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Preface

Component-based software development is the next step after object-oriented
programming that promises to reduce complexity and improve reusability. These
advantages have also been identified by the industry, and consequently, over
the past years, a large number of component-based techniques and processes
have been adopted in many of these organizations. A visible result of this is the
number of component models that have been developed and standardized. These
models define how individual software components interact with each other and
simplify the design process of software systems by allowing developers to choose
from previously existing components.

The development of component models is a first step in the right direction,
but there are many challenges that cannot be solved by the development of a
new component model alone. Such challenges are the adaptation of components,
and their development and verification.

Software Composition is the premiere workshop to advance the research in
component-based software engineering and its related fields. SC 2005 was the
fourth workshop in this series. As in previous years, SC 2005 was organized as
an event co-located with the ETAPS conference.

This year’s program consisted of a keynote on the revival of dynamic lan-
guages given by Prof. Oscar Nierstrasz and 13 technical paper presentations
(9 full and 4 short papers). The technical papers were carefully selected from a
total of 41 submitted papers. Each paper was thoroughly peer reviewed by at
least three members of the program committee and consensus on acceptance was
achieved by means of an electronic PC discussion. This LNCS volume contains
the revised versions of the papers presented at SC 2005.

Finally, the organizers would like to express their gratitude to a large num-
ber of people without whom this event would not have been possible: the au-
thors of submitted papers, the Program Committee, and the external referees for
their careful reviews and active participation in the paper selection process, and
Dirk Peters who managed the electronic submission and reviewing service with
the fabulous Paperdyne Conference Management System. We would also like to
thank Massimo Felici in his role as the ETAPS 2005 Satellite Events Chair who
simplified our task considerably by scheduling our work and providing us with
instructions.

June 2005 Thomas Gschwind
Uwe Aßmann

Oscar Nierstrasz
(Proceedings Editors)
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On the Revival of Dynamic Languages

Oscar Nierstrasz, Alexandre Bergel, Marcus Denker, Stéphane Ducasse,
Markus Gälli, and Roel Wuyts

Software Composition Group, University of Bern
www.iam.unibe.ch/∼scg

Abstract. The programming languages of today are stuck in a deep rut
that has developed over the past 50 years. Although we are faced with
new challenges posed by enormous advances in hardware and internet
technology, we continue to struggle with old-fashioned languages based
on rigid, static, closed-world file-based views of programming. We argue
the need for a new class of dynamic languages that support a view of pro-
gramming as constant evolution of living and open software models. Such
languages would require features such as dynamic first-class namespaces,
explicit meta-models, optional, pluggable type systems, and incremental
compilation of running software systems.

1 Introduction

It is no exaggeration to say that mainstream programming languages of today
are inherently static. That is to say, these languages tolerate change at compile
time, but precious little at run-time. To state the case more strongly, most
languages assume a closed world view : specifically, they assume that the world
is consistent, and it will not change.

That this assumption is patently false is obvious to anyone who has experi-
enced the development of real, large software systems. Nevertheless, it is a fact
that virtually no programming language today provides specific language mech-
anisms to help developers cope with the fact that the systems they work on will,
inevitably change [LB85].

As concrete examples, we can observe that it is hard to:

– modify a running system,
– make changes that impact the whole system,
– reason about consequences of change,
– introduce run-time reflection on-demand,
– keep code, documentation and tests synchronized.

Furthermore, we can observe that increasing trends towards open, distributed
systems, and pervasive computing make these issues even more critical. In this
paper we take the standpoint that:

Inherently static languages will always pose an obstacle to the effective
realization of real applications with essentially dynamic requirements.

T. Gschwind, U. Aßmann, and O. Nierstrasz (Eds.): SC 2005, LNCS 3628, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 O. Nierstrasz et al.

We therefore conclude that research is urgently needed to develop a new class of
dynamic languages, i.e., languages that support change at run-time. With this
in mind, we outline five complementary research tracks that explore support for
change in dynamic programming languages.

In Section 2 we revisit the most basic assumption behind most programming
languages today: that programs live in files. By challenging this assumption, we
argue, we can make it easier to change a running system. In Section 3 we argue
that first-class namespaces are a fundamental concept missing from most pro-
gramming languages, yet are needed to properly manage the scope of change.
In Section 4 we explore the theme of type systems for dynamic languages (an
apparent non sequitur), and in particular argue in favour of pluggable type sys-
tems as a means to reason about change. In Section 5 we explore the notion
of reflection on demand as a mechanism to support and control both run-time
introspection and behavioural reflection. In Section 6 we argue that examples
integrated into the programming language and environment offer an effective
way to keep code, documentation and tests in sync. We conclude in Section 7
with some remarks on ongoing and future work.

2 Living Objects

The static nature of most programming languages is immediately evident in the
programming model these languages support. Programs lives in files. To change
a system, we must edit these files, recompile them, and restart the system. Oh,
and by the way, if the layout of any persistent data changes, we will have to have
some ad hoc way to migrate the data. It is essentially impossible to change a
running system. The system must be stopped and restarted for changes to take
effect.

Surprisingly little effort has been invested over the years in developing lan-
guages that support run-time change to the persistent program state. Smalltalk
[Gol84] and its descendants, like Self [US87], support a programming model in
which all objects live in a persistent program image. This model of persistence,
however, is rather weak, as images reside in memory, and must be explicitly
saved to the file system. Although intermediate changes are logged, disasters
can occur, and images may be corrupted.

Smalltalk and CLOS [Kee89, KdRB91] also support shape-changing of ob-
jects: when a class’ format is changed (for example, instances are added), the
memory layout of instances of this class (or its subclasses) is updated to follow
suit [MLW05]. Even though this is a very rudimentary form of data migration,
it is quite effective.

Considerable work was done in the mid to late 1980s on object-oriented
databases and their integration with programming languages [MOP85, PS87].
This work also led to research on schema evolution [BKKK87], addressing the
problem of schema changes to running systems. Considerable research has also
been carried out on so-called database programming languages [AB87], but these
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languages have only had a limited impact on programming language design in
general.

Aside from various technical difficulties involved in resolving the dichotomy
between databases and programming languages [TN88], Bloom and Zdonik noted
as early as 1987 that there are numerous cultural differences that make it difficult
for programming language and database designers to see eye to eye [BZ87].

Let us imagine what a truly dynamic and persistent object system would
be like. In a such a system, one would have the illusion of directly interacting
with software artifacts. Software entities and their meta-representations would
be causally connected, so that changes would have an immediate effect. Further-
more, the histories of changes would be first-class entities so that change itself
can be manipulated. In a distributed object system, local changes may even have
a global impact.

Technically, none of these issues are especially problematic. For example lan-
guages such as Smalltalk and CLOS already offer dynamic and living object
facilities with causally connected meta-representations. Several pragmatic issues
must be addressed, however, in order to arrive at an effectively usable dynamic
and persistent object system. How, for example, do we control the scope of
change in an open, distributed and causally connected system? How do we rea-
son about the impact of possible changes? How do we limit and control the cost
of reflection? And how can we keep various software artifacts synchronized with
tests and documentation? These are issues that we will touch on in the following
sections.

3 First-Class Namespaces

Most programming languages are static in the sense that they assume the world
is consistent. They do not tolerate inconsistency. As a consequence, changes must
always be made in a way that restores consistency to the world.

Reality, however, dictates that in complex systems, consistency is an illusion.
For this reason, workarounds are needed to maintain this illusion, such as dep-
recation, or ornate naming conventions to differentiate concurrent versions of
software artifacts.

There is, in fact, a well-established programming language mechanism that
supports inconsistent world views, but it is in most cases unfortunately real-
ized at best as a second class citizen. Namespaces are well-defined boundaries
providing a set of definitions, i.e. names bound to values. Every programming
language supports various forms of namespaces, be they as fine-grained as the
context of a procedure or a block, or as coarse-grained as packages or modules.
With the notable exception of Scheme [Dyb03], virtually no mainstream pro-
gramming languages exist that have all their namespaces as first-class citizens
i.e. that can be passed and manipulated as any other value in the language.

As it turns out, first-class namespaces can be used to great effect to form the
basis of a computational model for a programming language [ALSN01]. First-
class namespaces can be used to model objects, classes, metaobjects, software
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Fig. 1. Implicitly rebinding classes within classboxes.

components, modules, and a variety of compositional abstractions, such as wrap-
pers and mixin layers [AN00, NA00, NA05]. Furthermore, namespaces lend them-
selves well to formal specification using standard semantic modeling techniques,
which can form the basis for reasoning about language constructs [AN05].

A particularly interesting application of namespaces in the context of change
is to encapsulate class extensions. Languages like Smalltalk [GR89] or CLOS
[Kee89] have traditionally supported the ability for programmers to define a
set of extensions to existing classes. Extensions typically are used to add or
redefine methods in situations where subclassing is not an option. (For example,
by extending the class Object, one can ensure that the extension will be available
to all classes, not just those that inherit from a particular subclass.)

Classboxes are namespaces that define both classes and class extensions
[BDNW05]. A classbox may import a class from another classbox, and extend
it locally. The local rebinding feature ensures that extensions remain local to
the classbox introducing the extension, and other classboxes that (transitively)
import the extended classes. A method addition or redefinition can be executed
only within the classbox that defines this extension and to other classboxes that
import the extended class. Within a given classbox, the world is always con-
sistent, so collaborating classes are always well-defined. But multiple classboxes
can support very different views of a universe full of inconsistencies.

The following example illustrates a method extension with local rebinding.
Figure 1 depicts a classbox WidgetsClassbox that defines a class Morph, which
is the root of the graphic element hierarchy in the Squeak system [IKM+97],
and a subclass Button. Morph contains a paint() method and a repaint() method
that calls paint(). The classbox EnhWidgetsClassbox imports Morph and rede-
fines the paint() method. It also imports the subclass Button. In the context
of WidgetsClassbox, invoking the repaint() method on an instance of Button
invokes the definition of paint() in Morph defined by WidgetsClassbox. Within
EnhWidgetsClassbox, invoking repaint() triggers the enhanced implementation of
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paint() defined in EnhWidgetsClassbox. This is an illustration of the local rebind-
ing facility.

Static classboxes can be used effectively to bundle a set of related class ex-
tensions that capture cross-cutting concerns, much in the way that mixin layers
bundle sets of related features that can be applied in tandem [SB02]. Dynamic
classboxes furthermore offer the possibility to dynamically apply (or disable) a
set of related class extensions.

Imagine the situation in which a running system has to be upgraded without
being interrupted and while preserving behavior of its clients. Dynamic classboxes
offer a disciplined way out of this predicament: A patch consisting of classboxes
can be dynamically applied to a running system without it being halted. Modi-
fications, consisting of method additions and redefinitions, and encapsulated as
classboxes, are locally visible to these classboxes and to new clients that rely on
them. Former clients are guaranteed not to be impacted whereas new clients can
rely on the new system.

Dynamic, first-class namespaces would appear to offer a number of further
interesting and useful capabilities. First of all, a namespace can be used to restrict
the scope of certain changes. Within a single running system, namespaces could
help to indicate which clients may see a given set of changes. More interestingly,
dynamic namespaces could broaden their scope at run-time, much in the way
that dynamic classboxes can be applied or disabled. With dynamic namespaces,
one could gradually introduce changes to a running system, extending the scope
of change till it applies to all concerned clients. At any one point in time, however,
there would be no need for different parts of the universe of namespaces to be
mutually consistent.

4 Pluggable Types

Generally speaking, static languages have obligatory and static type systems,
that is, they attempt to use static type information to guarantee that no dynamic
type errors may occur, and refuse any program that cannot be type-checked.
The way this is achieved always entails a trade-off in the sense that any static
type system will prevent you from writing certain “correct” programs simply
because it cannot prove that no type error exists. The art of designing a usable
type system is to make sure that no “interesting” program is forbidden (or that
interesting programs can always be rewritten in an easy way to make them
acceptable).

Static type systems, however, are the enemy of change. Reflective code, es-
pecially in statically typed object-oriented languages, can be especially cumber-
some and verbose, since workarounds are needed for any operations that will
not be known till run-time. Even languages that sport state-of-the-art type sys-
tems, such as (different variants of) ML or Haskell, struggle with overloading,
polymorphism and reflection in the context of type-safety [Mac93]. For example,
MetaOCaml, an extension of OCaml, provides a type-safe quasi-quoting mech-
anism that can be used to generate type-safe code at runtime [Tah03], but has
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no support for reflection. Extensions of polymorphism (such as first-class poly-
morphism in ML [Rus00] or in Haskell [Jon97]) exist but do not always allow for
separate compilation (unless the type-preservation rules are relaxed) [KS04].

Furthermore, static type systems can produce a false sense of security. Run-
time type-checks (i.e. “downcasts”) in Java, for example, can hide a host of
type-errors.

The issue of static typing is a divisive one, often splitting programmers into
two camps: those who believe that dynamic languages are evil because they
are “untyped” (not true — they are dynamically typed), and those who believe
that static languages are evil because they prevent you from writing interesting
programs without catching any interesting errors.

Instead of having static types hinder change, we would like to use them to
support change. In particular, we want more, rather than less, expressiveness,
fewer constraints, and more kinds of checks. We believe there exists a comfortable
middle ground. At the center of this middle ground is a simple principle:

A type system should never be used to affect the operational semantics
of a programming language.

Once this principle is out of the way, we can entertain various notions of optional
type systems, such as that of the Strongtalk language [BG93], [Str], which intro-
duce static typechecking without compromising flexibility. We can even go one
step further and explore the notion of multiple, pluggable type systems proposed
by Gilad Bracha [Bra04].

Considerable research has been carried out in recent years on non-standard
type systems such as (for example) alias types [SWM00], confined types [GPV01],
[ZPV03], flow-sensitive type qualifiers [Fos02, FTA02], proxy inference [PSH04],
scoped types [ZNV04], and demand-driven type inference with subgoal pruning
[SS04].

It is clearly unrealistic to expect that static programming languages will
or even could be developed to take advantage of all these new developments.
A much more reasonable, and interesting alternative, is to envisage a dynamic
programming language into which various non-standard type systems could be
plugged. For example, a heuristics-based type inferencer can enable program
understanding of dynamically typed programs [Wuy01]. Or a pluggable type-
system dealing with worst-case execution times for methods or components can
check runtime properties for programs intended to be run in hard real-time
systems [HBW02, WDN05].

5 Reflection n emand

Reflection enables the changing of systems without the need to rebuild or even
restart them. This is an important basis for building the dynamic sytems of the
future: Mobile, Ubiquitous, Always-On.

To change a running system means that we must reify behavioural aspects,
interact with them to indicate the desired changes, and reflect changes to obtain
their effects in the running system.

Do
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Reflection is a well-understood research topic with a long tradition of sup-
port in various programming languages and within various paradigms [FJ89,
KdRB91] but with limited support in most static languages [Chi95]. Neverthe-
less, totally reflective systems suffer from many disadvantages:

– Security: If a language is reflective, the client that uses reflection can do
anything.

– Stability: The effects of reflection are global: In a system with multiple clients,
one client using reflection on a system service impacts all other clients.

– Performance: Full reflection is costly: To enable it, all behavioral aspects
need to be reified in such a way that clients have the opportunity to change
them.

These disadvantages all stem from the absence of a scope concept in the
context of reflection. Scope is needed to:

– Separate the meta- from the base-layer.
– Define where and when reflection should be available.
– Limit the reflective interface to certain clients.
– Constrain the effects of reflection to certain clients.

Ideally, we would like to have scoped reflection on demand, that is to control
when and where and for whom reflective services should be available. Such a
reflective language would first of all be more secure, as untrusted clients could
be given restricted reflective access. It would also be more stable, since changes
made using reflection could be limited to the client that made them. Last but
not least it could be made faster, since the reification would only be done for
those clients that need it. Two recent research activities give us some hints how
this may be achieved.

Mirrors in Self and Strongtalk provide structural reflection on demand
[BU04]. In order to reflect on a particular object, a mirror object will be created
at run-time. The mirror reifies the reflective services for the object under study.
Thus mirrors provide a dedicated interface for the reflective services: meta- and
base-layer are separated, the particular interface handed to a client can be de-
fined by the object and it can differ between multiple clients. So mirrors provide
some of the properties we need. But they have shortcomings, as the support
they offer for full behavioral reflection is limited. They do not support fine-grain
reflection below the method level, nor mirror-based intercession. And mirrors do
not provide a way to scope the effects of reflective change.

Reflex provides fine-grained behavioural reflection for Java entities [TBN01]
[TNCC03]. The entities to be reified can be selected by time (enabled/disabled
by the program), or space. For spatial selection we can specify the entity (e.g.,
a class or an object), the operation (e.g. message send or a field access) or
combine these to select a specific operation (e.g. a certain message sent to a
certain object).

Reflex uses bytecode transformations for reifying Java execution entities like
instance variable access, method calls, exceptions and typecasts. Java as a static
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system does not allow bytecode to be modified at runtime, it needs to be done
statically at load-time: Only those entities selected at load time can be reflective
at runtime.

