
Improving Composition Support with

Lightweight Metadata-Based Extensions of
Component Models

Johann Oberleitner and Michael Fischer

Vienna University of Technology, Vienna A-1040, Austria
joe@infosys.tuwien.ac.at

http://www.infosys.tuwien.ac.at/Staff/joe/index.html

Abstract. Software systems that rely on the component paradigm build
new components by assembling existing prefabricated components. Most
currently available IDEs support graphical components such as .NET
Controls or JavaBeans for building GUI applications. Even though all
those IDEs support arrangement and layout of those desktop compo-
nents, composition support is rather limited. None of the most important
composition environments support built-in validation of composition for
.NET components or JavaBeans no further than type checking.

Our approach addresses these problems with lightweight extensions
of existing component models with metadata attributes. We enhance
the built-in composition facilities of the component model and the com-
position environment to exploit those metadata attributes. As we show
the metadata attributes may be used to support required interfaces, con-
straint checks for method invocation or if all participants in a component
collaboration satisify a certain protocol.

1 Introduction

Prefabricated software components are known to improve the quality of software
construction and reduction of the development costs [1]. Component models [2]
define the structure, components adhere to and how they can interoperate. In-
stead of implementing every functionality from scratch new features are built by
assembling existing components.

Different component models have been introduced for different purposes,
ranging from desktop component models to distributed component models. Most
development environments focus primarily on desktop component models that
are intended to be used in the development of client applications with graph-
ical user interfaces. Hence, most today’s utilized platforms, such as Java and
.NET include simple component models for building desktop applications such
as JavaBeans [3] or components for .NET [4]. Components that adhere to these
component models usually represent graphical widgets.

In graphical composition environments developers may create component
instances and put them in composite components, visualized in graphical design

T. Gschwind, U. Aßmann, and O. Nierstrasz (Eds.): SC 2005, LNCS 3628, pp. 47–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 J. Oberleitner and M. Fischer

windows, browse and configure component instance properties such as fonts or
colors, and create event listeners.

Inventors of component models wanted a fast adoption of those models, hence
the requirements on components are rather small. The only requirement imposed
on a Java class to become a JavaBean is to provide a default constructor. Sim-
ilarly, .NET introduces a component model primarily targeted for GUI compo-
nents. The single requirement for a .NET class to be used in standard .NET
composition environments is that this class inherits from the Component class of
the System.ComponentModel namespace.

Unfortunately, these simple component models and composition environ-
ments only support simple instantiation and creation features. For instance, in
Visual Studio .NET 2003 it is possible to configure the property value of a com-
ponent with the instance of any other component created in the composition
environment. However, there are no standardized checks if such compositions
are valid or required. Furthermore, there are no generic ways to use proxies or
adaptors for such compositions.

New composition environments and component models have been introduced
that provide validity checks at design time or the generation of adapters [5]. The
flexibility of this introduction comes with the cost that these composition en-
vironments are not seamlessly integrated in the IDEs, making the adoption of
those component models difficult if not impossible. Furthermore, these compo-
nent models require rather large runtime environments.

We focus on this problem and introduce lightweight extensions of the existing
desktop component models. Primarily, we rely on two different functionalities.
First, we define metadata to describe additional information such as validity
requirements or if a component’s properties are required to be set to let the
component work. Components are enriched by this metadata. Since the use of
this metadata can be ignored by a composition environment all components
that use this metadata can still be used in composition environments unaware of
it. Second, we use the extension mechanisms provided by standard composition
environments to build extensions for the composition environment to enforce the
composition conditions described by the metadata. These extension mechanisms
are defined by the component models but can optionally be used by components
and composition environments.

We have designed and implemented our approach for the desktop component
model of the .NET framework and Microsoft Visual Studio .NET 2003 as the
appropriate composition environment. We show three examples for extending
composition capabilities:

– introduction of required interfaces,
– use of OCL constraints [6] for methods and classes, and
– use of protocols for verifying component collaborations.

