Directory Support for Large-Scale,
Automated Service Composition

Walter Binder, Ion Constantinescu, and Boi Faltings

Ecole Polytechnique Fédérale de Lausanne (EPFL),
Artificial Intelligence Laboratory,
CH-1015 Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract. In an open environment populated by large numbers of services,
automated service composition is a major challenge. In such a setting the
efficient interaction of directory-based service discovery with different service
composition algorithms is crucial. In this paper we present a directory with
dedicated features for service composition. In order to optimize the interaction
of the directory with different service composition algorithms exploiting
application-specific heuristics, the directory supports user-defined selection and
ranking functions written in a declarative query language. Inside the directory
queries are transformed in order to enable a best-first search for matching
directory entries, efficiently pruning the search spaceE]

Keywords: Service discovery and composition, Service directories, Query lan-
guage and query processing.

1 Introduction

There is a good body of work which addresses the service composition problem by
applying planning techniques based either on theorem proving (e.g., Golog [6]) or on
hierarchical task planning (e.g., SHOP-2 [7]). All these approaches assume that the
relevant service descriptions are initially loaded into the reasoning engine and that no
discovery is performed during composition. However, due to the large number of ser-
vices and to the loose coupling between service providers and consumers, services are
indexed in directories. Consequently, planning algorithms have to be adapted to a situ-
ation where planning operators are not known a priori, but have to be retrieved through
queries to these directories.

Our approach to automated service composition is based on matching input and
output parameters of services using type information in order to constrain the ways
how services may be composed. Our composition algorithm allows for partially match-
ing types and handles them by computing and introducing switches in the composi-

! The work presented in this paper was partly carried out in the framework of the EPFL Center
for Global Computing and supported by the Swiss National Funding Agency OFES as part of
the European projects KnowledgeWeb (FP6-507482) and DIP (FP6-507483).

T. Gschwind, U. ABmann, and O. Nierstrasz (Eds.): SC 2005, LNCS 3628, pp. 57-66l 2005.
(© Springer-Verlag Berlin Heidelberg 2005

58 W. Binder, 1. Constantinescu, and B. Faltings

tion plan. Experimental results show that using partial matches significantly decreases
the failure rate compared with a composition algorithm that supports only complete
matches [4].

We have developed a directory service with specific features to ease service com-
position. Queries may not only search for complete matches, but may also retrieve par-
tially matching directory entries. As the number of (partially) matching entries may
be large, the directory supports incremental retrieval of the results of a query. This is
achieved through sessions, during which a client issues queries and retrieves the results
in chunks of limited size [2].

As in a large-scale directory the number of (partially) matching results for a query
may be very high, it is crucial to order the result set within the directory according to
heuristics and to transfer first the better matches to the client. If the heuristics work
well, only a small part of the possibly large result set has to be transferred, thus saving
network bandwidth and boosting the performance of a directory client that executes a
service composition algorithm (the results are returned incrementally, once a result ful-
fills the client’s requirements, no further results need to be transmitted). However, the
heuristics depend on the concrete composition algorithm. For each service composition
algorithm (e.g., forward chaining, backward chaining, etc.), a different heuristic may be
better adapted. Because research on service composition is still in the beginning and the
directory cannot anticipate the needs of all possible service composition algorithms, our
directory supports user-defined selection and ranking heuristics expressed in a declar-
ative query language. The support for application-specific heuristics significantly in-
creases the flexibility of our directory, as the client is able to tailor the processing of
directory queries. For efficient execution, the queries are dynamically transformed and
compiled by the directory.

As the main contributions of this paper, we show how our directory supports user-
defined selection and ranking heuristics. We present a dedicated query language and
explain how queries are processed by the directory. In a first step, the directory trans-
forms queries in order to better exploit the internal directory organization during the
search. This allows a best-first search that generates the result set in a lazy way, re-
ducing response time and workload within the directory. In a second step, the query is
compiled in order to speed up the directory search. Compared with previous work [2/1]],
the novel, original contributions of this paper are the declarative directory query lan-
guage and the transformation mechanism to make better use of the internal direc-
tory structure. These techniques, which have not been applied in the context of ser-
vice directories before, provide a flexible and efficient mechanism for query
processing.