Geppetto is an implementation of Reflex for Squeak that provides the same
fine-grained behavioural reflection for Squeak language entities. It supports reifi-
cation of variables (instance variables and temps), message sends and message
receive. Like Reflex, Geppetto uses bytecode transformation, but as Squeak is
a dynamic system, these modifications are done at runtime. With Geppetto we
want to explore the ideas of Reflex in a dynamic language, especially how to
combine Geppetto with the idea of dynamic classboxes as outlined in Section 3.

Classboxes can be used to package reflective aspects of objects. When re-
flection is needed, the corresponding classbox can be dynamically loaded. Only
clients that need reflection will see those services. Classboxes are used to extend
the system without making the effect of this extension global. In the same way,
classboxes could scope the effect of reflection.

6 Example Objects

Object-oriented code can be hard to understand, extend and adapt. One source
of this difficulty is the disconnect between run-time architecture and source code:
whereas at run-time we have a collection of interacting objects, the source code
merely presents us with a class hierarchy. As a consequence it can be hard to
identify the run-time structures in the code [Nie04]. Furthermore, architectural
constraints and contracts tend to be implicit in the code, so it may be hard to
tell whether given changes are consistent with the existing contracts in place.

Examples are a well-established medium for communicating how things works
in virtually all domains. Dictionaries like the Oxford Dictionary of Current En-
glish [Soa01] provide the reader with lots of concrete examples of current usage
of a given word. Curiously the use of examples is not widespread in running
software systems, though they would offer many benefits. In particular, exam-
ples are run-time entities that can be manipulated, examples document usage
scenarios, examples can form the basis of executable tests, and finally examples
(that fulfil their tests) are guaranteed to be in sync with the running system.

A particularly useful notion is that of one-method commands. These are
argument-free methods that serve as examples for methods and objects, focus
on some given method under test, and return an example object. One-method
commands may be composed to form suites of tests.

As an example, consider the following Smalltalk method (defined on the class
side of the Account class:

Account class >> deposit100On123
|anAccount|
anAccount:= Account accountNumber123.
self test: [ anAccount deposit: 100 ].
self assert: [ anAccount balance==100 ].
^anAccount
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This code is evaluated by sending the message Account deposit100On123.The
method makes use of another one-method command of the Account class, called
accountNumber123, which presumably returns an example Account.deposit-
100On123 then focuses on the deposit: method, thus providing an example
usage of this method. (self test: aBlock performs aBlock, while documenting
what is actually under test). A test is performed, (self assert: ...) and the
modified example object is returned.

Here we can see how tests are composed from one-method commands, and
explicitly link tests with methods under test, tests with classes under test, and
tests with other tests.

Taivalsaari [Tai97] gives an overview about the philosophical differences be-
tween prototypical and class-based languages. We believe that a class-based lan-
guage with a built-in facility for composing and fetching examples can help to
bridge the gap between these two paradigms.

[IKM+97], attempted to bring more concreteness into the Smalltalk layer
of Squeak by introducing the method initializedInstance. The idea there is
to be able to recursively (re-)create exactly one prototypical instance for each
class, resembling our idea of example objects. In Squeak 3.7 there are still only
13 implementations of initializedInstance so one could say that this concept
of providing a single best example object for a given class did not take off.

Deursen et al. [Deu01] discuss several benefits and drawbacks of unit tests for
program comprehension. They do not discuss how one can navigate between tests
and programs but it is clear that they should be together as close as possible.

In [DMBK01] Deursen et al. discuss several bad smells of test code. They
describe the bad smell of eager tests which which test several methods of an
object at the same time, and are hard to comprehend. They therefore suggest
to apply the extract method refactoring to separate tests into what we call one-
method commands which exemplify exactly only one method. Other bad smells
include “general fixture” and “test code duplication”, which we suggest to clean
using de- and recomposition of the test code into one-method commands.

Edwards [Edw04] coined the term “example centric programming”. Based
on user provided examples (which we again call one-method commands) the
developer can browse abstract methods side by side with concrete calls of these
methods triggered by the one-method commands. Edwards does not provide
means of composing and linking these one-method commands as we do.

7 Conclusions

In many ways, we are still in the dark ages of programming language design.
Consider, for example, the great innovations in programming languages over the
past fifty years. To a large extent, most of these innovations were achieved in
the 1950s and 1960s. It is harder and harder to identify significant contributions
over the past 20 years. It is also hard to identify truly radical language designs
in recent years.
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One may interpret this as a sign that the state-of-the-art in programming
language design is stabilizing, or even that research in programming languages
is essentially dead. Another interpretation, however, is that language design is in
a rut due to our fixation with a certain style of language design. We have argued
in this paper that static languages have hampered innovation, and furthermore
that the death of file-based languages is the first step towards a new generation
of dynamic languages.

We need to come to terms with persistency, inconsistency and change in pro-
gramming languages. This means that dynamic programming languages should
support the notion of software as living, changing systems, they should provide
support multiple and possibly inconsistent viewpoints of these systems. Static
type systems still have their place, but they should serve rather than hinder ex-
pressiveness. To support dynamic change, behavioural reflection is needed, but
it should be provided only on-demand, when and where it is needed. Finally,
examples integrated into the language run-time can help one to document and
test the software in a synchronized fashion.
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Abstract. Service discovery and service aggregation are two crucial is-
sues in the emerging area of Service-oriented Computing (SoC). We pro-
pose a new technique for the discovery of (Web) services that accounts
for the need of composing several services to satisfy a client query. The
proposed algorithm makes use of OWL-S ontologies, and explicitly re-
turns the sequence of atomic process invocations that the client must
perform in order to achieve the desired result. When no full match is
possible, the algorithm features a flexible matching by returning partial
matches and by suggesting additional inputs that would produce a full
match.

1 Introduction

Service-oriented Computing (SoC) [10] is emerging as a new, promising comput-
ing paradigm that centres on the notion of service as the fundamental element for
developing software applications. According to [10], services are self-describing
components that should support a rapid and low-cost composition of distributed
applications. Services are offered by service providers, which procure service
implementations and maintenance, and supply service descriptions. Service de-
scriptions are used to advertise service capabilities, behaviour, and quality, and
should provide the basis for the discovery, binding, and composition of services.
Services possess the ability of engaging other services in order to complete com-
plex transactions, like checking credit, ordering products, or procurement. The
platform-neutral nature of services creates the opportunity for building com-
posite services by composing existing elementary or complex services, possibly
offered by different service providers [14].

The Web service model includes three component roles — clients, providers
and registries — where providers advertise their services to registries, and clients
query registries to discover services. In this scenario, two prominent issues in-
volved in the development of next generation distributed software applications
can be roughly synthesised as:

(1) discovering available services that can be exploited to build a needed appli-
cation, and

(2) suitably aggregating such services to achieve the desired result.

Currently, the universally accepted core standard employed for Web service
discovery is the Universal Description & Discovery Interface (UDDI [11]). UDDI
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supports the definition of service registries in the style of yellow pages, but
unfortunately it features only keyword-based matches that often give poor per-
formance.

Given the pivotal importance of service discovery for SoC, several attempts
to improve the quality of UDDI discovery are currently being pursued. One of the
major efforts in this direction is promoted by the World Wide Web Consortium
(W3C) which strongly advocates the introduction of semantic information in
the description of Web services [12]. Indeed, currently service description are
expressed by means of the Web Services Description Language (WSDL [13]),
by declaring a set of message formats and their direction (incoming/outgoing).
The resulting description is purely syntactic, very much in the style of Interface
Description Languages (IDLs) in component-based software engineering.

The W3C proposes a semantic-based description of Web services, based on
the use of OWL-S (formerly DAML-S) ontologies [8], where each service is pro-
vided with an advertisement containing three descriptions: service profile (“what
the service does”), service model (“how the service works”), and service ground-
ing (“how to access the service”). The process of Web service discovery — often
referred to as service matchmaking — then takes a query specifying inputs and
outputs (IOs) of the desired service as well as a service registry consisting of
(service) advertisements, and returns as output a list of matched services.

In this paper we present a new algorithm for the composition-oriented dis-
covery of Web services. The algorithm — called SAM (for Service Aggregation
Matchmaking) — can be used to match queries with service registries making
use of OWL-S ontologies. SAM extends a matchmaking algorithm proposed by
Bansal and Vidal in [3] by featuring a more flexible matching and, more impor-
tantly, by accounting for service compositions. Indeed, queries that cannot be
satisfied by a single service might be frequently satisfied by composing several
services. An immediate example of this is a client wishing to plan its holidays by
booking flight tickets as well as hotel accommodation while taking into account
various parameters such as weather, season prices, special offers, and so on.

The main features of the proposed algorithm can be summarised as follows:

– Flexible matching. The proposed algorithm (SAM) features a more flexible
matching with respect to [3] as:
• SAM performs a fine-grained matching at the level of atomic processes,

or sub-services (rather than at the level of entire services as in [3]).
• Rather than returning only full matches (when a single service can fully

satisfy the client request by itself), SAM also returns (when no full match
is possible) a list of partial matches. A partial match is a (composition
of) sub-service(s) that can provide only some of the outputs requested
by the client. It is important to stress that a partial match can be a
valuable answer for the client, which may have over-specified its query
or may decide to use the selected services even if its query will be only
partially satisfied.
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• When no full match is possible, SAM — besides returning partial matches
— is also capable to suggest to the client additional inputs that would
suffice to get a full match.

– Composition-oriented matching. More importantly, SAM is the first algo-
rithm (at the best of our knowledge) to provide a composition-oriented
matchmaking based on semantic descriptions of queries and services by tak-
ing into account service process models.
• When no single service can satisfy the client query, SAM checks whether

there are service compositions that can satisfy the query, possibly in-
cluding multiple executions of services as well.

• When SAM finds a match, it explicitly returns the sequence of atomic
process invocations that the client must perform in order to achieve the
desired result.

The rest of the paper is organised as follows. Section 2 is devoted to introduce
OWL-S ontologies for service discovery, while in Section 3 we describe the new
algorithm for the composition-oriented discovery of services. Finally, we draw
some concluding remarks in Section 4.

2 Web Service Discovery Using OWL-S Ontologies

As the use of UDDI for service discovery often leads to inaccurate matches,
increasing attention is being devoted to semantics-based techniques to improve
the quality of the matchmaking process. The best known approaches use DAML-
S/OWL-S [8] ontologies. OWL-S is an ontology for describing Web services and it
is written in DAML+OIL. The root of the ontology is represented by the generic
class Service which has three subclasses: service profile (“what the service does”),
service model (“how the service works”) and service grounding (“how to access
the service”).

The service profile provides a high-level description of a service and it con-
sists of three types of information: a human readable description of the service,
the functionalities provided by the service, and some functional attributes. Ser-
vice functionalities are represented by listing the inputs required as well as the
outputs produced by the service, and functional attributes specify additional in-
formation about the service such as what guarantees of response time or accuracy
it provides, or the cost of the service.

The service model has a process model subclass which provides a view of
a Web service in terms of process compositions. OWL-S defines three types of
processes: atomic, simple and composite. An atomic process is executed in a
single step (from the point of view of the client of the service). It can not be
decomposed further and it has an associated grounding. Only atomic processes
are allowed to have associated inputs and outputs (IOs) and they are the only
processes that can be directly invoked by the client. A simple process is similar
to an atomic one but it can not be invoked directly and it does not have an
associated grounding. It is a simplified and abstract view of a composite pro-
cess. Finally, a composite process consists of other processes, the composition
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being made with the following control constructs: split, sequence, unordered,
split+join, choice, if-then-else, iterate and repeat-until/while.

The first matchmaking algorithms based on DAML-S/OWL-S ontologies
(e.g., [9]) use the service profile. The matching based on the service profile (sim-
ilar somehow to matching two black boxes) allows to match a service request
asking for two outputs o1 and o2 with a service advertisement that provides
either o1 or o2 but not necessarily both o1 and o2 (e.g., a choice process). In-
deed, in order to clearly specify the behaviour of such service one would have to
provide two service profiles corresponding to the two alternatives. As one may
note this would lead to advertising a large number of profiles, even for non triv-
ial services. Moreover, analysing Web services only through their service profile
(i.e., their IOs), severely affects the process of discovery of service aggregations
that satisfy a request. Indeed, the service profile does not describe the internal
behaviour of services and hence it does not provide valuable information needed
for composing services.

Bansal and Vidal present in [2,3] an improvement of the matchmaking process
by using an algorithm based on the OWL-S process model. Their algorithm takes
as input a query specifying the desired IOs as well as a repository of OWL-S Web
services and returns one of the following degrees of match: exact (e.g., client
asks for “DVD”, provider replies with “Digital Versatile Disk”), plug-in (e.g.,
client asks for “British Music DVDs”, provider replies with “Music DVDs”),
subsumes (e.g., client asks for “Music DVDs”, provider replies with “British Mu-
sic DVDs”), or failed (e.g., client asks for “DVD”, provider replies with “MC”).
The algorithm takes into account the process model trees of the advertisements
as well as the ontological relations between matched IOs. According to [9], a ser-
vice request matches a service advertisement if the request provides all the inputs
(possibly more) needed by the advertisement while the advertisement generates
all the outputs (possibly more) needed by the requester. The algorithm of Bansal
and Vidal stores OWL-S service advertisements as trees corresponding to their
process models. Composite processes correspond to intermediary nodes while
atomic processes are represented as leaves. The root of the process model corre-
sponds to the root of the tree. The matchmaking algorithm begins at the root
of the advertisement tree and recursively visits all its subtrees finishing at the
leaves. For each node (e.g., sequence, choice and so on) a corresponding match-
ing algorithm that verifies the compatibility between its IOs and the IOs of the
query is employed. For example, in the case of a sequence process, if the outputs
requested by the query can be satisfied by all its children collectively then we have
a success, otherwise a failure. In the case of a choice process we get a success or
a failure depending on whether there exists at least one child able to provide by
itself all the outputs desired by the query. A detailed description of the matching
algorithms corresponding to several composite processes can be found in [2].

Two of the main limitations of existing matchmaking algorithms are single
service discovery and single service execution. Indeed, existing algorithms look
(inside a repository) for a single service capable to fulfil the request. For example,
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Fig. 1. Process model of an Electronics Store Service

Fig. 2. Process model of an Online Bank Service
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let us consider a registry containing two services: Electronics Store (Figure
1) and Online Bank (Figure 2). The first sells electronic items like notebooks
or digital cameras. The second is able to create virtual credit cards; a client
obtains a credit card number and a credit card type through a bank transfer.
We suppose that all concepts contained in the OWL-S advertisements are defined
in a shared ontology. Consider now the query specifying:

– inputs: username, password, country, notebook Model, notebook Make, c/a Num-

ber, info Bank, delivery Type and address, and
– output: buy Receipt Notebook.

Existing matchmaking algorithms give a failed match because in the reg-
istry there is no service able to fulfil the request by itself. On the other hand, we
can observe that the c card Type and c card Number needed as inputs by the
Notebook Payment atomic process of the Electronics Store service are not
provided by the query but they can be obtained by executing the Online Bank
service. In other words, while the first service cannot satisfy the query, a suitable
composition of the two services can.

A second limitation of existing matchmaking algorithms is that they do not
consider multiple executions of services. Consider for instance the query speci-
fying:

– inputs: username, password, country, camera Model, camera Make, notebook Mo-

del, notebook Make, delivery Type, address, c card Type, and c card Number,
and

– outputs: buy Receipt Notebook and buy Receipt Camera.

We observe that while existing algorithms return a failed match for this
query, it could be satisfied by executing twice the Electronics Store service.
Indeed, the Digital Camera Buy Sequence and Notebook Buy Sequence com-
posite processes of the first service are children of a choice process and hence
they cannot be both executed in a single run.

The following section is devoted to present a composition-oriented algorithm
for service discovery that overcomes the above described limitations.

3 Service Aggregation Matchmaking (SAM)

The goal of the SAM algorithm is to determine whether a query can be satisfied
by a (composition of) service(s), advertised in an OWL-S registry. SAM starts
with a preliminary phase during which it builds a tree for each process model
stored in the registry, as described by Bansal and Vidal in [3] and as we have
summarised in the previous section. The SAM algorithm consists of two main
parts (which will be described in the next two subsections):

1. Construction of a graph representing the dependencies among atomic pro-
cesses of the services in the registry;

2. Analysis of such dependency graph to determine a service composition ca-
pable to satisfy the query (or part of it, when no service composition can
fully satisfy the query).
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3.1 Construction of the Dependency Graph

The graph produced during the matchmaking phase is a directed graph. It has
two node types: data node and process node, the former corresponding to data
(inputs or outputs) and the latter to matched processes. In SAM the match
regards exclusively atomic processes, the only processes that can be directly
invoked by the client. An atomic process matches if and only if:

– either all its inputs are available because they are part of the query or because
they are returned as outputs by other previously matched atomic processes,

– or at least one of its outputs is part of the query or it is an input for some
previously matched atomic process.