Although our implementation focuses on .NET the metadata annotation fea-
ture of JDK 1.5 allows that large parts of the approach can be ported to Java
and JavaBeans, too.

Improving Composition Support with Lightweight Metadata 49

The structure of this paper is as follows. Section 2 discusses existing tech-
niques we build on. In Section 3 metadata attributes for enhancing composition
facilities of components are introduced. Section 4 further extends these facilities
with support for composition environments. We discuss related work in Section 5
and our future plans in Section 6. We draw our conclusions in Section 7.

2 Background

This section introduces the .NET metadata facility the .NET component model
frequently uses and our approach is based on.

2.1 Metadata Facilities

Metadata attributes are used to attach additional static information to pro-
gramming entities such as classes, fields, or methods. The compiler stores the
attributes in the executable files and DLLs. The runtime environment provides
read access to the attributes with reflection mechanisms.

For space reasons we cannot discuss in detail the .NET metadata facility.
Instead we refer to Figure 1 that shows the assignment of metadata attributes
to methods with edged braces and on an intuitive understanding of the reader. A
complete discussion of .NET metadata can be found in [7] and our webpage [8].

2.2 Desktop Component Models

Instances of desktop components are instantiated in graphical design environ-
ments and may be configured with property sheets. A property is exposed by
a component by accessor methods that allow read and write access to a logi-
cal property of the component instance. Components often support emission of
events that are delivered to handler methods.

2.3 Component Model Support for Composition Environments

The .NET component model is supported by the formular designer included in
Microsoft Visual Studio .NET and any other .NET based IDE. These composi-
tion environments support instantiation of components and in case of graphical
components also positioning and resizing of the components in graphical win-
dows. Configuration property-sheets are created dynamically based on compo-
nent’s reflection features.

3 Attributes for Components and Composition

In this section we introduce three different kinds of attributes that aid the com-
position process. All three attributes represent assumptions that have to be
satisfied by components to provide a correct application. We support two differ-
ent approaches for the enforcement of these assumptions. The manual approach

50 J. Oberleitner and M. Fischer

relies on manual calls to helper methods for checking if the assumptions are
satisfied. The compositional approach introduced in the next section relies on
either the composition methods provided by the composition environment or by
code injected by the environment to check the assumptions.

3.1 Required Interfaces

Most component models define a notion of provided interfaces. Furthermore,
some component models introduce a notion of required interfaces.

For marking some properties as required we introduce the required attribute
implemented by the class RequiredAttribute. It can be applied to properties
to signal that these properties must be set to let the component work. It is
also possible to attach multiple required attributes to require that a property
supports all those interfaces. An example of the required attribute can be seen in
Figure 1. Furthermore, for property arrays and collections we support a minimum
and a maximum number of instances that must be set for the property.

In addition to required interfaces represented as properties we also support
events to become marked as required. Instead of components that implement
the required interfaces now event listeners have to be set.

A programmatic check of all required properties is done manually by calling a
helper method to detect if all required interfaces are set. The implementation of
this checker uses reflection on the component instance, iterates over all properties
and verifies those that have a required attribute attached to it. The result of the
check can be visualized in the composition environment already at design time
in overwriting the OnPaint method (see Figure ref:RequiredUsage.

3.2 OCL Constraints

The application of pre- and postcondition in programming is widely accepted.
Unfortunately, only few programming languages such as Eiffel [9] have built-in
support for constraints. We propose two attributes that store the precondition
and the postcondition of methods with PreAttribute and PostAttribute, re-
spectively. We use the Object Constraint Language (OCL) for formulating the
constraint expressions since it can be parsed easily, can be learned quite fast,
and is simple to understand. Figure 2 shows a component that attaches pre- and
postcondition to a withdraw method of an account class.

In addition to pre- and postcondition, the InvariantAttribute stores in-
variant conditions for classes and interfaces. We have faced one problem in using
these attributes. The OCL constraints are provided as string parameters for
the attribute classes. Unfortunately, is is not possible to execute the attribute
constructor at compile time to verify if the expression is a syntactic valid OCL
expression.