This paper is structured as follows: Section[2] gives an overview of our service de-
scription formalism and of the internal index structure of our directory. In Section[3]
we present a simple, functional query language which allows to express application-
specific selection and ranking heuristics. Section 4] explains the processing of directory
queries and introduces query transformations that enable a best-first search with early
pruning. In Section 3] we discuss how user-defined queries are compiled and integrated
into the directory. Section[@] discusses a sample query and shows its transformation.
Finally, Section[7l concludes this paper.

Directory Support for Large-Scale, Automated Service Composition 59
2 Service Descriptions and Directory Index

Service descriptions are a key element for service discovery and service composi-
tion and should enable automated interactions between applications. In this paper we
partially build on existing formalisms, such as WSDL (http://www.w3.org/TR/wsdl)
and OWL-S (http://www.daml.org/services/owl-s/), by considering a simple table-based
formalism where each service is described by a set of tuples mapping service param-
eters (unique names of inputs or outputs) to parameter types (the spaces of possible
values for a given parameter). We require that parameter types are not empty, i.e., there
must be at least one allowed value for each parameter. Parameter types can be expressed
either as sets of intervals of basic data types (e.g., date/time, integers, floating-points)
or as classes of individuals. Class parameter types can be defined in a descriptive lan-
guage such as OWL (http://www.w3.0rg/2004/OWL/). From the descriptions we derive
a directed graph (DG) of simple is-a relations either directly (for basic data types) or
by using a description logic classifier (for concepts). For efficiency reasons, we repre-
sent the DG numerically. We assume that each class is represented as a set of intervals.
We encode each parent-child relation by sub-dividing each of the intervals of the par-
ent. In the case of multiple parents, the child class is represented by the union of the
sub-intervals resulting from the encoding of each of the parent-child relations. Since
for a given domain we can have several parameters represented by intervals, the space
of all possible parameter values can be represented as a rectangular hyperspace with a
dimension for each parameter. For details, see [3]].

The need for efficient discovery and matchmaking leads to a need for search struc-
tures and indexes for directories. We consider numerically encoded service descriptions
as multidimensional data and use techniques related to the indexing of such kind of in-
formation in the directory. Our directory index is based on the Generalized Search Tree
(GiST), proposed as a unifying framework by Hellerstein [5]. The design principle of
GiST arises from the observation that search trees used in databases are balanced trees
with a high fanout in which the internal nodes are used as a directory and the leaf nodes
point to the actual data.

Each leaf node in the GiST of our directory holds references to all service descrip-
tions with a certain input/output behaviour. The required inputs of the service and the
provided outputs (sets of parameter names with associated types) are stored in the leaf
node. For inner nodes of the tree, the union of all inputs/outputs found in the subtree is
stored. More precisely, each inner node I on the path to a leaf node L contains all in-
put/output parameters stored in L. The type associated with a parameter in / subsumes
the type of the parameter in L. That is, for an inner node, the input/output parameters
indicate which concrete parameters may be found in a leaf node of the subtree. If a
parameter is not present in an inner node, it will not be present in any leaf node of the
subtree.

3 Directory Query Language

As directory queries may retrieve large numbers of matching entries (especially when
partial matches are taken into consideration), our directory supports sessions in order to

60 W. Binder, 1. Constantinescu, and B. Faltings

incrementally access the results of a query [2]. By default, the order in which matching
service descriptions are returned depends on the actual structure of the directory index
(the GiST structure discussed before). However, depending on the service composition
algorithm, ordering the results of a query according to certain heuristics may signifi-
cantly improve the performance of service composition. In order to avoid the transfer
of a large number of service descriptions, the pruning, ranking, and sorting according to
application-dependent heuristics should occur directly within the directory. As for each
service composition algorithm a different pruning and ranking heuristic may be better
suited, our directory allows its clients to define custom selection and ranking functions
which are used to select and sort the results of a query.

