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Abstract. Service discovery and service aggregation are two crucial is-
sues in the emerging area of Service-oriented Computing (SoC). We pro-
pose a new technique for the discovery of (Web) services that accounts
for the need of composing several services to satisfy a client query. The
proposed algorithm makes use of OWL-S ontologies, and explicitly re-
turns the sequence of atomic process invocations that the client must
perform in order to achieve the desired result. When no full match is
possible, the algorithm features a flexible matching by returning partial
matches and by suggesting additional inputs that would produce a full
match.

1 Introduction

Service-oriented Computing (SoC) [10] is emerging as a new, promising comput-
ing paradigm that centres on the notion of service as the fundamental element for
developing software applications. According to [10], services are self-describing
components that should support a rapid and low-cost composition of distributed
applications. Services are offered by service providers, which procure service
implementations and maintenance, and supply service descriptions. Service de-
scriptions are used to advertise service capabilities, behaviour, and quality, and
should provide the basis for the discovery, binding, and composition of services.
Services possess the ability of engaging other services in order to complete com-
plex transactions, like checking credit, ordering products, or procurement. The
platform-neutral nature of services creates the opportunity for building com-
posite services by composing existing elementary or complex services, possibly
offered by different service providers [14].

The Web service model includes three component roles — clients, providers
and registries — where providers advertise their services to registries, and clients
query registries to discover services. In this scenario, two prominent issues in-
volved in the development of next generation distributed software applications
can be roughly synthesised as:

(1) discovering available services that can be exploited to build a needed appli-
cation, and

(2) suitably aggregating such services to achieve the desired result.

Currently, the universally accepted core standard employed for Web service
discovery is the Universal Description & Discovery Interface (UDDI [11]). UDDI
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supports the definition of service registries in the style of yellow pages, but
unfortunately it features only keyword-based matches that often give poor per-
formance.

Given the pivotal importance of service discovery for SoC, several attempts
to improve the quality of UDDI discovery are currently being pursued. One of the
major efforts in this direction is promoted by the World Wide Web Consortium
(W3C) which strongly advocates the introduction of semantic information in
the description of Web services [12]. Indeed, currently service description are
expressed by means of the Web Services Description Language (WSDL [13]),
by declaring a set of message formats and their direction (incoming/outgoing).
The resulting description is purely syntactic, very much in the style of Interface
Description Languages (IDLs) in component-based software engineering.

The W3C proposes a semantic-based description of Web services, based on
the use of OWL-S (formerly DAML-S) ontologies [8], where each service is pro-
vided with an advertisement containing three descriptions: service profile (“what
the service does”), service model (“how the service works”), and service ground-
ing (“how to access the service”). The process of Web service discovery — often
referred to as service matchmaking — then takes a query specifying inputs and
outputs (IOs) of the desired service as well as a service registry consisting of
(service) advertisements, and returns as output a list of matched services.

In this paper we present a new algorithm for the composition-oriented dis-
covery of Web services. The algorithm — called SAM (for Service Aggregation
Matchmaking) — can be used to match queries with service registries making
use of OWL-S ontologies. SAM extends a matchmaking algorithm proposed by
Bansal and Vidal in [3] by featuring a more flexible matching and, more impor-
tantly, by accounting for service compositions. Indeed, queries that cannot be
satisfied by a single service might be frequently satisfied by composing several
services. An immediate example of this is a client wishing to plan its holidays by
booking flight tickets as well as hotel accommodation while taking into account
various parameters such as weather, season prices, special offers, and so on.

The main features of the proposed algorithm can be summarised as follows:

– Flexible matching. The proposed algorithm (SAM) features a more flexible
matching with respect to [3] as:
• SAM performs a fine-grained matching at the level of atomic processes,

or sub-services (rather than at the level of entire services as in [3]).
• Rather than returning only full matches (when a single service can fully

satisfy the client request by itself), SAM also returns (when no full match
is possible) a list of partial matches. A partial match is a (composition
of) sub-service(s) that can provide only some of the outputs requested
by the client. It is important to stress that a partial match can be a
valuable answer for the client, which may have over-specified its query
or may decide to use the selected services even if its query will be only
partially satisfied.
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• When no full match is possible, SAM — besides returning partial matches
— is also capable to suggest to the client additional inputs that would
suffice to get a full match.

