtained. The method for clustering and classification and the 
feature vectors obtained from voltage waveform are observed to comprise an adequate 
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match to identify types of PQ defections of motor start-up and arcing fault type 
events. 
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Fig. 1. 5x5 Map formation after SOM training and LVQ3. Here arc0 represent arcing fault with 
adjustable speed drives and arc1 indicates inductive and resistive load without adjustable speed 
drives. Similarly mot1 and mot0 represent motor start-up events. 

References 

1. Wael R., Ibrahim A., Morcos M. M., Artificial Intelligence and Advanced Mathematical 
Tools for Power Quality Applications: A Survey, IEEE Trans. on Power Delivery, Vol. 17, 
No. 2, April 2002. 

2. Wang M., Mamishev A. V., Classification of Power Quality Events Using Optimal Time–
Frequency Representations–Part 1: Theory, IEEE Trans. on Power Delivery, Vol. 19, No. 3, 
July 2004. 

3. Kohonen T., The Self Organizing Map, Proceedings of IEEE, 78, 9, (1990), 1464-1480 
4. Yang H.T., Liao C. C., A De–Noising Scheme for Enhancing Wavelet–Based Power Qual-

ity Monitoring System, IEEE Trans. on Power Delivery, Vol. 19, No. 1, January 2004. 



W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 409 – 414, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

SOM-Based Method for Process State Monitoring and 
Optimization in Fluidized Bed Energy Plant 

Mikko Heikkinen1, Ari Kettunen2, Eero Niemitalo2, Reijo Kuivalainen3, 
and Yrjö Hiltunen1 

1 Department of Environmental Sciences,  
University of Kuopio, 

P.O. Box 1627, FIN-70211 Kuopio, Finland 
{mikko.heikkinen, yrjo.hiltunen}@uku.fi 

www.uku.fi 
2 Foster Wheeler Energia Oy, 

P.O. Box 201, FIN-78201 Varkaus, Finland 
{ari.kettunen, eero.niemitalo}@fwfin.fwc.com 

www.fwc.com 
3 Department of Energy and Environmental Technology, 

Lappeenranta University of Technology, 
P.O. Box 20, FIN-53851 Lappeenranta, Finland 

reijo.kuivalainen@lut.fi  
www.lut.fi 

Abstract. Self-organizing maps (SOM) have been successfully applied in many 
fields of research. In this paper, we demonstrate the use of SOM-based method 
for process state monitoring and optimization of NOx emissions. The SOM was 
trained using a dataset from a fluidized bed energy plant. Reference vectors of 
the SOM were then classified by K-means algorithm into five clusters, which 
represented different states of the process. One neuron in each cluster was de-
fined optimal based on the NOx emission of the process. The difference be-
tween reference vectors of the optimal neuron and the neuron in each time step 
could be used for determination of reasons of non-optimal process states. The 
results show that the SOM method may also be successfully applied to process 
state monitoring and optimization of NOx emissions. 

1   Introduction 

New environmental legislation sets need to improve plant availability with increasing 
efficiency in electricity production. One of the main issues in combustion of fossil 
fuels is the minimization of emission. Due these reasons, the need for advanced moni-
toring and analyzing systems increases even those new combustion technologies pro-
vide environmental sound solutions for utilization of variety of fuels. 

Archived process data is an important resource for the knowledge management of 
the process and it can be used for the optimization and improvement of productivity. 
Recent applications have demonstrated that artificial neural networks can provide an 
efficient and highly automated method for modeling industrial data [1, 2]. In particu-
lar, studies, which use standardized protocols, are most likely to benefit from  
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automated ANN analysis [1, 2]. Self-organizing maps [1, 3-5] have been also success-
fully applied in many areas of research and are thus a tool for process optimization. 
The SOM method offers an efficient means of handling complex multidimensional 
data, which is typically the situation in industrial applications.  

In this study we have constructed a self-organizing map by a data set of a fluidized 
bed energy plant and then used it for process state monitoring and optimization of 
NOx emissions. 

2   The Process and the Data 

The main components of a typical circulating fluidized bed (CFB) boiler are shown in 
Figure 1. These consist of a combustion chamber, a separator and a return leg for re-
circulation of the bed particles. 

 

 
 
Fig. 1. Foster Wheeler’s Compact CFB boiler with a centrifugal separator joined to the com-
bustion chamber without expansion joints. The separator is fabricated with flat walls con-
structed from conventional water-cooled membrane panels and covered with a thin refractory 
lining. 

 
Combustion takes place in fluidized bed, which is typically sand mixed with fuel 

ash and possible sorbent material for sulfur capture. The bed material is fluidized by 
injecting primary air from the bottom of the combustion chamber. Circulating fluid-
ized bed boilers use high fluidizing velocities, so the particles are constantly held in 
the flue gases, and pass through the main combustion chamber into a separator, from 
which the larger particles are extracted and returned to the combustion chamber, 
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while the finer particles are removed from the flue gases by an electrostatic precipita-
tor or baghouse located downstream of the boiler’s convection section. 

Due to the large heat capacity of the bed, the combustion is stable and supporting 
fuels such as oil or gas are needed only during start-up. The intense turbulence of the 
circulating fluidized bed ensures good mixing and combustion of fuel. Combustion 
typically takes place at about 850 – 900 oC bed temperature resulting lower NOX 
emission compared with conventional boilers. The temperature range is also optimal 
for use of sorbent material for sulfur retention. From the view point of emission opti-
mization formation of flue gas emissions is a complex process and it is affected by 
number of process variables. 

The raw data used in this study was extracted from databases of utility scale CFB 
boiler, which uses lignite as main fuel and limestone for sulfur capture. The time 
resolution of the data set was 15 minutes. The size of complete data matrix was 10 
000 x 46 (10 000 rows, 46 variables in columns). Variables were selected by process 
experts. 

3   Computational Methods 

3.1   SOM 

Self-organizing maps (SOMs) are an artificial neural network methodology, which 
can transform an n-dimensional input vector into a one- or two-dimensional discrete 
map. The input vectors, which have common features, are projected to the same area 
of the map e.g. (in this case described as “neurons”). Each neuron is associated with 
an n-dimensional reference vector, which provides a link between the output and 
input spaces. During learning, the input data vector is mapped onto a particular neu-
ron (best matching unit, BMU) based on the minimal n-dimensional distance between 
the input vector and the reference vectors of the neurons. Then the reference vectors 
of the activated neurons are updated. When the trained map is applied, the best match-
ing units are calculated using these reference vectors. In this unsupervised methodol-
ogy, the SOM can be constructed without previous a priori knowledge [1]. 

The data were coded into 46 inputs for the SOM. All input values were variance 
scaled. The SOM having 256 neurons in a 16x16 hexagonal arrangement was con-
structed. The linear initialization and batch training algorithms were used in the train-
ing of the map. A Gaussian function was used as the neighborhood function. The map 
was taught with 10 epochs and the initial neighborhood had the value of 3. The SOM 
Toolbox [7] was used in the analysis under a Matlab-software platform (Mathworks, 
Natick, MA, USA). 

3.2   K-Means 

The K-means algorithm was applied to the clustering of the map. The K-means 
method is a well-known non-hierarchical cluster algorithm [6]. The basic version 
begins by randomly picking K cluster centers, assigning each point to the cluster 
whose mean is closest in a Euclidean distances sense, then computing the mean vec-
tors of the points assigned to each cluster, and using these as new centers in an itera-
tive approach. 
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3.3    Optimization and Subtraction Analysis    

For each neuron the reference vectors, which represent the common features of the 
data in each neuron, are defined during the training of the map. Therefore the compo-
nents of the reference vectors vary in different parts of the map. An optimal neuron 
for the whole map or a cluster can be determined using one or more components of 
the reference vectors. In this paper, we were interested in control of the NOx concen-
tration, thus the optimal neurons of each cluster were simply the neurons, where the 
NOx component of the reference vectors was smallest.  

In the subtraction analysis, reference vectors of two neurons are subtracted from 
each other. This method can be used for identification of any differences in factors 
between corresponding subgroups of two neurons. So the difference between refer-
ence vectors of the optimal neuron and the best matching unit, when for example in 
this case the NOx concentration is high, can indicate the reasons for high emission.  

4   Results and Discussion 

The SOM was obtained by training a self-organizing network with the data of a fluid-
ized bed energy plant. The map and the five clusters calculated by the K-means 
method are shown in Figure 2. These clusters represent different states of the process. 
The brief descriptions of the clusters are also illustrated in Figure 2.  

An optimal neuron for each cluster was determined based on information of the 
NOx emission, i.e. the neuron, where the NOx emission was smallest, was specified 
in each cluster. Figure 2 shows also these optimal neurons.  

The difference between reference vectors of the optimal neuron and the neuron in 
each time step could be used for determination of reasons of non-optimal process 
 

Cluster 5 
- Steam flow: low 
- Bed temp.unstable 

Cluster 2 
- Steam flow: high 
- Stable state 

Cluster 1 
- Steam flow: high 
- Oil boost 

Cluster 3 
- Steam flow: varying 
- Unstable state 

Cluster 4 
- Steam flow: low 
- Emissions: low 

 
 
Fig. 2. SOM using the data of a fluidized bed energy plant. The background colors visualize the 
five clusters of the map. Short descriptions for each cluster are also shown. The optimal neu-
rons in each cluster are marked by X. 
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Fig. 3. The interface of the prototype system. (Upper left corner) Possible problems of the 
process transformed into text format. (Upper right corner) The optimal neuron (white mark) and 
the best matching unit of an input vector (black mark) visualized on the SOM. (Below) Differ-
ence of reference vectors of these two neurons. 

states. A prototype system was made under a Matlab-software platform, which ex-
ploits the SOM method and also these differences between reference vectors. Figure 3 
illustrates the interface of this prototype system, which contains three parts: (1) The 
optimal neuron and the best matching unit of an input vector are visualized on the 
SOM, (2) The differences between reference vectors are shown by bar graph repre-
sentation and (3) the information of these differences is transformed into text format 
showing possible reasons for problems in the process.  

5   Conclusion 

Our SOM-based method seems to have several benefits: (i) it is easy to use and to be 
included in any kinds of applications, (ii) it does not need much processor and mem-
ory capacity, and (iii) it is quite generic and automatic, which means that it can be 
applied to optimization using almost any type of optimization or cost function. 

The SOM analysis provides an efficient and automated method for data analysis in 
the process industry. The present study shows that this kind of data-driven approach is 
a fruitful way of developing the process state monitoring and optimization in an  
energy plant. 
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Abstract. The paper introduces a new extension of the ontogenic Self-
Optimizing Neural Networks (SONNs) [4] making possible to optimize
a neural network (NN) topology for a whole training data (TR) set at
once. The classical SONNs optimize a NN topology only for subnetworks
related to trained classes. The described SONN extension enables to op-
timize topology for all classes at once. Moreover, this extension makes
possible to compute a minimal SONN topology for given TD which can
be sometimes insufficient in view of generalization. The SONN extension
computes better discrimination coefficients and automatically develops
the topology that reflects all well-discriminative data features into the
NN topology in order to achieve a good generalization property. Fur-
thermore, the SONN extension can also automatically reduce the input
dimension space of any TD and automatically recognize and correctly
classify inverted inputs (especially important for image classification).
All extended SONN computations are fully automatic and determinis-
tic. There is no need to use any parameters given by user. The SONNs
are free from many training problems, e.i. initiation, convergence, over-
fitting. The extended SONNs can be also used to unsupervised training.

1 Introduction

Artificial neural networks (ANNs) are very modern computational tool used to
solve many difficult problems. However, many types of ANNs are known today
it is still necessary to develop new better adjustable and faster adaptable NNs.
Today, an important group of neural networks (NNs) that are able to adapt their
structure and parameters to different problems establishes ontogenic NNs. The
described ontogenic Self-Optimizing Neural Networks (SONNs) develop the NN
topology and adjust the weights in the self-adapting process. The SONN adap-
tation process demands all TD to be known and accessible before the adaptation
process is initiated. The adaptation process can be very fast thanks this feature.
The SONNs adapt their structure and adjust the weights to given TD. The ANN
technology can sometimes lead to produce specialized NNs which can even better
or more effective solve some problems than NNNs [2,4,5]. The SONNs gradually
project the most discriminative and well-differentiating features of the TD into
the structure and parameters (weights) of the NN. The classical SONNs develop
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k subnetworks for k trained classes using k-classificator methodology. The ex-
tended SONNs build up a single NN for all trained classes. Such a NN is even
smaller and more effective than the classical one. This way of SONN adapting
is very similar the way of the NNNs remembering and classification. The ex-
tended SONN development stops the process of adaptation exactly when all TD
are correctly classified. The described SONN extension makes possible to com-
pute even minimal NN topology that correctly classifies all TD. Such minimal
SONN topology can be often insufficient for satisfactory generalization because
there is no redundant connections that can sometimes help to classify better
especially the noised and corrupted inputs. Moreover, the SONNs automatically
reduce the input dimension space of the TD. Furthermore, the SONNs automat-
ically recognize inversion of the input TD, classifying the inverted data correctly
and returning information about the inversion of the input data. The SONN
adaptation process can be continued even after all TD are correctly classified
increasing the SONN knowledge about TD details. The SONN adaptation pro-
cess is deterministic and free from many training problems: initial topology and
parameters establishment, redundant or insufficient NN structure, local minima
and conversion, stopping condition, overfitting etc. [1,3,4].

2 Mathematical Background of SONN Extension

The ontogenic Self-Optimizing Neural Networks (SONNs) develop irregular mul-
tilayer partially connected NN topology with rare inter- and supralayer connec-
tions (Fig. 1). The extended SONNs build up a single better-optimized topol-
ogy for all classes and all TD in comparison to the classical SONNs [4] that
construct separate subnetworks for each class. The SONNs are created in a
complex optimizing process after the statistical analysis of the TD and prob-
abilistic estimation of all TD features taking into account quantity of training
samples (TSs) representing individual classes. The SONNs use the TD U ={(
u1, Cm1

)
, . . .,

(
uN , CmN

)}
consisting of input vectors un = [un

1 , . . ., u
n
K ] (where

features un
k ∈ {−1, 0,+1}, continuous features have to be quantified) and the

adequate class Cmn ∈ {
C1, . . ., CM

}
. The relevance of the features 1, . . . , K

for any input vector un ∈ Cmn can be estimated in view of any given TD set.
The SONN adaptation and optimization processes use the discrimination coef-
ficient dn

k ∈ [0; 1] that defines how well the feature k discriminate between the
training sample n of the class m and the training samples of the other classes
[4] ∀m∈{1,...,M} ∀un∈Cm ∀n∈{1,...,Q} ∀k∈{1,...,K}:

dn
k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P̂ m
k

(M−1)·Qm

M∑
h=1&h �=m

(
1− P̂ h

k

Qh

)
if un

k = +1

0 if un
k = 0

N̂m
k

(M−1)·Qm

M∑
h=1&h �=m

(
1− N̂h

k

Qh

)
if un

k = −1

(1)

∀m∈{1,...,M},k∈{1,...,K} P̂m
k =

∑
un∈Cm

xn
k ∧ N̂m

k =
∑

un∈Cm

yn
k
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∀m∈{1,...,M} Qm = ‖{un ∈ U ∨ Cm&n ∈ {1, ..., Q}}‖

xn
k =

⎧⎪⎨⎪⎩
1 if un

k = +1
P m

k

P m
k +Nm

k
if un

k = 0
0 if un

k = −1
yn

k =

⎧⎪⎨⎪⎩
1 if un

k = −1
Nm

k

P m
k +Nm

k
if un

k = 0
0 if un

k = +1

∀m∈{1,...,M},k∈{1,...,K} Pm
k =

∑
un

k∈{un∈U∨Cm:un
k >0∧n∈{1,...,Q}}

un
k

∀m∈{1,...,M},k∈{1,...,K} Nm
k =

∑
un

k∈{un∈U∨Cm:un
k <0∧n∈{1,...,Q}}

−un
k

The new discrimination coefficient (introduced in this paper) is insensitive
for quantitative differences in representation of classes and concerns statistical
differences of features quantity after their values in classes and TD. The big-
ger discrimination coefficient the more discriminative is the feature in view of
classification and vice versa.

The same features for different TSs can be grouped together in order to
save connections between neurons modelling the given TD set. There should
be maximized the quantity of grouped features for single connections in order
do minimize the size of the NN. The described optimization of NN topology is
proceeded using a special kind of table (Tab. 1) that enables to compute the
quantity of saved connections in dependence of the chosen divided feature (DF).

The DFs are used to divide the TD set (or some subsets of it in next periods)
to two subsets depending on that feature: one subset contains TSs with the true
(+1) DF value and the second one with the false (-1) DF value. If TD contain
unknown features (0) there is created the third subset of such training samples
that are separately divided using another DF selected for this subset. The SONN
extension uses the specific tables (Tab. 1) to compute optimal DFs. The tables
are filled with the dn

k · un
k (instead of the un

k as in classical SONNs) for all TSs
n and all not static features k is created. Next, the quantities of un

k < 0 and
un

k > 0 are computed for all TSs (or for some subsets of TSs in the next periods)
for each relevant feature that has not been already used in one of the previous
periods. In the following step, the quantities of already not used features of same
sign and same value for the same training samples as the considered feature are
calculated. The groups of same sign and value features for the exemplar feature 8
are framed and marked bold in the table 1. Each group of bold framed features
of the same value and sign can be transformed into single connection of the
NN, e.i. 132 − 19 = 113 for the example in the table 1. The quantity of saved
connections for any considered feature is computed as:

Savek = SameNegk · (QuantNegk − 1) + SamePosk · (QuantPosk − 1) (2)

DF = max
k=1,...,K

{Savek} (3)

Next, there is chosen the divided features DF as a feature that maximally saves
connections. If there are several features with the same maximal saving property
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Fig. 1. The extended SONN development process shown on the exemplar data set and
the selected divided features (DFs)
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Table 1. Divided feature (DF) computation for the exemplar data set from Fig. 1

there is selected this one which sum of discrimination features for the whole set
(or subset in the next periods) of considered samples is the biggest. If these
sums are equal for several features there can be chosen whichever of them. The
selection of DF conclude in division of the given set (or subset) of TSs into two
separate subsets as described above. There are created two new neurons for these
two subsets. If minimal extended SONN topology is created, there are added
only two input connections for the established divided feature DF. In order to
build well-generalizing extended SONN topology, there should be created input
connections to those two neurons for all (or for any most discriminative subset
of) same sign and value framed bold features (shown in the Tab. 1 and the Fig. 1)
producing a thrifty redundant NN topology. In the following periods, the subsets
of samples are divided into next two subsets as long as the final subsets contain
TSs of single classes. This is also the definition of the stopping condition of
the algorithm guaranteing the minimal quantity of periods necessary to develop
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the topology that correctly classifies all TSs. The described algorithm of TD
division can be also used for fast unsupervised clustering of TSs. The described
algorithm keeps the mostly similar TSs together as long as possible. Such division
of samples enables also to watch the pathes of processing data in the NN and
looking back for rules. The paper [4] describes the way of weights and the neuron
outputs computation that do not change for SONN extension.

3 Conclusions

The described extended SONNs methodology for simultaneous gradual deter-
ministic configuration and adaptation of NNs builds up the topology optimized
for the given TD and computes optimal weights for them. It does not need to
use any a priori configuration parameters and is free from different training
problems. The SONNs always correctly classify all TD and offer very good gen-
eralization properties, because it is created after the most representative and
discriminating TD features established after the new discrimination coefficients
introduced in this paper. The extended SONN topology is even smaller than
the classical one because the topology is optimized for all TD classes together
instead of for each TD class separately. Moreover, the SONN extension is able to
create even a minimal SONN structure though it can be sometimes insufficient
for generalization. The described extended SONN algorithm normally develops
a thrifty redundant topology in order to achieve better discrimination proper-
ties. The SONNs can also automatically recognize and classify inverse samples of
the defined classes in the TD set. The extended SONNs can also automatically
reduce the input data dimension even more than classical SONNs. Finally, the
extended SONN topology size, the generalization property and fast computation
make SONNs very attractive to use in comparison to other AI methods.
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Abstract. When used for visualization of high dimensional data, the self-
organizing maps (SOM) requires a coloring scheme, or interpolation, or 
applying some projection techniques to analyze the intrinsic structure of the 
data. Even so, the structures of the data clusters may not be apparent and their 
shapes are often distorted. In order to overcome some shortcomings of the 
traditional SOM visualization method a novel technique is presented in this 
paper. Several experimental data sets including the chain-link problem and IRIS 
data are used to test the approach. The analysis results prove that the presented 
technique provides a better picture of the high dimensional data to understand 
their intrinsic structure. 

1   Introduction 

Data mining is an emerging area of new research efforts, responding to the presence 
of large databases in commerce, industry and research. It is a part of a larger 
framework, knowledge Discovery in Databases, whose purpose is to find new 
knowledge from databases where dimension, complexity or amount of data is 
prohibitively large for human observation alone. Data mining is an interactive process 
requiring that the intuition and background knowledge of humans be coupled with 
modern computer technology. Therefore, visualization by means of the projection of 
data from an invisible high-dimensional space to a low perceptible one is very 
important as it can reveal the data structures and cluster tendency. 

Linear projection is one way to map a multidimensional space to a lower-
dimensional one realizing dimension reduction, and neural networks, for example, 
Kohonen’s SOM [1], present another approach to nonlinear data analysis. When the 
SOM is used for visualization, however, as the inter-neuron distances are not directly 
visible or measurable on the map, one has to use a coloring scheme [2, 3], or 
interpolation [4], to mark the relative distances between the weights of neighboring 
neurons referred in the input space, or apply some projection techniques, such as 
Sammon’s projection [5] and the curvilinear component analysis [6]. Even so, the 
structures of data clusters may not be apparent and often appear distorted. Had the 
distributions of the data not been known, it would be impossible to depict them from 
the learnt map. 

To overcome some shortcomings of the traditional SOM visualization method a 
novel technique is proposed. Several experimental data sets including a synthetic data 
randomly distributed in three-dimensional space, the so-called chain-link problem [2] 
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and the well-known IRIS data [7], are used to test the approach. The analysis results 
demonstrate that the novel technique may offer attractive advantages over the 
commonly used SOM visualization techniques in giving a better picture of the high 
dimensional data to understand their intrinsic structure. 

2   Description of the Novel SOM Visualization Technique 

SOM does not directly show the inter-neuron distances on the map when used for 
visualization of potentially high dimensional data. In order to visualize the data more 
apparently, a novel SOM visualization technique for high dimensional projection and 
structure visualization is introduced in the following.  

Suppose there are m neurons in total arranged in a 2-dimensional sheet with 
hexagonal (or rectangular ) shape in the SOM network. The coordinates of neurons j 
in the 2-dimensional sheet are denoted by xj, j=1,2,…,m, and the corresponding n-
dimensional synaptic weights wj=(wj1, wj2, …, wjn)

T. To project the n-dimensional 
input vectors, say p=(p1,p2,…,pn)

T, into a 2-dimensional space for visualization, 
instead of simply pointing out the Best Matching Units (BMUs), the responses of all 
neurons for the input data must be obtained. As the Euclidean distance metric is 
usually adopted to be the discriminant function during the competition in the SOM 
network, a simple approach is to use the quantization error, qj=||p-wj||, j=1,2,…,m, as 
the indicator of the responses of the output neurons j for p evaluated in the form 

1

( ) ( )
( ) , 1,2,...,

( ) ( )

j c
j m

i c
i

g q N j
R j m

g q N i
=

= =p . 
(1) 

Here c is the BMU of p, and Nc(j) a neighboring function decreasing with the distance 
between the BMU and the output neurons j.  

Since the responses of output neurons for p are related closely with the Euclidean 
distances between the neurons weights and p, where the further the weights are away 
from p, the less responses the neurons have, it is appropriate to choose g(qj) to be a 
bounded function monotonically decreasing with qj. Usually, the decreasing 
exponential, sigmoid, or Lorentz functions are all suitable choices. Here the 
decreasing exponential function is used, g(qj)=exp(-qj). Notice that the function has 
several beneficial properties: g(0)=1, g(qj )=0.  

Then the coefficients, given by the responses Rj(p), can be used to provide a 
visualization of the trained SOM results in the 2-dimensional space by summarizing 
the responses by the mean. And the image point for the input vector p in the 2-
dimensional space, xp

mean, can be performed by 

1

( )
m

mean
j j

j

R
=

=px p x . (2) 

    The mode of p is then to be evaluated by 

arg max{ ( )}, 1,2,...,
j

mode
jR j m= =p

x
x p . (3) 
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Actually, the mode of the vector p in the 2-dimensional space gives the position of the 
BMU for the vector in the learnt map.  

3   Experimental Results 

To demonstrate the application of the proposed visualization technique and its 
distance-preserving and structure revealing properties, several experiments and results 
were presented. The examples chosen were for the purpose of illustration. The results 
of the traditional SOM mapping technique were also presented for comparison. 

Results Using Synthetic Data Set. A synthetic data set was constructed to 
demonstrate the performance of the novel technique in visualizing the SOM learnt 
results. In order to observe the original distribution clearly in the input space only 
three-dimensional randomly distributed data represented with “circle”, “triangle” and 
“diamond” respectively were selected as inputs for SOM training as shown in Fig.1(a) 
yet higher dimensions were not used, as they were hard to understand and represent. 
Obviously the original input data were classified into 3 classes. A 10×12 hexagonal  
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Fig. 1. Experimental results using 3-dimensional synthetic data set represented with “circle”, 
“triangle” and “diamond” respectively (a), visualized with the novel technique (b), the 
traditional mapping technique (c), and combination of the novel technique and traditional 
mapping method (d). The “circle”, “triangle” and “diamond” represented the modes of the 
input data in the output map, and solid “circle”, “triangle” and “diamond” represented image 
points, each mode linking to image point correspondingly in (d). 
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SOM had been applied to the data set, and the novel technique was used to visualize 
the projected data on the 2-dimensional space. The result was shown in Fig. 1(b), 
where the solid “circle”, “triangle” and “diamond” signs denoted the image points for 
the input data accordingly. For comparison, traditional SOM visualization result, i.e. 
the BMUs for the input data on the output map, was shown in Fig. 1(c), in which the 
BMUs were labeled with “circle”, ”triangle” and “diamond” correspondingly. Fig. 
1(d) showed the SOM visualization result of the novel technique combining with the 
traditional mapping method, in which each BMU was linking to image point 
correspondingly. It can be found that the image points in the figures “agglomerate” 
the dispersive modes of the input data on the output map, and the novel technique has 
some advantages over the traditional SOM mapping technique on visualization, as it 
can provide a fairly good and clear separation of the three class on the map. 
Meanwhile, the technique presented here will also save much computing time 
compared with other projection techniques such as Sammon’s projection or the 
curvilinear component analysis, as there is no need of iterative solutions. 

The chain-link problem. Additionally, the so-called chain-link problem was used to 
test the approach, which consisted of two intertwined three-dimensional rings. One of 
the rings was extended into x-y direction and the other one into x-z direction. Each of 
the rings consisted of 500 data points. A scatter plot of the data was given in Fig. 2(a). 
A 20×20 hexagonal SOM network was applied to the data set, and the visualization  
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Fig. 2. Experimental results of the chain-link problem. Scatter plot of the chain-link problem 
(a), visualization result of the traditional mapping technique (b) and the novel technique (c). 
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result of the novel technique was shown in Fig. 2(b). For comparison the result of the 
traditional mapping method, i.e. BMUs on the map, was shown in Fig. 2(c). From the 
results, it can be found that whereas the two rings are still visible in the case of the 
novel technique, no such structure can be found in the output map of the traditional 
visualization result. Therefore, compared with the traditional SOM mapping method, 
the novel visualization technique reflects the intrinsic structure of the input data more 
clearly.  

The IRIS dataset. The well-known Fisher’s IRIS data set [7] consisted of 4 
measurements taken from 150 iris plants. Each plant is from one of 3 species of iris, 
setosa, versicolor, and virginica. The 4 measurements from each plant were treated as 
points in 4-dimensional space. Many data visualization experiments have used this 
data set as a benchmark. In this paper a 50×50 hexagonal SOM had been applied to 
the data set, and the novel technique was used to visualize the trained results as shown 
in Fig. 3(a). For comparison, traditional SOM visualization result was shown in 
Fig.3(b). It can be seen from the figures that the novel technique is better than the 
traditional mapping method for providing a fairly good separation of the three species 
on the map, as it captures more details of intra-cluster and inter-point distribution. 
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(a)                                                         (b) 

Fig. 3. Visualization result of IRIS data using the novel technique (a), and the traditional SOM 
mapping method 

4   Conclusions 

A novel technique for data visualization based on SOM is proposed in this paper. The 
technique preserves the inter-point distances of high-dimensional data as well as the 
topology, in which the structures and cluster tendency of the data may not be apparent 
and their shapes are often distorted, thus projects the input data into a two-
dimensional space. It has been demonstrated that the technique is easy to implement 
and may offer several attractive advantages over the commonly used SOM 
visualization techniques, in providing a better picture of the high dimensional data to 
understand their intrinsic structure. 
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Abstract. Self-organizing maps (SOM) have been obtained mainly on
regular lattices, embedded in euclidean or non-euclidean spaces [1]. We
present preliminar results that show SOM can be formed on non-regular
lattices by giving evidence that topographic error (TE) is influenced by a
few statistical parameters of the neuron lattice, such as the characteristic
path length (L), the cluster coefficient (C) and the characteristic connec-
tivity length (Lg). TE is lower not in regular lattices, but in lattices that
present a particular set of statistical parameters. In an attempt to iden-
tify that set of statistical parameters, we applied mutual information
function between the parameters and the TE as well as C4.5 algorithm
to obtain rules that identify lattices in which SOMs show low TE.

1 Introduction

Self-organizing map (SOM) is presented as a model of the self-organization of
neural connections, what is translated in the ability of the algorithm to produce
organization from disorder [2]. One of the main properties of SOM is its ability
to preserve topographical relations present in input data in the output map [3].

The principal goal of the SOM is to transform an incoming signal pattern
(input data) of arbitrary dimension into a low-dimensional discrete map (usually
of dimension one or two) and to adaptively transform data in a topologically or-
dered fashion [4,5]. Each input data is mapped to a single neuron in the lattice,
that with the closest weight vector to the input data. The SOM preserve rela-
tionships during training through the neighbourhood function, which stablishes
the effect of the winner neuron to any other neuron. Weight neurons are updated
accordingly to:

wn(t + 1) = wn(t) + αnht(g, n)(xi − wn(t))

Where α is the learning rate and ht(g, n) is the neighbourhood function from
winner neuron g to neuron n. Neighbourhood function decreases monotonically
as a function of the distance from neuron g to neuron n. This has been reported
to be a necessary condition for convergence [6,7].The SOM tries to preserve re-
lationships of input data by starting with a large neighbourhood and reducing
the neighbourhood size during the course of training [5].

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 427–432, 2005.
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As pointed out by Ritter [1], SOM and related algorithms (ASSOM [8], GTM
[9], and others) share the idea of using a deformable lattice to transfrom data
similarities into spatial relationships and where topological structure of that
lattice plays a main role in the generated mappings. As an alternative to obtain
a map that reflects in a better way the structure of multidimensional data (i.e.
hierarchical structures), non-euclidean SOMs have been propossed [1,10]. There
is also a biological reason for studying SOM on nonregular lattices. Ayali et al
[19] have used in vitro neural networks as a model for studying self-organization
proceses in nervous system and they have found the networks obtained fall into
the category of non-regular networks known as small-world.

To measure topological preservation, several metrics have been proposed.
Bauer et al [11] and Kiviluoto [12] give a detailed exploration of several topolog-
ical preservation measures. The metric applied in this work is the topographic
error (TE), defined as the proportion of data points which the closest and second-
closest weight neurons are not adjacent on the neuron lattice [13]

εt = 1/N
N∑

i=1

η(xi, wi, ..., wp), where η(xi, wi, ..., wp) =

=

⎧⎨⎩
1, if ∀l∃j, k : l ∈ {1, ..., j − 1, j + 1, ..., k − 1, k + 1, ...p}

‖mj − xi‖ ≤ ‖mk − xi‖ < ‖ml − xi‖, |j − k| > 1
0, otherwise

Lattices in which SOMs are formed are almost always regular. By regular,
we mean that neurons are connected only to neighbours and that every neuron
has approximately the same number of connecting edges (same degree). In the
present work, we form SOMs on non-regular lattices. In other words, the regular
topology of lattices is changed by deleting edges, adding edges between non-
neighbor neurons and replacing edges. Fig. 1a shows a non-regular lattice. We
observed that TE is closely related to some statistical properties of lattices.

2 Statistical Properties of Lattices

Given a neuron lattice (in general, a network or a graph), a set of statistical
properties can be obtained from it. In this work, we obtained five parameters.
The first one is the characteristic path length, L. It is the average distance from
each neuron to any other, in terms of the number of edges from one neuron to
other. It is defined as follows:

L(G) =
∑

{u,v}⊂N,u�=v d(u, v)/
(
n
2

)
Where N is the set of neurons in the lattice and n is the number of neurons.
d(u, v) is the number of edges that separate neuron u from neuron v [14]. In
general, L(G) ≤ diam(G), where diam(G) is the usual diameter of a network.
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The second parameter is the clusterimg coefficient, C, that represents the
proportion of the acquaintances of a neuron that know each other (the propor-
tion of each neuron neighbour that are in fact neighbours among them). The
local clustering coefficient at neuron v is:

Cv(G) = Ne

kn(kn−1)/2

where Ne is the number of edges between neighbours of neuron N and
kn(kn − 1)/2 is the maximun number of edges in a network of kn nodes [14,15].
C(G) is definded by:

C(G) =
∑n

v=1 Cv(G)/n

The third parameter is the normalized neuron degree, O, obtained as the neuron
degree divided by the number of nodes in the network. The fourth parameter
is the neuron characteristic edge length and the fifth parameter is a clustering
coefficient, defined as [15]:

C2(G) = (
∑n

v=1
Ne

kn(kn−1)/2Cv(G))/(
∑n

v=1
Ne

kn(kn−1)/2 )

When a regular lattice is modified by removing some edges or replacing edges
between neighbours by edges between non-neighbour neurons (in the sense of
euclidean or normal metric), statistical properties are changed. Fig. 1b shows a
regular lattice and its statistical parameters and fig. 1a shows a modified lattice.
In fig. 1a, the distance from the neuron in the upper-left corner to the bottom-
right corner is 2, because there is a connecting edge between the former and a
neighbour (two neurons are neighbours if there is and edge connection them) of
the latter. When a few shortcuts are added, the parameter L is reduced.

Fig. 1. Regular and a non-regular lattice and their statistical properties as defined in
text
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3 Results

Three data sets were used: spiral data (a bidimensional spiral), the 64-dimen-
sional codon usage dataset (www.kazusa.or.jp/codon), and a subset from atmo-
spheric conditions in the ionosphere (www.his.hut.fi/research/lvq pak/), 34−
dimensional. 500 lattices of size 20x20 neurons were generated. Some of them
were generated following Watts and Strogatz model of small-world networks [16],
others were generated following the Barabási-Albert model [17], some by a ge-
netic algorithm to achieve a lattice with the desired parameters and some by
hand. There is a TE error for each lattice and data set, obtained by generating
30 SOMs and calculating the average. Table 1 shows a partial list of those lat-
tices, including the lattice parameters as well as the TE for each data set. As a
method to seek patterns from the statistical properties of lattices and the TE,
we study the mutual information function, Υ , which quantifies the amount of
information than may be obtained from a set of parameters about the TE. We
decided to apply Υ instead of, for example, correlation indexes, as we believe
there is a non linear relation between the parameters and the TE that correla-
tion is unable to seek. The average correlation index from L, C, O, C2 and Lg
to TE are -0.450, 0.747, 0.395, 0.682 and 0.291, in that order.

Table 1. Statistical parameters of lattices and the TE of the SOM generated on it for
each data set. For a complete list of results and software, visit the page indicated at
the beginning of this contribution.

O C L C2 Lg TE codon TE espiral TE ion.

0.009275 0.000000 9.003115 0.000000 0.111000 0.122857 0.111950 0.121000
0.009400 0.003333 11.104822 0.005634 0.101375 0.091250 0.119497 0.122312
0.009500 0.001083 12.790542 0.001383 0.096000 0.076667 0.122641 0.110923
0.009300 0.005000 10.000551 0.000958 0.101875 0.103750 0.123091 0.109821
0.009500 0.000000 9.806051 0.000000 0.112000 0.054286 0.123270 0.128784
0.009500 0.000000 13.302508 0.000000 0.009500 0.090000 0.140162 0.123346
0.009212 0.001000 9.003400 0.001100 0.111056 0.158792 0.148934 0.142277
0.018525 0.465144 9.319141 0.441860 0.275501 0.340000 0.347709 0.349721

In the following, we applied the ideas from Grosse et al [18]. In the context of
statistical mechanics, Υ can be interpreted as follows. Consider a compound sys-
tem (P,T ) consisting of the two subsystems P and T . Let pi be the propability of
finding system P in state i, qj the probability of finding system T in state j and
let Pij denote the joint probability of finding the compound system (P,T ) in state
(i, j). Then, the entropies of the systems P , T and (P,T ) are defined by:

H [P ]=−KB

∑
i pilnpi; H [T ]=−KB

∑
j qilnqi; H [P,T ] = −KB

∑
i,j Pij lnPij

Where −KB is the Boltzmann constant. If T and P are statistically indepen-
dent, H [P ]+H [T ] = H [P,T ]. If P and T are statistically dependent, the sum of
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the entropies is strictly greater than the entropy of the compound system. The
mutual information Υ [P,T ] is defined as:

Υ [P,T ] = H [P ] +H [T ]−H [P,T ]

Υ [P,T ] = 0 if the subsystems P and T are statistically independent. Table 2
shows Υ between the statistical properties studied and the TE. As in principle
the parameters are continouos, a discretization was applied. Several ranges were
used. Table 2 shows results for a uniform discretization in 10 intervals for each
parameter and for the TE.

Table 2. Mutual information (Υ ) between statistical properties and the TE for the
SOM for the studied data sets. It is shown as well the Υ between the parameters and
a random number and the Υ between the parameters and its sum. Υ for the sum is
always higher than for any set of parameters, but the Υ for the parameters and TE is
always higher that that for random cases. KB = 1.

stat. params. TE Codon TE Spiral TE Ion. random sum

L, C, O 0.585941 0.488386 0.576361 0.281995 0.772346
L, C, Lg 0.400717 0.338130 0.365279 0.223872 0.504323
O, C, Lg 0.444214 0.410664 0.431783 0.122588 0.448434
L, C 0.548978 0.475263 0.556487 0.262669 1.020474
C, Lg 0.437715 0.413056 0.437303 0.127958 0.504225
O,C,L,C2 0.381733 0.979393 0.346154 -0.792224 0.579540

From table 2, we observe it is possible to obtain information about the TE
shown by the SOM from the statistical properties of the lattice on which it is
generated. In table 1, the first and seventh lattices show this fact. Both of them
are very similar, except for the parameters C and C2 and the TE is higher in the
seventh lattice, that with a higher C. The sixth and eighth lattices are regular.
The former is a von Neumann neighborhood lattice and the later is defined over
a Moore neighborhood. It is observed that their TE is higher than that of other
lattices. Using C4.5 [20], we have found most SOMs generated on lattices that
satisfies C ≤ 0.005, Lg ≤ 0.119, 0.009 ≤ O ≤ 0.0095 and 7.7≤ L ≤ 11.105 present
the lowest TE (0.13 or less), whereas those lattices with L > 0.3 and C > 0.06
generate SOMs with the highest TE (> 0.3).

4 Conclusions

SOM has been generated mostly on regular lattices. However, TE on non-regular
lattices are in many cases lower than that obtained in regular lattices. It is
possible to obtain information about the SOM’s TE on a given lattice from its
statistical properties, as shown by the use of mutual information function. C4.5
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algorithm extracts important rules in order to identify those parameters that
are related to lattices in which SOMs present low TE. The studied statistical
parameters set, altough incomplete, is a good characterization of lattices.
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Abstract. One of the most interesting features of self-organizing maps is the 
neighbourhood structure between classes highlighted by this technique. The aim 
of this paper is to present a stochastic method based on bootstrap process for 
increasing the reliability of the induced neighbourhood structure. The 
robustness under interest here concerns the sensitivities of the output to the 
sampling method and to some of the learning options (the initialisation and the 
order of data presentation). The presented method consists in selecting one map 
between a group of several solutions resulting from the same self-organizing 
map algorithm but with various inputs. The selected (robust) map, called R-
map, can be perceived as the map, among the group, that corresponds to the 
most common interpretation of the data set structure. 

1   Introduction 

In the context of classification, self-organizing maps focus on the neighbourhood 
structure between classes. The aim of this paper is to present a stochastic method 
based on bootstrap process for increasing the reliability of the underlying 
neighbourhood structure. The robustness under interest here concerns the sensitivities 
of the output to the sampling method and to some of the learning options (the 
initialisation and the order of data presentation). Several articles have already been 
dedicated to the Kohonen algorithm theory, specifically focusing on aspects 
concerning its convergence (see [1] and [4]) and its sensitivity to parameters options 
(the initialisation, the order of data presentation, the rate of decrease of 
neighbourhood function, the adaptation parameter...). As a result, some tools for 
controlling the coherence of the neighbourhood structure have already been proposed 
(see for instance [6]). In the same vein, we propose here a two-step procedure aiming 
to increase the reliability of SOM neighbourhood structure. At the first step, a 
bootstrap process is used to build a table of probability for any pair of individuals to 
be neighbours. At the second step, we choose between several maps the most in 
conformity with this table, called R-map. In final, the R- map gives a summary of the 
data and a neighbourhood structure between classes that are less sensitive to the 
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sampling (owing to the first step), the initialisation and the order of the data 
presentation (owing to the second step). The R-map can also be considered as the 
most common interpretation of the structure among several SOM solutions. We do 
not consider that the R-map is the "best" one concerning the interpretation. On the 
contrary, the variability of interpretations is probably rich in information especially 
when one can compare various interpretations with the “common” one. From an other 
side, increasing the stability of the neighbourhood structure can make SOM more 
attractive for some users that are perplex in front of the variability of the 
interpretations. To measure reliability, the use of a bootstrap scheme [3] is common 
and has already been proposed to assess the statistical significance of the 
neighbourhood structure of SOM [2]. When the algorithm is run several times, one 
expects, for any pair of individuals, the “probability to be neighbours” to be 0 or 1. 
The difference for any pair between the “empirical probability to be neighbours” and 
both values 0 and 1 gives a measure of the sensibility of SOM to the sampling and 
option parameters (such as initialisation, order of data presentation, decrease of 
neighbourhood size, adaptation parameter, etc.). To test the proposed method, we use 
another time bootstrap process on R-maps and SOM and compare the reliability of 
their respective neighbourhood structures. To present this technique and test it, we use 
it in a practical example. We have already use SOM to give a summary of the 
financial funds market [5].  

2    A Bootstrap Scheme for Building the Table of Individual’s  
      Probability to Be Neighbours One-to-One 

When SOM are used in classification, the algorithm is applied to the complete 
database that is generally a sample of some unknown stationary distribution. A first 
concern refers to the question of the stability of the SOM solution (specifically the 
neighbourhood organisation) when the sample changes. A second concern regards the 
reliability to the sample, the data presentation order and the initialisation. For limiting 
the dependence of the outputs to the original data sample and to the arbitrary choice 
within an algorithm, it is common to use a bootstrap process with a re-sampling 
technique. Here, this idea is applied for affecting an empirical probability to any pair 
of individuals (to be neighbours in the SOM algorithm). For any pair, this probability 
is estimated by the number of times the individuals have been neighbours at ray 1 
(highest level of proximity) when running several times the same SOM algorithm 
using re-sampled data series. In the following, we call NEIGHTboot the table 
containing empirical probabilities to have two individuals considered as neighbours at 
the end of the classification. As a remark, note that the algorithm uses only 
individuals in the given re-sampled set of individuals (representing around 60% of the 
original population). At the end, the left individuals are classified using computed 
distances to centroïds. Thus, at each step, table of empirical probabilities concern all 
individuals in the original dataset even if only a part of them have been used within 
the algorithm. 
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Fig. 1. Step1, bootstrap process in order to build the table NEIGHTboot of individual's empirical 
probability to be neighbours one to one 

3   Choosing the R-Map from the Table of Individual’s Probability  
     to Be Neighbours One-to-One 

When the table NEIGHTboot is built, the first step is over. In the second step, the SOM 
algorithm is also executed several times, but without re-sampling. For any map, we 
can build the table NEIGHTmap, similar to previous one, in which values are 1 for a 
pair of neighbour individuals and 0 for others. Then, using the Froebenius norm, we 
can compute the distance between both neighbourhood structures, defined 
respectively at the end of step1 (re-sampling the data) and step 2 (computing several 
maps with the original data), as follows:  
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where P is the set of N² individuals pairs (i,j). The selected R-map is the one between 
all SOM solutions that  minimises the  distance D. The R-map gives indeed a  

Data Sample   

SOM learning

Map 1 Map 2

Comparison with the table of individual’s probability to be neighboured one to one

Map p

R-map  

Fig. 2. Step2, selection of the R-map between p solutions of the SOM algorithm 
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summary of the data and a neighbourhood structure between classes that are less 
sensitive to the sampling (after to the first step), the initialisation and the order of the 
data presentation (after the second step). The R-map can be then considered as the 
most common interpretation of the structure. 

4   Test of the Method with a Financial Application to Hedge Fund  
     Classification 

We compare hereafter the classical 'simple' SOM method with the two-step algorithm 
presented in previous sections. More precisely, we first build several maps with the 
SOM algorithm as in [5] and, second, several maps leading to the definition of many 
R-maps. We then compute both related tables of individual’s probability to be 
neighbours one-to-one: the NEIGHTmap (set of 'simple' SOM with no two-step 
bootstrap process) and the NEIGHTR-map (corresponding to the two-step algorithm 
presented above). The theoretical probabilities 1, 0 and UN/U  correspond respectively 
to individuals that are sure to be respectively neighbours, un-neighbours and 
neighbours by chance. UN/U is the uniform probability for a pair of individuals to 
belong to UN neighbour classes out of U (for a grid structure, UN equals 9 at ray 1). 
    As an illustration, we use a study already published, in which was proposed a 
robust typology of hedge funds based on the NAV time-evolutions, leading to a sound 
financial characterisation of the proposed typology with external risk measures (see 
[5] for more details). A typology of reference (given by StandandPoorsTM) based on 
the portfolio manager declared strategy is known to be unsatisfying for many reasons, 
from the lack of transparency of proprietary well-protected strategies, data error, 
changes in situation or complex mixture of 'pure' strategies. In this context, SOM is 
used in order to clean the classification from some arbitrary choices. The confidence 
in the neighbourhood is obviously crucial when real financial applications (fund of 
funds asset allocation and risk management) are at stake. In this practical example, the 
data set is composed with 294 funds and 67 observations of monthly NAV from 
January 1995 to September 2000. The chosen structure of the map is a six-by-six grid. 
Thirty R-maps are build each time in step one (using each time thirty samples of 
randomly chosen 194 individuals amongst the possible 294 hedge funds). From these 
30 R-maps, we can build a table of individuals’ probability to be neighbours one-to- 
one called as before NEIGHTR-map. From 30 new self-organizing maps, we can build 
the equivalent NEIGHTmap. As an example, we present below Table 1, which is an 
abstract of three tables glued together: two tables called NEIGHTmap (resulting from 
two repeated SOM on the same original data) and one table called NEIGHTR-map 
(resulting from the two-step procedure). Figures in Table 1 concerns empirical 
probabilities of pairs composed with individual number 1 and individuals number 25 
to 33. We can see that, for any pair, the empirical probabilities in the column R-map 
are closer to 1 respectively to 0 when they are higher respectively lower than 25.00% 
(i.e. UN/U =9/36 here). This property indicates that the neighbourhood structure with 
R-maps is more reliable than with classical maps. In table 2, columns indicate, for any 
empirical probability to be neighbours, the number of pairs concerned. When we take 
into consideration the R-map, 42.14%, 16.22 %, 12.41% and 8.58% of the set of pairs 
have an empirical probability to be neighbours, respectively, lower than 10.00%, 
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greater than 80%, greater than 90%,  equal to 100.00%. In comparison, in the case of 
classical maps, the respective values are 27.85%, 12.03%, 6.07%, 1.4% in the first 
case (Map 1) and 19.98%, 11.8%,  5.5% et 1.35% in the second case (Map 2). Thus, 
table 2 show as well the greater reliability of the neighbourhood structure in the case 
of R-maps when using the two-step algorithm procedure. 

Table 1. Frequency to be neighbours for any pair of individuals 

individual 1 individual 2 map 1 map 2 R-map
1 25 1 0,97 1
1 26 0,93 0,8 0,93
1 27 0,97 0,87 1
1 28 0,97 0,87 1
1 29 0,93 0,8 0,97
1 30 0,17 0,03 0
1 31 0,13 0,03 0
1 32 0,47 0,5 0,5
1 33 0,23 0,2 0  

Table 2. Frequency of pairs of individuals for any empirical probability to be neighbours 

value

map1 map2 R-map map1 map2 R-map

0<<= 0.1 24076 17271 36420   27.85  19.99  42.14

0,1<<=0.2 10270 14568 8196   39.74  36.84  51.62

0,2<<=0.3 9664 10184 6698   50.92  48.63  59.37

0,3<<=0.6 23640 8648 4792   78.27  76.34  75.59

0,6<<=0.7 5175 6106 3374   84.25  83.40  79.49

0,7<<=0.8 3412 3964 3708   88.20  87.99  83.78

0,8<<=0.9 5448 5150 3288   94.50  93.95  87.59

0,9<<=1 4751 5229 10728  100.00 100.00 100.00

frequency cumulativ percent

 

5   Remarks 

As partially shown in the previous illustration, R-map method reduces SOM 
sensitivity to three parameters (the sample, the data presentation order and the 
initialisation. A similar technique can include others (the adaptation parameter) but 
not parameters linked to the neighbourhood structure (the size of the map). As a 
second remark, we can indicate that the distance D is not symmetrical between 
neighbour and un-neighbour, as a random distribution into the U units would create 
the probability 9/U to be neighbour. For example, in table 1, frequency 0,23 is 
interpreted as “un-neighbour” instead of “undecided” (pair (1, 33)) and frequency 
0,47 is associated to “undecided” instead of “neighbour” (pair (1, 32)). Such is SOM 
itself, as individuals defined as neighbours on the map are close in the input space but 
close individuals can be put far on the map (for example when the map makes a fold). 
the distance D reduces more the possibility for individuals to be “neighbours by 
chance” than “un-neighbours by chance”. One can use an other distance such as D1. 
As third remark, using R-map bootstrap model avoid to keep in memory any SOM 
outputs. then, the memory capacity to compute R-map is focused on the size of the 
NEIGHTboot table. This table can be very large (N² pairs of N individuals) but can be 
reduced to a list of pairs such as the distance D would still be significant. 



438 P. Rousset and B. Maillet  

 

( )
( )( )∈ −

−
=

Pji boot

mapboot

UjiNEIGHTB

jiNEIGHTBjiNEIGHTB

N
D

,
2

2

1
9),(

),(),(1
 

(2) 

 

6   Conclusion 

The presented method consists in selecting one map between a group of several 
solutions of the same self-organizing map algorithm. The selected map, called R-map, 
can be perceived as the map, among the group, that corresponds to the most common 
interpretation of the data set structure (interpretation means, here, the classification 
and the neighbourhood structure between classes). The neighbourhood structure is 
generally more robust with R-maps than one of a randomly selected map among the 
group. This reliability concerns both sensitivity to the sampling and to some algorithm 
parameters, in particular the initialisation and the data presentation order. This 
technique can also be completed by the tool presented in [6] that allows to control the 
coherence of the neighbourhood structure with the intra-classes distance.  

Finally, above aiming to offer a robust classification, R-map selection provides 
self-organizing maps users with a practical method that gives the same results - 
without any further interpretation - when executed several times. 
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Abstract. A capability of depth perception in biological visual systems evolved 
throughout thousands of years to help animals and us, humans, to survive in a 
real life. This ability has helped us to navigate and avoid threatening obstacles. 
However, we still know very little about the biological processes that lead to 
such a perfection which is by far not achievable for artificial vision systems. 
Thus, proper models of these mechanisms would help in their better 
comprehension, as well as they could guide construction of better computer 
stereovision systems. In this paper we try to propose a new topology of an 
artificial neural network for the stereovision system. We try to construct a very 
simple model of a binocular system that is biologically inspired in a behavioral 
aspect and which, at the same time, is computationally efficient. It is a hybrid 
that consists of the convolutional, binocular receptive, and the Hamming neural 
networks. The input signal is non-parametrically transformed for better 
statistical preconditioning. The paper ends with the experimental results. 

1   Introduction 

Abilities of motion and depth perception have played a very important role in 
evolution of biological organisms. They have helped in daily navigation, avoidance of 
dangerous objects, capturing food, and so on. Despite much effort, we are still at the 
preliminary stage of cognition of the biological mechanism of vision, however. At the 
other hand, stereovision by computer cannot be compared to the speed, precision, and 
inferring perfection of biological counterparts [5][3][6]. 

It has been found that at the input layers of mammals’ visual cortex most of the 
signals from the two eyes are separated, however neurons of its external layers 
respond to light present to either eye. Thus, the latter neurons have binocular 
receptive fields. Further on, the cortical area V1 (the striate cortex) is the first place in 
the visual pathways where individual neurons receive binocular input [7][11][12]. 

There have been some attempts to model binocular stereopsis with neural 
networks. For example Iwahori et.al. propose a neural network to the photometric 
stereo with a nearby rotational moving light source [9]. Another neural approach to 
the stereovision proposed [1]. Similarly Wei et.al. proposed a neural system with 
radial base functions to solve stereo problem [13]. Area based matching with the 
Hamming neural network is presented in [4]. This paper greatly extends this concept. 
    In this paper we present a simple model of an artificial binocular receptive field for 
computer stereopsis. We do not attempt to precisely mimic the biological system, 
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however, but rather to model biologically inspired functional behavior on a computer 
system. The novel neural network structure is proposed that, under some simplifying 
assumptions, captures spatial relations among corresponding neuro-pixels. Their 
novelty comes from the hybrid structure of the proposed system which consists of the 
convolutional, binocular receptive network field, and the Hamming neural networks. 
The input signal is in a form of non-parametrically transformed intensity signals 
rather than pure intensity values. This proved to have much better statistical properties 
[3]. The Hamming neural network is applied with a winner-take-all layer that resolves 
winning disparity for a local receptive field.  
    The paper starts with a short introduction on binocular vision, then the input and 
processing layers of the proposed network are explained. Finally, we present 
experimental results and conclusions. 

2   Binocular Depth Perception 

Depth perception is possible with two or more visual sensors (i.e. eyes or cameras) 
observing the same scene but from a slightly different position. The human eyes 
constitute a very complex visual system. Fig. 1 depicts a basic model of the artificial 
binocular vision system obtained from two cameras with parallel optical axes.  
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Fig. 1. Epipolar geometry of a canonical stereo setup. All images of 3D points (such as P) of 
opaque objects can lie only on corresponding epipolar lines. Πl and Πr are left and right camera 
planes, Ol, Or are left and right centers of projection, respectively (a). Depth of a point P can be 
computed exclusively from difference of its images pL and pR created on the camera planes (b). 

    It can be easily shown [5][3] that depth of a 3D point P (i.e. its third coordinate) is 
directly dependant on the disparity value Dx(pl, pr) between image points pl and pr:  

( ) ZbfppppD lrrlx /, 11 =−=  (1) 

where the points pl=(pl1,pl2) and pr=(pr1,pr2) are image points (i.e. in the camera 
coordinate system) of a point P, b is a distance between cameras (a base line), f stands 
for cameras focus (the same value for the two cameras), Z is the sought third 
coordinate of a point P (Fig. 1). 
    The canonical stereo setup with pinhole cameras is assumed hereafter. However, in 
a general case, knowledge of the fundamental matrix F allows us to find epipolar lines 
in the forms: lr=Fpr, ll=FTpl, for the left and right cameras, respectively. The matrix F 
can also be computed with neural networks [2]. 
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3   Neural Model of a Binocular System 

In the human visual system (HVS) the signals from the two retinas are transferred to 
the primary visual cortex (V1, the layers 4C) through the lateral geniculate nucleus 
(LGN). It is characteristic that a way of signals from the right visual field leads to the 
left LGN and then to the left hemisphere of a brain. It is also interesting that within 
V1, signals from each eye are segregated into different layers of V1, whereas they are 
moved together into individual neurons of the superficial layers of the cortex.  

Fig. 2 depicts our very simple computational model of a receptive field for 
stereovision which is biologically inspired in its behavioral aspect. In this paper we 
focus on its three core modules (grayed in Fig. 2). The optional convolutional NN 
allows for scale-space processing [6], while the radial-based NN (RBF) can be used 
for disparity resolving, once the disparity space is built [13]. 
    It is already known [8] that some parts of V1 respond to the binocular stimuli – 
sometimes this part is called a binocular receptive field (BRF), although sometimes 
the concept of BRF is extended onto the whole visual pathway from eyes to the brain. 
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Fig. 2. Neural model of a receptive field for stereovision 

 

Fig. 3. The binocular receptive neural network 
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    In these terms, the presented model of a receptive field for stereovision can be 
conceived as BRF in its latter sense. At the other hand, the binocular receptive NN 
(middle grayed block in Fig. 2, and Fig. 3) relates to the BRF in its former definition. 
    Elements of the binocular receptive NN are neuro-pixels from corresponding lines. 
However, their input constitute signal of the Census transformed intensities which 
have very desirable properties. The most important is that Census representation 
conveys information on nearest neighborhood around a pixel [14][3].  This crucial 
property allows us to process only one-pixel-wide stripes (Fig. 3). There is one 
reference line from the first image and number of one-pixel-shifted lines from the 
second one. Due to assumed canonical stereo setup we need only to shift lines in one 
direction. Their number is the same as expected maximum disparity between images 
(1). A disparity is determined by a winning neuron along the vertical stripe – this is 
achieved by the Hamming NN. (Fig. 2 and Fig. 4). The number of a line with a 
winning neuron gives the sought disparity value. We can also analyze mutual 
disparity relations to refine the match, e.g. to impose the ordering constraint [3]. 
    Fig. 4 shows structure of the Hamming NN for disparity selection in a receptive 
field, i.e. on the winner selection paths in Fig. 3. The purpose of the first layer of 
neurons presented in Fig. 4, is to compute the Hamming distance between an input 
vector and corresponding weights. Output of this layer is given as follows [10]: 

= +− 1xWH )1(15.0 n  (2) 

where 1 is a column vector and W(1) is a matrix of weights which are Census values of 
the pretending neuro-pixels from the shifted lines; x is a neuro-pixel from the first 
image. More details can be found in [4] where the area based version was discussed. 
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Fig. 4. Structure of the Hamming neural network for disparity selection in the receptive field 

    The purpose of the final MAXNET layer in Fig. 4 is to choose the winning neuron, 
i.e. the best matching one in a sense of the Hamming distance. The distinctive feature 
of this recursive layer is an incentive connection from the neuron to itself. Values of 
neurons of this layer are determined by the following recursive equation [10][4]: 

( ) 1)(,)1()1()1(f)( −−=
≠

−−−−= kpk
ij

kjykkiyk
i

d  (3) 

where k denotes iteration step and the initial value for yj(0) = hj, p is a number of 
initial patterns (equal to the expected maximum disparity), y is an output layer. 
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    The iteration proceeds up to the point where values of neurons are fixed and only 
one neuron has value other than zero. It is possible, however, that under sufficiently 
balanced conditions no winner can be reliably determined. To cope with such cases 
we can increase the window of the Census transformation, which in our experiments 
was from 3×3 up to 7×7. However, the better solution is to include an additional block 
of disparity selection that operates in the entire disparity space. In Fig. 2 it is the RBF-
NN module, e.g. the one presented in [13]. However, in this realization and 
experiments the simple averaging in the disparity space was applied.  

4   Experimental Results 

The computational platform consists of the IBM PC with Pentium 4, 3.4 GHz,  
implementation in C++. Results of the dashed blocks in Fig. 2 are presented here. 

   
a b c 

Fig. 5. The neural technique applied to the “Corridor” stereo image (256×256): left image of a 
pair (a), disparity map with 5×5 averaging in the disparity space (b), disparity map with 7×7 
averaging in the disparity space (c). The Census transformation was done in a 7×7 window. 

   
a b c 

   
d e f 

Fig. 6. The “Mask” 450×375 (a). Disparity map in 5×5 Census representation, with averaging 
in the disparity space: 1×1 (b), 5×5 (c); For Census 7×7, averaging: 1×1 (d), 5×5 (e), 7×7 (f). 
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Fig. 5 presents results of the neural matching of the “Corridor” stereo pair of size 
256×256 (a). The disparity map obtained with 1×1 averaging in the disparity space is 
depicted in (b) while disparity with 7×7 in (c). The Census window is 7×7 in all cases. 
Execution times are 99.35 and 107.55 s, respectively. Number of iterations k=80. 