A directory query consists of a set of provided inputs and required outputs (both
sets contain tuples of parameter name and associated type), as well as a custom selec-
tion and ranking function. The selection and ranking function is written in the simple,
high-level, functional query language Dir@Q Lgsg (Directory Query Language with Set
Expressions). An (informal) EBNF grammar for DirQLgg is given in Table[Il The
non-terminal constant, which is not shown in the grammar, represents a non-negative
numeric constant (integer or decimal number). The syntax of DirQ L g has some sim-
ilarities with LISPA We have designed the language considering the following require-
ments:

— Simplicity: Dir(Q)Lgg offers only a minimal set of constructs, but it is expressive
enough to write relevant selection and ranking heuristics.

— Declarative: Dir(Q)Lgg is a functional language and does not support destructive
assignment. The absence of side-effects eases program transformations.

— Safety: As the directory executes user-defined code, Dir@QLgg expressions must
not interfere with internals of the directory. Moreover, the resource consumption
(e.g., CPU, memory) needed for the execution of Dir(@Q Lgg expressions is bounded
in order to prevent denial-of-service attacks: Dir@Q Lgg supports neither recursion
nor loops, and queries can be executed without dynamic memory allocation.

— Efficient directory search: Dir(Q) L s g has been designed to enable an efficient best-
first search in the directory GiST. Code transformations automatically generate se-
lection and ranking functions for the inner nodes of the GiST (see Section [4)).

— Efficient compilation: Due to the simplicity of the language, Dir@Q Lsg expressions
can be efficiently compiled to increase performance (see Section[3)).

A Dir@QLgg expression defines custom selection and ranking heuristics. The eval-
uation of a Dir@ Lgg expression is based on the 4 sets gin (available inputs specified
in the query), gout (required outputs specified in the query), sin (required inputs of
a certain service .5), and sout (provided outputs of a certain service S). Each element
in each of these sets represents a query/service parameter identified by its unique name
within the set and has an associated type (encoded as a set of numeric intervals).

A Dir@QLsg expression may involve some simple arithmetic. The result of a nu-
meric DirQ)Lgg expression is always non-negative. The ‘-’ operator returns O if the

TG el . _>

2 In order to simplify the presentation, in this paper the operators ‘and’, ‘or’, ‘<’, >, ‘<=’,

G 6% ¢, % 6,0 ¢ 9 ¢

>=", =" 47 %’ ‘=, ‘min’, and ‘max’ are binary, whereas in the implementation they may
take an arbitrary number arguments, similar to the definition of these operations in LISP.

Directory Support for Large-Scale, Automated Service Composition 61

Table 1. A grammar for DirQLsg

dirglExpr : selectExpr \ rankExpr \ selectExpr rankEXpr ;
selectExpr : ’'select’ booleanExpr ;
rankExpr : ‘order’ 'by’ (’'asc’ | ‘desc’) numExpr ;
booleanExpr: ' ('’ ('and’ \ ‘or’) booleanExpr booleanExpr ')’
| " (’ 'not’ booleanExpr ')’
| 7 (r<r | r>r] r<=" | ">=' | ’=') numExpr numExpr ‘)’ ;
numExpr : constant
| r¢ (r+ | 'x | '= | ’/’) numExpr numExpr ')’
| (¢ (‘min’ | ‘max’) numExpr numExpr ‘)’
| ‘(" "if’ booleanExpr numExpr numExpr ‘)’
| setExpr ;
setExpr : ('’ 'union’ querySet serviceSet ')’

(" ’'intersection’ querySet serviceSet typeTest ')’
(" 'minus’ querySet serviceSet typeTest ')’

‘(' 'minus’ serviceSet querySet typeTest ')’

‘(" 'size’ (querySet | serviceSet) ')’ ;

querySet : 'gin’ | ’‘qout’ ;
serviceSet : ‘sin’ | ‘sout’ ;
typeTest : 'FALSE’ | 'EQUAL’ | 'S_CONTAINS_Q’ |’Q_CONTAINS_S' |’OVERLAP’|'TRUE’ ;

second argument is bigger than the first one. The Dir()Lgg programmer may use the
‘1 £’ conditional to ensure that the first argument of ‘-’ is bigger or equal than the sec-
ond one. For division, the second operand (divisor) has to evaluate to a constant for a
given query. That is, it is a numeric expression with only numeric constants, as well
as size(gin) and size (gout) at the leaves. Before a query is executed, the di-
rectory ensures that the Dir@Q)Lsg expression will not cause a division by zero. For
this purpose, all subexpressions are examined. The reason for these restrictions will be
explained in the following section.