– Composition-oriented matching. More importantly, SAM is the first algo-
rithm (at the best of our knowledge) to provide a composition-oriented
matchmaking based on semantic descriptions of queries and services by tak-
ing into account service process models.
• When no single service can satisfy the client query, SAM checks whether

there are service compositions that can satisfy the query, possibly in-
cluding multiple executions of services as well.

• When SAM finds a match, it explicitly returns the sequence of atomic
process invocations that the client must perform in order to achieve the
desired result.

The rest of the paper is organised as follows. Section 2 is devoted to introduce
OWL-S ontologies for service discovery, while in Section 3 we describe the new
algorithm for the composition-oriented discovery of services. Finally, we draw
some concluding remarks in Section 4.

2 Web Service Discovery Using OWL-S Ontologies

As the use of UDDI for service discovery often leads to inaccurate matches,
increasing attention is being devoted to semantics-based techniques to improve
the quality of the matchmaking process. The best known approaches use DAML-
S/OWL-S [8] ontologies. OWL-S is an ontology for describing Web services and it
is written in DAML+OIL. The root of the ontology is represented by the generic
class Service which has three subclasses: service profile (“what the service does”),
service model (“how the service works”) and service grounding (“how to access
the service”).

The service profile provides a high-level description of a service and it con-
sists of three types of information: a human readable description of the service,
the functionalities provided by the service, and some functional attributes. Ser-
vice functionalities are represented by listing the inputs required as well as the
outputs produced by the service, and functional attributes specify additional in-
formation about the service such as what guarantees of response time or accuracy
it provides, or the cost of the service.

The service model has a process model subclass which provides a view of
a Web service in terms of process compositions. OWL-S defines three types of
processes: atomic, simple and composite. An atomic process is executed in a
single step (from the point of view of the client of the service). It can not be
decomposed further and it has an associated grounding. Only atomic processes
are allowed to have associated inputs and outputs (IOs) and they are the only
processes that can be directly invoked by the client. A simple process is similar
to an atomic one but it can not be invoked directly and it does not have an
associated grounding. It is a simplified and abstract view of a composite pro-
cess. Finally, a composite process consists of other processes, the composition
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being made with the following control constructs: split, sequence, unordered,
split+join, choice, if-then-else, iterate and repeat-until/while.

The first matchmaking algorithms based on DAML-S/OWL-S ontologies
(e.g., [9]) use the service profile. The matching based on the service profile (sim-
ilar somehow to matching two black boxes) allows to match a service request
asking for two outputs o1 and o2 with a service advertisement that provides
either o1 or o2 but not necessarily both o1 and o2 (e.g., a choice process). In-
deed, in order to clearly specify the behaviour of such service one would have to
provide two service profiles corresponding to the two alternatives. As one may
note this would lead to advertising a large number of profiles, even for non triv-
ial services. Moreover, analysing Web services only through their service profile
(i.e., their IOs), severely affects the process of discovery of service aggregations
that satisfy a request. Indeed, the service profile does not describe the internal
behaviour of services and hence it does not provide valuable information needed
for composing services.

Bansal and Vidal present in [2,3] an improvement of the matchmaking process
by using an algorithm based on the OWL-S process model. Their algorithm takes
as input a query specifying the desired IOs as well as a repository of OWL-S Web
services and returns one of the following degrees of match: exact (e.g., client
asks for “DVD”, provider replies with “Digital Versatile Disk”), plug-in (e.g.,
client asks for “British Music DVDs”, provider replies with “Music DVDs”),
subsumes (e.g., client asks for “Music DVDs”, provider replies with “British Mu-
sic DVDs”), or failed (e.g., client asks for “DVD”, provider replies with “MC”).
The algorithm takes into account the process model trees of the advertisements
as well as the ontological relations between matched IOs. According to [9], a ser-
vice request matches a service advertisement if the request provides all the inputs
(possibly more) needed by the advertisement while the advertisement generates
all the outputs (possibly more) needed by the requester. The algorithm of Bansal
and Vidal stores OWL-S service advertisements as trees corresponding to their
process models. Composite processes correspond to intermediary nodes while
atomic processes are represented as leaves. The root of the process model corre-
sponds to the root of the tree. The matchmaking algorithm begins at the root
of the advertisement tree and recursively visits all its subtrees finishing at the
leaves. For each node (e.g., sequence, choice and so on) a corresponding match-
ing algorithm that verifies the compatibility between its IOs and the IOs of the
query is employed. For example, in the case of a sequence process, if the outputs
requested by the query can be satisfied by all its children collectively then we have
a success, otherwise a failure. In the case of a choice process we get a success or
a failure depending on whether there exists at least one child able to provide by
itself all the outputs desired by the query. A detailed description of the matching
algorithms corresponding to several composite processes can be found in [2].