At the bottom of figure 2 we show how OCL constraints can be verified by
calling a static method of the OCLCheck class we have implemented.

Improving Composition Support with Lightweight Metadata 51

public interface IMyInterfaceA { public void MethodA () ; }

public interface IMyInterfaceB { public void MethodB () ; }

public class Test : Control
{

private IMyRequiredInter face r equ i r ed ;

[Required (typeof (IMyInterfaceA))]
[Required (typeof (IMyInterfaceB))]
public IMyInterfaceA RequiredProperty
{ get { return this . r equ i r ed ; }

s e t { this . r equ i r ed = value ; }
}

// pa in t method checks a l l r equ i red p r o p e r t i e s
public override void OnPaint (PaintEventArgs e)
{

i f (! RequiredHelper . CheckAllRequiredProps (this))
{ /∗ pa in t error message ∗/ }

else { /∗ normal drawing code ∗/ }
}

}

Fig. 1. Required attribute

public class Account
{

int balance ;

[Pre (”amount >= 0 and s e l f . ba lance >= amount”)]
[Post (” s e l f . ba lance = s e l f . balance@pre − amount”)]
public void Withdraw (int amount)
{

this . ba lance −= amount ;
}

}
// check code
OCLCheck . Precondit ionCheck (this , ”Withdraw” , increment) ;

Fig. 2. OCL attribute specification

52 J. Oberleitner and M. Fischer

3.3 Collaboration Protocols

In many scenarios it is not possible to call methods or query and update prop-
erties from arbitrary component states. For instance, to operate on a file it must
have been opened before. Hence, it is necessary that components interact by
following a certain protocol [10,11]. Protocols define a predefined order in which
methods and properties may be accessed, i.e. protocols define state machines for
ordering method invocations.

We use various attributes to assign a state machine to an interface. One or
multiple Protocol attributes declare all protocols an interface participates in.
Besides the name of the protocol it also takes an array of state names of the
state machine, and the initial state. Other interfaces that act in this protocol
are marked with Collaborator attributes that are initialized with the protocol
name and the type of the participating interface.

For each method Transition attributes are used to declare allowed state tran-
sitions associated with the invocations.. Each transition attribute is initialized
with the name of the source state and the target state.

Figure 3 shows an example of two interfaces that share the access on a partic-
ular resource. These interfaces can be used in the same class or in two different
classes. However, the semantics remains the same. Before the reader can access
the data the state machine has to be in the open state.

[Protoco l (” I n t e r a c t i on ” , new string [] { ”Closed ” , ”Open” } ,
I n i t i a l=”Closed ”)]

[Co l l aborator (typeof (IReader))]
public interface IProv ide r
{

[Trans i t i on (”Closed” , ”Open”)] void Open () ;

[Trans i t i on (”Open” , ”Closed ”)] void Close () ;
}

[Protoco l (” I n t e r a c t i on ” , new string [] { ”Closed” , ”Open” } ,
I n i t i a l=”Closed ”)]

[Co l l aborator (typeof (IProv ide r))]
public interface IReader
{

[Trans i t i on (”Open” , ”Open”)] object Read () ;
}

// check code
StateMachine . Check (this , ”Read”) ;

Fig. 3. Protocol specification

We have provided a helper class that verifies if a method invocation starts
from the appropriate state. When applying the checks manually this code has
to be inserted at the beginning of a method.

Improving Composition Support with Lightweight Metadata 53

4 Tool Support and Automatic Adaptor Generation

This section describes how the composition process can be improved by the
attributes defined before.

Without any tool support constraints defined with the attributes described
before can only be verified manually with invocation of checking methods and are
neither verified nor enforced automatically. However, with the use of adaptors
based on these attributes we can automatically enforce verification of those con-
straints. The .NET component model in connection with design environments
such as Visual Studio .NET allow almost seamless use of those attributes.