A DirQQLsg query may comprise a selection and a ranking expression. Service
descriptions (inputs/outputs defined by sin/sout) for which the selection expression
evaluates to false are not returned to the client (pruning). The ranking expression de-
fines the custom ranking heuristics. For a certain service description, the ranking ex-
pression computes a non-negative value. The directory will return service descriptions
in ascending or descending order, as specified by the ranking expression.

The selection and ranking expressions may make use of several set operations.
size returns the cardinality of any of the sets gin, gout, sin, or sout. The op-
erations union, intersection, and minus take as arguments a query set (gin
or gout) as well as a service set (sin or sout). For union and intersection,
the query set has to be provided as the first argument. All set operations return the
cardinality of the resulting set.

union: Cardinality of the union of the argument sets. Type information is irrelevant for
this operation.

intersection: Cardinality of the intersection of the argument sets. For a parameter to
be counted in the result, it has to have the same name in both argument sets and the
type test (third argument) has to succeed.

minus: Cardinality of the set minus of the argument sets (first argument set minus
second argument set). For a parameter to be counted in the result, it has to occur in
the first argument set and, either there is no parameter with the same name in the
second set, or in the case of parameters with the same name, the type test has to fail.

62 W. Binder, 1. Constantinescu, and B. Faltings

The type of parameters cannot be directly accessed, only the operations
intersection and minus make use of the type information. For these operations, a
type test is applied to parameters that have the same name in the given query and service
set. The following type tests are supported (7's denotes the type of a common parameter
in the service set, while T¢ is the type of the parameter in the query set): FALSE (al-
ways fails), EQUAL (succeeds if Ts = Tp), S CONTAINS Q (succeeds if T's subsumes
Tg), Q CONTAINS S (succeeds if Ty subsumes T's), OVERLAP (succeeds if there is
an overlap between Ts and T(, i.e., if a common subtype of T's and T exists), and
TRUE (always succeeds).

4 Efficient Directory Search

Processing a user query requires traversing the GiST structure of the directory starting
from the root node. The given Dir@QLgsg expression is applied to leaf nodes of the
directory tree, which correspond to concrete service descriptions (i.e., sin and sout
represent the exact input/output parameters of a service description). For an inner node
I of the GiST, sin and sout are supersets of the input/output parameters found in any
node of the subtree whose root is I. The type of each parameter in [is a supertype of
the parameter found in any node (which has a parameter with the same name) in the
subtree. Therefore, the user-defined selection and ranking function cannot be directly
applied to inner nodes.

In order to prune the search (as close as possible to the root of the GiST) and to
implement a best-first search strategy which expands the most promising branch in
the tree first, appropriate selection (pruning) and ranking functions are needed for the
inner nodes of the GiST. In our approach, the client defines only the selection and
ranking function for leaf nodes (i.e., to be invoked for concrete service descriptions),
while the corresponding functions for inner nodes are automatically generated by the
directory. The directory uses a set of simple transformation rules that enable a very
efficient generation of the selection and ranking functions for inner nodes (the execution
time of the transformation algorithm is linear with the size of the query).

If the client desires ranking in ascending order, the generated ranking function for
inner nodes computes a lower bound of the ranking value in any node of the subtree;
for ranking in descending order, it calculates an upper bound. While the query is being
processed, the visited nodes are maintained in a heap or priority queue, where the node
with the most promising heuristic value comes first. Always the first node is expanded;
if it is a leaf node, it is returned to the client. Further nodes are expanded only if the
client needs more results. This technique is essential to reduce the processing time in the
directory until the the first result is returned, i.e., it reduces the response time. Further-
more, thanks to the incremental retrieval of results, the client may close the result set
when no further results are needed. In this case, the directory does not spend resources
to compute the whole result set. Consequently, this approach reduces the workload in
the directory and increases its scalability. In order to protect the directory from attacks,
queries may be terminated if the size of the internal heap or priority queue or the number
of retrieved results exceed a certain threshold defined by the directory service provider.