Two of the main limitations of existing matchmaking algorithms are single
service discovery and single service execution. Indeed, existing algorithms look
(inside a repository) for a single service capable to fulfil the request. For example,
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Fig. 1. Process model of an Electronics Store Service

Fig. 2. Process model of an Online Bank Service
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let us consider a registry containing two services: Electronics Store (Figure
1) and Online Bank (Figure 2). The first sells electronic items like notebooks
or digital cameras. The second is able to create virtual credit cards; a client
obtains a credit card number and a credit card type through a bank transfer.
We suppose that all concepts contained in the OWL-S advertisements are defined
in a shared ontology. Consider now the query specifying:

– inputs: username, password, country, notebook Model, notebook Make, c/a Num-

ber, info Bank, delivery Type and address, and
– output: buy Receipt Notebook.

Existing matchmaking algorithms give a failed match because in the reg-
istry there is no service able to fulfil the request by itself. On the other hand, we
can observe that the c card Type and c card Number needed as inputs by the
Notebook Payment atomic process of the Electronics Store service are not
provided by the query but they can be obtained by executing the Online Bank

service. In other words, while the first service cannot satisfy the query, a suitable
composition of the two services can.

A second limitation of existing matchmaking algorithms is that they do not
consider multiple executions of services. Consider for instance the query speci-
fying:

– inputs: username, password, country, camera Model, camera Make, notebook Mo-

del, notebook Make, delivery Type, address, c card Type, and c card Number,
and

– outputs: buy Receipt Notebook and buy Receipt Camera.

We observe that while existing algorithms return a failed match for this
query, it could be satisfied by executing twice the Electronics Store service.
Indeed, the Digital Camera Buy Sequence and Notebook Buy Sequence com-
posite processes of the first service are children of a choice process and hence
they cannot be both executed in a single run.

The following section is devoted to present a composition-oriented algorithm
for service discovery that overcomes the above described limitations.

3 Service Aggregation Matchmaking (SAM)

The goal of the SAM algorithm is to determine whether a query can be satisfied
by a (composition of) service(s), advertised in an OWL-S registry. SAM starts
with a preliminary phase during which it builds a tree for each process model
stored in the registry, as described by Bansal and Vidal in [3] and as we have
summarised in the previous section. The SAM algorithm consists of two main
parts (which will be described in the next two subsections):

1. Construction of a graph representing the dependencies among atomic pro-
cesses of the services in the registry;

2. Analysis of such dependency graph to determine a service composition ca-
pable to satisfy the query (or part of it, when no service composition can
fully satisfy the query).
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3.1 Construction of the Dependency Graph

The graph produced during the matchmaking phase is a directed graph. It has
two node types: data node and process node, the former corresponding to data
(inputs or outputs) and the latter to matched processes. In SAM the match
regards exclusively atomic processes, the only processes that can be directly
invoked by the client. An atomic process matches if and only if:

– either all its inputs are available because they are part of the query or because
they are returned as outputs by other previously matched atomic processes,

– or at least one of its outputs is part of the query or it is an input for some
previously matched atomic process.

When the algorithm finds a new matched atomic process, it creates a corre-
sponding process node and adds it to the graph. For each process node inserted
in the graph, the algorithm creates and inserts (if not already present) a data
node for each input and output of such process. If a data node is an input for
the process node, SAM inserts a directed edge from the former to the latter.
Similarly, if a data node is an output of the process node, the algorithm inserts
an edge from the latter to the former. There are also two types of edges between
process nodes, called sequencing and excluding constraints. If a process node P2

is a successor of another process node P1 as both are children of a sequence
construct, the algorithm inserts an edge P1 → P2 (sequencing constraint). We
also say that P1 is a predecessor of P2. SAM introduces a bidirectional edge
P1 ↔ P2 in the graph for each pair of process nodes (P1, P2) that are children
of a choice process (excluding constraint).