When the algorithm finds a new matched atomic process, it creates a corre-
sponding process node and adds it to the graph. For each process node inserted
in the graph, the algorithm creates and inserts (if not already present) a data
node for each input and output of such process. If a data node is an input for
the process node, SAM inserts a directed edge from the former to the latter.
Similarly, if a data node is an output of the process node, the algorithm inserts
an edge from the latter to the former. There are also two types of edges between
process nodes, called sequencing and excluding constraints. If a process node P2

is a successor of another process node P1 as both are children of a sequence
construct, the algorithm inserts an edge P1 → P2 (sequencing constraint). We
also say that P1 is a predecessor of P2. SAM introduces a bidirectional edge
P1 ↔ P2 in the graph for each pair of process nodes (P1, P2) that are children
of a choice process (excluding constraint).

Initially, the graph contains only the data nodes corresponding to the inputs
and the outputs of the query. The matchmaking phase cycles over the registry
until no more process nodes can be added to the dependency graph. The match-
making is implemented by a recursive function Match, invoked over each service.
The Match function starts its execution at the root of the advertisement tree and
it is recursively invoked over children nodes. The execution finishes at leaf nodes,
where Match verifies the compatibility between the inputs and the outputs of
the corresponding atomic process and the data nodes currently present in the
graph. According to the OWL-S specification [8], we assume that an output Oi

is compatible with an input Ij if and only if either Oi and Ij represent the same
concept (exact match), or Oi represents a sub-concept of Ij (“Oi plugs-in Ij”,
or equivalently “Ij subsumes Oi”). Match deals with different types of OWL-
S nodes (sequence, choice and so on). For atomic nodes for example, Match
checks whether the corresponding atomic process is already contained in the
graph. If this is not the case, Match verifies the compatibility between the inputs
and the outputs of the atomic node and the data nodes currently contained in
the graph. If all its inputs or at least one of its outputs are contained (w.r.t.
compatibility) in the graph then the atomic process is considered to be matched
and added to the graph. Match then creates a new process node, new data nodes
and all needed edges and constraints, and inserts them in the dependency graph.
In the case of a sequence node, Match verifies if the corresponding sub-tree con-
tains at least one matched atomic process. If so, all (matched and unmatched)
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atomic processes contained in the sub-tree are inserted in the dependency graph.
For a choice node it verifies if it has at least one matched atomic process. In
this case, differently from a sequence node, only the matched atomic process
children are added to the graph.

The behaviour of the Match function is summarised by the following pseudo-
code, where Ip and Op denote the inputs and the outputs of P , respectively. Let
also Prevp be the set of atomic processes which must be executed before P ,
and Choicep be the set of atomic processes which can be executed only if P is
not executed.

Match(ServiceRegistry SR, Query Q, Graph G)
repeat

forall service S in SR do Match (Root(S), Q, G);
until no process node is added to G;

Match(AtomicProcess P , Query Q, Graph G)
if (P �∈ G) then

if (Ip ∈ G ∨ Op ∩ G �= ∅) then
Add P to G;
forall outputs O in Op do

if (O �∈ G) then Add O to G;
Add (P, O) to G;

forall inputs I in Ip do
if (I �∈ G) then Add I to G;
Add (I, P ) to G;

forall predecessors PR in Prevp do
if (PR ∈ G) then Add (PR, P ) to G;

forall choice processes PC in Choicep do
if (PC ∈ G) then Add (P, PC) ∧ (PC, P ) to G;

Match(SequenceProcess SP , Query Q, Graph G)
forall child C in SP .children do

Match(C, Q, G);
if (at least one process node is added to G) then

Add all atomic processes of SubTree(SP ) to G;

Match(ChoiceProcess CP , Query Q, Graph G)
forall child C in CP .children do Match(C, Q, G);

3.2 Analysis of the Dependency Graph

The second phase of the algorithm consists of analysing the dependency graph
constructed during the first phase. This second phase consists of five steps, de-
scribed next.
Step 1. Reachability of query outputs. The dependency graph includes a
data node for each query input and output, regardless of whether or not these
data have been matched during the first phase. SAM hence first checks whether
there are query output nodes in the graph G that do not have incoming edges
from process nodes. Indeed, such disconnected query outputs can not be pro-
duced as no service in the registry can generate them. If there are disconnected
query outputs in the graph, the client has to choose whether the matchmaking
process should nevertheless continue (by discarding such outputs from the query)
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or abort. In the latter case SAM terminates with a failure. In the former case
SAM removes the disconnected query outputs and continues with Step 2.

Step 2. Yellow Colouring. In this step SAM identifies — by colouring them
in yellow — all processes which may be useful for generating the query outputs.
Initially all nodes in the graph are white. The white colour is used to denote all
process and data nodes that do not have yet proved to be useful for satisfying
the query. SAM first colours in yellow all the query outputs. It then recursively
paints in yellow all process and data nodes that are white and that have an
outgoing edge leading to a yellow node. Note that excluding constraints are not
taken into account here (i.e., the yellow paint does not spread over excluding
constraints). The process of painting in yellow finishes when there is no other
node that can be coloured. At the end of this step all yellow process nodes cor-
respond to processes that might have to be executed in order to generate the
query outputs. Dually, yellow data nodes correspond to data that “might be
useful as input”/“might be generated as output” to/by yellow processes in order
to generate the query outputs. All nodes that are still white at the end of this
phase are not needed for fulfilling the request (and could be removed from the
graph). One may note that more nodes than necessary may have been painted.
The algorithm then continues with Step 3.

Step 3. Red&Black Colouring. The goal of this step is to identify — by paint-
ing them in red — the processes which contribute to generate the query outputs
and which can be actually executed given the query inputs are provided. To
describe this step it is convenient to introduce the notion of firable process.
A process node P is firable in a graph G if P is yellow and all its input data
nodes are red and if there are predecessor processes linked through sequencing
constraints then there is at least one such predecessor process node coloured in
red. The algorithm first paints in red all data nodes corresponding to query
inputs. While there is at least one yellow query output node and at least one
firable process, the algorithm selects a firable process for execution. If there
are several firable processes linked through excluding constraints then SAM
non-deterministically chooses one such firable process node and paints it in
red. Every non-deterministic choice corresponds to a “fork” (split) into several
instances. After painting a process in red, all its output data nodes are coloured
in red and all the process nodes linked to it by excluding constraints are in-
hibited by painting them in black. (We do so as for example, by colouring in
red a Pay with Credit Card process we should inhibit another Pay with Cash
process linked to it by an excluding constraint.) When painting in red a process
node, the algorithm adds it to a process sequence list initially empty. Each
instance of this step finishes either with a success if all query outputs became
red, or with a failure if there are no more firable processes but there is still
at least one yellow query output. It is important to note that if there are several
firable processes linked through excluding constraints then the non determin-
istic choose operator splits the current execution of this step into a number of
instances equal to the number of firable processes, each such instance corre-
sponding to painting in red the respective process node and further on its outputs
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as well as to inhibiting the processes linked to it by excluding constraints. As a
result of this step we shall obtain a set of triples <success/failure, coloured
graph G, process sequence>. Next, SAM continues with Step 4.
Step 4. Analysis of Triples. The algorithm further checks whether there is
at least one tuple <success, G, process sequence>. If so, it returns to
the client an ordered list of all tuples Ti where Ti = {<success, Gi, pro-
cess sequencei>}. Such list can be ordered by taking into account client’s
preferences (expressed together with the query). Such preferences can include
minimal number of matched services, minimal process sequence length and
so on.

Now, in the case that all the triples generated by Step 3 are failures, SAM
checks whether there exists a set of failures that together are able to gener-
ate all outputs requested by the query. If so, the request can be satisfied by
simply considering one of the possible sequences of the failures in this set. It
is important to note again that the choice of such set is made with respect to
client’s preferences. If such a set exists, the process finishes by returning to the
client a sequence obtained by the concatenation of all process sequences cor-
responding to the considered failures in the set. In this case we have a success
obtained from the aggregation of a set of failures.

If instead there is no such set of failures that can collectively satisfy the
query it means that there are query outputs that remain yellow in all graphs
obtained at the end of Step 3. The algorithm then computes the intersection of
the sets of all such unsatisfiable query outputs for all failures. Next, similarly
to the previous case, it considers a set of failures able to collectively satisfy the
producible outputs (i.e., the query outputs less the unsatisfiable ones). The al-
gorithm further asks the client whether it wishes more information with respect
to what is needed to completely satisfy the request. This information consists
of the additional inputs that are needed in order to be able to unlock and to
execute other processes so as to fully satisfy the request. If the client agrees then
SAM continues with Step 5. Otherwise it terminates.
Step 5. Individuating Additional Inputs. During this last step the algo-
rithm looks for additional inputs that need to be provided in order to have
further firable processes that help generating the unsatisfiable query outputs.
Hence, for each failure and for each unsatisfied output, SAM looks for yellow
process nodes that generate this output. The set of additional inputs needed
for producing this output in the respective failure comes from considering all
yellow input data nodes of these processes and recursively all yellow input data
nodes of the processes that should be executed before them due to sequencing
constraints1.

The following pseudo-code summarises the analysis of the dependency graph
described so far.

Let G = (N, E), where E = Edp

⋃
Epd

⋃
Esc

⋃
Ecc, Epd = links from process to data nodes of

the form (P, D), Edp = links from data to process nodes of the form (D, P ), as well as sequencing

1 If two or more processes generate the same output then they are taken as alternatives.
The same happens for processes with more than one yellow predecessors.
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constraints: (P ′, P ) ∈ Esc, and excluding constraints: (P ′, P ) ∈ Ecc. Let Ip and Op denote the
inputs and the outputs of a process P respectively, and let Q = {IQ, OQ} denote the query. Let also
OF be the set of data output nodes that are red in failure F .

U = {D ∈ OQ |� ∃P : (P, D) ∈ E}; //Step 1 → Reachability of Query Outputs
if U �= ∅ then

Query client whether to go ahead ignoring U ;
if client says yes then OQ = OQ \ U ;
else

return(“Query cannot be satisfied”);
Paint in white all X s.t. X ∈ N ;

Paint in yellow all D s.t. D ∈ OQ; //Step 2 → Yellow Colouring
while ∃X, Y : (X, Y ) ∈ Edp ∪ Epd ∪ Esc ∧ Xwhite ∧ Y yellow do Paint X in yellow;

Initialise ProcessSequence; //Step 3 →Red & Black Colouring
Paint in red all D s.t. D ∈ IQ ∧ D yellow;
while (Firable(G) �= ∅ ∧ ∃D ∈ OQ : D yellow) do

if ∃P ′ : (P ′firable ∧ ∀P” ∈ Firable(G) : (P ′, P”) �∈ Ecc) then P = P ′;
else P = choose(Firable(G));
Paint P in red and add P to ProcessSequence;
∀D : D yellow ∧ (P, D) ∈ Epd: paint D in red;
∀P ′ : P ′ yellow ∧ (P, P ′) ∈ Ecc: paint P ′ in black;

if ∃D : D yellow ∧ D ∈ OQ then failure;
else success;

if there exists at least one success then //Step 4 →Analysis of Triples
return an ordered list of (successful) results;

else
if ∃ a set S of failures s.t. ∀D ∈ OQ ∃F ∈ S : D ∈ OF then

return a concatenation of the ProcessSequences of all graphs in S;
else

NonProducibleOutputs = {D|D ∈ OQ ∧ ∀ failure F : D yellow in F};
ProducibleOutputs = OQ \ NonProducibleOutputs;
S = {F | F is a failure} ∧ ∀D ∈ ProducibleOutputs ∃F ∈ S : D ∈ OF ;
AddI = ∅;
Query client whether it wants info on additional inputs;
if client says yes then

forall failure F do // Step 5 → Individuating Additional Inputs
forall D ∈ NonProducibleOutputs do

P = Q ∈ G | D ∈ OQ;
AI = {D | (D ∈ IP ∧ D yellow)};
while (∃P ′ | (P ′, P ) ∈ Esc) do

AI = AI ∪ {D | (D ∈ IP ′ ∧ D yellow)};
P = P ′;

AddI = AddI ∪ “Add inputs needed for” + D + “in” + F + “:” + AI;
return (a concatenation of the ProcessSequences of all graphs in S, AddI);

3.3 An Example

We shall present next an example that illustrates the behaviour of SAM. Let us
consider a registry of OWL-S advertisements containing only the two services –
Electronics Store and Online Bank – described in Section 2.
Consider now the query specifying:

– inputs: username, password, country, camera Model, camera Make, notebook Mo-

del, notebook Make, c/a Number, info Bank, delivery Type and address, and
– outputs: buy Receipt Camera and buy Receipt Notebook.

One may note that Bansal and Vidal’s algorithm [2,3] would return a fail-
ure because there is no service in the registry able to satisfy the query by it-
self. More precisely, the Electronics Store service requires c card Type and
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c card Number as inputs in order to be able to provide buy Receipt Camera
and buy Receipt Notebook. Yet these inputs are not provided with the request
but are to be obtained by executing the Online Bank service. Bansal and Vi-
dal’s algorithm fails as it is unable to find such relation between IOs of distinct
services.

In its first phase SAM constructs the dependency graph (the graph in Fig-
ure 3 without colours) as the result of the matching process between the query
and the registry of services advertisements. One may note the exclusion con-
straints between the Load Account and Create Account atomic processes, be-
tween the Bank Load Account and Bank Create Account, as well as between
Notebook Buy, Digital Camera Buy, Notebook Payment and Digital Camera-
Payment atomic processes.

During the second phase SAM continues as follows:

1. During the first step SAM checks whether there are disconnected query out-
puts in the graph, yet in this example all query outputs are produced by at
least an atomic process.

2. SAM continues next with the second step (“Yellow Colouring”) during which
it paints in yellow all data nodes corresponding to the query outputs and
then it recursively paints in yellow all process and data nodes linked to other
yellow nodes. At the end of this step all data nodes are painted in yellow with
the exception of available Service, account Receipt and availability
concepts.

3. During step three (“Red&Black Colouring”) SAM starts by painting in red
all yellow data nodes corresponding to the query inputs. At this point the
only firable processes are Country Choice and Bank Load Account as all
their data inputs are red and they have no predecessors. Let us consider
that SAM chooses to execute the Country Choice process. By doing so, it
paints it in red and it adds it to the process sequence list. Moreover,
the Load Account process becomes firable as its (unique) predecessor is
now red. By further assuming that SAM selects the Load Account process
for execution, it paints it in red and then it inhibits the Create Account
process by painting it in black. In our case, the algorithm continues until
there are no more firable processes available. One may note that there
is a moment in which both Digital Camera Buy and Notebook Buy are
firable. At that point SAM splits the execution in two instances: the first
one paints in red the Digital Camera Buy process and it paints in black the
Notebook Buy and Notebook Payment processes, while the second paints in
red the Notebook Buy process and it paints in black the Digital Camera Buy
and Digital Camera Payment processes. At the end of step three of the al-
gorithm both instances return a failure as they were unable to generate
(i.e., to paint in red) all the requested outputs — the first one produces
the buy Receipt Camera but not the buy Receipt Notebook while the sec-
ond one produces the buy Receipt Notebook but not the buy Receipt Cam-
era. The process sequence list resulting from the first instance is hence
[Country Choice, Load Account,Bank Load Account, Digital Camera Buy,
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Virtual Credit Card $, Digital Camera Payment]2. The second instance
produces the following process sequence list: [Country Choice, Load Ac-
count, Bank Load Account, Notebook Buy, Virtual Credit Card $, Note-
book Payment].

4. SAM continues with step four of the algorithm (“Analysis of Triples”). Due
to the fact that both instances of the previous step return a failure, it
checks whether their union is able to generate all the requested outputs.
Consequently, SAM obtains a success from the aggregation of the pro-
cess sequences corresponding to the two failures. SAM finishes by re-
turning to the client the following process sequence: [ [Country Choice,
Load Account, Bank Load Account, Digital Camera Buy, Virtual Cred-
it Card $, Digital Camera Payment], [Country Choice, Load Account, B-
ank Load Account, Digital Notebook Buy, Virtual Credit Card $, Not-
ebook Payment] ].

5. For our scenario, the last step of the algorithm is not executed as the request
has been fulfilled.

Fig. 3. Coloured graph for the first query

2 The corresponding coloured graph is shown in Figure 3.
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Consider next the query specifying:

– inputs: username, password, camera Model, camera Make, notebook Model, note-
book Make, c/a Number, info Bank, delivery Type and address, and

– outputs: buy Receipt Camera and buy Receipt Notebook.

The algorithm proceeds similarly to the first considered case. The graph
produced at the end of the matchmaking phase is the same as the one pro-
duced for the previous example and all query outputs are produced by at least
an atomic process. During the second step, SAM paints in yellow all data nodes
with the exception of available Service, account Receipt and availability
as in the previous example. At the beginning of the “Red&Black Colouring”
phase only the Bank Load Account process is firable and hence it is coloured
in red and added to the process sequence list, while the Bank Create -
Account process is painted in black. This step ends with a failure as there
are yellow query outputs but there are no firable processes. SAM contin-
ues then with the “Analysis of Triples” phase but is unable to find a set of
failures that collectively are able to provide the buy Receipt Camera and
buy Receipt Notebook outputs. Next, SAM queries the client whether it wants
more information about the generated process sequence and about how it is
possible to fully satisfy the query. Assuming that it agrees, SAM continues with
step five (“Individuating Additional Inputs”) when it looks for each unsatis-
fied output for yellow process nodes that generate this output. In our case,
Digital Camera Payment and Notebook Payment are the atomic process that
can generate the buy Receipt Camera and buy Receipt Notebook outputs re-
spectively. Yet, their execution is conditioned by the execution of their prede-
cessors and moreover, both processes need c Card Number and c Card Type to
be provided as inputs. A possible list of such additional inputs returned by SAM
is: {country, c Card Number, c Card Type}. Indeed, all inputs needed for the
execution of their predecessor processes are contained in the query with the
exception of country.