Table [2]shows the transformation operators T and | which allow to generate the code
for calculating upper and lower bounds in inner nodes of the GiST. The variables a and

Directory Support for Large-Scale, Automated Service Composition 63

Table 2. Transformation operators T, |, &, and & for the generation of inner node code

T constant — constant | constant — constant
1(+ab) — (+ ta 1b) I (+ab) — (+ la 1b)
T(xab) — (x Ta TD) L(xab) — (x la |b)
T(=ab) — (= Ta 1Y) L(=ab) — (= la 1)
T(/ac — (/ Tac) 1(/aq) — (/ lac)

T (min a b) — (min Ta 1b) | (min a b) — (min la |b)

T (max a b) — (maz Ta 1b) | (max a'b) — (maz |a |b)
TGfxzabd) — (maz Ta 1b) L(f zab) — (min la |b)
1 (union q s) — (union q s) | (union q s) — (size q)

1 (intersection q s t) — (intersection q¢ s ®t) | (intersection g s t) — 0

T (minus q s t) — (size q) | (minus q s t) — (minus g s @t)
T (minus s qt) — (minus s ¢ Ot) | (minus s q t) — 0

1 (size q) — (size q) | (size q) — (size q)

1 (size s) — (size s) | (size s) — 0

®TRUE — TRUE OTRUE — TRUE

GOV ERLAP — OVERLAP OOV ERLAP — FALSE

®Q CONTAINS S — OVERLAP 6Q CONTAINS S — Q CONTAINS S
®S CONTAINS Q — S CONTAINS Q 6S CONTAINS Q — FALSE
GEQUAL — S CONTAINS Q OEQUAL — FALSE
G®FALSE — FALSE OFALSE — FALSE

b are arbitrary numeric expressions, ¢ is a numeric expression that is guaranteed to be
constant throughout a query, z is a boolean expression, ¢ may be gin or gout, s may
be sin or sout, and t is a type test. The operator & relaxes certain type tests, the op-
erator © constrains them. For a Dir() Lgg ranking expression ‘order by asc FE’,
the code for inner node ranking is ‘order by asc | E’; for a ranking expression
‘order by desc FE’,the inner node ranking code is ‘order by desc TE’.

If I is an inner node on the path to the leaf node L and F is a DirQ)Lsg ranking
expression, T F (resp. | E) applied to I has to compute an upper (resp. lower) bound
for E applied to L. While a formal proof of the correctness of the transformation rules
in Table Rl had to be omitted due to space limitations, we exemplarily explain 2 rules in
an informal way:

First we consider computing an upper bound for E = (intersection g s t). In an
inner node [the service set sy is a superset of sy, in a leaf node, while the query set
q remains constant. Moreover, the type of each parameter in sy, is subsumed by the
type of the parameter with the same name in s;. Not considering the parameter types,
applying F to I would compute an upper bound for E applied to L, as intuitively the
intersection of ¢ with the bigger set s; will not be smaller than the intersection of ¢ with
sr.. Taking parameter types into consideration, we must ensure that whenever a type test
succeeds for L, it will also succeed for I. That is, if a common parameter is counted in
the intersection in L, it must be also counted in the intersection in /. As it can be seen
in Table2l @t will succeed in I, if ¢ succeeds in L (remember that parameter types are
guaranteed to be non-empty). For instance, if the type of a parameter in sz, is subsumed
by the type of the parameter with the same name in ¢ (Q CONTAINS S succeeds for
that parameter in L), the type of the corresponding parameter in s; (which subsumes
the type in sy) will overlap with the parameter type in g. If the types in sy, and q are
equal, the type in s; will subsume the type in g.

