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Abstract. Compared to other languages, the C++ language offers a less powerful
runtime type system, but a very powerful static type system. In AspectC++, this
is addressed by an extended join-point API that provides static type information
at compile-time and type-safe access to join-point-specific context information.
In this paper we show, how the use of static type information leads to the devel-
opment highly generic, but type-safe aspects that fit well into the C++ language
model. This is demonstrated by an example.

1 Introduction

Compared to languages like Java and C#, the C++ language has a less powerful run-
time type system, but a more powerful compile-time (static) type system. C#, while
still beeing a statically typed language, implements a unified type system where even
primitive value types offer the interface of the one and only root class System.object.
In Java all class types derive from Java.lang.Object. Due to autoboxing it is possible
in both languages (Java beginning with Java 5) to pass value type instances as object
references. Basically, Java and C# allow to treat “everything as an object” at runtime1.
This facilitates the development of “type generic code”, in the sense that such code can
deal with objects of any type at runtime.

In C++ there is no such common root class and the C++ runtime type information
(RTTI) system offers only a very limited set of runtime services. On the other hand,
C++ implements a static type system that offers a very high level of expressive power,
based on operator and function overloading, argument dependend name lookup and
C++ templates. This facilitates the development of highly generic code that can be in-
stantiated at compile-time with any type. In general, the C++ philosphy is to use gener-
icity at compile time, while Java and C# advise genericity at runtime2. The C++ model
of compile-time genericity has some clear advantages, as it allows a good separation of
concerns, typically results in very efficient code, and implicitly ensures type-safety.

Type genericity is particularly important for the development of aspects, as aspects
are typically intended to be broadly reusable and applicable. For example, the imple-
mentation of a tracing aspect that logs all actual parameter and result values of function
invocations, should be independent of the affected function’s signature, i.e. on its argu-
ment and result types. In AspectJ this is realized by providing a runtime join-point

1 Actually, it is the Smalltalk language that carried the “everything is an object” idea to the
extremes. However, Smalltalk offers no static type system.

2 This is even true with Java generics introduced in the Java 5, which are basically a syntatic
wrapper around the “treat everyting as an object” philosophy.
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API to advice implementations, which offers a unified interface to access the join-
point’s context information. This information includes the number of parameters, the
argument and return values (as Object), and (via the interface of Object and Java’s re-
flection capabilities) their runtime types. Our AspectC++ language offers very similar
runtime mechanisms. Additionally, the AspectC++ join-point API supports an alterna-
tive type-safe access to all parameter and result values. For this purpose, we extended
the AspectC++ runtime join-point API by a compile-time join-point API, which pro-
vides static type information about the current join-point at compilation time. We call
advice, which depends on static type information from the compile-time join-point API
generic advice [10].

1.1 Outline

The aim of this paper is to show, how the AspectC++ notion of generic advice can be
used to develop reusable, but type-safe aspect implementations that fit well into the
C++ philosphy of “doing as much as possible statically”. This is demonstrated by an
example. The example is an aspect that facilitates exception-based error propagation
for legacy third-party C-libraries like the Win32 API.

The rest of this paper is structured as follows. The next section provides a brief in-
troduction into the AspectC++ language and terminology and describes the AspectC++
join-point API. Section 3.1 explains the example project. Afterwards, some details
about the weaving process of AspectC++ are given in section 4. This is followed by
a discussion of the advantages and limitations of our approach in section 5. Finally, we
give an overview of related work and briefly summarize the paper.

2 AspectC++ Concepts and Terminology

AspectC++ [13] is a general purpose aspect-oriented language extension to C++ de-
signed by the authors and others. It is aimed to support the well-known AspectJ pro-
gramming style in areas with stronger demands on runtime efficiency and code density.
While beeing strongly influenced by the AspectJ language model [7,8], AspectC++ has
to support many additional concepts that are unique to the C++ domain. This ranges
from operator overloading, const correctness and multiple inheritance up to weaving in
template code.

The AspectC++ compiler, plugin for Eclipse, and documentation are available under
open source license from the AspectC++ homepage [1].