Fig. 6 contains results of the “Mask” 450×375 stereo pair. Disparity map in 5×5 
Census representation, with 1×1 averaging in the disparity space (b), averaging 5×5 
(c); For Census 7×7 representation: averaging 1×1 (d), 5×5 (e), 7×7 (f). Number of 
iterations k=200. Execution times for this case are as follows: 92.12 for (b), 94.0 for 
(c), 98.22 for (d), 120.83 for (e), and 124.22 for (f). 

5   Conclusions 

This paper presents a hybrid neural model of a receptive field for stereovision; Its 
behavior is motivated biologically by the BRF. In this paper we especially focus on a 
computational aspect of this model. The novel neural network structure is proposed 
that accepts Census transformed nonparametric signals on its input. Its main virtue is 
encoded information on neighboring pixels and resistance to image noise and lighting 
inequalities. Then, thanks to the layers of neurons that correspond to the shifted image 
lines, the disparity space is found with the Hamming NN ended with the MAXNET 
winner selection layer. Based on this structure it is also possible to impose additional 
conditions, such as ordering or disparity gradient constraint. Additional neural 
processing modules allow for biologically motivated scale-space computations. A 
global search in the disparity space is also possible for better resolving of matches.  

The experimental results show that the system exhibits many interesting properties 
and can be joined with other neural modules, e.g. to the neural module for 
computation of the fundamental matrix or match disambiguation network. 
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Abstract. Neural networks have shown good results for detecting of a certain 
pattern in a given image.  In our previous papers [1-6], a fast algorithm for 
object/face detection was presented. Such algorithm was designed based on 
cross correlation in the frequency domain between the input image and the 
weights of neural networks. Our previous work also solved the problem of local 
subimage normalization in the frequency domain. In this paper, the effect of 
image normalization on the speed up ratio of pattern detection is presented. 
Simulation results show that local subimage normalization through weight 
normalization is faster than subimage normalization in the spatial domain. 
Moreover, the overall speed up ratio of the detection process is increased as the 
normalization of weights is done off line.   

1   Introduction 

Pattern detection is a fundamental step before pattern recognition. Its reliability and 
performance have a major influence in a whole pattern recognition system. 
Nowadays, neural networks have shown very good results for detecting a certain 
pattern in a given image [5,8,10,12]. But the problem with neural networks is that the 
computational complexity is very high because the networks have to process many 
small local windows in the images [7,9]. In our pervious papers, we presented fast 
neural networks based on applying cross correlation in the frequency domain between 
the input image and the input weights of neural networks. It was proved that the speed 
of these networks is much faster than conventional neural networks [1-3]. It was also 
proved that fast neural networks introduced by previous authors [11,13,14] are not 
correct. The reasons for this were given in [1-3]. The problem of subimage (local) 
normalization in the Fourier space was presented in [10]. This problem was solved in 
[6]. We proved that the number of computation steps required for weight 
normalization is less than that needed for image normalization. But, we did not 
discuss the effect of normalization on the speed up ratio. Here, the effect of weight 
normalization on the speed up ratio is theoretically and practically discussed. 
Mathematical calculations prove that the new idea of weight normalization, instead of 
image normalization, provides good results and increases the speed up ratio. This is 
because weight normalization requires fewer computation steps than subimage 
normalization. Moreover, for neural networks, normalization of weights can be easily 
done off line before starting the search process. In section 2, fast neural networks for 
pattern detection are described. Subimage normalization in the frequency domain 
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through normalization of weights is presented in section 3.  The effect of weight 
normalization on the speed up ratio is presented in section 4. 

2   Fast Neural Networks Based on Cross Correlation in the  
     Frequency Domain for Pattern Detection 

Finding a certain pattern in the input image is a search problem. Each subimage in the input 
image is tested for the presence or absence of the required pattern. At each pixel 
position in the input image each subimage is multiplied by a window of weights, 
which has the same size as the subimage.  The outputs of neurons in the hidden layer 
are multiplied by the weights of the output layer. A high output implies that the tested 
subimage contains the required pattern and vice versa. Thus, we may conclude that 
this  searching problem is cross correlation between the image under test and the 
weights of the hidden neurons. The convolution theorem in mathematical analysis 
says that a convolution of f with h is identical to the result of the following steps: let F 
and H be the results of the Fourier Transformation of f and h in the frequency domain. 
Multiply F and H in the frequency domain point by point and then transform this 
product into the spatial domain via the inverse Fourier Transform. As a result, these 
cross correlations can be represented by a product in the frequency domain. Thus, by 
using cross correlation in the frequency domain a speed up in an order of magnitude 
can be achieved during the detection process [1,2,3,4,5,6,8]. In the detection phase, a 
sub image I of size mxn (sliding window) is extracted from the tested image, which 
has a size PxT, and fed to the neural network. Let Xi be the vector of weights between 
the input sub image and the hidden layer. This vector has a size of mxn and can be 
represented as mxn matrix. The output of hidden neurons hi can be calculated as 
follows:  

=
+

=
=

m

1j ibk)k)I(j,(j,
n

1k iXgih                          (1) 

where g is the activation function and bi is the bias of each hidden neuron (i). Eq. (1) 
represents the output of each hidden neuron for a particular subimage I. It can be 
obtained from image Z as follows: 
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Eq. (2) represents a cross correlation operation. Given any two functions f and d, their 
cross correlation can be obtained by [1,3]: 
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Therefore, Eq. (2) may be written as follows [1,3]: 
( )ibiXZgih +⊗=                                            (4) 

where hi is the output of the hidden neuron (i) and hi (u,v) is the activity of the hidden 
unit (i) when the sliding window is located at position (u,v) and (u,v) ∈[P-m+1, 
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T-n+1]. Now, the above cross correlation can be expressed in terms of the Fourier 
Transform: 

( ) ( )( )iX*FZF1FiXZ •−=⊗                                 (5) 

Hence, by evaluating this cross correlation, a speed up ratio can be obtained 
comparable to conventional neural networks. Also, the final output of the neural 
network can be evaluated as follows:  

=
+=

q

1i
ob)vu,(ih (i)owgv)O(u,                       (6) 

where q is the number of neurons in the hidden layer. O(u,v) is the output of the 
neural network when the sliding window is located at the position (u,v) in the input 
image Z. 

The complexity of cross correlation in the frequency domain can be analyzed as 
follows [1-4]: 

1- For a tested image of NxN pixels, the 2D-FFT requires a number equal to 
O(N2log2N

2) of complex computation steps. Also, the same number of complex 
computation steps is required for computing the 2D FFT of the weight matrix for each 
neuron in the hidden layer.  

2- At each neuron in the hidden layer, the inverse 2D FFT is computed. So, q 
backward and (1+q) forward transforms have to be computed. Therefore, for an image 
under test, the total number of the 2DFFT to compute is O((2q+1)N2log2N

2). 
3- The input image and the weights should be multiplied in the frequency domain. 

Therefore, a number of complex computation steps equal to O(qN2) should be added.  
4- The number of computation steps required by fast neural networks is complex 

and must be converted into a real version. It is known that the two dimensions Fast 
Fourier Transform requires O((N2/2)log2N

2) complex multiplications and 
O(N2log2N

2) complex additions.  Every complex multiplication is realized by six real 
floating point operations and every complex addition is implemented by two real 
floating point operations. So, the total number of computation steps required to obtain 
the 2D-FFT of an NxN image is [1-4]: 

ρ=O(6((N2/2)log2N
2) + 2(N2log2N

2))                                (7) 
which may be simplified to: 

ρ=O(5N2log2N
2)                                                    (8) 

Performing complex dot product in the frequency domain also requires O(6qN2 ) real 
operations. 

5- In order to perform cross correlation in the frequency domain, the weight matrix 
must have the same size as the input image. So, a number of zeros = (N2-n2 ) must be 
added to the weight matrix. This requires a total real number of computation steps = 
O(q(N2-n2)) for all neurons. Moreover, after computing the FFT2 for the weight 
matrix, the conjugate of this matrix must be obtained. So, a real number of 
computation steps =O(qN2) should be added in order to obtain the conjugate of the 
weight matrix for all neurons.  Also, a number of real computation steps equal to 
O(N) is required to create butterflies complex numbers (e-jk(2Πn/N)), where 0<K<L. 
These (N/2) complex numbers are multiplied by the elements of the input image or by 
previous complex numbers during the computation of FFT2. To create a complex 
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number requires two real floating point operations. So, the total number of 
computation steps required for fast neural networks becomes [1-4]: 

σ=O((2q+1)(5N2log2N
2) +6qN2+q(N2-n2)+qN2+N )                      (9) 

which can be reformulated as: 

σ=O((2q+1)(5N2log2N
2) +q(8N2-n2) +N )                             (10) 

6- Using a sliding window of size nxn for the same image of NxN pixels, O(q(2n2-
1)(N-n+1)2) computation steps are required when using traditional neural networks 
for pattern detection process. The theoretical speed up factor η can be evaluated as 
follows [1-4]: 

+++
+Ο=η

   N )n-q(8N )Nlog1)(5N(2q

 1)n-1)(N-q(2n
222

2
2

2 2

                (11) 

The correct theoretical speed up ratio with different sizes of the input image and 
different in size weight matrices is listed in Table 1. Practical speed up ratio for 
manipulating images of different sizes and different in size weight matrices is listed in 
Table 2 using 700 MHz processor and Matlab ver 5.3.  

Table 1. The theoretical speed up ratio for images with different sizes 

 Image Size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

 100x100 3.67 5.04 6.34 
 200x200 4.01 5.92 8.05 
 300x300 4.00 6.03 8.37 
 400x400 3.95 6.01 8.42 
 500x500 3.89 5.95 8.39 
 600x600 3.83 5.88 8.33 
 700x700 3.78 5.82 8.26 
 800x800 3.73 5.76 8.19 
 900x900 3.69 5.70 8.12 
 1000x1000 3.65 5.65 8.05 

Table 2. Practical speed up ratio for images with different sizes using MATLAB ver 5.3 

 Image Size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

 100x100 7.88 10.75 14.69 
 200x200 6.21 9.19 13.17 
 300x300 5.54 8.43 12.21 
 400x400 4.78 7.45 11.41 
 500x500 4.68 7.13 10.79 
 600x600 4.46 6.97 10.28 
 700x700 4.34 6.83 9.81 
 800x800 4.27 6.68 9.60 
 900x900 4.31 6.79 9.72 
 1000x1000 4.19 6.59 9.46 
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3   Subimage Centering and Normalization in the Frequency  
     Domain 

In [10], the authors stated that image normalization to avoid weak or strong 
illumination could not be done in the frequency space. This is because the image 
normalization is local and not easily computed in the Fourier space of the whole 
image. Here, a simple method for image normalization is presented. Centering and 
normalizing the image can be obtained by centering and normalizing the weights as 
follows [8]: 

Let X rc

_
 be the zero-mean centered subimage located at (r,c) in the input image ψ: 

rcxrcXrcX −=                                      (12) 

where, xrc  is the mean value of the sub image located at (r,c). We are interested in 

computing the the dot product between the subimage Xrc  and the weights Wi that is: 

iW.rcxiW.rcXiW.rcX −=                       (13) 

where,  

2n

rcX
rcx =                                              (14) 

Combining (13) and (14), we get the following expression: 

iW.2n
rcX

iW.rcXiW.rcX −=                        (15) 

which is the same as: 

2n

i
W

.rcXiW.rcXiW.rcX −=                        (16) 

The centered zero mean weights are given by: 

2n

i
W

iWiW −=                                   (17) 

Also, Eq. (16) can be written as: 

−=
2n

i
W

i
W.rcXiW.rcX                                  (18) 

So, we may conclude that: 

iW.rcXiW.rcX =                                        (19) 

which means that dot multiplying a centered image with the weight matrix is equal to 
the dot multiplication of the  non – normalized image with the normalized weight 
matrix. 
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4   Effect of Weight Normalization on the Speed up Ratio 

Normalization of subimages in the spatial domain (in case of using traditional neural 
networks) requires 2n2(N-n+1)2 computation steps. On the other hand, normalization 
of subimages in the frequency domain through normalizing the weights of the neural 
networks requires 2qn2 operations. This proves that local image normalization in the 
frequency domain is faster than that in the spatial one. By using weight normalization, 
the speed up ratio for image normalization Γ can be calculated as:  

+−
Ο=

q

1)n(N 2

                                           (20) 

The speed up ratio of the normalization process for images of different sizes is 
listed in Table 3. As a result, we may conclude that: 

1- Using this technique, normalization in the frequency domain can be done through 
normalizing the weights in spatial domain.  

2- Normalization of an image through normalization of weights is faster than 
normalization of each subimage.  

3- Normalization of weights can be done off line. So, the speed up ratio in the case of 
weight normalization can be calculated as follows: 

Table 3. The speed up ratio of the normalization process for images of different sizes 

 Image Size Speed up 
ratio(n=20,q=100  

 

 100x100  62   
 200x200 328   
 300x300 790   
 400x400  1452   
 500x500  2314  
 600x600  3376   
 700x700  4638   
 800x800  6100   
 900x900  7762   
 1000x1000 9624   

a) For Conventional Neural Networks:  
The speed up ratio equals the number of computation steps required by conventional 
neural networks with image normalization divided by the number of computation steps 
needed by conventional neural networks with weight normalization, which is done off 
line. The speed up ratio c in this case can be given by: 

+−−
+−++−−

Ο=η
22

2222

c
1)n1)(Nq(2n

1)n(N2n1)n1)(Nq(2n                (21) 

which can be simplified to: 

−
+Ο=η

1)q(2n

2n
1

2

2

c
                                        (22) 
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b) For Fast Neural Networks: 
The over all speed up ratio equals the number of computation steps required by 
conventional neural networks with image normalization divided by the number of 
computation steps needed by fast neural networks with weight normalization, which 
is done off line. The over all speed up ratio o can be given by: 

+++
+++−−

Ο=η
  N)n-q(8N )Nlog 1)(5N(2q

1)n-(N2n1)n1)(Nq(2n 
222

2
2

2222

o                (23) 

which can be simplified to: 

+++
+−+−Ο=η

  N)n-q(8N )Nlog 1)(5N(2q

)2n1)q(2n (1)n(N 
222

2
2

222

o                  (24) 

The relation between the speed up ratio before ( ) and after ( o) the normalization 
process can be summed up as: 

+++
+−+ηΟ=η

 N)n-q(8N )Nlog 1)(5N(2q

1)n(Nn2
222

2
2

22

o                   (25) 

The overall speed up ratio with images of different sizes and different sizes of 
windows is listed in Table 4. We can easily note that the speed up ratio in case of 
image normalization through weight normalization is larger than the speed up ratio 
(without normalization) listed in Table 2. This means that the search process with 
normalized fast neural networks is done faster than conventional neural networks with 
or without normalization of the input image.  

Table 4. Simulation results for speed up ratio in case of normalizing the input weights 

 Image Size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

 100x100 82.32 99.86 119.76 
 200x200 97.20 116.76 136.65 
 300x300 110.61 132.98 147.54 
 400x400 120.77 143.65 163.59 
 500x500 128.48 156.86 178.79 
 600x600 133.51 168.64 195.32 
 700x700 138.99 174.43 213.12 
 800x800 134.18 170.65 206.18 
 900x900 138.87 175.11 219.96 
 1000x1000 136.93 173.54 214.65 

5   Conclusion 

Normalized neural networks for fast pattern detection in a given image have been 
presented. It has been proved mathematically and practically that the speed of the 
detection process becomes faster than conventional neural networks. As a result, fast 
neural networks, based on cross correlation in the frequency domain, have become 
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faster than conventional neural networks. Furthermore, we have generally proved that 
the speed up ratio in the case of image normalization through normalization of 
weights is faster than without normalization. 
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Abstract. In the MST area of the monkey, there are cells that respond selectively
to specific motions of a large area of the visual field, such as rotation or expan-
sion/contraction. They respond steadily even when the location of the center of
optic flow shifts on the retina. They are thought to analyze optic flows of the
retinal images. This paper proposes a neural network model for these cells. The
model performs processing similar to mathematical operations called rot and div
in the vector field analysis. It is a hierarchical multilayered network: retina, layer
V1, layers MT and layer MST. Each MT cell extracts relative velocity between
two adjoining small visual fields, and an MST cell adds the response of many
MT cells to extract a specific optic flow. The difference in type of optic flows ex-
tracted by MST cells can be created simply by the difference in relative locations
between inhibitory and excitatory areas in the receptive fields of the preceding
MT cells.

1 Introduction

In the visual systems of mammals, information concerning visual motion is mainly
analyzed through the occipito-parietal pathway: retina → area V1 (primary visual cor-
tex)→ area MT (middle temporal area)→ area MST (medial superior temporal area).

In a dorsal part of MST of the monkey, there are cells that respond selectively to spe-
cific motions of a large area of the visual field, such as rotation, expansion/contraction
and translation [1][2][3][4][5]. These cells are reported to respond steadily even when
the location of the center of optic flow shifts on the retina. They are thought to analyze
optic flows of the retinal images.

Historically, there have been two major streams of hypotheses proposed so far to
explain neural networks extracting optic flow: direction mosaic hypothesis and vector
field hypothesis [6].

The direction mosaic hypothesis supposes that a rotation- or expansion/contraction-
selective receptive field is constructed receiving signals from a group of direction se-
lective cells, whose preferred directions are arranged circularly or radially. This mech-
anism alone cannot explain, however, the location-invariant responses of MST cells.
To acquire the location-invariance, the receptive field of an MST cell has to be made
up with a number of direction-mosaics from different locations of the visual field [1].
This requires a very complicated operations performed by a single cell, which does not
necessarily seem biologically plausible.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 455–460, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The vector field hypothesis assumes that the brain analyzes optic flows using oper-
ations called rot and div in the vector field analysis. It has long been pointed out math-
ematically that optic flows can be extracted with these operations [7]. Neural network
models based on this hypothesis, however, have little been proposed so far.

This paper proposes a neural network model for MST cells, which follows the vector
field hypothesis, and demonstrates the behavior of the model with computer simulation.

2 Principles of Extracting Optic Flow

Since the rotation and expansion/contraction of the visual field are extracted with a
similar mechanism, we will first discuss the principle of extracting rotation.

We assume the moving velocity v = (vx, vy) of the scene can be measured at any
location (x, y) in the visual field. Here, we define a value ρ with

ρ =
∂vy

∂x
+
(
−∂vx

∂y

)
(1)

Incidentally, this value equals the signed absolute value (or length) of a vector obtained
by v = ∇×v, which is an operation called rotation (or curl) in the vector-field analysis.

If an image covering the whole visual field is rotating around a point with a constant
angular velocity, ρ becomes constant everywhere in the visual field and is not affected
by the shift in location of the center of the rotation. The sign of ρ indicates the direction
of the rotation (counter-clockwise or clockwise), and its absolute value is proportional
to the angular velocity of the rotation.

We can then extract the rotation of the whole visual field, if we sum (or take an
average of) the values of ρ for all points within a large area S.

ρ̄ =
∑
S

ρ (2)

Expansion/contraction of optic flow can also be extracted with a similar mechanism.
We define δ, which corresponds to a scalar, div v = (∇ · v), obtained by an operation
called divergence in the vector-field analysis.

δ =
∂vx

∂x
+
∂vy

∂y
(3)

If the image is expanding radially from (or contracting to) a point, δ becomes always
constant everywhere in the visual field and is not affected by the location of the center
of the expansion/contraction. A positive value of δ indicates expansion, and a negative
value indicates contraction. We then can extract the expansion/contraction of the optic
flow, δ̄, by summing (or taking an average of) δ within a large area in the visual field.

3 The Model

Outline of the Model. The model is a hierarchical multilayered network. It consists of
layers of cells connected in a cascade: retina→ V1→MTabs →MTrel →MST.
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Layer V1 corresponds to the primary visual cortex, layers MTabs and MTrel to area
MT, and layer MST to the dorsal part of area MST of the animal.

The retina of our model is a photoreceptor array that receives visual image. In the
computer simulation discussed later, visual stimuli are moving random-dot patterns.

Each layer consists of a number of cell-planes. Incidentally, a cell-plane is a group
of cells that are arranged retinotopically and share the same set of input connections.
As a result, all cells in a cell-plane have receptive fields of an identical characteristic,
but the locations of the receptive fields differ from cell to cell.

V1-Cells. Each cell of layer V1 has a small receptive field and has a direction selectiv-
ity. It responds strongly to an object moving in a specific direction. The strength of the
response is assumed to be proportional to the velocity of the object.

Since our model uses cells whose responses are proportional to the firing frequen-
cies of biological neurons, their responses take only positive analog values or zero, and
cannot be negative. We need a pair of cells to represent the velocities of opposite direc-
tions: that is, one for responding to the positive, and the other to the negative velocity.

MTabs-Cells. Layer MTabs consists of cells that extract absolute velocity. In other
words, the cells respond to the moving velocities of the stimuli in a similar way as
V1-cells, but have somewhat larger receptive fields. Each MTabs-cell has excitatory in-
put connections from a group of V1-cells of the same preferred direction but of slightly
scattered receptive-field locations. It detects and responds in proportion to the max-
imum output among these V1-cells. Namely, each MTabs-cell extracts the maximum
velocity within its receptive field.

MTrel-Cells. Layer MTrel consists of cells that extract relative velocity. Namely, MTrel-
cells work to extract gradients of velocity, which correspond to ∂vy/∂x, (−∂vx/∂y),
∂vx/∂x and ∂vy/∂y in Eqs. (1) and (3).

Each MTrel-cell receives antagonistic inputs from two MTabs-cells of the same pre-
ferred direction, whose receptive fields adjoins each other. An MTrel-cell thus extracts
the gradient of local velocity at a certain location in the visual field.

Fig. 1(a) illustrate the network that extracts ∂vy/∂x, which is used for extracting
rotation. It calculates the difference in vertical velocity Δvy between two points sep-
arated horizontally by Δx, by receiving antagonistic inputs from two MTabs-cells of
vertical preferred direction, whose receptive field centers differ horizontally.
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(a) Network for extracting rotation (b) Network for extracting expansion

Fig. 1. A neural network for extracting relative velocity
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Fig. 2. Extracting rotation at a location from four components of relative velocities.

Each term of Eq. (3), which is used for extracting expansion/contraction, can be
obtained by a network like Fig. 1(b), which resembles Fig. 1(a). The only difference
between the two networks resides in the relative locations of the receptive fields of the
excitatory and inhibitory MTabs-cells. For the extraction of rotation, they are arranged
in the direction orthogonal to their preferred direction, while they are arranged in the
direction of their preferred direction for the extraction of expansion/contraction.

Since MTabs-cells, like V1-cells, cannot generate negative outputs, a pair of cells is
used to represent positive and negative components of the velocity in each direction.
Gradients of velocity have to be extracted from these four components. Fig. 2, for ex-
ample, illustrates MTrel-cells relevant to extracting counter-clockwise rotation ρ+ at a
location in the visual field. The outputs of cells Y+ and Y− in the figure correspond to
values of ∂vy/∂x extracted from the positive and negative components of the vertical
velocity, respectively, and outputs of X+ and X− to the value of (−∂vx/∂y) extracted
from those of the horizontal velocity.

MST-Cells. Each cells of layer MST gathers outputs of MTrel-cells from a very large
area and detect the types of optic flow, such as rotation or expansion/contraction. The
optic flow of a large visual field, ρ̄ or δ̄, can thus be extracted independently of the
location of its center. We write ρ̄+ and ρ̄− to represent MST-cells extracting counter-
clockwise (ρ̄ > 0) and clockwise (ρ̄ < 0) rotations, respectively. We also write δ̄+ and
δ̄− to represent MST-cells extracting expansion (δ̄ > 0) and contraction (δ̄ < 0).

Mathematically, the operation performed by a counterclockwise-rotation selective
MST-cell, for example, can be expressed roughly by

ρ̄+ =
∑
S

(
ϕ

[
∂vy

∂x

]
+ ϕ

[
−∂vx

∂y

])
(4)

because the outputs of MTrel-cells do not take negative values. Here, ϕ[ ] represents a
function that takes the positive component of its argument, namely, ϕ[x] = max(x, 0).

It should be noted here that an MST-cell adds responses of MTrel-cells directly
without introducing interneurons. Although we showed an illustration like Fig. 2 above,
this does not mean that an independent cell like ρ+ really exists in the network.

Sharper Direction Tuning Curves. In the explanations up to here, we have made
discussions assuming that the direction selectivity (or the tuning curve) of V1-cells



Neural Network Model for Extracting Optic Flow 459

takes a cosine curve. If it follows a cosine curve, the velocity in any direction can be
represented by two pairs of cells representing the velocity in two orthogonal directions,
namely, by four cells of preferred directions of 0◦, 90◦, 180◦ and 270◦. The direction
selectivity of V1- and MT-cells of animals, however, is usually slightly sharper than a
cosine curve. In the computer simulation, we prepare cells of eight different preferred
directions. In other words, our model uses, not only horizontal and vertical components
of velocities, but also velocity-components in another set of orthogonal axes rotated
by 45◦.

4 Computer Simulation

The neural network is simulated on a computer. The stimuli given to the retina are
black-and-white random-dot patterns that are moving.

The mechanism of extracting velocity by V1-cells is abbreviated in the present sim-
ulation. We assume that the output of each V1-cell is proportional to the velocity of the
dot that drops in its receptive field, and that velocity-tuning of V1-cells follows a cosine
curve.

Fig. 3 shows a response of the network to a random-dot pattern rotating counter-
clockwise. Each square in the figure represent a cell-plane. The output of each cell is
shown by the darkness of a dot in the figure.

Each cell-plane of layer MST consists of nine cells, which have receptive fields of
the same characteristics, but at different locations. It can be seen from the figure that
all ρ̄+-cells, which extract counter-clockwise rotation, exhibit strong responses inde-
pendently of the locations of their receptive fields, while all other MST-cells are silent.

retina V1 MTabs

exc inh

MTrel

ρ+ ρ− δ + δ −

ρ−+

ρ−−

δ−+

δ−−

MST

Fig. 3. A response of the model to a random-dot pattern rotating counter-clockwise
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This means that MST-cells extract the counter-clockwise rotation correctly without be-
ing affected by the location of the center of the rotation.

5 Discussion

In this paper, we have proposed a neural network model that extracts optic flows and
demonstrated with computer simulation that the MST-cells in our model respond to
optic flow in a similar way as MST-cells in the biological brain.

We have shown that rotation and expansion/contraction can be extracted in our
model, not by neural networks of different architectures, but by neural networks of
the same architecture by simply changing the relative locations between inhibitory and
excitatory areas in the receptive fields of MTrel-cells. More specifically, we hypothesize
that the difference in the relative location of the inhibitory to the excitatory areas create
four different groups of MTrel-cells, which take charge of extracting ρ+, ρ−, δ+ and
δ−; and hence four different types of MST-cells, ρ̄+, ρ̄−, δ̄+ and δ̄−.

Existence of such MTrel-cells in the biological brain are suggested by several reports
on single cell recordings from the visual area MT of macaque monkeys. For example,
Tanaka, et al. reported MT-cells that are thought to respond to relative motion [8]. Xiao,
et al. reported that, in half of the MT-cells, antagonistic surround was asymmetric, and
the inhibitory area was located in a single region on one side of the excitatory area of
the receptive field [9].

Graziano, et al. recorded MST neurons that respond preferentially to spiral motions
[5]. Our model can also emulate well these MST-cells, if we properly choose MTrel-
cells, from which the MST-cell receive signals.
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Abstract. An n-class problem is decomposed into n two-class problems. 
Naturally, modular multilayer perceptrons (MLPs) come into being. A single- 
output MLP is behalf of a class and trained by a two-class learning subset. A 
training subset only consists of all samples from a special class and a part 
samples from the nearest classes. If the decision boundary of a single-output 
MLP is open, its outputs are amended by a correction coefficient. This paper 
clarifies such a fact that the generalization of a single-output MLP is seriously 
affected by the sample disequilibrium situation. Therefore, the samples from the 
little class have to be multiplied an enlarging factor. The result of letter 
recognition shows that the above methods are effective. 

1 Introduction 

Classification accuracy and learning speeds are two main items of evaluations for 
classifiers. Undoubtedly, multilayer perceptrons (MLPs) with sigmoid activation 
functions have got a great success for solving such small-sample, low-dimensional and 
limited-class problems as the exclusive-OR (XOR) problem [1-2], the IRIS recognition 
[2-3], etc. And sometimes so are they for the small-sample and high-dimensional 
problems, for instance, the Sonar recognition [2-3]. It is a pity that up to now there are 
few reports in the literature for MLPs to successfully solve the large-sample, 
high-dimensional and multi-class problems. Hand-written digit recognition [4], a 
relatively typical large-scale learning dataset, is not a multi-class problem, because it 
has only 10 classes. Generally speaking, the structures and learning algorithms of 
classifiers suiting for the small-scale problems cannot be simply generalized for the 
large-scale problems. 

This paper focuses on modular single-hidden-layer perceptrons with sigmoid 
activation functions (SAFs) for solving the large-sample, high-dimensional and multi- 
class learning problems. 

2 Decomposition of Large-Scale Learning Sets 

After decomposing an n-class problem into n two-class problems, an obvious fact  
is that  a  great  number of  samples have not actually any use in  deciding the decision 
boundary of a specific subclass. Based on that, we can first decompose a complicated 
 



462 G. Daqi, S. Zhu, and W. Gu  

 

 

Fig. 1. Component parts of the training subset Ξ(j) 

 
n-class problem into n simpler two-class problems, and then get rid of those futile 
patterns for determining the decision boundary of a certain class, say ωj, as shown in 
Fig. 1. Obviously, only the samples in the shaded regions take part in. The detailed 
approach to determining a most economic training subset is as follows. 

(A) Draw an initial hyper-dimensional oblique ellipsoid, which center and half axis 
directs coincide with those of ωj, and which sizes of major and minor axes are 

determined by the max Mahalanobis distance )(
max

jd  between samples from ωj and 

the center μj. Let X∈RN×m is the original learning set, X(j)=( )(
1
jx ,…, )( j

px , …, )( j
Njx ) 

∈RNj×m the sample set from ωj, and μj and Σj the mean vector and covariance matrix 
of ωj respectively, the max Mahalanobis distance of the initial ellipsoid is 
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If Σj is singular or almost singular, X(j) is added a normal perturbation matrix ε∼N(0, 
0.011), namely )( j

newX =X(j)+ε. Here 1∈RNj×m is a matrix consisting solely of 1’s. 
(B) Calculate the number N~j0 of samples that are included within the initial ellipsoid 

and from the other classes. Supposed xp∈X and xp∉X(j), N~j0 is calculated by the 
following iterative loop: 
N~j0=0. 
For p=1:N-Nj 

( ) ( ) ( )2)(
max

1 jT
jpjjp dif ≤−− − μxμx  

N~j0←N~j0+1 
End 

(C) Determine the max radius of the extended ellipsoid. Our starting point is that the 
more the samples from the other classes are included within the initial ellipsoid, the 
larger the max radius of the extended one is. The max radius of the extended 
ellipsoid can be determined by 

( ) )2(1 )(
max0~

)(
max

j
jj

j dNND +=  

If N~j0=0, )(
max

)(
max 100 jj dD = . 

−Training subset ~ωj 

−Training class ωj 

−Validation subset ~ωj 

0 x1 

x2 

μj 

 )(

max

j
d  

Extended ellipsoid Initial ellipsoid 



 A Modular Single-Hidden-Layer Perceptron for Letter Recognition 463 

 

(D) Form the finally learning subset Ξ(j), which consists of all the samples within the 
extended ellipsoid. Ξ(j) can be determined by the following loop: 
Ξ(j)(0)= X(j). 
k=0. 
For p=1:N-Nj 

( ) ( ) ( )2)(
max

1 jT
jpjjp Dif ≤−− − μxμx  

Ξ(j)(k+1) ←Ξ(j)(k)+xp
 

k←k+1 
End 
N~j=k. 
N(j)=Nj +N~j. 

In brief, the final learning subset Ξ(j) is only made up of the samples both X(j) from ωj 
and X(~j) from the other categories that are most neighboring to ωj. 

3 Structure and Generalization of Modular MLPs 

3.1 Modular Single-Hidden-Layer Perceptrons 

In correspondence with the decomposition of a complex n-class problem into n simple 
2-class problems, the paper proposes a type of modular MLP ensemble. For an n-class 
problem, there exist n MLP modules, and each module is with a single-output structure. 
After the structures of all modules are determined by learning, the module with the 
maximum output max(ypj) gives the label of sample xp. 

3.2   Amendment of Outputs of Many-to-One MLPs 

Fig. 2 describes the generalization regions of three MLPs with the same structure, and 
all have the classification accuracy of 100% for the training samples from class ωj, but 
quite different recognition correct rate for the test set. The recognizing accuracy for the 
test set depends upon whether or not the generalization regions coincide with the 
distribution regions at the best degree. 

Generally speaking, if the margins between different classes are small, the 
magnitudes of weights and thresholds in an MLP ought to be relatively large in order to 
widen the margins. It is not suitable to take the real output of an MLP as the grade of 
membership of sample x. In other words, the real output yj of MLP j should be added a 
correction coefficient. The real output of a one-output MLP is related to both the 
input-to-hidden and the hidden-to-output weights. Here, we add an amended term to the 
real output, namely 

( ) ( ) )3(
2

1
expexp

1

2
2 −

−−−=
=

m

i ji

jii
jjj

x
yy

σ
μ

ρ x  

 
 



464 G. Daqi, S. Zhu, and W. Gu  

 

 
Fig. 2. Different generalization regions of a structure-fixed MLP 

 

where jy  is the output of MLP j corresponding to the mean vector μj of class ωj, and 

σji is the ith mean variance component of ωj. When x is far from μj, the second term on 
the right side of (3) will quickly lessen. For example, if |x-μj|≥3|σj|, the second term is 
equal to e-4.5≤ 0.011. The grade of membership of x will be ρj(x)≤0.011 on condition 
that |x-μj|≥3|σj|, because the first term on the right side of (3) is not larger than 1.0. 

3.3    Sample Disequilibrium Problems in Training Subsets 

Without a doubt, if the number of samples in a two-class problem, the decision 
boundary of the corresponding MLP will be close to the central sections of margins. In 
fact, the number of samples in training subsets is often unequal. Under the situation, the 
final decision boundaries will be closer to the classes with fewer samples. 

Let us illustrate the problem by a simple example. Suppose two classes ω1 and ω2 are 
in the 1-dimensional space, ω1 only consists of one sample situated at point 0, and ω2 10 
samples all located at point 1.0. We take a single one-to-one neuron with SAF to divide 
ω1 and ω2. When the decision equation is x-0.5=0, which is just the midpoint, the 
sum-of-squared error is 10×(1-1/(1+exp(-0.5)))2+(0-1/(1+exp(0.5)))2=1.5679. If the 
decision function is x=0, which coincides with point 0, the sum-of-squared error is 
10×(1-1/(1+exp(-1)))2+(0-1/(1+exp(0)))2=0.9733. How incredible it is! And it is just 
the learning result of an MLP using the least square method! As a result, the 
generalization performances of MLPs trained with the disequilibrated sample 
constructions will be quite poor. 

According to the above analysis, we can infer that the final decision boundary of ωj 
using MLP module j trained with the subset Ξ(j)=X(j)+X(~j) will be closer to X(j) because 
the number Nj in X(j) is often several times smaller than N~j in X(~j). This situation is 
quite disadvantageous for the test points that are a little farther from the decision 
boundary of ωj but belong to ωj. In order to solve the disequilibrated problems in the 
training subsets, the following method can be used. 

Add some virtual samples to the smaller part X(j). If )( j
px ∈X(j), the corresponding pth 

weight increment ( ))( j
pw xΔ  is added an enlarging factor N~j/Nj, otherwise the 

increment keeps unchanged. All one need to do is only to add judgment conditions in 

0 
x1 

x2 

Region  1

Region 2 

Region  3 ⎯Training class ωj 
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the programming. Let the pth first-order partial derivatives of the sum-of-squared Ej 
with respect to the weight components vjh and whi for )( j

px  are respectively 

( ) ( ) )(1)( j
phpjpjpjpjjhpjjh zyyytvEpv −−−=∂∂=Δ  (4) 
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All one need to do is just to add some judgments in the following loop: 

0=∂∂ jhj vE , 0)( =∂∂ j
hij wE . 

For p=1: N(j), 

If )( j
px ∈X(j) 
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End 

In that way, there is hardly any additionally computational burden! 

4 An Application Example-Letter Recognition 

Our objective is to identify 26 capital letters (from A to Z) [2]. There are 20,000 samples 
in total. Each input component is scaled to fit into a range of integer values from 0 
through 15. We typically take the first 16,000 samples for the training set and the 
remaining 4,000 ones for the test set. Any 16-s-26 MLP falls to solve the problem when 
taking all the 26 letters and 16,000 samples as a whole, no matter how careful to select 
the number s of hidden nodes and the learning parameters. 

Here we take class “C” as an example to go in details on the generation of the 
training subset Ξ(C) as well as the training process of MLP module “C”. 

There are Nc=594 samples in class “C”. According to (1), the max Mahalanobis 
distance of the initial ellipsoid is 8.2915, and there are 4,764 samples from other classes 
included in the ellipsoid. Therefore, the max radius of the extended ellipsoid is 9.3266, 

Table 1. Recognition rates (%) of different classifiers for the test set 
 

Classifier 
G-ARTM

AP 
Genetic IB1 BICA CNNDA C4.5 

Recognition rate 95.95 82.7 95.7 90.3 81.7 77.7 

Ref [6] [7] [8] [9] [10] [9] 

Classifier K-NN NB GBML BML M-MLP M-MLP 

Recognition rate 89.9 74.9 82.7 87.5 79.3 95.75 

Ref [9]  [9] [9] [9] [11] 
Our 

method 

BICA: Bayesian Independent Component Analysis. C4.5: A Decision Tree. GBML: Gaussian Bayesian 
Maximum Likelihood. NB: Naive Bayesian. CNNDA: Cascade neural network design algorithm. 
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the number of samples from the other classes is N~C=6,685. We find that the 6,685 
samples are from all the other 25 classes. As a result, the final training subset consists of 
594+6,685=7,279 samples, namely Ξ(C)∈R7,279×16, X(C)∈R594×16, and X(~C)∈ R6,685×16. 
The enlarging factor of weight increment is N~C/NC= 6,685/594=11.2542. 

According to the equation s0=int 2log2m  [5], the initial number of hidden nodes is 
s0=11, or the initial structure of MLP module “C” is 16-11-1. Let the learning 
parameters η=0.00035 and α=0.0075. After finishing the first learning round with 
10,000 iteration epochs and 2,775 sec (The time for PIV 2.6G CPU, 256M RAM, the 
same below), the root- mean-squared (RMS) error is 0.1084. The result of SVD for the 
hidden output matrix Z(C) is (417.47, 64.47, 50.11, 30.97, 24.31, 17.26, 16.64 9.08, 
5.67, 4.67, 2.13)T. According to [5], it is enough to select s=7 hidden nodes. Through 
the second learning round using a 16-7-1 MLP, iterating 10,000 epochs and taking 
1,271.3 sec, the final RMS error is 0.0803. The 16-7-1 MLP “C” reaches the 
classification correct rates of 586/594=98.65% for the training subclass “C”, and 
135/147=95.07% for “C” in the test set. What a surprised situation is that no one sample 
from the other classes is misclassified for the whole test set at the moment. 

After the real outputs of all MLP modules are amended, the final classification 
correct rates are 15,803/16,000= 98.88% for the training set, and 3,830/4,000=95.75% 
for the test set. What is the most important is that through learning the smaller subsets, 
the MLP modules have the same or even better generalization performances compared 
with learning the original training set. 

Table 1 is the comparisons of recognition accuracy of different methods for the test 
set. It is obvious that the presented modular MLPs are among the best classifiers. 

5   Conclusions 

When deciding the separate surface of a certain category, say ωj, the effects of those 
farther samples may be negligible. Therefore, a learning subset can be many times 
smaller than the original training set. Furthermore, this paper proposes the solution of 
sample disequilibrium problem in training subsets and the correct method of the final 
outputs of MLP modules. The results of letter recognition show that the presented task 
decomposition method and modular MLP classifiers can effectively solve the large- 
scale learning problems. 
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Independent of Position and Orientation
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Abstract. Small mobile robots typically have little on-board processing
power for time-consuming vision algorithms. Here we show how they
can quickly extract very dense yet highly useful information from color
images. A single pass through all pixels of an image serves to segment
it into color-dependent regions and to compactly represent it by a short
list of the average hues, saturations and color intensities of its regions; all
other information is discarded. Experiments with two image databases
show that in 90 % of all cases the remaining information is sufficient for
a simple weighted voting algorithm to recognize objects shown in query
images, independently of position and orientation and partial occlusions.

1 Introduction

Small, fast, vision-based mobile robots must process many images per second
to react in time. It does not matter so much if some object sometimes is not
properly recognized the first instant it is seen, provided the robot’s sequential
vision system (SVS) can use subsequent camera shots to incrementally increase
its confidence about whether or not the object is present in its visual field. In
principle such an SVS for dealing with uncertainty and noise can be implemented
by Bayesian sequential decision makers or learned by recurrent neural networks
[1,2,3].

The image pre-processor should be able to quickly produce a compact yet
informative description of the current image, to be fed into the SVS. So we are
interested in fast algorithms that often (but not necessarily always) produce
image descriptions containing all the information necessary for decent object
recognition. Of course, the more reliable the pre-processor, the less burden on
the SVS.

Many previous approaches to object recognition are computationally too de-
manding for the limited on-board computers of mobile robots, or permit only
small changes in object position and orientation, and few if any occlusions. Here
we propose a simple, fast, and rather reliable method based solely on the number
of image regions with similar color.

In what follows we will describe two methods, a fast one for image processing
and coding (Section 2), and another one for demonstrating that the image codes
convey sufficient information for object recognition, given a database of images

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 469–474, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(Section 3). The latter searches for a match in the database by judging simi-
larity between the query image and database images based on weighted votes.
Performance in terms of recognition rate and speed is evaluated in Section 4.

2 Processing Images

2.1 HSV Images

We represent images in HSV color space, which provides a good distinction
between three properties of a color: hue, saturation and illumination (value).
These properties are related to each other in Figure 1. HSV codes provide simple
ways of filtering out non-reliable color information conveyed by areas with low
illumination or low saturation (e.g., almost grey areas). The shaded parts in
figure 1 contain such non-reliable colors.

2.2 Region Extraction

Since every step in the recognition process should be fast, we use a very simple
region extraction algorithm loosely inspired by the intensity-based method pro-
posed by Tuytelaars and Van Gool [4]. From the top left to the bottom right of
an image, every pixel j is compared to the regions of its upper and left neighbor,
if these neighboring pixels exist (at borders the pixel j is only compared to the
regions of its upper or left neighbor, depending on which pixel exists). We ask
whether the differences between the hue (hj), saturation (sj) and value (vj) of
pixel j and the average hue (hi), saturation (si) and value (vi) of region i are
smaller than the thresholds th, ts and tv, respectively:

|hj − hi| < th, |sj − si| < ts, |vj − vi| < tv (1)

Note that the hue describes a circle as in figure 1. The pixel j is added
to the most similar region or, if inequality 1 does not hold for both regions, a
new region is formed. When the pixel j is added to a region, the other region
adjacent to j is merged with the region containing j if |Pj − Pk| < tp holds for
hue, saturation and value. Pj and Pk again stand for the average hue, saturation
and value of the region containing pixel j and the region adjacent to pixel j
respectively. Comparing to the average characteristics of the neighboring region
instead of to the neighboring pixel has the advantage that more coherent regions
are generated. This is due to the fact that the average values change more slowly
when a region grows, so pixels in fast changing gradients are not added to a
region.

After all the regions have been extracted, regions with a very small area
(e.g. less than 50 pixels) and regions with their average saturation and value in
the shaded regions of figure 1 are discarded. One reason why small regions are
abandoned is that there is a high chance that they will not appear on a picture
of the same object on a different scale or viewed from a different angle. Another
reason is that smaller regions are more sensitive to the distortions caused by
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pixels on the edge of that region. We save the average hue, saturation and value
of every region in a database, since this information is completely position and
orientation independent.

3 Querying Images

3.1 Initial Selection

The following object recognition procedure is not mandatory for mobile robots
that just need to compactly encode images and feed them into an SVS-based
controller, without having to match them against a database. But it serves to
demonstrate that the image codes retain essential information about the depicted
objects. It may be possible to further speed up the straight-forward procedure
below, e.g., by rearranging the database in hierarchical form.

To search for images of objects similar to the one in a query image, we first
extract the latter’s regions as above. Every region in the query image is compared
to all regions of all images in the database. To avoid wasting time on computing
complex distance measures between very different regions, we first discard those
that are clearly dissimilar to the queried region. This is done in a way similar to
the one of Nene and Nayar [5]: All regions are considered as points in a 3D space
with hue, saturation and intensity (value) on the axes. A box is computed with
the query region in the center and the sides perpendicular to the three axes.
Database regions outside this box are discarded. Thus groups of similar regions
are formed for every region in the query image.

3.2 Weighted Voting

All database regions i within each group get a weighted vote wij . This vote is
determined by the distance

dij = 5−
1
2 ((vi − vj)2 + (si coshi − sj coshj)2 + (si sinhi − sj sinhj)2)

1
2 (2)

in color between a region i in the database and a region j in the query image.
We compensate for the distinctiveness of a query region and the complexity of a
database image. The distance between the average hue, saturation and value of
two regions is computed as in [6]. The distinctiveness of a region is determined on
the basis of how many regions in the database survive after the initial selection in
section 3.1. The larger the number of regions in the box, the less distinctive the
region. To give more weight to more distinctive regions, we divide by the number
of remaining regions, nsimilar . It is also useful to compensate for ‘complex’ images
with many regions, which have a greater chance of featuring a region close to
a query region. That is why we divide by the number of regions in the image
containing this region, nrpi. The total vote per region becomes

wij =
1− dij

nsimilar · nrpi
(3)

The total vote for an object is given by the sum of the weighted votes for all
regions of that object.



472 M. van de Giessen and J. Schmidhuber

h
s

v

Fig. 1. The HSV color space in cylin-
drical form. Gray areas contain non-
reliable color information.

Fig. 2. The color information (hue) in low
quality JPEGs is unreliable (left), com-
pared to this information in a high quality
image of the same object (right).

4 Experimental Results

4.1 ZuBuD Buildings Database

We tested both recognition rate and speed on a databases containing real-world
images, resampled to 320× 240 pixels, that were not made under special simpli-
fying conditions. Our first choice was the ZuBuD database [7] containing 1005
pictures of 201 buildings in Zürich, taken outside and under varying weather
conditions. The database comes with 115 query images (low-quality jpegs, res-
olution 320× 240 pixels). For every queried image, we list the top five matches
produced by our algorithm. Despite the low quality of color information in the
queries, 82 images are recognized correctly, 29 images are within the top five, and
4 outside the top five. The color information in the query images is of a very low
quality, as can be seen clearly in Figure 2, where the hue from a query image and
a database image from the same building are shown next to each other. This lack
of reliable color information prevented a correct recognition. The query image in
the top row of Figure 3 exemplifies our algorithm’s insensitivity to obstructions,
such as trees.

To test performance on high-quality images (easily producible on small mo-
bile robots), we built a new database containing 4 images of each of the 201
objects, using the 5th image of every object as a query image. The improved im-
age quality led to substantially improved recognition rate: 183 objects correctly
recognized, 13 in the top 5 matches, and only 5 out of 201 outside the top 5.
The second row of figure 3 shows our algorithm’s insensitivity to orientation and
position.

The reasons for the five failures and some of the non-perfect results in the
top five seem to be twofold. One reason is that these database and/or query
images mainly have regions with very low saturation. The second is that some
of these query images contain only a rather small part of the object. The last
row of figure 3 shows one of the misses due to low saturation. For a learning
robot with an SVS based on adaptive recurrent neural networks [3] these misses
will not pose a big problem, since they will be identified as noise by the learning
algorithm.
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Query 1 2 3 4 5

Fig. 3. Three examples of query images (left) and the top five similar objects according
to our recognition algorithm. The top row shows the robustness against occlusions, the
middle row shows the independence of position and orientation and the third row shows
a miss, because of the low saturation of the object in the query image.

4.2 Coil-100 Object Database

Our method is not specialized on the ZuBuD database. It is designed to be
widely applicable. We hardly tuned any parameters; one just has to select the
tresholds of Section 3.1 as small as possible to speed up the recognition process.
To illustrate the method’s generality, we also applied it to the Coil-100 database
[8], which contains 100 objects photographed from various angles. We placed
images of objects taken under angles 0, 100, 215, 270 and 325 degrees in the
database and used the 25 degree views as query images. Results: 84 recognized
objects, 12 in the top 5, 4 outside the top 5. Again the non-recognized images
mainly contain areas in various shades of gray, discarded for their poor color
information.

4.3 Performance in Terms of Speed

We report results for a standard Pentium 4 2.8 GHz machine. The two time
consuming parts of the recognition process are region extraction and the search
for similar regions in the database. The latter is not mandatory for robots that
just need to compress the relevant information for an SVS. The speed of the
former depends on image complexity, but even complex images like those in the
ZuBuD database were processed within 0.19s.

Database search speed linearly depends on the number of regions in the
database and on the number of regions found in the query image. The database
for the second experiment contains 93682 regions. On average 177 regions are ex-
tracted from an image in the ZuBuD database. An average search takes roughly
0.7s, including region extraction in the query image. Simple objects speed up
the process: Recognizing one of the 100 objects in the Coil-100 database takes
roughly 0.18s, including query image processing.
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5 Conclusions

We propose a simple, fast, rather reliable algorithm for image coding and recogni-
tion. It uses a simple color-based region extractor and an object matcher based
on weighted voting. The former works in HSV color space, discarding regions
with unreliable color information, keeping only reliable, position and orientation
independent color data to encode objects. Image similarity is measured by votes
whose weights depend on the similarity between the regions of a query image
and database images; we compensate for the number of similar regions and re-
gions per database image. On the ZuBuD and Coil-100 databases we obtain
satisfactory recognition rates and speeds.

It should be noted, however, that this work is quite preliminary; more in
depth studies are necessary to compare our algorithm to previous proposals in
the literature. This is the subject of ongoing work.
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Abstract. We present two new methods which extend the traditional
sparse coding approach with supervised components. The goal of these
extensions is to increase the suitability of the learned features for clas-
sification tasks while keeping most of their general representation per-
formance. A special visualization is introduced which allows to show the
principal effect of the new methods. Furthermore some first experimental
results are obtained for the COIL-100 database.

1 Introduction

Sparse coding [4] searches for a linear code representing the data. Its target is
to combine efficient reconstruction with a sparse usage of the representing basis,
resulting in the following cost function:

PS =
1
2

∑
i

⎛⎝xi −
∑

j

cijwj

⎞⎠2

+ γ
∑

i

∑
j

Φ (cij) . (1)

The left reconstruction term approximates each input xi = (xi1, xi2, . . . , xiK)T

by a linear combination ri =
∑

j cijwj of the weights wj = (wj1, wj2, . . . , wjK)T ,
where ri is called the reconstruction of the corresponding xi. The coefficients cij
specify how much the jth weight is involved in the reconstruction of the ith data
vector. The right sparsity term sums up the cij . The nonlinear function Φ (e.g.
Φ(·) = |·|) increases the costs, the more the activation is spread over different cij ,
and so many of them become zero while few are highly activated. The influence
of the sparsity term is scaled with the positive constant γ.

An adaptation of the sparse coding is the nonnegative sparse coding [7]. In
this approach the coefficients and the elements of the weights are kept positive.
This forces the weights to become more distinct and produces a parts-based
representation similar to that obtained by nonnegative matrix factorization [2]
with sparseness constraints [1].

In Sect. 2 we introduce two new class-specific extensions of the nonnegative
sparse coding. We visualize their principal effect with a simple 2D example to
analyze the influence of certain parameters of the cost functions. Furthermore
some first experimental results are obtained for the COIL-100 database [3] in
Sect. 3. Section 4 gives a short conclusion of the results.
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2 Class-Specific Sparse Coding

The sparse coding features are useful for general image representation but lack
the property of being class-specific, and so their use in classification tasks is
limited. Our two new approaches extend the nonnegative sparse coding with
supervised components. In the first approach the class information has direct
effect on the coefficients and it will therefore be referred to as coefficient coding:

PC =
1
2

∑
i

⎛⎝xi −
∑

j

cijwj

⎞⎠2

+ γ
∑
i,j

cij +
1
2
α
∑

j

∑
i,ı̃

Qi �=Qı̃

cijcı̃j . (2)

The right coefficient term causes costs if coefficients belonging to the same weight
wj are active for representatives xi and xı̃ of different classes Qi and Qı̃ respec-
tively. Qi stands for the class of a data vector xi. The influence of the coefficient
term is scaled with the positive constant α. In the second approach the class in-
formation has a more direct effect on the weights and it will therefore be referred
to as weight coding:

PW =
1
2

∑
i

⎛⎝xi −
∑

j

cijwj

⎞⎠2

+ γ
∑
i,j

cij +
1
2
β
∑

j

∑
i,ı̃

Qi �=Qı̃

(
xT

i wj

) (
xT

ı̃ wj

)
. (3)

The right weight term is similar to a linear discriminator and causes costs if a
wj has a high inner product with representatives xi and xı̃ of different classes
Qi and Qı̃ respectively. The weight term is scaled with the positive constant β.

The minimization of both cost functions is done by alternately applying
coefficient and weight steps as described in [7]. In the coefficient step the cost
function is minimized with respect to the cij using an asynchronous fixed-point
search, while keeping the wj constant. The weight step is a single gradient step
with a fixed step size in the wj , keeping the cij constant.

In Fig. 1 we introduce our special visualization schematically and apply it
to the nonnegative sparse coding, and in Fig. 2 it is used to compare coefficient
and weight coding.

The coefficient coding restricts the use of features through different classes.
This means that each feature concentrates on a single class and so the influ-
ence of other classes is weakened. There is no increase in discriminative quality,
because this would require a strong interaction of different classes. The weight
coding instead has a more direct effect on the features and removes activation
from them, that is present in different classes. So the features represent more
typical aspects of certain objects and so their suitability for object representa-
tion and recognition is increased. The cost function shows similarity to Fishers
linear discriminant and the MRDF approach [5] but does not minimize the intra
class variance. The advantage of the weight coding is that it can produce an
overcomplete representation while the number of features in the Fisher linear
discriminant is limited by the number of classes and in the MRDF by the num-
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Fig. 1. a) Schematic description of visualization. In the visualization the positions of
the data vectors, their reconstructions and the weights are plotted for different values
of a control parameter of the cost function, e.g. γ = γmin . . . γmax. The data vectors
xi lie on the unit circle. The shown wj = dwj are the weights which have been scaled
by a factor d = (γmax − γ)/(γmax − γmin). Similarly the ri = dri = d j cijwj are
the reconstructions scaled by the same factor. The scaling causes the ri and the wj to
move towards the origin with increasing γ. This simply should increase the ability to
distinguish the points belonging to different values of γ (see b). Because the weights
wj are normalized, the distance of the wj from the origin is as big as the scaling factor
d. The distance of the ri from the origin is also influenced by the cost function itself.
In the nonnegative case it is always shortened, since low values of the basis coefficients
cij are enforced. From the position of the ri and the wj it is possible to determine the
coefficients cij and hence to judge the sparsity of the reconstructions of certain xi. For
example x2 is reconstructed sparsely, because it only uses w2. In the visualization the
linear combinations will not be plotted and there will be points for each ri and w1, w2

for each value of γ. The points belonging to the same value of γ could be determined by
counting, preferably from the unit circle to the origin. b) Visualization of the influence
of the parameter γ on the nonnegative sparse coding. Two scaled weights and the
scaled reconstructions of 10 data vectors are plotted for 31 different influences γ of the
sparsity term. The scaling factor is d = (γmax −γ)/(γmax −γmin). The reconstructions
belonging to successive values of γ are connected. For γ = γmin → 0 the algorithm
searches for the sparsest perfect reconstruction. And since d = 1 in this case the ri

lie directly on the xi. The corresponding wj are aligned with the outermost xi. With
increasing γ the points move towards the origin. Each ri gives up the use of the less
suitable weight and therefore the ri unite to two main paths. Each wj aligns to the
center of the ri which are assigned to it.

ber of dimensions in the data. The two parameters have to be chosen carefully.
When the influence of the sparsity term is too weak, many features tend to
represent the same activation.
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Fig. 2. Visualization of the influence of the parameters α and β on the coefficient and
weight coding. The 10 data vectors are now assigned to 2 classes and again are recon-
structed using two weights. The influence of the sparsity term is the same constant
value γ = 0.05 in both cases. a) In the coefficient coding the influence α of the coef-
ficient term varies in a defined range. The scaling is d = (αmax − α)/(αmax − αmin).
With increasing α the points are pulled to the origin. Each weight is forced to specialize
on a certain class and therefore moves to the center of this class. There is no gain in
discriminative power. b) In the weight coding the influence β of the weight term varies
in a defined range. The scaling is d = (βmax − β)/(βmax − βmin). With increasing β

the points are pulled to the origin. The suitability of the weights for different classes
is reduced and each aligns to activation which is most typical for the class it is repre-
senting. So one weight moves towards the x-axis and the other one towards the y-axis.
In the nonnegative case this can be referred to as a gain in discriminative power.

3 Experimental Results

To underpin the qualitative difference between coefficient coding and weight
coding both approaches have been applied to a more complex problem. Nine
car objects and nine box objects from the COIL-100 database [3], each with 72
rotation views, were combined to two classes (see Fig. 3). Fifty features were
trained using the same influence γ = 0.1 of the sparsity term and relative high

Cars

Boxes

Fig. 3. Two class problem. Nine cars and nine boxes were combined to two classes.
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Table 1. The table shows the values of the different terms, neglecting their actual
influences (γ, α, and β )to the cost functions. Note that values in brackets were not used
for optimization, but are shown to highlight qualitative differences between features.

Reconstruction Sparsity Coefficient Weight

Nonneg. Sparse Coding 4.182 · 104 4.293 · 104 (1.726 · 107) (1.428 · 1010)
Coefficient Coding 4.682 · 104 3.872 · 104 5.709 · 105 (1.731 · 1010)
Weight Coding 4.031 · 104 4.976 · 104 (2.393 · 107) 1.035 · 1010

Coefficient Coding Weight CodingNonnegative Sparse Coding

Fig. 4. Features for three approaches. For the visualization, we arranged the features
in the following way: Each feature is assigned to the class in which it is most often
detected. A feature is detected if its normalized cross-correlation with an image ex-
ceeds a feature-specific threshold. This threshold was determined as to maximize the
mutual information conveyed by the detection of the feature about the classes (see [6]).
The more car-like features start at the top-left and the more box-like features at the
bottom-right. The features in one class are arranged by descending mutual information.
Therefore the least informative features of the two classes meet somewhere in the mid-
dle. The features of the nonnegative sparse coding and the coefficient coding are very
similar to each other. The features of the weight coding are sparser and concentrate on
more typical class attributes, like certain parts of the cars or the vertices of the boxes.

values for the influence α = 1 · 10−3 of the coefficient term and the influence
β = 5 · 10−7 of the weight term.

The resulting features are shown in Fig. 4. Table 1 lists the values of the terms
of the cost functions after optimization. These values are useful to interpret the
effect of our two new approaches compared to the nonnegative sparse coding:
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Since the coefficient term puts a penalty on the use of features across different
classes, a splitting into partial class problems is to be observed, leading to a
reduced feature basis for each class. As a result, there is an increase of the
reconstruction costs and a decrease of the sparsity costs. The demand for sparsity
of the coefficients in the nonnegative sparse coding has an opposite effect on
the weights, forcing them to become very view-specific and leading to a higher
reconstruction cost. In the weight coding the weight term removes activation
from the features. They become less view-specific, which causes a decrease of
the reconstruction costs, but an increase of the sparsity costs.