Initially, the graph contains only the data nodes corresponding to the inputs
and the outputs of the query. The matchmaking phase cycles over the registry
until no more process nodes can be added to the dependency graph. The match-
making is implemented by a recursive function Match, invoked over each service.
The Match function starts its execution at the root of the advertisement tree and
it is recursively invoked over children nodes. The execution finishes at leaf nodes,
where Match verifies the compatibility between the inputs and the outputs of
the corresponding atomic process and the data nodes currently present in the
graph. According to the OWL-S specification [8], we assume that an output Oi

is compatible with an input Ij if and only if either Oi and Ij represent the same
concept (exact match), or Oi represents a sub-concept of Ij (“Oi plugs-in Ij”,
or equivalently “Ij subsumes Oi”). Match deals with different types of OWL-
S nodes (sequence, choice and so on). For atomic nodes for example, Match
checks whether the corresponding atomic process is already contained in the
graph. If this is not the case, Match verifies the compatibility between the inputs
and the outputs of the atomic node and the data nodes currently contained in
the graph. If all its inputs or at least one of its outputs are contained (w.r.t.
compatibility) in the graph then the atomic process is considered to be matched
and added to the graph. Match then creates a new process node, new data nodes
and all needed edges and constraints, and inserts them in the dependency graph.
In the case of a sequence node, Match verifies if the corresponding sub-tree con-
tains at least one matched atomic process. If so, all (matched and unmatched)
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atomic processes contained in the sub-tree are inserted in the dependency graph.
For a choice node it verifies if it has at least one matched atomic process. In
this case, differently from a sequence node, only the matched atomic process
children are added to the graph.

The behaviour of the Match function is summarised by the following pseudo-
code, where Ip and Op denote the inputs and the outputs of P , respectively. Let
also Prevp be the set of atomic processes which must be executed before P ,
and Choicep be the set of atomic processes which can be executed only if P is
not executed.

Match(ServiceRegistry SR, Query Q, Graph G)
repeat

forall service S in SR do Match (Root(S), Q, G);
until no process node is added to G;

Match(AtomicProcess P , Query Q, Graph G)
if (P �∈ G) then

if (Ip ∈ G ∨ Op ∩ G �= ∅) then
Add P to G;
forall outputs O in Op do

if (O �∈ G) then Add O to G;
Add (P, O) to G;

forall inputs I in Ip do
if (I �∈ G) then Add I to G;
Add (I, P ) to G;

forall predecessors PR in Prevp do
if (PR ∈ G) then Add (PR, P ) to G;

forall choice processes PC in Choicep do
if (PC ∈ G) then Add (P, PC) ∧ (PC, P ) to G;

Match(SequenceProcess SP , Query Q, Graph G)
forall child C in SP .children do

Match(C, Q, G);
if (at least one process node is added to G) then

Add all atomic processes of SubTree(SP ) to G;

Match(ChoiceProcess CP , Query Q, Graph G)
forall child C in CP .children do Match(C, Q, G);

3.2 Analysis of the Dependency Graph

The second phase of the algorithm consists of analysing the dependency graph
constructed during the first phase. This second phase consists of five steps, de-
scribed next.
Step 1. Reachability of query outputs. The dependency graph includes a
data node for each query input and output, regardless of whether or not these
data have been matched during the first phase. SAM hence first checks whether
there are query output nodes in the graph G that do not have incoming edges
from process nodes. Indeed, such disconnected query outputs can not be pro-
duced as no service in the registry can generate them. If there are disconnected
query outputs in the graph, the client has to choose whether the matchmaking
process should nevertheless continue (by discarding such outputs from the query)



Composition-Oriented Service Discovery 23

or abort. In the latter case SAM terminates with a failure. In the former case
SAM removes the disconnected query outputs and continues with Step 2.

Step 2. Yellow Colouring. In this step SAM identifies — by colouring them
in yellow — all processes which may be useful for generating the query outputs.
Initially all nodes in the graph are white. The white colour is used to denote all
process and data nodes that do not have yet proved to be useful for satisfying
the query. SAM first colours in yellow all the query outputs. It then recursively
paints in yellow all process and data nodes that are white and that have an
outgoing edge leading to a yellow node. Note that excluding constraints are not
taken into account here (i.e., the yellow paint does not spread over excluding
constraints). The process of painting in yellow finishes when there is no other
node that can be coloured. At the end of this step all yellow process nodes cor-
respond to processes that might have to be executed in order to generate the
query outputs. Dually, yellow data nodes correspond to data that “might be
useful as input”/“might be generated as output” to/by yellow processes in order
to generate the query outputs. All nodes that are still white at the end of this
phase are not needed for fulfilling the request (and could be removed from the
graph). One may note that more nodes than necessary may have been painted.
The algorithm then continues with Step 3.