2.1 Basic Concepts [10]

The AspectC++ terminology is inspired by the terminology introduced by AspectJ. The
most relevant terms are join-point and advice. A join-point denotes a specific weaving
position in the target code (often called component code, too). Join-points are usually
given in a declarative way by a join-point description language. Each set of join-points,
which is described in this language, is called a pointcut. In AspectC++ the sentences
of the join-point description language are called pointcut expressions. For example the
pointcut expression
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call("% Service ::%(...)")

describes all calls to member functions of the class Service. The pointcut expression

call("% Service ::%(...)")
&& cflow( execution( "void error_%(...)" ) )

describes again all calls to member functions of the class Service. By combining (&&
operation) these join-points with the cflow pointcut function these join-points become
conditional. They are only affected by advice if the flow of control already passed a
function with a name beginning with error . Users may define pointcut expressions
of arbitrary complexity to describe the crosscutting nature of their aspects. A list of
all built-in pointcut functions of AspectC++ is available in the AspectC++ Language
Quick Reference Sheet [1].

The core of the join-point language are match-expressions. In AspectC++ these
expressions are quoted strings where % and ... can be used as wildcards3. They can
be understood as regular expressions matched against the names of known program
entities like functions or classes.The aspect code that is actually woven into the target
code at the join-points is called advice. Advice is bound to a set of join-points (given
by a pointcut expression). For example by defining the advice

advice call( "% Service::%(...)" ) : before() {
cout << "Service function invocation" << endl;

}

the program will print a message before any call to a member function of Service. The
advice code itself has access to its context, i.e. the join-point which it affects, at runtime
by a join-point API. Very similar to the predefined this-pointer in C++, AspectC++
provides a pointer called tjp, which provides the context information. For example the
advice

advice call( "% Service::%(...)" ) : before() {
cout << tjp->signature () << " invocation ";
cout << endl;

}

prints a message that contains the name of the function that is going to be called.

2.2 The AspectC++ Join-point API

Table 1 shows an excerpt from the join-point API, describing those parts that are rel-
evant in the context of this paper. The elements that are based on join-point-specific
static type information are emphasized. The upper part (types and enumerators) pro-
vides compile-time type information, which can be used to instantiate generic code
or template metaprograms by advice. The lower part (non-static methods) provides a

3 In AspectJ * is used as a wildcard, but this would result in ambiguities in C++. However, the
match mechanism exists in AspectJ, too.
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type-safe interface to the join-point context. These methods are bound at compile-time,
but called at runtime. For example, the function Arg<i>::ReferredType *arg() offers
a type-safe way to access argument values if the argument index is known at compile
time. Inside the advice body, the static part of the join-point API is provided as a class
JoinPoint. At runtime, the non-static members are accessed using the JoinPoint *tjp

pointer.

Table 1. An Excerpt from the AspectC++ Join-point API

compile-time types and enumerators:
That type of the affected class

Target type of the destination class (for call join-points)

Arg<i>::Type

Arg<i>::ReferredType

type of the i’th argument

with 0 ≤ i < ARGS

Result result type

ARGS number of arguments

JPID unique numeric identifier for this join-point

JPTYPE type of this join-point (call / execution / construction / destruction)

runtime static methods:
const char *signature() signature of the affected function

...

runtime non-static methods:
void proceed() execute original code (around advice)

That *that() object instance referred to by this

Target *target() target object instance of a call (for call join-points)

Arg<i>::ReferredType *arg() argument value instance of the i’th argument

Result *result() result value instance

...

3 Using Static Typing in Aspects - An Example

3.1 Motivation

Every program has to deal with the fact that operations may fail at runtime. Program-
ming language concepts for propagation and handling of runtime errors have evolved
over time. Today most developers favor exceptions for this purpose. However, especially
in the C/C++ world, there are still hundreds of legacy libraries that do not support ex-
ception handling and follow a more traditional approach of error handling by reporting
an error situation via the function’s return value. An error is returned either as an error
code, a boolean flag or as a special “magic value”. In the latter cases, a more descriptive
error code can typically be retrieved by calling a special library function or reading a
global variable. The C runtime library (CRT), for instance, provides the global variable
errno for this purpose.