4 Conclusion

In this paper two new class-specific extensions of the nonnegative sparse coding
were introduced. It was shown that the coefficient coding, by restricting the use
of features through different classes, does not increase the discriminative qual-
ity of the features, but instead tends to cause a splitting into partial problems,
using a distinct feature basis for representing each class. In contrast to that, the
weight coding directly penalizes the suitability of features for different classes
and so successfully combines representative and discriminative properties. This
combination produces features which are more suitable for object representation
than features with general representative quality only. The advantage of the
weight coding is that it can produce an overcomplete representation, whereas
most other approaches are using the covariance matrix directly, and so the num-
ber of features is limited by the number of dimensions in the data. The drawback
is that two parameters have to be tuned suitably. Also the intra class variance
is not reduced as e.g. in the MRDF approach. The evaluation of the usefulness
of the weight coding features in object recognition will be subject to further
investigations.
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Abstract. Digital multimedia data is dramatically being increased everyday 
since the Internet became popular. This increment in multimedia data increases 
adult image contents to the Internet as well. Consequently, a large number of 
children are exposed to these X-rated contents. In this paper, we propose an 
efficient classification system that can categorize input images into adult or 
non-adult images. The simulation shows that this system achieved 95% of the 
true rate whereas it reduces the false positive rate below 3%. 

1   Introduction 

The Internet has made people access more information than any time before and has 
become the major source of information. In the other hand, it also shows the dark 
side. Among the millions of Web sites, there are over 500,000 web sites related to 
pornography and other issues that are as harmful as poison to the children [1]. 

We propose a neural network based classification system that can classify input 
images into adult or non-adult images. The visual descriptors defined by MPEG-7 are 
used for extracting features for a given image. These features are used as inputs for 
the 2 class (adult, non-adult) neural network classification system. The simulation 
using the Color Structure descriptor shows that the system achieved 95% of the true 
rate, whereas it reduces the false positive rate below 3%. 

We will review several feature extraction and the image classification methods in 
the next section. The proposed image classification system using MPEG7 descriptors 
are detailed in the section 3. The simulation results and analyses of the image 
classifier will be discussed in the section 4. Finally the conclusion is given in  
section 5. 
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No. 0801-2004-0025). 
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2   Related Works 

There are two major approaches for adult image processing; one heavily depends 
upon a classic retrieval technique with image featuring, and another depends on an 
image mining technique, distinguishing adult images from normal images, using 
decision-boundary lines, rather than image featuring. The important point of the 
former is the feature extraction that is the very previous step of the image 
classification and that of the latter is the classifier itself, rather than the features being 
input to the classifier. 

Most of the previous works for image rating systems does not specify these two 
different approaches and just presents the systems as one module. This paper 
discusses two different image processing techniques, and proposes a novel method 
that maximizes advantages of each technique and minimizes disadvantages. 

2.1   Feature Extraction  

In the middle of 90s, researchers and engineers became interested in detecting adult 
images on computers when the World Wide Web (WWW) became popular. The first 
algorithm to detect naked people in images was researched in [2, 8]. The main idea of 
the research is effectively masking skin regions using the skin filter. If skin regions 
that passed mask tests are matched to persons’ figures, it is assumed that there are 
numerous naked parts in the image (e.g. the geometric filter). The algorithm detects 
whether or not the filtered skin color is matched to a specific body part in the whole 
image, rather than extracts primitive features helping effective classification. 

Another approach had researched in [7]. The algorithm was based on image 
contents, and classified adult images by extracting skin regions and feature vectors 
that are useful for the image classification. The feature vector consists of color, 
texture, contour, placement, and relative size information for a given region. The 
advantages of this algorithm are that the importance of features is decided by the 
generic algorithm and the feature extraction is systematically (not experimentally) 
executed. Especially this algorithm is good to be applied to web sites rather than adult 
images. For instance, as a result of adopting the algorithm on 20 sites, the success rate 
is 89% and 11 images per second are executed. 

The color histogram is one of the most common methods in the image 
classification. It is an effective method for the large size of data. A simple experiment 
based on the color histogram results in 80% of the detection rate and 8.5% of the false 
positive rate. 

[6] proposed an efficient feature extraction system using MPEG-7 descriptor for 
the adult image classification. The system used three descriptors out of visual 
descriptors standardized by MPEG-7; edge histogram descriptor (EHD), color layout 
descriptor (CLD), homogeneous texture descriptor (HYD). They are effective to the 
adult image classification. The system also has the image database, which compares 
the descriptor value of a given image to that of images from the database, and 
retrieves 10 similar images with class information. The class of the given image is 
classified as the class that the majority of image is classified.  Even though the results  
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showed that MPEG-7 descriptors can be used as very efficient features in the adult 
image classification, the classification method used in his paper is merely the k-
nearest neighbor method. 

The MPEG-7 descriptor is applied for extracting features in this paper. MPEG-7 
has been developed by distinguished researchers for a long time, and has much 
effective definitions of descriptors. The visual area of MPEG-7 includes the color 
descriptor, the shape descriptor, the texture descriptor, and the movement descriptor. 
In the step of the feature extraction, the proposed system concentrates on finding 
descriptors to be used for the input of neural networks, rather than simply extracting 
values of features for descriptors. 

2.2   Image Classification 

As database techniques rapidly became advanced, image classification techniques that 
use statistical methods have improved a lot [3]. In particular, the field of data mining 
has been much improved, and a new field of study has appeared; image mining [4]. 
Thus, many research groups study and research the field of image classification via 
the image mining technique. The image classification can be categorized as the 
Neural Network, the Decision-Tree Model, and the Support Vector Machine. 

Neural Network based method is the most common technique. This method 
concentrates on the study of decision-boundary surface telling adult images from non-
adult images via the computer-based classification rule, called perceptron [10, 11]. An 
Artificial Neural Network (ANN) is an information processing paradigm inspired by 
biological nervous systems, such as the brain process information. The key element of 
this paradigm is the novel structure of the information processing system. It is 
composed of a large number of highly interconnected processing elements (neurons) 
working in unison to solve specific problems. ANNs, like people, learn by examples. 
An ANN is configured for a specific application, such as pattern recognition or data 
classification, through a learning process. Learning in biological systems involves 
adjustments to the synaptic connections that exist between the neurons. 

The decision tree model recursively partitions an image data space, using variables 
that can divide image data to most identical numbers among a number of given 
variables. This technique can give incredible results when characteristics and features 
of image data are known in advance [9]. 

The support vector machine technique is a brand-new image classification method. 
The purpose of the method is to find decision lines or surfaces distinguishing data 
from others like the technique using neural networks. The technique using the neural 
networks is just to find decision surfaces classifying the training data. But, SVM is to 
find decision surfaces maximizing the distance of two sets. Jiao et al. experimented on 
adult image classifiers using SVM [5]. 

We employ the Neural Network for the classification module in this paper.  Inputs 
for the neural network are fed from the feature values extracted from MPGE-7 
descriptors. Since the various descriptors can represent the specific features of a given 
image, the proper evaluation process should be required to choose the best one for the 
adult image classification. 



484 W. Kim et al. 

 

3   Proposed System 

3.1   Overall System Flow 

The system uses the MPEG-7 XM program in the extraction phase to extract features 
from images in the database [12]. In the image database, there are about 9000 images 
(adult: 4500, non-adult: 4500) for training and testing. The system can use 6 
descriptors; Dominant Color, Color Structure, Color Layout, Edge Histogram, 
Homogeneous Texture, and Region Shape. In the feature extraction module, the 
feature information is generated for each descriptor to extract the necessary features 
for the image classification. In the neural network classification step, the extracted 
descriptors are used for the input value and the neural networks are trained according 
to the 2 classes (adult and normal images). 

3.2   Feature Extraction 

By executing the MPEG-7 XM program, the features of training images are extracted 
in XML format. The feature information in XML is parsed and normalized into values 
between 0 and 1 with respect to values generated by each descriptor. These 
normalized values are used as inputs for the neural network classifier.  After the phase 
of extracting input data used in the neural network by MPEG-7 XM, each image is 
attached with class information.  

3.3   Classification 

The neural network classifier is trained for the relation of the feature values and the 
corresponding class by modifying the weight values between nodes. We use the 
backpropagation algorithm to train the network. The classifier consists of input layer, 
output layer, and multiple hidden layers. The number of input nodes depends on the 
dimension of each descriptor, whereas the number of output nodes is two. The class 
information for the two output nodes is represented as (1,0) for adult images and (0,1) 
for normal images. In the testing process, as in the training process, the system 
extracts features from query images using MPEG-7 descriptors, and classifies query 
images using the neural network that generated by the training process.

4   Simulation and Result 

In the simulation, we use MPEG-7 reference software: the eXperimentation Model 
for feature extraction. The eXperimentation Model (XM) software is the simulation 
platform for the MPEG-7 Descriptors (Ds), Description Schemes (DSs), Coding 
Schemes (CSs), and Description Definition Language (DDL). Besides the normative 
components, the simulation platform needs some non-normative components, 
essentially to execute some procedural code to be executed on the data structures. The 
data structures and the procedural code together form the applications [12]. 

We simulated the 2-class image classification using 6 descriptors, such as 
Dominant Color, Color Structure, Color Layout, Edge Histogram, Homogeneous  
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Texture, and Region Shape. The classification module consists of 2 hidden layers, 
each with 10 nodes. The learning rate is 0.001 and the iteration number for training is 
100,000. 

Table 1. True / False rates of each Descriptor 

Color layout 

Positive Negative Total 

True 
(rate) 

2107 
(37.391) 

2618 
(46.46) 

4725 
(83.851) 

False 
(rate) 

207 (3.673)
703 

(12.476) 
910 

(16.149)  

Color structure 

Positive Negative Total 

True 
(rate) 

2551 
(47.267)

2570 
(47.619) 

5121 
(94.886) 

False 
(rate) 

143 
(2.65) 

133 
(2.464) 

276 
(5.114)  

Dominant color 

Positive Negative Total 

True 
(rate) 

1106 
(29.082) 

1524 
(40.074) 

2630 
(69.156) 

False 
(rate) 

109 
(2.866) 

1064 
(27.978) 

1173 
(30.844)  

Edge histogram 

Positive Negative Total 

True 
(rate) 

2940 
(57.908)

1545 
(30.432) 

4485 
(88.34) 

False 
(rate) 

244 
(4.806) 

348 
(6.854) 

592 
(11.66)  

Homogeneous texture 

Positive Negative Total 

True 
(rate) 

493 
(9.053) 

2626 
(48.219) 

3119 
(57.272) 

False 
(rate) 

108 
(1.983) 

2219 
(40.745) 

2327 
(42.728)  

Region shape 

Positive Negative Total 

True 
(rate) 

2033 
(36.239)

1650 
(29.411) 

3683 
(65.65) 

False 
(rate) 

1159 
(20.66) 

768 
(13.69) 

1927 
(34.35)  

Table 2. Test of Neural Network 

Descriptor 
(dimension) 

Color 
Layout 

(12) 

Color 
Structure 

(256) 

Dominant 
Color 
(24) 

Edge 
Histogram 

(80) 

Homogeneous 
Texture 

(30) 

Region 
Shape 
(35) 

Total 5635 5397 3803 5076 5446 5610 
Correct 4725 5121 2630 4484 3119 3683 

Incorrect 910 276 1173 592 2327 1927 
Rate (%) 83.851 94.886 69.156 88.34 57.272 65.65 

After training the network with 2600 images for each descriptor, we tested the 
performance of the classifier using about 5500 unused images in the testing process. 
Table 1 shows that the proposed image classification system performs about 95% of 
the true rate, whereas it reduces the false positive rate below 3 % for the Color 
Structure descriptor. The other descriptors, such as Edge Histogram descriptor and 
Color Layout descriptor, also show above par performance in both true positive and 
false positive rates. Table 2 shows that generally the classification using Color Layer, 
Color Structure, and Edge Histogram performs much better than using Homogeneous 
Texture, Region Shape, and Dominant Color. 
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5   Conclusion 

This paper proposed a novel approach of applying MPEG-7 to adult image filtering 
systems as well as created a prototype system that can be used for the adult image 
classification by analyzing MPEG-7 descriptors. The visual descriptors defined by 
MPEG-7 are used for extracting features for a given image. These features are used as 
inputs for the 2 class (adult, non-adult) neural network classification system. The 
simulation using the Color Structure descriptor shows that the system achieved 95% 
of the true rate, whereas it reduces the false positive rate below 3%. 
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Abstract. We present an architecture for the online learning of object
representations based on a visual cortex hierarchy developed earlier. We
use the output of a topographical feature hierarchy to provide a view-
based representation of three-dimensional objects as a form of visual
short term memory. Objects are represented in an incremental vector
quantization model, that selects and stores representative feature maps
of object views together with the object label. New views are added
to the representation based on their similarity to already stored views.
The realized recognition system is a major step towards shape-based
immediate high-performance online recognition capability for arbitrary
complex-shaped objects.

1 Introduction

Although object recognition is a long-studied subject in computer vision, the
main focus in research has been so far on achieving optimal recognition perfor-
mance on selected data sets of object images. Since the training of a recognition
system is normally done offline, the efficiency of learning with regard to the
learning speed has been considered less relevant in most approaches, leading to
typical training times from several minutes to hours. Another problem is that
most powerful classifier architectures like the multi layer perceptrons or sup-
port vector machines do not allow online training with the same performance
as for offline batch training. Due to the lack of rapid learning methods for com-
plex shapes, research in man-machine interaction for robotics dealing with online
learning of objects has mainly used histogram-based feature representations that
offer fast processing [5,1], but only limited representational and discriminatory
capacity. An interesting approach to online learning for object recognition was
proposed by Bekel et al. [2]. Their VPL classifier consists of feature extraction
based on vector quantisation and PCA and supervised classification using a local
linear map architecture. Image acquisition is triggered by pointing gestures on
a table, and is followed by a training phase taking some minutes.

We suggest to use a strategy similar to the hierarchical processing in the ven-
tral pathway of the human visual system to speed up the object learning process
considerably. The main idea is to use a sufficiently general feature representation
that remains unchanged, while object-specific learning is accomplished only in
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Fig. 1. The visual hierarchical network structure. Based on an image Ii, the first
feature-matching stage S1 computes an linear sign-insensitive receptive field summa-
tion, a Winner-Take-Most mechanism between features at the same position and a final
threshold function. We use Gabor filter receptive fields, to perform a local orientation
estimation in this layer. The C1 layer subsamples the S1 features by pooling down to
a quarter of the original resolution in both directions using a Gaussian receptive field
and a sigmoidal nonlinearity. The features in the intermediate layer S2 are sensitive to
local combinations of the features in the planes of the C1 layer, and are thus capable
of detecting more complex feature combinations in the input image. We use sparse
coding for unsupervised training of these so-called combination feature neurons. A sec-
ond pooling stage in the layer C2 again performs spatial integration and reduces the
resolution by one half in both directions. Object representatives are learnt using an
incremental vector quantization approach with attached class labels. Representatives
rk are computed as the output xi(Ii) of the hierarchy and added based on sufficient
Euclidean distance in the C2 feature space to previously stored rk of the same object.

the highest levels of the hierarchy. We perform online learning of objects using
a short-term memory and similarity-based incremental collection of templates
using the intermediate level feature representation of the proposed visual hier-
archy from [6]. After a short introduction to our processing and memory model
in Sect. 2, we demonstrate its effectiveness for an implementation of real-time
online object learning in Sect. 3, and give our conclusions in Sect.4.

2 Hierarchical Visual Processing Model

Model Architecture. The visual hierarchical model proposed in [6] is based
on a feed-forward architecture with weight-sharing [3] and a succession of feature-
sensitive and pooling stages (see Fig.1). For a comparision to other recent
feed-forward models of recognition see [6]. The output of the sparse feature rep-
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resentation of the complex feature layer (C2) is used to incrementally build up
the appearance-based object representation with an incremental vector quan-
tisation model. These extracted C2 features are sensitive to coarse local edge
combinations like e.g. t-junctions and corners. Given a set of N input images
Ii, i = 1, . . . ,N , the feature map outputs of the C2 layer of the hierarchy are
computed as xi(Ii). The labeled object information is stored in a set of M rep-
resentatives rk, k = 1, . . . ,M , that are incrementally collected. We define Rl

as a set of representatives rk that belong to object l. The acquisition of tem-
plates is based on a similarity threshold ST . New views of an object are only
collected into the object representation if their similarity to the previously stored
templates in Rl is less than ST . The parameter ST is critical, characterizing a
compromise between the object representation accuracy and the computation
time. We denote the similarity between view xi and representative rk by Aik

and compute it based on the quadratic Euclidean distance in feature space by
Aik = exp

(−(xi − rk)2/σ
)
. Here, σ is chosen for convenience such that the

average similarity in a generic recognition setup is approximately 0.5.

Online Training. For one learning step the similarity Aik between the cur-
rent training vector xi, labeled as object l and all representatives rk ∈ Rl of
the same object l must be calculated and the maximum value is computed as
Amax

i = maxk∈Rl
Aik. The training vector xi and the corresponding class label

will be added to the object representation if Amax
i < ST . Assuming that M

representatives were present before, we then choose rM+1 = xi. Otherwise we
assume that the vector xi is already sufficiently represented by one rk, and do
not add it to the representation.

Online Recognition. Recognition of a test view Ij is done with a nearest
neighbour search of the hierarchy output xj(Ij) to the set of representatives.
In contrast to the training, the similarity Ajk must be calculated between the
current C2 feature vector xj and all representatives rk. The class label of the
winning representative rkj

max with kj
max = arg maxk(Ajk) is then assigned to the

current validation vector xj . Due to the non-destructive incremental learning
process, online learning and recognition can be done at the same time, without
a separation into training and testing phases.

Rejection. For a real application of the online learning system e.g. in a robot
interaction scenario it is crucial to reach good classification results, but also
unknown objects and clutter should be rejected. This can be done based on
the similarity of a test view to the winning representative. Due to the different
structural complexity of the appearance variation of different objects, the re-
jection can be largely improved by choosing the detection threshold similarity
dependent on an estimate of the object complexity. This can be estimated by
the average number of non-zero elements of the C2 feature vectors.

3 Experimental Results

For our experiments we use a setup, where we show objects, held in hand with
a black glove, in front of a black background. Images are taken with a camera,
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segmented using local entropy-thresholding, normalized in size (each view is
64x64 pixel large) and converted to grey scale. We show each object by rotating
it freely by hand for a few ten seconds, which results in 500 input images Ii per
object. Another set of 500 images for each object is recorded for validation. Some
rotation examples are shown in Fig.2a. The difficulty of this training ensemble is
the high variation of objects during rotation around three axes and the sometimes
only partially segmented object views (e.g. mug and cup).

Figure 2b shows how the similarity threshold ST influences the number of
selected representatives. It can be seen that this number strongly depends on
the complexity of the object, i.e. shape-dependent appearance variation.

The first investigation of training time should demonstrate how long it takes
to incrementally train one object using a real camera. The training speed is
limited by the frame rate of the used camera (12,5 Hz) and the computation time
needed for the entropy segmentation, the extraction of the corresponding sparse
C2 feature vector xi with 3200 dimensions and the calculation of similarities Aik

(see Sect.2). For the shown curves of the teapot and the cup we trained all other
seven objects and incrementally trained the teapot or cup as the eighth object.
Figure 3a shows how long it takes until the newly added object can be robustly
separated from all other objects.

We also investigated how fast our model performs on a saved image ensemble,
without the limitation of the camera’s frame rate and the segmentation. For this
exploration all eight objects are trained in parallel. We started with a training
ensemble of 25 training views for each object and determined the needed training
time and the classification rate. Afterwards we increased the number of training
views for each object in 25 view steps until all 500 training views for each object
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Fig. 2. Test images and the number of selected representatives for different similarity
thresholds. (a) Some example images of the eight freely rotated objects, taken in front
of a dark background and using a black glove for holding, causing also some minor
occlusion effects. The difficulty of this database is the rotation of objects around three
axes. Additionally some object views are only partially segmented. (b) Number of
selected representative vectors for changing similarity thresholds. The selected number
strongly depends on the shape-dependent appearance variation of the objects.
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are reached. Figure 3a (labeled with “database”) shows that the training phase
takes less than 1 minute for a training ensemble of 8 · 500 = 4000 object views.

We compared the classification results (see Fig.3b) of our model with a nor-
mal nearest neighbour classifier (NNC), where every training vector xi is di-
rectly used as a representative and a one-layered sigmoidal network trained by a
gradient-based supervised learning on the C2 feature vectors xi. The sigmoidal
network consists of an input and output layer, without hidden layers. For every
object we used one output node, whereas each node has a linear scalar product
activation and a sigmoidal transfer function. We trained these networks with
all training vectors or with the selected representatives of our model. Figure
3b shows that the exhaustive NNC and our model using C2 activations perform
quite equal, which means that our model can reduce the number of relevant repre-
sentatives (2906 representatives are selected from 4000 training views (72,65%),
for 64x64 pixel images and ST = 0.92) without losing classification performance.
The sigmoidal networks perform in comparison to our model slightly worse, but
the representational resources are strongly reduced. We used only one linear
discriminating weight vector per object, i.e. 8 weight vectors. We also trained
these networks with the selected representatives of our model, which speeds up
the training process but also slightly reduces the classification rates. Further we
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Fig. 3. Classification rate over training time and a comparison between nearest neigh-
bour classifier (NNC) (all training vectors are used), our online learning model and
sigmoidal networks for different image dimensions. (a) Classification rate dependent
on needed computation time for the whole training set (labeled with “database”) and
the training of one object with a real camera. The training speed using a camera is
also limited by the frame rate of the camera and the segmentation. Good recognition
performance can be achieved within 20-30 seconds of online training. (b) Comparison
of classification rates between a simple NNC (all training vectors are used), our model
(C2 activations, original images) and sigmoidal networks for different image sizes. It
can be seen that the classification rates of the NNC and our online learning model using
the C2 activation are more or less equal and that the one-layered sigmoidal networks
perform slightly worse. The classification results of our model using the C2 features
are distinctly better than the results using the original grey value images.
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show that the usage of C2 features considerably increases the classification per-
formance of our model compared to the original grey value images (see Fig.3b).

The rejection capability of our model was tested with all 8 trained objects
and 16000 different grey value clutter images. These images were randomly cut
out of large scenes and contain parts of different objects, portions of buildings,
faces and so on. The reached false negative rate for the 8 trained objects was
7.9%, whereas 8.3% of all clutter images are classified as an object.

4 Conclusion

We have shown that the hierarchical feature representation is well suited for
online learning using an incremental vector quantization model approach. Of
particular relevance is the technical realization of the appearance-based online
learning of complex shapes for the context of man-machine interaction and hu-
manoid robotics. This capability introduces many new possibilities for interac-
tion scenarios and can incrementally increase the visual knowledge of a robot.

The simple template-based representation of objects in our approach allows
a simple incremental buildup of the representation during online-learning. Nev-
ertheless, due to the exhaustive storage of high-dimensional feature map infor-
mation a similar approach seems prohibitive given the, arguably large, but finite
neural resources in the brain. We have already investigated that a later offline
refinement of the representation like supervised gradient-based training can be
used to reduce the representational effort considerably. Such a process could
be used to guide the transfer from a simple photographic short-term memory
presented here to a more optimized long-term memory representation. The in-
vestigation of appropriate models that are related to the representation of visual
representation in the inferotemporal cortex [4] will be the subject of future study.

Acknowledgments. We thank C. Goerick, M. Dunn, J. Eggert and A. Ceravola
for providing the image acquisition and processing system infrastructure.
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Abstract. In this paper, we extend the Hopfield Associative Memory for
storing multiple sequences of varying duration. We apply the model for
learning, recognizing and encoding a set of human gestures. We measure
systematically the performance of the model against noise.

1 Introduction

The work we present here is part of a research agenda, that aims at modeling the
neural correlates of human ability to learn new motions through the observation
and replication of other’s motions [1,2]. In this paper, we investigate the use of
a biologically plausible mechanism for recognizing, classifying and reproducing
gestures.

Associative memories based on Hebbian learning, such as the Hopfield net-
work, are interesting candidates to model the propensy of biological systems
to encode and learn complex sequences of motion [3]. The Hopfield network is
known predominantly for its ability to code static patterns. However, recent
work extended the Hopfield model to encode a time series of patterns [4]. In
the present work, we extend this model to encode several sequences of patterns
in the same model. While the capacity of such RNN models have been studied
at length in simulation [5,6], there has been yet little work demonstrating their
application to the storage of real data sequences. Here, we validate the model
for encoding human gestures and measure the performance of the model in the
face of a large amount of noise.

Fundamental features of human ability to imitate new motions are a) the
ability to robustly recognize gestures from partially occluded demonstrations
(this is tightly linked to our ability to predict the dynamics of the motion from
observing only the onset of the motion); and b) to store and reproduce a general-
ized version of the motion, that encapsulates only the key features of the motion.
We show that the model can successfully reproduce these two key features.

2 Experimental Set-Up and Model

Figure 1 shows a schematic of the data flow across the complete architecture.
Input to the system consists of the kinematic data of human motion. The data is
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Fig. 1. Schematic of the data flow across the complete architecture

first preprocessed to smooth and normalize the trajectories, as well as to reduce
the dimensionality of the dataset to a subset of keypoints. The time series of key-
points is encoded and classified in a set of Artificial Neural Networks (ANNs).
Learning results in the storage of a generalized form of the demonstrated ges-
tures. The system outputs either the class of the gesture g or the generalized
form of the gesture corresponding to the class g.

Data acquisition and preprocessing: Data consist of 45 gestures, composed
of the 4 angular trajectories of the arm (shoulder abduction-adduction, flexion-
extension and humeral rotation, and elbow flexion-extension) of 8 demonstrators
during 5 repetitions of drawing the stylized letters A, B, C, D, E, (see figure 2).

Fig. 2. The demonstrator’s motions are recorded by a set of Xsens motion sensors,
attached to the torso, upper and lower arms (left). The information is then used to
reconstruct the trajectories of 4 joint angles of the arm (middle). (Right:) Raw data
trajectories. Each subplot correspond to the trajectory of one of the 4 joint angle.
Circles represent the extracted key-points.

Each trajectory is smoothed using a 1D local Gaussian filter of size 7. From
those trajectories, we extract a set of P key-points {θa

p, t
a
p} (a=1..4, p=1..P).

A key-point is either the first or last element of the trajectory or an inflexion
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point (zero velocity). Such a segmentation aims at extracting the correlations
between the different joint trajectories. The duration of the whole trajectory is
normalized so that two gestures belonging to the same class but performed at
different speed are encoded into similar sequences.

Pattern encoding: Each element of the input sequence {tap, θa
p} (a = 1..4,

p = 1..P ; P being the length of the sequence) is encoded in a 2D matrix x̃ of
real values, as follows:

(tã
ĩ
, θã

ĩ
) → (x̃u,v)

where u=1..M and v = 1..N . In order to preserve the notion of neigbourhood
across inputs we encode a pair (tãp̃, θ

ã
p̃) using a 2D gaussian distribution function

f, centered on μ = (μt, μθ)T with standard deviation σ = (σt, σθ)T :

f(xu, xv) = e
− 1

2 (xu−μt)2

σ2
t e

− 1
2 (xv−μθ)2

σ2
θ .

2.1 ANN Module

The general topology of the network is presented in Figure 3. Inputs to the net-
work are sequences of key-points. The sequences are stored in a series of Hopfield
networks linked to one another through the matrix of weights W . Each sequence
is then classified according to a set of classes c = 1, .., C and C, represented by
a set of neurons yc.

The activity of each neuron, for each angle a, and for each time step t=1..P,
xa

u,v(t), as well as the weights wa
u,v,u′,v′(t) storing the correlation between the

neuronal activities xa
u,v(t) and xa

u,v(t+ 1) are normalized and bounded in [0..1].

Fig. 3. Network topology. The weight matrix W (generation module) connects all neu-
rons from one layer to all neurons of the next layer. Each output neuron yc corresponds
to a class c of gestures. The weights of the matrix J (recognition module) are set so
that the output neuron yc̃ is maximal when a sequence of class c̃ is generated. Each
angular trajectory a (a=1..4) is encoded in a separate networks.
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Learning process: The learning rule for updating elements of W is a modi-
fication of the one presented in [4], to allow storage of many sequences rather
than just one, as well as to allow a non-overlapping encoding with xa

u,v = [0..1],
as opposed to xa

u,v = ±1.

wa
u,v,u′,v′(t) =

∑
s

xs,a
u,v(t)xs,a

u′,v′(t + 1), t = 1..P − 1 (1)

where s indicates the training sequence.
When learning a gesture s belonging to a class c̃, we set the output neurons

yc = 0 ∀c �= c̃ and yc̃ = 1. Updating the elements of the recognition matrix J is
done according to:

ΔJa
u,v,c(t) = xs,a

u,v(t)ys,a
c (2)

Retrieval process: In order to retrieve the generalized form of the sequence
associated with a given class, we activate one of the yc neurons and then reacti-
vate the neurons in each layer of the extended Hopfield in sequence for P-1 time
steps. That is, we update each neuron xa

u,v(t + 1) according to:

xa
u,v(t + 1) =

∑
u′

∑
v′

wa
u,v,u′,v′(t) · xa

u′,v′(t), t = 1..P − 1 (3)

Figure 4 shows the history of the network state after the retrieval of a se-
quence of four elements.

Fig. 4. State of a 4-layer extended Hopfield network while retrieving a sequence of four
elements

During recognition of a gesture, we proceed conversely by activating a subset
of the first layers of the extended Hopfield network. Recognition of the class to
which the gesture belongs is done by reactivating the output neurons yc according
to:

yc(t+ 1) = ya
c (t) +

∑
a

∑
u

∑
v

Ja
u,v,c(t). (4)
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3 Results

We evaluated the performance of the network to classify and regenerate our set of
45 gestures (stylized drawings of the letters A to E). Further, in order to evaluate
the network’s capacity against a large amount of noise, we generated a synthetic
dataset of 250 gestures, by adding gaussian noise on one of the gestures belonging
to the real dataset. Each dataset was divided equally into a training set and a
testing set. Synthetic data were generated by displacing each key-point according
to a gaussian distribution function, centered on the original key-point and with
a given standard deviation σD = (σD

t , σ
D
θ )T , see Figure 5. For each value of σD,

we generated 10 different gestures. We measured a standard deviation (noise)
on the real dataset of σD = (0.88, 22.23)T .

Fig. 5. Sequence of key-points (t, θ) when the noise is generated with σD
t = 0.1 and

σD
θ = 3.6. Clusters do not overlap. Middle: key-points (t, θ) with σD

t = 1.5 and σD
θ =

54.0. The overlap between clusters is large.

Fig. 6. Distortion of the original gestures with a noise level of σD
t = 0.1, 1.0 and 2

respectively. Sole the gestures on the left are easily recognizable by the human eye.

During the learning phase, the system is trained on a set of gestures. During
the testing phase, the system is evaluated on its ability to both recognize and
regenerate the data.
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Recognition Performance: Figure 7, right, shows the recognition rate on the
synthetic testing set as an effect of the temporal noise (average over 10 different
gestures for each value of σ) with σD

t = 3.6σθ
D. The recognition rate τ is given

by the proportion of correctly recognized patterns relative to the total number of
patterns.

We observe that the recognition is perfect for all gestures when the noise is
inferior to (σD

t ≤ 0.25). However, for high noise (σD
t >= 1.0), the recognition

rate decreases importantly.

Data Regeneration: Figure 7, left, shows 3 examples of regenerated ges-
tures, superimposed to a set of 4 training gestures generated with a noise value
σD = (0.1, 3.6). The network generates a generalized form of the gestures that
encapsulate the major qualitative features (point of curvature) of the demon-
strations.

Fig. 7. (Left:) Regenerated gestures (Bold line) against a set of 4 examples of demon-
strated gestures (thin line) with a noise of σD = (0.1, 3.6)T . (Right:) Recognition rate
as an effect of the noise.
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Abstract. Image superresolution involves the processing of an image sequence 
to generate a still image with higher resolution. Classical approaches, such as 
bayesian MAP methods, require iterative minimization procedures, with high 
computational costs. Recently, the authors proposed a method to tackle this 
problem, based on the use of a hybrid MLP-PNN architecture. In this paper, we 
present a novel superresolution method, based on an evolution of this concept, 
to incorporate the use of local image models. A neural processing stage receives 
as input the value of model coefficients on local windows. The data dimension-
ality is firstly reduced by application of PCA. An MLP, trained on synthetic se-
quences with various amounts of noise, estimates the high-resolution image 
data. The effect of varying the dimension of the network input space is exam-
ined, showing a complex, structured behavior. Quantitative results are presented 
showing the accuracy and robustness of the proposed method. 

1   Introduction 

Image superresolution [1, 2] involves the processing of an image sequence to generate 
a high-resolution description of the underlying scene. From the earliest algorithm pro-
posed by Tsai and Huang [3], a number of approaches have been proposed. Of these, 
bayesian MAP (Maximum A Posteriori) methods [4,5] have gained particular 
acceptance due to their robustness and their capability to incorporate a priori con-
straints. The main drawback of these methods comes from their associated high com-
putational loads, as they use iterative techniques in spaces of high dimensionality. 

Recently [6, 7], the authors have proposed a neural network based technique that 
provides results comparable to classical methods with a substantial decrease in compu-
tational complexity. This technique estimates image values in a dense grid using an ir-
regular interpolation scheme, with distance dependent interpolation weights. Optimal 
distance-to-weight mappings are learned from synthetic sequences and corresponding 
high-resolution images, using a hybrid MLP-PNN (Multi Layer Perceptron –  
Probabilistic Neural Network) architecture. In a second step, high-resolution image 
values are restored from estimated grid values using optimal filters. 

The use of interpolation schemes based on distance dependent weights, no matter 
how optimally these weights can be tuned, poses a fundamental limit on the attainable 
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performance as, being independent of local image structure, the method is forced to 
operate in the same way near an image edge or inside a uniform image patch. In this 
paper, an evolution of our previous distance-based algorithm is presented, which 
makes explicit use of local image representations. As in our previous approach, the 
proposed system learns from examples how to perform superresolution. In this way, 
the computational load is mostly displaced to the off-line learning process, enabling a 
fast, non-iterative response in the network deployment phase. 

The proposed method is based on the sequential application of two processing 
steps. In the first step, sequence pixels are projected onto the high-resolution frame, 
and local image representations are built for each site of an embedded high-resolution 
grid. In the second step, the image representation coefficients in the neighborhood of 
each grid site are processed by a neural network to estimate the high-resolution image 
values. The dimensionality of the network input data is previously reduced by appli-
cation of a PCA (Principal Component Analysis) technique.  

Out method has shown to provide excellent results over a wide range of input noise 
levels. In the following sections, we detail the processing steps involved, and present 
experimental results that include a quantitative comparison of several methods. In the 
last section, a brief discussion of the main results obtained is presented. 

2   Local Image Representation 

The first step of our superresolution method computes a local image representation 
for each site of the high-resolution (HR) grid to be estimated. These local representa-
tions are built using the sequence pixels values projected onto the HR grid. The pro-
jection operation requires the previous knowledge of the geometrical transformations 
that relate input sequence frames. To estimate this data, an adaptation of a classical 
sub-pixel registration procedure [8] has been used.  

Table 1. RMS errors for different interpolation schemes 

Method =0 =5 =10  =20 

NN_SEQ 9.28 10.40 13.48 21.97 

Distance-based interpolation 

Inverse distance weight 6.82 7.48 9.23 14.16 
MLP-PNN 5.61 6.00 6.85 8.43 

Polynomial Models 

Order 1 7.24 7.37 7.51 8.48 
Order 2 2.90 3.56 5.04 8.75 
Order 3 2.34 3.29 5.25 9.72 

 

Polynomial models have been used to describe the local image structure at sub-
pixel level. Polynomial coefficients are determined by a general linear least squares 
technique, with matrix inversion performed using singular value decomposition, SVD 
[9]. The use of SVD improves robustness when the problem is close to singular, due, 
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for instance, to an inadequate model order selection in an image patch, or induced by 
a large image noise level. 

In table 1 are presented the root mean squared (RMS) errors for different irregular 
interpolation methods. Polynomial models with orders ranging from 1 to 3 have been 
considered. For comparison, the error corresponding to the direct selection of the 
nearest pixel (SEQ_NN) has been included, together with two distance-based interpo-
lators: the first processing step of our previous method (MLP-PNN), and a method re-
cently proposed in the literature [10], which makes use of inverse distance weights. 
As it can be observed, interpolation with second order local polynomials provides dis-
tinct advantages over distance-based methods at low and medium noise levels. In-
creasing polynomial order over this point result only in marginal gains in perform-
ance. In view of these results, a second order polynomial has been considered in our 
subsequent work. 

2.1   Dimensionality Reduction by PCA. Eigenimages of Coefficients 

The dimension of network input space is given by the model dimension (6 for a sec-
ond order polynomial) times the size of the considered local neighborhood. Principal 
component analysis (PCA) has been applied to reduce the dimensionality of this 
space. PCA [11] is a linear technique that yields minimal representational error (in 
terms of mean squared error, MSE) for a given reduction in the dimensionality space. 
PCA operates by projecting the input data onto an orthogonal basis of the desired di-
mension, where the basis vectors are the eigenvectors of the input data covariance 
matrix, ranked in order of decreasing eigenvalues. 

 

Fig. 1. Results of the PCA process, for a 3x3 local neighborhood: a) eigenvalues sorted in de-
creasing order; b) percentage of input variance maintained after dimensionality reduction, as a 
function of the number of used eigenvectors; c) first five eigenimages. 

In figure 1 a, b) are presented, for a 3x3 local neighborhood, the obtained eigen-
values sorted in decreasing order, and the percentage of the input variance represented 
after dimensionality reduction, as a function of the number of used eigenvectors. Us-
ing a common heuristic approach, such as maintaining enough components to explain 
95% of the input variance, will lead to the selection of the first 16 eigenvectors to 
build the projection basis. In the next section we will see that heuristics of this type 
are not appropriate for this problem, as use of low variance eigenvectors can have a 
considerable impact on the final prediction error. 
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In figure 1 c) are presented the five eigenvectors of highest eigenvalue, with com-
ponents rearranged in the form of eigenimages. The preliminary experiments con-
ducted show their stability under variations of input noise and image content, defining 
basic patterns of spatial variation of local polynomial models in images examined at 
sub-pixel level. The projection of the local image models on this set of spatial patterns 
is used as input data to the network, as described in the next paragraph. 

2.2   Neural Network Training Results  

To estimate the HR pixels, it has been used a multi-layer perceptron (MLP) architec-
ture [11], with two layers of neurons. The hidden layer is composed of 10 neurons 
with hyperbolic tangent activation functions. These neurons are connected to a single 
neuron in the output layer, with a linear activation function. The output of this neuron 
provides a zero-mean, unit-variance estimation of the high-resolution central pixel. 
Renormalization provides the final value. A diagram of the system is presented in  
figure 2 a).  

The network has been trained using a conjugate gradient descent method on syn-
thetic data sets with various noise levels. The training data has been generated syn-
thetically from a set of 23 high-resolution images of urban scenes acquired by the 
Quickbird satellite imaging system. 

 

Fig. 2. a) Diagram of the superresolution neural processing stage; b) network average predic-
tion error, measured on a validation test set, as a function of the dimensionality of the network 
input space for a 3x3 neighborhood; c) average prediction error for a 5x5 neighborhood. 

The neural system has been trained for several input sizes, to study quantitatively 
the effect on the predicting error of augmenting the input data with the value corre-
sponding to each sorted principal component. In figure 2 is presented the evolution of 
this error as a function of the number of eigenvectors retained in the dimensionality 
reduction step, for local windows of sizes 3x3 and 5x5. As it is apparent, the error de-
creases non-gradually, with almost flat zones interleaved with step decreases in the 
prediction error. Furthermore, these step changes occurred also in zones where the 
representational error of the dimensionality reduction step might be seen in principle 
as negligible (see figure 1, for a 3x3 window), highlighting the inadequacy of an 
MSE-based criteria in this case to select the dimension of the network input space.  
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3   Experimental Results 

The accuracy and stability of the proposed method has been tested with both synthetic 
and outdoor sequences of different image content. Here, we present the results of ap-
plying superresolution on synthetic image sequences with various noise levels, to en-
able the quantitative comparison, in terms of RMS, of the prediction error of different 
methods. The sequences have been generated from a high-resolution image of an ur-
ban area acquired with the IKONOS satellite imaging system. This image has not 
been used during the training process. From this image, two sequences of 25 images 
(corresponding to 1s in the CCIR standard) were generated, one corresponding to the 
noiseless case, and the second one corrupted highly by addition of Gaussian noise (σ 
= 20 gray levels). 

 

Fig. 3. Superresolution results, for a scaling factor of 2, on a synthetic sequence of an urban 
area using different methods. In the first row, are presented the results for a noiseless input se-
quence. The second row contains the results for a sequence corrupted with Gaussian noise of σ 
= 20 gray levels. Each column contains the results of a different method. The ground truth is 
presented at the right of the image. 

On figure 3 are presented the results obtained with three superresolution methods. 
In the first column (SEQ-NN) are shown the results obtained estimating the HR pixels 
as the value of the nearest projected sequence pixel. This method produces jagged 
edges in the noiseless case, and no input data noise reduction. Both effects are re-
duced, as can be seen in the second column, when using the MLP-PNN technique, 
with networks specialized in the appropriate noise range. Finally, the use of the pro-
posed method, with 3x3 neighborhoods and 40 eigenvectors, improves both image 
definition and noise rejection at all input noise levels, as can be seen in the third col-
umn of the figure. These perceptual results are supported by the RMS error figures 
reported in table 2. 
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Table 2. High-resolution RMS reconstruction errors for several methods 

 ZOOM SEQ-NN MLP-PNN LOCALREP+MLP 

noiseless sequence (σ=0) 19.39 13.04 11.24 8.28 
noisy sequence (σ=20) 24.08 23.58 14.60 11.06 

4   Discussion 

A superresolution method based on neural processing of local image representations 
has been developed. The method process representation coefficients on local windows 
to estimate the HR image values. The dimensionality of input data to this network is 
firstly reduced by application of a PCA technique. The eigenimages obtained have 
been shown to be stable for a wide range of noise levels and image contents, repre-
senting intrinsic properties of image structure at sub-pixel levels. Variations of predic-
tion error with input size have been examined, showing a non-gradual, structured be-
havior, reflecting the inadequacy of MSE heuristics in this problem. The relation of 
the results with those provided by non-linear methods, such as ICA [12], will be in-
vestigated in future work. The experimental results obtained show the accuracy and 
robustness of the developed method. 
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Abstract. The model here proposed simulates the development of the
object recognition capability, assuming that recognition does not imply
any sort of explicit geometrical reconstruction and emerges as result
of interactions between epigenetic influences and basic neural plasticity
mechanisms. The model is a hierarchy of artificial neural maps, mainly
based on the LISSOM architecture, achieving self-organization through
simulated intercortical lateral connections.

1 Introduction

This work proposes a model of the development of the object recognition capa-
bility, one of the most valuable outcome of the human visual system, yet the less
understood. This work assumes that recognition does not imply any sort of geo-
metrical reconstruction, as posed in early works [14], it is fully driven by the two
dimensional view captured by the retina, as supported by several neurocognitive
[6], neurophysiological [13], and theoretical [5] studies.

A special focus of this model is the investigation on how the recognition capa-
bility can emerge, assuming that the processing functions involved in recognition
are not genetically determined and hardwired in the neural circuits, but are the
result of interactions between epigenetic influences and some very basic neural
plasticity mechanisms. This view agrees with a more general explanation of the
representational nature of the neural system [16], but is especially supported in
the specific case of vision [10].

2 Modeling Self-organization in Cortical Maps

The first mathematical model of how the visual cortex can spontaneously de-
velop its mature organization was proposed in [19]. The mechanism, generally
referred as self-organization, is based on the self-reinforcing local interaction,
corresponding to Hebbian plasticity, constrained by competition, that takes into
account the limitation of biological resources. The two mechanisms are mod-
eled by von der Malsburg in systems of differential equations, simulating visual
organizations like retinotopy, ocular dominance and orientation sensitivity.

Later the self-organization mechanism has been largely popularized by Ko-
honen, who invented a much simpler yet efficient model called SOM (Self-
Organizing Maps) [11]. The learning rule is on a winner-take-all basis: if the
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input data are vectors v ∈ R
N , the SOM will be made of some M neurons, each

associated with a vector x ∈ R
N and a two dimensional (in vision applications)

coordinate r ∈ {< [0, 1], [0, 1] >} ⊂ R
2. For an input v there will be a winner

neuron w satisfying:

w = arg min
i∈{1,...,M}

{‖v − xi‖} . (1)

Once identified the winner, during training the neural vectors are updated using:

Δxi = ηe−
‖rw−ri‖2

2σ2 (v − xi) , (2)

where η is the learning rate, σ the amplitude of the neighborhood affected by
the updating.

Even if the SOM model has been used for simulating certain properties of
the visual cortex, it appears to bee far too oversimplified for a more realistic
reproduction of human vision, for example lacking explicit modeling of intra-
cortical connections. A recent model called LISSOM (Laterally Interconnected
Synergetically Self-Organizing Map) attempts to include lateral connections still
preserving the simplicity of the SOM [17, 1]. In this model each neuron is not just
connected with the afferent input vector, but receives excitatory and inhibitory
inputs from several neighbor neurons on the same map:

a
(k)
i = f

(
γXxi · v + γEei · y (k−1)

i + γHhi · z (k−1)
i

)
, (3)

where ai is the activation of a neuron i at time k, vectors yi and zi are the
activations of all neurons in the map with a lateral connections with neuron i
of, respectively, excitatory or inhibitory type. Vectors ei and hi are composed
by all connections strengths of the excitatory or inhibitory neurons projecting
to i. The vectors v and xi are the input and the neural code. The scalars γX,
γE, and γH, are constants modulating the contribution of afferents. The map is
characterized by the matrices X,E,H, which columns are all vectors x, e, h for
every neuron in the map. The function f is any monotonic non-linear function
limited between 0 and 1. The final activation value of the neurons is assessed
after a certain settling time K.

All afferent connections to a neuron i adapt by following the rule:

Δxi =
xi + ηaiv

‖xi + ηaiv‖ − xi, (4)

similarly for weights e and h.

3 The Model

The model is made of several artificial cortical layers, the overall scheme of the
model is visible on the left of Fig. 1. It has been trained and experimented mainly
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Fig. 1. Scheme of the model architecture (left) and a sample process (right)

with the set of natural images in the COIL-100 benchmark library [15], a col-
lection of 100 ordinary objects, each seen under 72 different perspectives. There
are two distinct pathways, one monochromatic connected to the intensity retinal
photoreceptors, and another sensitive to the green and red photoreceptors. The
lower maps of the model are called LGN with relation to the biological Lateral
Geniculate Nucleus, the function performed includes in fact also the contribution
of ganglion cells [4]. There are three pairs of on-center and off-center sheets, for
intensity and red-green opponents.

The cortical map named V1 collects its afferents from the monochromatic
sheets pair in the LGN, and is followed by the map V2, which has a lower
resolution and larger receptive fields. Biological V1, is known to be the place
of an overlap of many different organizations like retinotopy, ocularity, color
and orientation sensitivity [18, 12]; the main phenomena reproduced by this
model is the development of orientation domains. The training uses artificial
elliptical blobs in the first 10000 steps, followed by natural images for other 10000
steps, according to the cooperative role of spontaneous activity and exposition
to natural images in the biological ontogenesis of vision [2]. The size of the
excitation connections is reduced to a half from the beginning to the end of the
training, this is an other typical reconfiguration of the biological visual cortical
circuitry during development.

The color path proceeds to V4, named as the biological area especially in-
volved in color processing [20]. The main feature of the cortical color process is
color constancy, that has been also proven to be an emergent capability in infants
[3]. This map has the same resolution of V2. During the training of V4, done
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Fig. 2. Development of organizational domains in V1 (left) and V4 (right). The sensi-
tivity to orientation or hue constancy is shown in gray scale.

with synthetic blobs of uniform color, at the beginning there is low sensitivity,
peaked in the middle range between red and green, at the end the color sensitiv-
ity of all patches is uniformly distributed along the hue range. The development
of domains is shown in Fig. 2.

The paths from V4 and V2 rejoin in the cortical map LOC, which has larger
receptive fields, and is the last area of LISSOM type. It is known that knowledge
of non-visuotopic areas in humans is currently poor [8], and scarcely comparable
with primates [7]. An area that recently has been suggested as strongly involved
in object recognition is the so-called LOC (Lateral Occipital Complex) [9]. The
response properties of cells in this area seems to fulfill the requirement for an
object-recognition area: sensitivity to moderately complex and complex visual
stimuli, and reasonable invariance properties.

Fig. 3. Invariance properties of LOC map in response to COIL images rotated by 60o

Table 1. Correlations between images affected by viewpoint transformation (middle
column), and the corresponding LOC map (right column), averaged over all 100 objects.

type of transformation input image LOC map

rotation of 30o 0.781 0.903
rotation of 60o 0.648 0.756
size downscaling of 80% 0.637 0.794
size downscaling of 70% 0.547 0.655
translation of 10% 0.463 0.586
translation of 20% 0.207 0.397

The model LOC is trained using all COIL-100 objects, and 25% of the dif-
ferent views, with the other maps of the model already trained. At the end it
achieves a remarkable invariance with respect to viewpoint, as visible in some
examples in Fig. 3. The global figures of LOC invariance with respect to several
transformations, over all objects, is shown in Tab. 1. As said in the introduction,
there is no representation independent from the view, therefore the invariance is
not absolute but within a limited range, very different configuration of the same
object will have different representations in LOC.
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Fig. 4. Organization of objects in the OBJ map of the model. Each neuron of the map
is labeled using the image with an output vector nearest to the neuron vector.

The highest map in the model is called OBJ, and is of SOM type. It processes
as vector input the whole content of LOC, ignoring the spacial organization of
the data. The use of a SOM architecture is justified by the abstract nature of
this last map, which is not actually located in any specific part of the human
brain.

The organization of all objects in OBJ, shown in Fig. 4, is the overlap of
several coexisting ordering principles: color, shape, symmetries; producing a con-
sistent categorization of most objects.

4 Conclusions

A model for simulating the emergence of visual recognition capability has been
presented. Several simplifications make the model still far from the complexity
of human recognition: the segregation of processes in areas, the lack of back-
projections, and of course the simplification of the neural computations. Despite
these limitations, the model is able to achieve recognition capabilities, reproduc-
ing some of the fundamental computational steps, without any explicit modeling
of the processing functions necessary for this goal, only thanks to basic neural
mechanisms.
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1 Neural Networks Research Centre, Helsinki University of Technology,
P.O. Box 5400, FI-02015 HUT, Finland

forename.surname@hut.fi
2 Department of Computer Science, University of Helsinki,

P.O. Box 68, FI-00014 University of Helsinki, Finland
forename.surname@cs.helsinki.fi

Abstract. We explore the use of eye movements as a source of implicit
relevance feedback information. We construct a controlled information
retrieval experiment where the relevance of each text is known, and test
usefulness of implicit relevance feedback with it. If perceived relevance
of a text can be predicted from eye movements, eye movement signal
must contain information on the relevance. The result is that relevance
can be predicted to a considerable extent with discriminative hidden
Markov models, and clearly better than randomly already with simple
linear models of time-averaged data.

1 Introduction

A search engine could be improved by an algorithm which models the interests
of a user. Such an algorithm would be proactive; it would predict the needs of
the user and adapt its own behavior accordingly [1]. The usual way to learn the
interests of the user would be to ask, after each document, whether the user
found it relevant, and to learn the user’s preferences from the answers. However,
giving this kind of explicit feedback is laborious.

Alternatively, relevance can be inferred from implicit feedback derived tra-
ditionally from document reading time, or by monitoring other behavior of the
user (such as saving, printing, or selecting of documents). The problem with the
traditional sources is that the number of feedback events is relatively small.

In this paper we explore whether the traditional sources of implicit relevance
information could be complemented with eye movements. We construct an ex-
perimental information retrieval setup where relevance of the texts is known.
The measured eye movement data corresponding to each text will then have a
known label, and the data can be used as a learning data set for machine learn-
ing methods. Machine learning will be used for selecting a good set of features
and for learning time series models to predict relevance of new measurements.

We make an assumption that human attention patterns correlate with rele-
vance; at the simplest, people tend to pay more attention to objects they find
relevant or interesting. The reason why gaze direction provides an indicator of
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the focus of attention lies in the physiology of the eye. Accurate viewing is pos-
sible only in the central fovea area (only 1–2 degrees of visual angle) where the
density of photoreceptive cells is highly concentrated. A scene needs therefore to
be inspected with a sequence of alternating saccades (rapid eye movements) and
fixations (the eye is fairly motionless). Information on the environment is mostly
gathered during fixations, and fixation duration is known to be correlated with
the complexity of the object under inspection. A simple physiological reason for
this is that the amount of information the visual system is capable of processing
is limited. In other words, we assume that (visual) attention lies there where
the amount of gathered information is larger. This is justified in a multitude of
psychological experiments [2].

Related Work. Eye movements have traditionally been exploited as an alterna-
tive input modality in user interfaces, for instance in eye typing (cf. [3]). Another
increasingly popular application area is usability studies, where the goodness of
a user interface or a web page is evaluated by monitoring natural behavior of the
users. This form of implicit feedback information gathered from eye movements
has been analyzed using features computed for larger areas of interest [4], such
as images or captions of text.

As far as we know, eye movements have been used in information retrieval
applications in only two previous studies. The first is our earlier preliminary
work [5,6], which is extended in this paper by thorough experiments with a
large number of subjects, better equipment that solves our earlier calibration
problems, and more detailed analysis of the results. The goal of the second
related work [7] was different: to investigate with quantitative measures how
users behave in a real, less-controlled information retrieval task.

2 Information Retrieval Experiment

In a typical information retrieval setup the user types in keywords to a search
engine and is then given a list of results, for instance titles of scientific articles,
that possibly contain the information the user is looking for. Some of the pro-
posed titles may be totally irrelevant, some of them handle the correct topic, and
only few are links to articles that the user eventually reads. Our experimental
setting for collecting eye movement data was designed to simulate this natural
situation, with the difference that in our case the relevance is known.

The subject was first shown a question, and then a list of ten sentences, one
of which contained the correct answer (C). Five of the sentences were known to
be irrelevant (I), and four relevant to the question (R). The task of the subject
was to identify the correct answer, press ‘enter’ (this ended the eye movement
measurement), and then type in the associated number in the following display.
Each of the eleven test subjects carried out 50 assignments. The assignments
were in Finnish, the mother tongue of the subjects. Eye movements were mea-
sured with a Tobii 1750 eye tracker with a screen resolution of 1280x1024 and a
sampling rate of 50 Hz.
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Preprocessing. The raw eye movement data (x and y coordinates of the gaze
direction) was segmented into a sequence of fixations and saccades by a window-
based algorithm (software from Tobii).1 Each fixation was first assigned to the
nearest word. A set of 22 features were computed from the eye movement tra-
jectory for each word [10]; similar features are used in psychological studies of
reading [2]. The resulting feature vector sequence was then segmented to subse-
quences corresponding to different sentences, and a label was assigned to each
subsequence according to the known class of the sentence.

Sentence-specific averages of the features was then computed. Linear Dis-
criminant Analysis (LDA) was applied to the averaged features in order to select
the set of features that best predict relevance for left-out data. The LDA also
provided a baseline classification accuracy.

In the time-series models, described in more detail below, the resulting set
of features were modeled with the following exponential family distributions: (1)
One or many fixations within the word (binomial). (2) Logarithm of total fixation
duration on the word (assumed Gaussian). (3) Reading behavior (multinomial):
skip next word, go back to already read words, read next word, jump to an
unread line, or last fixation in an assignment.2

3 Models

The simplest method to classify the eye movement data is to disregard the time
dependency between data samples and compute averages of the eye movement
features. This gives sentence-specific feature vectors, one per sentence. In this
paper, the averaged vectors were classified with Linear Discriminant Analysis.
More fine-grained cues of relevance can be sought with models that take into
account the time series nature of the eye movement data.

Hidden Markov Models. The simplest model that takes the sequential nature
of data into account is a two-state hidden Markov model (HMM). A separate
model was optimized individually for each class, by maximizing the log-likelihood
of the data Y given the model and its parameters Θ, that is, log p(Y |Θ). The
HMMs are trained with the Baum-Welch (BW) algorithm [8]. In a prediction
task the models of different classes were combined into a maximum a posteriori
(MAP) prediction.

Discriminative Hidden Markov Models. In speech recognition, where
HMMs have been extensively used for decades, the current state-of-the-art HMMs
are discriminative. Discriminative models aim to predict the relevance B =
1 20-pixel window size and a minimum duration of 80 ms.
2 Feature selection was carried out with methods that use averaged data (from eigen-

vectors of LDA), since currently there are no methods that can simultaneously both
do this and model the time series. We therefore chose to model a representative set of
features which can be used to construct the best discriminating averaged measures.
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{I,R, C} of a sentence, given the observed eye movements Y . Formally, we opti-
mize log p(B|Y,Θ). In discriminative HMMs, a set of states or a certain sequence
of states is associated with each class. This specific state sequence then gives the
probability of the class, and the likelihood is maximized for the teaching data,
versus all the other possible state sequences in the model [9]. The parameters
of the discriminative HMM can be optimized with an extended Baum-Welch
(EBW) algorithm, which is a modification of the original BW algorithm.

We model eye movements with a two-level discriminative HMM, where the
first level models transitions between sentences, and the second level transitions
between words within a sentence. Viterbi approximation is used to find the
most likely path through the second level model (transitions between words in a
sentence), and then the discriminative Extended Baum-Welch optimizes the full
model.

Voting. The HMMs produce probabilities for the relevance classes (I, R, C) for
each viewed sentence. However, the users may look at a sentence several times,
and the resulting probabilities need be combined in a process we call voting.

We constructed a log-linear model for combining the predictions. Assume that
the sentence-specific probability distribution, p(B|Y1...K), can be constructed
from the probability distributions of the kth viewings of the sentence, P (B|Yk)
(obtained as an output from a Markov model) as a weighted geometric average,
p(B|Y1...K , α) = Z−1∏

k p(B|Yk)αBk , where Z is a sentence-specific normaliza-
tion factor and the parameters αBk are non-negative real numbers, found by
optimizing the prediction for the training data. The predicted relevance of a
sentence is then the largest of p(I), p(R) and p(C).

It is also possible to derive a simple heuristic rule for classification by assum-
ing that decision of relevance is made only once while reading the sentence. We
will call this rule maxClass, since for each sequence we will select the maximum
of the predicted relevance classes (with ordering I < R < C). A simple baseline
for the voting schemes is provided by classifying all the sequences separately
(i.e., no voting).

4 Results

The prediction accuracy was assessed with 50-fold cross validation, in which each
of the assignments was in turn used as a test data set. In order to test how the
method would generalize to new subjects, we also ran an 11-fold cross validation
where each of the subjects was in turn left out. Table 1 lists the classification
accuracies, that is, the fraction of the viewed sentences in the test data sets
for which the prediction was correct. The methods generalize roughly equally
well both to new assignments and to new subjects. The performance of the two
different voting methods (log-linear and maxClass) seem to be nearly equal, with
log-linear voting having a slight advantage.

Table 2 shows the confusion matrix of the discriminative HMMs. Correct an-
swers (C) are separated rather efficiently. Most errors result from misclassifying
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Table 1. Prediction accuracies of different models. The baseline is given by the the
“dumb model,” which classifies all sentences to the largest class I . Differences between
LDA and dumb classifier, and simple HMMs and LDA, tested significant (P < 0.01,
McNemar’s test), as well as the difference between discriminative HMM and simple
HMMs in the case of leave-one-assignment-out validation (with log-linear voting). Left
column: obtained by 50-fold cross-validation where each of the assignments was left out
in turn as test data. Right column: Obtained by 11-fold cross-validation where each of
the subjects was in turn left out to be used as test data.

Method
Accuracy (%)
(leave-one-
assignment-out)

Accuracy (%)
(leave-one-
subject-out)

Dumb 47.8 47.8
LDA 59.8 57.9

simple HMMs(no vote) 55.6 55.7
simple HMMs(maxClass) 63.5 63.3

simple HMMs(loglin) 64.0 63.4
discriminative HMM(loglin) 65.8 64.1

Table 2. Confusion matrix showing the number of sentences classified by the discrim-
inative HMM, using loglinear voting, into the three classes (columns) versus their true
relevance (rows). Cross validation was carried out over assignments. The percentages
(in parentheses) denote row- and column-wise classification accuracies.

Prediction
I (62.4 %) R (61.8 %) C (90.1 %)

I (77.3 %) 1432 395 25
R (43.6 %) 845 672 24
C (92.2 %) 17 21 447

relevant sentences (R) as irrelevant (I). It is also possible to compute precision
and recall measures commonly used in information retrieval by treating correct
answers as the relevant documents. The resulting precision rate is 90.1 %, and
recall rate 92.2 %.

5 Conclusion

Our results show that relevance information can be inferred from eye movement
signals. Both the time series nature of the data and the discriminative nature of
the task should be taken into account when constructing models for eye move-
ments. An interesting topic for further research would be to inspect whether the
HMM is capable of differentiating cognitive processes associated with reading.