4.1 Composition Support

The .NET component model defines some metadata attributes for layouting and
arrangement of .NET widgets and components. Some of these attributes are used
in conjunction with the .NET propertysheet used by Microsoft’s Visual Studio
.NET and other IDEs. The Editor metadata attribute allows developers to assign
user defined editors to classes and interfaces but also to properties. These editors
are automatically used by the propertysheet in Visual Studio .NETs designer and
allows modification of those properties. When a developer selects a cell in the
propertysheet the environment detects if an editor attribute is attached to the
datatype or the property.

We have implemented such an editor that may be attached to properties
that use the required attribute. This editor provides the developers with a list
of component instances which components match all required interfaces for the
particular property.

After the selection of one of the proposed component instances Visual Studio
automatically generates the correct instance assignment in the constructor of the
class that hosts the instances. In case of a property with a multiplicity larger
than one, either arrays or collections are used. The same editor class is used but
it does not provide a combobox but a dialog to select the component instances.

When the editor has finished Visual Studio generates code fragments that re-
flect the choice the user makes in the editor in the constructor of the component
instance owner’s class. We have implemented a code serializer that generates an
appropriate source code fragment for initializing the required component compo-
sitions. The code serializer generates the appropriate initialization statements for
arrays and collections and inserts it into the predefined code generation stream
provided by .NET.

4.2 Verification Adaptors

For automatic evaluation of constraints described with the attributes defined
above we generate adaptors that include verification code. These adaptors in-
clude checks if required properties are bound, if method arguments satisify pre-
conditions or method results satisfy postconditions, and if a protocol sequence
is still satisifed. The adaptors just include code sequences described above.

54 J. Oberleitner and M. Fischer

The verification adaptors are set in the initialization code of the component
constructor when an editor has been used. We generate adaptor initialization
code instead of field assignments. Figure 4 shows an example for such a code
fragment. However, a serious limitation of our automatic approach is that we
cannot change method call statements where the interface used has not been set
via properties. Instead of the field assignment the code serializer initializes an
adaptor interface and uses the original value as argument.

. . . // code i n s i d e In i t i a l i z eComponents
// t h i s . RequiredProperty = requ i red1 ;

// new code
this . RequiredProperty = new ConstraintAdaptor IReq (requ i r ed1) ;

Fig. 4. Adaptor Initialization

The adaptors are generated on demand. Here we use another .NET feature
for dynamically creating or loading assemblies.

5 Related Work

The use of metadata beyond type information is frequently used within some
component models. Enterprise JavaBeans [12] rely on metadata stored in de-
ployment descriptors to configure components for different installation systems.
JavaBeans [3] provides and uses descriptor classes to store additional informa-
tion about components. For instance, this information can be used to support
custom editors similar to .NET’s type editors we have used. In .NET metadata
attributes are used for instance configuration which we have used and extended.
Further attributes are used for remoting and distribution purposes. Another area
where metadata attributes are heavily used in .NET are system interoperability.
.NET predefines some attributes for importing methods from native DLLs and
allows to modify method calling conventions and argument conversion.

The notion of a required interfaces is well-known for several years [1]. How-
ever, component models that support required interfaces are usually not sup-
ported by any standard development environment. Our extension can be con-
sidered lightweight since it can be used without any modification in all .NET
IDEs that support the metadata attributes Microsoft has predefined with .NET.
Even, if these attributes are not supported the components are still functional.
Validation, however, must be done manually.

The first general purpose object-oriented programming language that sup-
ports constraints is Eiffel [9] with its support for Design-by-Contract [13]. For
Java different approaches implement pre- and postconditions such as JML [14]
or iContract. Since Java did not support metadata these approaches primarily
use JavaDoc comments to store the constraints. We expect that some of these
approaches will adopt the new metadata notation of JDK 1.5. Using .NET at-
tributes for constraints has already been described before in [15].