It is worth noting that SAM is able to solve both queries presented in Sec-
tion 2. SAM responds to the first query with the following process sequence:
[Country Choice, Load Account, Bank Load Account, Notebook Buy, Virtual-
Credit Card $, Notebook Payment]. To the second query, SAM responds with:
[ [Country Choice, Load Account, Digital Camera Buy, Digital Camera Pay-
ment], [Country Choice, Load Account, Notebook Buy, Notebook Payment] ].

4 Concluding Remarks

We have presented a new algorithm — called SAM (for Service Aggregation
Matchmaking) — for the composition-oriented discovery of Web services. As
already mentioned in Section 1, the main novel features of SAM are:

(1) to perform a fine-grained matching (at the level of atomic processes of ser-
vices rather than at the level of entire services),
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(2) to feature a flexible matching by returning partial matches and by suggest-
ing additional inputs (when some query output cannot be produced by the
services in the registry),

(3) to discover service compositions capable of satisfying a query, when no single
service can satisfy it. In such cases SAM also explicitly returns the sequence
of atomic process invocations that the client must perform in order to achieve
the desired result.

The first semantics-based algorithm for Web service discovery using DAML-
S ontologies was developed by Paolucci et al. [9]. Their algorithm performs
a matching between service requests and service advertisements described as
DAML-S service profiles. An assessment of the deployment of this algorithm
to a UDDI registry was recently reported in [6], where WSDL service descrip-
tions were enriched with semantics descriptions in the style of DAML-S service
profiles. As we already noted in Section 2, the algorithm described in [9] is how-
ever limited to discovering a single service, and it does not address the issue of
discovering service compositions. An algorithm for service discovery using ser-
vice compositions was recently presented by Aversano et al. [1]. Their algorithm
analyses DAML-S service profiles (as [9]) and it is also capable of performing a
cross ontology matching (for service descriptions using different ontologies) as
well as of matching service compositions (when no single service can fulfil the
client request). Comparing SAM with [1], one may note that SAM analyses the
process model of services to perform a finer-grained matchmaking, at the level of
atomic processes inside services rather than at the level of entire services. More-
over, when no service composition can satisfy the query, SAM is also capable of
suggesting additional inputs that would suffice to get a full match.

The first service discovery algorithm based on the analysis of DAML-S pro-
cess models of services was proposed by Bansal and Vidal [3]. As we already
discussed in Section 2, SAM extends [3] by considering both compositions and
multiple executions of services. A preliminary version of SAM was presented in
[5], where a first, limited form of service composition discovery was described.
The current version of SAM described in this paper substantially extends [5] by
introducing the dependency graph and its analysis, by providing a list of atomic
process invocations, and by suggesting additional inputs when needed.

A semi-automatic approach to composite service discovery was recently pre-
sented by Liang et al. [7]. An interesting feature of it is the employment of
constraint matching over a service dependency graph, where constraints may
specify data dependencies as well as non-functional properties of services (such
as Quality Of Service). Their approach is however based on UDDI registries, and
hence the accuracy of the discovery is limited due to the absence of semantic
information.

Our plans for future work include assessing SAM by experimenting it on large
numbers of queries and service advertisements. While we have tested our Java
implementation of SAM on several examples, an obstacle to running massive
experiments is the lack of available OWL-S descriptions of services (only a few
are publicly available in the W3C Web site). A promising approach to ease the
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generation of OWL-S descriptions of services may be to publicly deploy (to UDDI
registries) supporting tools that facilitate such descriptions, as done for instance
by Kawamura et al. [6] to promote the generation of DAML-S service profiles.
Another direction for future work is to extend the matching featured by SAM
in order to deal with other attributes of services (including extra-functional
ones) and the use of different ontologies. Our long-term goal is to develop a
well-founded methodology to support the discovery, aggregation, and —when
necessary— adaption [4] of services.
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Abstract. Due to the large success of wireless networks and portable devices, the
pervasive computing paradigm is becoming a reality. One of the most challeng-
ing objectives to be achieved in pervasive computing environments is to allow
a user to perform a task by composing on the fly the environment’s service and
resource components. However, existing approaches commonly assume that net-
worked components have been developed to integrate in terms of interfaces and
conversations, which restricts the user’s ability to fully exploit the diversity of
the pervasive computing components. In order to overcome this constraint, we
propose a solution for ad hoc composition of pervasive computing components,
based on the Web services and Semantic Web paradigms. The main feature of our
solution is the ability to integrate on the fly a number of Web services’ conversa-
tion fragments to reconstruct a conversation enabling the target user task.

1 Introduction

The paradigm of pervasive computing has opened new perspectives to the enactment of
human everyday activities related to accessing information and computation. Pervasive
computing enables user-centric retrieval and consumption of information, compared to
the conventional computer-centric approach. Systemically, this is realized as a syner-
gistic combination of intelligent human-machine interfaces and ubiquitous computing
and networking. The ubiquitous property implies a useful, pleasant and unobtrusive
presence of the system everywhere around us.

A pervasive computing environment is populated with networked, both computing
and input/output devices providing the environment’s components. Within this environ-
ment, users perform tasks which integrate the functionalities offered by the environ-
ment’s components. A pervasive computing environment is characterized by a number
of features, such as: (i) the highly dynamic character of the computing and networking
environment due to the intense use of the wireless medium and the mobility of users; (ii)
the resource constraints of mobile devices, in terms of CPU, memory, storage, display
capabilities, battery power and bandwidth; and (iii) the high heterogeneity of integrated
technologies in terms of networks, devices and software infrastructures. In such an envi-
ronment, satisfying the functional requirements of user tasks becomes extremely hard.
Specifically, the integration of the environment’s components to support a user task
shall: (i) be dynamic, according to available components at the specific time and place;
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(ii) satisfy the functional requirements in an effective way within the bounds posed by
the resource constraints of mobile devices; and (iii) accommodate the heterogeneity of
technologies. However, existing approaches assume that pervasive computing compo-
nents have been developed to integrate. This means that components being integrated
shall perfectly match with the task specification in terms of supported interfaces and
conversations.

Our aim is to allow a user who carries an abstract task description on his/her device,
i.e., a description without any reference to existing component instances, to perform this
task by integrating on the fly the environment’s components that are available around
him/her, without any preliminary knowledge about these components. This is what we
call ”ad hoc composition of user tasks”. This requires building upon an architectural
style that deals with the heterogeneity of pervasive computing components.

Service Oriented Architecture (SOA) is an architectural style that offers solutions
to the interoperability problem among distributed applications. In the SOA approach,
software resources that are available on the network are abstracted as services. These
services are described in a declarative manner that is independent from their imple-
mentation; they are loosely coupled, and communicate using standard protocols. This
architectural style is most convenient to the pervasive computing environment, as it en-
ables homogeneous use of the heterogeneous software components that populate the
pervasive computing environments.

Web services is one of the realizations of the SOA architectural style. Web services
introduces loosely coupled services that communicate using the standard technologies
that made the success of the Web. More precisely, a Web service is a software compo-
nent that is developed using any programmation language and deployed on any plat-
form, and that is accessible via the Web. It exposes an XML interface that describes its
public operations and its access details; this interface is specified using the Web Ser-
vices Description Language (WSDL)1. A Web service communicates using the Simple
Object Access Protocol (SOAP)2 on top of Internet protocols (HTTP, SMTP). Further-
more, Web services have already been used in pervasive computing environments [13]
and have proved to be efficient when deployed on mobile, resource-constrained devices.
All these features make Web services an excellent candidate to support application-level
interoperability in pervasive computing environments. Thus, by representing each per-
vasive computing component as a Web service, the problem of dynamic integration of
components can be treated as a problem of dynamic composition of Web services.

Dynamic composition of Web services involves automating the discovery and se-
lection of services, ensuring semantic and data-type compatibility [16], but also au-
tomating service invocation. The automation of service discovery and selection can be
achieved only if service descriptions are machine-interpretable. A key issue is that the
two main standards for describing and publishing Web services (WSDL and UDDI3)
are mainly syntactic. Thus, to discover and select services a strong matching (i.e. a
syntactic comparison) have to be made between the required functionalities and the ad-

1 WSDL: Web Services Description Language. http://www.w3c.org/TR/wsdl
2 SOAP: Simple Object Access Protocol. http://www.w3c.org/TR/SOAP
3 UDDI: Universal Description, Discovery, and Integration of Business for the Web.

http://www.uddi.org
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vertised ones. The semantic representation of service descriptions’ content will allow
machines to understand and process this content, and to support dynamic discovery
and integration. Thus, a number of research efforts have been made to apply to Web
services the solutions that have been proposed by the Semantic Web community for
semantically annotating Web pages. This leads the emergence of semantic Web ser-
vices. In this area, Ontology Web Language for Services (OWL-S)4 is one of the most
promising languages for describing semantic Web services.

On the other hand, the automation of service invocation involves the use of conver-
sation languages (e.g., WSCI [27], WS-CDL[26], WSCL[28]) to describe the external
behavior of the service rather than describing only the service operations as supported
by WSDL. This conversation description prescribes how to interact with the service so
that it behaves in a specific desired manner.

Our work presented in this paper is a part of the effort of the IST Amigo project5 that
investigates solutions to realize the full potential of home networking to improve peo-
ple’s lives. In this paper, we present a solution to the ad hoc composition of user tasks
from available pervasive computing components. Both the user task and the environ-
ment’s components are represented as semantic Web services described using OWL-S.
The main feature of OWL-S that we exploit, is the ability to describe semantic con-
versations. More precisely, OWL-S allows the description of the external behavior of a
Web service by using a semantic model, in which each operation involved is described
semantically in terms of inputs/outputs. The difference between the user task descrip-
tion and the environments’ services descriptions, is that the task description is abstract
and does not contain any concrete reference to existing Web services.

Our solution introduces a matching algorithm that attempts to reconstruct the ab-
stract task process description by integrating fragments from the environments’ services
process descriptions. The result obtained is a concrete task description that contains
references to available environments’ services and that is executable by invoking those
services.

The remainder of the paper is structured as follows. First, we present the general
context of our work (Section 2). We then present our approach to the ad hoc compo-
sition of Web services (Section 3). Further, we review related research efforts in the
area of matching algorithms (Section 4). Finally, we conclude with a summary of our
contribution and discuss our future work (Section 5).

2 Background

2.1 Service Description

Web services can be described using three description levels that are : (i) the interface-
level; (ii) the process-level; and (iii) the binding-level. The interface-level description
contains the signatures of the service operations. The process-level description is the
specification of the external behavior of the service, which is also called the service’s

4 OWL-S: Semantic Markup for Web Service. http://www.daml.org/services/owl-s
5 Amigo: ambient intelligence for the networked home environment.

http://www.extra.research.philips.com/euprojects/amigo/
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conversation. Finally, the binding-level description contains the low level information
necessary to communicate with the service, including protocols, addressing and mes-
sage formats.

WSDL describes services using the interface-level description and the binding-level
description. While these two levels are sufficient when the service has a simple behav-
ior (i.e., invocation of a single operation), it remains insufficient when the service has
a complex behavior. In this case, the key issue is that we do not have any indication
about when and which service operations have to be invoked in order to lead the service
to behave as we want. Moreover, for dynamic service invocation, this has to be auto-
mated. Thus, by having a conversation description, a requester dynamically can derive
the sequence of information to exchange with the service, which in turn correspond
to the interaction protocol of the service [22]. This is what makes the process-level
description an important requirement to achieve dynamic service composition.

2.2 Semantic Web Services

Semantic Web services is a research area at the intersection of two important research
domains that concern Web technologies : the Semantic Web and Web services. The
Semantic Web aims at describing the static information provided by Web pages in a non-
ambiguous manner, in order to allow machines to understand and process their content
[3]. Web services standards, such as WSDL and UDDI, use XML structures to describe
Web services functionalities and their exchanged data. However, these structures are
syntactic which makes it impossible for a machine to automatically understand Web
services descriptions. A semantic Web service is then a Web service described using
a well defined semantic language, which provides the service with a non-ambiguous
interface, facilitating the automation of certain tasks, such as discovery, invocation and
composition.

There are two main approaches to semantically describe Web services. The first
approach adds semantics on top of WSDL. The second approach uses ontologies6 that
have been developed specifically to describe Web services.

A number of research efforts have been undertaken in order to bring semantics
to WSDL [25,7,11,21,1]. These introduce different models to semantically annotate
WSDL descriptions, and some of them propose solutions for mapping XSD structures
to ontologies and/or classify services into categories. However, as they are build upon
WSDL, these models lack in describing Web services’ conversation, which is an impor-
tant requirement to achieve dynamic service composition.

2.3 OWL-S

OWL-S (previously DAML-S), is a Web service ontology based on the Ontology Web
Language (OWL)7, used to describe Web services properties and capabilities. Using
OWL-S a service description is composed of three parts : the service profile, the process
model and the service grounding.

6 Ontologies describe structured vocabularies, containing useful concepts for a community who
wants to organize and exchange information in a non-ambiguous manner.

7 OWL: Web Ontology Language. http://www.w3.org/TR/owl-ref/
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The benefit of using OWL-S rather than another approach to semantically describe
Web services is that OWL-S offers a generic model to describe Web services. This
model is easily extensible and allows the different levels of service description that
we have identified earlier. Furthermore, OWL-S brings semantics to the conversation
description, and thus allows flexible conversation matching.

OWL-S Service Profile. The service profile gives a high level description of a service
and its provider. It is generally used for service publication and discovery. The service
profile is composed of three parts: (i) an informal description of the service oriented to
a human user; (ii) a description of the service’s capabilities, in terms of Inputs, Outputs,
Pre-conditions and Effects (IOPE); and (iii) a set of attributes describing complemen-
tary information about the service.

OWL-S Process Model. The process model is a representation of the external be-
havior of the service as a process. This description contains a specification of a set
of sub-processes that are coordinated by a set of control constructs (e.g., Sequence or
Parallel constructs); these sub-processes are atomic or composite. The atomic processes
correspond to WSDL operations. The composite processes are decomposable into other
atomic or composite processes by using a control construct.

OWL-S Service Grounding. The service grounding specifies the information that is
necessary for the service invocation, such as the protocol, message formats, serializa-
tion, transport and addressing information. It is a mapping between the abstract descrip-
tion of the service and the concrete information necessary to interact with the service.
The OWL-S service grounding is based on WSDL.

3 Ad Hoc Composition of Semantic Web Services

Ad hoc composition of Web services translates into the integration on the fly of a set of
services to perform a user task. Our objective is to allow a user entering into a pervasive
computing environment, in which services and resources publish an OWL-S descrip-
tion, to perform a task. A description of this task is available on the user’s device as
an abstract OWL-S conversation. In order to select the set of services that are suit-
able to be integrated to perform the user’s task, and to integrate this set of services, a
matching algorithm is needed. In our approach, we propose a matching algorithm that
enables reconstructing the task’s conversation using fragments from the conversations
of the environment’s services. Towards this goal, we first introduce formal modeling
of the conversations of both the environment’s services and the task as finite state pro-
cesses (FSP). Other approaches for formalizing Web services conversation and compo-
sition have been proposed in the literature, generally based on process algebras (e.g.
π-calculus, CCS)[8,15,6], or Petri nets[24,19,17]. FSP is generally used as a textual no-
tation for concisely describing and reasoning about concurrent programs, such as work-
flows of Web service compositions[10]. These processes can be represented graphically
using finite state automata.

In the following, we describe our dynamic composition approach. First, we present
the notion of abstract task (Section 3.1). Then, we present our model to map OWL-S
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conversations to finite state automata (Section 3.2). Finally, we describe our matching
algorithm (Section 3.3).

3.1 Abstract Task Description

While Web services of the pervasive computing environment are described as OWL-
S processes with a WSDL grounding, the user task is described as an abstract OWL-S
process without any reference to existing services. An abstract OWL-S process involves
abstract atomic and composite processes.

An abstract atomic process is defined as an elementary entity that has a set of in-
puts/outputs. Those inputs/outputs are specified with logical names. They carry seman-
tic definitions, and have to be matched to inputs/outputs of a concrete OWL-S atomic
process contained in the description of an environment’s service. An abstract compos-
ite process is composed of a set of abstract, either composite or atomic, processes, and
uses a control construct from those offered by the OWL-S process model. These control
constructs are: Sequence, Split, Split + Join, Choice, Unordered, If-Then-Else, Repeat-
While, and Repeat-Until.