The work will be continued in the form of a PASCAL eye movement chal-
lenge [10]. This will hopefully result in a toolbox of robust and efficient methods
for relevance extraction.
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Image Segmentation by Complex-Valued Units
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Abstract. Spike synchronisation and de-synchronisation are important
for feature binding and separation at various levels in the visual system.
We present a model of complex valued neuron activations which are syn-
chronised using lateral couplings. The firing rates of the model neurons
correspond to a complex number’s absolute value and obey conventional
attractor network relaxation dynamics, while the firing phases corre-
spond to a complex number’s angle and follow the dynamics of a logistic
map. During relaxation, we show that features with strong couplings are
grouped by firing in the same phase and are separated in phase from
features that are coupled weakly or by negative weights. In an example,
we apply the model to the level of a hidden representation of an image,
thereby segmenting it on an abstract level. We imply that this process
can facilitate unsupervised learning of objects in cluttered background.

1 Introduction

Object recognition is a key task in everyday situations and for robotics appli-
cations. Unsupervised learning of object classes from natural data is performed
by young living beings and has a chance of becoming a convenient and flexible
method of learning to categorise sensory data by an artificial agent. A hierarchy
of increasingly complex feature detectors is one aspect of the visual recognition
process. In many models, such a feature extracting step performs an almost
linear vector transformation. So in order to achieve noticeable achievements in
their serial application, a strong non-linearity must be introduced at every level.

The non-linear response properties observed in cortical cells are explained in
model studies by intra-area horizontal connections. A mathematical advantage
to implementing these as an attractor network is that its activations recover
noisy input with maximum likelihood [1]. Contrast-invariant orientation tuning
curves and shift invariant responses can be obtained [2], as in V1 neurons.

Unsupervised learning of objects is possible if objects are shown on a plain
background, but still fails with a noisy background [3]. While the competitive
effect of the attractor network reduces background noise, in realistic conditions
further percepts are the rule in addition to the object to be learnt. We therefore
aim to separate these simultaneous percepts in the dimension of phase in order
to separate an object from its background. In a hierarchical model this would
allow higher levels to learn only the object at certain phases or only background
elements at other phases and will facilitate unsupervised learning of objects.

Detailed spiking neuron models are attractive for segmentation purposes. In
addition to the neurons’ firing rate their code provides information that can
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be used for mutual binding and segregation. Computationally it is efficient to
incorporate these additional capabilities of spikes in a single variable per neuron
which we call a neuron’s phase. A process to adjust this variable efficiently is
deterministic chaos with a dual role of (i) supplying a process of pattern creation
by synchronising the phases of coupled units and at the same time (ii) revolting
against convergence into stereotyped synchronised states [4].

Our approach has the following characteristics: (i) Coupling strengths are
represented by connection weights that can be trained to represent correlated
activations and which can be negative. (ii) The weighting of the neural inputs
is performed by complex number algebra. Complex-valued neural networks have
advantages for chaotic and brain-like systems, image processing and quantum
devices [6]. We identify the absolute value of a complex neuron activation with
its firing rate and the phase of its activation with the phase at which its spikes
are emitted. (iii) The rates follow a conventional update dynamics of a recurrent
neural net. (iv) A logistic map provides the chaotic dynamics to synchronise and
separate the phases, as in the “Divide and Conquer” model [5]. (v) Finally, we
show an application where an image is segmented on its “hidden”, first cortical
representation on area V1, similar to the competitive layer model [7].

2 Real Valued Relaxation Procedure

We use one layer of fully connected units to define a recurrent update dynamics
for the neurons’ rates and phases. After some, possibly random, initialisation of
the firing rates, the rate rk of any unit k is governed over time steps t by

rk(t+ 1) = f(
∑

j wkjrj(t)− θk) (1)

where wkj is the connection weight from unit j to unit k and θk is its threshold.
The transfer function is f(x) = 1/(1 + e−x). A learning rule for the weights and
thresholds is given in [8] and weights which sustain a bell-shaped hill of activation
rates will have a Mexican hat shaped profile. Thus, we have a continuous valued
attractor network and since weights are approximately symmetric, wkj ≈ wjk,
our intuition is that activations rk relaxate to a stable state corresponding to a
minimum of some energy function. In the following, we will introduce a second
variable, the phase ϕk, with different dynamics.

3 Complex Valued Interactions

A complex number as displayed in Fig. 1 a) can be written as z = x+iy = r eiϕ

with i2 = −1 and the relations r2 = x2 + y2 and tanϕ = y
x . We express our

neuronal activation as zk = rk e
iϕk where the complex number’s length rk is the

neuron’s firing rate and its phase ϕk is the phase at which the neuron spikes.
Similar phases of two neurons would correspond to similar firing times if their
rates were the same, however, we regard these phases as abstract.
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Fig. 1. a) A complex number z can be expressed by Cartesian coordinates x, y or polar
coordinates r, ϕ. We identify its length r with a neuronal firing rate and angle ϕ with
a firing phase. The ranges of ϕ are displayed as used in the text. b) The logistic map.
Iterations according to ϕ(t + 1) = 3.9 ϕ(t) (1 − ϕ(t)), indicated for t = 0 . . . 3 starting
at ϕ(t=0) = 0.4, will lead to a desired chaotic behaviour.

The dynamics of the rates follows Eq. 1 and is independent of the phases. In
the following we will first define how phases between neurons interact (Eq. 2)
and then impose a local update dynamic on every neuron (Eq. 3).

At the beginning of the relaxation procedure, the neurons’ phases ϕk are
initialised with random values between 0 and 2π. Then at each relaxation step
a neuron receives an influence from all other neurons, which we express as:

zwf
k =

∑
j wkj rj e

iϕj (2)

This weighted field is a complex number which is a sum of the complex number
contributions by the other neurons weighted by the connection weights wkj which
are real values. Using eiϕj = cosϕj + i sinϕj it can be expressed as:

zwf
k =

∑
j wkjrj cosϕj + i

∑
j wkjrj sinϕj ≡ xwf

k + i ywf
k

We obtain the phase of the neuron’s weighted field as: ϕwf
k = atan ywf

k

xwf
k

which

we shift to range between 0 and 2π according to Fig. 1 a).

4 Logistic Coupled Map

The logistic map maps a value between 0 and 1 to another, different value within
this interval, as shown in Fig. 1 b). Iterative application leads to desired chaotic
development of these values for most settings of the map parameter A between
3.57 and 4.0. Nevertheless, if several values undergoing this mapping are coupled,
they can maintain proximity and thus display structured mutual behaviour while
displaying chaotic individual behaviour [4].

Since the logistic map takes values ranging between 0 and 1 while the neurons’

phases range from 0 to 2π, we make the technical definitions: Φk≡ ϕk

2π , Φ
wf
k ≡ ϕwf

k

2π .
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We will now use the scaled phase Φwf
k of the weighted field at each neuron k in

order to determine its scaled phase Φk at the next iteration time step. This is
done via the logistic map:

Φk(t + 1) = AΦwf
k (t) (1− Φwf

k (t)) (3)

where its actual phase value ϕk is scaled back to the range from 0 to 2π. We have
set A = 3.9. Having obtained the phases at the next time step, another iteration
for the phases is performed starting with computing the weighted field (Eq. 2).
While the rates develop concurrently according to Eq. 1 to a stable state, the
phase values never converge.

5 Network Activation with Synchronising Phases

Figure 2 a) shows the activations of a network with 25 units as their rates have
converged to a stable state according to Eq. 1. This is in no way influenced by
the phases but only by the weight profile, which is also displayed for one neuron.

The weight profile with strong positive weights between neighbouring units
should synchronise the phases between such connected units. A single unit’s
phase behaves random-like from one time step to the next. Fig. 2 b) shows a
plot of time averaged phase differences between pairs of units, while the network
is maintaining the rates shown in Fig. 2 a). It shows that adjacent units within
the hill of activation have similar phases, while adjacent units at its boundary
have differing phases. The phases are thus clustering regions of strong activity
that are linked by strong positive weights (phase influence is weighted by weights
times rates, cf. Eq. 2). Regions with negative connections to such a cluster have
differing phases, as we see units with zero activation sharing an own phase. Note
that since adjacency is defined functionally by mutual strong positive connec-
tions, long-range connections could mediate synchronisation over large distances.

a)

−0.4

 0

 1

 25 15 5 0

rates
weights

b)
k+1,k

15,k

0

1

2

 25 15 0  5

sep

sep

Fig. 2. a) shows the weight profile (dotted line) of neuron number 15 and a bell-shaped
hill of activation rates as sustained by the network (solid line). b) shows the average
phase separation sepk+1,k = 〈|ϕk+1 − ϕk|〉 between neighbouring units (solid line) and
sep15,k = 〈|ϕ15−ϕk|〉 between any unit and unit 15 (dotted line), where the 〈.〉-brackets
denote a time average over 500 iteration steps while sustaining the rates in a).
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6 Segmentation in a Feature Space

In the following experiment we apply the attractor network to the activations
of neurons which have been trained to extract features from natural images and
which thereby resemble V1 “simple cells” [2]. Given an image as input, these
units have sparse activations with values between 0 and 1 while responding to
edges and colour features. V1 lateral weights have been trained on the same set
of natural images to memorise these codes in the attractor activation patterns.
The resulting weights are short-range excitatory and long-range inhibitory along
cortical distance, as well as in feature space of orientation and spatial frequency
[2]. This leads, during relaxation, to focused patterns of the activation rates on
the simulated V1, after initialising with a somewhat irregular activity pattern
obtained from presenting an image. From this V1 representation, a virtual re-
construction of the image can be obtained by projecting these rates back to the
image. Fig. 3 a) shows an example.

Fig. 3 c) shows the hidden units’ activations where each frame shows only
those units’ activations rk which have a phase ϕk within a range shown in Fig. 3
b). The active units in each frame are thus a subset of all active units shown in
Fig. 3 a), middle. It can be seen that within any selected phase range, preferably
units from a certain region are active. The functions of the neurons within these
active clusters can be seen by projecting their rates to the image. As a result,
Fig. 3 d) shows partial reconstructions of the image which is hereby segmented
into elements which belong together by having similar phases on the model V1.
At different phases we find elements of the background (frames 1 and 2) or of the
ball at the right (frames 4 and 5). This implies a segmentation which accounts
for learnt proximities (via the V1 lateral weights) in an abstract representation
of an image with the potential of separating objects from their background.

image 0 1
3π 2

3π π 4
3π 5

3π

a) b)

V1 ratesj

a) c)

reconstr.j
a) d)

Fig. 3. a) shows full representations. Top, the original image, middle, the rates of the
full hidden code and bottom, the reconstruction of the image from the full hidden code.
b),c),d) show partial phase-dependent representations. b) shows Gaussian-like functions
on an axis of 0 to 2π used to determine which phases contribute to the hidden code
presented in c) and thus to the image reconstruction in d). c) shows the partial hidden
code corresponding to selected phases and d) shows their partial reconstruction from
those units in c) which are active at the selected phases.
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7 Discussion

We have demonstrated a network of simplified rate and phase coding neurons
which segments a neural code efficiently using the connection strengths between
the units. The computational load is that of a network in which two activa-
tion values develop concurrently. The most demanding operations are the scalar
products in Eqs. 1 and 2, while all other computations are local.

Since image segmentation involves top-down directed information flow, how
does our model for intra-area lateral connections deal with this? Previously
we have extended the lateral connections to link a “what”- to a “where” area
for object localisation [9]. In the cortex, such lateral connections correspond to
those originating from pyramidal cells in layers 2/3 of the cortex and arriving in
the same layer, possibly in a different area. Hierarchically arranged areas have
characteristically asymmetric connections, however, they also have characteris-
tic horizontal connections and only with increasing hierarchical level difference
the intensity of these horizontal connections decreases [10]. Thus, connections of
a horizontal character may relay top-down information. If we would apply the
lateral connections of our model to a larger hierarchical model, therefore, we
might observe top-down influences such as stabilisation of consistent attractors.
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Abstract. In this paper we apply cellular neural networks for color im-
age segmentation. Color aerial photographs will be analyzed. Two types
of color models: RGB and HSV will be taken into account and compared.
In resulting images we will distinguish some objects like houses, roads,
trees and others. The selection of the objects will be based on the color
value. We show that the choice of color model influences the results.

1 Introduction

Aerial photographs are used mainly for creating and drawing orthophotomaps.
In order to prepare these maps some panchromatic photos of professional quality
are used. They are costly to obtain, since specific tools are required. However,
simple photos taken from the air may be also useful. Such images are used for
places identification in air-sports like aviation, gliding, paragliding.

Neural networks and cellular neural networks (CNNs) are regarded as useful
tools for image processing (eg. [7,18]). CNNs were introduced by L.O. Chua and
L. Yang [5,6]. Recent years several applications of CNNs for image processing,
like image restoration (eg. [5,6]), image segmentation (eg. [8,12,16,17]), object
recognition (eg. [13]), or visual reconstruction (eg. [14]) have been proposed and
tested. CNNs appeared to be useful in medical image processing [1,2] and for
monitoring volcanoes [3].

Color image processing causes more problems than monochrome image
processing, as the color photos have some nonlinear information. During color
image processing, the color images are transformed into three monochrome im-
ages: red, green and blue (eg. [8]). Each monochrome image is then processed
independently.

In this paper we propose to use a different method of transformation of color
image to three monochromatic ones, namely we use HSV color model. In the
experiment it will be shown that the results are often better than in case when
RGB model is considered, as some new objects (like trees) stand out. Inspired
by results from [12] we apply CNN, for converting monochromatic images to
black-and-white ones, for image segmentation.

The paper is structured as follows. In Section 2 a general idea of cellular
neural networks will be presented. In Section 3 basic color models are discussed.
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The experiment and its results are described in Section 4. The paper is completed
by some concluding remarks.

2 Cellular Neural Networks

A cellular neural network can be described as a n-dimensional array of dynamic
systems called cells, denoted as c(i, j) [15]. A cell is connected to another one
(c(i, j)), if it belongs to the neighborhood Nr(i, j) of the cell c(i, j) defined by:

Nr(i, j) = {c(k, l) : |k − i| ≤ r ∧ |l − j| ≤ r} ,
where r is the radius of the neighborhood [5]. Moreover, all state variables are
continuous-valued signals [15]. An example of two-dimensional cellular neural
network is depicted in Figure 1.

Fig. 1. A topology of a two-dimensional cellular network

Basically, it is assumed that the signal is transformed constantly in time.
However, Discrete Time Neural Network (DTCNN), based on an assumption
that the values of stated and output signals are changed in discrete, evenly
spaced time points, was introduced in [9]. In the computer simulation a DTCNN
is used, beacuse of its convenience. The dynamic of DTCNN can be characterized
by a set of the following equations [11]:

xij [(n + 1)Δt] = xij [nΔt] +
r∑

k=−r

r∑
l=−r

Ai,j;i+k,j+l yi+k,j+l[nΔt] +

+
r∑

k=−r

r∑
l=−r

Bi,j;i+k,j+l ui+k,j+l + I (1)

yij = f(xij) =
1
2

(|xij + 1| − |xij − 1|) (2)

xij = Eij (3)

|xij(t = 0)| ≤ 1 (4)

|uij(t)| ≤ 1 (5)
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Equation (1) is state equation for a cell, (2) and (3) describe output and input
equations, respectively. Constraint conditions are represented by (4) and (5).

Information may be interchanged through both outputs and external inputs
of the cell. The signals are weighted by parameters Ai,j;i+k,j+l and Bi,j;i+k,j+l ,
which are called feedback operator and control operator, respectively. I is inde-
pendent current source, which is constant in time.

A scheme of a cell is depicted in Figure 2, where yij is output signal of a cell,
uij is an input signal and xij is a state of a cell [10].

ΣI

A

A
y

B

B

u

∫ xij

yij

cij

uij

Fig. 2. Block scheme of a cell

Values of weights and the scheme of connection are equal for all the cells in
the network. This means that for any two cells c(i, j) and c(p, q) we have [10]:

Ai,j;i+k,j+l = Ap,q;p+k,q+l Bi,j;i+k,j+l = Bp,q;p+k,q+l

The result of the performance of the network is the set of outputs signals, when
the network reaches state of equilibrium, described by the following equation:

∀i, j yij(t) = yij(t + 1)

3 Color Models

Color images provide more information than monochrome images. The tech-
niques used for gray level images are extended for color images by using compo-
nents of RGB model or their transformations [4].

Model RGB is one of the first practical models of area of colors and contains
a recipe for creation of colors. This model is resulting from the receiving abilities
of eye and is based on the fact that the impressions of almost all the colors in
eye can be evoked by mixing in the fixed proportions of three selected clusters
of light of the properly chosen width of spectrum. Basing on this model the
pictorial lamps (kinescopes) work up to nowadays.
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The RGB model is convenient for display, however there are some disad-
vantages like high correlation among the components. Moreover, colors are only
approximations, satisfactory enough for humaneye perception.

HSV color model is more user-oriented model then RGB. In HSV model the
color can describe itself by means of a single representative of one monochromic
wave of light Hue with the specification of Saturation measure for wave, and the
specification of Value for Brightness level.

In HSV model it is assumed that the elements of model are orthogonal,
independently from each other, except Hue definiteness for the case Saturation
equals 0.

4 Description of the Experiment

In this experiment we will segment color photos. At the begining every pixel of
considered image is decomposed to three components (Red, Green, Blue for RGB
model and Hue, Saturation and Value for HSV model). Every image transormed
in that way can be presented as a monochromatic one, with only one components’
value changing. Such images constitute the network’s input.

We use DTCNN with the following cloning template1:

A =

⎡⎣ 0 0.1 0
0.1 0.9 0.1
0 0.1 0

⎤⎦ B = 0 I = 0

This temptate converts monochromatic image into black–and–white one.
After transformation of all 3 layers (compponents), the results are putted

together. This way regions of 8 colors are created.
During the experiment several aerial photos were used. Due to space limita-

tion we restrict ourselves to consider only one photo — a roundabout in Warsaw
(Figure 3). The top left image is a monochromatic version of the original color
photo. Top right one presents a result of applying the network to the monochro-
matic image. The bottom left image was obtained with RGB model. The bottom
right one was returned when HSV model was considered.

On all resulting images roads can be easily distinguished. However, when
HSV model was considered, the roads differ themselves from the trees and grass.
Pavements have sharp edges only when RGB model was used. The railway track
is poorly seen on all three images. The original image contained houses and cars
as well. Except from rare cases, almost any house cannot be distinguished on
the resulting image. Cars are mostly removed or treated like noise, as they are
very small.

We investigated also a graphic, where only basic colors: red, green, blue, cyan,
magenta, yellow, black and white were used. When HSV model was considered
cyan, yellow, red and green were not distinguished. Also, object in blue and
magenta colors are not recognised.

1 Cloning tempate is repeating structure of connections between the cells and their
weights.
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Fig. 3. Results — monochromatic version of original photo (top left), and after ap-
plying to the network (top right), result of usage RGB model (bottom left), result of
usage HSV model (bottom right)

5 Conclusions

In the paper we applied DTCNN for color image segmentation and compared
RGB and HSV color models.

The presented network is very simple, nevertheless the results are satisfactory.
Better results could be obtained if the noise is removed. Only two values is
enough for all, except the hue component. This component takes originally values
from 0 to 360 and has the biggest influence on the resulting color. To achieve
better results another template should be used, which enables us to have more
resulting values than only two.

The results are better for HSV model, because in the real world images un-
der consideration the colors are soft and dull. More objects can be distinguished.
However, the resulting image use other colors to indicate objects, what may cause
some problems for interpreting it. If an artificial image with vivid (basis) colors
was given to the network, the better results were obtained for the RGB model.

In our further research we will focus on noise removing, usage of other cloning
templates and classifying the selected objects.
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Abstract. This paper presents a novel approach for image segmentation
with the fusion of morphological watershed transform(WST) and feed-
back pulse coupled neural network (FPCNN). FPCNN is used as a pre-
processor to locate the markers in the image automatically. Controlled
by markers, WST can be applied to segment the image without over-
segmentation problem.

1 Introduction

Watershed transform (WST) [1] is a classical algorithm for image segmentation
due to its simplicity and that it can generate close-contour objects for high level
vision tasks such as object detection or recognition. However, when used alone,
WST always leads to over-segmentation problem, which could even render the
result useless. Marker-controlled WST can help to resolve this problem, but it is
difficult to locate markers automatically. Pulse coupled neural work (PCNN) [2]
is a model inspired by the study of small mammalian visual cortex. With each
neuron corresponding to an image pixel, PCNN can pulse groups of pixels as
outputs, based on spatial proximity and brightness similarity of the pixels in an
image. This unique feature makes PCNN a useful tool for image processing tasks.
However, PCNN is complex in theoretical analysis, the grouping of pixels based
on similarity is ambiguous, and many parameters of PCNN need to be tuned up
for satisfactory result. The complementary advantage and limitation of WST and
PCNN imply a promising direction to fuse these two methods together for image
segmentation. This paper presents a method to use a modified feedback PCNN
model as an image pre-processor to locate the markers quickly and automatically.
After the markers are located, WST is executed in a controlled manner that the
over-segmentation problem can be resolved.

2 Marker Based Watershed Transformation

WST for image segmentation is based on the topographic interpretation of a
grey scale image. An image can be regarded as a topographic relief on which the
elevation of a point is represented by the gradient of a pixel. Assuming there is
a hole that is punched in each regional minimum and water is rising through
these holes, in order to prevent the merging of water, dams are built to separate
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adjacent regions. The process of water flooding and dams building will continue
until the highest elevation level of the whole relief is reached. At the end of
the flooding, watershed lines are formed to surround each local minimum and
the segmentation of an image can be achieved. The implementation of above
process in an image usually starts with detecting and labelling regional minima
of the gradients. The pixels without labels are either assimilated into labelled
regions or assigned new labels if they meet the criteria as new regional minima.
It continues until a completely labelled image is generated, with each labelled
region representing an image segment.

When WST is applied alone to a real image, over-segmentation problem is
usually unavoidable because of noises and gradient irregularity. Morphological
filters could help to alleviate but cannot resolve the problem. A good solution
comes from object markers or background markers [1], which can be used to
constrain the amount of catchment basins before WST is applied. However, it is
a difficult task to locate the markers automatically. In most cases, markers are
selected by man-machine interaction. In this paper, we present a method to use
FPCNN to find the makers automatically, which is demonstrated to be a simple
and general solution.

3 Use FPCNN to Find the Object Markers

The original PCNN model was developed by Eckhorn et al. [2] based on the
study of cat’s visual cortex. Linbald and Kinser [3] refined the PCNN model in
discrete form for computer simulation. In PCNN, each neuron is characterized by
five equations that are updated iteratively to produce a series of binary outputs,
which constitute binary images in an image processing application. In order
to acquire object markers for real-time processing, we use a modified feedback
PCNN (FPCNN) model as illustrated in Fig. 1. There are three parts in the
model: the receptive fields, the modulation product and the pulse generator.
The major difference of this model from the original PCNN model is that the
feeding input is replaced by the input stimulus and the output feeds back to
modify the input.

βΣ   

LinkingInputs from

other neurons

Pulse GeneratorReceptive Fields Modulation
Product

Outputs to
other neurons

klY ijL+β1

+1

ijS ijU

ijθ

Threshold

ijY

W

W
TSG

ijA

Stimulus

Fig. 1. Architecture of the modified FPCNN
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In the receptive field, the linking input is denoted in discrete form as,

Lij [n] = e−αLLij [n− 1] + VL

∑
kl

WijklYkl[n− 1] (1)

where Lij [n] is the linking input of the ijth neuron in a 2D array of neurons,
n is the iteration number, the memory of previous state Lij [n− 1] decays with
coefficient αL; Ykl’s are the outputs of neighouring neurons, Wijkl ’s represent
the synaptic weights that are usually defined as local Gaussian distribution. The
constant VL is used to scale the correlation of the neighbouring neurons.

The modulation product of the input stimulus Sij [n] and linking input Lij [n]
results in the total neuron internal activity Uij [n], which is calculated by,

Uij [n] = Sij [n](1 + βLij [n]) (2)

where β is the linking strength that controls the combination.The feeding input
in the original PCNN model is replaced by the input stimulus in this equation
because the leaky integrator has minor impact to the internal activity, comparing
to the input Sij [n] that is iteratively updated by the neuron output in this
FPCNN model.

The pulse generator compares the internal activity with the threshold to
determine if the output shall fire pulse (one) or not (zero), i.e.,

Yij [n] =
{

1 if Uij [n] > θij [n];
0 otherwise .

(3)

Because of the output feedback, the threshold will be boosted to a high value
if the neuron fires, otherwise it decays until the neuron fires again. This dynamic
change is defined by,

θij [n] = e−αθθij [n− 1] + VθYij [n− 1] (4)

where αθ is the decaying coefficient and Vθ is a large constant in order to make
sure the threshold can be increased to a higher value than the average magnitude
of internal activity. Otherwise the pulsing process may stop after a few iterations.

Kinser and Johnson [4] developed the feedback concept for PCNN based on
the investigation of the rat’s olfactory bulb. The rat broadly classifies the smell
at first and then the feedback transforms the coarse signal to finer signal for fur-
ther classification. The feedback signal Aij [n] describes the modification of input
Sij [n] by the feedback signal from the previous iteration, which is given as,

Aij [n] = e−αAAij [n− 1] + VAYij [n− 1] (5)

Sij [n] = Sij [n− 1]/Aij [n− 1] (6)

where αA is the decaying constant effecting on the memory of previous state of
Aij ,VA is the adjusting constant.

Because of the local interconnections among the neurons, a neuron would
stimulate its neighbours to fire when it fires. If a group of neurons have similar
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inputs, one neuron can trigger the whole group to fire together. The edges have
different neighbouring characteristics than the interior of segments, therefore the
edges tend to fire at different time. The group pulsing effect forms the base of
PCNN’s segmenting ability. However, according to [5], there are limitations to
achieve good segmentation purely by PCNN. To overcome those limitations and
to avoid the complexity to tune up PCNN parameters, we consider to use PCNN
to do coarse segmentation only for markers which can have arbitrary shapes as
long as they are enclosed in segments. The markers are to be used by following
WST algorithm to accomplish the final segmentation. By using FPCNN, the
group pulsing can be accelerated. Since the output signal feeds back to the input
and the threshold in an opposite direction, the process of group pulsing could
propagate through the whole image in a few iterations. In sense of performance,
FPCNN model suits this application better than the general PCNN model.

The equations (1)-(6) are computed iteratively, resulting in a series of binary
images as outputs. Each binary image contains blobs as the results of group
pulsing. These blobs actually segment the image coarsely, therefore they could
be used as markers for further processing by WST. However, since there is more
than one binary image output from FPCNN, which one(s) should be used? At
this stage, we can consider to use the time signals of FPCNN to make selections,
which is given by

G[n] =
∑
i,j

Yij [n]. (7)

As a function of time, the summation of all the binary outputs produces the
time signals to describe the propagation of pulsing waves through the image.
With a few empirical rules based on the time signals, the useful binary image(s)
could be selected from a number of outputs. The desired binary image is usually
acquired from the iteration that produces the second highest magnitude of time
signal. This can be explained as following: when all the segments fires, based on
Eq. (7), the highest magnitude of time signal is acquired, which also means that
blobs may just overlap the segments. Since the markers for WST are expected
to be disconnected and contained within the segments, the binary image corre-
sponding to the second highest magnitude usually indicate part of each segment
fires, therefore it could be used to locate the markers. This gives a general rule
to identify the useful FPCNN binary image for WST. Actually, since every bi-
nary image contains more or less some markers. Multiple WST could also be
performed on the basis of a few FPCNN binary images. The results of multiple
WST can be overlapped for a complete segmentation.

4 Experiment Results

In order to demonstrate the generality of proposed algorithm, the tests on two
different types of images are presented in Fig. 2 and Fig. 3. Since the test image
Fig. 2(a) is comparatively simple, only one FPCNN binary image is selected
according to the time signal. Correspondingly, WST is executed only once. For
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Fig. 2. image segmentation on ’pears.png’ using proposed algorithms. (a) Test image;
(b) Gradient image; (c) FPCNN time signals; (d) Over-segmentation caused by direct
WST without markers, but with threshold filter; (e) Object markers generated by
FPCNN binary output from the 2nd iteration; (f) Overlapping of watershed lines and
the original image.
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Fig. 3. image segmentation on ’scene.jpg’ using proposed algorithms. (a) Test image;
(b) Gradient image; (c) FPCNN time signals; (d) FPCNN binary image from the 3rd
iteration; (e) FPCNN binary image from the 4th iteration; (f) The watershed lines
generated by two WST outputs.
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a more complicated image Fig. 3(a), two FPCNN binary images are used and
the WST was applied twice. In both cases, the iteration of FPCNN were set to
20 times in order to demonstrate the time signals. The FPCNN parameters are
set to be the same in both tests, they are: β = 0.2, αL = 0.8, αA = 0.15, αθ =
0.06, VL = 1, Vθ = 5, VA = 1. Since the FPCNN is only used as per-processor for
object markers, the final segmentation result is not sensitive to these FPCNN
parameters.

The over-segmentationproblem is demonstrated by Fig. 2(d), which is the out-
put of direct WST applying to the gradient image Fig. 2(b). Even with a thresh-
old filter, the result is still unacceptable. According to the time signals shown in
Fig. 2(c), the binary image Fig. 2(e) generated from the second FPCNN itera-
tion is selected according to the rule mentioned afore. It is obvious the markers
are well formed in this binary image. Based on the gradient image Fig. 2(b) and
the markers in Fig. 2(e), WST is performed for segmentation. The overlapping of
segmentation result and the original image is demonstrated in Fig. 2(f).

For a more complex image, a few binary images could be selected according
to the FPCNN time signals, and multiple WST can be applied. In Fig. 3(b),
a few initial iterations of FPCNN produce two waves on the time signals. The
3rd and 4th binary outputs are corresponding to the second highest amplitudes
of these two waves. It denotes that the markers could be well formed from the
3rd and 4th binary images shown by Fig. 3(d) and Fig. 3(e) respectively. Based
on the gradient image Fig. 3(b) and the markers, WST is performed twice to
generate two sets of watershed lines, which can be overlapped for a complete
segmentation, as illustrated by Fig. 3(f).

5 Summary

The feedback PCNN model can be used as a pre-processor to find markers in an
image. With the markers located automatically by FPCNN, watershed transform
can be applied in a controlled manner to generate closed-contour segmentations,
and the over-segmentation problem of WST can be resolved.
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Abstract. A new neural network adaptive switching median (NASM) filter is 
proposed to remove salt-and-pepper impulse noise from corrupted image. The 
algorithm is developed by combining advantages of the known median-type 
filters with impulse detection scheme and the neural network was included into 
impulse detection step to improve its characteristics. Comparison of the given 
method with traditional filters is provided. 

1   Introduction 

Images are often corrupted by impulse noise due to errors generated in noisy sensors 
or communications channels. It’s important to eliminate noise in images before edge 
detection, image segmentation or object recognition procedures. The well known 
median filter and its derivatives have been recognized as effective means of impulse 
noise removal [1-3]. The success of median filters is based on two main properties: 
edge preservation and efficient noise attenuation with robustness against impulsive-
type noise. Edge preservation is essential in image processing due to the nature of 
visual perception [4].  

However, median filtering also removes very fine details and sometimes changes 
signal structure. The main reason is that the median filter uses only rank-order 
information of the input data within the filter window, and discards its original 
temporal-order information. To avoid the damage of “good” image pixels the 
switching scheme is introduced [5]. The idea of this median filter modification is 
based on impulse noise detection. If the impulses can be detected and their positions 
are correctly located in the image, it is feasible to replace the impulses by the best 
estimates using only uncorrupted pixels. Self-organizing neural networks [6], fuzzy 
techniques [7] or other methods can be used on the detection step. 

In the work [8] authors present a median-based switching filter, which is called 
progressive switching median (PSM), where both the impulse detector and the noise 
filter are applied progressively in iterative form. The main advantage of such method 
is that some impulse pixels located in the middle of large noise blotches can also be 
properly detected and filtered. Another interesting approach for impulse noise 
removal is adaptive median (AM) filter [9]. It has variable window size for removal 
of impulses while preserving sharpness. Simulations on test images with PSM and 
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AM filters confirm that these algorithms are superior to standard median filters in 
removing impulse noise.  

The new based-median neural network adaptive switching (NASM) filter is intro-
duced in this paper. It uses advantages of filters considered above. The neural network 
was included into impulse detection step to improve algorithm characteristics. 

The main tasks of this work are the development and testing of complex NASM 
algorithm and its comparison with different median type filters modifications with 
impulse detection scheme. The paper is organized as follows: in Section 2 we 
describe the proposed NASM algorithm. Section 3 shows the simulation results. 
Conclusions and directions for future work are given in Section 4. 

2   Impulse Noise Detection and Removing 

The noise considered in this work is bipolar salt-and-pepper impulsive noise which 
means fixed values 0 (pepper) and 255 (salt) for all the impulses. This model is 
mathematically expressed as 
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where pn = pp = 0,5R, ϕi denotes the uncorrupted (good) pixel values, 0 – fixed value 
of the negative impulses, 255 – fixed value of positive impulses, R – noise 
ratio(0 ≤ R ≤ 1) and xi denotes the pixel values of the degraded image. 

Impulse detection procedure includes two steps: the first step is the preliminary 
impulse detection and the second step is the neural network impulse detection which 
is used to correct the preliminary result. The preliminary impulse detector can find 
almost all impulses for salt-and-pepper noise model, but some “good” pixels with 
values equal salt or pepper could be detected as impulses too. Network allows 
distinguishing such pixels from impulses and it is used to obtain final result of 
impulse detection.  

Preliminary impulse detection algorithm uses two images. The first represents 
corrupted image {xi}, which displays values of pixel at position i = (i1, i2). The 
second is a binary flag image {fi}, where the binary value fi is used to indicate 
whether the pixel i has been detected as an impulse, i.e., fi = 0 means the pixel i is 
good and fi = 1 means it is an impulse. In the beginning, we assume that all the image 
pixels are good, i.e., fi ≡ 0. 

Then for each pixel xi we find the minimum and maximum values of the samples 

in a WD × WD window (WD is an odd integer not smaller than 3). If we use W
iΩ  to 

represent the set of the pixels within a W × W window centered about i 
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then we have 
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    After this we use simple measurement to detect impulses 
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    The received binary flag image {fi} is the result of preliminary detection step. 
Neural network impulse detection algorithm uses three images. The first represents 

corrupted image {yi}. The second is a binary flag image {fi} obtained by preliminary 
impulse detection. And the third is also a binary flag image {gi} which is used to 
write the final impulse detection result. At start we assume {gi} equal preliminary 
impulse detection result, i.e., gi ≡ fi.  

For each pixel detected as an impulse by preliminary detection we apply a network.  
There are two premises for network topology selection. The first is the size of input 

vector and the second is the size of output vector. During examination of training data 
we found that the most information consists in seven local characteristics of pixel. 
They are pixel value, medians and dispersions for different neighborhoods of 
estimated pixel. Here we use only pixels with fi = 0 for calculating of such values. Let 
MW denote the number of the pixels with fi = 0 in the W× W window. If MW is even, 
the median calculates as arithmetic mean of two middle elements of sorted data. Then, 
if  M 3 more then 0, we preset elements of input network vector v 
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The dimension of output vector in compliance with current task was selected to be 
equal to one in the case of two different output states (“good” and “bad”). In our 
algorithm three-layer network with SD neurons in hidden layer is used. During 
experimental work we found out that SD can’t be less than five.  

Let Di denote the output value of network with range [0;1] for pixel at position i, 
where Di approaches to 1 confirms that the pixel was detected as an impulse correctly 
and if Di approaches to 0 means that the pixel with high probability is “good”. Then 
we use simple measurement to pass corrected solution about pixel  
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The received binary flag image {gi} is the result of impulse detection procedure.  
After this we use the filtration procedure of PSM algorithm which is described in 

work [8] with size of window equal 3. 
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3   Simulation Results 

In experiments, the original test images are corrupted with fixed valued salt-and-
pepper where negative and positive values are 0 and 255 respectively with equal 
probability. Mean square error (MSE) is used to evaluate the restoration performance 
in our experiments. MSE is defined as 
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where N is the total number of pixels in the image, ui and ϕi are the pixel values at 
position i in the test and the original images respectively. 

To implement NASM filter we need to define three parameters: WD, SD and WF. 
They are not sensitive to noise ratio and the best results for the most of the test images 
were obtained with WD = 7, SD = 5 and WF = 3. 

Average representation of neural network influence on the algorithm performance 
for the set of test images is shown on Fig. 1, where ASM and NASM algorithms with 
switched off and switched on neural network detection step respectively. 

 

ASM
NASM

706050403020100

M
SE

350

300

250

200

150

100

50

 

R(%) 

Fig. 1. Representation of the positive influence of neural network on the algorithm performance 

A comprehensive evaluation is reported in Fig. 2 and Fig. 3 that compare MSE for 
two images with different detail degree corresponding to six different algorithms:     
1) simple median filter with window size 3× 3, 2) AM filter for window size from 3 
to 15, 3) PSM filter, 4) iterative median (IM) filter (iterative apply the simple median 
filter) with 3× 3 window and 10 iterations, 5) center weighted median filter (CWM) 
with window size 5× 5  and a center weight of 3 [10], 6) proposed NASM filter. 
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Fig. 2. A comparison of different median-based noise removal algorithms for the test image 
“Stream and Bridge” 
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Fig. 3. A comparison of different median-based noise removal algorithms for the test image 
“Peppers”. 

The MSE curves demonstrate that in the presence of salt-and-pepper type of noise 
NASM algorithm is better than the other median-based methods on both images on all 
range of noise ratio. The algorithm was tested on many others images and the similar 
results were obtained.  
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4   Conclusion 

The idea of new impulse noise removal algorithm has arisen on the basis of analysis 
of two known effective algorithms PSM and AM. The basic problem of PSM 
algorithm is the filtration of highly corrupted images by the salt-and-pepper noise. In 
this case noisy pixels are grouped in blocks. PSM algorithm is unable to remove 
them. AM filter cannot distinguish “good” pixels of image with values equal to salt or 
pepper values from impulses, that is why AM filter defects borders of objects in 
image. The algorithm submitted in this work includes advantages of the filters 
considered above, eliminating their basic lacks. Also algorithm was improved with a 
help of neural network. Neural network positive effect appears especially when 
original image corrupted with salt-and-pepper noise has “good” pixels with values 
equal to salt or pepper values. Network provides the possibility to distinguish such 
pixels from impulses. Proposed algorithm demonstrates high results on overwhelming 
majority of test images. It removes the most of noise pixels while preserving details 
and edges of the objects even in highly corrupted images. This property is important 
for further processing (edges detection or objects recognition). 
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Abstract. In this paper, a new approach to reduce the computation time taken 
by neural networks for the searching process is introduced. Both fast and 
cooperative modular neural networks are combined to enhance the performance 
of the detection process. Such approach is applied to identify human faces 
automatically in cluttered scenes. In the detection phase, neural networks are 
used to test whether a window of 20x20 pixels contains a face or not. The major 
difficulty in the learning process comes from the large database required for 
face / nonface images. A simple design for cooperative modular neural 
networks is presented to solve this problem by dividing these data into three 
groups. Such division results in reduction of computational complexity and thus 
decreasing the time and memory needed during the test of an image. Simulation 
results for the proposed algorithm on Bio database show a good performance. 

1   Introduction 

The goal of this paper is to solve the problem of requiring large database to build an 
automatic system in order to detect the location of faces in scenes. This paper 
explores the use of modular neural network (MNN) classifiers. Non-modular 
classifiers tend to introduce high internal interference because of the strong coupling 
among their hidden layer weights [3,5]. As a result of this, slow learning or over 
fitting can occur during the learning process. Sometimes, the network could not be 
learned for complex tasks.  Such tasks tend to introduce a wide range of overlap 
which, in turn, causes a wide range of deviations from efficient learning in the 
different regions of input space [3,5]. High coupling among hidden nodes will then, 
result in over and under learning at different regions [8]. Enlarging the network, 
increasing the number and quality of training samples, and techniques for avoiding 
local minina, will not stretch the learning capabilities of the NN classifier beyond a 
certain limit as long as hidden nodes are tightly coupled, and hence cross talking 
during learning [7]. A MNN classifier attempts to reduce the effect of these problems 
via a  divide and conquer approach. It, generally, decomposes the large size / high 
complexity task into several sub-tasks, each one is handled by a simple, fast, and 
efficient module. Then, sub-solutions are integrated via a multi-module decision-
making strategy. Hence, MNN classifiers, generally, proved to be more efficient than 
non-modular alternatives [2,5,6]. In section 2, a method for detection of human faces 
in photo images is presented. Also, an algorithm during the searching procedure is 
described. A fast searching algorithm for face detection which reduces the 
computational complexity of neural networks is presented in section 3. 
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2   Human Face Detection Based on Neural Networks 

The human face is a complex pattern. Finding human faces automatically in a scene is 
a difficult yet significant problem. It is the first step in fully automatic human face 
recognition system. Face detection is the fundamental step before the face recognition 
or identification procedure. Its reliability and time response have a major influence on 
the performance and usability of the whole face recognition system. Training a neural 
network for the face detection task is challenging because of the difficulty in 
characterizing prototypical "nonface" images [1]. Unlike face recognition, in which 
the classes to be discriminated are different faces, the two classes to be discriminated 
in the face detection are "image containing faces" and "image not containing faces". It 
is easy to get a representative sample of images that contain faces, but much harder to 
get a representative sample of those which do not. Feature information needs to be 
stored in the database for the purpose of retrieval. Information retrieval can be done 
by using a neural network approach which has the potential to embody both numerical 
and structural face data. However, neural network approaches have been 
demonstrated only on limited database. The use of huge samples of face/nonface 
images makes the learning process very difficult for the neural network.  

2.1   A Proposed Algorithm for Face Detection Using MNNs 

First, in an attempt to equalize the intensity values of the face image, the image 
histogram is equalized. This not only reduce the variability of generated by 
illumination conditions, and enhance the image contrast but also increases the number 
of correct pixels that can be actually encountered [3]. The next component of our 
system is a classifier that receives an input of 20x20 pixel region of gray scale image 
and generates an output region ranging from 1 to  -1, signifying the presence or 
absence of a face, respectively. This classification must have some invariance to 
position, rotation, and scale. To detect faces anywhere in the input, the classifier is 
applied at every location in the image. To detect faces larger than the window size, 
the input image is repeatedly reduced in size. The classifier is applied at every pixel 
position in the image and scale the image down by a factor of 1.2 for each step as 
shown in Fig. 1. So, the classifier is invariant to translation and scaling. To have 
rotation invariant, the neural network is trained for images rotated from 0° to 345° by 
a step of 15°.  In order to train neural networks used in this stage, a large number of 
face and nonface images are needed. A sample of nonface images, which are collected 
from the world wide web, is shown in Fig. 2. So, conventional neural networks are 
not capable of realizing such a searching problem. As a result of this, MNNs are used 
for detecting the presence or absence of human faces for a given image.  Images (face 
and nonface) in the database are divided into three groups which result in three neural 
networks. More divisions can occur without any restrictions in case of adding more 
samples to the database. Each group consists of 600 patterns (300 for face and 300 for 
nonface). Each group is used to train one neural network. Each network consists of 
hidden layer containing 30 neurons, and an output layer which contains only one 
neuron. Here, two models of MNNs are used. The first is the ensemble majority 
voting which gives a result of 82% detection rate for the Bio-Database. The other is 
the average voting which gives a better result of 89% detection rate.   
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Fig. 1. Image resizing by a factor of 1.2 during face detection 

                                  

Fig. 2. Examples of nonface images 

2.2   Enhancement of Recognition Performance 

To enhance the detection decision, the detection results of neighboring windows can 
be used to confirm the decision at a given location. This will reduce false detection as 
neighboring windows may reveal the nonface characteristics of the data. For each 
location the number of detections within a specified neighborhood of that location can 
be counted.  If the number is above a threshold, then that location is classified as a 
face. Among a number of windows, the location with the higher number of detections 
in range of one pixel is preserved, and locations with fewer detections are eliminated. 
In our case, a threshold of 4 is chosen. Such strategy improves the detection rate for 
the Bio-database to 96% (average voting), as a result of reducing the false detections. 
It is clear that, the use of MNNs and this enhancement has improved the performance 
over our previous results in [9], where non-modular neural networks are used, in 
which the best result on the same samples was 61% [9]. 

3   Fast Neural Networks for Face Detection 

In subsection 2.1, modular neural network for object detection is presented using a 
sliding window to test a given input image. In this section, a fast algorithm for object 
detection (used with each of the neural networks presented in section 2.1) based on 
two dimensional cross correlations that take place between the tested image and the 
sliding window. Such window is represented by the neural network weights situated 
between the input unit and the hidden layer. The convolution theorem in mathematical 
analysis says that a convolution of f with h is identical to the result of the following 
steps: let F and H be the results of the Fourier transformation of f and h in the 
frequency domain. Multiply F and H in the frequency domain point by point and then 
transform this product into spatial domain via the inverse Fourier transform. As a 
result, these cross correlations can be represented by a product in the frequency 
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domain. Thus, by using cross correlation in the frequency domain a speed up in an 
order of magnitude can be achieved during the detection process [1-3]. In the 
detection phase, a sub image I of size mxn (sliding window) is extracted from the 
tested image, which has a size PxT, and fed to the neural network. Let Xi be the vector 
of weights between the input sub image and the hidden layer. This vector has a size of 
mxn and can be represented as mxn matrix. The output of hidden neurons h(i) can be 
calculated as follows:  
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where g is the activation function and b(i) is the bias of each hidden neuron (i). Eq. 1 
represents the output of each hidden neuron for a particular sub-image I. It can be 
obtained to the whole image Z as follows: 
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Eq. 2 represents a cross correlation operation. Given any two functions f and d, their 
cross correlation can be obtained by: 
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Therefore, Eq. 2 may be written as follows: 
( )ibiXZgih +⊗=                                     (4) 

where hi is the output of the hidden neuron (i) and hi (u,v) is the activity of the hidden 
unit (i) when the sliding window is located at position (u,v) and (u,v)   ∈[P-m+1,T-
n+1]. Now, the above given cross correlation can be expressed in terms of Fourier 
Transform: 

( ) ( )( )iX*FF1FiXZ Z •−=⊗                              (5) 

Hence, by evaluating this cross correlation, a speed up ratio can be obtained compared 
to conventional neural networks. Also, the final output of the neural network can be 
evaluated as follows:  
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O(u,v) is the output of the neural network when the sliding window located at the 
position (u,v) in the input image Z. 

For a tested image of NxN pixels, the 2D-FFT requires (5N2log2N
2) real 

computation steps [11]. The same number of computation steps is required for the 
weight matrix at each neuron in the hidden layer. The inverse 2D-FFT of the resulted 
dot product must be computed at each neuron in the hidden layer. As a result, q 
backward and (q+1) forward transforms have to be computed. Therefore, for a tested 
image, the total number of the 2D-FFT to compute is ((2q+1)(5N2log2N

2)). Moreover, 
the input image and the weights should be multiplied in the frequency domain. 
Therefore, real computation steps of (6qN2) should be added. Finally, a total of 
O((q+1)(5N2log2N

2)+6qN2) computation steps must be evaluated for fast the neural 
algorithm. , for the weight matrix to have the same size as the input image, a number 
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of zeros = (N2-n2) must be added to the weight matrix. This requires a total real 
number of real computation steps = q(N2-n2) for all neurons. Moreover, after 
computing the 2D-FFT for the weight matrix, the conjugate of this matrix must be 
obtained. So, a real number of computation steps =qN2 should be added in order to 
obtain the conjugate of the weight matrix for all neurons.  Also, a number of real 
computation steps equal to N is required to create butterflies complex numbers  
(e-jk(2Πn/N)), where 0<K<L. These (N/2) complex numbers are multiplied by the 
elements of the input image or by previous complex numbers during the computation 
of 2D-FFT. To create a complex number requires two real floating point operations. 
Thus, the total number of computation steps required for fast neural networks 
becomes [11]: 

σ=((2q+1)(5N2log2N2) +q(8N2-n2) +N )                        (7) 

Using sliding window of size nxn, for the same image of NxN pixels, (q(2n2-1) 
(N-n+1)2) computation steps are required when using traditional neural networks for 
the face detection process. The theoretical speed up factor  can be evaluated as 
follows: 
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The speed up factor introduced in [10] for object detection which is given by: 

N21)log(q

2qn
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is not correct for the reasons given in [11-23]. The relation between the image size 
and speed up ratio is shown in Fig. 3. Practical speed up ratio is shown in Fig.4 using 
MATLAB ver 5.3 and 700 MHz processor. A comparison between the classic and fast 
neural networks for different window size is illustrated in Fig. 5.  
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Fig. 3. The relation between the size of the input image and the speed up ratio 
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Fig. 4. Practical speed up ratio for images with different size 
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Fig. 5. A comparison between the number of computations taken by classic and fast neural 
networks for face detection 

4   Conclusion 

A fast modular neural network approach has been introduced to identify frontal views 
of human faces. Such approach can manipulate gray scale images of resolution 20x20 
up to 500x500 pixels. The technical problem associated with large database 
(face/nonface) required for training neural networks has been solved using MNNs. A 
simple algorithm for fast face detection based on neural network and FFT is presented 
in order to speed up the execution time. Simulation results on Bio-database have 
shown that our algorithm is an efficient method for finding locations of faces when 
the size of the face is unknown as well as mirrored, noised, and occluded faces are 
detected correctly.  
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Abstract. This paper proposes a method for detecting facial regions
by combining a Gabor filter and a convolutional neural network. The
first stage uses the Gabor filter which extracts intrinsic facial features.
As a result of this transformation we obtain four subimages. The second
stage of the method concerns the application of the convolutional neural
network to these four images. The approach presented in this paper yields
better classification performance in comparison to the results obtained
by the convolutional neural network alone.

1 Introduction

Detecting and locating human faces in an image or a sequence of images are im-
portant tasks in applications like intelligent human-computer interaction, model-
based coding of video sequences at very low bitrates and content-based video
indexing. Given an image of arbitrary size, the task is to detect the presence of
any human face appearing in the image. Face detection in complex scenes is a
challenging task since human faces may appear in different scales, orientations
and with different head poses. Due to change of lighting condition, facial ex-
pressions, shadows, etc., the human face appearance could change considerably.
Presence of glasses is another source of variations we have to take into account.

Several approaches, such as support vector machines [10], Bayesian classi-
fiers [10], neural networks [7][5] have been proposed so far for detection of facial
regions. The face knowledge-based detector [7] first preprocess the image sub-
window and applies a neural network to detect whether it contains a face. The
neural network has three types of hidden units: four looking at 10x10 pixel sub-
regions, six looking at overlapping 20x5 pixel subregions and sixteen looking
at 5x5 subregions. These subregions have been chosen to represent facial fea-
tures that are important to face detection in pixel windows of size 20x20. To
reduce the number of false positives multiple networks are applied. They have
been trained in a similar manner but under different initial conditions and with
different self-selected non-face examples. A skin-color detector has been used
at the preprocessing stage to limit the amount of searching. Another neural
network-based approach for finding frontal faces has been presented in work [8].
The algorithm uses a modified k-means clustering algorithm to extract the six
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face and non-face pattern centroids and their cluster covariance matrices from
normalized input patterns. A multi-layer perceptron has been applied to clas-
sify the face and non-face patterns using different feature vectors of 12 distance
measurements. The network contains 12 pairs of input units, one output unit
and 24 hidden units. This work reported 79.9% to 96.3% detection rates with
different data sets. The work [1] indicated that in the face recognition the face
representation which is obtained on the basis of 2D Gabor filters is more robust
against illumination variations than that of intensity-based. Gabor filter-based
features have been used in several approaches to face recognition [10] and little
work has been done to apply they to face detection. The work [5][2] presents
results which were obtained during experiments with detection of faces in static
images using convolutional neural networks.

Convolutional neural networks use the local receptive fields, shared weights
and subsampling in order to extract and then to combine local features in a
distortion-invariant manner. The feature extractor is created by the learning
process and it is integrated into the classifier. The number of free parameters
in a convolutional neural network is much less than in a fully-connected neural
network with comparable classification capabilities due to the weight sharing.
Our method uses Gabor filter-based features instead of the raw gray values as
the input for a convolutional neural network to take advantage of both methods.
The choice of Gabor filter responses is biologically motivated since they model
the response of human visual cortical cells [3]. Gabor filters remove most of
variation in lighting and contrast and can reduce intrapersonal variation. They
are also robust against small shifts and small object deformations.

The remainder of the paper is organized as follows. In the next section we
discuss the Gabor filter. In section 3. the components and details of convolutional
neural network are presented. Section 4. reports results which were obtained in
experiments. Finally, some conclusions follow in the last section.

2 Facial Features Extraction Using Gabor Filters

The main advantage of Gabor wavelets is that they allow analysis of signals
at different scales, or resolution, and further they accommodate frequency and
position simultaneously. The Gabor wavelet is essentially a sinewave modulated
by a Gaussian envelope. The 2-D Gabor filter kernel is defined as follows:

f(x, y, θk, λ) = exp

[
−1

2

{
R2

1

σ2
x

+
R2

2

σ2
y

}]
exp

{
i
2πR1

λ

}
(1)

where R1 = xcosθk + ysinθk and R2 = −xsinθk + ycosθk, σx and σy are the
standard deviations of the Gaussian envelope along the x and y dimensions, λ
and θk are the wavelength and orientation of the sinusoidal plane wave, respec-
tively. The spread of the Gaussian envelope is defined in terms of the wavelength
λ. θk is defined by θk = π(k−1)

n , k = 1, 2, ..., n, where n denotes the number of
orientations that are taken into account. For example, when n = 2, two values
of orientation θk are used: 0o and 90o.
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A Gabor filter response is achieved by convolving a filter kernel given by (1)
with the image. The response of the filter for sampling point (x, y) is given by:

g(x, y, θk, λ) =
N−x−1∑

u=−(N−x)

N−y−1∑
v=−(N−y)

I(x+ u, y + v)f(u, v, θk, λ) (2)

where I(x, y) denotes a NxN grayscale image.
In this work two different orientations and two different wavelengths are uti-

lized. Therefore, different facial features are selected, depending on the response
of each filter. In frontal or near frontal face image the eyes and mouth are ori-
ented horizontally, while the nose constitutes vertical orientation. Fig. 1 depicts
some Gabor filtered images of face samples of size 20x20. We can observe that
the orientation properties of the face pattern have been highlighted. In particu-
lar, the eyes, nose and mouth have come out quite well. This does demonstrate
the Gabor wavelet’s capability to select localized variation in image intensity.

Fig. 1. Gabor filtered images

3 Convolutional Neural Architecture

A convolutional neural network [6] is a special kind of a feedforward neural net-
work. It incorporates prior knowledge about the input signal and its distortions
into its architecture. Convolutional neural networks are specifically designed to
cope with the variability of 2D shapes to be recognized. They combine local
feature fields and shared weights as well as utilize spatial subsampling to ensure
some level of shift, scale and deformation invariance. Using the local receptive
fields the neurons can extract simple visual features such as corners, end-points.
These elementary features are then linked by the succeeding layers to detect
more complicated features.

A typical convolutional network contains a set of layers each of which consists
of one or more planes. Each unit in the plane is connected to a local neighbor-
hood in the previous layer. The unit can be seen as a local feature detector
whose activation characteristic is determined in the learning stage. The outputs
of such a set of units constitute a feature map. Units in a feature map are con-
strained to perform the same operation on different parts of the input image
or previous feature maps, extracting different features from the same image. A
feature map can be obtained in a sequential manner through scanning the input
image by a single unit with weights forming a local receptive field and storing
the outputs of this unit in corresponding locations in the feature map. This op-
eration is equivalent to a convolution with a small kernel. The feature map can
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be treated as a plane of units that share weights. The subsampling layers which
usually follow layers with local, convolutional feature maps introduce a certain
level of invariance to distortions and translations. Features of decreasing spatial
resolution and of increasing complexity as well as globality are detected by the
units in the successive layers.

The convolutional neural network we use consists of 6 layers. Layer C1 per-
forms a convolution on the Gabor filtered images using an adaptive mask. The
weights in the convolution mask are shared by all the neurons of the same feature
map. The receptive fields of neighboring units overlap. The size of the scanning
windows was chosen to be 20x20 pixels. The size of the mask is 5x5 and the size
of the feature map of this layer is 16x16. The layer has 104 trainable parameters.
Layer S2 is the averaging/subsampling layer. It consists of of 4 planes of size 16
by 16. Each unit in one of these planes receives four inputs from the correspond-
ing plane in C1. Receptive fields do not overlap and all the weights are equal
within a single unit. Therefore, this layer performs a local averaging and 2 to 1
subsampling. The number of trainable parameters utilized in this layer is 8. Once
a feature has been extracted through the first two layers its accurate location in
the image is less substantial and spatial relations with other features are more
relevant. Therefore layers S1 and C2 are partially connected, and the task of
such a configuration is to discover the relationships between different features.

Layer C2 is composed of 14 feature maps. Each unit contains one or two
receptive fields of size 3x3 which operate at identical positions within each S1
maps. The first eight feature maps use single receptive fields. They form two
independent groups of units responsible for distinguishing between face and non-
face patterns. The remaining six feature maps take inputs from every contiguous
subsets of two feature maps in S1. This layer has 140 free parameters. Layer S2
plays the same role as the layer S1. It is constructed of 14 feature maps and has
28 free parameters. In the next layer each of 14 units is connected only to the
corresponding feature map of the S2 layer. It has 140 free parameters. Finally,
the output layer has one node that is fully connected to the all the nodes from the
previous layer. The network contains many connections but relatively few free
trained parameters. Weight sharing allows to considerably reduce the number of
free parameters and improves the generalization capability.

Training of our network has been realized in a supervised manner by using
the back-propagation algorithm which has been adapted for convolutional neural
networks. The partial derivatives of the activation function with respect to each
connection have been computed, as if the network were a typical multi-layer one.
Then the partial derivatives of all the connections that share the same parameter
have been added to construct the derivative with respect to that parameter.

The recognition performance of a learned system is dependent on the size and
quality of the training set. The face detector was trained on 3000 non-face patches
collected from about 1500 images and 1500 faces covering out-of-plane rotation in
the range−20o, ..., 20o. All faces were manually aligned by eyes position. For each
face example the synthesized faces were generated by random in-plane rotation
in the range −10o, ..., 10o, random scaling about ±10%, random shifting up to
±1 pixel and mirroring. All faces were then cropped and re-scaled to windows of
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Fig. 2. Some examples from the training gallery

size 20x20 pixels while preserving their aspect ratio, see Fig. 2. Such a window
size is considered in the literature as the minimal resolution that can be used
without loosing critical information from the face pattern. The training collection
contains also images acquired from our video cameras. The most of the training
images which were obtained from WWW are of very good quality. The images
obtained from cameras are of second quality, see also the last subimage from
sequence demonstrated in Fig. 2. To provide more false examples we utilized a
training with bootstrapping [7]. By using bootstrapping we iteratively gathered
examples which were close to the boundaries of face and non-face clusters in the
early stages of training. The activation function in the network was a hyperbolic
tangent. Training the face detector took around 60 hours on a 2.4 GHz Pentium
IV-based PC. There was no overlap between the training and test images.

4 Experimental Results

The experiments described in this section were carried out with a commercial
binocular Megapixel Stereo Head. The depth map covering a face region is usu-
ally dense because human face is rich in details and texture. Thanks to such a
property the stereovision provides a separate source of information and allows
us to avoid expensive scaling down the subimages during searching for faces
at all scales. A skin color detector is the first classifier in our system [4]. This
fast classifier discards most of non-skin regions and therefore provides a focus
of attention strategy guiding the searching for faces to only promising regions.
It could detect almost all the promising regions. To find the faces the detector
moves a scanning subwindow by a pre-determined number of pixels within only
skin-like regions. The output of the face detector is then utilized to initialize our
face/head tracker [4]. Fig. 3 depicts a typical scenario in which the face detec-
tor has been tested. The detector operates on images of size 320x240 and can
process 2-5 images per second depending on the image structure.

To estimate the recognition performance we utilized only the static gray
images. We obtained a detection rate of 87.5% on a test data-set containing
1000 face samples and 10000 non-face samples. Using only the convolutional
network we obtaied a detection rate of 79%. This is a result of relatively simple
structure of the network. It is worth to notice that such a relatively simple
architecture of the network has been chosen to provide face detection in real-time
using the available computational resources. The system achieves a much better
recognition performance that using the convolutional neural network alone. It is
much easier to train a convolutional neural network using a Gabor filtered input
images than a network which uses raw images or histogram equalized images.
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depth subimage→

Fig. 3. Face detection

5 Conclusion

The experimental results we have obtained are very promising both in detection
rates and processing speed. The Gabor filter has been used to capture efficient
features for a convolutional neural network. The system achieves a much better
recognition performance that using the convolutional neural network alone. The
advantage of the proposed approach is that it achieves high face detection rates
and real-time performance due to no exhaustive searching on the whole image.
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Abstract. The paper presents improvements in face identification per-
formance using synthesized images as a perturbation method. Three fa-
cial expression features, smiles, anger and screams, were extracted from
images of actual facial expression using the eigenspace method. Synthe-
sized facial images based on these features were added to learning data
of a personal identification model using support vector machines (SVM).
The performance of this model was significantly higher than that of a
model trained without facial expression images, but significantly lower
than that of a model using actual expression images. The results sug-
gest that identification performance also depends significantly on facial
expression.