Step 3. Red&Black Colouring. The goal of this step is to identify — by paint-
ing them in red — the processes which contribute to generate the query outputs
and which can be actually executed given the query inputs are provided. To
describe this step it is convenient to introduce the notion of firable process.
A process node P is firable in a graph G if P is yellow and all its input data
nodes are red and if there are predecessor processes linked through sequencing
constraints then there is at least one such predecessor process node coloured in
red. The algorithm first paints in red all data nodes corresponding to query
inputs. While there is at least one yellow query output node and at least one
firable process, the algorithm selects a firable process for execution. If there
are several firable processes linked through excluding constraints then SAM
non-deterministically chooses one such firable process node and paints it in
red. Every non-deterministic choice corresponds to a “fork” (split) into several
instances. After painting a process in red, all its output data nodes are coloured
in red and all the process nodes linked to it by excluding constraints are in-
hibited by painting them in black. (We do so as for example, by colouring in
red a Pay with Credit Card process we should inhibit another Pay with Cash
process linked to it by an excluding constraint.) When painting in red a process
node, the algorithm adds it to a process sequence list initially empty. Each
instance of this step finishes either with a success if all query outputs became
red, or with a failure if there are no more firable processes but there is still
at least one yellow query output. It is important to note that if there are several
firable processes linked through excluding constraints then the non determin-
istic choose operator splits the current execution of this step into a number of
instances equal to the number of firable processes, each such instance corre-
sponding to painting in red the respective process node and further on its outputs
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as well as to inhibiting the processes linked to it by excluding constraints. As a
result of this step we shall obtain a set of triples <success/failure, coloured

graph G, process sequence>. Next, SAM continues with Step 4.
Step 4. Analysis of Triples. The algorithm further checks whether there is
at least one tuple <success, G, process sequence>. If so, it returns to
the client an ordered list of all tuples Ti where Ti = {<success, Gi, pro-

cess sequencei>}. Such list can be ordered by taking into account client’s
preferences (expressed together with the query). Such preferences can include
minimal number of matched services, minimal process sequence length and
so on.

Now, in the case that all the triples generated by Step 3 are failures, SAM
checks whether there exists a set of failures that together are able to gener-
ate all outputs requested by the query. If so, the request can be satisfied by
simply considering one of the possible sequences of the failures in this set. It
is important to note again that the choice of such set is made with respect to
client’s preferences. If such a set exists, the process finishes by returning to the
client a sequence obtained by the concatenation of all process sequences cor-
responding to the considered failures in the set. In this case we have a success

obtained from the aggregation of a set of failures.
If instead there is no such set of failures that can collectively satisfy the

query it means that there are query outputs that remain yellow in all graphs
obtained at the end of Step 3. The algorithm then computes the intersection of
the sets of all such unsatisfiable query outputs for all failures. Next, similarly
to the previous case, it considers a set of failures able to collectively satisfy the
producible outputs (i.e., the query outputs less the unsatisfiable ones). The al-
gorithm further asks the client whether it wishes more information with respect
to what is needed to completely satisfy the request. This information consists
of the additional inputs that are needed in order to be able to unlock and to
execute other processes so as to fully satisfy the request. If the client agrees then
SAM continues with Step 5. Otherwise it terminates.
Step 5. Individuating Additional Inputs. During this last step the algo-
rithm looks for additional inputs that need to be provided in order to have
further firable processes that help generating the unsatisfiable query outputs.
Hence, for each failure and for each unsatisfied output, SAM looks for yellow
process nodes that generate this output. The set of additional inputs needed
for producing this output in the respective failure comes from considering all
yellow input data nodes of these processes and recursively all yellow input data
nodes of the processes that should be executed before them due to sequencing
constraints1.

The following pseudo-code summarises the analysis of the dependency graph
described so far.