64 W. Binder, 1. Constantinescu, and B. Faltings

Table 3. Transformation operator | for the generation of code in inner nodes of the GiST

l(andzy) — (and =z ly) I(orzy) — (or Iz ly)
(< ab) —(<la 7D (<= ab) — (<=la 1b)
1(>ab) — (>Ta lb) I(>=ab) — (>=1Ta |b)

As a second example we want to compute an upper bound for E = (minus s q t).
Without considering parameter types, applying F to I would give an upper bound for £
applied to L, as sy is a superset of sz.. In contrast to intersection, a common parameter
is counted in the result if the type test fails. That is, if the type test fails in L, it has also
to fail in I. As shown in table Table 2l &t will fail in I, if ¢ fails in L. For example, if the
type of a parameter in q does not subsume the type of the parameter with the same name
in sy, (Q CONTAINS S fails for that parameter in L), it will also not subsume the type
of that parameter in sy (which subsumes the type of the parameter in sz,). If the type test
is TRUE, it will never fail, neither in L nor in I. In all other cases, no matter whether
the type test fails in L or not, it will fail in I (because &t will be FALSE). Hence,
‘T(minus s ¢ t)’ may result in ‘ (minus s ¢ FALSE)’, which is equivalent to
‘(size s)’.

Considering the upper bound operator T, the reason why we require the divisor of
¢/’ to evaluate to a constant becomes apparent: If ¢ was not constant, for division the
operator T would have been defined as ‘T (/ a ¢) — (/ Ta]c¢)’. Hence, even if the
ranking expression provided by the client did not divide by zero (¢ > 0), the auto-
matically generated code for computing an upper bound in inner nodes might possibly
result in a division by zero (| ¢ = 0). For this reason, ¢ must depend neither on sin nor
on sout.

In order to automatically generate the code for inner node selection (pruning), we
define the transformation operator | for boolean expressions (see Table B). If E is true
for aleaf node L, IE has to be true for all nodes on the path to L. In other words, if I E
is false for an inner node, it must be guaranteed that £ will be false for each leaf in the
subtree. This condition ensures that during the search an inner node may be discarded
(pruning) only if it is sure that all leaves in the subtree are to be discarded, too. For
a DirQLgsg selection expression ‘select FE’, the code for inner node selection is
‘select IE’. In Table[3la and b are numeric expressions, while x and 3 are boolean
expressions. Again, due to space limitations, a formal proof of these rules cannot be
included in this paper.

The alert reader may have noticed that the operators ‘not’ and ‘=" have been omit-
ted in Table[3l The reason for this omission is that initially we transform all boolean
expressions in the query according to De Morgan’s theorem, moving negations towards
the leaves, removing double negations, and changing the comparators if needed. The re-
sulting expressions are free of negations. Moreover, an expression of the form (= a b)
is transformed to the equivalent expression (and (<= a b) (<= b a)).

5 Efficient Query Execution

As the custom selection and ranking functions may be invoked very often, interpre-
tation would cause high overhead. Thus, the directory includes a fast compiler for

Directory Support for Large-Scale, Automated Service Composition 65

DirQQLsg expressions. Because our extensible directory is entirely programmed in
Java, the Dir@Q Lgsg compiler directly generates JVM bytecode which is linked into the
same JVM that executes the core functionality of the directory. The compiler uses the
Bytecode Engineering Library BCEL (http://jakarta.apache.org/bcel/)
to manipulate JVM bytecode.

Compiling and integrating user-defined code into the directory leverages state-of-
the-art optimizations in recent JVM implementations. Many modern JVMs first inter-
pret bytecode to gather execution statistics. If code is executed frequently enough, it is
compiled to optimized native code for fast execution. In this way, frequently used se-
lection and ranking functions are executed as efficiently as algorithms directly built into
the directory. Due to space limitations, details concerning the compilation of DirQLsg
expressions had to be omitted.

As service composition clients may use the same selection and ranking function for
multiple queries, our directory keeps them in a cache. This cache maps a hashcode of
the Dir()Lgg expression to a structure containing the Dir(QLgg expression as well
as the loaded class. In case of a cache hit the user-defined code is compared with the
cache entry, and if it matches, the function in the cache is reused, avoiding compilation
and linking. This approach mitigates the overhead of query compilation.