1 Introduction

Personal identification systems using facial images have been studied variously.
To achieve optimum performance using facial image recognition, as many images
of an individual as possible should be gathered. However it is not easy to get
enough facial images suitable to develop an identification system. The reason why
the system requires many different images is to enable it to obtain some feature
and variation of the facial images. In particular, transformations of the face
which cause face rotation and other changes, such as frowns and open mouths
should be considered [1,2,3].

Due to these robustness for the factors, additional training data is often
generated to obtain robustness by putting perturbation on an original set of
data [4], using the perturbation method. Effectiveness of this method for the
factor of face rotation or conditions of illumination have been examined.

The aim of this paper is to examine whether face identification performance
improves when additional training data is generated using perturbation meth-
ods, such as putting facial expression features on a neutral facial image. The
expression features of the facial image are achieved using the eigenspace method
[5], and then synthesized facial images are obtained using linear summation of
an expression feature and a neutral facial image. The identification performance
is compared to sets of training data of neutral facial images, synthesized facial
images, and actual images of facial expressions.
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2 Method

2.1 Facial Image Data

To extract expression features and to test identification performance, facial im-
ages of the AR Face database [6] were analyzed. This database contains four
facial expression images of individuals: smiles, anger, screams and neutral ex-
pressions. The data consists of multiple images of individuals, taken on each of
two consecutive days. The images of 113 individuals were selected as appropriate
facial images for the analysis.

The expression features were extracted from images of 30 individuals which
were selected at random. The images of the remaining 83 individuals taken each
day were applied to training and identification tests respectively. As a result, 240
images (30 images × 4 expressions × 2 days) for feature extraction, 581 images
(83 images × 4 neutral expressions and 3 other expressions) for training, and
332 images (83 images × 4 expressions) for identification tests were extracted.

The target facial images were standardized as 30 × 30 pixel, 256 gray scale
images, clipped from the original images. The center position of the clipping was
located at the mid-point between the right and left eyes.

2.2 Expression Feature Extraction

Kurozumi et al. [5] suggest that it is possible to extract expression features
from facial images and create synthesized facial expression images based on the
eigenspace method. Using the following method, we obtained these features from
an image set for analysis.

An image set for analysis is defined as F , and the number of images which are
included for a class f ∈ F is Mf . A facial image is converted to an N dimensional
vector x which consists of 256 gray scale level values for each pixel. The m th
image (1 ≤ m ≤ Mf , where m is an integer), which is included for a class f , is
noted as xfm.

The between-class variance SB, and within-class variance SW are derived
from following equations respectively.

SB =
1
M

∑
f∈F

Mf(x̄f − x̄)(x̄f − x̄)t (1)

SW =
1
M

∑
f∈F

Mf∑
m=1

(xfm − x̄f )(xfm − x̄f )t (2)

Where x̄ gives a mean of xfm across f and m, x̄f gives a mean of xfm across
m on an f , and M =

∑
f∈F Mf .

In this paper, each expression feature is extracted from an image subset of
neutral and another facial expressions, such as neutral expressions and smiles
for example.
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An image vector xfm is approximated using K(K ≤ M − 1) normalized
orthogonal bases, φk = (φ1k, · · · , φNk)t, k = 1, · · · ,K.

x̃fm =
K∑

k=1

σkfmφk + x̄ (3)

σkfm = (xfm − x̄)tφk (4)

The k th σkfm is given as the above equation (4). Here, S = SB − SW and
φk are derived by following the eigenvalue problem [5].

Sφk = λkφk (5)

In this analysis, λk is the difference between between-class and within-class
variances of σkfm, and it is defined as the degree of separation. An eigenvector
φk, which corresponds to the maximum eigenvalue λk, represents features of
smile expressions (φf ).

Eigenvectors as features of scream expressions and anger are obtained using
the same procedure.

3 Experiment

3.1 Procedure for Synthesizing Facial Expression Images

It is assumed that a synthesized facial image is achieved using the following
equation, if the neutral expression is a mean of all facial expression images for
individuals.

x̃ = x0 + zVf (6)

Here, Vf is a transformed feature vector from φf for expression f , which is
adjusted for 256 gray scale presentation. A weight z for synthesizing a facial
expression image is controlled as z = −20,−16,−12,−8,−4, 0, 4, 8, 12, 16, 20 by
observing synthesized facial images.

3.2 Identification Model Training

The personal identification model has been developed by SVM, using the SVM-
Torch package [7,8]. The training/test data consists of 256 gray scaled 900 di-
mensions (30 × 30 pixels) with identification numbers. The SVM was trained
with gaussian kernel, using the parameter STD = 7000.

Three training data sets were prepared on the first day from 83 individuals
facial images, to examine the effectiveness of the perturbation method in gener-
ating additional synthesized facial expression images from a neutral expression
set.

As a result, “neutral” sets consist of 332 images (83 × 4 shots); “synthesized”
sets consist of 10,956 images (83 × 4 shots× 11 synthesized× 3 expressions); and
“real” sets consist of 581 images (83 × 3 expressions and 4 neutral expressions).
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Fig. 1. Samples of synthesized face image

4 Experimental Results

The personal identification performance for each model was evaluated with a
test data set which consisted of 332 facial images from the second day (83 × 3
expressions and a neutral expression).

The performance of personal identification using biometrics is generally eval-
uated using indices of False Acceptance Ratio (FAR) and False Rejection Ratio
(FRR) [9]. In this paper, identification performance is evaluated by indices of
recall rate and precision rate which are often used for document retrieval per-
formance. Here, recall rate (R) means the performance in identifying a person,
and precision rate (P ) means the performance in omitting other persons. Addi-
tionally, a harmonic mean of R and P is defined as F1(R, P ) = 2RP

R+P [10].
The recall rate and precision rate for each model are summarized in the first

rows of Table 1 and Table 2 respectively. The results suggest that both rates
increase gradually from “neutral” to “synthesized” and to “real” models. To ex-
amine the performance difference across the three models, one-way ANOVA was
conducted for the recall and precision rates. As a result, the source of a model is
significant for both rates and for the F1 measure (recall: F (2, 164) = 51.4, p <
0.01; precision: F (2, 164) = 61.5, p < 0.01; F1: F (2, 164) = 63.9, p < 0.01).
There are significant differences for all indices amongst the three models. This
suggests that identification performance of “synthesized” models is significantly
higher than “neutral” models, and significantly lower than “real” models how-
ever. The result provides evidence that face identification performance improves
when additional training data is generated by using the perturbation method.
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Table 1. Recall rate

Identification Model
Images Neutral Synthesized Real
Total .68 .77 .90

Neutral .93 .95 .96
Smile .69 .86 .93
Anger .81 .84 .95
Scream .30 .43 .77

Table 2. Precision rate

Identification Model
Images Neutral Synthesized Real
Total .60 .72 .86

Neutral .89 .93 .95
Smile .59 .79 .89
Anger .74 .79 .93
Scream .19 .35 .68

Neutral Smile Anger Scream
0.0

0.2

0.4

0.6

0.8

1.0

neutral
synthesized

real

F1
 m

ea
su

re

Test face images

Fig. 2. F1 measures across facial expression of test images

The identification performance of each expression image is also summarized
in Tables 1 and 2. It shows that the rates change with the models and facial ex-
pressions. The change in F1 measure is illustrated across expressions in Figure 2.
The F1 for “real” models shows good performance without scream expressions.
The “neutral” model performance is the worst without neutral expressions. The
performance of “synthesized” models is better for smile and anger expressions,
but the performance falls down for scream expressions. To obtain performance
differences amongst models for each facial expression, one-way ANOVA was con-
ducted. There are no significant differences for neutral expressions. For smile
expressions, there is a significant difference (p < 0.05) in performance between
“synthesized” and “neutral”. However, this model has the same F1 level as the
“neutral” model. For scream expressions, performance increases significantly in
the order of “neutral”, “synthesized”, and “real”.

5 Conclusion

This paper examines the idea that identification performance for facial expres-
sions can be improved without gathering actual images of facial expressions.
The additional data for model training was generated using the perturbation
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method by synthesizing face images which are based on facial expression fea-
tures extracted using the eigenspace method.

The performance of three identification models, which were trained with
“neutral”, “synthesized” or “real” image sets, was compared. As a result, the
identification performance of “synthesized” models is significantly better than
“neutral” models across F1 measure, recall and precision rates. Also, the per-
formance of the “synthesized” models is significantly better than the “neutral”
model for all facial expressions without screams.

The results provide evidence that face identification performance can be im-
proved when additional training data such as synthesized images is generated
for facial expressions using the perturbation method.

The application of other techniques to the identification process will be the
subject of further study.
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Abstract. Linear discrimination analysis (LDA) technique is an important and 
well-developed area of image recognition and to date many linear 
discrimination methods have been put forward. Basically, in LDA the image 
always needs to be transformed into 1D vector, however recently two-
dimensional PCA (2DPCA) technique have been proposed. In 2DPCA, PCA 
technique is applied directly on the original images without transforming into 
1D vector. In this paper, we propose a new LDA-based method that applies the 
idea of two-dimensional PCA. In addition to that, our approach proposes an 
method called Discriminative Common Images based on a variation of Fisher’s 
LDA for face recognition. Experiment results show our method achieves better 
performance in comparison with the other traditional LDA methods. 

Keywords: Fisherfaces, Linear discrimination analysis (LDA), Discriminative 
Common Image, face recognition. 

1   Introduction 

The Fisherface method [4] combines PCA and the Fisher criterion [9] to extract the 
information that discriminates between the classes of a sample set. It is a most 
representative method of LDA. Nevertheless, Martinez et al. demonstrated that when 
the training data set is small, the Eigenface method outperforms the Fisherface 
method [7]. Should the latter be outperformed by the former? This provoked a variety 
of explanations. Liu et al. thought that it might have been because the Fisherface 
method uses all the principal components, but the components with the small 
eigenvalues correspond to high-frequency components and usually encode noise [11], 
leading to recognition results that are less than ideal. In [5], Yu et al. propose a direct 
LDA (DLDA) approach to solve this problem. It removes the null space of the 
between-class scatter matrix firstly by doing eigen-analysis. Then a simultaneous 
diagonalization procedure is used to seek the optimal discriminant vectors in the 
subspace of the between-class scatter matrix. However, in this method, removing the 
null space of the between-class scatter matrix by dimensionality reduction would 
indirectly lead to the losing of the null space of the within-class scatter matrix which 
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contains considerable discriminative information. Rui Huang [10] proposed the 
method in which the null space of total scatter matrix which has been proved to be the 
common null space of both between-class and within-class scatter matrix, and useless 
for discrimination, is firstly removed. Then in the lower-dimensional projected space, 
the null space of the resulting within-class scatter matrix is calculated. This lower-
dimensional null space, combined with the previous projection, represents a subspace 
of the whole null space of within-class scatter matrix, and is really useful for 
discrimination. The optimal discriminant vectors of LDA are derived from it. In [14], 
a common vector for each individual class is obtained by removing all the features 
that are in the direction of the eigenvectors corresponding to the nonzero eigenvalues 
of the scatter matrix of its own class. The common vectors are then used for 
recognition. In their case, instead of using a given class’s own scatter matrix, they use 
the within-class scatter matrix of all classes to obtain the common vectors. 

In [15], a new PCA approach called Two-dimensional PCA (2DPCA), is 
developed for image feature extraction. As opposed to conventional PCA, 2DPCA is 
based on 2D matrices rather than 1D vectors. That is, the image matrix does not need 
to be transformed into vector. Instead, an image covariance matrix can be constructed 
directly using original image matrices. So, in this paper we improve the LDA 
algorithm based on the idea of two-dimensional PCA. 

Generally, in this paper we improve the LDA-based algorithm by apply the 2D 
approach into the Discriminative Common Vectors [14] algorithm. Our new method 
takes the advantages of both 2DPCA method [15] for dealing with high dimensional 
data to avoid singularity and LDA-based algorithm [14] for dealing with small sample 
size problem. The remainder of this paper is organized as follows: In Section 2, the 
traditional LDA methods are reviewed. The idea of the proposed method and its 
algorithm are described in Section 3. In Section 4, experimental results are presented 
for the Yale face image databases to demonstrate the effectiveness of our method. 
Finally, conclusions are presented in Section 5. 

2   Linear Discriminant Analysis 

Suppose that we have N sample images 1 2{ , ,..., }Nx x x  taking values in an n-

dimensional image space. Let us also consider a linear transformation mapping the 
original n-dimensional image space into an m-dimensional feature space, where m < n. 

The new feature vectors  yk ∈ � �are defined by the following linear transformation : 

T
k ky W x=   (1) 

where 1,2,...,k N=  and W ∈ � �is a matrix with orthonormal columns. 

Different objective functions will yield different algorithms with different 
properties. While PCA seeks directions that are efficient for representation, Linear 
Discriminant Analysis seeks directions that are efficient for discrimination. Assume 

that each image belongs to one of C  classes 1 2{ , ,..., }CC C C . Let iN  be the 
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In LDA, the projection optW   is chosen to maximize the ratio of the determinant of 

the between-class scatter matrix of the projected samples to the determinant of the 
within-class scatter matrix of the projected samples, i.e., 

1 2arg max [ ... ]
T

b

opt W mT
w

W S W
W w w w

W S W
= =  (4) 

where { 1,2,..., }iw i m=  is the set of generalized eigenvectors of bS  and wS  

corresponding to the m  largest generalized eigenvalues { 1,2,..., }i i mλ = , i.e., 

1, 2,...,b i i w iS w S w i mλ= = . (5) 

3   Discriminative Common Vectors and Discriminative Common  
     Images 

The Discriminative Common Vectors approach can be summarized as follows, details 
can be referenced at [14] : 

• Step 1: Compute the nonzero eigenvalues and corresponding eigenvectors 

of wS . Set 1[ ... ]rQ α α= , where r is the rank of wS . 

• Step 2: Choose any sample from each class and project it onto the null 

space of  wS   to obtain the common vectors. 

_ , , 1,...,T
c com i i i cx x QQ x x C c C= − ∈ =  (6) 
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• Step 3: Compute the eigenvectors kw  of comS , corresponding to the 

nonzero eigenvalues. With comS  is defined below. There are at most 

1C −  eigenvectors that correspond to the nonzero eigenvalues. Use these 

eigenvectors to form the projection matrix 1 2 1[ ... ]CW w w w −= , which 

will be used to obtain feature vectors. 

_ _
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T
com c com com c com com
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S x xμ μ
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= − −  
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1 C

com c com
c

x
C

μ
=

=  

(7) 

In Discriminative Common Images approach, the image matrix does not need to be 
previously transformed into a vector, so a set of N sample images is represented as 

1 2{ , ,..., }NX X X  with Xi. ∈ � . Then the between-class scatter matrix bS  is re-

defined as 

1
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and the within-class scatter matrix wS  is re-defined as 
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= ∈  is the mean image of all samples and 
1

i

i

C
X Ci

X
N

μ
∈

=  

be the mean of the samples in class iC . The common vectors in (8) now become 

common images, and defined as 
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Also, comS  in (9) is re-defined as  
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4   Experimental Results 

This section evaluates the performance of our propoped algorithm Discrinative 
Common Images (DCI) compared with that of the original Fisherface algorithm, 
Direct LDA algorithm, and Discriminative Common Vectors (DCV) based on using 
Yale face database. The database contains 5760 single light source images of 10 
subjects each seen under 576 viewing conditions (9 poses x 64 illumination 
conditions).  For every subject in a particular pose, an image with ambient 
(background) illumination was also captured. 

Table 1. The recognition rates on Yale databases 

k Fisherface Direct LDA DCV DCI 
2 77.95 79.97 83.01 85.73 
3 86.29 86.59 89.11 93.78 
4 91.62 92.32 92.97 95.80 
5 93.31 93.98 94.42 97.51 
6 95.36 95.80 96.87 98.67 

 

Firstly, we tested the recognition rates with different number of training samples. 
( 2,3,4,5,6)k k =  images of each subject are randomly selected from the database 

for training and the remaining  images of each subject for testing. For each value of 
k , 50 runs are performed with different random partition between training set and 
testing set, and Table 1 shows the average recognition rates (%) with Yale database. 

5   Conclusions 

A new LDA-based method for face recognition has been proposed in this paper. In 
this paper, we propose a method that applies the idea of two-dimensional PCA. In 
addition to that, we proposes a method called Discriminative Common Images based 
on a variation of Fisher’s LDA for face recognition. By solving the small sample size 
problem and high dimensionality, this paper proposes a practical algorithm for 
applying LDA on image recognition applications, and shows the efficiency in face 
recognition application. It has the advantage of easy training, efficient testing, and 
good performance compared to other linear classifiers. 
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Abstract. In this paper we compare two models for extracting features from face
images and several neural classifiers for their applicability to classify gender, age,
facial expression, and identity. These models are i) a description of face images
by their projection on independent base images and ii) an Active Appearance
Model which describes the shape and grey value variations of the face images.
The extracted feature vectors are classified with Nearest Neighbor, MLP, RBF
and LVQ networks, and classification results are compared.

1 Introduction

A growing number of applications rely on the ability to extract information about people
from images. Examples are person identification for surveillance or access control, the
estimation of gender and age for building user models or facial expressions recognition,
which can give valuable information for the evaluation of man-machine interfaces. As
the mentioned recognition tasks have been addressed in isolation in the past, there often
exists a variety of methods for each. The presented work was done in the context of
building a man-machine interface for a mobile service robot [5], where all the above
mentioned information is of great interest. Furthermore, our hope was to identify one
method that could be used universally.

2 State of the Art

A commonly used method for face image analysis is the subspace projection of the
image data, where the subspace can be spanned by principal components, independent
components of the training data. This method was used for a vast amount of approaches
for person identification and automatic facial expression analysis [1]. Another wide-
spread method for person identification and for gender estimation is the Elastic Graph
Matching technique [10] [7]. Elastic Graph Matching describes faces in terms of spa-
tial frequencies in local image areas, where the relation between these areas is defined
by a graph structure. These models are adaptive and can adjust themselves to some
degree to variations in the image data. Active Appearance Models have been used for
person identification and facial expression analysis [2] [3]. They describe the statistical
variations of shape and grey values in the training data and adapt themselves in an it-
erative process to a given face image. Up to now, very little work was reported on age
estimation from image data.
� This work is partially supported by TMWFK-Grant # B509-03007 to H.-M. Gross.
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3 Dataset Coding Age, Gender, Identity, and Facial Expressions

There exists a variety of face databases designed for single classification tasks, e.g.
the Cohn Kanade database for facial expressions [8]. However, we wanted to test the
performance of our methods for classification tasks as diverse as gender, age, facial ex-
pressions, and identity. To eliminate the influence of varying quality of the image data,
we recorded our own database according to our requirements. This database consists of
two parts. The first part used for the classification of age, gender, and identity contains
70 people with 7 images each, with neutral facial expression, different illuminations,
and small deviations in head orientation. Identities are equally distributed in the age
range between 10 and 60 and equally distributed over genders. The second part consists
of 30 identities with 7 images each, which represent the basic emotions happiness, sad-
ness, surprise, fear, anger, disgust and neutral as identified by Ekman in [4], see Fig. 1.
Since evoking facial expressions with movies was shown to produce mixtures of basic
emotions [6], we decided to ask probands to pose facial expressions according to the
seven basic emotions. As people’s ability to pose facial expressions varies significantly,
all the recorded images were manually classified by 10 people and only a subset of all
images was used where at least 7 people agreed on the facial expression. This prob-
lem could be avoided, if the image data was labeled with FACS codes, describing the
activity of facial muscles instead of basic emotions. However, since FACS coding is
very time consuming and has to be done by trained personnel, it was not yet possible to
obtain FACS codes for our data.

Fig. 1. Examples of the used data set for facial expressions. From left to right: neutral, surprise,
sadness, anger, fear, happiness, disgust.

4 Feature Extraction

To provide the feature extraction methods with normalized data, we manually labeled
the position of facial landmarks. We analyzed Independent Component Analysis (ICA)
and Active Appearance Models (AAM) for feature extraction.

4.1 Independent Component Analysis

For ICA, only the centers of the eyes are used as facial landmarks. The ICA model
depends on highly accurate aligned image data as the model does not adapt to a given
face image. Thus, we applied affine transformations such that the center of the eyes
are on the same position in every image. The size of these normalized images is 60 ×
70 pixels. For building the ICA model, an observation matrix was built by using the
vectorized images as rows. On this matrix we applied ICA and obtained independent
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(a) (b)

Fig. 2. (a) Example of an inde-
pendent base image. (b) When
using the ICA model, a nor-
malized input image is projected
on the independent base images.
The fit values for the base im-
ages form the feature vector to be
classified.

base images for the data, which represent local facial features, see Fig. 2(a). Any given
normalized face image is represented as linear combination of independent base images,
and the fit values constitute the data to be classified. For a more detailed description
see [9]. The data flow when using the ICA model is depicted in Fig. 2(b).

4.2 Active Appearance Models

The facial landmarks for the Active Appearance Models (AAM) consist of 116 points
along dominant outlines in the face, see Fig. 3(a). To construct an AAM, the mean
shape of the training data is computed and the shape variation is determined by principal
component analysis. In the next step, the training images are warped to the mean shape.
In the same way as with the shape model, the mean grey value face is computed and the
grey value variation is determined by principal component analysis. Finally, a predictor
matrix is estimated by varying single appearance parameters and averaging their effects
on the difference image. For details on Active Appearance Models see [2]. The data
flow when using the AAM is depicted in Fig. 3(b). After adaptation of the model to a
given face image, the resulting appearance parameters describe the shape and the grey
value distribution of the given face and are used as feature vector for classification.

5 Classification

We used a leave-n-out strategy to train and test the classifiers. The partitioning was
such, that every identity was in the test dataset exactly once. For gender, the test dataset
consisted of 2 identities (male and female), for age of one identity per age group and for
facial expressions of one person showing all facial expressions. For person identifica-
tion we used 3 images from each person for training, 2 for validation, and 2 for testing.
The results were averaged over the multiple training cycles performed for each recog-
nition task. We compared the following network types: Multi Layer Perceptron (MLP),
Radial Basis Function (RBF), Nearest Neighbor (NN), and Generalized Learning Vec-
tor Quantization (GLVQ). The number of inputs corresponds to the number of extracted
features, that is, ICA fit values or appearance parameters, respectively. The MLPs had
two trainable layers with 40 neurons in the hidden layer. The GLVQ network used 20
neurons per class. The centers of RBF networks were initialized by GLVQ training.
GLVQ and RBF networks operated on normalized, NN and MLP on unnormalized fea-
ture vectors.
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(a) (b)

Fig. 3. (a) Landmarks used for the construction of the Active Appearance Model. (b) Usage of
the Active Appearance Model. The iterative search process begins with appearance parameter
vector 0, that is, with mean shape and mean grey value distribution. The position is initialized by
the center of the eyes as with the ICA model. The input image is warped to the current shape to
produce the form normalized original image. On the other hand, the current grey value parameters
are used to produce the form normalized synthesized image. From the difference of these images,
a parameter change is estimated for each appearance parameter with the goal to minimize the
energy of the difference image. The search process converges, when this parameter change is 0.

6 Results and Conclusions

Recognition rates are shown in Fig. 4. For gender and facial expressions, recognition
rates are promising. Here, the best results were obtained with AAMs and MLP classi-
fiers or ICA with Nearest Neighbor classifiers, respectively. For both feature extraction
methods (ICA and AAM), the results for age classification are only slightly better than
guessing (20% due to the used 5 classes). From the confusion matrixes it can be seen,
that it is possible to distinguish young and old people, Table 1. For person identifica-
tion it is often not feasable to have a fixed gallery represented by a neural classifier.
Alternatively, two models either ICA fit values or active appearance parameters can
be compared by the normalized dot product. Therefore, the false acceptance and false
rejection rates were recorded for different similarity thresholds, see Fig. 5. Both meth-
ods achieve approximately the same equal error rates. Although the best recognition
rates for gender and age estimation were obtained with AAMs, in the final system we
deploy ICA with Nearest Neighbor classifiers only. This is a trade-off between recog-
nition rates and processing time needed to adapt the AAM to the input image, which is
about 2800ms compared to about 20ms for the subspace projection with ICA. Since the
AAM proved its capability for various recognition tasks, our future work will focus on
optimizing the AMM for processing speed. In contrast to the ICA subspace projection,
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Fig. 4. Recognition rates for gender, age, facial expressions and identity on validation data for
feature extraction with ICA or AAM, respectively. The best recognition rates w.r.t. gender, age
and facial expression were obtained with AAM and MLP or ICA and NN, respectively. The high
recognition rates for AAM with MLP classifiers suggest, that the AAM produces appearance
parameters which are in contrast to the ICA fit values well clustered according to the recognition
tasks. For person identification the ICA feature extraction performs significantly better than the
AAM. Here MLP and RBF networks fail, because of the large number of clusters. However, in
the final system, person identification is done by comparing two models and using a similarity
threshold for acceptance or rejection, see Fig. 5.

Table 1. Confusion matrixes for age estimation. Horizontal: true class, vertical: estimated class
(a) ICA + NN (b) AAM + MLP. Each age intervall contained 98 images to be classified. It can be
seen, that both methods are roughly able to distinguish young from old people. Thus, when using
the system only two or three clusters should be used.

10 20 30 40 50
10 48 15 18 10 7
20 9 36 22 6 25
30 18 32 20 15 13
40 6 19 29 23 21
50 7 32 21 19 19

10 20 30 40 50
10 55 11 13 16 3
20 9 40 29 8 12
30 20 19 23 19 17
40 13 7 23 33 22
50 4 10 15 22 47

(a) (b)

which relies on acurately aligned frontal views, the AAM is also able to handle and
estimate head pose, provided this image variation is present in the training data.
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(a) (b)

Fig. 5. False acceptance (FAR) and false rejection rate (FRR) curves for person identification with
(a) ICA (b) AAM. The equal error rates are approximately the same with 0.2 for ICA and 0.19
for AAM, which suggests that both methods are equally well suited for person identification.
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Abstract. We apply Long Short-Term Memory (LSTM) recurrent neural
networks to a large corpus of unprompted speech- the German part of
the VERBMOBIL corpus. By training first on a fraction of the data,
then retraining on another fraction, we both reduce time costs and sig-
nificantly improve recognition rates. For comparison we show recognition
rates of Hidden Markov Models (HMMs) on the same corpus, and provide
a promising extrapolation for HMM-LSTM hybrids.

1 Introduction

It would be desirable to retrain an Automatic Speech Recognition (ASR) system
on new data without losing the benefits of previous learning. For example, it may
be necessary to adapt quickly to new input, or to use information gained from
a previous task, e.g., recognizing read speech, in order to solve the next task,
e.g., quasi-spontaneous (= unprompted) speech. In task/domain independent
recognition [15], systems that are (pre-)trained under certain conditions and/or
certain dialogue specifications are required to adapt to utterances recorded under
different conditions or with different dialogue specifications. It has also become
standard practice to train Hidden Markov Models (HMMs) on multiple corpora,
in order to improve their robustness also with respect to new data. However,
methods for adapting HMM’s are complex, unintuitive, and time-consuming
[11]. Most modern systems use a hybrid of HMMs and maximum likelihood
linear regression to adapt to new training material.

Artificial neural nets (ANNs) lend themselves to a very simple form of retrain-
ing: train on one dataset, then continue training on another without resettting
the weights. Recurrent Neural Nets (RNNs) are particularly promising for speech
processing because they have the potential to learn a dynamic model of speech
that incorporates multiple time scales without using time windows or fixed time
delays. Unlike traditional RNNs, Long Short-Term Memory nets (LSTM) [10]
can also handle long time lag correlations between inputs and errors, also in
the context of speech applications [7]. Recent experiments with plain LSTM
on speaker adaptation [8] suggest that retraining is fast and effective on small
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corpora, and that results of previous learning and generalization improve with
retaining on randomly chosen subsets of the data. In this paper we apply this
approach for the first time to Bidirectional LSTM [9] and a large corpus of
unprompted speech.

The following section gives an overview of LSTM. Section 3 briefly describes
the VERBMOBIL data used for both LSTM and HMM experiments. Section
4 describes the experimental setup. Section 5 analyses the experimental results
of baseline and retrained LSTM for framewise phoneme prediction and gives
results for the entire phonemes for plain HMMs on the same test set to show
the task difficulty (unprompted speech). Section 6 provides an extrapolation of
the framebased results for a HMM-LSTM hybrid (under development) based on
previous comparisons of framewise and phoneme error rates on various corpora
of read speech.

2 LSTM

“Long Short-Term Memory” [10,6] is a general purpose algorithm for extracting
statistical regularities from noisy time series. It learns from scratch, typically
with more adjustable parameters (the weights), a larger search space, and less
initial bias [5] than HMMs, which incorporate prior linguistic knowledge.

2.1 Bidirectional LSTM (BLSTM)

The output of typical RNNs is based on the complete history of previous in-
puts. However, there are many sequence processing tasks where future inputs
are also useful because reverse correlations exist. In speech, for example, the ar-
ticulatory system is already preparing future utterances as it shapes the current
one. A solution is bidirectional training [13,1,2]: the input is presented forwards
and backwards to two separate recurrent nets, both of which are connected
to the same output layer. In this way, errors can be injected as normal and
backpropagated through the nets. Current results with BLSTM [9] show that it
outperforms normal LSTM, as well as previous bidirectional RNNs on speech
recognition tasks.

2.2 Retraining with Bidirectional LSTM

An in-depth investigation of retraining with LSTM [8] (i.e. presenting new data
to an already trained network) showed that LSTM is capable of fast and effective
relearning on speakers with widely varying vocal characteristics. The net was
trained and successively retrained on disjoint subsets of the TIDIGITS database.
The retraining time and difficulty diminished with repetition, and the net was
able to transfer knowledge across several datasets. The final performance of the
net was generally raised by having been previously trained on different datasets,
and this improvement persisted over multiple retrainings.
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Table 1. Basic numbers for the subsets in VM1 and VM2

VM1 DEVVM1 TESTVM1 TRAIN VM2 DEVVM2 TESTVM2 TRAIN
WORDS 15084 14615 285280 11905 9855 153438
TURNS 630 631 12600 592 592 11835

LEX 1537 1342 6472 1397 1264 5238
SPEAKER 35 33 629 13 13 119

3 Corpus Description

Our present investigation uses a database of unprompted speech- the VERBMO-
BIL (VM) corpus [17], which is more difficult to recognize than read speech such
as the TIMIT corpus. The VM corpus is divided into VM1 (recordings up to
1996) and VM2 (recording after 1996). Both sets differ in recording conditions
and tasks. The corpus consists mainly of three language portions: German, Amer-
ican English and Japanese. The German VM portion contains sufficient speech
data for training and testing (35136 turns1). For this study only the German por-
tion was used. The database-scenario deals with scheduling appointments with
a business partner: real-life-situations with currently used speech. The “formal
situation” setup ensures that speech contains fewer and weaker regional variants
than it would contain if personal affairs were discussed.

The training (TRAIN), development (DEV) and test (TEST) sets currently
used in our experiments on the VM corpus were created with the following
constraints (see table 1 for exact numbers): each speaker is allowed in only
one set (hard constraint), for each speaker there must be at least one complete
dialogue (to allow speaker adaptation algorithms to be applied; hard constraint),
speakers should be distributed equally across sexes in all sets (soft constraint),
recordings should be distributed equally across recording sites in all sets (to
cover possible accents preferences in one site; soft constraint).

The HMM system uses the full data for training and testing. The LSTM
classification network uses only one fourth of the training set in its baseline
training, another fourth of the training set is used for retraining. The full test
set is used as described above.

4 Experimental Setup

4.1 HMM System for Evaluating the Task Difficulty

The HMM[12] phone recognizer was built up with the Hidden Markov Toolkit
[18]. It uses the above defined subsets and a bigram trained solely on the training
corpus (VM1 TRAIN + VM2 TRAIN). It was tested on the VM1 DEV +
VM2 DEV sets with the corresponding lexicon (total: 5540 lexical entries).

The acoustic models are based on 12 Standard MFCC + Energy +
velocity + acceleration (39), Diagonal covariance matrices, 3-5 states per

1 One turn in the VM database has about 22.8 words in average.
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phoneme, 43 phoneme classes (extended German SAMPA) + garbage + voice
garbage + silence + laugh + breath (48), Models initialized using the Munich
Automatic Segmentation (MAU) tier of the BAS Partiture Format (BPF) from
1/4 of TRAIN, Re-estimation and splitting mixtures after 6 iterations on total
TRAIN, testing after every two iterations on DEV, weight of language model
fixed to 6.5; beam search width 100.0.

4.2 BLSTM: Experimental Setup

Preliminary experiments with LSTM standard nets with 25, 50, 100 and 200
blocks (2 cells each) showed that although the duration of the epochs doubled
each time, comparable results occurred in far fewer epochs. Nevertheless all
experiments converged at around 50% framewise phoneme correctness. When
comparing LSTM bidirectional nets to standard nets with comparable weights
(50 000) we found that BLSTM needs less epochs to obtain comparable results
to standard nets and reaches higher framewise phoneme correctness (58.87%).
Both bidirectional and standard nets reach their peak around the 120th epoch.

Based on these findings we used a two-step retraining procedure as follows:
LSTM training and retraining sets were each around 1/4 of the whole VM train-
ing set. Both training and retraining set are distinct from each other but were
randomly chosen from the whole training set. The whole VM test set was used.

Our bidirectional LSTM network contained two hidden LSTM layers (for
the forward and reverse nets), each with 200 blocks of 2 cells. It had 26 input
nodes and a softmax output layer containing 52 nodes. A cross entropy objective
function was used. The input layer was connected to the hidden layers, both of
which were connected to themselves and to the output layer. There were 907112
weights in total. Note that unlike HMMs BLSTM has no structural bias and
more weights - a disadvantage according to the bias-variance dilemma [5].

5 Experimental Results

Our experiments are divided into two main parts: The first shows the recognition
results of a plain HMM phone recognizer which was trained both on monophones
and triphones (also across words). Part two gives the plain LSTM classification
for frame by frame recognition results.

Monophones contain 512 Gaussian mixtures per state. Triphones have the
same number of parameters as the monophone system, 8 mixtures per state and
are trained also across word boundaries. HMMs were trained on the full training

Table 2. For comparison: Phoneme error rate for plain HMMs

System training set size phoneme error rate on the test set epochs
Monophone full 34.29% 52
Triphone crossword full 35.49% 37
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Table 3. Recognition results: frame by frame phoneme error rate for plain BLSTM

System training set size frame by frame phoneme epochs
error rate on the test set

baseline 1/4 (randomly chosen) 38.40% 50
retraining 1/4(distinct from baseline) 33.36% 67

set (BLSTM just on one fourth, retraining on another fourth). Both systems use
the same test set. Table 3 shows the main results of the plain BLSTM net.

BLSTM retraining led to a 5% improvement on the full test set. Using 1/4
of the training set at a time greatly reduces total training time.

6 Predicting the Phoneme Error Rate: An Extrapolation
for a HMM-LSTM Hybrid Approach

Although we cannot compare the framewise phoneme error of BLSTM directly
with the phoneme error of the HMM we expect that a BLSTM-HMM hybrid
(under construction) will outperform both plain BLSTM on frame by frame and
plain HMMs on the phoneme level, inheriting the best of both worlds, namely
reduction of training material and training time (BLSTM), as well as more built-
in structural bias (HMMs). This expectation is encouraged by experiments on
read speech by Chen and Jamieson [3], Shire [14], Waterhouse, Kershaw and
Robinson [16], and Elenius and Blomberg [4]. They all achieved better results
on the phoneme level using an ANN-HMM hybrid approach, as shown in table
4 for framewise and phoneme error rates for several systems on various corpora.
improvement factor shows the relative ratio of framewise and phoneme error.
LIN stands for Linear Input Network, MLIN for Mixtures of LINs for adaptation
( 2 = 2 experts; 4 = 4 experts). MLP stands for Multilayer Perceptron nets2.

As can be seen from table 4 the framewise errors are quite high for noisy
input sequences (several microphones or enriched with background noise) as
opposed to clean speech. The HMM part of the hybrids is able to drastically
reduce the error on the phoneme level due to structural bias of the HMM. This
means that on unprompted speech with background noise, speaker overlaps and
other perturbations we can expect a much lower phoneme error.

With the worst improvement factor (1.15) of table 4 we can conservatively
predict a phoneme error rate of 29.01% for a retrained BLSTM-HMM hybrid on
VERBMOBIL ( 33.39% for the standard BLSTM respectively). An optimistic

2 MLPs are supervised feedforward neural networks trained with the standard back-
propagation algorithm. With one or two hidden layers, they can approximate virtu-
ally any input-output(= the desired response) map. They are widely used for pattern
classification and can approximate the performance of optimal statistical classifiers
in difficult problems.

3 ARPA 1995 H3 multiple unknown microphones.
4 NUMBERS95.
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Table 4. Framewise and phoneme errors on read speech corpora

System corpus frame phoneme (ANN- improvement
(plain ANNs) HMM hybrids) factor

Backprop [5] Swedish speakers 30.0% 24.5% 1.22
RNN 0 pass [15] MUM2 Task 22.8% 18.1% 1.26
LIN 1 pass [15] MUM Task 20.1% 16.5% 1.22
LIN 2 pass [15] MUM Task 19.9% 15.9% 1.25
MLIN 2 1 pass [15] MUM Task 19.2% 16.5% 1.16
MLIN 2 2 pass [15] MUM Task 18.9% 16.1% 1.17
MLIN 4 2 pass [15] MUM Task 18.2% 15.8% 1.15
MLIN 4 3 pass [15] MUM Task 18.0% 15.7% 1.15
MLP [14] clean speech4 28.97% 7.3% 3.97
MLP [14] clean sp. no border4 29.80% 7.7% 3.87
MLP [14] factory noise3 42.84% 15.5% 2.76
MLP [14] factory noise no border4 42.88% 15.0% 2.86
RNN [3] TIMIT 26.3% 20.21% 1.30

calculation with the best improvement factor (3.97) for read speech in table
4 would give us 8.4% for the retrained BLSTM-HMM hybrid (9.67% for the
baseline respectively). Of course, to figure out the precise improvement we really
have to implement a BLSTM-HMM hybrid.

7 Conclusions and Outlook

We examined the retraining ability of LSTM recurrent nets in a frame by frame
phoneme classification task of unprompted speech. We compared recognition
results of a normally trained BLSTM system to those of a retrained one. Re-
training both significantly reduced both time costs and training set size and
improved recognition results. An extrapolation based on previous work on read
speech [16,3,14,4] promises significant additional improvements on the phoneme
level through a BLSTM-HMM hybrid, which we are currently implementing.

Acknowledgements

This work was supported by the SNF under grant number 200020-100249.

References

1. Baldi, Brunak, Frasconi, Soda, and Pollastri. Exploiting the past and the future
in protein secondary structure prediction. BIOINF: Bioinformatics, 15, 1999.

2. Jinmiao Chen and Narendra S. Chaudhari. Capturing long-term dependencies for
protein secondary structure prediction. In Fuliang Yin, Jun Wang, and Chengan
Guo, editors, Advances in Neural Networks - ISNN 2004, International Symposiu-
mon Neural Networks, Part II, volume 3174 of Lecture Notes in Computer Science,
pages 494–500, Dalian, China, 2004. Springer.



Classifying Unprompted Speech by Retraining LSTM Nets 581

3. R. Chen and L. Jamieson. Experiments on the impementation of recurrent neural
networks for speech phone recognition. Proc. Thirtieth Annual Asilomar Confer-
ence on Signals, Systems and Computers, pages 779–782, 1996.

4. K. Elenius and M. Blomberg. Comparing phoneme and feature based speech recog-
nition using artificial neural networks. Proc. ICSLP, 1992.

5. S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance
dilemma. Neural Computation, 4:1–58, 1992.

6. F. A. Gers and J. Schmidhuber. Long Short-Term Memory learns simple context
free and context sensitive languages. Proc. IEEE TNN, 2001.

7. A. Graves, D. Eck, N. Beringer, and J. Schmidhuber. Biologically plausible speech
recognition with LSTM neural nets. Proc. Bio-ADIT, 2004.

8. Alex Graves, Nicole Beringer, and Juergen Schmidhuber. Rapid retraining on
speech data with lstm recurrent networks. Technical Report IDSIA-05-05, IDSIA,
www.idsia.ch/techrep.html, 2005.

9. Alex Graves and Juergen Schmidhuber. Framewise phoneme classification with
bidirectional lstm networks. In International Joint Conference on Neural Networks,
July-August 2005, under review, 2005. Currently under review.

10. S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computa-
tion, 9(8):1735–1780, 1997.

11. John McDonough and Alex Waibel. Performance comparisons of all-pass transform
adaption with maximum likelihood linear regression. Proc. ICSLP, 2004.

12. L. R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. 77(2):257–286, 1989.

13. Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45:2673–2681, November 1997.

14. M. Shire. Relating frame accuracy with word error in hybrid ann-hmm asr. Proc.
EUROSPEECH, 2001.

15. W. Wahlster. SmartKom: Symmetric multimodality in an adaptive and reusable
dialogue shell. Krahl, R., Günther, D. (eds): Proceedings of the Human Computer
Interaction Status Conference, 2003.

16. S. Waterhouse, D. Kershaw, and T. Robinson. Smoothed local adaptation of con-
nectionist systems. Proc. ICSLP, 1996.

17. K. Weilhammer, F. Schiel, and U. Reichel. Multi-Tier annotations in the Verbmobil
corpus. Proc. LREC, 2002.

18. S. Young. The HTK Book. Cambridge University Press, 1995.



Temporal Sound Processing by Cochlear
Nucleus Octopus Neurons

Werner Hemmert, Marcus Holmberg, and Ulrich Ramacher

Infineon Technologies Inc., Corporate Research ST, 81730 Munich, Germany
{Werner.Hemmert, Marcus.Holmberg, Ulrich.Ramacher}@infineon.com

Abstract. The human auditory system excels in the detection of signals
in background noise. We evaluate the principles of robust processing with
a detailed inner ear model and a model of octopus neurons in the cochlear
nucleus. These neurons reject steady-state excitation and fire on signal
onsets with extremely high temporal precision. Spike-triggered reverse-
correlation analysis revealed that octopus neurons fire preferentially if
many coincident spikes follow a short interval of relative low excitation.
The frequency spectrum of the reverse-correlation revealed that octo-
pus neurons perform a band-pass analysis of the incoming signal, with
the pass-band ranging from about 110 to 650 Hz. The low-frequency
slope was approximately 6 dB/oct, which indicates that octopus neu-
rons process the first derivative of the input signal. This mechanism not
only removes steady-state activity, which accentuates onsets, but also
enhances amplitude modulation in the frequency region predominant in
speech.

1 Introduction

The spike-trains of auditory nerve fibers code spectral–, temporal– and spatial
information, which is extracted at higher levels in the auditory pathway. The way
information is coded and processed is crucial for speech recognition, especially in
noisy environments. Octopus neurons are located in the cochlear nucleus, the first
neuronal processing stage, and receive inputs from auditory nerve fibers (ANF).
Unlike most other neurons, which exhibit sustained activity to continuous exci-
tation, octopus neurons show onset inhibitory responses: they only fire on signal
onsets. As they receive predominantly excitatory inputs, their membrane proper-
ties are thought to be responsible for suppressing sustained responses [1],[6],[8].
Octopus neurons are interesting because they suppress spontaneous- and uni-
form activity, a feature which is essential for sound processing in noise. Their
detection of signal onsets is important for sound localization as well as for the
perception of speech and music.

2 Modeling

In this paper we combine our realistic inner ear model [2], which codes sound
signals into spike trains of the auditory nerve, with a model of octopus neurons.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 583–588, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2.1 Peripheral Sound Processing

The model of the peripheral hearing system consists of a simplified middle ear,
a model of inner ear hydrodynamics followed by a compression stage, and an
inner hair cell model. Here we describe the model very briefly, more details
can be found in [2]. BM vibrations were calculated with a computationally effi-
cient wave-digital filter model comprising of 100 sections at a sampling rate of
48 kHz. The inner ear’s nonlinear amplification process was realized by adding
four second-order resonators with time-varying quality factors at the output of
each section. Quality factors were high at low levels to achieve amplification and
were decreased at high levels to reach dynamic range compression. The sensory
cells were modeled according to [7]. All together the model replicated bandwidths
of human threshold tuning curves [4] and latest measurements of dynamic range
compression [5] with great precision [2].

2.2 Octopus Neuron Model

Auditory nerve fibers project to neurons in the cochlear nucleus (CN). Here we
focus on the function of so-called onset inhibitory units, which were identified as
octopus neurons. They receive excitatory inputs from approximately 60 auditory
nerve fibers and they fire if about 10% to 25% of their inputs are activated within
1ms [1]. In this study, we only used outputs trains from high spontaneous rate
(HSR) ANFs.

We used a single-compartment model with Hodgkin-Huxley-type ion chan-
nels. Rothman and Manis measured the properties of the five major conductances
[6] and derived both steady-state and dynamic equations. We solved the differen-
tial equations of the ionic channels by replacing them with difference equations
and iterating in the time domain. We used conductance values and time con-
stants corrected for a body temperature of 38◦C. Octopus neurons – and our
model – exhibit large activated ionic conductances at rest of about 40 nS and
a membrane capacitance of 12 pF. Due to their extraordinarily fast membrane
time constant (0.3ms) they act as coincidence detectors and they greatly en-
hance the precision of timing relative to a single ANF. Their electrical behavior
is dominated by a low-threshold potassium channel (KLT) with activation ki-
netics in the order of 2ms, which is already activated at rest [8]. When their
membrane is depolarized, they elicit an initial action potential, but thereafter
KLT compensates input currents and keeps the membrane potential below spik-
ing threshold. For octopus neurons, action potentials of the auditory nerve elicit
only extremely brief activation of postsynaptic currents (compare [6]).

In this study we connected 60 auditory nerve fibers originating from a single
frequency channel (characteristic frequency: 1.4 kHz) of our model with an octo-
pus neuron. We used only excitatory synapses. Activation by an action potential
of the auditory nerve was modelled with a single exponentially decaying con-
ductance (0.1ms decay-time constant, [6]). We set the peak value to 8.5 nS; an
action potential was elicited when 25% of the input fibers fired synchronously;
a spike of an octopus neuron was counted when its membrane potential crossed
0mV.
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3 Results

The firing rate of auditory nerve fibers covers only a very small range: high
spontaneous rate fibers for example exhibit sustained firing rates ranging from
30 to about 300 spikes/s. Sound signals, on the other hand, can cover a huge dy-
namic range of more than 6 orders of magnitude! To overcome this discrepancy,
dynamic compression is a key function performed by our inner ear. Our model
provides large dynamic compression of more than 60dB, the growth function fol-
lows approximately a fourth root law at medium signal levels, replicating recent
measurements [5]. Fig. 1 shows the coding of a 1.5 kHz pure tone with stepwise
increasing amplitude; sound pressure levels were 40, 60 and 80 dB (RMS). The
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Fig. 1. Onset processing of octopus neurons. (a) sound stimulus is a 1.5 kHz pure tone
with stepwise increasing amplitude (rise time: 1ms). (b) Poststimulus-time histogram
(PSTH) of a single ANF. (c) octopus neuron activity per trial. In the left column (b+c),
averaged spike counts are collected in 0.66 ms time bins (1 cycle), in the right column
(d+e), raw spike counts are displayed for each sampling time (21 μs). Spike counts are
from 60 ANFs innervating a single octopus neuron summed over 100 trials.

top trace shows the signal. Note that signal amplitude at 40dB (starting at
t = 0 s) is a factor of 100 smaller than at 80dB.The reaction of an ANF with a
characteristic frequency of 1.4 kHz, slightly lower than the test tone, is displayed
in the middle trace. Before a signal is applied (t < 0 s), the ANF fires with
its spontaneous rate of approximately 30 spikes/s. When the signal is switched
on, the ANF reacts with a sharp rise of its firing rate which decays again to a
sustained rate of approximately 120 spikes/s. For a tenfold increase in stimulus
amplitude (60 dB, t = 50ms) another transient is generated and the spontaneous
rate increases to 210 spikes/s. For yet another tenfold amplitude increment the
sustained firing rate hardly increases any more (220 spikes/s); HSR fibers satu-
rate about 40 dB above threshold. Still, the fiber is able to generate a transient
onset response. In Fig. 1d the response for the step from 60 to 80 dB is shown
with high temporal resolution. The stimulus changes to 80 dB at t = 100ms,
the change in ANF is delayed in the inner ear and occurs after 103ms. The
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responses are phase-locked, ANF activity is limited to the negative half of the
stimulus cycle (rarefaction).

3.1 Temporal Processing of Onsets Neurons

For high-frequency sounds, octopus neurons fire only at signal onset, whereas for
frequencies up to about 800Hz, they can fire at every cycle. Fig. 1c shows the
reaction of an octopus neuron to a tone with stepwise increasing amplitude. At
the onset of the 40 dB tone, the neuron fires with 31% probability. A classical
integrate-and-fire neuron would fire during the whole period of the tone burst -
not so octopus neurons. Excitatory input currents are shunted during continuous
signals which prevents further action potentials. This mechanism still works
when the signal amplitude is increased 10-fold (even two times). When the signal
level increased from 40 to 60dB, the neuron fired with a probability of 50%, for
the increase to 80 dB an action potential was always (100 trials) elicited. Thereby
the temporal precision of the action potentials are remarkable: whereas ANFs
fire for the whole half stimulus cycle, 90% of the action potentials of the octopus
neuron were in an interval of less than 150μs (Fig. 1e). This precision is reached
by coincidence detection of at least four synchronously firing ANFs and by the
fast membrane time constant of octopus neurons.

The spike-triggered reverse-correlation technique revealed the average tem-
poral excitation pattern which most likely causes the octopus neuron to fire [8].
For its calculation, spontaneous activity of ANFs provided random input. The

10 20 50 100 200 500 1000-10 -8 -6 -4 -2 0 2
0

2000

4000

6000

8000

time (ms)in
pu

t a
ct

iv
ity

 p
re

ce
di

ng
 s

pi
ke

(s
pi

ke
s/

s)

frequency (Hz)sp
ec

tr
um

 o
f r

ev
. c

or
. (

sp
ik

es
)

10

20

6 
dB

/o
ct

50

5

2

a b

oc
to

pu
s 

ne
ur

on
 s

pi
ke

-12 dB
/oct

Fig. 2. Spike-triggered reverse-correlation and its frequency transformation

octopus neuron model responded to spontaneous ANF activity only extremely
sparsely. To provide more synchronous activity, the traces of 20 ANFs were pre-
sented three times (to yield a total of 60 inputs), and, to mimic higher firing rate,
the input conductance was increased by a factor of four (corresponding to a firing
rate of a single ANF of 120 spikes/s). To calculate the spike-triggered reverse-
correlation, ANF spikes were averaged (0.25ms time bins) around time windows,
where the octopus neuron fired (Fig. 2a). About 10ms before and almost imme-
diately after the octopus neuron elicited a spike, the reverse correlation relaxes
to the spontaneous rate (1800 spikes/s for 60 input fibers). To trigger a spike,
highly synchronous input activity was required, which was more than a factor of
4 higher than spontaneous activity. Moreover, depressed activity about 1–3ms in
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advance facilitates the generation of an action potential. The reverse correlation
can be interpreted in a similar way as the impulse response of a linear filter.
Its spectrum revealed that temporal processing of octopus neurons very much
resembles a band-pass filter. The low-frequency slope was close to 6 dB/oct, the
pass-band (-3 dB) reached from 110Hz to about 650Hz.1

This finding indicates that octopus neurons might also play a role in the
processing of amplitude modulated (AM) sounds. We therefore tested the the

0
500

1000

ac
tiv

ity
(s

pi
ke

s/
s)

ANF

0 10 20 30 40

42% 48% 30%39%

50 60
0

50
100

time (ms)sp
ik

e 
pr

ob
ab

ili
ty

 
pe

r 
tr

ia
l (

%
)

O.N.

AM frequency (Hz)

sp
ik

e
 p

ro
b
a
b
ili

ty
 

p
e
r 

m
o
d
u
la

tio
n
 c

yc
le

 (
%

)
10 20 50

10

2
1

5

20

50

100 200 500 1000

a d

b

c

0.5 Pa Octopus neuron

Fig. 3. Processing of amplitude modulated tones. (a) sound stimulus (1.5 kHz tone, am-
plitude modulated at 100 Hz, 100% modulation), (b) PSTH of a single ANF (0.66 ms
bins) and (c) octopus neuron activity (O.N.; numbers indicate firing probabilities). (d)
Octopus neuron spike probability per modulation cycle (the first cycle, where the octo-
pus neuron always fired was omitted) as a function of amplitude modulation frequency.
The plot displays data from 9 AM periods with 100 repetitions per frequency point.

reaction of ANFs and octopus neurons to AM tones (Fig. 3). The firing rate of
ANFs follow the envelope of the AM tone. Octopus neurons decode the AM
by a single action potential on a distinct phase of the AM signal. The firing
probability plotted as a function of AM frequency (Fig. 3d) also exhibits a band-
pass characteristic, similar to Fig. 2b.

4 Conclusion

Auditory nerve fibers of the auditory system code both spectral- and temporal
properties of sound. Temporal precision is greatly enhanced by octopus neurons,
which require synchronous firing of multiple ANFs within a brief (<1ms) period.
Octopus neurons play a major role in sound localization, they greatly enhance
temporal precision and fire to onsets with a jitter of less than 150μs. They sup-
press continuous activity over a wide amplitude range and still fire at signal
onsets. The spectrum of the spike-triggered reverse correlation shows the band-
pass behaviour of octopus neurons. Thereby, from a signal processing point of
view, the 6 dB/oct low-frequency slope indicates that octopus neurons perform a
1 The spike-triggered reverse-correlation of a leaky integrate-and-fire-neuron would be

an exponential function, its frequency response a low-pass filter.
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temporal differentiation of their input. The areas below- and above spontaneous
activity in the reverse-correlation functions are almost equal, which is required
for a large suppression of continuous input activity. Note that spontaneous ac-
tivity of the input provides an offset, which is essential to perform high-pass
filtering with its bimodal impulse response – as negative spike rates do not ex-
ist. The bandpass characteristics of the octopus neurons is also reflected in the
processing of amplitude modulated sounds. Whereas the low-frequency slope of
the spectrum of the reverse correlation function and of the response to AM mod-
ulated tones is very similar, its high frequency part is also influenced by other
factors, for example the filtering properties of the inner ear. Notably, the high
sensitivity of octopus neurons to AM-frequencies above 100Hz coincides with
the fundamental frequency of speech sounds – it is therefore likely that octopus
neurons also play an important role processing voiced phonemes. Onset-type
neurons are found at various levels of neuronal processing; we hypothesize that
their suppression of steady-state input activity provides a key mechanism to
extract speech signals in noise.
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Abstract. A modified 2-D Kohonen Self-Organizing (MSOM) neural network 
is used for recognizing Farsi isolated words. The network dimension is 10*15 
cells with a hexagonal topology and it is trained using 300 Farsi words. As 
input vectors for learning, speech spectrum and energy of signal are used. The 
weight vectors of the cells are then fine tuned using supervised learning vector 
quantization 3 (LVQ3) technique. The cells are labeled to 28 out of 29 Farsi 
phonemes. At the word recognition stage, the quasi phonemes are obtained. 
Then the phonemes are determined. Using the phonetic rules of Farsi words and 
the connection rules of Farsi characters, the recognized word will appear on the 
monitor. To remedy the errors, a 2500 word dictionary is used. The determined 
sequence of phonemes is given to the dictionary, and the closest word to the 
sequence is shown on the monitor. The proposed recognizer is able to recognize 
all vowels with the accuracy of 100 percent, and it also recognize correctly 55 
isolated words among 100 words. 

1   Introduction  

Automatic recognition of speech belongs to the broad category of pattern recognition 
tasks. Speech recognition is difficult, because human beings' recognition of speech 
consist of many tasks, ranging from detection of phonemes from speech waveforms to 
high level understanding of messages. What we believe we hear, we in fact 
reconstruct in our minds from pieces of received information. Speech elements are not 
unique at all. Distributions of the spectral samples of different phonemes overlap. A 
phoneme's acoustic spectrum varies in the context of different phonemes. The same 
phonemes spoken by different persons can be confused too, for example, /m/ of one 
speaker might sounds like /l/ of another. Even the same speaker is not able to produce 
exactly the same acoustic signal for the same utterance [1].  

Recognition of the speech of arbitrary speakers is much more difficult than 
generally believed. The difficulties would be even greater if the vocabularies were 
unlimited. it seems that a speech recognizer with large vocabulary must recognize 
phonemes. Neural phonetic typewriter for unlimited continuous speech using the self-
organizing map has been built for Finish and Japanese [1], [2]. In this paper, phoneme 
recognition is implemented for recognition a speaker dependent of large vocabulary 
Farsi words. In this method a two dimension Kohonen Self-Organizing neural 
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network has been used for Farsi phonemes. After training the network with feature 
vectors of Farsi words, cells are labeled by Farsi phonemes. After implementing the 
network for recognizing six vowels: /a, @, e, o, u and i/, the phoneme set has been 
increased to 28 Farsi phonemes and finally a 2500 word dictionary has been used for 
error correction and  orthography.  

For recognition of one spoken word, first it's feature vectors is extracted, then it's 
quasi phonemes are obtained by the network. Phonemes are determined by using 
dynamic window lengths. Using Farsi rules, a few errors are corrected. The resulted 
final phonemes sequence is compared to a dictionary and the nearest word is obtained 
from the dictionary. In the second section of this paper, Kohonen Self-Organizing 
map is reviewed. In sections 3 and 4 speech processing and network learning are 
given. Section 5 presents word recognition, section 6 dictionary and finally section 7 
conclude the paper.  

2   The Sofm  

The Self-Organizing feature map (SOFM) is a set of weight vectors that are logically 
associated with a lattice of display cells. The cells are tuned to input signals through 
an unsupervised learning process. During training, the weight vectors are not updated 
independently but as topologically related subsets. The selection of subset updating 
cells at each learning step requires the definition of a center (winner) cell and also a 
topological neighborhood around it. The update neighborhood radius is large initially 
and shrinks monotonically with time. SOFM attempts to find topological structure in 
the input data and displays it in one or two dimensions [3], [4], [5]. The SOFM can be 
used for vector quantization. Cells should be grouped into subsets which correspond 
to discrete classes. In this model the neighborhood cN  is defined for lateral 

interaction. At each learning step, all of the cells whit in cN  are updated, whereas 

cells outside cN  are left intact. This neighborhood is centered around the cell which 

the best match with input x is found: 
 

{ }iic mxminmx −=−                                            (1) 

The updating process is: 
( ) ( ) ( ) ( ) ( )[ ] ( )
( ) ( ) ( )tN i if                                    tm1tm

tN i if       tmtxttm1tm

cii

ciii

∉=+
∈−+=+ α

                         (2) 

Where ( )tα  is the adaptation gain (0 < ( )tα  < 1) and should decrease with time. A 

biological lateral interaction often has the shape of a bell curve. Denoting the 
coordinates of cells c and i by the vectors cr and ir  respectively, a proper form for 

( )tα  might be: 

           ( ) ( ) ( )( )22
ci0 t/rrexptt δαα −−=                                       (3) 

with ( ) ( )t  and  t0 δα as suitable decreasing functions of time [2], [5], [6]. 
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The process may be started by choosing arbitrary, even random, initial values for 
them ( )0im . The only restriction is that they should be different. In this map, several 

codebook vectors im  may assigned to each class, and each of them is labeled with 

the corresponding class symbol. If the map is used as a classifier, after unsupervised 
learning, to improve classification accuracy, im  should be updated. The map must be 

trained to function as a classifier using a training set of feature vectors whose 
classification is already known. Kohonen proposed learning scheme for fine tuning 
known as LVQ1, LVQ2 and LVQ3 algorithms [2]. Kohonen's LVQ1, LVQ2 and 
LVQ3 algorithms are supervised since their application requires a labeled data set.  