In addition to the description of the task’s conversation, we allow the definition of
a set of atomic conversations, that are fragments of the task conversation that must be
executed by a single Web service.

3.2 Modeling OWL-S Processes as Finite State Automata

Formally, an automaton is represented by the 5-tuple < Q,
∑

, δ, S0, F > [12], where:

– Q is a finite set of states.
–

∑
is a finite set of symbols that define the alphabet of the language the automaton

accepts. ε is the empty symbol.
– δ is the transition function, that is δ : Q × ∑ → Q
– S0 is the start state, that is, the state in which the automaton is when no input has

been processed yet (Obviously, S0 ∈ Q).
– F a subset of Q (i.e. F ⊂ Q), called final states.

In our modeling approach, the symbols correspond to the atomic processes involved
in the conversation. The initial state corresponds to the root composite process, and a
transition between two states is performed when an atomic process is executed.

Each process, either atomic or composite, that is involved in the OWL-S conver-
sation, is mapped to an automaton and linked together with the other ones in order to
build the conversation automaton. This is achieved following the OWL-S process de-
scription and the mapping rules shown in Figure 1. In this Figure we can see that an
atomic process ap is modeled as an automaton < Q,

∑
, δ, S0, F >, where :

– Q = {S0, S1} ;
–

∑
= {ap} ;

– δ(S0, ap) = S1 ;
– S0 is the start state ;
– F = {S1}.
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A composite process C that involves a set of processes P1, P2, ..., Pn ,represented by the
automata < Q1,

∑
1, δ1, S0,1, F1 >, < Q2,

∑
2, δ2, S0,2, F2 >, ..., <Qn,

∑
n, δn, S0,n, Fn >,

respectively, is represented by the automaton < Q,
∑

, δ, S0, F > according to the
control construct it uses, as follows.

– If C=Repeat-While(P1)8

• Q = Q1;
• ∑

=
∑

1;
• δ : Q1 ×

∑
1 → Q1

(x, y) �→ δ(x, y) = δ1(x, y)when(x, y) ∈ Q1 ×
∑

1 and δ(x, y) = S0 when
x ∈ F1 and y = ε;

• S0 = S0,1;
• F = F1 ∪ {S0}.

– If C=Choice(P1, P2, ..., Pn), then:
• Q = (

⋃
Qi) ∪ SInit (SInit is a new start state);

• ∑
=

⋃∑
i;

• δ :
⋃

(Qi ×
∑

i) →
⋃

Qi

(x, y) �→ δ(x, y) = δi(x, y)when(x, y) ∈ Qi ×
∑

i and δ(x, y) = S0,i when
x = SInit and y = ε;

• S0 = SInit;
• F =

⋃
Fi.

– If C=Sequence(P1, P2, ..., Pn) then:
• Q =

⋃
Qi;

• ∑
=

⋃∑
i;

• δ :
⋃

(Qi ×
∑

i) →
⋃

Qi

(x, y) �→ δ(x, y) = δi(x, y)when(x, y) ∈ Qi ×
∑

i and δ(x, y) = S0,i+1

when x ∈ Fi (i �= n)and y = ε;
• S0 = S0,1;
• F = Fn.

– If C= Split(P1, P2) then C is treated as Choice(Sequence(P1, P2), Sequence
(P2, P1)), as we process parallelism as non determinism. The Split+Join and the
Unordered constructs are treated as the Split construct.

– If C=If-Then-Else(P1, P2) then C is treated as Choice(P1, P2).

The conditions involved in the constructs Repeat-While, Repeat-Until and If-Then-Else
are not visible in our automata model. However, these conditions will be taken into
consideration during the matching process. The OWL class Condition that defines those
conditions, is actually a placeholder for further work, and will be defined as a class of
logical expressions. Thus, we consider that during our matching algorithm a comparison
between those logical expression will be made. More information about this comparison
will be given in future work.

8 If C=Repeat-Until(P1) then it is treated as the Repeat-While(P1) but with removing the initial
state from the set of final states. The only difference between the Repeat-While construct and
the Repeat-Until construct is that the process being repeated is executed at least once in the
case of the Repeat-Until construct.



38 S. Ben Mokhtar, N. Georgantas, and V. Issarny

.

.

Choice(P1,P2,...,Pn)

ε
ε

ε

P1

P2

Pn

...

...

...

...

ε
...

P1 P2

ε
...

Pn

ε
...

Sequence(P1,P2,...,Pn)

... ...

P1 P2

ε

... ...

P2 P1

ε

ε

ε

Split(P1,P2), Split+Join(P1,P2),
 Unordered(P1,P2) 

...

P1

ε

Repeat-While(P1)

...

P1

ε

Repeat-Until(P1)

ap

Atomic Process ap

Start state

Final state Former final state

Former start state

Fig. 1. Modeling OWL-S processes as finite state automata

3.3 Matching Algorithm

One of the most important features of a dynamic service composition approach is the
matching algorithm being used. Following the definition given by Trastour et al. in [23],
the matching is the process by which parties that are interested in having exchange of
economic value are put in contact with potential counterparts. The matching process is
carried out by matching together features that are required by one party and provided
by another. Thus, the matching allows the selection of the most suitable services to
respond to the users’ requirements. In our approach, matching depends on two impor-
tant features : (i) the services’ advertisements; and (ii) the task’s description. A service
advertisement is composed of the information published by the service provider. This
description could be quite simple, for example, a set of keywords describing the ser-
vice, or more complex, describing for example the service’s operations, conversation,
functional and non-functional capabilities. This description could further be syntactic
(by using XML-based standards for Web services’ description) or semantic (by using
semantic Web languages). In our approach, services are advertised by means of their
provided behavior, i.e., conversation, while the user task is described by the behavior it
requires from services.

The matching algorithm we propose aims at reconstructing the task’s behavior by
using fragments of the services behaviors. This algorithm is performed in two steps:
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(i) semantic operation matching, and (ii) conversation matching, which are detailed
bellow. Semantic operation matching aims at selecting a set of services that may be
integrated to compose the target task. Our selection criterion is the provision by the
service of at least one semantically equivalent operation from those that are involved in
the task. Conversation matching then compares the structure of the task’s conversation
with those of selected services and attempts to compose fragments from the services’
conversations to reconstruct the task’s conversation.

Semantic Operation Matching. The objective of the semantic matching step is to
compare semantically described operations involved in the task’s conversation with
those involved in the services’ conversations. This kind of matching is more power-
ful and more flexible than syntactic matching, as it allows the use of inference rules
enabled by ontologies to compare elements, rather than comparing syntactically their
names.

To perform semantic operation matching, we build upon the matching algorithm
proposed by Paolucci et al. in [18,22]. This algorithm is used to match a requested
service with a set of advertised ones. The requested service has a set of provided inputs
inReq , and a set of expected outputs outReq , whereas each advertised service has a set
of expected inputs inAd and a set of provided outputs outAd. In our case, we propose
to use this matching algorithm to compare atomic processes, i.e., operations, rather that
high-level Web services’ capabilities. This matching algorithm defines four levels of
matching.

– Exact : if outReq = outAd or outReq is a direct subclass of outAd

– Plug in : if outAd subsumes9 outReq , in other words, outAd could be used in the
place of outReq

– Subsumes : if outReq subsumes outAd, in this case, the service does not completely
fulfill the request. Thus, another service may be needed to satisfy the rest of the
expected data.

– Fail : failure occurs when no subsumption relation between advertisement and re-
quest is identified.

This matching algorithm also applies between the inputs of the request and the inputs
of the advertisement. A match between an advertisement and a request is recognized
when all outputs of the request are matched against all outputs of the advertisement;
and all the inputs of the advertisement are matched against all the inputs of the request.

Furthermore, we propose to use the two first levels of matching : Exact and Plug
in matches, as we consider that a subsumes match cannot guarantee that the required
functionality will be provided by the advertised service[16]. Furthermore, as we match
operations we don’t want to split them between two or more services.

The matching process we are building upon is a complex mechanism that may lead
to costly computations. However, the algorithm uses a set of strategies that rapidly
prune advertisements that are guaranteed not to match the request[18]. For example,
if one of the outReq cannot be matched by any of the outAd the match directly fails.
Furthermore, the fact that we use only the first two levels of matching considerably
reduces the cost of the matching.

9 Subsumption means the fact to incorporate something under a more general category.
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The main logic of our semantic operation matching algorithm is that Process model
descriptions of services are parsed, and once all inputs/outputs of a task’s operation are
matched against all inputs/outputs of a service’s operation the service is recorded. More
precisely, all the operations of this service that are semantically equivalent to task’s
operations are recorded. This allows the selection of a set of services that offer seman-
tically equivalent operations with those of the user’s task. The conversations offered by
those selected services are then used to reconstruct the task’s conversation.

Conversation Matching. The objective of the conversation matching is to compare
the structure of the task’s process with the structure of the selected services processes,
in terms of control constructs involved. In this algorithm, we use the automaton model
describing each service that has been selected and the one describing the user task. The
first step is to connect the selected services’ automata to form a global automaton. This
is achieved by adding a new initial state and an ε-transition from this state to each of
the initial states of the selected services. Other ε-transitions are also added to link each
final state of the selected services with the new initial state.

Check(TaskState, EnvState){
  if(TaskState is a final state and EnvState is a final state)
     success;
  else{
     if(EnvState.followingSymbols don't include TaskState.followingSymbols )
        fail;
     else{
        forall Symbol in TaskState.followingSymbols, state1 in EnvState.nextState(Symbol),
               state2 in TaskState.nextState(Symbol){
                Check(state1,state2);          
        }}}}

Fig. 2. Main logic of the conversation matching algorithm

The next step of our conversation matching algorithm is to parse each state of the
task’s automaton by starting with the initial state and following the automaton transi-
tions. Simultaneously, a parsing of the global automaton is done in order to find at each
step of the parsing process, an equivalent state to the current one in the task. An equiv-
alence is detected between a task’s automaton state and a global automaton state, when
for each input symbol of the former there is at least a semantically equivalent input
symbol10 of the latter. Each state of the task’s automaton is parsed just once. We have
implemented this algorithm in a recursive form. This algorithm checks whether we can
find a sub-automaton in the global automaton that behaves like the task’s automaton.
The main logic of this algorithm is described in Figure 2.This algorithm gives a list
of sub-automata of the global automaton that behave like the task automaton. Figure
3 shows an example of the conversation matching algorithm. In this figure the abstract
task automaton (on the left higher corner) that involves the operations op1, op2, op3 and
op4 is going to be matched against the global automaton (on the right) which connects
together the automata of the services S1, S2, S3, S4 and S5. The operations involved in
the task have already been matched semantically against the services’ operations dur-
ing the semantic operation matching step. Thus, in the global automaton we have just

10 We remind that equivalence relationship between symbols is a semantic equivalence that have
already been checked during the semantic matching step.



Ad Hoc Composition of User Tasks in Pervasive Computing Environments 41

represented a selected set of operations that are semantically equivalent to the task’s op-
erations. After browsing simultaneously the two automata as specified in the algorithm,
the sub-automaton of the global automaton represented in the left lower corner of the
figure is found. This automaton behaves exactly as the task’s automaton.
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Task automaton after the conversation
matching

Global automaton after semantic the operation
matching

Fig. 3. An example of the conversation matching

Once the list of sub-automata that behave like the task automaton is produced, a
last step consist in checking whether the atomic conversation constraints, have been
respected in each sub-automaton. As the global automaton is modeled as a union of the
selected services automata, it is easy to check whether an atomic conversation fragment,
that is, a set of transitions, is provided by a single service. Indeed, it is sufficient to
verify that for each transition set that corresponds to an atomic conversation there is no
ε-transition going to the initial state before this conversation is finished. ε-transitions
that connect final states to the initial state of the global automaton mark the end of a
service conversation and the passing to a new one. After rejecting those sub-automata
that don’t verify the atomic conversation constraints, we select arbitrarily one of the
remainders, as they all behave as the user task. Using the sub automaton that has been
selected, an executable description of the user task that includes references to existing
environment’s services is generated, and sent to an execution engine that executes this
description by invoking the appropriate service operations.

An example: a video application In this section we show a simple example of how
our matching algorithm could be used to match conversations. This example is inspired
from one of the Amigo’s scenarios.

“...Robert, (Maria’s and Jerry’s son) is waiting for his best friend to play video
games. Robert’s friend arrives bringing his new portable DVD player. He proposes to
watch a film rather than playing games, and asks Robert if he has any new films in his
home databases. In order to use his friend’s DVD player, Robert has asked the system to
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consider this device as a guest device and to authorize it to use the home’s services. This
player is quite complex as it takes into consideration some user’s contextual and access
rights information. The former is used to display the video streams according to the
user’s physical environment and preferences (for example by adapting the luminosity
and the sound volume), while the latter is used to check whether the user is authorized
to visualize a specific stream (for example some violent films may be unsuitable for
children)...”

This DVD player contains a video application that uses Web ontologies to describe
its offered and required capabilities. The conversation that is published by this appli-
cation is depicted in figure 4 (left higher corner). This conversation is described as an
OWL-S process that contains concrete offered operations (uncolored) and abstract re-
quired operations (in gray) that have to be bound to environment’s operations. On the
other hand Robert’s home environment contains a number of services among which a
Digital Resource Database service and a Context manager service; both publish OWL-S
conversations as shown in the same figure (on the right and left lower corner respec-
tively).

At execution time this device will discover the missing abstract conversation frag-
ment involved in its description. The semantic operation matching step will allow the
selection of the two previous services as they contain operations that match the opera-
tions of the video application. For example, using the ontology fragment described in
figure 5 the operation GetFilm of the video application will be matched against the op-
eration GetDigitalResource of the Digital Resource Database service. More precisely,
an exact match is recognized between the output of both operations as they are both
instances of the concept Stream. On the other hand, a Plug In match is recognized
between the inputs of both operations as the concept DigitalResource subsumes the
concept VideoResource. The second step of the matching algorithm is the conversation
matching. In this step our algorithm attempts to reconstruct the abstract conversation of
the video application by using the conversations of the selected services. The selected
fragments after matching are shown in figure 4.

4 Related Work on Matching Algorithms

We can classify the related work on service matching algorithms in two categories:
interface-level matching algorithms and process-level matching algorithms. In the first
category of matching algorithms, services are generally advertised as a set of provided
outputs and required inputs. These inputs/outputs constitute the service’s interface. On
the other hand, the request is specified as a set of required outputs and provided inputs.
A match between an advertisement and a request consists in matching all outputs of
the request against all outputs of the advertisement and all inputs of the advertisement
against all inputs of the request. An approach for matching semantic Web services at the
interface level has been proposed by Paolucci et al. in [18,22]. We have employed this
algorithm to semantically match operations as described in Section 3.3. This algorithm
is one of the most used approaches in the literature. Because of its simplicity and effi-
ciency, a number of research efforts such as [9,16,23,14,20], have elaborated matching
algorithms that are mainly based on this algorithm. In the second category of matching
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algorithms, authors argue that the conversation description is richer than the interface
description, as it provides more information about the service’s behavior, thus, leading
to a more precise matching [2]. Furthermore, we argue that to obtain valid results when
dynamically executing a service that publishes a conversation, it is important to follow
the sequence of operations to invoke, as specified in the conversation description, until
the latter finishes. Consequently, when composing Web services that expose complex
behaviors, it is important to have solutions for dynamically integrating conversations.
A number of research efforts have been conducted in the area of process-level matching
[4,25,16]. For example, Klein et al. in [4] propose to describe services as processes, and
define a request language named PQL (Process Query Language). This language allows
to find in a process database those processes that contain a fragment that responds to
the request. While this approach proposes a new process query language to search for
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a process, there is no process integration effort. Thus, the authors implicitly assume
that the user’s request is quite simple and can be performed by a single process. On the
contrary, in our approach a composition effort is made to reconstruct a complex task
process by integrating the services’ processes.

Aggarwal et al. in [25] propose to describe a task as a BPEL4WS[5] process. This
description may contain both references to known services (static links) and abstract
descriptions of services to be integrated (service templates). At execution time, services
that correspond to the service templates are discovered and the task is carried out by
invoking the services following the process workflow. This approach proposes a com-
position scheme by integrating a set of services to reconstruct a task’s process. How-
ever, the services being integrated are rather simple. Indeed, each service is described
using a semantic model defined by the authors, which specifies the high-level functional
and non-functional capabilities of the service, without describing its external behavior
(conversation). On the contrary, we consider services as entities that can behave in a
complex manner, and we try to compose these services to realize the user task.

Another process-level matching algorithm is proposed by Majithia et al. in [16].
In this approach, the user’s request is specified in a high-level manner and automati-
cally mapped to an abstract workflow. Then, service instances that matches the ones
described in the abstract workflow, in terms on inputs outputs pre-conditions and ef-
fects, are discovered in the network, and a concrete workflow description is constituted.
As we have noticed in the previous approach, the service composition scheme that is
proposed in this approach does not involve any process integration, as the Web services
are only described at the interface level.