Many libraries overload the indication of a runtime error with the functions regular
result. In such libraries, the result value has to be checked against a “magic value” to
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1 #include <windows.h>
2 HANDLE g_hConfigFile = NULL;
3

4 LRESULT WINAPI WndProc( HWND hWnd , UINT nMsg , WPARAM wParam, LPARAM lParam ) {
5 HDC dc = NULL;
6 PAINTSTRUCT ps = {0};
7

8 switch( nMsg ) {
9 case WM_PAINT:

10 dc = BeginPaint( hWnd , &ps );
11 ...
12 EndPaint(hWnd , &ps);
13 break;
14

15 case ...
16

17 default:
18 return DefWindowProc(hWnd , nMsg , wParam, lParam);
19 }
20 return 0;
21 }
22

23 int WINAPI WinMain( ... ) {
24 g_hConfigFile = CreateFile( "example.config", GENERIC_READ , 0,
25 NULL , OPEN_EXISTING, 0, NULL );
26

27 WNDCLASS wc = {0, WndProc , 0, 0, ... , "Example_Class"};
28 RegisterClass( &wc );
29

30 HWND hwndMain = CreateWindowEx( 0, "Example_Class", "Example", ... );
31 UpdateWindow( hwndMain );
32

33 MSG msg;
34 while( GetMessage( &msg, NULL , 0, 0 ) ) {
35 TranslateMessage( &msg );
36 DispatchMessage( &msg );
37 }
38 return 0;
39 }

Fig. 1. A Typical Win32 Application

determine if there was an error. The “magic value” itself often depends on the result
type. For instance, functions that perform floating point calculations return a double

which is either the result of the calculation or the special not-a-number (NaN) value in
case of an error. The CRT function fopen() returns a FILE* that is the handle to the
opened file or NULL in case of an error.

Error checking and handling by validation of function results is cumbersome. Typ-
ically, in the client code each function call needs to be surrounded by an if statement
with at least two or three additional lines to do the error handling. This results in heavily
tangled and almost unreadable code. As a consequence, this kind of error handling is of-
ten “forgotten” as C-style languages allow programmers to simply ignore the results of
a function call. At runtime this may lead to undefined behavior when the program con-
tinues execution with invalid internal state. With error propagation by exceptions this
could not happen, as an exception “can’t be ignored” and reported faults are thereby
detected as early as possible. Hence, it is a good idea to integrate calls to legacy li-
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braries into the error-handling-by-exception model. As this is a crosscutting concern,
we strive for a generic aspect-oriented solution. In the following we describe such a
generic aspect for one of most popular (and disliked) legacy libraries: the Win32 API.

3.2 The Example Application

Figure 1 shows the listing of a typical Win32 application. WinMain() is the entry point,
which performs the usual sequence of Win32 API calls to initialize the application and
start the main message loop: First a configuration file is opened (CreateFile()) and the
window class for the application’s main window is registered (RegisterClass()). After-
wards the main window is created (CreateWindowEx()) and an initial WM PAINT message
is sent to it (UpdateWindow()). The WM PAINT message is handled by the WndProc() win-
dow procedure, which acquires a device context (BeginPaint()), draws the window’s
content (not shown here) and then releases the device context (EndPaint()). After the
main window was created, the application finally enters the message loop to perform
all further processing.

Even if the application does not contain any error checking code, any of the above
mentioned API functions may fail at runtime. They all follow the Win32 convention by
indicating a failure by a “magic” return value and, in case of failure, providing more
information about the reason via GetLastError().