3    Acoustic Preprocessing  

To learn the map by feature vectors of speech signal, feature vectors with 16 
components has been used. Acoustic preprocessor of our system consists of the 
following stages: 

(1) 16-bit analog-to-digital converter with 12.8-KHZ sampling rate. 
(2) 256 point FFT, which is computed every 20ms using a 256- point window. 
(3) The logarithmic energy is computed for the whole frame. 
(4) The logarithmic energy which is computed on 12 filters with equal bandwidth   

in 100 – 3000 HZ. 
(5) The logarithmic energy which is computed on 3 filters with equal bandwidth in       

3000 – 5000 HZ. 
(6) The average is subtracted from all of the 15 components.  
(7) 15 components are normalized to 100. 

We have tested other speech features for the network like LPC coefficients, cepstral 
coefficients and filter bank coefficients [8], [9]. But FFT reflected its clustering 
properties better than others. 

4   Network Learning  

We use Kohonen map for phoneme recognition. The network dimension is 10*15 
cells with hexagonal topology. We have tested rectangular topology, but hexagonal 
topology performance was better. We have trained the network by different 

( )tα functions, and got the best result in clustering and performance with: 

                             
( ) ( ) ( )( )22

ci0 t/rrexptt δαα −−=  
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N is the total learning times. With using these functions, there is no neighborhood and 
all weight vectors are updated at each step. We have used a modified SOM known 
MSOM to minimize dead cells. 

    The MSOM consists of the following stages: 

(1) Random selection of an input vector. 
(2) Finding winner cell. 
(3) Training the network. 
(4) Repeating sequences 1, 2 and 3 iteratively. 
(5) Determining lazy neurons. 
(6) Random re initialization lazy neurons weight vectors. 
(7) Returning to step1. 

    There are 23 consonant phonemes in Farsi. They are written in FARSDAT 
database: /b, p, t, d, s, z, c, g, k, j, q, ', r, $, x, #, v, f, h, m, n, l and y /. They are written 
in Farsi as: / , , , , , , , , , , , , , , , , , , , , , , /. Also there 
are 6 vowel phonemes in Farsi: /i, a, e, u, o and @/. They are written in Farsi as: / , , 
, ,  and  / [7]. 

We have trained network 200 to 300 words 100000 iterations. After training, 
network was labeled by different phonemes. It was done by giving 180 vectors for 
each phoneme with known classification, and assigning the cells to different 
phonemes by using majority voting, according to the frequency with which each im  

is closest to the calibration vectors of a particular class. 
Recognition of discrete phonemes is a decision-making process in which the final 

accuracy depends on the rate of misclassification errors. It is therefore necessary to 

 

 
 

Fig. 1. The labeled network, quasi phonemes and phonemes for word /iran/ 
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try to minimize the error by using supervised learning scheme, using a training set of 
speech spectra with known classes. We have used supervised learning LVQ3 with 
40000 iterations for fine tuning the weight vectors. We tested LVQ1, LVQ2 and      
K-means [3], [4], [6] for fine tuning, but the LVQ3 performance was the best.     

Figure 1 is an example of phonemes map and shows the map when its neurons are 
labeled according to the majority voting to 28 out of 29 Farsi phonemes. 

5   Word Recognition 

Word recognition of one spoken word consists of following stages:  

(1) Computing feature vectors. 
(2) Finding nearest labeled cell to each vector by network (quasi phonemes).  
(3) Determining phonemes from the quasi phonemes. 
(4) Correcting some errors occurred in phonemes. 
(5) Transferring phonemes to the dictionary to obtain nearest word.   

Consider that the feature vectors are taken at regular intervals every 10 ms, and 
they are first labeled in accordance with nearest cells. These labeled are called quasi 
phonemes. In contrast, the duration of true phoneme is variable, from 40 to 400 ms. 
We have used heuristic rules for segmentation of quasi phoneme sequences into true 
phonemes. These rules are heuristic completely and relate to phonemes. We have 
used one slide time domain window, that covers dynamically period of 60 ms to 
140 ms. If m out of n successive quasi phonemes are the same, they correspond to a 
single phoneme. The parameters m and n are phoneme and speaker dependent. 
Figure 1 shows quasi phonemes and phonemes for word /iran/ with phoneme 
sequences /i, r, a, n/.      

6   Dictionary 

Because of the coarticulation effects, transformation of the speech spectra due to 
neighboring phonemes, errors appear in phonemic transcription. So if the 
classification of speech spectra were without error, the phonemes would not be 
identifiable from them completely reliable. We have used many rules to correct 
phoneme map recognizer errors. For example, some Farsi phonemes cannot get 
connected to make a single word like /l/ and /r/. In such cases we drop one of them.    

    Phonetic typewriter was implemented for Finnish and Japanese. Both of these 
languages, like Latin are characterized by the fact that their orthography is almost 
identical to their phonemic transcription. Farsi orthography is not identical to 
phonemic transcription: for example, word with phoneme sequences / , , , ,  /  
( / k, a, m, e ,l / ) is written / /. In addition some of Farsi phonemes have many 
orthographies: for example, phoneme /s/ has 3 orthographies: / ,  and / . 

    We used a 2500 word dictionary for solving the above problems and also 
correcting some error and typing Farsi orthography. The obtained phonemes 
sequences are given to the dictionary in order to find nearest word. Because the  
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dictionary is made accessible in memory using software hash coding method, the 
speed of searching became high. Figure 2 shows the labeled network for Farsi 
phonemes with Farsi orthography. In addition the word / / obtained from phoneme 
sequences:  
/ , , , , ,  /   (/k, o, a, m, e , l/)  from dictionary. 

    For more elaboration on the system accuracy, 100 words were pronounced by 
one person. The designed system could recognize 55 words correctly. The accuracy of 
this system depends on the type test words and also quality pronunciation as well.     

 

             

Fig. 2. The labeled network to Farsi phonemes, quasi phonemes, phonemes and obtained 
dictionary word with Farsi orthography 

7   Conclusion 

In this paper we tested different topologies for SOFM network, different LVQ for fine 
tuning and different type speech features. The experimented results show hexagonal 
for topology, LVQ3 for fine tuning and FFT for speech feature are the best. Heuristic 
rules are used for segmentation of quasi phonemes to phonemes. First the proposed 
network is implemented for only six vowels, the accuracy of network was very good 
and it could recognize all input vowels. By increasing number of phonemes, accuracy 
of the network was decreased. Generally, the spectral properties of consonants behave 
more dynamically than vowels. So network misclassification for words with many 
consonants is more than other words. To remedy coarticulation effects problem, many 
rules are used. Some of Farsi phonemes have many orthographies and further Farsi 
orthography is not identical to it's phonemic transcription. A 2500 word dictionary is 
used for correcting errors and type Farsi words with correct orthography. System 
accuracy in isolated word recognition became 55 percent. To increase the system 
accuracy, combination different speech features, automatic segmentation and use of 
HMM is proposed. 
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Abstract. Most machine learning algorithms are sensitive to class im-
balances of the training data and tend to behave inaccurately on classes
represented by only a few examples. The case of neural nets applied to
speech recognition is no exception, but this situation is unusual in the
sense that the neural nets here act as posterior probability estimators
and not as classifiers. Most remedies designed to handle the class imbal-
ance problem in classification invalidate the proof that justifies the use
of neural nets as posterior probability models. In this paper we examine
one of these, the training scheme called probabilistic sampling, and show
that it is fortunately still applicable. First, we argue that theoretically it
makes the net estimate scaled class-conditionals instead of class poste-
riors, but for the hidden Markov model speech recognition framework it
causes no problems, and in fact fits it even better. Second, we will carry
out experiments to show the feasibility of this training scheme. In the ex-
periments we create and examine a transition between the conventional
and the class-based sampling, knowing that in practice the conditions of
the mathematical proofs are unrealistic. The results show that the opti-
mal performance can indeed be attained somewhere in between, and is
slightly better than the scores obtained in the traditional way.

1 Introduction

Most machine learning algorithms are prone to inferior performance when the
training data is imbalanced, that is when the number of training examples ac-
cessible from the various classes is significantly different. In such cases it is
frequently observed that the classifier is biased towards predicting the more
common classes, performing worse on the rarer classes. Although the exact ex-
planation of this behavior may differ from algorithm to algorithm (see [9] for
general reasons), in the hope of an improvement it is always possible to alter the
effective class frequencies by presenting more examples from the rarer classes to
the learning algorithm. These methods come under the general name of “resam-
pling techniques” [9]. (See the material of the workshops [4] and [5] for more
details on techniques proposed to handle class imbalance.)

The class imbalance problem is also present in speech recognition because the
natural distribution of speech sounds (phones) is not uniform. However, the solu-
tions proposed by the machine learning community are not necessarily applicable
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here. This is because most machine learning papers dealing with the topic focus
on classification performance, while in speech recognizers the sub-unit models
are used as probability estimators. In particular, the so-called “Hidden Markov
Model/Artificial Neural Net (HMM/ANN) hybrid recognizers” [2] apply ANNs
to estimate the posterior probabilities of the classes. This is made possible by a
nice theoretical proof which shows that, under ideal conditions, ANNs estimate
the class posteriors [1]. In practice, however, the class imbalance of the training
set can lead to inaccurate estimates. A natural idea is to apply the resampling
techniques, but these invalidate the proof, so their application is theoretically
questionable. In this paper we examine one peculiar resampling method, the
“probabilistic sampling” training technique recommended by Lawrence et al.
[6], and argue that it is still usable in training ANNs for HMM/ANN hybrids.
First, in Section 2 we point out that theoretically it forces the network to es-
timate scaled class-conditional probabilities instead of class posteriors and this
poses no real problem as the recognizer can be easily modified to work with these.
Then we show experimentally in Section 3 that when the recognizer is built on
a net trained by probabilistic sampling, it yields the same good or slightly bet-
ter performance than with the conventional training. The paper rounds off with
some conclusions and remarks in Section 4.

2 HMM/ANN Hybrids

Several ways of applying ANNs to speech recognition have been proposed (see [7]
or [3] for a review), but the most popular of these is the “hybrid HMM/ANN”
paradigm of Bourlard et al. [2]. This approach exploits the fact that, under
ideal conditions, ANN classifiers approximate the class posteriors. That is, de-
noting the space of the local feature vectors by X and the set of class labels
by C, we can use them to estimate P (C|X). In the hybrid framework the
HMM states play the role of the classes of the ANN, and the states usually
directly correspond to phone classes. The HMM framework requires the class-
conditionals P (X |C), which can be calculated from the posteriors by Bayes’
rule as P (X |C) = P (C|X) · P (X)/P (C). From the HMM optimization point of
view P (X) is a constant scaling factor and can be ignored. So the HMM/ANN
hybrids work with P (C|X)/P (C), which thus gives an estimate of P (X |C) to
within a scaling factor. The P (C|X) values are produced by an ANN, and the
P (C) values are obtained by a simple frequency counting of the class labels over
the training corpus.

3 Probabilistic Sampling

Let us now examine why and when ANNs estimate the class posteriors, and what
happens if training is performed by probabilistic sampling. Let us assume that
the network has K outputs denoted by yk (k = 1, ...,K), and that it is trained
by minimizing the sum-of-squares error 1. We will also assume that the training
1 A similar proof exists for the minimum cross-entropy error criterion as well [1].
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data is sampled in such a way that its distribution follows the real distribution
P (X) of the data points over X . Under these conditions it can be shown that if
the size of the training data is allowed to go to infinity, the error function can
be written as

E =
1
2

∑
k

∫
[yk(x)− < tk|x >]2 P (x)dx+B, (1)

where B is a constant that is not important here, and < tk|x > is the conditional
average of the target values tk at x [1]. Obviously, Eq. (1) takes its minimum
when yk =< tk|x >. Now, if the network structure and the labelling of the
training data follow the 1-of-K coding scheme (that is tk takes a value of 1 for
the correct class output and 0 for the rest), it is easy to show that < tk|x >
approximates P (ck|x) (again assuming a representative sampling and an infinite
amount of sample data at point x).

Examining Eq. (1) more closely, we see that at any point x of the input space
X it is < tk|x >, the local ratio of positive and negative examples from class ck,
that determines the optimal value for yk. The local errors of these estimates are in
turn weighted by P (x), which forces the network to give a closer approximation
in those regions of the input space where the density of input data is high, and
permits it to give a poorer approximation in regions where the data density is
lower. If class labels correlate well with certain regions of the input space X
(which we may assume, otherwise the learning task would be insoluble), then
the data density will be lower in those regions where the sparsely represented
classes lie. This provides the main reason why the network will perform worse
on these classes.

This observation leads to the idea of altering the effective class frequencies
by presenting more examples from the rarer classes to the learner. In practice, of
course, we usually have no way of generating further samples from any class, so
resampling is simulated by replicating some of the samples of the rarer classes.
An extreme case of this is when the training data set is manipulated so that it
contains the same amount of training examples from each class. When training
an ANN with the backpropagation algorithm, there is of course no need to really
replicate the samples: only the algorithm has to be modified slightly. Usually the
training data items are presented to the algorithm in a random order, that is at
each iteration a data item is randomly chosen from the full database. We will
refer to this method as “full sampling”. A possible alternative is to first choose
a class at random, and then randomly pick a training sample from the sam-
ples belonging to this class. We will call this general, two-step sampling scheme
“probabilistic sampling” [6], and the special case when each class is chosen with
uniform probability “uniform class sampling”. In general, however, the choice of
the class can follow any distribution, not just a uniform one. For example, if class
k is chosen with probability P (ck), that is its own prior probability, then the
two-step sampling approach will be practically equal to the traditional one-step
full sampling scheme. This will allow us to generate a continuum between full
sampling and uniform class sampling by linearly interpolating the probability of
class ck between P (ck) and 1

K .
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Let us now discuss how the optimum of the error function of Eq (1) changes
when using uniform class sampling instead of full sampling. We will see that
manipulating the class frequencies influences both the global data distribution
and the local conditional averages. First let us examine the data distribution,
which was originally written as

P (X) =
∑

k

P (X |ck)P (ck). (2)

The manipulation of the class frequencies can be formalized by weighting the
terms as

P ′(X) =
∑

k

P (X |ck)P (ck)Wk, (3)

where Wk are class-dependent weights. From this we can see that modifying the
class frequencies changes the focus of the error function, as it modifies P (X).
If class labels correlate well with certain regions of the input space, then giving
more samples from the sparse classes indeed corresponds to giving more sam-
ples from the low data density regions, thus forcing the net to give a better
approximation in these areas.

However, the local conditional probabilities are also influenced by this weight-
ing. Clearly, the new P ′(ck|X) values can be written as

P ′(ck|X) =
P (X |ck)P (ck)Wk∑
j P (X |cj)P (cj)Wj

. (4)

We can think of the denominator as a normalizing factor required to make
the local estimates add up to one. In the case of uniform class sampling Wk is
inversely proportional to P (ck) and cancels it out, so overall the P ′(ck|X) values
will be proportional to P (X |ck). These will be the local targets of the network,
so we can say that with uniform class sampling the neural network learns the
class-conditionals P (X |ck) within a scaling factor. This causes no problem when
integrating the network into the HMM framework, and in fact makes it even
simpler: the division by the class priors P (ck) can be omitted, and the scaling
factor will not affect the final maximization process.

4 Experimental Results

All the results presented in this paper were obtained using the MTBA Hungarian
Telephone Speech Database [8]. This is the first Hungarian speech corpus that
is publicly available and has a reasonably large size. The most important data
block of the corpus contains the recordings of phonetically balanced sentences
that were read out aloud by 500 speakers. Recordings were made via mobile and
line phones with the speakers varying both in age and gender. All the sentences
were manually segmented and labelled at the phone level, and these manually
allocated phone labels served as target classes when training the neural net.
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Altogether 58 different phonetic symbols occur in the database, but after fusing
certain rare allophones we worked with only 52 phone classes in the experiments.

For training purposes 1367 sentences were selected from the corpus. The word
recognition tests reported here were performed on another block of the database
that contains city names. All the 500 city names (each pronounced by a different
caller) were different. From the 500 recordings only 431 were employed in the
tests, as the rest contained significant non-stationary noise or were misread by
the caller. All words were assumed to have equal priors in the word recognition
tests.

For acoustic preprocessing we applied the Hvite module of the well-known
Hidden Markov Model Toolkit (HTK) [10]. We used the most popular preproces-
sor configuration, that is we extracted 13 MFCC coefficients along with the
corresponding delta and delta-delta values, thus obtaining the usual 39-element
feature vector [10]. For recognition we used our own HMM/ANN decoder imple-
mentation, which was earlier found to have a performance similar to that of the
standard HTK recognizer.

The neural net used in the system contained 150 sigmoidal hidden neurons
and a softmax output layer. Training was performed by conventional backpropa-
gation. Besides comparing the full sampling and uniform class sampling methods,
we decided to create a transition between them by making the algorithm select
class ck with a probability (1− λ)P (ck) + λ 1

K , and tested it with various λ val-
ues between 0 and 1. We did so for purely empirical reasons. It should not be
forgotten that the whole investigation here originated from the observation that
the mathematical proof regarding the estimation of the posteriors assumes ideal
conditions, and that in practice problems with imbalanced classes were reported.
Our argument of Section 3 regarding the estimation of scaled class-conditionals
also assumes ideal conditions that do not hold in reality. So while full sampling
tends to behave poorly on rarer classes, uniform class sampling may do just the
opposite due to over-compensation. This is why it seemed practically justified
to create a transition between the two extremes.

As regards division by the class priors, we argued that theoretically it is
required when using full sampling and not when using uniform class sampling.
However, it is not obvious whether we should use it when the training scheme
is somewhere in between. Furthermore, there is evidence that under certain
conditions even the conventional model may not require this division [2]. Owing
to these uncertainties, we decided to always run the recognizer with the division
factor and without it.

The stopping criterion is always a critical issue with every gradient-based
algorithm. With our system we have the long-known observation that a certain
fixed number of iterations (with a gradually decreased learning rate) produces a
nearly optimal solution which cannot be significantly improved either by further
iterations or subtle training criteria. However, because uniform class sampling
changes the distribution of the data, we could not be sure that the usual amount
of iterations were enough in this case. So in each case we allowed two further
rounds of 10 iterations. The results reported are the averages of the three scores
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Fig. 1. Word recognition accuracies(%) as a function of λ, with and without division
by the priors

obtained after the three iteration cycles. We should mention here that these
never differed significantly, their deviation always being around 1-1.5%, which
can be attributed to the random factors present in the whole training process.

Figure 1 shows the recognition results for different λ values, both with and
without division by the priors. Clearly, a λ around 0.1 seems optimal when
dividing by the priors, and a λ of 0.7 resulted in the best results when no
division by the priors was applied. These are both better than the corresponding
results at λ = 0.0 and λ = 1.0 which should have performed the best, according
to the proofs discussed in Section 3. This justifies the point that in practice
it is worth using the probabilistic sampling scheme for the training of ANNs
of HMM/ANN hybrids as it can bring about a modest improvement over the
conventional method (λ = 0.0, division by the priors).

5 Conclusions

This paper investigated the feasibility of the probabilistic sampling training
scheme for the training of the ANN components of HMM/ANN hybrid speech
recognizers. First we examined uniform class sampling, which is a special case of
probabilistic sampling. We argued that although it invalidates the a posteriori
probability proof of the conventional training scheme, it is still usable because
it gives estimates of the class-conditional probabilities (within a scaling factor)
and, in fact, the recognition system requires just these anyway. Second, we sus-
pected that in practice it might be worth interpolating between the conventional
full sampling and uniform class sampling, as the mathematical proofs made un-
realistic assumptions. In the experiments we indeed found that the optima are
somewhere in between – around λ = 0.1 and λ = 0.7 respectively, depending
on whether we divide by the class priors or not. In both cases our results were
slightly better that those obtained by the conventional approach (λ = 0, divi-
sion by the priors). This justifies our use of the proposed training scheme in
HMM/ANN hybrids.
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Abstract. This paper describes an artificial neural network that can be viewed 
as an extension of a pioneering network described by Laden and Keefe.  This 
network was trained to classify sets of four musical notes into four different 
chord classes, regardless of the musical key or the form (inversion) of the 
chord.  This new network has a slightly modified training set; after successful 
training the internal structure was analyzed and was found to be unique.  That 
is, rather than using the 12 musical notes of Western music, the network used 
only 4 musical notes based upon circles of major thirds and of minor thirds[1]. 

1   Introduction 

Artificial Neural Networks (ANNs) have been used to study a variety of musical tasks 
such as perception of pitch, perception of tonal structure, perception of musical se-
quences, and composition.  See the many examples in [2, 3]. 

In a pioneering study, Laden and Keefe [4] trained ANNs to classify sets of musi-
cal notes as being major, minor or diminished chords. They used a series of different 
networks, varying the number of hidden units and network connectivity.  None of 
their simple networks were able to classify the chords with complete accuracy.  One 
purpose of the current study is to describe a simple ANN that is capable of performing 
this task, as well as more complicated variants of it, completely correctly.  A second 
purpose is to examine the representations developed by the ANN that provided this 
capability.    

The current chord classification task is more complicated than Laden and Keefe’s 
as follows:  First, the network presented here classifies four types of chords.  Domi-
nant chords have been added to the previous types of major, minor and diminished.  
Second, it uses four notes (tetrachords) to represent each stimulus; Laden and Keefe 
used triads to represent the major and minor chords.  Third, all inversions of each 
chord are included in the training set; Laden and Keefe only used one form of each 
chord.  The current chord network differs from Laden and Keefe’s in that its units use 
a Gaussian activation function instead of the traditional sigmoid-shaped activation 
function.  Although it uses a Gaussian function, the ANN is not a radial basis function 
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network.  This is because its net input function is a dot product, not a distance func-
tion[5, 6].  As shown below, one result of these changes is that a simple network cor-
rectly classifies 100% of the chords, even with this more complex version of the task.   

2   Method 

The ANN used 24 input units to create a binary representation of chords, in which 
each input unit is associated with a particular musical note in a purely local sense over 
two octaves.  This is illustrated in Figure 1, where each input unit is associated with a 
key on a keyboard that spans two octaves starting from a low A and ranging up to a 
high G#.  A note is included in a given stimulus by giving its input unit an activation 
of 1, otherwise the input unit is turned off by giving it an activation value of zero. 

 

Fig. 1. 

Four output units were used – one for each chord type.  The network was trained to 
classify an input pattern as being one of four types of chord regardless of musical key 
or of the inversion of the chord.  The correct response was simply represented by hav-
ing the appropriate output unit turn on (value of 1) while the remaining three output 
units turn off (value of 0). 

The network used four hidden value units, because initial tests indicated this was 
the smallest number of hidden units we could use to have the network successfully 
classify all the chords.  Fewer than four hidden units continually resulted in networks 
that were not able to completely learn the task.  That is, there were always some 
chords that were not correctly classified.   

The network uses value units, specifically a Gaussian activation function of the 
form:  

G(neti) = exp(-π(neti - μj)
2) (1) 

Where G() is the activation function, neti is the net input for output unit i, and μj is 
the mean of the Gaussian for value unit j [6, 7].  The network was trained using a 
variation of the generalized delta rule for networks of value units [7].  Prior to train-
ing, all connection weights were randomly assigned values ranging from –0.10 to 
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+0.10 and all biases (thresholds) were set to 0.00.  The network was trained with a 
learning rate of 0.0001 and zero momentum.  Each of the 135 chords was presented to 
the network each epoch.  The order of presentation was randomized prior to each ep-
och.  Connection weights were updated using the learning rule after each stimulus 
presentation.  Training stopped, after 82579 epochs, when the network generated a hit 
for every output unit on every pattern.  A hit was defined as an activation of 0.90 or 
higher when the desired activation was 1.00, and as an activation of 0.10 or lower 
when the desired activation was 0.00. 

3   Network Interpretation 

How does this simple network correctly classify this complicated set of chords? Inter-
pretation of the internal structure of the trained network reveals it isn’t a case of mere 
memorization. 

 

Fig. 2. Connection weights for hidden units 1 and 3 

The first step in interpreting the network’s structure was to examine the connection 
weights from the input units to the hidden units.  The connection weights for hidden 
unit 1 and hidden unit 3 can be seen in Figure 2.  They reveal a conversion of individ-
ual (and different) musical notes into equivalence classes of notes defined by circles 
of major thirds (see Figure 3).  That is, the connection weights into each unit can be 
classified as belonging to one of four categories: strong negative, weak negative, 
strong positive, and weak positive.  All of the notes belonging to one of the circles of 
major thirds from Figure 3 are assigned the same type of connection weight.  Both  
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hidden units 1 and 3 use the circles of major thirds representation but they are out of 
phase with each other.  They do not assign the same connection weight to the same 
circles. 

 

Fig. 3. Circles of major thirds 

A similar analysis of the weights of connections between the inputs and Hidden 
units 2 and 4 reveals a different set of equivalence classes for musical notes: different 
notes are assigned (roughly) to circles of minor thirds, which are illustrated in Figure 
5.  As can be seen in Figure 4, it is not such a clean fit as with hidden units 1 and 3 to 
the major thirds.  There is some effect of the octave range, producing variations in 
connection weight that modulates the circles of minor thirds organization.  Neverthe-
less, circles of minor thirds provide a powerful method of interpreting the regularities 
in these graphs.   

 

Fig. 4. Connection weights for hidden units 2 and 4 

The second step in interpreting the network’s internal structure was to examine 
hidden unit responses to the patterns, as is summarized in the table below.   

For example, consider the responses of hidden units 2 and 4 in conjunction.  When 
the activation levels of these hidden units in response to each training pattern are 
added together, minor chords produce a combined response of 0.61 or higher while all 
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other chord types (major, dominant, diminished) generate a combined response of 
0.20 or lower.  (Activation values are all positive and range from 0.00 to 1.00.)  All of 
the minor chords elicit a moderate to high response in hidden unit 2 or hidden unit 4 
and a small number elicit a moderate to high response in both.   

 

Fig. 5. Circles of minor thirds 

Another look at hidden units 2 and 4 reveals an interesting division of labor in their 
responses to minor chords.  Hidden unit 2 responds to the following minor chords:  A, 
A#, C, C#, D#, E, F#, G.  This set of keys makes up the octatonic collection, also 
known as the diminished scale in jazz [8] as it is made up of two diminished chords.  
The remaining keys (B, D, F, G#) also make up a diminished chord.  Hidden unit 4 
responds to these minor chords as well as a small number of others that overlap with 
the hidden unit 2 set. 

Similar insights emerge from considering the responses of the other two hidden 
units.  Hidden unit 1 generates high activity for all diminished chords (e.g., A C D# 
F#).  Notice that diminished chords have exactly one note from each of the above cir-
cles of major thirds.  It activates strongly enough to the diminished chords to distin-
guish them from the dominant and major chords. Hidden unit 3 demonstrates the 
same pattern to an even stronger degree.  Hidden units 1 and 3 have low responses to 
all major chords.  Major chords (e.g., C E G C) only ever have notes from two of the 
circles of major thirds (Fig 3) at a time.  For example, the notes for the root position 
of C major all come from two of the circles in figure 3.  Dominant chords generate a 
moderate response in hidden unit 1 (0.22 – 0.83) and a weak to moderate response in 
hidden unit 3 (0.13 – 0.65). 

 

4   Discussion 

The current network deviated from those studied by Laden and Keefe in several re-
spects.  All of the chords were represented as tetrachords, and different inversions of 
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each tetrachord were used.  This was possible because all of the stimuli were repre-
sented using a local representation that covered two octaves, rather than a single oc-
tave “pitch class” representation.  Four chord types were created with this representa-
tion, rather than three.  Finally, the processing units employed a Gaussian activation 
function rather than a logistic.  These variations in method produced a relatively sim-
ple network that was able to learn to generate correct chord classifications for a rela-
tively challenging stimulus set, representing an advance over the small networks de-
scribed by Laden and Keefe. 

Of greater interest, though, were the regularities that were uncovered by interpret-
ing the internal structure of the network.  The internal structure demonstrates that the 
network did not merely memorize the chords but has classified them.  Formal western 
musical structures – which were used to define the training set – are based upon a set 
of 12 different note types, with each note class repeating every octave.  The network 
used a much different set of note classes.  Two of the hidden units assigned notes to 
only 4 different types, where notes that are differentiated in Western music (e.g., A, 
C#, F) were all treated as being the same note because they all belong to the same cir-
cle of major thirds (Figure 3).  The other two hidden units also condenses the 12 notes 
of Western music into 4, but this time based these equivalence classes on circles of 
minor thirds (Figure 5).  A question arises as to whether humans might use these same 
representations when they process music chords.  We are currently investigating this 
issue by conducting experiments in which human listeners are trained to identify 
chords in a learning paradigm that is analogous to the one used to train the network 
that was reported above. 
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Abstract. Production of gene expression chip involves a large number of error-
prone steps that lead to a high level of noise in the corresponding data. Given 
the variety of available biclustering algorithms, one of the problems faced by 
biologists is the selection of the algorithm most appropriate for a given gene 
expression data set. This paper compares two techniques for biclustering of 
gene expression data i.e. a recent technique based on crossing minimization 
paradigm and the other being Order Preserving Sub Matrix (OPSM) technique. 
The main parameter for evaluation being the quality of the results in the 
presence of noise in gene expression data.  The evaluation is based on using 
simulated data as well as real data. Several limitations of OPSM were exposed 
during the analysis, the key being its susceptibility to noise.  

1   Introduction 

The developments in DNA arrays enable simultaneous measurements of the 
expression levels of thousands of genes. These methodologies have led to an 
explosion in the rate at which gene expression data is accumulated. One of the 
challenges in this regard is the inherent high level of noise present. Unfortunately, the 
noise often hides the patterns of interest – for example, the data often contains 
‘technical’ and ‘biological’ noise [3]. Several potential sources of measurement of 
noise are discussed in [5]. 

Analyzing the DNA micro array data involves some form of ‘grouping’ that is 
biologically significant. Due to certain well-known limitations of traditional (one-
way) clustering techniques, several (two-way) clustering or biclustering techniques 
have recently been proposed. The biclustering problem being NP-Complete in  
nature [2].  

Several biclustering algorithms have recently been analyzed in [6], however, the 
important issue of noise immunity did not receive sufficient attention. In this paper 
we analyze two biclustering techniques i.e. a new technique based on crossing 
minimization paradigm [1] and an Order Preserving Sub Matrix (OPSM) technique 
[2] with specific reference to their comparative performance under noise.  

OPSM [2] is a biclustering technique that incorporates a greedy algorithm for 
discovering a fixed pattern of rows in a data set. It defines its biclusters as a sub 
matrix, for which there exists a permutation of columns under which the sequence of 
values in every row is strictly increasing. Our work analyzes this method of 
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biclustering gene expression data for its real world application. Biclustering by 
crossing minimization [1] is a graph theoretic technique, in which the data matrix is 
represented by a binary bipartite graph. Biclustering is achieved by crossing 
minimization, as vertices with high connectivity are “pulled” together, thus resulting 
in cluster formation. 

1.1   Micro Array Technology 

Micro array is a slide of glass or some other substrate on which thousands of DNA 
molecules are attached at fixed location (spots). Each spot correspond to a specific 
gene in a cell. RNA from the sample of interest is taken and hybridized with this 
array. The amount of hybridized RNA is measured and this gives the expression level 
of a particular gene. Micro array experiments typically involve five steps. 

1.2   Noise in Gene Expression Data 

Micro array technology is most commonly available in two forms i.e. GeneChip®, a 
trademark used by Affymetrix Inc, that relies on DNA oligonucleotide for chip 
manufacturing and Spotted Arrays developed at Stanford University, use glass slide 
on which DNA is immobilized using a robot arm.   

These technologies enable measuring expression levels of thousands of genes in a 
cell simultaneously under one experimental condition, or of a particular tissue type 
and give a global view of cell. However, DNA micro array technology is not without 
shortcomings. Three forms of noise or limitations of micro arrays is highlighted and 
studied. 

Noisy Nature of Data. The actual expression value changed, this is due to 
‘experimental’ (technical) noise or by ‘biological’ noise [3]. Experimental noise is 
caused by different stages of micro array experiments listed above. Careful design and 
selection of the immobilized DNA and planning for hybridization of array with 
samples is required. Biological variations are due to real differences, impurities or 
misclassification between different cell types and tissues, which are being compared. 

Missing Values. Values in data matrices are frequently missing due to methods 
used for their creation, dust particles or scratches on the slides and scanning of image 
for extraction of expression levels are some of the major contributors of this type of 
noise. 

Irrelevant Genes. As each experiment yields the levels of expression of thousands 
of genes and majority of such genes are irrelevant to the class distinction. Therefore, 
the combined effect of large numbers of irrelevant genes can potentially obscure the 
contributions of the relevant ones. Irrelevant genes are regarded as noise, because the 
problem is how to identify the irrelevant genes from the relevant ones? 

Study of these techniques is beyond the scope of this paper, but the point being 
made here is that noise in gene expression data is more of a rule than an exception. 

1.3   Challenges of Gene Clustering 

Due to the special characteristics of gene expression data, and the particular 
requirements from the biological domain, gene-based clustering presents several 
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challenges and is still an open problem [4]. The main challenges being no a-prior 
knowledge about “true” number of clusters (or biclusters) and ensuring high noise 
immunity.  

2   Background 

Ben-Dor et al. [2] defined a bicluster as an order preserving sub matrix. According to 
their definition, a bicluster is a group of rows whose values induce a linear order 
across a subset of the columns. Given bicluster (Fig. 1) is an example of OPSM where 
columns are arranged in order c1 < c2< c3< c4 linear. 

The data consist of n x m matrix D, where the rows correspond to genes and the 
columns to tissues (or, more generally, to conditions). OPSM finds an order-
preserving submatrix for which there is a permutation of its columns, under which the 
sequence of values in every row is strictly increasing. For expression data a sub 
matrix is determined by a set of genes G and a set of tissues T such that, within the set 
of tissues T, the expression levels of all the genes G have the same direction. 

 
c1 c2 c3 c4 
10 13 19 70 
35 40 49 69 
15 20 27 40 
12 15 20 90 

(b) Output Data 

c1 c2 c3 c4 
70 13 19 10 
9 40 49 35 
40 20 27 15 
90 15 20 12 

(a) Input Data 

Fig. 1. An example of OPSM bicluster 

Biclustering by crossing minimization [1] in its simplified form is given as a four 
step procedure as follows: 

1. Discretize the given data matrix S to obtain a binary data matrix SB. 
2. Corresponding to SB create a binary bipartite graph GB i.e. with edge weights 1 and 0. 
3. Run a crossing minimization heuristic on GB corresponding to SB to get G+

B 
4. Extract clusters from G+

B. 

Discretization reduces the complexity of the problem. Observe that when data 
matrix is discretized (in step-1); values over a certain threshold are set to 1, while 
remaining values are set to 0. There are number of ways of data discretization [8].  

 

 
   

Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d) 



614 A. Abdullah and A. Hussain 

Fig. 2(a) shows SB before using crossing minimization heuristic, while Fig. 2(c) 
shows the same matrix after using a crossing minimization heuristic. Fig. 2(d) shows 
the bipartite graph view of Fig. 2(c) i.e.  G+

B with clusters extracted and crossings 
reduced from 678 to 258.  

3   Related Work 

We will touch upon the related work done in the field of biclustering and the noise 
models proposed and used. Our work is focused around comparison of biclustering 
techniques in the presence of noise; we have not been able to find work which covers 
the idea of this paper. 
     In [6] several biclustering techniques have been discussed (including OPSM) for 
the type of biclusters they can find, their structure and method used to perform the 
search, but not with reference to noise. In [7] Gauhar Wadhera has compared different 
biclustering techniques for their time complexity, real data set used and the way 
biclusters are discovered.  

4   Results Using Simulated Data 

For quantifying the quality of biclusters two measures are used i.e. Purity and 
Entropy. These are with reference to the original biclusters that exits in the simulated 
data and are known in advance. The value of the Purity (P) and Entropy (E) will be 
between 0 and 1. The purest bicluster having Purity of 1 and Entropy of 0.  

Purity of a bicluster is a measure of how pure the bicluster is. The Purity of a 
biclustering solution can be defined as the number of points (data elements) in that 
bicluster, which also belongs to the original bicluster. Entropy is a measure of the 
“disintegration” of the bicluster. More formally, Entropy of a bicluster is defined as 
the number of points (or data elements) of other biclusters that are included in 
bicluster being considered. 

We corrupt G+
B in two steps.  In the first step, the vertices in each bipartition are 

randomly permuted. In the second step, the resulting GB is “contaminated” by 
randomly adding edges (white noise) between the vertices in the bipartitions with 
probability < ½ . Similarly, edges are also randomly removed (white noise) from the 
vertices in each of the bipartitions with probability < ½ . The effect of these 
operations on SB would be replacement of 1’s by 0’s for edges removed, and 
replacement of 0’s by 1’s for edges inserted.  

We consider a simulated data set consisting of K15,5 ∪ K30,5 ∪ K55,5  where Km,n 
represents a bipartite clique with m and n vertices in each bipartition. The simulated 
data set is intentionally kept small due to execution time limitations of OPSM. The 
graphs of P and E versus varying white noise are shown in Fig. 3. Fig. 4 shows the 
visualization of the same data set, where black dots represents noise, white spots (or 
dots) represent missing data or noise, while each cluster is represented by a different 
color. In Fig. 4(d) the red rectangles represent the clusters extracted. 
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Fig. 3(a). Effect of noise on purity of 
biclusters 
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Fig. 3(b). Effect of noise on entropy of 
biclusters 

 

 

Fig. 4(a). Input with 25% white noise 

 

Fig. 4(b). Randomly permuted Fig. 2(a)  

 

     Fig. 4(c). Output using crossing  
     minimization 

 
Fig. 4(d). Output using OPSM 

 

Observe that in Fig. 4(c) the biclusters formed using crossing minimization are 
well defined, while in Fig. 4(d) corresponding to biclusters formed using OPSM have 
disintegrated. 

5   Results Using Real Data 

Experiments were performed using real gene expression data set gppca (59x11) 
downloaded from http://ep.ebi.ac.uk/EP/EPCLUST/. Because of the inherent 
limitations of OPSM [2], a small data set was used i.e. consisting of 59 rows and 11 
columns. However, our crossing minimization based biclustering technique can 
bicluster hundreds of rows and hundreds of columns simultaneously, in less than a 
second. OPSM took hundreds of seconds for more than six columns.  

We assume for simplicity, that the real data set is without any noise, and we then 
add white noise. Using OPSM two clusters were extracted, with 24 and 21 rows, 
respectively. Note that the number of clusters and the number of columns (i.e. 4) 
within a cluster remained same with 0% noise as well as 10% noise. The pool size for 
partial models maintained was 45% [2]. For the example being discussed, median 
value based discretization was used. 

For biclustering by crossing minimization the numbers of columns are not required 
to be specified prior to extraction, hence resulting in more “natural” biclustering. 
Using this technique three major clusters were extracted as shown in Fig. 5(c).  
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Fig. 5(a). Input with 0% noise Fig. 5(b). Input with 10% noise 
 

 
 

Fig. 5(c). Output with 0% noise Fig. 5(d). Output with 10% noise 
 

As biclustering results in grouping of similar values, therefore, one measure of the 
quality of the results could be the standard deviation (Stdev) of each column. It was 
found that even with only four columns, the Stdev using OPSM was about twice as 
compared to biclustering using crossing minimization.  

6   Conclusions 

We see that OPSM has low noise immunity as compared to biclustering by crossing 
minimization. For this study the cluster “heights” in simulated data were deliberately 
kept same due to limitations of OPSM; biclustering by crossing minimization does 
not have such a limitation.  

References 

1. A. Abdullah & A. Hussain, “A New Biclustering Technique Based On Crossing 
Minimization”, In proceedings Brain Inspired Cognitive Systems Conference (BICS’04), 
Univ. of Stirling, Scotland, UK, Aug/Sep. 2004 

2. Ben-Dor, B. Chor, R. Karp, & Z. Yakhini, “Discovering local structure in gene expression 
data: The order-preserving submatrix problem”, In Proceedings of the 6th International 
Conference on Computational Biology (RECOMB’02), pages 49–57, 2002 

3. Keller, M. Schummer, L Hood & W. Ruzzo, "Bayesian Classification of DNA Array 
Expression Data" Technical Report UW-CSE-2000-08-01, August, 2000 

4. Jiang, C. Tang, & A. Zhang, “A Cluster Analysis for Gene Expression Data: A Survey”. 
Technical Report 2002-06, State University of New Your at Buffalo, 2002 

5. R. Dror, “Noise models in gene array analysis” Report in fulfillment of the area exam 
requirement in the MIT Department of Electrical Engineering and Computer Science, 2001 

6. S. C. Madeira & A. L. Oliveira, “Biclustering algorithms for biological data analysis: a 
survey”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1), pp. 
24-45, Jan. 2004 

7. G. Wadhera, “Research Literature Commentary: Subspace clustering methods for gene 
expression data analysis”, www.stanford.edu, Aug. 2004 

8. Y. Yang and G. I. Webb, “A Comparative Study of Discretization Methods for Naive-
Bayesian Classifiers”. In proc. of the Pacific Rim Knowledge Acquisition Workshop, 
National Center of Sciences, Tokyo, Japan, 2002 



Gene Extraction for Cancer Diagnosis
by Support Vector Machines

An Improvement and Comparison with Nearest
Shrunken Centroid Method

Te-Ming Huang and Vojislav Kecman

School of Engineering, The University of Auckland, New Zealand
v.kecman@auckland.ac.nz, huangjh@win.co.nz

Abstract. A cancer diagnosis by using the DNA microarray data faces
many challenges the most serious one being the presence of thousands of
genes and only several dozens (at the best) of patient’s samples. Thus,
making any kind of classification in high-dimensional spaces from a lim-
ited number of data is both an extremely difficult and a prone to an
error procedure. The improved Recursive Feature Elimination with Sup-
port Vector Machines (RFE-SVMs) is introduced and used here for an
elimination of less relevant genes and just for a reduction of the overall
number of genes used in a medical diagnostic. The paper shows why and
how the, usually neglected, penalty parameter C influence classification
results and the gene selection of RFE-SVMs. With an appropriate pa-
rameter C chosen, the reduction in a diagnosis error is as high as 37%
on the colon cancer data set. The results suggest that with a properly
chosen parameter C, the extracted genes and the constructed classifier
will ensure less over-fitting of the training data leading to an increase
accuracy in selecting relevant genes.

1 Introduction

Recently, huge advances in DNA microarrays have allowed the scientist to test
thousands of genes in normal or tumor tissues on a single array and check
whether those genes are active, hyperactive or silent. Therefore, there is an
increasing interest in changing the criterion of tumor classification from mor-
phologic to molecular [1]. In this perspective, the problem can be regarded as a
classification problem in machine learning, in which the class of a tumor tissue
with a feature vector x is determined by a classifier. Each dimension, or a fea-
ture, in x holds the expression value of a particular gene which is obtained from
DNA microarray experiment. The classifier is constructed by inputting l feature
vectors of known tumor tissues into machine learning algorithms. To construct
an accurate and reliable classifier with every gene included is not a straight-
forward task due to the fact that in the practice a number of tissue samples
available for training is much less (a few dozens) than the number of features (a
few thousands). In such a case, the classification space is nearly empty and it is
difficult to construct a classifier that generalizes well. Therefore, there is a need
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to select a handful of most decisive genes in order to shrink the classification
space and to improve the performance.

Support vector machines (SVMs) are one of the latest developments in sta-
tistical learning theory and they have been shown to perform very well in many
areas of biological analysis including evaluating microarray expression, detect-
ing remote protein homologies, and recognizing translation initiation sites. More
recently, SVMs-based feature selection algorithms dubbed, Recursive Feature
Elimination with Support Vector Machines (RFE-SVMs) have been introduced
and applied to a gene selection for a cancer classification. In this work, we present
the simulation results of the improved RFE-SVMs by tuning the C parameters on
the popular colon cancer data set [2] and make comparison with the well-known
nearest shrunken centroid method [3,4]. The C parameter plays an important
role for SVMs in preventing an over-fitting but its effects on the performance of
RFE-SVMs are still unexplored.

The paper is organized as follows: In section 2, we review SVM-RFE and some
prior work in this area. The results on the influence of the C parameter on a
correct selection of relevant features are presented in section 3. Section 4 shows
the comparison between the improved RFE-SVMs and the nearest shrunken
centroid on colon data set [2].

2 Prior Work

2.1 Support Vector Machines

The support vector machine classifier is based on the idea of margin maximiza-
tion and it can be found by solving the following optimization problem [5]:

Min
1
2
wT w + C

l∑
i=1

ξ2
i (1a)

s.t yi(wT xi + b) ≥ 1− ξi, i = 1, . . . , l (1b)

The decision function for linear SVMs is given as f(x) = wT x + b. In this
formulation, we have the training data set (xi, yi) i = 1, . . . , l where xi ∈ $n are
the training data points or the tissue sample vectors, yi are the class labels, l is
the number of samples and n is the number of genes measured in each sample.
By solving the optimization problem (1), i.e., by finding the parameters w and
b for a given training set, we are effectively designing a decision hyperplane over
an n dimensional input space that produces the maximal margin in the space.
Generally, the optimization problem (1) is solved by changing it into the dual
problem below,

Max Ld(α) =
l∑

i=1

αi − 1
2

l∑
i,j=1

yiyjαiαjxT
i xj (2a)

s.t 0 ≤ αi ≤ C, i = 1, . . . , l (2b)

and
l∑

i=1

αiyi = 0 (2c)
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In this setting, one needs to maximize the dual objective function Ld(α) with re-
spect to the dual variables αi only. The equality constraint (2c) can be eliminated
by adding a constant of 1 to all the entries of the kernel matrix as suggested in
[6,7]. Hence, the dual objective becomes

Max Ld(α) =
l∑

i=1

αi − 1
2

l∑
i,j=1

yiyjαiαj(xT
i xj + 1) (3)

subject only to the box constraints 0 ≤ αi ≤ C. The optimization problem
can be solved by various established techniques for solving general quadratic
programming problems with inequality constraints.

2.2 Recursive Feature Elimination with Support Vector Machines

The idea of using the maximal margin for gene selection was first proposed
in [8] and it was achieved by coupling recursive features elimination with linear
SVMs to find a subset of genes that maximizes the performance of the classifiers.
In a linear SVM, the decision function is given as f(x) = wT x + b or f(x) =∑n

k=1 wkxk +b. For a given feature xk, the size of the absolute value of its weight
wk shows how significantly does xk contribute to the margin of the linear SVMs
and to the output of a linear classifier. Hence, it is used as a feature ranking
coefficient in RFE-SVMs. In the original RFE-SVMs, the algorithm first starts
constructing a linear SVMs classifier from the microarray data with n number
of genes, then the gene with the smallest w2

k is removed and another classifier is
trained on the remaining n−1 genes. This process is repeated until there is only
one gene left. A gene ranking is produced at the end from the order of each gene
being removed and the most relevant gene will be the one that is left at the end.
However, for computational reasons, the algorithm is often implemented in such
a way that several features are reduced at a time. In such a case, the method
produces a feature subset ranking, as opposed to a feature ranking. Therefore,
each feature in a subset may not be very relevant individually, and it is the
feature subset that is optimal in some sense [8].

2.3 Selection Bias and How to Avoid It

As shown in [8], the leave-one-out error rate of RFE-SVMs can reach as low as
zero percent with only 16 genes on the well-known colon cancer data set from
[2]. However, as it was later pointed out in [1], the simulation results in [8] did
not take selection bias into account. The leave-one-out error presented in [8]
was measured using the classifier constructed from the subset of genes that were
selected by RFE-SVMs using the complete data set. It gives too optimistic an
assessment of the true prediction error, because the error is calculated internally.
To take the selection bias into account, one needs to apply the gene selection
and the learning algorithm on a training set to develop a classifier, and only
then to perform an external cross-validation on a test set that had not been seen
during the selection stage on a training data set. As shown in [1], the selection
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bias can be quite significant and the test error that is based on 50% training
and 50% test can be as high as 17.5% for the colon cancer data set. Another
important observation from [1] is that there are no significant improvements
when the number of genes used for constructing the classifier is reduced: the
prediction errors are relatively constant until approximately 64 or so genes. These
observations indicate that the performance and the usefulness of RFE-SVMs may
be in question. However, the influence of the parameter C was neglected in [1]
which restricts the results obtained. As a major part of this work, we further
investigate the problem by changing (reducing) the parameter C in RFE-SVMs,
in order to explore and to show the full potentials of RFE-SVMs.

3 Influence of the Parameter C in RFE-SVMs

The formulation in (1) is often referred to as the ’soft’ margin SVMs, because
the margin is softened and the softness of the margin is controlled by the C
parameter. If C is infinitely large, or larger than the biggest α calculated, the
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Fig. 1. A toy example shows how C may be influential in a feature selection. With C

equal to 10000, both features seem to be equally important according to the feature
ranking coefficients (namely, w1 = w2). With C = 0.025, a request for both a maximal
and a ’hard’ margin is relaxed and the feature 2 becomes more relevant than feature
1, because w2 is larger than w1 (w2/w1 = 73). While the former choice C = 10000
enforces the largest margin and all data to be outside it, the later one (C = 0.025)
enforces the feature ’relevance’ and gives better separation boundary because the two
classes can be perfectly separated in a feature 2 direction only.
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margin is basically ’hard’, i.e., no points in the training data can be within or
on the wrong side of the margin.

If C is smaller than the biggest original αi, the margin is ’soft’ one. As
seen from all the αj > C will be constrained to αj = C and corresponding data
points will be inside, or on the wrong side of, the margin. In the most of the work
related to RFE-SVMs such as [8,9], the C parameter is set to a number that is
sufficiently larger than the maximal αi i.e., a hard margin SVM is implemented
within such an RFE-SVMs model. Consequently, it has been reported that the
performance of RFE-SVMs is insensitive to the parameter C. However, Fig.1
shows how C may influence the selection of more relevant features in a toy
example where the two classes (stars * and pluses +) can be perfectly separated
in a feature 2 direction only. In other words, the feature 1 is irrelevant for a
perfect classification here. Note in the right hand side plot that a decrease in C
i.e., a constraining of the dual variables αi = C, leads to a moving of some data
within the margin. However, at the same time this helps in detecting the more
relevant feature which is an input 2 here.

4 Gene Selection for the Colon Cancer and Comparison
with the Nearest Shrunken Centroid

In this section, we present the selection of relevant genes for the colon data
set which is well known in the gene microarray literature. The colon data set
was analyzed initially in [2] and it is composed of 62 samples (22 normal and
40 cancerous) with 2000 genes’ expressions in each sample. The training and
the test sets are obtained by splitting the dataset into two equal groups of 31
elements, while ensuring each group has 11 normal and 20 cancerous tissues.
The RFE-SVM is only applied on the training set to select relevant genes and
to develop classifiers, and then the classifiers are used on the test set to estimate
the error rate of the algorithms. 50 trails were carried out with random split
for estimating the test error rate. A simple preprocessing step is performed on
the colon data set to make sure each sample is treated equally and to reduce
the array effects. Standardization is achieved by normalizing each sample to the
one with zero mean and with a standard deviation of one. To speed up the gene
selection process, 25% of the genes are removed at each step until less than 100
genes remained still to be ranked. Then the genes are removed one at a time.
The simulation results for the colon data set are shown in Fig.2.

The Ambroise and McLachlan’s curve in Fig.2 is directly taken from [1] and
it is unclear what C value is used in this paper. By comparing the error rates for
various C parameters, it is clear that changing the parameter C has significant
influence on the performance of RFE-SVMs in this data set. The error rate is
reduced from previously 17.5% as reported in [1] to 11.16% (a reduction of 35%)
when C is equal to 0.005. For C = 0.01, the gene selection procedure improves the
performance of the classifier: this trend can be observed by looking at the error
rate reduction from initially around 15% at 2000 genes to 11.9% with 26 genes.
Similar trend can be observed when C = 0.005, but the error rate reduction is
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Fig. 2. Simulation result on the colon cancer data set with various C parameters. The
error bar represents the 95% confidence interval.

not as significant as in the previous case. This is due to the fact that the error
rate of the linear SVMs with C = 0.005 is already low, when all the genes are
used. This also demonstrates that tuning the C parameter can reduce the amount
of over-fitting on the training data even in such a high dimensional space with
small number of samples. A preliminary comparison on the lowest leave-one-out
error rate between RFE-SVMs and the well-known nearest shrunken centroid
from [3] shows RFE-SVMs (8.0% at C = 0.005) is slightly better than nearest
shrunken centroids (9.67%). The leave-one-out error rates presented here from
both algorithms coincides with the suggestion in [1] that there are some wrongly
labeled data in the training data set.

In order to further test the performance between the improved REF-SVMs
and nearest shrunken centroid, we use again 50% of colon data for training and
another 50% for testing. To make the comparison statistically more significant,
we perform the experiment 100 times instead of 50 times as in Fig.2. Figure 3
shows the test errors and the corresponding 95% confidence interval of RFE-
SVMs and the nearest shrunken centroid with various number of genes. As shown
in the Fig.3, the performance of RFE-SVMs is superior to the nearest shrunken
centroid in this test setting. It is interesting to point out that the error rate
between the two algorithms is more significant in this more difficult setting
(less training data) than in the leave-one-out setting. This may indicate that
RFE-SVMs has more superior performance when the number of samples is low.
The same, better, performance is observed in selecting the genes for CF (Cystic
Fibrosis) diagnosis. (Due to the proprietary character of the CF data sets we
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Fig. 3. Test errors on the colon cancer data set for two different methods

can’t show the comparative results here). However, for a CF data set (with only
18 samples and approximately 12000 features), we would like just to mention
that the RFE-SVM (having the error rate of 5%) performs again much better
than the shrunken centroid (where the error rate is 33%).

5 Conclusions

We presented the performance of improved RFE-SVMs algorithm for genes ex-
traction of DNA microarray data for diagnosing colon cancer. Why and how is
this improvement achieved by using different values for the C parameter is dis-
cussed in details. With a properly chosen parameter C, the extracted genes and
the constructed classifier will ensure less over-fitting of the training data lead-
ing to an increased accuracy in selecting relevant genes. The simulation results
suggest that the classifier performs better in the reduced gene spaces selected
by RFE-SVMs than in the complete 2000 dimensional gene space. This is a
good indication that RFE-SVMs can select relevant genes, which can help in
the diagnosis and in the biological analysis of both the genes’ relevancy and
their function. The comparison between the improved RFE-SVMs and nearest
shrunken centroid on the colon data set suggested that the improved RFE-SVMs
performs better when the number of data used for training is reduced. This phe-
nomenal is also observed in the CF data set. Finally, the results in this work are
developed from a more machine learning and data mining perspective, meaning
unrelated to any valuable insight from a biology and medicine. Thus, there is
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a need for a tighter cooperation between the biologists and/or medical experts
and data miners in all the future investigations.
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Abstract. Multidimensional Scaling (MDS) is a powerful dimension
reduction technique for embedding high-dimensional data into a low-
dimensional target space. Thereby, the distance relationships in the
source are reconstructed in the target space as best as possible accord-
ing to a given embedding criterion. Here, a new stress function with
intuitive properties and a very good convergence behavior is presented.
Optimization is combined with an efficient implementation for calculat-
ing dynamic distance matrix correlations, and the implementation can be
transferred to other related algorithms. The suitability of the proposed
MDS for high-throughput data (HiT-MDS) is studied in applications to
macroarray analysis for up to 12,000 genes.

Keywords: Multi-dimensional scaling, clustering, gene expression
analysis.

1 Introduction

Data analysis is a multi-stage process that usually starts at the raw data in-
spection from which iteratively more sophisticated data models are formulated.
Thus, for unknown data, such as for gene expression levels from the first series of
screening experiments, many future assumptions are based upon the groundwork
of the initial results. Especially visualization techniques can help to gain basic
knowledge about the data. For a decent number of continuous-valued attributes,
scatter plots provide a very direct access to the data. For high-dimensional in-
put, linear mapping techniques like the principal component analysis (PCA) or
the projection pursuit (PP) can help to focus on data projections which are
‘interesting’ from the mathematical point of view, e.g. the directions of largest
variance or views on the central data mass [3,14]. Self-organizing maps (SOM)
are well-established non-linear neural tools for clustering data on a rectangular
or a hexagonal lattice of specialized neurons [9]. The SOM, however, compels a
data model that is structurally different from linear mappings. Since data are
represented by prototypes, the one-to-one correspondence between input data
and their low-dimensional counterparts vanishes: in case of Ultsch’s emergent
SOM there are more prototypes than input points, but usually input samples
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are mapped to a smaller number of specialized neurons. As a result, prototype-
based representations give a more abstract view on the data, which is beneficial
for model generalization and simplification but not for revealing details of the
data distribution or of the data granularity. A nonlinear method that assigns
each data point a related copy in the target space is multi-dimensional scaling
(MDS) [10]. Its most common objective for visualization is arranging the low-
dimensional copies in such a way that their mutual distances match best the
original distances. This optimization with respect to good surrogate locations
is realized by stress function minimization for which several alternatives ex-
ist [2]. Here, MDS is realized by a stochastic gradient descent on a stress function
with superior convergence properties. The proposed high-throughput HiT-MDS
method is suitable for embedding very large data sets in a distance-preserving
way into Euclidean space, usually with 2 or 3 dimensions for visualization. Using
MDS for large data sets is closely related to the suggested speed-up of Sammon’s
mapping by Pekalska et al. [12] and to Naud and Duch who combine MDS with
the data prototypes from a learning vector quantizer [11]. The topic presented
here, MDS for gene expression analysis, coincides perfectly with a recent publica-
tion of Taguchi and Oono introducing a non-metric MDS variant called nMDS [6].
Like other MDS approaches, the proposed HiT-MDS can be used for non-metric
data too, for example, by considering the rank order of mutual data items; also
non-symmetric dissimilarity measures and sparse distance matrices can be real-
ized for getting global reconstructions of incomplete local distance information.

2 Improved Multi-dimensional Scaling

The challenge of multi-dimensional scaling lies in the optimization of the free
parameters x̂i ∈ X̂n×d which are the locations of points x̂i = (x̂i

1, . . . , x̂
i
d) in the

d-dimensional target space corresponding to i = 1 . . . n input points xi ∈ Xn×q.
The most canonic approach to forcing the mutual distances d̂ij = d(x̂i, x̂j) of all
data pairs indexed by (i, j) to the original distances dij = d(xi, xj) is defined by
minimizing the raw stress function of classical scaling [5]:

s =
n∑

i<j

(dij − d̂ij)2
!= min with distances dij(xi, xj) =

d∑
k=1

(xi
k − xj

k)2.

For computational convenience, the squared Euclidean distance is considered,
and symmetry dij = dji can be assumed for the distance matrix. However, as
pointed out by Basalaj [1], the straight-forward minimization of the stress by
gradient descent is prone to getting stuck in local optima. For Euclidean distances
though, eigenvalue methods can be used to find a solution, making classical
scaling equivalent to PCA [5]. The freely available XGvis package by Buja et
al. [2] implements different types of MDS for which eigenmethods fail. XGvis
comes with a very good documentation of the technical details. Their stress
function is of the general form s = (1 − cos2ϕ)

1
2 which is based on the squared

cosine between the original distance matrix D and the reconstructed distance
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matrix D̂; thereby, the variables in ϕ are parameters of the used Minkowski
metric, for data weighting, and for the specification of the order of the moments
of the original distances.

Here, an approach is taken which less versatile than the one of Buja et al.,
but which yields very faithful overall data representations: such most ‘honest’
data displays are aimed at by maximizing the Pearson correlation of distances:

r(D, D̂) =
n
i�=j (dij − μD) · (d̂ij − μD̂)

n
i�=j (dij − μD)2 · n

i�=j (d̂ij − μD̂)2
=:

B(d̂)
√

C · D(d̂)
∈ [−1; 1]

Matrix D = (dij)i,j=1...n contains pattern distances and D̂ = (d̂ij)i,j=1...n those
of the reconstructions. Maximizing r yields a balanced consideration of all dis-
tance matrix entries; up to the author’s knowledge, this maximization cannot
be solved with eigenmethods, therefore inducing the proposed heuristic solution.
The right fraction is a convenient one-to-one correspondence to the left term
used in the following: B(d̂) is related to the mixed summation of both original
and reconstructed distances, D(d̂) refers to the dissimilarities dependent on the
choices of the reconstructions X̂, and C denotes the connection to the initially
calculated and thus constant input pattern distances.

In order to formulate an efficient correlation-based stress function for min-
imization, the tight range of the Pearson correlation [−1; 1], −1 denoting anti-
correlation, 0 uncorrelatedness, and 1 perfect correlation, is swapped and
widened by inverse power transform:

s = r(D, D̂) −K for Euclidean distances D̂ =
d

l=1
(x̂i

l − x̂j
l )2 j �=i ,

i,j=1...n
.