Improving Composition Support with Lightweight Metadata 55

6 Future Work

We plan to introduce additional metadata attributes and further support for
composition environments. The .NET component model supports the implemen-
tation of so-called designers, graphical editors for components useable directly
in the composition environment’s assembly window. When layouting graphical
components on the standard containers such as panels or forms provided by .NET
no visualization of the compositions is shown. We plan to extend the containers
to draw graphical representations for the compositions of components.

We also plan to port the attributes to Java with JDK 1.5. The attributes and
the classes for enforcing the constraints described with the attributes can easily
be ported to Java despite the differences of the platforms. However, porting the
support for composition environments such as the Component Workbench [5] or
Eclipse requires more effort.

Since not everything can be done with checking the validity of component
composition attributes at design time we plan to build a simple verifier that
takes a root component as input and traverses recursively all child components
and checks if all constraints are fulfilled.

7 Conclusions

In this paper we have shown how a simple widely used component model can
be extended with metadata attributes specifically introduced for composition.
These metadata attributes improve readability and act as additional documen-
tation of components. Furthermore the attributes store additional semantic in-
formation beyond the capabilities of the programming languages and component
models used. This semantic information may be used to realize simple semantic
checks without preventing the use of the components in standardized environ-
ments.

We introduced attributes to describe required interfaces that are mandatory
to be set before a component instance may be used. We also introduced attributes
for describing constraints with OCL. Furthermore, we presented attributes for
component collaboration.

The validation of these attributes may be done programmatically in the com-
ponents or the components’ clients refering to small helper classes that imple-
ment the validation semantics.

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley (1998)

2. Heineman, G.T., Councill, W.T., eds.: Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley (2001)

3. Hamilton, G., ed.: JavaBeans. Sun Microsystems, http://java.sun.com/beans/
(1997)

56 J. Oberleitner and M. Fischer

4. Griffiths, I., Adams, M.: .NET Windows Forms in a Nutshell. O’Reilly (2003)
5. Johann, O., Gschwind, T.: Composing distributed components with the compo-

nent workbench. In: Proceedings of the 3rd International Workshop on Software
Engineering and Middleware 2002 (SEM 2002). (2002)

6. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting your models
ready for MDA. Addison-Wesley (2003)

7. Richter, J.: Applied Microsoft .NET Framework Programming. Microsoft Press
(2002)

8. Johann, O.: Webpage: .NET Metadata Facilities (2005)
http://www.infosys.tuwien.ac.at/Staff/joe/dotnet-metadata.html.

9. Meyer, B.: Object Oriented Software Construction. Prentice Hall (1997)
10. Yellin, D.M., Strom, R.E.: Interfaces, protocols, and the semi-automatic construc-

tion of software adaptors. In: OOPSLA ’94: Proceedings of the ninth annual confer-
ence on Object-oriented programming systems, language, and applications, ACM
Press (1994) 176–190

11. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19 (1997) 292–333

12. DeMichiel, L.G., Yal cinalp, L.Ü., Krishnan, S.: Enterprise JavaBeans Specification,
Version 2.0. Sun Microsystems. (2001) Proposed Final Draft 2.

13. Meyer, B.: Applying Design by Contract. IEEE Computer 25 (1992) 40–51
14. Cheon, Y., Leavens, G.T.: A runtime assertion checker for the Java Modeling

Language (JML). In: International Conference on Software Engineering Research
and Practice (SERP ’02), CSREA Press (2002) 322–328

15. Sjörgen, A. In: A Method for Support for Design By Contract on the .NET plat-
form. Artech House Publishers (2002) 12–20

	Introduction
	Background
	Metadata Facilities
	Desktop Component Models
	Component Model Support for Composition Environments

	Attributes for Components and Composition
	Required Interfaces
	OCL Constraints
	Collaboration Protocols

	Tool Support and Automatic Adaptor Generation
	Composition Support
	Verification Adaptors

	Related Work
	Future Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