3.3 An Aspect to Throw on Win32 Errors

Our goal is now to develop an aspect that implements an exception-based error handling
for calls to the Win32 API. The general idea is to give after call advice to all Win32 API
functions. In the advice body, the return value of the API function is checked and, in
case of an error, an exception is thrown:

#include "Win32Error.h"
aspect ThrowWin32Errors {

advice call( win32:: Win32API() ) : after() {
if( win32::IsError( *tjp->result() ) {
throw win32::Exception (...);

}
}

};

The advice affects all calls to API functions that are described by the (exter-
nally defined) pointcut win32::Win32API(). Its implementation uses a helper func-
tion win32::IsError() that returns true if the passed result value, retrieved via
tjp->result(), indicates a failure. This is done by checking the result against the
“magic value”. The actual implementation of the helper function depends on the API
function called, or, more precisely, on its return type. In the example the following
Win32 API functions are used:

– EndPaint() and UpdateWindow() are of type BOOL.
BOOL functions indicate an error by returning FALSE.
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– BeginPaint() is of type HDC.
HDC functions indicate an error by returning NULL.

– CreateWindowEx() is of type HWND.
HWND functions indicate an error by returning NULL.

– RegisterClass() is of type ATOM.
ATOM functions indicate an error by returning 0.

– CreateFile() is of type HANDLE.
HANDLE functions indicate an error by either returning NULL or
INVALID HANDLE VALUE.

These few API functions already cover a significant part of the different return types
and “magic values” used by the Win32 API. The win32::IsError() helper function
is overloaded for each of these types to perform the check against the type-dependent
“magic values” (Figure 3, lines 12–26). The compiler’s overload resolution deduces
(at compile-time) for each join-point the correct helper function to call (Figure 2). In
the case the advice affects calls to a function of a type no compatible helper function
is defined for, the overload resolution process fails and results in a compile-time er-
ror. Note that this generic implementation of the advice code is only possible, because
tjp->result() is type-safe, as it returns a pointer of the real static type of the affected
function.

3.4 Providing Context Information

Our aspect performs a type-safe validation of the results of Win32 API calls and throws
a win32::Exception in case of an error. The exception object should include all context
information that can be helpful to figure out the reason for the actual failure. Besides
the Win32 error code, this should include a human readable string describing the error,
the signature of the called function (retrieved with tjp->signature()) and the actual
parameter values that were passed to the function.

The tricky part is to build a string from the actual parameter values. In AspectJ
one would iterate at runtime over all arguments and call Object.toString()on each
argument. However, in C++ it is not possible to perform this at runtime, as C++ types

Fig. 2. A Join-Point specific Compile-Time Switch
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1 namespace win32 {
2

3 struct Exception {
4 Exception( const std::string& w, DWORD c )
5 : where( w ), code( c )
6 {}
7

8 std::string where;
9 DWORD code;

10 };
11

12 inline bool IsError( HANDLE res ) {
13 return res == NULL || res == INVALID_HANDLE_VALUE;
14 }
15 inline bool IsError( ATOM res ) {
16 return res == 0;
17 }
18 inline bool IsError( HWND res ) {
19 return res == NULL;
20 }
21 inline bool IsError( HDC res ) {
22 return res == NULL;
23 }
24 inline bool IsError( BOOL res ) {
25 return res == FALSE;
26 }
27

28 // Translates a Win32 error code into a
29 // readable text message using the Win32
30 // FormatMessage() function
31 std::string GetErrorText( DWORD code ) {
32 char res[ 256 ];
33 FormatMessage(... , code , 0, res, ...);
34 return res;
35 }
36

37

38 pointcut Win32API() = "% CreateWindow%(...)"
39 || "% RegisterClass%(...)"
40 || "% BeginPaint(...)"
41 || "% UpdateWindow(...)"
42 || "% CreateFile%(...)"
43 || ...;
44 } // namespace Win32

Fig. 3. Win32 Errorhandling Helper

do not share a common root class that offers services like toString(). The C++ concept
to get a string representation of any type is based, once again, on static typing. It is
realized by overloading the stream operator ostream& operator < <(ostream&, T) for
each type T. Therefore, we have to iterate at compile-time over the join-point-specific
list of argument types to generate a sequence of stream operator calls, each processing
(later at runtime) an argument value of the correct type. This is implemented by a small
template metaprogram (Figure 4, lines 4–19), which is instantiated at compile-time with
the JoinPoint type (line 35) and iterates, by recursive instantiation of the template, over
the join-point-specific argument type list JoinPoint::Arg<I>. For each argument type,
a stream params class with a process() method is generated, which later at runtime
will stream the typed argument value (retrieved via tjp->arg<I>()) and recursively
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1 #include "Win32Error.h"
2