5 Conclusion

In the pervasive computing vision the user has a central position. This vision involves
that everywhere around us, the environment is populated with networked, both comput-
ing and input/output devices that provide the environment’s components. Our objective
has been to allow a user entering to a pervasive computing environment to perform a
task, abstractly described on his/her device, by integrating on the fly the environment’s
components. A key feature of pervasive computing components is their heterogeneity.
Most existing solutions poorly deal with heterogeneity since they assume that compo-
nents being integrated have been developed to conform syntactically in terms of inter-
faces and conversations.

Our solution building on semantic Web services offers much more flexibility by
enabling semantic matching of interfaces and ad hoc reconstruction of the user task’s
conversation from service’s conversations. Our solution is achieved in two steps. In the
first step, we perform a semantic matching of interfaces that leads to the selection of
the set of services that may be useful during the integration. In the second step, we
perform a conversation matching starting from the set of previously selected services,
thus obtaining a conversation composition that behaves as the task’s conversation. Our
matching is based on a mapping of OWL-S conversations to finite state automata. This
mapping facilitates the conversation integration process, as it transform this problem to
an automaton equivalence issue.
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The main feature of our solution is the ability to compose Web services that expose
complex behaviors to realize a user’s task that itself has a complex behavior. Existing
approaches in process-level matching generally consider either that the services or the
task have a simple behavior, thus leading to simple integration solutions. In our case,
we assume complex behaviors for both services and task and we propose a matching
algorithm that attempts to reconstruct the task’s behavior using fragments of the ser-
vices behaviors. In order to deal with such a high level of dynamicity our solution uses
some costly mechanisms such as semantic reasoning. Thus, we intend to implement
our approach and to evaluate it in terms of efficiency and performance. We have al-
ready implemented the conversation matching algorithm based on automata analysis;
the next step is to augment this algorithm with the semantic matching.
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Abstract. Software systems that rely on the component paradigm build
new components by assembling existing prefabricated components. Most
currently available IDEs support graphical components such as .NET
Controls or JavaBeans for building GUI applications. Even though all
those IDEs support arrangement and layout of those desktop compo-
nents, composition support is rather limited. None of the most important
composition environments support built-in validation of composition for
.NET components or JavaBeans no further than type checking.

Our approach addresses these problems with lightweight extensions
of existing component models with metadata attributes. We enhance
the built-in composition facilities of the component model and the com-
position environment to exploit those metadata attributes. As we show
the metadata attributes may be used to support required interfaces, con-
straint checks for method invocation or if all participants in a component
collaboration satisify a certain protocol.

1 Introduction

Prefabricated software components are known to improve the quality of software
construction and reduction of the development costs [1]. Component models [2]
define the structure, components adhere to and how they can interoperate. In-
stead of implementing every functionality from scratch new features are built by
assembling existing components.

Different component models have been introduced for different purposes,
ranging from desktop component models to distributed component models. Most
development environments focus primarily on desktop component models that
are intended to be used in the development of client applications with graph-
ical user interfaces. Hence, most today’s utilized platforms, such as Java and
.NET include simple component models for building desktop applications such
as JavaBeans [3] or components for .NET [4]. Components that adhere to these
component models usually represent graphical widgets.

In graphical composition environments developers may create component
instances and put them in composite components, visualized in graphical design
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windows, browse and configure component instance properties such as fonts or
colors, and create event listeners.

Inventors of component models wanted a fast adoption of those models, hence
the requirements on components are rather small. The only requirement imposed
on a Java class to become a JavaBean is to provide a default constructor. Sim-
ilarly, .NET introduces a component model primarily targeted for GUI compo-
nents. The single requirement for a .NET class to be used in standard .NET
composition environments is that this class inherits from the Component class of
the System.ComponentModel namespace.

Unfortunately, these simple component models and composition environ-
ments only support simple instantiation and creation features. For instance, in
Visual Studio .NET 2003 it is possible to configure the property value of a com-
ponent with the instance of any other component created in the composition
environment. However, there are no standardized checks if such compositions
are valid or required. Furthermore, there are no generic ways to use proxies or
adaptors for such compositions.

New composition environments and component models have been introduced
that provide validity checks at design time or the generation of adapters [5]. The
flexibility of this introduction comes with the cost that these composition en-
vironments are not seamlessly integrated in the IDEs, making the adoption of
those component models difficult if not impossible. Furthermore, these compo-
nent models require rather large runtime environments.

We focus on this problem and introduce lightweight extensions of the existing
desktop component models. Primarily, we rely on two different functionalities.
First, we define metadata to describe additional information such as validity
requirements or if a component’s properties are required to be set to let the
component work. Components are enriched by this metadata. Since the use of
this metadata can be ignored by a composition environment all components
that use this metadata can still be used in composition environments unaware of
it. Second, we use the extension mechanisms provided by standard composition
environments to build extensions for the composition environment to enforce the
composition conditions described by the metadata. These extension mechanisms
are defined by the component models but can optionally be used by components
and composition environments.

We have designed and implemented our approach for the desktop component
model of the .NET framework and Microsoft Visual Studio .NET 2003 as the
appropriate composition environment. We show three examples for extending
composition capabilities:

– introduction of required interfaces,
– use of OCL constraints [6] for methods and classes, and
– use of protocols for verifying component collaborations.

Although our implementation focuses on .NET the metadata annotation fea-
ture of JDK 1.5 allows that large parts of the approach can be ported to Java
and JavaBeans, too.
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The structure of this paper is as follows. Section 2 discusses existing tech-
niques we build on. In Section 3 metadata attributes for enhancing composition
facilities of components are introduced. Section 4 further extends these facilities
with support for composition environments. We discuss related work in Section 5
and our future plans in Section 6. We draw our conclusions in Section 7.

2 Background

This section introduces the .NET metadata facility the .NET component model
frequently uses and our approach is based on.

2.1 Metadata Facilities

Metadata attributes are used to attach additional static information to pro-
gramming entities such as classes, fields, or methods. The compiler stores the
attributes in the executable files and DLLs. The runtime environment provides
read access to the attributes with reflection mechanisms.

For space reasons we cannot discuss in detail the .NET metadata facility.
Instead we refer to Figure 1 that shows the assignment of metadata attributes
to methods with edged braces and on an intuitive understanding of the reader. A
complete discussion of .NET metadata can be found in [7] and our webpage [8].

2.2 Desktop Component Models

Instances of desktop components are instantiated in graphical design environ-
ments and may be configured with property sheets. A property is exposed by
a component by accessor methods that allow read and write access to a logi-
cal property of the component instance. Components often support emission of
events that are delivered to handler methods.

2.3 Component Model Support for Composition Environments

The .NET component model is supported by the formular designer included in
Microsoft Visual Studio .NET and any other .NET based IDE. These composi-
tion environments support instantiation of components and in case of graphical
components also positioning and resizing of the components in graphical win-
dows. Configuration property-sheets are created dynamically based on compo-
nent’s reflection features.

3 Attributes for Components and Composition

In this section we introduce three different kinds of attributes that aid the com-
position process. All three attributes represent assumptions that have to be
satisfied by components to provide a correct application. We support two differ-
ent approaches for the enforcement of these assumptions. The manual approach
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relies on manual calls to helper methods for checking if the assumptions are
satisfied. The compositional approach introduced in the next section relies on
either the composition methods provided by the composition environment or by
code injected by the environment to check the assumptions.

3.1 Required Interfaces

Most component models define a notion of provided interfaces. Furthermore,
some component models introduce a notion of required interfaces.

For marking some properties as required we introduce the required attribute
implemented by the class RequiredAttribute. It can be applied to properties
to signal that these properties must be set to let the component work. It is
also possible to attach multiple required attributes to require that a property
supports all those interfaces. An example of the required attribute can be seen in
Figure 1. Furthermore, for property arrays and collections we support a minimum
and a maximum number of instances that must be set for the property.

In addition to required interfaces represented as properties we also support
events to become marked as required. Instead of components that implement
the required interfaces now event listeners have to be set.

A programmatic check of all required properties is done manually by calling a
helper method to detect if all required interfaces are set. The implementation of
this checker uses reflection on the component instance, iterates over all properties
and verifies those that have a required attribute attached to it. The result of the
check can be visualized in the composition environment already at design time
in overwriting the OnPaint method (see Figure ref:RequiredUsage.

3.2 OCL Constraints

The application of pre- and postcondition in programming is widely accepted.
Unfortunately, only few programming languages such as Eiffel [9] have built-in
support for constraints. We propose two attributes that store the precondition
and the postcondition of methods with PreAttribute and PostAttribute, re-
spectively. We use the Object Constraint Language (OCL) for formulating the
constraint expressions since it can be parsed easily, can be learned quite fast,
and is simple to understand. Figure 2 shows a component that attaches pre- and
postcondition to a withdraw method of an account class.

In addition to pre- and postcondition, the InvariantAttribute stores in-
variant conditions for classes and interfaces. We have faced one problem in using
these attributes. The OCL constraints are provided as string parameters for
the attribute classes. Unfortunately, is is not possible to execute the attribute
constructor at compile time to verify if the expression is a syntactic valid OCL
expression.

At the bottom of figure 2 we show how OCL constraints can be verified by
calling a static method of the OCLCheck class we have implemented.
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public interface IMyInterfaceA { public void MethodA ( ) ; }

public interface IMyInterfaceB { public void MethodB ( ) ; }

public class Test : Control
{

private IMyRequiredInter face r equ i r ed ;

[ Required ( typeof ( IMyInterfaceA ) ) ]
[ Required ( typeof ( IMyInterfaceB ) ) ]
public IMyInterfaceA RequiredProperty
{ get { return this . r equ i r ed ; }

s e t { this . r equ i r ed = value ; }
}

// pa in t method checks a l l r equ i red p r o p e r t i e s
public override void OnPaint ( PaintEventArgs e )
{

i f ( ! RequiredHelper . CheckAllRequiredProps ( this ) )
{ /∗ pa in t er ror message ∗/ }

else { /∗ normal drawing code ∗/ }
}

}

Fig. 1. Required attribute

public class Account
{

int balance ;

[ Pre ( ”amount >= 0 and s e l f . ba lance >= amount” ) ]
[ Post ( ” s e l f . ba lance = s e l f . balance@pre − amount” ) ]
public void Withdraw ( int amount )
{

this . ba lance −= amount ;
}

}
// check code
OCLCheck . Precondit ionCheck ( this , ”Withdraw” , increment ) ;

Fig. 2. OCL attribute specification
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3.3 Collaboration Protocols

In many scenarios it is not possible to call methods or query and update prop-
erties from arbitrary component states. For instance, to operate on a file it must
have been opened before. Hence, it is necessary that components interact by
following a certain protocol [10,11]. Protocols define a predefined order in which
methods and properties may be accessed, i.e. protocols define state machines for
ordering method invocations.

We use various attributes to assign a state machine to an interface. One or
multiple Protocol attributes declare all protocols an interface participates in.
Besides the name of the protocol it also takes an array of state names of the
state machine, and the initial state. Other interfaces that act in this protocol
are marked with Collaborator attributes that are initialized with the protocol
name and the type of the participating interface.

For each method Transition attributes are used to declare allowed state tran-
sitions associated with the invocations.. Each transition attribute is initialized
with the name of the source state and the target state.

Figure 3 shows an example of two interfaces that share the access on a partic-
ular resource. These interfaces can be used in the same class or in two different
classes. However, the semantics remains the same. Before the reader can access
the data the state machine has to be in the open state.

[ Protoco l ( ” I n t e r a c t i on ” , new string [ ] { ”Closed ” , ”Open” } ,
I n i t i a l=”Closed ” ) ]

[ Co l l aborator ( typeof ( IReader ) ) ]
public interface IProv ide r
{

[ Trans i t i on ( ”Closed” , ”Open” ) ] void Open ( ) ;

[ Trans i t i on ( ”Open” , ”Closed ” ) ] void Close ( ) ;
}

[ Protoco l ( ” I n t e r a c t i on ” , new string [ ] { ”Closed” , ”Open” } ,
I n i t i a l=”Closed ” ) ]

[ Co l l aborator ( typeof ( IProv ide r ) ) ]
public interface IReader
{

[ Trans i t i on ( ”Open” , ”Open” ) ] object Read ( ) ;
}

// check code
StateMachine . Check ( this , ”Read” ) ;

Fig. 3. Protocol specification

We have provided a helper class that verifies if a method invocation starts
from the appropriate state. When applying the checks manually this code has
to be inserted at the beginning of a method.
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4 Tool Support and Automatic Adaptor Generation

This section describes how the composition process can be improved by the
attributes defined before.

Without any tool support constraints defined with the attributes described
before can only be verified manually with invocation of checking methods and are
neither verified nor enforced automatically. However, with the use of adaptors
based on these attributes we can automatically enforce verification of those con-
straints. The .NET component model in connection with design environments
such as Visual Studio .NET allow almost seamless use of those attributes.

4.1 Composition Support

The .NET component model defines some metadata attributes for layouting and
arrangement of .NET widgets and components. Some of these attributes are used
in conjunction with the .NET propertysheet used by Microsoft’s Visual Studio
.NET and other IDEs. The Editor metadata attribute allows developers to assign
user defined editors to classes and interfaces but also to properties. These editors
are automatically used by the propertysheet in Visual Studio .NETs designer and
allows modification of those properties. When a developer selects a cell in the
propertysheet the environment detects if an editor attribute is attached to the
datatype or the property.

We have implemented such an editor that may be attached to properties
that use the required attribute. This editor provides the developers with a list
of component instances which components match all required interfaces for the
particular property.

After the selection of one of the proposed component instances Visual Studio
automatically generates the correct instance assignment in the constructor of the
class that hosts the instances. In case of a property with a multiplicity larger
than one, either arrays or collections are used. The same editor class is used but
it does not provide a combobox but a dialog to select the component instances.

When the editor has finished Visual Studio generates code fragments that re-
flect the choice the user makes in the editor in the constructor of the component
instance owner’s class. We have implemented a code serializer that generates an
appropriate source code fragment for initializing the required component compo-
sitions. The code serializer generates the appropriate initialization statements for
arrays and collections and inserts it into the predefined code generation stream
provided by .NET.

4.2 Verification Adaptors

For automatic evaluation of constraints described with the attributes defined
above we generate adaptors that include verification code. These adaptors in-
clude checks if required properties are bound, if method arguments satisify pre-
conditions or method results satisfy postconditions, and if a protocol sequence
is still satisifed. The adaptors just include code sequences described above.
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The verification adaptors are set in the initialization code of the component
constructor when an editor has been used. We generate adaptor initialization
code instead of field assignments. Figure 4 shows an example for such a code
fragment. However, a serious limitation of our automatic approach is that we
cannot change method call statements where the interface used has not been set
via properties. Instead of the field assignment the code serializer initializes an
adaptor interface and uses the original value as argument.

. . . // code i n s i d e In i t i a l i z eComponents
// t h i s . RequiredProperty = requ i red1 ;

// new code
this . RequiredProperty = new ConstraintAdaptor IReq ( requ i r ed1 ) ;

Fig. 4. Adaptor Initialization

The adaptors are generated on demand. Here we use another .NET feature
for dynamically creating or loading assemblies.

5 Related Work

The use of metadata beyond type information is frequently used within some
component models. Enterprise JavaBeans [12] rely on metadata stored in de-
ployment descriptors to configure components for different installation systems.
JavaBeans [3] provides and uses descriptor classes to store additional informa-
tion about components. For instance, this information can be used to support
custom editors similar to .NET’s type editors we have used. In .NET metadata
attributes are used for instance configuration which we have used and extended.
Further attributes are used for remoting and distribution purposes. Another area
where metadata attributes are heavily used in .NET are system interoperability.
.NET predefines some attributes for importing methods from native DLLs and
allows to modify method calling conventions and argument conversion.

The notion of a required interfaces is well-known for several years [1]. How-
ever, component models that support required interfaces are usually not sup-
ported by any standard development environment. Our extension can be con-
sidered lightweight since it can be used without any modification in all .NET
IDEs that support the metadata attributes Microsoft has predefined with .NET.
Even, if these attributes are not supported the components are still functional.
Validation, however, must be done manually.

The first general purpose object-oriented programming language that sup-
ports constraints is Eiffel [9] with its support for Design-by-Contract [13]. For
Java different approaches implement pre- and postconditions such as JML [14]
or iContract. Since Java did not support metadata these approaches primarily
use JavaDoc comments to store the constraints. We expect that some of these
approaches will adopt the new metadata notation of JDK 1.5. Using .NET at-
tributes for constraints has already been described before in [15].
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6 Future Work

We plan to introduce additional metadata attributes and further support for
composition environments. The .NET component model supports the implemen-
tation of so-called designers, graphical editors for components useable directly
in the composition environment’s assembly window. When layouting graphical
components on the standard containers such as panels or forms provided by .NET
no visualization of the compositions is shown. We plan to extend the containers
to draw graphical representations for the compositions of components.

We also plan to port the attributes to Java with JDK 1.5. The attributes and
the classes for enforcing the constraints described with the attributes can easily
be ported to Java despite the differences of the platforms. However, porting the
support for composition environments such as the Component Workbench [5] or
Eclipse requires more effort.