Let G = (N, E), where E = Edp

⋃
Epd

⋃
Esc

⋃
Ecc, Epd = links from process to data nodes of

the form (P, D), Edp = links from data to process nodes of the form (D, P ), as well as sequencing

1 If two or more processes generate the same output then they are taken as alternatives.
The same happens for processes with more than one yellow predecessors.
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constraints: (P ′, P ) ∈ Esc, and excluding constraints: (P ′, P ) ∈ Ecc. Let Ip and Op denote the
inputs and the outputs of a process P respectively, and let Q = {IQ, OQ} denote the query. Let also
OF be the set of data output nodes that are red in failure F .

U = {D ∈ OQ |� ∃P : (P, D) ∈ E}; //Step 1 → Reachability of Query Outputs

if U �= ∅ then
Query client whether to go ahead ignoring U ;
if client says yes then OQ = OQ \ U ;
else

return(“Query cannot be satisfied”);
Paint in white all X s.t. X ∈ N ;

Paint in yellow all D s.t. D ∈ OQ; //Step 2 → Yellow Colouring

while ∃X, Y : (X, Y ) ∈ Edp ∪ Epd ∪ Esc ∧ Xwhite ∧ Y yellow do Paint X in yellow;

Initialise ProcessSequence; //Step 3 →Red & Black Colouring

Paint in red all D s.t. D ∈ IQ ∧ D yellow;
while (Firable(G) �= ∅ ∧ ∃D ∈ OQ : D yellow) do

if ∃P ′ : (P ′firable ∧ ∀P” ∈ Firable(G) : (P ′, P”) �∈ Ecc) then P = P ′;
else P = choose(Firable(G));
Paint P in red and add P to ProcessSequence;
∀D : D yellow ∧ (P, D) ∈ Epd: paint D in red;
∀P ′ : P ′ yellow ∧ (P, P ′) ∈ Ecc: paint P ′ in black;

if ∃D : D yellow ∧ D ∈ OQ then failure;
else success;

if there exists at least one success then //Step 4 →Analysis of Triples

return an ordered list of (successful) results;
else

if ∃ a set S of failures s.t. ∀D ∈ OQ ∃F ∈ S : D ∈ OF then
return a concatenation of the ProcessSequences of all graphs in S;

else
NonProducibleOutputs = {D|D ∈ OQ ∧ ∀ failure F : D yellow in F};
ProducibleOutputs = OQ \ NonProducibleOutputs;
S = {F | F is a failure} ∧ ∀D ∈ ProducibleOutputs ∃F ∈ S : D ∈ OF ;
AddI = ∅;
Query client whether it wants info on additional inputs;
if client says yes then

forall failure F do // Step 5 → Individuating Additional Inputs

forall D ∈ NonProducibleOutputs do
P = Q ∈ G | D ∈ OQ;
AI = {D | (D ∈ IP ∧ D yellow)};
while (∃P ′ | (P ′, P ) ∈ Esc) do

AI = AI ∪ {D | (D ∈ IP ′ ∧ D yellow)};
P = P ′;

AddI = AddI ∪ “Add inputs needed for” + D + “in” + F + “:” + AI;
return (a concatenation of the ProcessSequences of all graphs in S, AddI);

3.3 An Example

We shall present next an example that illustrates the behaviour of SAM. Let us
consider a registry of OWL-S advertisements containing only the two services –
Electronics Store and Online Bank – described in Section 2.
Consider now the query specifying:

– inputs: username, password, country, camera Model, camera Make, notebook Mo-

del, notebook Make, c/a Number, info Bank, delivery Type and address, and
– outputs: buy Receipt Camera and buy Receipt Notebook.

One may note that Bansal and Vidal’s algorithm [2,3] would return a fail-
ure because there is no service in the registry able to satisfy the query by it-
self. More precisely, the Electronics Store service requires c card Type and
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c card Number as inputs in order to be able to provide buy Receipt Camera
and buy Receipt Notebook. Yet these inputs are not provided with the request
but are to be obtained by executing the Online Bank service. Bansal and Vi-
dal’s algorithm fails as it is unable to find such relation between IOs of distinct
services.

In its first phase SAM constructs the dependency graph (the graph in Fig-
ure 3 without colours) as the result of the matching process between the query
and the registry of services advertisements. One may note the exclusion con-
straints between the Load Account and Create Account atomic processes, be-
tween the Bank Load Account and Bank Create Account, as well as between
Notebook Buy, Digital Camera Buy, Notebook Payment and Digital Camera-
Payment atomic processes.