3 aspect ThrowWin32Errors {
4 // template metaprogram to stream a commaseparated sequence of
5 // arguments available at a joinpoint
6 template< class TJP, int N >
7 struct stream_params {
8 static void process( ostream& os, TJP* tjp ) {
9 os << *tjp->arg<TJP::ARGS -N>() << ", ";

10 stream_params< TJP, N - 1 >::process( os, tjp );
11 }
12 };
13 // specialization to terminate the recursion
14 template< class TJP >
15 struct stream_params< TJP, 1 > {
16 static void process( ostream& os, TJP* tjp ) {
17 os << *tjp->arg< TJP::ARGS - 1 >();
18 }
19 };
20

21 advice call( win32::Win32API() ) : after() {
22 if( win32::IsError( *tjp->result () ) ) {
23 ostringstream os;
24 DWORD c = GetLastError();
25

26 os << "WIN32 ERROR " << c << ": "
27 << win32::GetErrorText(c) << endl;
28 os << "WHILE CALLING: "
29 << tjp->signature() << endl;
30 os << "WITH: " << "(";
31

32 // Generate joinpoint-specific sequence
33 // of operations to stream all argument
34 // values
35 stream_params< JoinPoint , JoinPoint::ARGS >::process( os, tjp );
36 os << ")";
37

38 throw win32::Exception( os.str(), c );
39 }
40 } };

Fig. 4. An Aspect to Throw Win32 Errors as Exceptions

1 #include "Win32Error.h"
2

3 aspect CatchWin32Errors {
4 advice execution("% WinMain(...)"
5 || "% WndProc(...)" ) : around() {
6 try {
7 tjp->proceed();
8 }
9 catch( win32::Exception& e ) {

10 MessageBox( NULL , e.where.c_str(), NULL , MB_ICONERROR );
11 }
12 } };

Fig. 5. A Simple Aspect to Catch Win32 Errors
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call stream params::process() for the next argument (line 10). This implementation
is, again, type-safe. The compiler automatically deduces the stream operator to call for
a specific type. If no compatible operator is available, a compile-time error is thrown.

3.5 Handling Error Conditions

The exception handling itself is implemented, for demonstration purposes, as another
simple aspect (Figure 5). It just displays the context information in a message box. If,
for instance, the CreateFile() call (Figure 1, line 24) fails, because the configuration
file example.config does not exist, the following error message pops up:

For real-world applications, the CatchWin32Errors aspect can be easily extended to
implement advanced error handling concepts. For instance, a detailed error log can be
created and the Win32 debugger API might be used to dump the call stack before the
application is terminated.

4 Implementation Details

AspectC++ is a source-to-source weaver that transforms AspectC++ programs into C++
programs. The woven code can then be built with any standard-conforming C++ com-
piler, like g++ or VisualC++. In this section we show some details about this trans-
formation process, focussing on generic advice code and the compile-time join-point
API.

4.1 Aspect Transformation

AspectC++ generates a C++ class with a unique name for each join-point that is af-
fected by advice code. Advice code is transformed into a template member function
of the aspect, which in turn is transformed to a class. The unique join-point class is
passed as a template argument to the advice code. Thus, the advice code is generic
and can access all type definitions (C++ typedefs) inside the join-point class with
JoinPoint::Typename. Indirectly these types can also be used by using the type-safe
argument and result access function. The following code fragment shows advice code
after its transformation into a template function.
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// ...
template< class JoinPoint >
void __a0_after( JoinPoint *tjp ) {

if( win32::IsError( *tjp->result() ) ) {
// ...