Since not everything can be done with checking the validity of component
composition attributes at design time we plan to build a simple verifier that
takes a root component as input and traverses recursively all child components
and checks if all constraints are fulfilled.

7 Conclusions

In this paper we have shown how a simple widely used component model can
be extended with metadata attributes specifically introduced for composition.
These metadata attributes improve readability and act as additional documen-
tation of components. Furthermore the attributes store additional semantic in-
formation beyond the capabilities of the programming languages and component
models used. This semantic information may be used to realize simple semantic
checks without preventing the use of the components in standardized environ-
ments.

We introduced attributes to describe required interfaces that are mandatory
to be set before a component instance may be used. We also introduced attributes
for describing constraints with OCL. Furthermore, we presented attributes for
component collaboration.

The validation of these attributes may be done programmatically in the com-
ponents or the components’ clients refering to small helper classes that imple-
ment the validation semantics.
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Abstract. In an open environment populated by large numbers of services,
automated service composition is a major challenge. In such a setting the
efficient interaction of directory-based service discovery with different service
composition algorithms is crucial. In this paper we present a directory with
dedicated features for service composition. In order to optimize the interaction
of the directory with different service composition algorithms exploiting
application-specific heuristics, the directory supports user-defined selection and
ranking functions written in a declarative query language. Inside the directory
queries are transformed in order to enable a best-first search for matching
directory entries, efficiently pruning the search space.1

Keywords: Service discovery and composition, Service directories, Query lan-
guage and query processing.

1 Introduction

There is a good body of work which addresses the service composition problem by
applying planning techniques based either on theorem proving (e.g., Golog [6]) or on
hierarchical task planning (e.g., SHOP-2 [7]). All these approaches assume that the
relevant service descriptions are initially loaded into the reasoning engine and that no
discovery is performed during composition. However, due to the large number of ser-
vices and to the loose coupling between service providers and consumers, services are
indexed in directories. Consequently, planning algorithms have to be adapted to a situ-
ation where planning operators are not known a priori, but have to be retrieved through
queries to these directories.

Our approach to automated service composition is based on matching input and
output parameters of services using type information in order to constrain the ways
how services may be composed. Our composition algorithm allows for partially match-
ing types and handles them by computing and introducing switches in the composi-

1 The work presented in this paper was partly carried out in the framework of the EPFL Center
for Global Computing and supported by the Swiss National Funding Agency OFES as part of
the European projects KnowledgeWeb (FP6-507482) and DIP (FP6-507483).
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tion plan. Experimental results show that using partial matches significantly decreases
the failure rate compared with a composition algorithm that supports only complete
matches [4].

We have developed a directory service with specific features to ease service com-
position. Queries may not only search for complete matches, but may also retrieve par-
tially matching directory entries. As the number of (partially) matching entries may
be large, the directory supports incremental retrieval of the results of a query. This is
achieved through sessions, during which a client issues queries and retrieves the results
in chunks of limited size [2].

As in a large-scale directory the number of (partially) matching results for a query
may be very high, it is crucial to order the result set within the directory according to
heuristics and to transfer first the better matches to the client. If the heuristics work
well, only a small part of the possibly large result set has to be transferred, thus saving
network bandwidth and boosting the performance of a directory client that executes a
service composition algorithm (the results are returned incrementally, once a result ful-
fills the client’s requirements, no further results need to be transmitted). However, the
heuristics depend on the concrete composition algorithm. For each service composition
algorithm (e.g., forward chaining, backward chaining, etc.), a different heuristic may be
better adapted. Because research on service composition is still in the beginning and the
directory cannot anticipate the needs of all possible service composition algorithms, our
directory supports user-defined selection and ranking heuristics expressed in a declar-
ative query language. The support for application-specific heuristics significantly in-
creases the flexibility of our directory, as the client is able to tailor the processing of
directory queries. For efficient execution, the queries are dynamically transformed and
compiled by the directory.

As the main contributions of this paper, we show how our directory supports user-
defined selection and ranking heuristics. We present a dedicated query language and
explain how queries are processed by the directory. In a first step, the directory trans-
forms queries in order to better exploit the internal directory organization during the
search. This allows a best-first search that generates the result set in a lazy way, re-
ducing response time and workload within the directory. In a second step, the query is
compiled in order to speed up the directory search. Compared with previous work [2,1],
the novel, original contributions of this paper are the declarative directory query lan-
guage and the transformation mechanism to make better use of the internal direc-
tory structure. These techniques, which have not been applied in the context of ser-
vice directories before, provide a flexible and efficient mechanism for query
processing.

This paper is structured as follows: Section 2 gives an overview of our service de-
scription formalism and of the internal index structure of our directory. In Section 3
we present a simple, functional query language which allows to express application-
specific selection and ranking heuristics. Section 4 explains the processing of directory
queries and introduces query transformations that enable a best-first search with early
pruning. In Section 5 we discuss how user-defined queries are compiled and integrated
into the directory. Section 6 discusses a sample query and shows its transformation.
Finally, Section 7 concludes this paper.



Directory Support for Large-Scale, Automated Service Composition 59

2 Service Descriptions and Directory Index

Service descriptions are a key element for service discovery and service composi-
tion and should enable automated interactions between applications. In this paper we
partially build on existing formalisms, such as WSDL (http://www.w3.org/TR/wsdl)
and OWL-S (http://www.daml.org/services/owl-s/), by considering a simple table-based
formalism where each service is described by a set of tuples mapping service param-
eters (unique names of inputs or outputs) to parameter types (the spaces of possible
values for a given parameter). We require that parameter types are not empty, i.e., there
must be at least one allowed value for each parameter. Parameter types can be expressed
either as sets of intervals of basic data types (e.g., date/time, integers, floating-points)
or as classes of individuals. Class parameter types can be defined in a descriptive lan-
guage such as OWL (http://www.w3.org/2004/OWL/). From the descriptions we derive
a directed graph (DG) of simple is-a relations either directly (for basic data types) or
by using a description logic classifier (for concepts). For efficiency reasons, we repre-
sent the DG numerically. We assume that each class is represented as a set of intervals.
We encode each parent-child relation by sub-dividing each of the intervals of the par-
ent. In the case of multiple parents, the child class is represented by the union of the
sub-intervals resulting from the encoding of each of the parent-child relations. Since
for a given domain we can have several parameters represented by intervals, the space
of all possible parameter values can be represented as a rectangular hyperspace with a
dimension for each parameter. For details, see [3].

The need for efficient discovery and matchmaking leads to a need for search struc-
tures and indexes for directories. We consider numerically encoded service descriptions
as multidimensional data and use techniques related to the indexing of such kind of in-
formation in the directory. Our directory index is based on the Generalized Search Tree
(GiST), proposed as a unifying framework by Hellerstein [5]. The design principle of
GiST arises from the observation that search trees used in databases are balanced trees
with a high fanout in which the internal nodes are used as a directory and the leaf nodes
point to the actual data.

Each leaf node in the GiST of our directory holds references to all service descrip-
tions with a certain input/output behaviour. The required inputs of the service and the
provided outputs (sets of parameter names with associated types) are stored in the leaf
node. For inner nodes of the tree, the union of all inputs/outputs found in the subtree is
stored. More precisely, each inner node I on the path to a leaf node L contains all in-
put/output parameters stored in L. The type associated with a parameter in I subsumes
the type of the parameter in L. That is, for an inner node, the input/output parameters
indicate which concrete parameters may be found in a leaf node of the subtree. If a
parameter is not present in an inner node, it will not be present in any leaf node of the
subtree.

3 Directory Query Language

As directory queries may retrieve large numbers of matching entries (especially when
partial matches are taken into consideration), our directory supports sessions in order to
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incrementally access the results of a query [2]. By default, the order in which matching
service descriptions are returned depends on the actual structure of the directory index
(the GiST structure discussed before). However, depending on the service composition
algorithm, ordering the results of a query according to certain heuristics may signifi-
cantly improve the performance of service composition. In order to avoid the transfer
of a large number of service descriptions, the pruning, ranking, and sorting according to
application-dependent heuristics should occur directly within the directory. As for each
service composition algorithm a different pruning and ranking heuristic may be better
suited, our directory allows its clients to define custom selection and ranking functions
which are used to select and sort the results of a query.

A directory query consists of a set of provided inputs and required outputs (both
sets contain tuples of parameter name and associated type), as well as a custom selec-
tion and ranking function. The selection and ranking function is written in the simple,
high-level, functional query language DirQLSE (Directory Query Language with Set
Expressions). An (informal) EBNF grammar for DirQLSE is given in Table 1. The
non-terminal constant, which is not shown in the grammar, represents a non-negative
numeric constant (integer or decimal number). The syntax of DirQLSE has some sim-
ilarities with LISP.2 We have designed the language considering the following require-
ments:

– Simplicity: DirQLSE offers only a minimal set of constructs, but it is expressive
enough to write relevant selection and ranking heuristics.

– Declarative: DirQLSE is a functional language and does not support destructive
assignment. The absence of side-effects eases program transformations.

– Safety: As the directory executes user-defined code, DirQLSE expressions must
not interfere with internals of the directory. Moreover, the resource consumption
(e.g., CPU, memory) needed for the execution of DirQLSE expressions is bounded
in order to prevent denial-of-service attacks: DirQLSE supports neither recursion
nor loops, and queries can be executed without dynamic memory allocation.

– Efficient directory search: DirQLSE has been designed to enable an efficient best-
first search in the directory GiST. Code transformations automatically generate se-
lection and ranking functions for the inner nodes of the GiST (see Section 4).

– Efficient compilation: Due to the simplicity of the language, DirQLSE expressions
can be efficiently compiled to increase performance (see Section 5).

A DirQLSE expression defines custom selection and ranking heuristics. The eval-
uation of a DirQLSE expression is based on the 4 sets qin (available inputs specified
in the query), qout (required outputs specified in the query), sin (required inputs of
a certain service S), and sout (provided outputs of a certain service S). Each element
in each of these sets represents a query/service parameter identified by its unique name
within the set and has an associated type (encoded as a set of numeric intervals).

A DirQLSE expression may involve some simple arithmetic. The result of a nu-
meric DirQLSE expression is always non-negative. The ‘-’ operator returns 0 if the

2 In order to simplify the presentation, in this paper the operators ‘and’, ‘or’, ‘<’, ‘>’, ‘<=’,
‘>=’, ‘=’, ‘+’, ‘*’, ‘-’, ‘min’, and ‘max’ are binary, whereas in the implementation they may
take an arbitrary number arguments, similar to the definition of these operations in LISP.
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Table 1. A grammar for DirQLSE

dirqlExpr : selectExpr | rankExpr | selectExpr rankExpr ;
selectExpr : ’select’ booleanExpr ;
rankExpr : ’order’ ’by’ (’asc’ | ’desc’) numExpr ;
booleanExpr: ’(’ (’and’ | ’or’) booleanExpr booleanExpr ’)’

| ’(’ ’not’ booleanExpr ’)’
| ’(’ (’<’ | ’>’ | ’<=’ | ’>=’ | ’=’) numExpr numExpr ’)’ ;

numExpr : constant
| ’(’ (’+’ | ’*’ | ’-’ | ’/’) numExpr numExpr ’)’
| ’(’ (’min’ | ’max’) numExpr numExpr ’)’
| ’(’ ’if’ booleanExpr numExpr numExpr ’)’
| setExpr ;

setExpr : ’(’ ’union’ querySet serviceSet ’)’
| ’(’ ’intersection’ querySet serviceSet typeTest ’)’
| ’(’ ’minus’ querySet serviceSet typeTest ’)’
| ’(’ ’minus’ serviceSet querySet typeTest ’)’
| ’(’ ’size’ (querySet | serviceSet) ’)’ ;

querySet : ’qin’ | ’qout’ ;
serviceSet : ’sin’ | ’sout’ ;
typeTest : ’FALSE’|’EQUAL’|’S_CONTAINS_Q’|’Q_CONTAINS_S’|’OVERLAP’|’TRUE’ ;

second argument is bigger than the first one. The DirQLSE programmer may use the
‘if’ conditional to ensure that the first argument of ‘-’ is bigger or equal than the sec-
ond one. For division, the second operand (divisor) has to evaluate to a constant for a
given query. That is, it is a numeric expression with only numeric constants, as well
as size(qin) and size(qout) at the leaves. Before a query is executed, the di-
rectory ensures that the DirQLSE expression will not cause a division by zero. For
this purpose, all subexpressions are examined. The reason for these restrictions will be
explained in the following section.

A DirQLSE query may comprise a selection and a ranking expression. Service
descriptions (inputs/outputs defined by sin/sout) for which the selection expression
evaluates to false are not returned to the client (pruning). The ranking expression de-
fines the custom ranking heuristics. For a certain service description, the ranking ex-
pression computes a non-negative value. The directory will return service descriptions
in ascending or descending order, as specified by the ranking expression.

The selection and ranking expressions may make use of several set operations.
size returns the cardinality of any of the sets qin, qout, sin, or sout. The op-
erations union, intersection, and minus take as arguments a query set (qin
or qout) as well as a service set (sin or sout). For union and intersection,
the query set has to be provided as the first argument. All set operations return the
cardinality of the resulting set.

union: Cardinality of the union of the argument sets. Type information is irrelevant for
this operation.

intersection: Cardinality of the intersection of the argument sets. For a parameter to
be counted in the result, it has to have the same name in both argument sets and the
type test (third argument) has to succeed.

minus: Cardinality of the set minus of the argument sets (first argument set minus
second argument set). For a parameter to be counted in the result, it has to occur in
the first argument set and, either there is no parameter with the same name in the
second set, or in the case of parameters with the same name, the type test has to fail.
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The type of parameters cannot be directly accessed, only the operations
intersection and minusmake use of the type information. For these operations, a
type test is applied to parameters that have the same name in the given query and service
set. The following type tests are supported (TS denotes the type of a common parameter
in the service set, while TQ is the type of the parameter in the query set): FALSE (al-
ways fails), EQUAL (succeeds if TS = TQ), S CONTAINS Q (succeeds if TS subsumes
TQ), Q CONTAINS S (succeeds if TQ subsumes TS), OVERLAP (succeeds if there is
an overlap between TS and TQ, i.e., if a common subtype of TS and TQ exists), and
TRUE (always succeeds).

4 Efficient Directory Search

Processing a user query requires traversing the GiST structure of the directory starting
from the root node. The given DirQLSE expression is applied to leaf nodes of the
directory tree, which correspond to concrete service descriptions (i.e., sin and sout
represent the exact input/output parameters of a service description). For an inner node
I of the GiST, sin and sout are supersets of the input/output parameters found in any
node of the subtree whose root is I . The type of each parameter in I is a supertype of
the parameter found in any node (which has a parameter with the same name) in the
subtree. Therefore, the user-defined selection and ranking function cannot be directly
applied to inner nodes.

In order to prune the search (as close as possible to the root of the GiST) and to
implement a best-first search strategy which expands the most promising branch in
the tree first, appropriate selection (pruning) and ranking functions are needed for the
inner nodes of the GiST. In our approach, the client defines only the selection and
ranking function for leaf nodes (i.e., to be invoked for concrete service descriptions),
while the corresponding functions for inner nodes are automatically generated by the
directory. The directory uses a set of simple transformation rules that enable a very
efficient generation of the selection and ranking functions for inner nodes (the execution
time of the transformation algorithm is linear with the size of the query).

If the client desires ranking in ascending order, the generated ranking function for
inner nodes computes a lower bound of the ranking value in any node of the subtree;
for ranking in descending order, it calculates an upper bound. While the query is being
processed, the visited nodes are maintained in a heap or priority queue, where the node
with the most promising heuristic value comes first. Always the first node is expanded;
if it is a leaf node, it is returned to the client. Further nodes are expanded only if the
client needs more results. This technique is essential to reduce the processing time in the
directory until the the first result is returned, i.e., it reduces the response time. Further-
more, thanks to the incremental retrieval of results, the client may close the result set
when no further results are needed. In this case, the directory does not spend resources
to compute the whole result set. Consequently, this approach reduces the workload in
the directory and increases its scalability. In order to protect the directory from attacks,
queries may be terminated if the size of the internal heap or priority queue or the number
of retrieved results exceed a certain threshold defined by the directory service provider.