During the second phase SAM continues as follows:

1. During the first step SAM checks whether there are disconnected query out-
puts in the graph, yet in this example all query outputs are produced by at
least an atomic process.

2. SAM continues next with the second step (“Yellow Colouring”) during which
it paints in yellow all data nodes corresponding to the query outputs and
then it recursively paints in yellow all process and data nodes linked to other
yellow nodes. At the end of this step all data nodes are painted in yellow with
the exception of available Service, account Receipt and availability
concepts.

3. During step three (“Red&Black Colouring”) SAM starts by painting in red
all yellow data nodes corresponding to the query inputs. At this point the
only firable processes are Country Choice and Bank Load Account as all
their data inputs are red and they have no predecessors. Let us consider
that SAM chooses to execute the Country Choice process. By doing so, it
paints it in red and it adds it to the process sequence list. Moreover,
the Load Account process becomes firable as its (unique) predecessor is
now red. By further assuming that SAM selects the Load Account process
for execution, it paints it in red and then it inhibits the Create Account
process by painting it in black. In our case, the algorithm continues until
there are no more firable processes available. One may note that there
is a moment in which both Digital Camera Buy and Notebook Buy are
firable. At that point SAM splits the execution in two instances: the first
one paints in red the Digital Camera Buy process and it paints in black the
Notebook Buy and Notebook Payment processes, while the second paints in
red the Notebook Buy process and it paints in black the Digital Camera Buy
and Digital Camera Payment processes. At the end of step three of the al-
gorithm both instances return a failure as they were unable to generate
(i.e., to paint in red) all the requested outputs — the first one produces
the buy Receipt Camera but not the buy Receipt Notebook while the sec-
ond one produces the buy Receipt Notebook but not the buy Receipt Cam-
era. The process sequence list resulting from the first instance is hence
[Country Choice, Load Account,Bank Load Account, Digital Camera Buy,
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Virtual Credit Card $, Digital Camera Payment]2. The second instance
produces the following process sequence list: [Country Choice, Load Ac-
count, Bank Load Account, Notebook Buy, Virtual Credit Card $, Note-
book Payment].

4. SAM continues with step four of the algorithm (“Analysis of Triples”). Due
to the fact that both instances of the previous step return a failure, it
checks whether their union is able to generate all the requested outputs.
Consequently, SAM obtains a success from the aggregation of the pro-

cess sequences corresponding to the two failures. SAM finishes by re-
turning to the client the following process sequence: [ [Country Choice,
Load Account, Bank Load Account, Digital Camera Buy, Virtual Cred-
it Card $, Digital Camera Payment], [Country Choice, Load Account, B-
ank Load Account, Digital Notebook Buy, Virtual Credit Card $, Not-
ebook Payment] ].

5. For our scenario, the last step of the algorithm is not executed as the request
has been fulfilled.

Fig. 3. Coloured graph for the first query

2 The corresponding coloured graph is shown in Figure 3.
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Consider next the query specifying:

– inputs: username, password, camera Model, camera Make, notebook Model, note-
book Make, c/a Number, info Bank, delivery Type and address, and

– outputs: buy Receipt Camera and buy Receipt Notebook.

The algorithm proceeds similarly to the first considered case. The graph
produced at the end of the matchmaking phase is the same as the one pro-
duced for the previous example and all query outputs are produced by at least
an atomic process. During the second step, SAM paints in yellow all data nodes
with the exception of available Service, account Receipt and availability
as in the previous example. At the beginning of the “Red&Black Colouring”
phase only the Bank Load Account process is firable and hence it is coloured
in red and added to the process sequence list, while the Bank Create -
Account process is painted in black. This step ends with a failure as there
are yellow query outputs but there are no firable processes. SAM contin-
ues then with the “Analysis of Triples” phase but is unable to find a set of
failures that collectively are able to provide the buy Receipt Camera and
buy Receipt Notebook outputs. Next, SAM queries the client whether it wants
more information about the generated process sequence and about how it is
possible to fully satisfy the query. Assuming that it agrees, SAM continues with
step five (“Individuating Additional Inputs”) when it looks for each unsatis-
fied output for yellow process nodes that generate this output. In our case,
Digital Camera Payment and Notebook Payment are the atomic process that
can generate the buy Receipt Camera and buy Receipt Notebook outputs re-
spectively. Yet, their execution is conditioned by the execution of their prede-
cessors and moreover, both processes need c Card Number and c Card Type to
be provided as inputs. A possible list of such additional inputs returned by SAM
is: {country, c Card Number, c Card Type}. Indeed, all inputs needed for the
execution of their predecessor processes are contained in the query with the
exception of country.