}
};

4.2 Argument Type Sequences

In AspectC++ template-metaprograms can be used to iterate over the argument type
sequence of a join-point at compile time, as shown in the example. However, these
sequences have to be provided in a “metaprogram-friendly” way. Just generating
ArgType0, ArgType1, . . . , ArgTypeN would not allow metaprograms to iterate over these
types. For this purpose, the generated join-point-specific classes contain a template class
Arg<I> which provides all the type information for the I’th argument as typedefs.

Sequences of types can be implemented by recursive template definitions as in the
Loki[2] Typelist. For the AspectC++ we decided for an implementation with less de-
mands on the back-end compiler, based on explicit template specialization. The follow-
ing code shows a part of the generated type for the call join-point to RegisterClass()

in the WinMain() function (Figure 1, line 28).

struct TJP_main_1 {
typedef ::ATOM Result;
typedef void That;
typedef void Target;
enum { ARGS = 1 };
template <int I> struct Arg {};
template <> struct Arg <0> {

typedef ::WNDCLASSA *Type;
typedef ::WNDCLASSA *ReferredType ;

};
void **_args;
Result *_result;
inline Result *result() {return _result;}
inline static const char *signature () {return ...;}
inline void *arg (int n) {return _args[n];}
template<int I> typename Arg <I>:: ReferredType *arg(){

return (typename Arg <I>:: ReferredType *) arg(I);
}

};

Note that only the result and args attributes consume memory at runtime, as every-
thing else is resolved at compile-time.
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5 Discussion

As demonstrated by the ThrowWin32Errors aspect, the technique of using static typing
for generic advice implementations has some clear advantages regarding genericity and
type-safety. On the other hand, the strong focus on static typing and the template-based
implementation also implies some potential drawbacks. In this section we discuss the
major advantages and limitations of our approach.

5.1 Advantages of Generic Advice

Genericity is achieved, as generic advice can be applied to functions with any sig-
nature, even if they use primitive or POD data types. This seamless support of
non-class types is particulary important in the C/C++ domain. It is not possible to
implement a unified access to instances of such types by extending their interface,
e.g. using (baseclass-) introductions or other typical AOP idioms.

Separation of concerns is improved, as type-specific parts of the implementation (like
the comparison with a “magic value”) are separated out from the advice implemen-
tation in own external program entities. Thereby most of the advice code can be
reused. Moreover, this makes the aspect code more stable with respect to changes
in the component code. If, for instance, the result type of a function is changed to
some unknown new type, the missing helper function is detected at compile-time.
A non-generic aspect implementation that gives one advice per return type would
silently miss to match the function’s new signature.

Type-safety is guaranteed, as type errors are detected early at compile-time. Costly
and potentially dangerous runtime casts are avoided. In languages that do not offer
a type-safe access to the join-point’s context information, problems (like a missing
helper function) may not be detected before runtime.

5.2 Potential Limitations and Disadvantages

Code bloating is a potential problem, as generic advice is intantiated per join-point
which might result in a high number of (similar) template instantiations, each be-
ing compiled seperately into the machine code. This is a general and well known
issue in the C++ domain. It is difficult to judge its effects on real applications, as
they depend on many other properties, especially the optimization capabilities of
the compiler. For small template functions, which are inlined anyway, it has no ef-
fect at all.
In the example application, around 200 (BeginPaint(), 2 arguments) to 1000
(CreateWindowEx(), 11 arguments) additional bytes of code are generated for each
of the Win32 function matched by the ErrorException aspect. Most of this over-
head is induced by the generated streaming code. We estimate that a hand-written
tangled implementation of the same crosscutting concern would result in similar
costs, as it has to contain the same amount of streaming code. However, additional
calls of the same Win32 function result in (almost) no additional overhead. In these
cases the build system seems to be able to detect and optimize away the semanti-
cally identical template instantiations4.