Integer K > 0 are assumed. For even K, best ‘inverse’ point configurations with
anti-correlated distance relationships might be found. This theoretical situation,
however, has never been encountered experimentally – maybe the applied ran-
dom projection initialization of the embedded points prevents such a defect.
Thus, no matter which relationships are coded by D, the inverse power r−K can
be minimized by optimally arranging the reconstructions X̂ in the Euclidean tar-
get space. This is achieved by a gradient descent on the stress function s, which
requires finding zeros of the derivatives of s w.r.t. the free parameters x̂i

k:

s = r−K ◦ D̂ ◦ X̂ != min ⇒ ∂s
∂x̂i

k

=
j �=i∑

j=1...n

∂r−K

∂d̂ij

· ∂d̂ij

∂x̂i
k

!= 0, i = 1 . . . n (1)

Solutions are found by iterative updates Δx̂i
k = −γ · ∂s

∂x̂i
k

of step size γ into the
direction of the steepest gradient of s. The missing derivatives in Eqn. 1 are

∂r−K

∂d̂ij

=
∂ (C ·D(d̂))

K
2

B(d̂)K

∂d̂ij

= K · r−K · (d̂ij − μD̂) · B−
ij(d̂) − (dij − μD) · D−

ij (d̂)

B(d̂) · D(d̂)

B−
ij(d̂) = B(d̂) − (dij − μD) · (d̂ij − μD̂) , D−

ij (d̂) = D(d̂) − (d̂ij − μD̂)2

∂d̂ij

∂x̂i
k

= 2 · (x̂i
k − x̂j

k)
d

l=1
(x̂i

l − x̂j
l )2 = 2 · (x̂i

k − x̂j
k) d̂ij .
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The embedding procedure is outlined in Algorithm 1. High-dimensional data
items are assumed to be embedded. They are used for the initialization of their
low-dimensional counterparts by random linear mapping. Random mappings
provide a first-shot for loosely distance-preserving first target point configura-
tions [8]; here, the matrix elements of R (Alg. 1, l. 2) are randomly taken from
[−1; 1]. Input data are also used for calculating the distance matrix D which,
in an alternative initialization setup, could be directly taken from file. For com-
putational convenience the mean is subtracted from D, which does not affect
the Pearson correlation computations r(D, D̂). Target point adaptation is done
iteratively in a neural network training manner: in each step a random point is
taken its distance relations to the other points is improved by changing its coor-
dinates. Convergence takes place when for all points the stress function cannot
be further minimized, i.e. when the correlation r(D, D̂) is maximum.

Algorithm 1 HiT-MDS
1: Read input data X.
2: Initialize X̂ by random projection X̂n×d = Xn×q · Rq×d.
3: Calculate distance matrix D and subtract its mean ⇒ constant C .
4: Calculate D̂ ⇒ initial B(d̂), D(d̂).
5: repeat
6: Draw a pattern index 1 ≤ i ≤ n from randomly shuffled list.
7: for all j = i do

8: Δx̂i ← Δx̂i − ∂r−K

∂d̂ij
· ∂d̂ij

∂x̂i { accumulate derivatives corresponding to Eqn. 1 }
9: end for

10: x̂i ← x̂i + γ · Δx̂i { adapt location of target point }
11: Recalculate distances d̂(x̂i, x̂j) influenced by new position of point x̂i;
12: thereby, keep track of changes in B(d̂) and D(d̂).
13: until convergence criterion is met.
14: Postprocess: center and normalize X̂ by largest dimension variance.

Substantial Speedup is obtained if, for each update step, the distance ma-
trix correlation is not completely recalculated but incrementally adjusted. An
unoptimized implementation would take an order of O(n2) matrix elements into
consideration, but since only n−1 distances d̂ij change during each iteration on
pattern i, much computing power is saved by tracking only changes Δd̂ij in the
constituents B(d̂) and C (d̂) of r. Generally, new values are expressed by means
of existing old values plus adding the specific changes caused by the adaptation
of the i-th target point. Reformulating the average target distance yields:

μ(D̂
new

) = μ(D̂
old

+ ΔD̂
i
) = μ(D̂

old
) + μ(ΔD̂

i
), ΔD̂

i
= (Δd̂kj)k,j=1...n

with zero elements of (Δd̂kj) for k �= i. In the same manner, incremental update
formulas can be given for the constituents of the correlation r and thus for the
terms in the stress function s that depend on the target distances (Alg. 1, l. 12):
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Bnew(d̂) = Bold(d̂) +
j �=i

j=1...n

Δd̂ij · dij , Dnew(d̂) = Dold(d̂) + (n2 − n) · T

with T := μ(ΔD̂
i
)2 ·

j �=i

j=1...n

Δd̂ij · Δd̂ij + 2 · d̂old
ij − μ(D̂

old
) + μ(ΔD̂

i
)

MDS with the new stress function in combination with the above speedup
formulas is designed for high-throughput operation and it is therefore referred
to as HiT-MDS.1 The free parameters of HiT-MDS are the exponent K of the
stress function and the step size γ which can be called a learning rate. Empirical
studies on different data sets have showed that the proposed algorithm is very
robust with respect to the choices of γ and K. A two phase learning, first a
rough ordering with K = 4 and increasing γ = 10−3, 10−2, 10−1 followed by a
fine tuning with K = 1 and γ = 5, 25, 100, 250 is likely to meet the requirements
even of unknown data sets; usually, a number between 10 and 500 training epochs
will suffice to obtain good convergence for the current parameter set.

3 Application to cDNA Array Expression Data

Two studies are presented that show the suitability of HiT-MDS for the analysis
of high-throughput expression data. In the experimental design, several thou-
sand gene expression patterns were analyzed which correspond to barley seed
development in the time span 0–26 days after flowering, in three distinct tissues:
pericarp (p), endosperm (end), and embryo (e). The conducted experiments re-
sulted in high-throughput expression data with a relatively small number of
experiments and a large number of gene expression levels. The two major ques-
tions of interest are: 1. How are the experiments, representing the tissues at a
particular developmental stage, characterized with respect to their transcriptome
similarity of specifically expressed genes? 2. Can inter-experimental clusters of
coexpressed genes be identified for which, afterwards, regulatory functions can
be assigned? In order to address these key questions it is necessary to bring the
high-dimensional data for visualization into lower dimension, thereby keeping
their original distances. HiT-MDS is applied to obtain such visualizations, first
for grouping the experiments with similar transcriptome, secondly for identifying
the hot-spots of coexpressed genes from unfiltered expression data.

1. Experiment Clustering. The first HiT-MDS application aims at the visual-
ization of the inter-experiment relationships: a two-dimensional embedding is
wanted that reconstructs the distances of the original space of gene expression
intensities. The common way to do this is principal component analysis (PCA).
More recently, independent component analysis (ICA) has been used which is a
linear decomposition technique [7], or locally linear embeddings LLE are com-
puted [13]. However, none of these methods is explicitly formulated like MDS
for the most natural approach to the original data, which is the best available

1 A C-language command line version is available at http://hitmds.webhop.net/.
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Fig. 1. Gene expression experiments embedded in 2D. Left: PCA. Right: HiT-MDS.

distance reconstruction. The analyzed data set comprises 28 experiments, com-
posing 7 developmental points on from endosperm/embryo (e) and pericarp (p)
tissue which are reproduced by two independent experiments (1,2); each ex-
periment is represented by 1,421 log-transformed gene expression values. Fig. 1
compares the experiment visualization of PCA (left) and HiT-MDS (right). Both
embeddings show a temporal ordering from 00 to 12 days, but tissues e vs. p
are more strictly separated by HiT-MDS, and the 00−04e1/2 cluster as well as
the 08p1/2 pair are more faithfully spread. Distance correlations characterize the
reconstruction quality; they are r(X, X̂PCA) = 0.973 and r(X, X̂HiT-MDS) = 0.981,
which supports higher confidence for the HiT-MDS embedding. For these ob-
tained groupings, the identification of regulating key genes will be of interest in
future investigations.

2. Gene Clustering. A much more demanding experiment is conducted with
data from 12k-arrays (11786 genes) available for 31 developmental stages of
three tissue types. The left panel of Fig. 2 shows a density plot of the em-
bedded 31-dimensional genes zoomed to the region of highest interest. Dark
patches represent areas of high densities, i.e. many points with small Euclidean
distance, leading to an overall correlation of r(X, X̂HiT-MDS) = 0.979. In con-
trast, PCA yields a correlation of only r(X, X̂PCA) = 0.937, which would result
in misleading interpretations of a PCA-based density plot (omitted). HiT-MDS
becomes even more useful for coexpression analysis, if the Euclidean distance
measure for the 31-dimensional gene vectors is replaced by (1-correlation) be-
tween them; then, the maximum dissimilarity is 2 and the best correlation is 0.
Thus, a 2D-embedding of such a dissimilarity matrix will cluster gene profiles of
high correlation opposed to anti-correlated groups of genes. This is illustrated
in the right panel of Fig. 2 for a preselected subset of 2000 embedded genes. By
focusing on these fewer points, i.e. by loosening the global embedding constraints,
more details become visible. The gene profiles associated with the points inside
the exemplarily picked encircled high-density areas are plotted in Fig. 3. A good
spatial separation and specificity is observed for the embedded genes and their
corresponding relevance profiles, making the proposed approach a valuable tool
for gene expression analysis: it is demonstrated that by HiT-MDS hot-spots of
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Fig. 2. Genes embedded in 2D. Left: Euclidean inter-gene embedding of 12k-genes.
Right: correlation-based similarity on 2000 gene subset with finer clustering details.

coexpressed genes can be identified despite the presence of noise in the expression
data by simultaneously processing all available data. Such coexpressed genes will
be further examined for their functional role.

4 Conclusions

The proposed improvement of multi-dimensional scaling, HiT-MDS, allows to
embed very large data sets into a low-dimensional Euclidean space, making the
method suitable for visual data inspection. As a nonlinear method, HiT-MDS is
able to capture even minor differences in the data by faithfully reconstructing
given distance relations. The corresponding low-dimensional surrogates are ob-
tained by a neural network type of incremental training that minimizes a fast
converging stress function. This function is based on the correlations between
input and output distances; thereby, functional terms contributing to the corre-
lation calculation are also updated in an incremental way. In contrast to SOM
learning, HiT-MDS is no mapping technique, which restricts its applicability to
static data sets. However, no topological parameters have to be chosen, con-
sequently HiT-MDS is not subject to topological restrictions of an underlying
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Fig. 3. Gene profiles corresponding to cluster C1 (left) and C2 (right) of Fig. 2.
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neuron grid, and the success the data model can be well-evaluated by the cor-
relation between input distances and those of the embedded points. Obviously,
HiT-MDS can be applied to many problems beyond bioinformatics, e.g. for the
visualization of high-dimensional items, for graph layout [4], and also for space
conversion like the illustrated one, from correlation space to Euclidean space.
Future attention is put on further improvements of the stress function – first
preliminary results show that even faster initial convergence and more tolerant
parameter choices are achieved by replacing the presented exponential corre-
lations by Fisher’s Z transform. Finally, parallel implementations on an SMP
machine are under consideration for making interactive zooming into large sub-
sets of analyzed data easily possible.
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Abstract. Neural networks (NNs) have been used to classify odor patterns and 
are showing promising results. In this paper we present four different models of 
NNs to implement pattern recognition system in artificial noses (ANs). These 
models were analyzed comparing the classification error in the test set and 
using a hypothesis test. The models investigated are probabilistic neural 
network and multi-layer perceptrons with and without temporal processing. We 
used a complex data base with 9 different classes for evaluation the classifiers.  

1   Introduction 

Since the 80s, researches to create ANs, which will detect and classify odors 
automatically, have advanced significantly. AN can be used for monitoring the 
environment in order to control the quality of the air, in the health field to help 
diagnosing diseases and in the food, drink and cosmetics industry to control quality 
and monitor the production process.  

An AN is a modular system, which consists of two main parts: a sensor system, 
made up of elements that detect odor, and a pattern recognition system that classifies 
the detected odors. NNs have been used as pattern recognition system and have 
showed good results.  

Different NNs architectures have been used on ANs pattern recognition systems. 
The Multi-layer Perceptron (MLP), Radial Base Function (RBF) and Time Delay 
Neural Network (TDNN) architectures have been used to recognize different harvests 
of the same red wine in different works [1-3,9] and they have achieved promising 
results. NNs have also been used successfully to classify petrol-derived odors [3]. 

The main objective of this paper is to presents an experimental comparison for 
different NN architectures. The probabilistic neural network (PNN) and MPLs with 
and without temporal processing were chosen to create pattern recognition systems on 
ANs. The MLP was selected because it has been previously used in other works with 
success. The PNN architecture was chosen because it is indicated to classifying 
problems and for the fact that it has never been used before to create pattern 
recognition systems on ANs. We decided to investigate the MLP and PNN with 
temporal processing because the temporal processing has been previously used in 
other works with success.  
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2   Data Base 

The problem dealt with in this work consists of classifying 9 different samples of 
turpentine English Candle (reference sample, croqueo naphtha with 100, 500 e 
1000ppm of contamination, craqueo naphta with 100, 500 and 1000ppm of 
contamination, diesel oil and TBQ46) that were made available by a petrol refinery. 
The data was obtained through the use of an AN prototype [3]. This prototype is 
composed of eight polymer conductors sensors prepared with different dopant.  

For each type of turpentine were done up to 8 acquisitions. On each acquisition the 
sensor resistance values were recorded every 20 seconds. As each acquisition lasted 
about 10 minutes, each sensor obtained an average of 30 values for each turpentine 
type on each acquisition. With the objective of using balanced information of each 
turpentine type (class), the acquisitions 5 and 6 of sample contaminated in croqueo 
with contamination level of 500ppm and 1000ppm were replicated until they had the 
same acquisition number as the other classes. For the same reason, the values of both 
the acquisition 2 contaminated in the coqueo with level of contamination 1000ppm 
and the acquisition 2 of TBQ46 turpentine were replicated until there were 30 values. 

3   Models and Methodology of the Experiments  

To create MLP and PNN without temporal processing, the set formed by the eight 
sensors values in the same time interval was considered a data base pattern. So, the 
database has 2160 patterns, which correspond to 30 patterns in eight acquisitions for 
each one of the nine turpentine types. To create MLP and PNN with temporal 
processing, a new database was created from the same original data, in a way that 
each pattern started to represent the eight sensors resistance in a time period (t) and 
the eight sensors resistance to the same substance in a time period  (t+1).  

In order to obtain an error classification estimate closer to the true error, the 10-
fold cross-validation with stratification method was chosen to create the training sets 
and the test sets. This method has become a standard method in practical terms [5]. 
The patterns were divided in 10 independent portions and with stratification (same 
quantity of each class patterns in each portion); each portion has 10% of the data. In 
each experiment a portion was used to test the network and the nine portions left were 
used to train the networks. 

The whole experiment was done in the Matlab tool. All the networks created 
without temporal processing consist of eight units in the input layer, one for each 
sensor. The networks output is represented by the codification 1-of-m, a unit for each 
turpentine type, being so, and the networks have nine units in the output layer.  

All the networks created with temporal processing consist of sixteen units in the 
input layer, eight to represent each of the eight sensors in the time t and eight to 
represent the same eight sensors in the time t+1. The networks output is also 
represented by the codification 1-of-m, and then networks have nine units in the 
output layer. The number of nodes in the intermediary layer in PNN  were not choose 
because the training algorithmic creates one node for each pattern in training set. The 
number of nodes in the hidden layer in MLP was between 8 and 26 because. The 
training algorithm is slow and networks with more than 26 nodes in hidden layer had 
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become very difficult to train because they take a long time for processing. The 
hidden and the output layers nodes of the MLPs have logistic sigmoid activation 
function. 

4   Experiments Results 

4.1   PNN and MLP Without Temporal Processing 

The PNNs implement the Bayesian decision strategy to classify input vectors [4]. The 
PNNs are divided in four layers: input unit layer, pattern unit layer, sum unit layer and 
output unit layer. The pattern layer units represent each training set pattern and use a 
radial base activation function. The pattern layer does a non-linear transformation of 
the input space to the hidden space; on most applications, the hidden space is of high 
dimensionality, so transforming the non-linear separable pattern set in linear separable 
output sets. The sum layer inputs have origin in correspondent pattern layer units 
from a determined class. The output layer units produce a binary output; which is 
equal to 1 in only one of the units 0 in the others. 

With the objective of reducing the classification error of the PNNs, different radial 
base function width values were investigated (Spread parameter). Table 1 illustrates 
the results obtained from each Spread value investigated. 

Table 1. PNNs Results 

Spread Node quantity % Classif. Error Training % Classif. Error Test 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

0.0001 1944 0.00 0.09 0.02 24.86 2.94 

0.0005 1944 0.00 0.09 0.02 1.16 0.59 

0.0050 1944 0.00 1.54 0.17 2.69 1.21 

0.0500 1944 0.00 31.83 1.37 35.83 3.86 

0.1000 1944 0.00 44.69 2.42 48.84 2.84 
 

The MLPs were created with only one hidden layer. The MLPs were trained with 
the Leavenberg-Marquardt algorithm described in [7]. Initially, ten experiments were 
done with random weight initialization using 8, 10, 12, 14, 16, 18, 20, 22, 24 e 26 
nodes in the hidden layer to select the best architecture to the problem. The 
architecture with 16 nodes in the hidden layer was chosen because it presented the 
smallest classification error in the validation set. The maximum number of iterations 
defined for all the trainings was 2500. The training stops if the Early Stop criteria [6] 
implemented by Matlab occurs 5 consecutive times, or if the maximum number of 
iterations is reached or, still, if the error in the training set is equal to zero. 

For each training, validation and test set, formed from the portions created by the 
cross-validation method; 10 networks were created. Table 2 illustrates the mean 
results obtained from the best MLP architecture (16 nodes). The best network was the 
number 28 because it presented the smallest MSE in test set, equal 1.1451.  
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Table 2. MLPs Results 

Experiment %Classif. Error     

Training 

%Classif. Error     

Validation 

%Classif. Error Test 

  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

1 46.84 33.85 47.50 32.64 47.82 33.37 

2 13.29 19.83 14.81 19.25 13.94 19.80 

3 32.69 31.50 34.01 30.66 33.38 31.10 

4 25.85 27.80 27.05 27.37 27.59 26.91 

5 28.99 28.35 31.22 27.56 30.93 27.51 

6 42.62 34.77 43.60 33.98 43.47 34.20 

7 29.52 25.95 31.37 24.93 31.02 25.87 

8 45.44 34.58 47.10 33.58 47.18 33.85 

9 18.20 22.52 19.58 21.51 20.00 21.56 

10 28.39 33.51 29.35 32.82 30.19 32.50 

Mean 31.18 32.56 32.55 

Std. Dev. 11.13   10.98   11.09   
 

4.2   PNN and MLP with Temporal Processing 

The TDNNs with PNN were created using the same training and the same parameters 
for PNN without temporal processing. The PNNs created in this phase have 16 nodes 
in the input layer, 1863 nodes in the hidden layer and 9 nodes in the output layer. 
Table 3 describes results obtained for these networks. 

Table 3. TDNNs with PNN Results 

Spread Node Quantity %Classif. Error Training % Classif. Error Test 
  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
0.05 1863 0.00 0.05 0.02 50.43 2.58 
0.08 1863 0.00 0.05 0.02 4.30 1.26 
0.10 1863 0.00 0.48 0.09 1.74 0.92 
0.50 1863 0.00 28.52 1.29 30.05 3.57 
1.00 1863 0.00 37.27 1.17 40.77 3.93 

The TDNNs with MLP were created using the same training and the same 
parameters for MLP without temporal processing. The 26 nodes architecture in the 
hidden layer was chosen because it presents the smallest classification error in the 
validation set. Table 4 presents the results. The best network was the number 59 
because it presented the smallest MSE in test set, equal 0.6725.  

A comparative study based in each model classification performance was made to 
show the advantages and the disadvantages of each model. Table 5 identifies the 
topology and the mean classification error obtained in the training, validation (when 
there is) and test sets and Table 6 describes the results from hypotheses test. 

The PNNs presented a mean classification error of 1.16% in the test set. This error 
was the smallest error obtained among all created systems and this results were 
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Table 4. TDNN with MLP Results 

2 41.63 40.14 42.58 39.01 43.19 39.59 
3 33.27 33.39 34.64 32.88 34.54 32.79 
4 32.82 40.11 34.12 39.27 33.91 39.44 
5 27.10 32.13 28.10 31.46 29.52 31.41 
6 31.05 36.52 32.40 35.69 32.17 35.81 
7 15.25 17.18 17.71 17.50 17.83 17.77 
8 30.95 36.43 32.13 35.90 32.90 35.72 
9 13.32 14.74 14.72 14.66 13.91 13.83 
10 31.23 41.25 32.30 40.38 32.90 39.81 

Mean 28.81   30.16   30.34   
Std. Dev. 8.50   8.22   8.46   

Experiment %Classif. Error    Train %Classif. Error Valid. %Classif. Error Test 
  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

1 31.49 40.13 32.91 39.18 32.56 39.63 

 

Table 5. Results from the best topologies 

Topology %Classif. Error Train %Classif. Error Valid %Classif. Error Test 
PNN 0.09 - 1.16 
MLP 31.18 32.56 32.55 
TDNN with PNN 0.48 - 1.74 
TDNN with MLP 28.81 30.16 30.34 

Table 6. Results from hypotheses test 

Hypothesis 0: Classify 1 = Classify 2 Hypothesis 1: Classify 1 < Classify 2 
Test Significance: 5% 
Classify 1 Classify 2 Decision p-value Confidence interval 
PNN MLP Reject H0 0.000000 -25.31 
PNN TDNN com PNN Reject H0 0.000001 -2.38 
PNN TDNN com MLP Reject H0 0.000000 -24.54 
MLP TDNN com PNN Accept H0 1.000000 34.37 
MLP TDNN com MLP Accept H0 0.688660 9.86 

 
confirmed with a hypothesis tests in a significance level of 5%[8]. Besides having 
presented the smallest error on the test set, the PNNs presented the advantages of 
having the smallest training time and reduced quantity of parameters that were 
investigated. On the other hand, the PNN presented a disadvantage that is the 
necessity of creating a node in the hidden layer for each input pattern. This 
disadvantage can become a problem, if the created system has to be used in 
equipment with less computational resources.  

The MLPs (with and without temporal processing) performance was not superior 
to any other network. The principal advantage of using MLPs is that the created 
systems presented the smallest number of nodes in the hidden layer, but the quantity 
of parameters that can be investigated and the training time are disadvantages.  

The temporal information inclusion did not improve the TDNN with PNN 
networks performance in relation to the PNN networks. A probable explanation for 
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the performance of these networks not being superior to the PNN networks 
performance is because as the input data dimension doubled more training patterns 
would be necessary, or it would be necessary to apply some techniques to reduce 
input pattern dimensionality.  

The MLP with TDNN error was inferior to the MLP mean error; in other words, 
the temporal processing helped to improve the odor pattern classification performance 
with MLP. The hypothesis tests showed that this improvement was not enough to 
affirm that the TDNN with MLP classifiers are better than the MLP classifiers with a 
5% significance level.  

5   Conclusion 

We decided to analyze the PNN because PNN was not yet applied to the odor pattern 
recognition problem and also considering the training simplicity and quickness of 
these networks. 

A new and more complex data base use was important to prove the applicability of 
the MLP and TDNN architecture in odor patterns recognition problems. 

From the results obtained we can conclude that the creation of odor pattern 
recognition systems for an AN, with PNN networks would allow a fast equipment 
update to new data bases, once the training from these networks is almost immediate 
and few adjustable parameters need to be investigated. However, if the equipment has 
few computational resources, it would be more indicated to use the MLP architecture. 
MLP allows networks creation with fewer nodes in the hidden layer, though it is 
necessary much more time to train these networks. 
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Abstract. A significant part of medical data remains stored as unstruc-
tured texts. Semantic search requires introduction of markup tags. Ex-
perts use their background knowledge to categorize new documents, and
knowing category of these documents disambiguate words and acronyms.
A model of document similarity that includes a priori knowledge and
captures intuition of an expert, is introduced. It has only a few pa-
rameters that may be evaluated using linear programming techniques.
This approach applied to categorization of medical discharge summaries
provided simpler and much more accurate model than alternative text
categorization approaches.

1 Introduction

The dream of semantic Internet populated with documents annotated with XML
tags remains a difficult challenge. Automatic tools that convert unstructured
textual data into semantically-tagged documents are still elusive. In the medical
domain the need to create these tools is acute because errors may be costly,
medical vocabularies are abbreviations and acronyms are rampant. Critical dif-
ferences between General English and Medical English have been analyzed in a
numbers of publications [1]. The “Discovery System” (DS) data repository [2]
at the Cincinnati Childrens Hospital Medical Center (CCHMC), a large pedi-
atric academic medical center with over 700,000 pediatric patient encounters per
year, contains terabytes of medical data, mostly in form of raw texts, stored in
a complex, relational database integrating many electronic hospital services.

The long-term goal of our research is to create tools that automatically anno-
tate unstructured medical texts, adding full information about all medical con-
cepts, ambiguous terms, expanding acronyms and abbreviations, using a variety
of statistical and computational intelligence algorithms to achieve this goal. The
first step towards full semantic annotation and disambiguation of medical text
requires discovery of the document topic, for example the main disease that has
been treated. It is clear that medical expert reading a given text quickly forms
a hypothesis about the particular sub-domain the text belongs to and interprets
the text in the light of the background knowledge derived from medical studies,
textbooks and individual experience. This is especially true if relatively short
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texts, such as patient’s discharge summaries, containing brief medical history,
current symptoms, diagnosis, treatment, medications, therapeutic response and
outcome of hospitalization, are analyzed. Many medical concepts appear very
rarely in such short documents, therefore document categorization algorithms
that ignore background medical knowledge make many errors.

In the next section a model trying to capture expert intuition in document
categorization is introduced and a simple way to take the a priori knowledge
into account proposed. Estimation of parameters of this model is done using lin-
ear programming techniques. Numerical experiments with over 4500 discharge
summaries were made to compare this approach with standard document cate-
gorization methods.

2 Model of Similarity

Documents Dj of length lj are composed of terms (words, collocations or con-
cepts). Term frequencies tfij for term i = 1 . . . n in document j are calculated
for all documents, and transformed to obtain features that help to reflect doc-
ument similarity. Weights of features that appear with high frequency, or are
derived from longer documents, should be reduced using logarithmic or square
root functions. Uniqueness of each feature is inversely proportional to the num-
ber of documents this feature appears in; if the term i appears in dfi out of N
documents weighting for non-zero term frequencies may be calculated as [3]:

sij = (1 + log tfij) log N/dfi (1)

In the tf × idf weighting scheme additional scaling is used, for example [3]:

sij = round
(

10× 1 + log tfij

1 + log lj
log

N

dfi

)
(2)

In document categorization distribution of a given term among different cat-
egories is important, therefore the logarithm of ratio log(K/cfi) of the number
of classes K to the number of classes cfi in which term i appears, should be used
in the above equation. To avoid favoring long documents all vectors (s1j , . . . snj)
may be divided by their length to obtain final feature vectors xij , for example:

xij = (1 + log tfij) log N/dfi; xj = sj/||sj|| (3)

This normalization tends to favor shorter documents. More sophisticated
normalization methods have been introduced to counter this effect, but unbiased
normalizations are hard to find.

Such ad hoc term weights do not take into account a priori knowledge. Before
the document is examined the probability that it belongs to category Ck should
be equal to the prior probability p(Ck). The background knowledge about ref-
erence documents from class Ck may be represented using weighted frequencies
Rik = Rk(tfi) for the term i. These frequencies are collected in the reference vec-
tor Rk (more than one vector per class may be needed). The following algorithm
seems to capture human intuitions of the document categorization process:
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1. Initial distance between document D and the reference vectors Rk should be
proportional to d0k = ||D −Rk|| ∝ 1/p(Ck)− 1.

2. If a term i appears in Rk with frequency Rik > 0 but does not appear in D
the distance d(D, Rk) should increase by Δik = a1Rik.

3. If a term i does not appear in Rk but it has non-zero frequency Di the
distance d(D, Rk) should increase by Δik = a2Di.

4. If a term i appears with frequency Rik > Di > 0 in both vectors the distance
d(D, Rk) should decrease by Δik = −a3Di.

5. If a term i appears with frequency 0 < Rik ≤ Di in both vectors the distance
d(D, Rk) should decrease by Δik = −a4Rik.

Coefficients a1, . . . a4 > 0 are adaptive constants. If a term appears in both
D and R than the distance is decreased by a constant times the smaller of the
two frequencies, because for small term frequencies this situation may happen by
pure chance. A term that appears only in documents from the Ck class should be
more important for this class than terms appearing in all classes, therefore term
specificity is given by the class-conditional probability p(i|Ck) = p(tfi > 0|Ck).
Given the document D, and reference vector Rk, probability that the class is Ck

should be proportional to:

S(Ck|D; Rk) = 1− σ

(
β

[
d0k +

∑
i

p(i|Ck)Δik

])
(4)

Here Δik depends on adaptive parameters a1, . . . a4 that may be specific for
each class, and the distance depends on the d0k which may also be treated as an
adaptive parameter; the slope β is an additional parameter, giving 6 adaptive
parameters per class. Weighted distance contributions may sum to a negative
number therefore a logistic function σ(·) is used. Probabilities are estimated after
softmax normalization p(Ck|D; Ri) = S(Ci|D; Ri)/

∑
k S(Ck|D; Rk).

This approach seems to capture some human intuitions when texts are ana-
lyzed using background knowledge. Parameters a1, . . . a4 may be estimated using
neural networks with RBF-like architecture and S(Ci|D; Ri) functions (4) in each
hidden node i, and a soft-max function for the output node. An alternative is
to use linear programming techniques for parameter optimization, solvable in
polynomial time using interior point based methods. PCx algorithm has been
used here [6]. Condition

d0k +
∑

i

p(i|Ck)Δik = min (5)

maximizes similarity between documents and reference vectors, Eq. 4, and should
be used with the following constraints:∑

i

p(i|Cj)Δij −
∑

i

p(i|Ck)Δik ≥ d0k − d0j ; k �= j = 1 . . .K (6)

where k indicates the correct class. For all N training vectors (documents)
K−1 constraints are created. Two cases have been considered: a common set of
a1, . . . a4 parameters for all classes, and a separate set for each class. Satisfying
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all K−1 inequalities for one document D guarantees that its similarity measure
(4) is maximal for the correct class and provides correct classification.

3 Numerical Experiments

Customized SQL queries were created to retrieve discharge summaries from the
database. Overall 4534 patients discharge summary records were used. All doc-
uments are short, less than 3000 characters, with the average length below 2000
characters. They are labeled by 10 distinct disease names, with “asthma” being
the majority class that covers 19.1%, followed by Epilepsy (14.1%), Pneumonia
(13.4%), Gastroenteritis (12.9%), Anemia (12.0%), Otitis media (10.8%), Uri-
nary tract infection (UTI) (6.6%), Cystic fibrosis (6.2%), Cerebral palsy (3.9%),
and the Juvenile Rheumatoid Arthritis (JRA) with 0.9%. Except for the last
class that contained only 41 documents all the other classes were among the
most common in the database containing discharge records.

The name of the disease used as the category label plays a dual role: it is
one of the features used to describe the document, and it is also the class label.
For example, documents from the “asthma” class frequently contain the name
“asthma” as a part of some concept (such as “allergic asthma”), but they may
also contain the names of other diseases. The frequency of appearance of each
of the 10 disease names in the documents may be taken as an indicator of the
class, giving a more informed base rate distribution. Using this approach leaves
55.3% of documents unclassified (including ties with several identical highest
frequencies), 34.6% correctly classified and 10.1% errors.

To define the feature space each record has to be subject to several text
processing techniques: exhaustive sets of parsing rules are used to handle punc-
tuation issues and stop-word list of common English words to remove words that
do not contribute to document categorization. MetaMap Transfer (MMTx) pro-
gram package [5] has been used to discover UMLS Metathesaurus concepts [4] in
these texts. To prevent any false-positive mapping a very restrictive MMTx set-
tings has been used during string matching. Concepts are assigned to 135 seman-
tic types, but only 26 types representing specific, medical concepts were found
useful for document categorization. They include anatomical structures, body
parts, functions, biological organisms, drugs and pharmacological substances,
clinical procedures, disease and syndromes, symptoms, and test results. Using
the UMLS ontology as a base all common words may be filtered out, and all
unnecessary medical terms excluded. The final number of features included in
the “native” space based on concepts discovered in medical records was 7220.

The reference texts were taken from MedicineNet [7], Children’s Hospital
Boston Child Health A to Z [8], and MedlinePlus: Medical Encyclopedia [9].
Documents describing each of the 10 selected diseases have been processed and
1097 unique UMLS concepts have been identified. In the discharge summaries
only 807 of these concepts appeared and these concepts have been used as the
feature space. Background knowledge contained in features that appear only in
the reference space, but not in the limited selection of medical records taken
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for analysis, could be useful in future for categorization of new texts. Discharge
summaries contain many more UMLS concepts than reference texts, but in most
cases there is little or no correlation between names of these additional concepts
and diseases. Thus a priori knowledge helps in feature selection and definition
of the feature space.

All calculations presented below were done using 10-fold crossvalidation. Fea-
tures were based on term frequencies (M0), binary present/absent values, and 4
popular weighting schemes [3]. Poor results of the SSV decision tree [10] (simi-
lar results are obtained with C4.5 tree) show that the similarity-based approach
may be more appropriate here, and that the reference vectors containing a priori
knowledge may help. To check how the nearest neighbor classifier performs using
a single reference vector per class kNN with a cosine distance function has been
used [3]. Direct application of Euclidean distance has no sense because reference
vectors have different norms, and the shortest one will almost always be the clos-
est (accuracies are between 6-15%). Best accuracy is obtained with unweighted
term frequencies (60.1%), worst accuracy with binary vectors (43.8%) and 56-
59% accuracy with M2-M5 tf weightings. A very large neural network is needed
(300 neurons and ∼ 250 thousand parameters) to reach 71-72% accuracy on this
data. SVM has never given such good results, with Gaussian kernel results at
the level of 40% only and linear kernels in the range of 60%. Standard deviation
was between 1.5-2.5%.

The approach described in Sec. 2 has been used to calculate coefficients
a1, · · · a4 in each crossvalidation using linear programming techniques. For each
test vector these coefficients were used to compute similarity to all 10 reference
vectors, selecting the highest similarity as class indicator. In the first case the
same coefficients were used for each class. Parameter β = 0.01 was used, making
the logistic transformation almost linear; higher values of β lead to sharp increase
in the number of ties. For each crossvalidation (CV) step on average around
95% of all constraints were satisfied, however the number of vectors for which
all constraints were fulfilled was only 61%, leading to the classification accuracy
of 61.1%. Optimizing coefficients a1, · · ·a4 separately for each class decreased
the percentage of all satisfied constraints to 92%, but increased the number of
vectors for which all constraints were fulfilled by approximately 10%. The final
CV accuracy was then 71.6±2.1% with tf frequencies and similar for various
scalings. This is quite remarkable for a system with 4 parameters per class,
considering the improvement over standard feature weighting techniques, and the
size of the MLP network needed to reach similar results. Prototypes generated

Table 1. 10-fold crossvalidation accuracies in % for different feature weightings. M0:
tf frequencies; M1: binary data; M2:

√
tf , M3: 1 + log(tf), M4: Eq. (1); M5: Eq. (2).

M0 M1 M2 M3 M4 M5
kNN 48.9 50.2 51.0 51.4 49.5 49.5
SSV 39.5 40.6 31.0 39.5 39.5 42.3
MLP (300 neurons) 66.0 56.5 60.7 63.2 72.3 71.0
SVM (C opt) 59.3 (1.0) 60.4 (0.1) 60.9 (0.1) 60.5 (0.1) 59.8 (0.01) 60.0 (0.01)
10 Ref. vectors 71.6 – 71.4 71.3 70.7 70.1
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using LVQ method from all training data (one prototype/class) gave 66.3±1.6%
using the same method, showing importance of the a priori knowledge.

It is also worth noting that the whole calculations for linear programming
with prototypes on a 3.6 GHz PC took about 1.5 hour, while SVM with Gaussian
kernel (with optimized C=10 and dispersion=0.1) or MLP takes more than 10
times longer. Linear SVM takes twice as much time and is much less accurate
(calculations were done using the GhostMiner package [10]).

4 Conclusions

Categorization of documents should be treated as the first step towards full an-
notation, facilitating subsequent disambiguation of terms and concepts . Medical
texts are very specific, containing very large number of unique concepts. Stan-
dard approach to the document classification, based on vector representation
using the tf×idf weighting scheme [3] leads to quite poor results using the near-
est neighbor and decision trees approaches. Knowledge contained in medical
records, such as the discharge summaries analyzed here, is by itself not sufficient
to categorize them. Therefore reference texts have been introduced, systemati-
cally describing each disease documents can be classified to. New approach to
the term weighting and evaluation of similarity of documents that refers to the
background knowledge and that seems to capture human intuitions has been
presented and tested on medical records.

Even the simplest implementation of a prototype-based classifier with lin-
ear programming for optimization of parameters reported here gave substantial
improvement in accuracy. Background knowledge should obviously be stored in
more than one prototype. Finding the simplest decomposition of medical records
into classes using either sets of logical rules or minimum number of prototypes,
is an interesting challenge. The approach presented here seems to be a step in
right direction.
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Abstract. In this paper, a detection system to support medical diagnosis and 
detection of abnormal lesions by processing endoscopic images is presented. 
The endoscopic images possess rich information expressed by texture. Schemes 
have been developed to extract new texture features from the texture spectra in 
the chromatic and achromatic domains for a selected region of interest from 
each colour component histogram of images acquired by the new M2A 
Swallowable Capsule. The implementation of an advanced fuzzy inference 
neural network which combines fuzzy systems and clustering schemes and the 
concept of fusion of multiple classifiers dedicated to specific feature parameters 
have been also adopted in this paper. The preliminary test results support the 
feasibility of the proposed method. 

1   Introduction  

Medical diagnosis is based on information obtained from various sources, such as 
results of clinical examinations and histological findings, patients’ history and other 
data that physician considers in order to reach a final diagnostic decision. Imaging 
techniques have been extensively used, in the last decades, as a valuable tool in the 
hands of an expert for a more accurate judgment of patients’ condition. Recently a 
new wireless endoscopy system has been developed by Israeli-based Given Imaging 
Limited and produces high-quality images of the small bowel without pain or 
discomfort to the patient [1]. The system consists of a small swallowable capsule 
containing a battery, a camera on a chip, a light source, and a transmitter. The camera-
capsule has a length of three centimetres so it can be swallowed with some effort. In 
24 hours, the capsule is crossing the patient's alimentary canal. For the purpose of this 
research work, endoscopic images have been obtained using this innovative 
endoscopic device. They have spatial resolution of 171x151 pixels, a brightness 
resolution of 256 levels per colour plane (8bits), and consisted of three colour planes 
(red, green and blue) for a total of 24 bits per pixel. The proposed methodology in this 
paper is considered in two phases. The first implements the extraction of image 
features while in the second phase one neurofuzzy scheme is implemented / employed 
to perform the diagnostic task. In this research, a new approach of obtaining statistical 
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features/parameters from the texture spectra is proposed both in the chromatic and 
achromatic domains of the image. The definition of texture spectrum employs the 
determination of the texture unit (TU) and texture unit number (NTU) values. Texture 
units characterise the local texture information for a given pixel and its 
neighbourhood, and the statistics of the entire texture unit over the whole image 
reveal the global texture aspects. 

 
 
 

 
 

Fig. 1. Selected endoscopic images of normal and abnormal cases 

For the diagnostic part, the concept of multiple-classifier scheme has been adopted, 
where the fusion of the individual outputs was realised using fuzzy integral. The 
neurofuzzy classifier-scheme adopted in this study utilises a two stage process. 
Initially a clustering algorithm is applied for the sample data in order to organise 
feature vectors into clusters such that points within a cluster are closer to each other 
than vectors belonging to different clusters. The fuzzy rule base then is created, using 
results obtained from this algorithm.  

2   Image Features Extraction   

Texture is broadly defined as the rate and direction of change of the chromatic 
properties of the image, and could be subjectively described as fine, coarse, smooth, 
random, rippled, and irregular, etc. For this reason, we focused our attention on nine 
statistical measures (standard deviation, variance, skew, kurtosis, entropy, energy, 
inverse difference moment, contrast, and covariance) [2]. All texture descriptors are 
estimated for all planes in both RGB {R (Red), G (Green), B (Blue)} and HSV {H 
(Hue), S (Saturation), V (Intensity)} spaces, creating a feature vector for each 
descriptor Di=(Ri,Gi,Bi,Hi,Si,Vi) . Thus, a total of 54 features (9 statistical measures x 
6 image planes) are then estimated. For our experiments, we have used 70 endoscopic 
images related to abnormal cases and 70 images related to normal ones. Fig. 1 shows 
samples of selected images acquired using the M2A capsule of normal and abnormal 
cases. Generally, the statistical measures are estimated on histograms of the original 
image (1st order statistics) [3]. However, the histogram of the original image carries 
no information regarding relative position of the pixels in the texture. Obviously this 
can fail to distinguish between textures with similar distributions of grey levels. An 
alternative scheme is proposed in this study to extract new texture features from the 
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texture spectra in the chromatic and achromatic domains, for a selected region of 
interest from each colour component histogram of the endoscopic images. 

2.1   NTU Transformation 

The definition of texture spectrum employs the determination of the texture unit (TU) 
and texture unit number (NTU) values.  Texture units characterise the local texture 
information for a given pixel and its neighbourhood, and the statistics of all the 
texture units over the whole image reveal the global texture aspects. Given a 
neighbourhood of δ δ×  pixels, which are denoted by a set containing δ δ×  

elements 0 1 ( ) 1{ , ,...., }P P P Pδ δ× −= , where 0P  represents the chromatic or 

achromatic (i.e. intensity) value of the central pixel and { 1,2,..., ( ) 1}iP i δ δ= × −  

is the chromatic or achromatic value of the neighbouring pixel i , 

the 0 1 ( ) 1{ , ,...., }TU E E E δ δ× −= , where { 1,2,...,( ) 1}iE i δ δ= × − is determined as 

follows: 
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The element iE occupies the same position as the thi pixel. Each element of the 

TU has one of three possible values; therefore the combination of all the eight 
elements results in 6561 possible TU's in total. The texture unit number (NTU) is the 
label of the texture unit and is defined using the following equation: 
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Where, in our case, 3δ = .The texture spectrum histogram ( ( ))Hist i is obtained as 

the frequency distribution of all the texture units, with the abscissa showing the NTU 
and the ordinate representing its occurrence frequency. The texture spectra of various 
image components {I (Intensity), R (Red), G (Green), B (Blue), H (Hue), S 
(Saturation)} are obtained from their texture unit numbers. The statistical features are 
then estimated on the histograms of the NTU transformations of the chromatic and 
achromatic planes of the image (R,G,B,H,S,V). 

3   Image Features Extraction   

Recently, the concept of combining multiple classifiers has been actively exploited 
for developing highly reliable “diagnostic” systems [5]. One of the key issues of this 
approach is how to combine the results of the various systems to give the best 
estimate of the optimal result.   

In this study, six subsystems have been developed, and each of them was 
associated with the six planes specified in the feature extraction process (i.e. R, G, B,  
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Fig. 2. Proposed fusion scheme and the neurofuzzy classifier 

H, S, & V). For each subsystem, 9 statistical features have been associated with, 
resulting thus a total 54 features space. Each subsystem was modelled with the 
proposed neurofuzzy learning scheme. This provides a degree of certainty for each 
classification based on the statistics for each plane. The outputs of each of these 
networks must then be combined to produce a total output for the system as a whole 
as can be seen in Fig. 2. The aim in this study is to incorporate information from each 
plane/space so that decisions are based on the whole input space. The adopted in this 
paper methodology was to use the fuzzy integral (FI) concept which claims to resolve 
such issues by combining evidence of a classification with the systems expectation of 
the importance of that evidence [4]. The classification scheme utilised here is a 
neurofuzzy system that incorporates a two-stages clustering algorithm for finding the 
initial parameters of rules. 

3.1   Clustering Algorithm 

The clustering algorithm we apply in this paper consists of two stages. In the first 
stage the method similar to LVQ algorithm generates crisp c-partitions of the data set. 

The number of clusters c and the cluster centres ,   1,..., ,iv i c=  obtained from this 

stage are used by FCM (Fuzzy c-means) algorithm in the second stage. The first stage 
clustering algorithm determines the number of clusters by dividing the learning data 
into these crisp clusters and calculates the cluster centres which are the initial values 
of the fuzzy cluster centres derived the second stage algorithm. Let 

np

1[ , ..., ]    RnZ z z= ∈  be a learning data. The first cluster is created starting with 

the first data vector from Z and the initial value of the cluster centre is taking as a 

value of this data vector. Cluster centres iv are modified for each cluster 

(i.e., 1,...,i c= ) according to the following equation 

( 1) ( ) ( ( ))i i t k iv t v t a z v t+ = + −          (3) 

where 0,1, 2,...t = denotes the number of iterations,  [0,1]ta ∈  is the learning rate and 

it is decreasing during performance of the algorithm (depending on the number of 
elements in the cluster). In the second stage the fuzzy c-means algorithm has been 
used. FCM is a constrained optimisation procedure which minimises the weighted 
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within-groups sum of squared errors objective functions mJ  with respect to fuzzy 

membership's iku  cluster centres iv , given training data , 1,..., ; 1,..,
k

z i c k n= =  

2

( , )
1 1

min{ ( , ; ) ( ) }
n c

m

m ik k i
U V

k i

J U V Z u z v
= =

= −       (4) 

The number of clusters c and the initial values of cluster centres iv come from the 

first stage clustering algorithm. 

3.2   Fuzzy Inference Neural Networks 

The two-stages clustering algorithm provides the fuzzy c-partition of the sample data. 
The number of rules in the proposed fuzzy inference neural network (FINN) equals to 
the number of clusters c obtained from the clustering algorithm. The proposed FINN 
scheme is a MIMO adaptive fuzzy logic system with centre average as defuzzification 
concept. The schematic of the FINN scheme which is shown in Fig. 2 consists of four 
layers. The first two layers LI and L2 correspond to IF part of fuzzy rules whereas 
layers L3 and L4 contain information about THEN part of these rules, and perform 
the defuzzification task. There are c q× elements in layer Ll. They realise the 

membership functions which are defined by  

2

exp
j iji
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σ

−
= −           (5) 

for 1,...,j q=  and 1,...,i c= . The values ijv  in Eq. (5) denote the centres of the 

Gaussian membership functions and are equal to the values of the vectors iv which 

have been derived from the second stage clustering algorithm. The second layer L2 
has c elements which realise multiplication operation because of using Larsen rule in 
fuzzy reasoning procedure. Each element in this layer is associated with one fuzzy 
rule. Outputs of this layer represent the fire strength of the rules, expressed by  

1
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q

i
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j

xτ μ
=

= ∏         (6) 

The multi-layer connectionist structures of FINN scheme allow us to apply, learning 
procedures similar to the back-propagation method which is commonly used as 
learning algorithm for feed-forward multi-layer artificial neural networks. 

4   Results   

The NTU transformation of the original histogram has produced a satisfactory 
diagnostic performance of the multi-classifier scheme. The soft combination of FINN-
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based  classifiers using the FI fusion concept resulted in 94.28% accuracy over the 
testing dataset (4 mistakes out of 70 testing patterns), demonstrating in this way the 
efficiency of this scheme in terms of accuracy. More specifically, 3 normal cases as 
abnormal and one abnormal as normal one provide us a good indication of a “healthy” 
diagnostic performance. However the level of confidence/certainty was 0.52 as shown 
in Table 1. 

Table 1. NTU-based Performance 

5   Conclusions   

An approach on extracting statistical features from endoscopic images using the M2A 
Given Imaging capsule have been developed by obtaining those quantitative 
parameters from the texture spectra  from the calculation the texture unit numbers 
(NTU) over the histogram spectrum. In this study, an intelligent decision support 
system has been developed for endoscopic diagnosis based on a multiple-classifier 
scheme.  
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Abstract. This paper shows that MLP trained with the optimizing Simulated 
Annealing algorithm, may be used for identification of the factors related to 
Common Mental Disorders (CMDs). The average percentage of correct classi-
fication of individuals with positive diagnostic for the CMDs was of 90.6% in 
the experiments related in the paper. 

1   Introduction 

CMDs, and among them the anxiety and depression have been pointed out as the 
common causes of morbidity in developed countries as much as in the developing 
ones, as the example of Brazil. These mental disorders represent a high social and 
economic charge because they are disabled, they constitute important cause of lost of 
workdays and they take a substantial use of health care services [3].  

The use of techniques that may lead to an identification of the factors that present 
the larger possibility of being related to these CMDs it is relevant to assist within the 
decision taking process around the planning and intervention of public health care. 

Artificial Neural Networks (ANNs) have been largely used in the health care field 
and they are known because they generally obtain a good precision result [2,4,6]. 

With this research we intend, mainly, to experimentally show that a MLP trained 
with Simulated Annealing (SA) algorithm is able to identify the factors related to the 
CMDs. The results obtained with MLP were compared with the ones presented by 
Ludermir [3]. She applied the logistics regression method, using the same data basis 
to analyze the independence of each variable association with the CMDs. On the 
statistic analysis for the identification of the factors related to the CMDs, it was esti-
mated the simple and adjusted odds-ratios, whose statistic significance was evaluated 
by the 2 test, considering the 95% confidence interval and values of p ( 0.05). 

2   Simulated Annealing  

The SA algorithm [1] consists of a sequence of iterations. Each iteration consists of 
randomly changing the current solution to create a new solution in the neighborhood 
of the current solution. The neighborhood is defined by the choice of the generation 
mechanism. Once a new solution is created, the corresponding change in the cost 
function is computed to decide whether the new solution can be accepted as the cur-



654 T.B. Ludermir et al. 

rent solution. If the change in the cost function is negative, the new solution is directly 
taken as the current solution. Otherwise, it is accepted according to Metropolis´s crite-
rion [1,7]: if the difference between the cost function values of the current and new 
solutions is equal to or larger than zero, a random number in [0,1] is generated from 
an uniform distribution. If the random number is equal to or less than )/exp( ΤΔΕ− , 

where ΔΕ  is the change in the cost function and T is the current temperature, then the 
new solution is accepted as the current solution. If not, the current solution is un-
changed [1,7]. 

Given a set S of solutions and a real-valued cost function RS:f → , the algorithm 

searches for the global solution s, such that S's),'s(f)s(f ∈∀≤ . The search stops 

after I epochs, and a cooling schedule updates the temperature Ti of epoch i. The 
structure of the algorithm is shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Basic structure of the Simulated Annealing algorithm 

3   Data Basis Description 

Data collection was community-based through interviews and assessment of mental 
health status from a research made by Ludermir [3]. Ludermir determined the preva-
lence of the CMDs in the area studied, and analyzed the association with living and 
work conditions. The study was developed with 621 adults of an aleatory domicile 
sample and using a statistic model of logistic regression for the analysis of the data. 

The data set has the following variables: literacy, education, house ownership, 
housing conditions and possession of household appliances (living conditions), inser-
tion in the productive process and household per capita monthly income (work condi-
tions). The total prevalence of the CMDs in the data set was 35%, 216 cases.  

The following assumptions were made with ANN experiments: 1) A balance of 
positive/negative diagnose cases. It was randomly selected 216 patterns of negative 
diagnose for the composition of the basis. 2) The data was divided in 50% patterns for 
the training set; 25% for the validation set and 25% for the tests set [5]. 3) All vari-
ables in the date set are ordinal/categorical and they were codified with discrete num-
bers between 0 and 1. 4) The network output was defined with two nodes, 10 to repre-
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sent the positive and 01 for the negative diagnoses. 5) Two folds, fold 1 and fold 2, 
were randomly created from the original data set to perform the experiments with 
ANNs. 

4   Methodology  

In this work, two different architectures were taken as initial topologies. The architec-
tures have one-hidden-layer MLP networks with 4 hidden nodes, having all possible 
feedforward connections between adjacent layers, and two output nodes. The differ-
ence in the architecture is in the number of input nodes. For the initial experiments 
there are 11 input nodes and for experiments with main variables there are 7 input 
nodes. For each initial topology, 10 distinct random weight initializations were used, 
and the initial weights were taken from a uniform distribution between –1.0 and +1.0. 
For each weight initialization, 30 runs of  SA were performed.  

The MLP was trained with the SA algorithm for the simultaneous optimizing of the 
architecture and the weights of the network (nodes and connections). The identifica-
tion of the CMD factors was possible by the optimizing the architecture of the net-
work. It was observed the variables that were mostly used for the results obtaining on 
every execution of the algorithm, and with that, to identify those, which presented 
greater possibility of being related with the studied problem. This technique was 
adapted from Yamazaki [7]. The obtained results were compared with those presented 
by Ludermir [3] applying the statistic model of logistic regression. 

The experiments were executed in two distinct stages: 1) in the beginning the data 
set was composed with all the data basis variables, in a total of 11; 2) from the ob-
tained results in first experiments, it was performed new experiments with the number 
of resultants input variables, in a total of 7. These 7 variables were chosen based on 
the number of times the algorithm had chosen such variables. That is the most used 
variables (in terms of percentage) were chosen.  

In order to implement this algorithm for a problem, the following aspects must be 
defined: (1) the representation of solutions; (2) the cost function; (3) the generation 
mechanism for the new solutions; and (4) the cooling schedule and stopping criteria. 
(1) Each MLP is specified by an array of connections, and each connection is speci-
fied by two parameters: (a) the connectivity bit, which is equal to one if the connec-
tion exists, and zero otherwise; and (b) the connection weight, which is a real number. 
If the connectivity bit is equal to zero, its associated weight is not considered, for the 
connection does not exist in the network. (2) The cost of each solution is the mean of 
two important parameters: (a) the classification error for the training set (percentage 
of incorrectly classified training patterns); and (b) the percentage of connections used 
by the network. Therefore, the algorithms try to minimize both network performance 
and complexity. (3) The generation mechanism acts as follows: first the connectivity 
bits for the current solution are changed according to a given probability, which in 
this work is set at 20%. This operation deletes some network connections and creates 
new ones. Then, a random number taken from a uniform distribution in [-1.0, +1.0] is 
added to each connection weight. These two steps can change both topology and 
connection weights to produce a new neighbor solution. (4) The cooling strategy 
chosen is the geometric cooling rule. The initial temperature is set to 1, and the tem-
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perature factor is set to 0.9. The temperature is decreased at each 10 iterations, and the 
maximum number of iterations allowed is 5000. The algorithm stops if:  (a) the GL5 
criterion [5] is met (based on the classification error for the validation set) after 300 
iterations; or (b) the maximum number of 1000 iterations is achieved. 

For each experiment the classification error in the test set, the percentage of correct 
classification of individuals with positive and negative diagnosis for the CMDs and 
the average of variables used by the SA algorithm in the obtaining of results were 
analyzed. All results where the classification error is greater than 28.13% (fold 1) and 
is greater than 29.75% (fold 2) was excluded of the analysis. For the definition of the 
variable amount that presented most relation with the CMDs, it was observed the 
average of variables used for the diagnostic classification (input nodes) in the ana-
lyzed executions of the SA algorithm. More details may be seen in Lopes [3]. 

5   Results 

Six different experiments are showed in this paper. The experiments were done in two 
stages: 1) 11 input variables; 2) 7 input variables. The analysis of the results was 
developed in two distinct ways: 1) observing individually each used fold; 2) observ-
ing the obtained average between the folds. 

Table 1 presents the experimental results in the following way: EXP1 11 inputs 
and fold 1, EXP2 11 inputs and fold 2, EXP3 11 inputs and average of the two folds, 
EXP 4 7 inputs and fold 1, EXP 5 7 inputs and fold 2, and EXP6 7 inputs and average 
of the two folds. The table contains the use percentage of each variable, an average 
classification error, the percentages of the correct classification of the cases with posi-
tive/negative diagnose for the CMDs. The bold face values are for the input variables 
which were most used in the experiment. The Students’ t-test with a significance level 
of 5% [8] was used to perform the statistical analysis in the results. 

With experiments done with 11 inputs we may observe in Table 1 that, in the ex-
periments performed with both folds, among the used variables to measure the living 
conditions the one that mostly stood out was the education, and as for the work condi-
tions it was the insertion in the productive process variable.  

In the experiments with only the most used input variables, the average number of 
used variables was equal in both folds, four. Comparing the results of 7 inputs with 11 
inputs, in relation to the classification error, in the fold 1 there was a reduction in 
1.71% and in the fold 2 in 0.85%. The correct classification percentage in the cases 
with positive diagnose was increased in both fold, in 1.51% (fold 1) and 5.28% (fold 
2). As for the correct classification percentage of the cases with negative diagnose for 
the CMDs presented, however, there was an increase in 1.92% in the fold 1 and a 
decrease in 3.58% fold 2. Analyzing the results with the average of both folds, the 
classification error was decreased in 1.28%, the correct classification percentage of 
the positive cases improved in 3.40% and the correct classification percentage of the 
cases with negative diagnose was decreased in 0.83%. 

We may observe that, the variables that mostly stood out analyzing individually 
and simultaneously both folds with experiments with 7 input variables were: educa-
tion, insertion in the productive process, gender and income. Among the used vari-
ables to measure the living conditions it stood out the education and as for the work 
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conditions, the insertion in the productive process variable. The huge reduction in the 
use percentage of some variables between the two different architectures it is because 
of the reduction of the number of variables used.  

In general, in the performed experiments with only the 7 variables mostly used by 
the SA algorithm, the network classification error as well as the correct classification 
percentage of the cases with positive diagnose for the CMDs were improved. Those 
results suggest that the exclusion of the variables that did not present relationship with 
CMDs in the data basis used, it contributed to the improvement of the results obtained 
in the experiments. Therefore, the process of variable and feature selection improved 
the performance of the system, provided faster and more cost-effective systems and 
provided a better understanding of the underlying process that generated the data.  

Table 1. Experimental Results 

 EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 
Age 62.07 57.45 59.76 52.00  26.00 
Literacy 58.62 57.45 58.04    
Migration 51.72 59.57 55.65    
Education 89.65 74.47 82.06 72.00 60.00 66.00 
House ownership 65.52 61.70 63.61 20.00 36.67 28.34 
Insertion Productive Proc. 65.52 87.23 76.38 72.00 86.67 79.34 
Housing conditions 51.72 61.70 56.71  20.00 10.00 
Gender 65.52 74.47 70.00 60.00 73.33 66.67 
Status marital 79.31 53.19 66.25 40.00  20.00 
Income 62.07 74.47 68.27 72.00 70.00 71.00 
Possession household app. 48.27 68.08 58.18  53.33 26.67 
Classification Error 23.08 24.21 23.64 21.37 23.36 22.36 
Positive Diagnose 89.08 88.73 88.90 90.59 94.01 92.30 
Negative Diagnose 64.75 62.84 63.79 66.66 59.25 62.96 

6   Final Considerations 

Even though the logistic model is the methodology normally used when the purpose is 
to identify the factors of risk that have association with the variable answer, where the 
coefficients of regression may be interpreted by the odds-ratios [3], it was possible to 
observe good results in the experiments with MLP with relation to the prediction of 
the positive cases for the studied problem. The obtained average in our experiments 
around the correct classification of the individuals with positive diagnose for the 
CMDs was of 90.6%. 

Our results are similar to those obtained with the statistic technique of logistic re-
gression applied by Ludermir [3], when it is compared with the analysis made with 
simple odds-ratios, where the variables education, income, gender and insertion in the 
productive process were statistically significant, with the values of p  0.0001. After 
the adjustment of the odds-ratios in the results obtained by Ludermir [3], education 
and income presented relationship with CMDs. It is important to remind that those 
variables, in all the experiments with ANNs, they were present in the obtained results, 
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standing out among the variables that presented larger percentage of use for the algo-
rithm, in other words, larger possibility of they being related with CMDs. 

With the optimizing network architecture it was possible to establish which vari-
ables presented greater probability of being related with the studied problem. That is, 
the applied methodology in the experiment is presented as an interesting alternative 
for problems application when the purpose is the identification of factors related to 
the variable response (network output).  

From the results presented here, we may conclude that a trained MLP network with 
the SA algorithm, with simultaneous optimizing of its architecture and weights, may 
be an interesting alternative to the statistic model of logistic regression, to the analysis 
of the factors related with the CMDs, because the network is able to detect all the 
possible interactions among the many explaining variables. 

As future work possibility we pointed out: 1) to measure the performance of new 
experiments, applying the same methodology, with the use of others data set; 2) the 
creation of others data bases folds, because, the use of more folds will lead to much 
more trustable results, once that, the order of the examples and the chosen examples 
may influence in the obtained results in the ANN; 3) the use of other optimizing tech-
niques, as for example, Tabu Search.  
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Development and Realization of the Artificial Neural 
Network for Diagnostics of Stroke Type 

O.Yu. Rebrova and O.A. Ishanov 
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Abstract. Methods of artificial neural networks are applied to the development 
of the decision support system for differential diagnostics of three types of 
stroke. Diagnostic sensitivity and positive predictive value were used as the 
basic criteria for estimation of efficiency of the developed algorithm. Their 
values appeared to be 97% and 99% respectively, and these results significantly 
exceed both the existing level of physicians’ diagnostics, and the efficiencies of 
statistical algorithms developed earlier. C-code was generated, and web-based 
application was realized. Research of algorithm’s efficiency continues. 