6 Example Query for Service Composition

In this section we show the transformation of a simple selection and ranking function
for service composition based on forward chaining [4]].

For forward chaining with complete type matches (see Table[d (a)), we want that all
inputs required by the service are provided by the query (and the service has to be able
to handle the parameter types of the provided inputs, i.e., the types in the query have
to be more specific than in the service). Moreover, we require that the service provides
new outputs which are not already available as query inputs. The results are sorted
in ascending order according to the remaining outputs that are required by the query,
but not provided by the service (services that provide more of the required outputs
come first). In order to support partial type matches [4]], only S CONTAINS Q has to be
replaced with OVERLAP in the first line of the selection expression in Table] (a).

The code for inner nodes is generated according to the transformation scheme pre-
sented in Section] as illustrated in Table[dl(b). Note that after applying the transforma-

Table 4. Selection and ranking function for service composition using forward chaining

select (and (<= (minus sin gin S_CONTAINS_Q) 0)
(> (minus sout gin Q_CONTAINS_S) 0))
(m.

order by asc inus gout sout Q_CONTAINS_S)

(a) User-defined selection and ranking function.

select (> (minus sout gin Q_CONTAINS_S) 0)
order by asc (minus gout sout OVERLAP)

(b) Generated code for inner nodes.

http://jakarta.apache.org/bcel/

66 W. Binder, 1. Constantinescu, and B. Faltings

tion rules, the resulting expressions have been simplified according to simple algebraic
rules, such as ‘(<= 0 0) = true’, ‘(and true X) = X, etc.

7 Conclusion

In this paper we presented a service directory with special support for service compo-
sition: Indexing techniques allowing the efficient retrieval of (partially) matching ser-
vices, incremental data retrieval, as well as user-defined selection and ranking functions
that enable the dynamic installation of application-specific heuristics within the direc-
tory. In order to efficiently support different service composition algorithms, it is impor-
tant not to hard-code such heuristics in the directory, but to enable the dynamic installa-
tion of specific pruning and ranking heuristics. The selection and ranking functions are
written in a simple, declarative language. Thanks to the support of application-specific
heuristics, the most promising results from a directory query are returned first, which
helps to reduce the number of transferred results and to save network bandwidth. More-
over, the result set is generated lazily, reducing response time and the workload in the
directory. For efficient execution, the directory transforms and compiles user-defined
selection and ranking functions.

References

1. W. Binder, I. Constantinescu, and B. Faltings. A directory for web service integration support-
ing custom query pruning and ranking. In European Conference on Web Services (ECOWS-
2004), pages 87-101, Erfurt, Germany, Sept. 2004.

2. 1. Constantinescu, W. Binder, and B. Faltings. Directory services for incremental service
integration. In First European Semantic Web Symposium (ESWS-2004), pages 254-268, Her-
aklion, Greece, May 2004.

3. 1. Constantinescu and B. Faltings. Efficient matchmaking and directory services. In The 2003
IEEE/WIC International Conference on Web Intelligence, pages 75-81, 2003.

4. 1. Constantinescu, B. Faltings, and W. Binder. Large scale, type-compatible service composi-
tion. In IEEE International Conference on Web Services (ICWS-2004), pages 506-513, San
Diego, CA, USA, July 2004.

5. J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search trees for database sys-
tems. In U. Dayal, P. M. D. Gray, and S. Nishio, editors, Proc. 21st Int. Conf. Very Large Data
Bases, VLDB, pages 562-573. Morgan Kaufmann, 11-15 1995.

6. S. A. Mcllraith and T. C. Son. Adapting Golog for composition of semantic web services. In
D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors, Proceedings of the 8th
International Conference on Principles and Knowledge Representation and Reasoning (KR-
02), pages 482—496, San Francisco, CA, Apr. 22-25 2002. Morgan Kaufmann Publishers.

7. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S web services com-
position using SHOP2. In Proceedings of 2nd International Semantic Web Conference (ISWC-
2003), 2003.

	Introduction
	Service Descriptions and Directory Index
	Directory Query Language
	Efficient Directory Search
	Efficient Query Execution
	Example Query for Service Composition
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