4 All measurements were done using Microsoft Visual C++ 2003 using /O1 optimizations.
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Compile-time fixation limits the approach to those types that are known at build-type.
Generic advice can not be instantiated for additional types loaded dynamically at
runtime. This is an implicit property of static typing. It is no real limitation for lan-
guages like C++ or Ada, as these languages do not support runtime type loading
anyway. However, for Java or C#, which provide runtime class loading, this might
be an issue. A possible solution for such languages is to rely on static type infor-
mation as much as possible, but fall back to runtime type checking for types that
are not known at build time.

Strong type semantics is a prerequisite of taking advantage of the approach. If, for in-
stance, there is no general policy which “magic values” of a return type indicate a
failure, it is not possible to bind the required test function solely on the base of the
return type. However, if there are only a few exceptions from an otherwise general
rule, they can be handled by seperate advice.
The example ThrowWin32Errors aspect, for instance, can already be applied to most
functions of the Win32 base API in any program. It is easy to achieve complete cov-
erage by implementing the helper functions for the remaining return types. Very
few API functions, however, do not follow the general Win32 error handling con-
ventions5. Luckily, these few exceptions can easily be handled by giving specific
advice for them.

5.3 Conclusions

Overall, the approach fits well into languages like Ada and C++ that have a static typing
philosophy. Languages like Java or C#, which support static, but emphazise dynamic
typing, would even benefit from generic advice, although it might be necessary to ex-
tend the approach for these languages by some runtime mechanism that deals with
dynamically loaded classes. Such combination would make the most of both worlds.

6 Related Work

So far, no publications focus on the development of generic, but type-safe aspects in
languages with a sophisticated static type system as C++. C#, being currently a language
with focus on dynamic typing, will be extended by additional static concepts (templates)
in the next version [6]. However, the proposed extensions for integrating AOP into C#
(e.g. [12,11]) do not cover static typing in aspects, yet.

Several extensions have been suggested to increase the static genericity of AspectJ.
Instead of an extended join-point API, they are based on an extension of the join-point
description language by context-dependend logic variables that are bound at weaving-
time. Sally [5] focusses on genericity for structural aspects and proposes parametric
introductions as an extension of the inter-type declaration mechanism in AspectJ and
Hyper/J. LogicAJ [9] supports a similar mechanism called generic introductions and
facilitates the development of generic advice code as well as reasoning over non-type

5 The TlsGetValue() function, which is used to retrieve a thread-local storage value, is an ex-
ample. It does not use a “magic value”, but indicates success by clearing the GetLastError()
value.
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program entities like method names. While the use of of a logical language for this
purposes has some clear advantages, it also leads to a high level of complexity. As C++
is already a “rich” multi-paradigm language with respect to complexity and expressive
power, such an approach implies the risk of introducing redundant language concepts.
For instance, a compile-time type deduction engine is already available through tem-
plates. For AspectC++, our goal is therefore to carefully integrate AOP concepts with
the existing idioms and the philosophy of the C++ language.

The few existing work in the AOP/C++ domain focusses on using the preprocessor
or static type concepts like overloading and advanced template techniques to “simulate”
AOP in pure C++ [3,15,4].

7 Summary

The aim of this paper was to demonstrate, how static type information and a type-safe
join-point API can be used in generic advice for the development of broadly applicable
and type-safe aspects. By seperating out the type-specific parts (like the detection of an
error result) into own external functions, both a good separation of concerns and a high
level of type-safety is achieved.

Generic advice integrates well with the idioms of a language with a strong static
type system as C++, where it is common and desirable to “decide things at com-
pile time”. As shown in the example, this involves even the utilization of template-
metaprogramming techniques in advice code, e.g. to iterate over the function’s argu-
ments. Template-metaprogramming is known to be tricky and cumbersome, however,
there are promising attempts to reduce its complexity by carefully extending the C++
language [14]. Currently, templates permit to reach a level of genericity and type-safety
that is otherwise not feasable. Both, genericity and type-safety are very important prop-
erties for any aspect that is intended for reuse, like aspects from an aspect library. Such
aspects are potentially applied to functions with any signature, which includes functions
that use primitive and POD types. Thus, they should be able to deal with all those types
and, even more important, raise potential type errors at compile-time.
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