Keywords: artificial neural network, medical diagnostics, web-based 
application, perceptron, stroke. 

1   Introduction 

Cerebral stroke is one of the central problems of clinical medicine nowadays since it 
takes the third place among the reasons of death rate from noninfectious pathology. 
80% of patients who survived after stroke are handicapped [1]. Three types of stroke 
(ischemic, haemorrhagic, subarachnoid hemorrhage) are marked out and tactics of 
treatment in these three cases should be different. Efficiency of medical actions 
depends on correctness of diagnostics of stroke type, and, hence, the prognosis for 
each patient too. In practice the rate of physicians’ errors in stroke type diagnostics 
even by experienced doctors is about 20-45% [2]. Computer tomography is not 
available for about 80% of stroke patients in Russia. That is why free intellectual 
computer system to support decision-making by emergency department personnel 
(neurologist or general practitioner) could promote decrease of medical errors. 

The algorithms of differential diagnostics of stroke types developed earlier were 
not effective because of low accuracy (71% on the average) and of some essential 
restrictions. So we have set the task to develop and realize effective system to support 
medical decisions. 

There are two basic ways of computer intellectual systems development: design of 
mathematical algorithms using data mining and representation of experts’ knowledge. 
Development of formal rules for diagnostics and classification can be carried out 
using statistical and logical methods (logit regression, discriminant analysis, etc.) and 
cybernetic methods of optimization (neural networks (NN), etc.). Earlier we solved 
our problem by statistical methods (logit-regression models), also we have 
developed expert system on the basis of network hierarchical threshold model. Our 
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results were successful enough and significantly exceeding an existing level of routine 
medical diagnostics, however they have not allowed to reach the high values of 
efficiency, so we decided to try NN approach. This approach was already successfully 
used to solve diagnostic problems in neurology [3-9]. 

2   Materials and Methods 

Data on 298 patients with acute (1-7 days) stroke were analyzed: 211 cases of 
ischemic stroke (IS), 73 cases of haemorrhagic stroke (HS), 14 cases of 
subarachnoid haemorrhage (SAH). The relative frequencies of stroke types 
correspond to their population prevalences. The true type of stroke (the final 
diagnosis) was verified by the results of clinical, instrumental and 
laboratory investigation, including brain computed tomography. 

Initial sample has been divided to training (n=268) and control (n=30) samples 
using computer randomization. To test algorithms additional sample of 25 cases (16 
cases of IS, 8 cases of HS, 1 case of SAH) was collected. 

Each case initially was described by 239 variables, including 8 quantitative 
variables, the rest were qualitative or binary ones. Qualitative nominal variables have 
been preliminary transformed to binary variables using the rule "1-of-N". The 
variables describe patient’s clinical features (both somatic and neurological status), 
disease and life history.  

The statistical analysis of data was carried out using software package «Statistica 
5.5» (StatSoft, Inc., USA). 

To develop artificial NN «Statistica Neural Networks 4.0» and «Statistica 6.0» 
(StatSoft, Inc., USA) software were used.  

According to the concept of evidence-based medicine sensitivity (Se), specificity 
(Sp), diagnostic accuracy, positive (PPV) and negative (NPV) predictive 
values, and also agreement index of independent diagnostic conclusions K 
(Kappa) served as the criteria to estimate the efficiency of the developed diagnostic 
algorithms. Point and interval (95% confidence intervals) estimations have been 
computed for the listed parameters.  

3   Results 

Primary to construction of mathematical algorithms for stroke types diagnostics we 
estimated efficiency of routine physicians’ diagnostics. With this purpose we cross-
tabulated preliminary (formulated at admission) and final (formulated at discharge) 
diagnoses. Two approaches were applied. At the first we made calculations only for 
those cases (n=119), in which the stroke type has been specified in preliminary 
diagnosis. Average Se thus has appeared to be 86% [79%; 91%], accuracy of 
diagnostics - 84% [76%; 90%]. At the second approach we believed that in 155 cases 
the stroke type has not been specified in preliminary diagnosis owing to uncertainty of 
doctors, and considered these cases as cases of refusal to specify stroke type. Then 
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average Se medical diagnostics has appeared to be 53% [47%; 59%], accuracy of 
diagnostics - 36% [31%; 42%]. These results we further used for comparison with 
developed NN algorithms. 

It was necessary to decrease the dimension of attribute space. We used following 
approaches for this purpose: 

1. The expert estimation of attributes importance; 
2. The statistical analysis of data - methods of the analysis of tables (the Chi-

square test, Fisher exact test) and comparisons of groups (Mann-Whitney U-
test, Kruskal-Wallis ANOVA); 

3. Genetic algorithm. 

Combining results of these three approaches, we have step by step selected 34 
perspective attributes from 239 initially available attributes. 

To solve classification task we had to search best architecture and parameters of a 
network, so we used “Intelligent Problem Solver” module. For training NN we used 
training sample, for controlling – the control one, for testing – the test one. 

NN of four architectures (topologies) were developed: linear NN, probability NN, 
radial basic functions, multi-layer (three- and four-layer) perceptrons.  

The best network appeared to be the four-layer perceptron with two hidden 
layers of neurons (29-12-14-3 neurons in corresponding layers). All input attributes 
are qualitative, and 24 of them are binary. Six inputs describe anamnesis vitae, 9 – 
anamnesis morbi, 1 – somatic status and 13 – neurological deficit. The output layer 
consists of three neurons according to number of differentiated stroke types. The 
decision in favor of one of diagnoses is based on the most probable condition. 

Classification matrices were considered as the basic result of NN functioning. The 
results of classification are presented in Table 1, and parameters of efficiency - in 
Table 2. Average Se appeared to be 97% [94%; 98%], PPV - 99% [97%; 
100%] on training sample. Diagnostic accuracy of algorithm is 98% [96%; 99%]. 
The agreement of the NN conclusions and final diagnoses is 0,949 [0,908; 0,989]. 

Table 1. Results of classification by four-layer perceptron (absolute frequencies) 

The conclusions                                     Final diagnoses 
of NN             Training sample                                   Control sample 
 IS HS SAH  IS   HS  SAH 
 (n=187) (n=69)  (n=12)  (n=24)        (n=4) (n=2) 

IS (n=216) 187 6  0  23    0      0 
HS (n=68) 0 63  0  1    4     0 
SAH (n=14) 0 0  12  0    0     2 

The Se of logit-regression model developed by us earlier was 80% [74%; 85%], 
the Se of routine physicians’ diagnostics was estimated as 86% [79%; 91%]. So NN 
algorithm produces significantly better results. 
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Table 2. Parameters of efficiency of four-layer perceptron 

Parameter                     Training sample                                    Control sample 
            IS       HS       SAH     IS HS SAH 

Se          100%       91%      100%     96% 100% 100% 
Sp          93%       100%      100%    100% 96% 100% 
PPV          97%       100%      100%    100%       80% 100% 
NPV          100%       97%      100%    86%        100% 100% 

We also have carried out additional testing of the developed algorithm on 25 cases 
(16 cases of IS, 8 cases of HS, 1 case of SAH) which have not been included earlier 
neither in training, nor in control samples. Results of testing have appeared to be the 
following: 16 of 16 cases of IS and 6 of 8 cases of HS were classified correctly, 1 case 
of SAH was recognized correctly too. One case of HS was incorrectly carried to IS, 
the second case - to SAH. Last error can be considered as rather non-gross as the 
pathophysiological mechanism (haemorrhage) has been defined correctly and hence 
the specific treatment cannot bring harm to the patient. 

Further we have set the task to develop web-based application realizing developed 
NN algorithm. We used the C-code generator of «Statistica 6.0» software. Then we 
transformed C-code to Perl-code, and using CGI technology we have organized the 
functioning of the NN at the Internet-site of the Russian National Stroke Research 
Center (http://www.stroke-center.ru). The web-form for a choice of  necessary values 
of attributes is given to the user. The codes (values) of attributes entered by the user 
are sent to the server and are processed by a CGI-script, the results are sent back to 
the user. Entered data including the values of variables entered by the user, the IP-
addresses, e-mail addresses, results of data processing are added to database file and 
can be visualized through web-interface or kept in a XML-format on a local disk for 
the further processing by data analysis programs. The further analysis of collected 
data will allow to repeatedly estimate the NN efficiency. 

4   Conclusion 

Artificial NN for differential diagnostics of three types of stroke was developed. Its 
efficiency significantly exceeds the efficiency of routine medical diagnostics, and 
earlier developed logit-regression algorithm. Web-realization of artificial NN can be 
free used by doctors as a support system for decision-making. Research of efficiency 
of algorithm continues. 
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Abstract. In BCI (Brain Computer Interface) research, the classifica-
tion of EEG signals is a domain where raw data has to undergo some
preprocessing, so that the right attributes for classification are obtained.
Several transformational techniques have been used for this purpose:
Principal Component Analysis, the Adaptive Autoregressive Model, FFT
or Wavelet Transforms, etc. However, it would be useful to automatically
build significant attributes appropriate for each particular problem. In
this paper, we use Genetic Programming to evolve projections that trans-
late EEG data into a new vectorial space (coordinates of this space being
the new attributes), where projected data can be more easily classified.
Although our method is applied here in a straightforward way to check
for feasibility, it has achieved reasonable classification results that are
comparable to those obtained by other state of the art algorithms. In
the future, we expect that by choosing carefully primitive functions, Ge-
netic Programming will be able to give original results that cannot be
matched by other machine learning classification algorithms.

1 Introduction

Within the Machine Learning field, there are many domains where the main
difficulty is not to determine the proper algorithm to be applied, or even select-
ing the most relevant attributes. In these cases, the attributes available in raw
data are not the most significant for classification, and new attributes have to be
constructed. This is usually called feature induction or constructive induction [1,
2, 3]. The brain computer interface (BCI) is a domain where raw data has to
undergo some preprocessing, so that the right attributes for classification are
obtained. In BCI research, several transformational techniques have been used
to obtain high classification accuracy (over 90%): Principal Component Analy-
sis [4], the Adaptive Autoregressive Model [5], FFT or Wavelet Transforms [6],
etc. Intuitions, empirical results, and knowledge about the domain is what lead
researchers towards using these methods. However, it would be useful to auto-
matically build significant attributes appropriate for every kind of signal and
classification task.

Genetic Programming (GP) is an evolutionary technique for evolving sym-
bolic programs [7]. Most research has focused in evolving functional expressions,
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but using loops and recursion have also been considered [8]. Evolving circuits are
also among the successes of GP [9]. In this paper, we intend to use GP to evolve
expressions that project original data, which is expressed in coordinates of a
space with N dimensions, to a new space with M dimensions (where M << N).
Here, we consider two-class classification problems. We expect that by finding
the right projection, it will be possible to separate data linearly (approximately)
in the projected space.. The secondary goal is to project data into a smaller
space: This way, the dimensionality of the problem is reduced and a new set
of attributes is obtained. This new emergent-attributes represent the relevant
information needed for classification. They also can reveal non-observable rela-
tionships between the original attributes, improving the understanding of the
problem. Fitness of each projection is determined by computing the degree of
linear separation of data in the projected space. This has been implemented as
a linear perceptron. Our motivation for using GP is that the set of primitives
GP uses for building hypothesis is a parameter of the algorithm. Other machine
learning algorithms work with pre-defined primitives like node-comparisons in
ID3 or neurons in ANN. GP allows to include the most relevant primitives for
the domain, although this selection requires sometimes a long trial-and-error
process.

The final aim of our research is to obtain results that cannot be obtained by
directly applying other machine learning methods. This paper is a first shot at
using GP for this purpose. Therefore, results obtained in this paper correspond
to the most straightforward and simple approach, that will test the feasibility of
GP, and can be used as a base to compare (and improve) future research.

This paper is organized as follows. Section 2 introduces Genetic Program-
ming. Section 3 describes our approach. Section 4 reports the experiments car-
ried out. And finally, Section 5 draws the main results of the paper and prepares
for future research.

2 Genetic Programming

Genetic Programming (GP) is an evolutionary technique designed to generate
programs automatically [7]. It has three main elements:

– A population of individuals. In this case, the individuals are computer pro-
grams.

– A fitness function. It is used to measure the goodness of the computer pro-
gram represented by the individual.

– A set of genetic operators. In GP, the basic operators are reproduction,
mutation, and crossover.

The GP algorithm enters into a cycle of fitness evaluation and genetic oper-
ator application, producing consecutive generations of populations of computer
programs, until a good enough individual is found. Every genetic operator has
a probability of being applied each time we need to generate an offspring indi-
vidual for the next generation. Also, GP has many other parameters, the most
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important ones being the size of the population (M) and the maximum number
of generations (G).

3 The Approach

We will learn from a set E of n examples expressed in a space U of N dimensions.
Our objective is to be able to represent the examples in the space V , of M
dimensions, and in which the examples will be linearly separable.

As we already have seen, Our method have two different applications: on one
hand, the improvement of classification tasks by means of a transformation of
the dataset; on the other hand, the reduction of dimensionality by constructing
new attributes that are as good, at least, as the original ones.

Our method uses standard GP to evolve individuals made of M subtrees (as
many of dimensions of the projected space V ). Then, data is projected from
U to V by means of applying the individual to the original data. Fitness is
computed by measuring the degree of linear separation after the projection. The
system stops if a 100% linear separation has been achieved or if the maximum
number of generations is reached. Otherwise, the system outputs the individual
that separated better the training data.

For the implementation of our application, we have used Lilgp 1.1, the soft-
ware package for Genetic Programming developed in Michigan State University
by Douglas Zongker and Bill Punch, members of the group GARAGe (Genetic
Algorithms Research and Applications Group) (http://garage.cse.msu.edu/).

Terminal and Function Set
In our problem, terminal set will be formed by the attributes of the problem
expressed in coordinates of U (u0,u1...,uN), and by Ephemeral Random Con-
stants [7].

The set of functions to use is difficult to determine: it must be sufficient
for, along with the set of terminals, being able to express the solution to the
problem, but they must not be too many as for uselessly increase the search
space. Of course, for different domains, different terminal and function sets will
be more appropriate. In this case, we have tried with just arithmetic functions
(+,−, ∗, /).

In the future, we would like to explore better grounded, domain-oriented sets
of functions, like FFT or wavelet transforms.

GP Individuals
Instead of having individuals work with vectorial data and return a vector of
M dimensions, every individual will contain M subtrees, using the same set
of functions and terminals, that will be ran independently. Thus, a projection
consists of a series of trees labelled (v0,v1...,vM ) that represent combinations of
all the terminals (u0,u1...,uN ) and functions.

Genetic Operators
In our approach, we use the three genetic operators typically used in GP. Repro-
duction chooses an individual and copies it verbatim into the new population;
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Mutation chooses an individual and a subtree, then the subtree is deleted and re-
placed with a randomly generated subtree; and Crossover selects two individuals,
a subtree is selected on each individual, and the subtrees are swapped.

The Fitness Function
We already have introduced the basic mechanism of the fitness function. It takes
the examples expressed in space U , project them using the GP individual, and
obtain the examples expressed in space V of M dimensions. Next, a classification
algorithm is applied to the projected data. In this case, we have choosen to apply
a Simple linear Perceptron. The Perceptron is run for 500 cycles (experimentally
we have checked that this is more than enough). If the SP converges, the pro-
jection would be producing a linear separation of the data and it would be the
solution to the problem. If the SP does not converge, the fitness assigned to the
individual is the number of examples that the SP has been able to correctly
classify in the best cycle. We choose the punctuation of the best cycle because
if projected data is not linearly separable, the SP will oscillate. Storing the best
value guarantees stability of the fitness value. This way, fitness is gradual enough
and has the resolution necessary to be able to exert a real selective pressure.

If the method does not find a linear (or nearly linear) classification of the
examples in the space V , we can change the number of dimensions desired for
V and launch the method again. As we already have stated, our main goal is to
find a linear separation of examples and, in order to achieve this, it is possible
for our application to increase M to values greater than N . However, in BCI
research, the original number of dimensions N is usually very large, so it does
not make sense to increase them in the new space V . This is the reason for not
documenting in this paper the possibility of a M value greater than N .

4 Experiments

This section describes our first experiments using the NIPS 2001 Brain Com-
puter Interface Workshop dataset [10].1 This dataset was recorded from a normal
subject during a no-feedback session. The subject sat in a normal chair, fingers
in the standard typing position at the computer keyboard. The task of the sub-
ject was to press with the index and little fingers the corresponding keys in a
self-chosen order and timing.

The classification task is to create a classifier to predict which of the two
fingers the user intends to use (before pressing the key).

For validation purposes, we have divided the dataset into a training and a
test set, containing 412 (80%) and 102 (20%) instances respectively. Due to the
long runs required by GP, crossvalidation was not feasible. We took the raw
data and selected the 20 last instants of every channel. Allegedly, these instants
are more relevant for the classification because they are closer to the time the
person makes the decision. Therefore, as there are 27 channels, the initial space
has N = 27 ∗ 20 = 540 dimensions. The goal is to project this data to a space

1 http://liinc.bme.columbia.edu/competition.htm
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Table 1. Summary of experiments carried out

Experiment Population Generations Max
size Nodes

GP1 1000 500 200
GP2 3000 500 70
GP3 3000 500 40

with M = 3 dimensions where data can be classified linearly. Table 1 summa-
rizes the 3 experiments carried out in this paper. It displays details about the
population size, the maximum number of generations, and the maximum size
allowed for the evolved expression (the latter is meant to limit overfitting).

Table 2. Summary of best/median test results for experiments GP1, GP2, and GP3

Experiments % Test
GP1 (best) 87.5/83.175
GP2 (best) 94.2/86.54
GP3 (best) 94.2/87.5
SMO 93.3
Simple logistics 96.2
ANN 95.1

For every experiment in Table 1, the GP system was run 6 times. The best and
median results for every experiment on the test set are summarized in Table 2.
Other machine learning approaches have also been tested on the same data. SMO
(support vector machine) and Simple Logistic Regression come from the Weka
package, using default parameters. They both performed very well in relation to
other Weka algorithms. ANN is a backpropagation neural network.

In summary, the best GP individual (94.2%) obtains comparable results to
the other systems tested. This result is positive, considering that this is prelim-
inary research, and that we have obtained an expression that projects from 540
to 3 dimensions, where almost linear classification can be carried out.

5 Conclusions

In this paper, we have applied Genetic Programming to evolve functions that
project data from spaces with N dimensions to spaces with M dimensions. The
main goal is that in the M -space, projected data can be classified linearly (or
close to). The secondary goal is to project data into a smaller space, so M << N .
This approach has been applied to classification of EEG data coming from a
Brain Computer Interface competition.

Here, we have applied a straightforward configuration, where the primitives
used by GP are arithmetic functions. Results are comparable or inferior to other
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machine learning methods, but the dimensionality of the problem has been re-
duced from 540 to only 3. Yet, even for this simple approach and for the im-
portant reduction of the problem, we have obtained a projection that classifies
linearly the projected data with an accuracy of 94.2%. This shows that the ap-
proach has some merit, although our goal of evolving original expressions, better
than what can be achieved by traditional machine learning methods, or by hu-
man expertise, has not been achieved. In the future, we expect that by carefully
choosing primitive functions, known to perform well in the EEG domain, results
will be much improved.
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Abstract. In medical image analysis there are many applications that
require the definition of characteristic image features. Especially com-
putationally generated characteristic image features have potential for
the exploration of large datasets. In this work, we propose a method for
investigating time series of medical images using a combination of the
Discrete Wavelet Transform and the Self Organizing Map. Our approach
allows relevant image information to be identified in wavelet space. This
enables us to develop a filter algorithm suitable to find and extract the
characteristic image features and to suppress interfering non-relevant im-
age information.

1 Introduction

The exploration of large medical image databases is currently a very active
field of research, especially in relation to the field of Content Based Image Re-
trieval [1]. For this purpose it is essential to generate characteristic image features
for the respective application. One method to compute characteristic features is
the Discrete Wavelet Transform (DWT). However, in medical applications the
amount of image data is usually very large, whereas the interesting part in the im-
age may be very small. Furthermore it can be difficult to distinguish the relevant
features from those derived from non-relevant parts in the image. Therefore it is
practical to combine the search for characteristic wavelet features with methods
from the field of data-mining and unsupervised learning algorithms. In this work
a self organizing map (SOM) is used to explore and visualize the wavelet features
of the input space (1). The SOM projects the feature space on a low dimensional
grid. This dimension reduction based visualization provides an interface for an
interactive manual filtering in the wavelet domain.

We have applied this approach to the exploration of data from magnetic reso-
nance imaging (MRI). This imaging technique is currently being investigated for
the detection and classification of breast cancer. In particular, the administration
of a contrast agent (Gd-DTPA) gives rise to characteristic signal changes in areas
of abnormalities (Dynamic contrast enhanced (DCE) MRI) [2]. In the UK Breast
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Screening Study, premenopausal women at high genetic risk of developing breast
cancer are being evaluated using an imaging and analysis protocol based on DCE-
MRI [3]. Two 3D MR images are acquired prior to (pre-contrast) and five images
are acquired after contrast agent injection (post-contrast), eachwith an acquisition
time of 90 secs. In this time series of MR images, the specificity is strongly affected
by further contrast enhancement within the normal breast parenchyma or within
the heart. The region of interest (ROI) containing the enhancing lesions comprises
less than 1 % of the whole image. Furthermore, in feature space the wavelet fea-
tures of this ROI are close to those produced by additional enhancement particu-
larly arising in the region of the heart. Using a time series containing the first pre-
contrast and all five post-contrast images we show the possibility of distinguishing
the different types of contrast enhancement. This enables us to extract the image
information describing the lesion and to suppress the non-relevant spatiotemporal
information describing contrast agent uptake in the region of the heart.

2 Discrete Wavelet Transform

Wavelet analysis, including multiresolution analysis, enables the assessment of
localized and scale-dependent information in signals and images [5]. A signal f
is decomposed using the Discrete (Dyadic) Wavelet Transform into a basis of
shifted and dilated versions of a mother wavelet ψ [4]

f(x) =
∑
(j,k)

dj,kψj,k(x) , with ψj,k(x) = 2j/2ψ(2jx− k) . (1)

The index j indicates the dilation or scaling step while k refers to transla-
tion or shifting. The wavelet coefficients dj,k are given by the scalar product
dj,k = 〈f(x), ψj,k(x)〉 or dj,k = 〈f(x), ψ̃j,k(x)〉 in the case of biorthogonal wavelets
with the dual wavelet ψ̃ [4]. An efficient calculation of these coefficients is ac-
complished by the Fast Wavelet Transform (FWT), an algorithm allowing the
coefficients to be calculated in a stepwise manner. To perform a FWT a scaling
function φ(x) is required such that [4]

φ(x) =
√

2
∑

k

h(k)φ(2x− k) and ψ(x) =
√

2
∑

k

g(k)φ(2x− k) . (2)

The coefficients h(k) and g(k) are termed Filter coefficients and they determine
the wavelet. On the first scale the signal is decomposed into its details and the re-
maining signal, i.e. the approximation, reflecting the particular scale. The details
are described by the wavelet coefficients of this scale while the approximation
is represented by scaling coefficients corresponding to the scaling function. The
procedure can be iterated by a further decomposition of the approximation into
details and approximation of the next coarser scale.

3 Self Organizing Maps

The Self Organizing Map (SOM) is a clustering approach from the field of arti-
ficial neural networks [5]. A set of reference or prototype vectors {ui} is trained
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according to a given data set of feature vectors {xi}. The SOM is represented by
a two-dimensional square grid, which consists of nodes each correlated with one
of the reference vectors. In this work, we use a two-dimensional square grid. Dur-
ing each learning step t a vector from the input space is mapped on the nearest
reference vector (winner node). This node and the ones identified as neighbours
are updated according to uj(t + 1) = uj(t) + hij(t)[xi −uj(t)]. The function hij

is defined as hij = α(t) exp −|ri−rj |2
2σ2(t) , where α(t) is the learning rate factor and

σ(t) defines the neighbourhood function, both monotonically decreasing. The ri

and rj are the nodes corresponding to the reference vectors ui and uj . After a
successful training procedure the reference vectors depict the data distribution
in the data set.

4 SOM-Based Wavelet-Feature Extraction

Wavelet Transform of datasets: Each of the six volumes was transformed
separately. By combining the wavelet coefficients possessing the same combina-
tion of indices at different time points we derived time series of wavelet coeffi-
cients. The decomposition included five decomposition steps using the Cohen-
Daubechies-Feauveau (CDF)(2,2)-wavelet which has been shown to be appro-
priate for our kind of filtering procedures [8].

Local dynamic windowing: To explore image databases, the image volumes
need to be filtered for selected signals. To this end, one needs to distinguish
the feature vectors describing contrast enhancement in tumour tissue (xT

i ) from
those produced by signal enhancement in the region of the heart (xH

i ). For this
purpose we used a dynamic local windowing technique, which is based on defining
a region of interest (ROI) and a region of exclusion (ROE). The ROI is defined
based on an expert label whereas the ROE is given by a labeling of the heart
region. We reconstructed a new artificial time series of MR Images by using
the dynamic information from the post-contrast image within the ROI/ROE
and the static pre-contrast information outside these regions. After carrying out
the DWT of these images, the wavelet coefficients describing the specific type
of tissue are easy to identify through their significant variation over time. We
obtained one set containing about 103 feature vectors for contrast agent uptake
of tumour tissue and one set containing about 105 feature vectors for contrast
enhancement in the region of the heart.

Training and filtering procedure: A satisfying projection result was achieved
by selecting the difference between coefficients of consecutive time points:

xi = (di(2)− di(1), di(3)− di(2), ..., di(6)− di(5)) ∗ sgn(di(2)− di(1)) (3)

where i indicates one combination of scaling and shifting indices. Note that the
feature vectors are normalised to the sign of the first difference, represented by
the sign function sgn. After the training procedure, it is necessary to identify the
reference vectors which dominate the characteristics of the two types of signal
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enhancement. The total number of feature vectors mapped to one node is not a
significant measure because a large number of only slightly varying coefficients
may indicate weak structures in the image. Therefore we defined a new energy-
measure E, which is correlated to the energy in the subtraction images produced
by each time series of coefficients:

E(xi) =
6∑

t=1

|di(t)− di(1)| (4)

By calculating sums over all feature vectors mapped to one node uj we obtain
the energy-measures of wavelet coefficients per SOM node for tumour and heart
features (ET(uj) and EH(uj)) seperately:

ET(uj) =
1

ET
tot

∑
xTi →uj

E(xT
i ) with ET

tot =
∑
uj

∑
xTi →uj

E(xT
i ), (5)

and EH(uj) respectively with ET
tot and EH

tot as normalisation factors. The fea-
ture vectors generated from the wavelet coefficients of the scales 2 up to 5 from
both tumour and heart tissue were trained using a 20×20 SOM. The feature vec-
tors based on the remaining scaling coefficients were clustered separately using
a 10 × 10 SOM. After the training procedure the nodes with the highest val-
ues for ET have been identified as characteristic for the description of tumour
enhancement. In the filtering procedure datasets of eight patients with ten tu-
mours, both benign and malignant, were included. The feature vectors of seven
patients, calculated using the described local windowing technique were used to
train the SOM. Then eight nodes in the SOM with the wavelet coefficients and
four nodes in the SOM with scaling coefficients were chosen for the filtering of
lesion-related signal enhancement. The original MR images of the eighth patient
were then transformed and mapped to the SOM. Only those coefficients whose
features were mapped to one of the selected nodes were retained. All other coef-
ficients were set to zero. Finally subtraction images were reconstructed from the
remaining wavelet and scaling coefficients, showing the tumour with enhanced
grayvalues. Applying thresholding to the subtraction images achieves tumour
segmentation with increased accuracy, which has been evaluated using ROC
analysis [7] as shown in [8].

5 Results

The complete algorithm is illustrated in figure 1. The SOM was trained with
the wavelet features of all datasets. The icons represent the SOM nodes, the box
plot in each icon depicts the reference vector of the specific node. The grayvalue
within the icon indicates the value ET for each node. While the corresponding
value EH, marked by the linewidth of the box, is localized in the margin of the
complete SOM, there are only a few nodes showing a high value for ET. At
the bottom of the figure 1 one result of the filtering procedure is exemplified.
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+ ... + Datasets

Filtering

105 wavelet−based features

Patient 2 Patient NPatient 1

DWT Reconstruction

Tumour features

Discrete Wavelet Transform (DWT)

+

... x(1) ... x(5)

ROI

ROE

Fig. 1. Complete algorithm including the result of a SOM-training and a filtering step.
The plots in the grid depict the reference vectors. The grayvalue of the background
marks the value of ET, the linewidth of the box indicates the value of EH represented
by the specific node. At the bottom two subtraction images are visible, before (left)
and after (right) application of the filtering procedure.
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The subtraction image at the left was calculated from the raw images (first pre-
contrast and first post-contrast) while the subtraction image at the right was
computed from the filtered images. Obviously additional enhancement, in par-
ticular visible in the region of the heart, is significantly decreased. Table 1 shows
the results of the ROC-analysis. The areas under the curve (AUC) for specificity
parameters higher than 0.95 for the original and the filtered subtraction images
were calculated. The AUC-values have been normalised to this area. The sensi-
tivity and thus the AUC-value is significantly increased in all of these cases, due
to the filtering of additional signal enhancement.

Table 1. Areas under the curve for specificity ≥ 0.95

patient 1 2 3 4 5 6 7 8
original subtraction image 0.820 0.552 0.664 0.570 0.000 0.785 0.805 0.721
filtered subtraction image 0.853 0.745 0.713 0.813 0.002 0.876 0.895 0.946

6 Discussion and Conclusion

We have demonstrated the potential of a self organizing map for the feature
space exploration of medical image datasets. Computationally generated wavelet
features can be visualized efficiently which allows a customized manual filtering
procedure. Applied to DCE-MRI datasets this approach leads to filtered datasets
showing a significantly increased sensitivity for high specificity. This is due to
the extraction of the small amount of lesion-related information from the large
amount of additional interfering signal enhancement produced by contrast agent
uptake in other types of tissue. A thorough comparison to other mammographic
analysis methods is shifted to a more detailed paper.
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Abstract. Data sets acquired from functional magnetic resonance imag-
ing (fMRI) contain both spatial and temporal structures. In order to
blindly extract underlying activities, the common approach however only
uses either spatial or temporal independence. More convincing results can
be achieved by requiring the transformed data to be as independent as
possible in both domains. First introduced by Stone, spatiotemporal in-
dependent component analysis (ICA) is a promising algorithm for fMRI
decomposition. We propose an algebraic spatiotemporal ICA algorithm
with increased performance and robustness. The feasibility of the algo-
rithm is demonstrated in an application to the analysis of an fMRI data
sets of a human brain performing an auditory task.

1 Introduction

Spatiotemporal data analysis in contrast to the more common methods of either
spatial or temporal analysis tries to achieve both spatial and temporal separa-
tion by optimizing a joint energy function. First proposed by Stone et al [4],
it is a promising method, which has potential applications in biomedical data
analysis. We extend his approach by generalizing algebraic ICA algorithms to
the spatiotemporal case. In [6] we introduce a framework for spatiotemporal data
analysis based on so-called double-sided joint diagonalization. In this paper, af-
ter quickly recalling these results, we apply the diagonalization to fourth-order
cumulant in order to get stJADE, a generalization of the well-known temporal
JADE algorithm. The power of stJADE is illustrated in an application to data
acquired from functional magnetic resonance imaging (fMRI).

2 Spatiotemporal Independent Component Analysis

Source Separation. Noiseless blind source separation (BSS) denotes the fol-
lowing problem: let x(t) be an (observed) stationary m-dimensional random
vector and A a full rank matrix such that

x(t) = As(t) (1)

where the n-dimensional source signals s(t) are commonly assumed to be sto-
chastically independent: ps(s1, . . . , sn) = ps1(s1) . . . psn(sn). Recovering the un-
derlying sources given only x(t) using the independence assumption is called
independent component analysis (ICA).

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 677–682, 2005.
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Due to independence, the fourth-order cross cumulants of the sources have to
be trivial. In order to find transformations of the mixtures fulfilling this property,
the well-known JADE algorithm [1] jointly diagonalizes the contracted quadri-
covariance matrices defined by

Cij(x) := E
(
x�Eijxxx�)−RxEijRx − tr(EijRx)Rx −RxEijRx.

Here Eij is a set of eigen-matrices of Cij , 1 ≤ i, j ≤ m. One simple choice is
to use m2 matrices Eij with zeros everywhere except 1 at index (i, j). More
elaborate choices of eigen-matrices (with only m(m + 1)/2 or even m entries)
are possible.

Spatiotemporal Structure. Real-world data sets often possess structure in
addition to the necessary instantaneous independence required by ICA. For ex-
ample fMRI measurements contain both temporal and spatial indices so a data
entry x = x(a, b, c, t) can depend on position (a, b, c) as well as time t. More
generally, we want to consider data sets x(r, t) depending on two indices r and
t, where r ∈ R

n can be a multidimensional index and t indexes the time axis. In
reality this generalized random process is realized by a finite number of samples.
For example in the case of fMRI scans we could assume t ∈ [1 : T ] := {1, 2, . . . , T}
and r ∈ [1 : h] × [1 : w] × [1 : d], where T is the number of scans, which were
of size h × w × d. So the number of spatial observations is sm := hwd and the
number of temporal observations tm = T .

In the following, the spatial multi-dimensional index r is contracted into a
one-dimensional index r by row concatenation. Then the data set x(r, t) =: xrt

can be represented by a data matrix X of dimension sm× tm, and the goal is to
determine either a spatial source matrix sS or a temporal source matrix tS (with
corresponding mixing matrices sA and tA respectively). After mean removal we
can without loss of generality assume that the mixtures are spatiotemporally
centered.

Spatiotemporal ICA. Temporal ICA is equivalent to the matrix factoriza-
tion X = tAtS, whereas spatial ICA implies the factorization X� = sAsS or
equivalently X = sS�sA�. Hence

X = tAtS = sS�sA� (2)

So both source separation models can be interpreted as matrix factorization
problems; in the temporal case independence is required from the second factor,
in the spatial case from the first one. Now instead of recovering a single spa-
tiotemporally independent source data set we try to find two source matrices,
a spatial and a temporal source matrix, and the conditions are put onto the
matrices separately. So the spatiotemporal ICA model can be formulated by the
factorization problem

X = sS�tS (3)



Functional MRI Analysis by a Novel Spatiotemporal ICA Algorithm 679

with spatial source matrix sS and temporal source matrix tS being as indepen-
dent as possible.

Independence is invariant under scaling and permutation, so the above model
contains the same indeterminacy — indeed the spatial and temporal sources can
interchange scaling (L) and permutation (P) matrices, sS�tS = (L−1P−1sS)�

(LPtS). Apart from that, in the case in which the conditions are fulfilled per-
fectly, the proofs of temporal uniqueness [3, 5] can easily be transferred to the
above problem. However, if the source conditions hold jointly but only approxi-
mately for sS and tS, uniqueness results are unknown so far.

3 An Algorithm for Spatiotemporal ICA

Stone [4] first proposed the model from equation (3), where he employs a joint
energy function based on mutual entropy and infomax. Apart from the many
parameters used in the algorithm, the involved gradient descent optimization is
susceptible to noise, local minima and inappropriate initializations, so we propose
a novel, more robust algebraic approach based on joint diagonalization in the
following.

Double-Sided Joint Diagonalization. We will recall the algorithm derivation
for the spatiotemporal ICA, which in a more general form has been recently
introduced in [6]; it is based on the joint diagonalization of cumulant matrices
posed not only temporally but also spatially.

Shifting to matrix notation, we interpret Cij(X) := Cij(tx(t)) as the (i, j)-
th temporal cumulant matrix, whereas Cij(X�) := Cij(sx(r)) is to denote the
corresponding spatial cumulant matrix. Application of the spatiotemporal mix-
ing model from equation (3) together with the transformation properties of the
cumulants yields

Cij(tS) = sS†�Cij(X)sS† and Cij(sS) = tS†�Cij(X�)tS† (4)

because ∗m ≥ n and hence ∗S∗S† = I. By assumption the matrices Cij(∗S) are
as diagonal as possible. In order to separate the data, we have to find diagonal-
izers for both Cij(X) and Cij(X�) such that they satisfy the spatiotemporal
model (3). As X (or matrices derived from it) have to be diagonalized in terms
of both columns and rows, this is denoted by double-sided approximate joint
diagonalization. This process will be reduced to the common approximate joint
diagonalization in the following.

Dimension Reduction. In order to get robust cumulant estimates, dimension
reduction is essential, i.e. we want to extract only n � min{sm, tm} sources.
For this consider the singular value decomposition X = UDV� of X, and per-
mute the diagonal matrix D (and corresponding columns of U and V) such that
D contains the eigenvalues in decreasing order in its main diagonal. By only
choosing the first n columns of U and V and the upper-left n × n submatrix
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of D, we get a decomposition again denoted by X̂ := UDV�, which is an
estimate of X using only the n largest eigenvalues. The matrices U ∈ R

sm×n and
V ∈ R

tm×n are again pseudo-orthogonal, and D is diagonal. So X ≈ UDV� =(
UD1/2

) (
VD1/2

)�
. This is a matrix factorization of X into two decorrelated

signals UD1/2 and VD1/2. After dimension reduction, the spatiotemporal BSS
model (3) can only hold approximately: X ≈ X̂ = sS�tS — now sS and tS are of
reduced (row) size n. Plugging this model into the above equation together with
the pseudo-orthogonality of U and V yields

(
UD−1/2

)� sS�tS
(
VD−1/2

)
= I.

Hence W := tSVD−1/2 is an invertible n× n matrix.

Algorithm. By model (3) we get sS� = XtS†. Applying this to the first formula
in equation (4) yields, after some calculation,

Cij(tS) = tSX†Cij(X)X†�tS� = WCij(D1/2V�)W�.

By using W−1 = D−1/2V�tS†, we can derive a similar result from (4), 2nd term:

Cij(sS) = tS†�Cij(X�)tS† = W−�Ci(D1/2U�)W−1

which we can now invert to get Cij(sS)−1 = WCij(D1/2U�)−1W�. So the
double-sided joint diagonalization can be simply performed by jointly diagonal-
izing the twice as large set of matrices

{αCij(D1/2V�), (1 − α)Cij(D1/2U�)−1 | i = 1, . . .} (5)

where the weighting factor α ∈ [0, 1] has been introduced to balance between
either spatial or temporal separation. Joint diagonalization is usually performed
by optimizing an off-diagonal criterion, so different scale factors in the matrices
indeed yield different optima if the diagonalization cannot be achieved fully.
Furthermore, the higher α the more temporal separation is stressed.

Similar to the temporal ICA algorithm JADE [1], we algorithmically perform
joint diagonalization using an iterative construction of A by Givens rotation in
two coordinates [2] or an non-orthogonal extension of this idea [7]. If A is a joint
diagonalizer of (5), the sources are estimated by tŜ = A�D1/2V� and sŜ =
A−1D1/2U�. This algorithm, denoted by spatiotemporal JADE (stJADE), is
freely available as MATLAB-implementation at http://fabian.theis.name/.

4 Application to fMRI

We analyze an fMRI data set that was recorded from a healthy male subject (nor-
mal hearing) listening to an auditory stimulus consisting of beeps and words.
Here a beep denotes a sinusoidal sound of frequencies (uniformly) randomly
chosen from 400 to 600 Hz, and words were chosen at random from a database
of 100 German words spoken by a single female speaker. The design consisted
of blocks of 10 seconds of audio and 10 seconds of silence. The recorded time
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4 5 6

(a) component maps

1 cc: −0.04 2 cc: −0.10 3 cc: −0.00

4 cc: −0.15 5 cc: −0.03 6 cc: 0.80

(b) time courses

Fig. 1. fMRI analysis using stJADE (α = 0.5). The data was reduced to the first 6
principal components. (a) shows the recovered component maps (white points indicate
values stronger than 2.5 standard deviations), and (b) their time courses. Component
6 is the desired stimulus component, which is mainly active in the auditory cortex; its
time-course closely follows the on-off stimulus (indicated by the gray boxes) — their
crosscorrelation lies at cc = 0.8 — with a delay of roughly 6 seconds induced by the
BOLD effect.

was 480 seconds and fMRI scans were obtained every 2 seconds. Thus, the data
consist of 240 time points. In the audio blocks, the proportion of words and
beeps varied and the exact starting times of beeps and words were randomized.

As preprocessing a single data slice is extracted (after motion correction and
realignment) and the data is masked to include only voxels from within the
brain. The stJADE algorithm is applied with α = 0.5 and orthogonal matrix
recovery. Figure 1 shows the spatial sources together with the recoveries using
stJADE. The algorithm is able to recover the auditory stimulus well with a high
crosscorrelation of 0.9.

The figure on the right-hand side
also shows the behavior of stJADE
with varying α. Apparently due to the
strong temporal structure within the
data sets, temporal extraction of the
stimulus component outperforms spatial
one. However this is problem-specific,
and often spatial separation is prefer-
able or some method in between, hence
an adaptive choice of α as proposed in
spatiotemporal ICA is superior. 0 0.2 0.4 0.6 0.8 1
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For comparison, we also apply the often used fastICA algorithm to spatially
separate the data. The result is shown in figure 2. FastICA performs considerably
worse and cannot fully detect the stimulus component (crosscorrelation 0.5). This
is most probably due to the fact that spatial separation alone is not enough and
the kurtosis condition in fastICA is not properly fulfilled by the data.
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1 2 3

4 5 6

(a) component maps

1 cc: 0.07 2 cc: 0.01 3 cc: 0.54

4 cc: 0.08 5 cc: 0.01 6 cc: −0.30

(b) time courses

Fig. 2. fMRI analysis using spatial fastICA. The stimulus component has also been
extracted (3), however its crosscorrelation with the stimulus is remarkably lower cc =
0.5 than the one from stJADE.

5 Conclusion

We have studied a novel spatiotemporal ICA algorithm, stJADE, based on the
double-sided joint diagonalization as generalization of the often applied ‘single-
sided’ joint diagonalization in temporal-only BSS. The presented results for fMRI
data sets are promising, and the weighting parameter α allows for additional
flexibility in the extraction.
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Abstract. The early detection Alzheimer’s disease (AD) is an important chal-
lenge. In this paper, we propose a novel method for early detection of AD using 
electroencephalographic (EEG) recordings: first a blind source separation algo-
rithm is applied to extract the most significant spatio-temporal components; 
these components are subsequently wavelet transformed; the resulting time-
frequency representation is approximated by sparse “bump modeling”; finally, 
reliable and discriminant features are selected by orthogonal forward regression 
and the random probe method. These features are fed to a simple neural net-
work classifier. The method was applied to EEG recorded in patients with Mild 
Cognitive Impairment (MCI) who later developed AD, and in age-matched con-
trols. This method leads to a substantially improved performance (93% cor-
rectly classified, with improved sensitivity and specificity) over classification 
results previously published on the same set of data. The method is expected to 
be applicable to a wide variety of EEG classification problems. 

1   Introduction 

Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Since the 
number of individuals with AD is expected to increase in the near future, early diag-
nosis and effective treatment of AD are critical issues in neurophysiological research 
[1], [2]. Finding a computational method for early identification of patients who are to 
progress towards Alzheimer’s disease (before onset of AD), but do not exhibit any 
clinical signs of AD at the time of the test, is thus an important challenge. Further-
more, an early detection method should be inexpensive, in order to allow mass screen-
ing of elderly patients [1]–[6].  Electroencephalography (EEG) is one of the most 
promising candidates in that respect.  
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Due to the high complexity and variability of EEG signals, early detection of AD 
from EEG recordings requires the development of efficient signal processing tools 
[2]. In [5], Blind Source Separation (BSS) was first applied for these purposes, while 
standard methods were used for feature extraction and classification. In the present 
paper, we propose a multistage procedure employing blind source separation for fil-
tering/enhancement of EEG, time frequency representation, subsequent bump model-
ing for feature generation and dimensionality reduction, and statistical feature selec-
tion. We show that it provides a further improvement in classification of AD patients 
and healthy subjects  as compared to similar classification  results obtained previously 
[1], [5] on the same data set. 

2   Methods 

2.1   Blind Source Separation for Signal Filtering 

According to the currently prevailing view of EEG signal processing, a signal can be 
modeled as a linear mixture of a finite number of brain sources, with additive noise 
[5,6]. Therefore, blind source separation techniques can be used advantageously for 
decomposing raw EEG data to brain signal subspace and noise subspace. 

In [5], the AMUSE (Algorithm for Multiple Unknown Signals Extraction [7], [8], 
[9], [10]) algorithm was used in order to select the five significant components of the 
signal that had the best linear predictability. That algorithm belongs to the group of 
second-order-statistics spatio-temporal decorrelation (SOS-STD) blind source separa-
tion algorithms. It relies on the idea that the estimated components should be spatio-
temporally decorrelated, and be less complex (i.e., have better linear predictability) 
than any mixture of those sources. Therefore, the components are ranked in order of 
decreasing singular values of a time-delayed covariance matrix. As in PCA (Principal 
Component Analysis), and unlike in many ICA algorithms, all components estimated 
by AMUSE are uniquely defined (i.e., any run of algorithms on the same data will 
always produce the same components) and consistently ranked. 

The algorithm can be considered as two consecutive PCAs: first, PCA is applied to 
input data; secondly, PCA (SVD) is applied to the time-delayed covariance matrix of 
the results of the previous PCA. In the first step, standard or robust prewhitening 
(sphering) is applied as a linear transformation  

z(t) = Q x(t) (1) 

where Q = Rx
− 1

2 , Rx is the standard covariance matrix R
x

= E x t( )xT t( ){ } and x(t) is 

a vector of observed data at time t. Next, SVD is applied to a time-delayed covariance 
matrix of pre-whitened data:  

   
R

z
= E z t( )zT t − 1( ){ }= UΣVT  (2) 

where Σ is a diagonal matrix with decreasing singular values and U, V are matrices of 
eigenvectors. Then, a demixing (separating) matrix is estimated as:  

1
T

−
= =W A U Q  

(3) 
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The algorithm is much faster than the vast majority of BSS/ICA algorithms (its 
computation time depends essentially on the duration of the PCA procedure) and is 
very easy to use, because no parameters are required. It is implemented as a part of 
package "ICALAB for signal processing" [11], freely available online.  However, the 
algorithm is quite sensitive to sensor (measurement) noise; therefore, alternative 
ICA/BSS algorithms with suitable ranking of components can be considered in further 
studies [7,11]. 

2.2   Database  

The “at-risk” state for AD is commonly referred to as Mild Cognitive Impairment 
(MCI) [3]. In the course of a clinical study [1], patients who complained of memory 
impairment only, but had no apparent loss in general cognitive, behavioral, or func-
tional status, were recruited. Both patients and controls underwent general medical, 
neurological, psychiatric, and neuroimaging (SPECT, CT and MRI) investigation for 
more accurate diagnosis. EEG was recorded from all patients and controls, within one 
month of study inception; the present analysis made use of EEG recorded from the 
patients who later developed AD, and age-matched controls. Electrodes were located 
on 21 sites according to the 10-20 system, with the reference electrode on the right 
ear-lobe. Sampling rate was 200 Hz, analog filter bandpass 0.5-250 Hz. In [5], the 
first continuous artifact-free 20 s interval of each recording were used to create two 
datasets:  

− the MCI set, featuring 22 EEG recordings of elderly patients matching the criteria 
of mild cognitive impairment, who developed AD within one year and a half; 

− a control set, featuring 38 recordings from age-matched family members of the pa-
tients. 

In the present paper, the same pre-processing method as in [5] was used on the 
same 60 recordings, as a baseline for assessing the efficiency of the detection ob-
tained by the present method: a database (hereinafter referred to as D) containing 
those five components was generated (five top ranked components obtained using 
AMUSE). 

2.3   Time-Frequency Maps and Bump Modeling for Feature Generation 

In order to obtain a compact representation of the signals of D, suitable for automatic 
discrimination of MCI patients from control individuals, the signals were first ana-
lyzed in the time-frequency domain by a wavelet transformation, and the resulting 
time-frequency maps were modeled by bumps [12], as described below. 

2.3.1   Wavelet Transformation and Time-Frequency Map Generation 
EEG signals were first transformed to time-frequency maps using wavelets (see [13] 
for details). Complex Morlet wavelets [14] are appropriate for time-frequency analy-
sis of electroencephalographic signals ([15], [16], [17], [18]). Complex Morlet wave-
lets w(t) of Gaussian shape in time (deviation σt) are defined as:  

  
w t( )= A exp −t

2
/ 2σ

t

2( )exp 2iπ ft( ) (4) 
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where σt and f are appropriately chosen parameters; they cannot be chosen independ-
ently, since the product σt f determines the number of periods that are present in the 
wavelet. In the present investigation, the wavelet family defined by 2 σt f = 7 was 
chosen, as described in [15]. 

The signals present in database D were wavelet-transformed in the frequency range 
1.5 to 31.5 Hz, discretized in 0.25 Hz frequency bins. 

2.3.2   Bump Modeling 
The bump modeling  technique [12] is a 2-dimensional generalization of the Gaussian 
mesa function modeling technique that was initially designed for one-dimensional 
signals (electrocardiogram analysis- ECG) [19], [20]. In the present study, it was used 
for extracting information from the time-frequency maps. In previous investigations, 
it was also successfully applied to the analysis of local field potential signals, gath-
ered from electrophysiological (invasive) measurements [21],[12]; the present paper 
reports the first application of bump modeling to surface EEG signals. 

The main idea of this method is to approximate a time-frequency map with a set of 
predefined elementary parameterized functions called bumps (non-overlapping or 
overlapping); therefore, the map is represented by the set of parameters of the bumps, 
which is a very sparse encoding of the map, resulting in information compression 
rates that range from one hundred to one thousand (further details are given in [12], 
[19], [20]).  

The algorithm performs the following steps on the time-frequency maps (after ap-
propriate normalization [12]):  

−  (i) window the map in order to define the zones to be modeled (those windows 
form a set of overlapping sub-areas of the map), 

− (ii) find the window that contains the maximum amount of energy, 
− (iii) adapt a bump ϕb to the selected zone, and withdraw it from the original map. 

The parameters of the bumps are computed using the BFGS algorithm [22] in order 
to minimize the cost function C defined by: 

  
C = 1

2
z

f t
− ϕ

b
( f , t)( )2

t , f ∈W
  (5) 

where the summation runs on all pixels within the window W, z
f t

 are the time-

frequency coefficients at time t and frequency f, and ϕb f , t( ) is value of the bump 

function at time t and frequency f; 

− (iv) if the amount of information modeled by the bumps reaches a threshold, stop; 
else return to (iii). 

Half ellipsoids were found to be the most appropriate bump functions for the pre-
sent application (Figure 2 shows a typical example of bump modeling of the time-
frequency map of an EEG recording). Each bump is described by 5 parameters: its 
coordinates on the map (2 parameters), its amplitude (one parameter) and the lengths 
of its axes (2 parameters). Half ellipsoids (Figure 1) are defined by: 
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ϕ
b

f , t( )= a 1− v      for 0 ≤ v ≤ 1

ϕ
b

f , t( )= 0               for v > 1
 (6) 

where 
  
v = e

f
2 + e

t
2( ) with 

  
e

f
= f − μ

f( )/ l
f

and e
t

= t − μ
t( )/ l

t
. μ

f
and 

 
μ

t
are the 

coordinates of the centre of the ellipsoid, lf and lt are the half-lengths of the principal 
axes, a is the amplitude of the function, t is the time and f the frequency.  

 

Fig. 1. Half ellipsoid function 
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Fig. 2. Left: normalized time-frequency map of the first ICA source of an EEG recording (Con-
trol set); middle and right: 2D and 3D bump modeling of the map 

After bump modeling, the parameters of the bumps are candidate features for clas-
sification. Although the model is sparse, feature selection is mandatory because of the 
small size of the data set. 

2.4   Feature Selection 

After bump modeling, the signals under investigation are represented by the set of pa-
rameters that describe the bumps. Within that set, an even more compact representa-
tion was sought, based on expert knowledge on the frequency sub-bands of interest. 
For ease of comparison of the results, the boundaries for five standard EEG sub-bands 
were defined as in the previous study [5] of the same data set:  θ (3.5-7.5 Hz), α1 (7.5-
9.5 Hz), α2 (9.5-12.5 Hz), β1 (12.5-17.5Hz) and β2 (17.5-25Hz). The following fea-
tures were defined and computed for each sub-band: 
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− F1: the number of bumps, 
− F’1: the number of high-amplitude bumps (normalized amplitude > 0.7),  
− F2: the sum of the amplitudes of the bumps present, 
− F’2: the sum of the amplitudes of the high-amplitude bumps present, 
− F3: the maximal amplitude of the bumps present. 

Two groups of candidate features were defined: group A contains {F1, F’1, F2, F’2} 
and group B contains {F1, F’1, F3} only. Thus, either 3 or 4 features were computed 
for each sub-band, depending on the group of features under consideration. Therefore, 
for database D (5 time-frequency maps), the number of candidate features 

 
N

f
was ei-

ther 75 or 100.  Since the number of candidate features was still too large given the 
number of examples in the database (only 60), feature selection was performed by or-
thogonal forward regression (OFR) algorithm [23, 24] and the random probe method. 

First, the candidate features are ranked in order of decreasing relevance by OFR. 
OFR operates in observation space, i.e. in a space whose dimension is equal to the 
number of observations (equal to 60 in the present work). In that space, the quantity to 
be modeled, and the candidate features, are represented by vectors denoted by y (de-
sired outputs) and ui, i = 1 to Nf (inputs). The OFR algorithm performs the following 
steps: 

− (i) compute the angle Θi between each candidate feature ui and the quantity to be 
modeled y and select the candidate feature u

j
 that has the smallest angle  with y, 

i.e. the candidate feature that is most correlated to y:  

   
u

j
= arg max

i
{cos2 (Θ

i
)} (7) 

− (ii) project y and all the remaining candidate features onto the null space of the  
selected feature; 

The above two steps can be iterated in subspaces of decreasing dimensions until all 
candidate features are ranked. Subsequently, in order to select the optimal number of 
features from their ranked list, the random probe method [24] is applied. One hundred 
“probes”, i.e. realizations of random variables, are computed and appended to the fea-
ture set. A risk level P is defined [25], which corresponds to the risk that a feature 
might be kept although, given the available data, it might be less relevant than the 
probe. The following steps are performed iteratively: 

− (i) obtain a candidate feature from OFR, 
− (ii) compute the value of the cumulative distribution function of the rank of the 

probe for the rank of the candidate feature, 
− (iii) if that value is smaller than the risk, select the feature and return to (i); 
− (iv) else, discard the candidate feature under consideration and terminate. 

In the present case, an ensemble feature ranking method [25] was used: 60 subsets 
were built by iteratively removing one example from the database. OFR and the ran-
dom probe method were then applied to those subsets. The overall distribution of fea-
tures, and the average number Nk of selected features were computed; finally, the Nk 
overall best features were selected.  
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3   Results 

Each dataset was used for training and validating a neural network classifier (multi-
layer perceptron model, see for instance [26]). The generalization performance was 
estimated using the leave-one-out cross-validation method [27] which was also used 
under the name of “jackknifing” in the previous study of the data set [5]. The best re-
sults, shown in Table 1, were obtained with linear classifiers (no hidden layer).  

The method used in [5] to asses BSS performances was applied with a simple PCA 
for comparison: with the five first PCA components back-projected, relative spectral 
 

Table 1. Number of subjects correctly and incorrectly classified by neural network models, 
using D, depending on the feature group (A contains {F1, F’1, F2, F’2} and B contains {F1, F’1, 
F3}). Results were obtained using the leave-one-out cross-validation method, validation set 
results are presented below. P is the risk of a false positive feature, as defined in the text. 

Misclassified Correctly classified % Datasets 
MCI 

N = 22
Controls 
N = 38 

MCI 
N = 22

Controls 
N = 38 

All 
N = 60 

A group   F =12, P = 12% 

Components 1,2,3 and 5 +Bumps 
2 2 91.0 94.7 93.3 

A group   F = 6, P = 9% 

Components 1-5 +Bumps 
4 4 81.8 88.6 86.7 

B group   F = 11, P = 10% 

Components 1-5 + Bumps 
2 3 91.0 92.1 91.7 

Previous study, best results [5]  
(without bumps) 

6 6 72.7 84.2 80.0 

PCA components 1-5 
(without bumps) 

13 10 40.9 73.7 61.7 

 

Fig. 3. R.O.C curve for the best classification results, obtained using a neural network on data 
set D, with components 1-3 and 5 found by the AMUSE algorithm (but without component 4) 
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powers of signals were computed by dividing the power in δ (1.5- 3.5 Hz),  θ (3.5-7.5 
Hz), α1 (7.5-9.5 Hz), α2 (9.5-12.5 Hz), β1 (12.5-17.5Hz) and β2 (17.5-25Hz) bands by 
the power in the 1.5-25 Hz band; those values were subsequently normalized using 

the transformation log
p

1− p
, where p is the relative spectral power; finally the band 

power values were averaged over all 21 channels (see [5] for details). PCA did not 
exhibit good performance compared to BSS (Table 1, last two rows).The best results 
were obtained with the group of candidate features A, with components 1-3 and 5 
found by the AMUSE algorithm, but without component 4 (component 4 was re-
moved before OFR and the random probe method, R.O.C. curve is represented in 
Figure 3). For comparison, the fourth row of the Table reports previous results [5] ob-
tained with the same EEG recordings with a different representation.  

4   Discussion 

In the present paper, we reported the first application of blind source separation com-
bined with time frequency representation and sparse bump modeling to the automatic 
classification of EEG data for early detection of Alzheimer’s disease.  The developed 
method was applied to recordings that had been analyzed previously [5] with standard 
feature extraction and classification methods. With respect to that previous analysis, a 
substantial improvement was achieved, the overall correct classification rate being 
raised from 80% to 93% (sensitivity 91.0% and specificity 94.7%). 

The task was the discrimination of EEG recordings of normal individuals from 
EEG recordings of patients who developed Alzheimer’s disease one year and a half 
later. Therefore, the present study provides exciting prospects for early mass detection 
of the disease. The method is very cheap as compared to PET, SPECT and fMRI, re-
quiring only a 21-channel EEG apparatus. Note that short intervals (20 seconds) of ar-
tifact-free recording of spontaneous EEG was already sufficient for high accuracy of 
classification. 

PCA showed much poorer results than AMUSE algorithm, which demonstrates the 
significance of AMUSE (or more generally, BSS/ICA algorithms with suitable rank-
ing and clustering) for EEG filtering/enhancement. Furthermore, sparse bump model-
ing appeared to be a valuable tool for compressing information contained in EEG 
time-frequency maps. Amplitude variations and bursts of EEG oscillations are highly 
related to the brain state dynamics [28]. Bump modeling can provide a good approxi-
mation of time-frequency maps; since it models appropriately important features of 
EEG oscillations, it is a promising tool for compact feature extraction, as demon-
strated in the present paper. 

Although our preliminary results are quite promising, a full validation of the 
method requires investigating more extensive databases. Furthermore, there is pre-
sumably a lot of information present in the recordings that is not yet exploited, such 
as the dynamics of the bumps and the brain functional connectivity. This will be the 
subject of future research. 
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Douglas, Rodney J. I-161
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Fukumura, Naohiro II-437
Fukushima, Kunihiko I-455
Furber, S.B. I-115
Furukawa, Tetsuo I-391
Fyfe, Colin I-397, II-975

Gagliolo, Matteo II-7
Galatsanos, N.P. II-835
Galván, Inés M. I-665
Gao, Zhuo II-241
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Prȩtki, Przemys�law II-79, II-191
Prasad, Girijesh I-269
Prim, Marta II-685
Priorov, Andrey L. I-537
Prokhorov, Danil V. I-337
Pruneda, Rosa Eva II-313
Puntonet, C.G. II-541
Puolamäki, Kai I-513

Radzikowska, Anna Maria II-673
Raiko, Tapani II-989
Rajapakse, Rohana K. II-679
Rakotomamonjy, A. I-45
Ramı́rez, J. II-541
Ramacher, Ulrich I-583
Ramos, Vitorino I-311
Rautio, Pasi II-761
Rebrova, O.Yu. I-659
Red’ko, Vladimir G. I-337
Reeve, Richard I-297
Reiber, Johan H.C. II-371
Reijniers, Jonas I-283
Reyhani, Nima II-625
Rivas, M. I-289
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Tóth, László I-597
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