It is worth noting that SAM is able to solve both queries presented in Sec-
tion 2. SAM responds to the first query with the following process sequence:
[Country Choice, Load Account, Bank Load Account, Notebook Buy, Virtual-
Credit Card $, Notebook Payment]. To the second query, SAM responds with:
[ [Country Choice, Load Account, Digital Camera Buy, Digital Camera Pay-
ment], [Country Choice, Load Account, Notebook Buy, Notebook Payment] ].

4 Concluding Remarks

We have presented a new algorithm — called SAM (for Service Aggregation
Matchmaking) — for the composition-oriented discovery of Web services. As
already mentioned in Section 1, the main novel features of SAM are:

(1) to perform a fine-grained matching (at the level of atomic processes of ser-
vices rather than at the level of entire services),
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(2) to feature a flexible matching by returning partial matches and by suggest-
ing additional inputs (when some query output cannot be produced by the
services in the registry),

(3) to discover service compositions capable of satisfying a query, when no single
service can satisfy it. In such cases SAM also explicitly returns the sequence
of atomic process invocations that the client must perform in order to achieve
the desired result.

The first semantics-based algorithm for Web service discovery using DAML-
S ontologies was developed by Paolucci et al. [9]. Their algorithm performs
a matching between service requests and service advertisements described as
DAML-S service profiles. An assessment of the deployment of this algorithm
to a UDDI registry was recently reported in [6], where WSDL service descrip-
tions were enriched with semantics descriptions in the style of DAML-S service
profiles. As we already noted in Section 2, the algorithm described in [9] is how-
ever limited to discovering a single service, and it does not address the issue of
discovering service compositions. An algorithm for service discovery using ser-
vice compositions was recently presented by Aversano et al. [1]. Their algorithm
analyses DAML-S service profiles (as [9]) and it is also capable of performing a
cross ontology matching (for service descriptions using different ontologies) as
well as of matching service compositions (when no single service can fulfil the
client request). Comparing SAM with [1], one may note that SAM analyses the
process model of services to perform a finer-grained matchmaking, at the level of
atomic processes inside services rather than at the level of entire services. More-
over, when no service composition can satisfy the query, SAM is also capable of
suggesting additional inputs that would suffice to get a full match.

The first service discovery algorithm based on the analysis of DAML-S pro-
cess models of services was proposed by Bansal and Vidal [3]. As we already
discussed in Section 2, SAM extends [3] by considering both compositions and
multiple executions of services. A preliminary version of SAM was presented in
[5], where a first, limited form of service composition discovery was described.
The current version of SAM described in this paper substantially extends [5] by
introducing the dependency graph and its analysis, by providing a list of atomic
process invocations, and by suggesting additional inputs when needed.

A semi-automatic approach to composite service discovery was recently pre-
sented by Liang et al. [7]. An interesting feature of it is the employment of
constraint matching over a service dependency graph, where constraints may
specify data dependencies as well as non-functional properties of services (such
as Quality Of Service). Their approach is however based on UDDI registries, and
hence the accuracy of the discovery is limited due to the absence of semantic
information.

Our plans for future work include assessing SAM by experimenting it on large
numbers of queries and service advertisements. While we have tested our Java
implementation of SAM on several examples, an obstacle to running massive
experiments is the lack of available OWL-S descriptions of services (only a few
are publicly available in the W3C Web site). A promising approach to ease the
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generation of OWL-S descriptions of services may be to publicly deploy (to UDDI
registries) supporting tools that facilitate such descriptions, as done for instance
by Kawamura et al. [6] to promote the generation of DAML-S service profiles.
Another direction for future work is to extend the matching featured by SAM
in order to deal with other attributes of services (including extra-functional
ones) and the use of different ontologies. Our long-term goal is to develop a
well-founded methodology to support the discovery, aggregation, and —when
necessary— adaption [4] of services.
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