Table 2 shows the transformation operators ↑ and ↓ which allow to generate the code
for calculating upper and lower bounds in inner nodes of the GiST. The variables a and
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Table 2. Transformation operators ↑, ↓, ⊕, and � for the generation of inner node code

↑constant −→ constant ↓constant −→ constant
↑ (+ a b) −→ (+ ↑a ↑b) ↓ (+ a b) −→ (+ ↓a ↓b)
↑ (∗ a b) −→ (∗ ↑a ↑b) ↓ (∗ a b) −→ (∗ ↓a ↓b)
↑ (− a b) −→ (− ↑a ↓b) ↓ (− a b) −→ (− ↓a ↑b)
↑ (/ a c) −→ (/ ↑a c) ↓ (/ a c) −→ (/ ↓a c)

↑ (min a b) −→ (min ↑a ↑b) ↓ (min a b) −→ (min ↓a ↓b)
↑ (max a b) −→ (max ↑a ↑b) ↓ (max a b) −→ (max ↓a ↓b)
↑ (if x a b) −→ (max ↑a ↑b) ↓ (if x a b) −→ (min ↓a ↓b)

↑ (union q s) −→ (union q s) ↓ (union q s) −→ (size q)
↑ (intersection q s t) −→ (intersection q s ⊕t) ↓ (intersection q s t) −→ 0
↑ (minus q s t) −→ (size q) ↓ (minus q s t) −→ (minus q s ⊕t)
↑ (minus s q t) −→ (minus s q �t) ↓ (minus s q t) −→ 0
↑ (size q) −→ (size q) ↓ (size q) −→ (size q)
↑ (size s) −→ (size s) ↓ (size s) −→ 0

⊕TRUE −→ TRUE �TRUE −→ TRUE
⊕OV ERLAP −→ OV ERLAP �OV ERLAP −→ FALSE
⊕Q CONTAINS S −→ OV ERLAP �Q CONTAINS S −→ Q CONTAINS S
⊕S CONTAINS Q −→ S CONTAINS Q �S CONTAINS Q −→ FALSE
⊕EQUAL −→ S CONTAINS Q �EQUAL −→ FALSE
⊕FALSE −→ FALSE �FALSE −→ FALSE

b are arbitrary numeric expressions, c is a numeric expression that is guaranteed to be
constant throughout a query, x is a boolean expression, q may be qin or qout, s may
be sin or sout, and t is a type test. The operator ⊕ relaxes certain type tests, the op-
erator � constrains them. For a DirQLSE ranking expression ‘order by asc E’,
the code for inner node ranking is ‘order by asc ↓E’; for a ranking expression
‘order by desc E’, the inner node ranking code is ‘order by desc ↑E’.

If I is an inner node on the path to the leaf node L and E is a DirQLSE ranking
expression, ↑ E (resp. ↓ E) applied to I has to compute an upper (resp. lower) bound
for E applied to L. While a formal proof of the correctness of the transformation rules
in Table 2 had to be omitted due to space limitations, we exemplarily explain 2 rules in
an informal way:

First we consider computing an upper bound for E = (intersection q s t). In an
inner node I the service set sI is a superset of sL in a leaf node, while the query set
q remains constant. Moreover, the type of each parameter in sL is subsumed by the
type of the parameter with the same name in sI . Not considering the parameter types,
applying E to I would compute an upper bound for E applied to L, as intuitively the
intersection of q with the bigger set sI will not be smaller than the intersection of q with
sL. Taking parameter types into consideration, we must ensure that whenever a type test
succeeds for L, it will also succeed for I . That is, if a common parameter is counted in
the intersection in L, it must be also counted in the intersection in I . As it can be seen
in Table 2, ⊕t will succeed in I , if t succeeds in L (remember that parameter types are
guaranteed to be non-empty). For instance, if the type of a parameter in sL is subsumed
by the type of the parameter with the same name in q (Q CONTAINS S succeeds for
that parameter in L), the type of the corresponding parameter in sI (which subsumes
the type in sL) will overlap with the parameter type in q. If the types in sL and q are
equal, the type in sI will subsume the type in q.
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Table 3. Transformation operator � for the generation of code in inner nodes of the GiST

� (and x y) −→ (and �x �y) � (or x y) −→ (or �x �y)

� (< a b) −→ (< ↓a ↑b) � (<= a b) −→ (<= ↓a ↑b)
� (> a b) −→ (> ↑a ↓b) � (>= a b) −→ (>= ↑a ↓b)

As a second example we want to compute an upper bound for E = (minus s q t).
Without considering parameter types, applying E to I would give an upper bound for E
applied to L, as sI is a superset of sL. In contrast to intersection, a common parameter
is counted in the result if the type test fails. That is, if the type test fails in L, it has also
to fail in I . As shown in table Table 2, �t will fail in I , if t fails in L. For example, if the
type of a parameter in q does not subsume the type of the parameter with the same name
in sL (Q CONTAINS S fails for that parameter in L), it will also not subsume the type
of that parameter in sI (which subsumes the type of the parameter in sL). If the type test
is TRUE, it will never fail, neither in L nor in I . In all other cases, no matter whether
the type test fails in L or not, it will fail in I (because �t will be FALSE). Hence,
‘↑(minus s q t)’ may result in ‘(minus s q FALSE)’, which is equivalent to
‘(size s)’.

Considering the upper bound operator ↑, the reason why we require the divisor of
‘/’ to evaluate to a constant becomes apparent: If c was not constant, for division the
operator ↑ would have been defined as ‘↑(/ a c) −→ (/ ↑a ↓c)’. Hence, even if the
ranking expression provided by the client did not divide by zero (c > 0), the auto-
matically generated code for computing an upper bound in inner nodes might possibly
result in a division by zero (↓c = 0). For this reason, c must depend neither on sin nor
on sout.

In order to automatically generate the code for inner node selection (pruning), we
define the transformation operator  for boolean expressions (see Table 3). If E is true
for a leaf node L, E has to be true for all nodes on the path to L. In other words, if E
is false for an inner node, it must be guaranteed that E will be false for each leaf in the
subtree. This condition ensures that during the search an inner node may be discarded
(pruning) only if it is sure that all leaves in the subtree are to be discarded, too. For
a DirQLSE selection expression ‘select E’, the code for inner node selection is
‘select E’. In Table 3 a and b are numeric expressions, while x and y are boolean
expressions. Again, due to space limitations, a formal proof of these rules cannot be
included in this paper.

The alert reader may have noticed that the operators ‘not’ and ‘=’ have been omit-
ted in Table 3. The reason for this omission is that initially we transform all boolean
expressions in the query according to De Morgan’s theorem, moving negations towards
the leaves, removing double negations, and changing the comparators if needed. The re-
sulting expressions are free of negations. Moreover, an expression of the form (= a b)
is transformed to the equivalent expression (and (<= a b) (<= b a)).

5 Efficient Query Execution

As the custom selection and ranking functions may be invoked very often, interpre-
tation would cause high overhead. Thus, the directory includes a fast compiler for
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DirQLSE expressions. Because our extensible directory is entirely programmed in
Java, the DirQLSE compiler directly generates JVM bytecode which is linked into the
same JVM that executes the core functionality of the directory. The compiler uses the
Bytecode Engineering Library BCEL (http://jakarta.apache.org/bcel/)
to manipulate JVM bytecode.

Compiling and integrating user-defined code into the directory leverages state-of-
the-art optimizations in recent JVM implementations. Many modern JVMs first inter-
pret bytecode to gather execution statistics. If code is executed frequently enough, it is
compiled to optimized native code for fast execution. In this way, frequently used se-
lection and ranking functions are executed as efficiently as algorithms directly built into
the directory. Due to space limitations, details concerning the compilation of DirQLSE

expressions had to be omitted.
As service composition clients may use the same selection and ranking function for

multiple queries, our directory keeps them in a cache. This cache maps a hashcode of
the DirQLSE expression to a structure containing the DirQLSE expression as well
as the loaded class. In case of a cache hit the user-defined code is compared with the
cache entry, and if it matches, the function in the cache is reused, avoiding compilation
and linking. This approach mitigates the overhead of query compilation.

6 Example Query for Service Composition

In this section we show the transformation of a simple selection and ranking function
for service composition based on forward chaining [4].

For forward chaining with complete type matches (see Table 4 (a)), we want that all
inputs required by the service are provided by the query (and the service has to be able
to handle the parameter types of the provided inputs, i.e., the types in the query have
to be more specific than in the service). Moreover, we require that the service provides
new outputs which are not already available as query inputs. The results are sorted
in ascending order according to the remaining outputs that are required by the query,
but not provided by the service (services that provide more of the required outputs
come first). In order to support partial type matches [4], only S CONTAINS Q has to be
replaced with OVERLAP in the first line of the selection expression in Table 4 (a).

The code for inner nodes is generated according to the transformation scheme pre-
sented in Section 4, as illustrated in Table 4 (b). Note that after applying the transforma-

Table 4. Selection and ranking function for service composition using forward chaining

select (and (<= (minus sin qin S_CONTAINS_Q) 0)
(> (minus sout qin Q_CONTAINS_S) 0))

order by asc (minus qout sout Q_CONTAINS_S)

(a) User-defined selection and ranking function.

select (> (minus sout qin Q_CONTAINS_S) 0)
order by asc (minus qout sout OVERLAP)

(b) Generated code for inner nodes.
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tion rules, the resulting expressions have been simplified according to simple algebraic
rules, such as ‘(<= 0 0) = true’, ‘(and true X) = X’, etc.

7 Conclusion

In this paper we presented a service directory with special support for service compo-
sition: Indexing techniques allowing the efficient retrieval of (partially) matching ser-
vices, incremental data retrieval, as well as user-defined selection and ranking functions
that enable the dynamic installation of application-specific heuristics within the direc-
tory. In order to efficiently support different service composition algorithms, it is impor-
tant not to hard-code such heuristics in the directory, but to enable the dynamic installa-
tion of specific pruning and ranking heuristics. The selection and ranking functions are
written in a simple, declarative language. Thanks to the support of application-specific
heuristics, the most promising results from a directory query are returned first, which
helps to reduce the number of transferred results and to save network bandwidth. More-
over, the result set is generated lazily, reducing response time and the workload in the
directory. For efficient execution, the directory transforms and compiles user-defined
selection and ranking functions.
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Abstract. Today, incompatibilities in component specifications make
their composition hard to handle in practical terms. Incompatibilities
can be classified into three conflict categories: type conflicts, behavioral
conflicts, and property conflicts. This paper describes a framework for the
identification of compositional conflicts in component-based systems that
analyses conflicts of all three categories. Furthermore, the conflict anal-
ysis framework can be integrated into the software development process
and handles component transformations between different abstraction
levels.

1 Introduction

Component composition is an important objective of software engineering. It
promises component reuse and therefore a productivity gain, because of shorter
time-to-market and improved quality. Unfortunately, composition is difficult to
achieve in practical terms, because of technological incompatibilities and diverg-
ing component specifications.

Incompatibilities can be classified into three categories: type conflicts, be-
havioral conflicts, and property conflicts. Property conflicts refer to mismatches
between communication mechanisms and technological characteristics of com-
ponents and connectors. Thereby, properties describe structural and behavioral
constraints from a different - a more abstract - viewpoint. Properties provide
several advantages: they can be used to transform conceptual models into spe-
cific representations covering particular communication requirements, they en-
able one to gain more information regarding incompletely specified components,
and they can be analyzed regarding compositional conflicts.

Our objective is to identify conflicts that impede component composition.
Therefore, we defined and implemented a rule-based framework that uses the
concepts of Architecture Description Languages (ADLs), but captures conflicts
of all three categories mentioned above. Conflict identification is directly inte-
grated in the software development process. Components of interest are small to
medium-sized components of current middleware technologies.

The framework addresses the following problems that hinder analysis of con-
flicts and composition of middleware components:

– Handling of components specified in different standards and technologies,
– Abstraction from technology specific representations,
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– Conflict Identification,
– Refinement of canonic components into particular technology representa-

tions,
– Integration of the framework into the software development process.

This paper gives an overview on our framework (Chapter 3) and discusses the
conflict analysis and model refinement in detail (Chapter 4). To show the usage of
our framework, we take a scenario of composing a Java Bean and an Enterprise
JavaBeans (EJB) component of a federated information system. Chapter 4.1
describes this scenario in more detail. Finally, Chapter 5 concludes with the
discussion of our approach.

2 Related Work

A yet unresolved problem of Software Architecture concerns component composi-
tion. A composition requires checking for compliance of structural and behavioral
specifications as well as of architectural properties.

In the last years, several ADLs [1,2,3,4] were proposed to handle structure
and behavior of architectural elements. They define type systems to handle struc-
tural aspects of composition and use formalisms such as Process Algebra [5,6]
to identify and overcome interaction mismatches.

However, despite these formalisms ’architectural mismatches’ [7] still exist.
According to Garlan, they are caused by divergent architectural properties. To-
day, several taxonomies [8,9,10,11] categorize architectural properties and sev-
eral approaches aim to automatically discover mismatches based on conflicting
characteristics [12,13,14,15,16]. Most of these approaches concentrate on archi-
tectural mismatches and do not handle structural and behavioral specifications.
Therefore, they need to be expensively combined with heterogeneous tools to
generate a connector.

We propose to combine all three specifications with a single ontology-based
framework. In contrary to Pahl [17], who encodes behavior in description logic,
we use external tools to check compliance. We use Triple [18] for the framework.
It is designed to naturally integrate different formalisms. Furthermore, architec-
tural descriptions are combined with principles of Model-Driven Development
[19,20], enabling a transformation of architectural components into source code
in future.

3 Overview on the Analysis Framework

3.1 Canonical Component Model

A problem that hinders conflict analysis is caused by different manifestations
of components. For example, entities such as programs, middleware containers,
Java classes, Enterprise JavaBeans, Haskell functions can be interpreted as com-
ponents. Each of these provides different structures, requirements, syntax etc.
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Fig. 1. Platform Independent Models of the Framework

Thus, we cannot directly compare their features and therefore not decide, if a
composition fails due to unanticipated conflicts.

Our approach follows the idea of software architecture and ADLs by provid-
ing a canonical component structure that is able to represent each component
of interest. The term ’canonical structure’ implies a technology (platform) inde-
pendent representation1, which is restricted to elements that are common among
all of the above entities.

The canonical component model consists of three main parts (see Figure
1): a structural, a behavioral, and a property (feature) model. The structural
model consists of elements that are found in most ADLs: components, connectors
and interfaces as well as their relationships and subordinate elements such as
operations.

The behavioral model restricts components and connectors by means of pre-
and post-conditions as well as by protocols (order of method invocations). This
allows one to verify behavioral equivalence of components by using appropriate
tools such as model checkers and theorem provers. As there exist a number of
formal specification languages that can be used for behavioral specification, the
framework can be customized for a particular language of choice. The framework,
furthermore, provides a labeled transition system for protocol specification. This
enables ’simulation’ and ’bisimulation’ analysis.

The property model defines a kind of ontology to cope with differences be-
tween communication mechanisms and underlying technologies. To organize the
space of communication properties, we decided to reuse the existing taxonomy
by Medvidovic/Mehta [9,16,8], as it provides the most fine grained properties
1 In the context of the Model Driven Architecture (MDA), these representations are

platform independent models.
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in comparison to other approaches. This taxonomy is designed on a platform
independent level, whereas we aim to analyse platform specific connectors for
middleware systems of interest. Therefore, we modified the original taxonomy in
the following way:

– Platform specific properties that describe communication in Java, Jini, J2EE
and .Net were analyzed [21] and added to the taxonomy. Figure 3 shows for
example a part of a feature model consisting of communication properties
relevant for Java procedure calls. Figure 2 shows part of the feature model
of a SessionBean2.

– Mandatory and Optional features are distinguished. Mandatory features re-
fer to structures and behavior that must be present, whereas for optional
features there is a choice for implementation.

– The original Connector Taxonomy of Medvidovic/Mehta consists of eight
connector types, which as they claim, are sufficient to express most of the
connectors which can be found in present systems. These connector types
were removed from the taxonomy. Instead features are annotated to port
types (’PortType’) from the structural model.

– Name clashes that occur due to the removed connector types were resolved.

SessionBean

Parameters Invocation Synchronicity

Blocking

Accessibility

Public

State

Stateless Stateful

Resolution

Reference

Explicit

Binding

Run-time
Dynamic
Loading

Loading

TransactionsSecurityNaming

Fig. 2. Example of a Feature Model describing the Communication Properties of Ses-

sionBeans

We express this taxonomy with a Feature Model. Feature models originate
in the area of product lines and domain analysis ([22]). They were introduced
in Feature Oriented Domain Analysis (FODA) [23]. A feature model consists of
a tree of hierarchical organized features of domain entities whereby special ele-
ments express variability. Feature models are adequate to model communication,
because of the following two reasons:

1. They distinguish between optional and mandatory features. This differen-
tiation is required for conflict analysis to deal with ’unknown’ values. This
issue is explained in section 4.4.

2 As we attach the properties to ’PortTypes’, we can use the properties with Connec-
tors and Components.
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2. At the same time feature models can be used for parameterized model trans-
formations. They can be used to generate platform specific component and
connector descriptions from a platform independent representation. Each
feature triggers the generation of particular structure and behavior. Section
3.3 provides an overview of parameterized transformations.

Java
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Fig. 3. Example of a Feature Model describing a Java Procedure Call: filled circles

represent mandatory features, empty circles represent optional features. The Planner-

Type component uses a restricted version of this Feature Model, where the features

’Implicit’, ’Compile-Time’, and ’Static’ are declared mandatory.

3.2 Conflict Analysis Process

Software development is often supported by modeling tools such as Rational
Rose or TogetherJ. Most of these development tools are based on UML. As we
believe that component analysis and composition is extremely helpful within
software development, we strive to support a UML representation of canonical
components and their compositions. We provide UML Profiles that represent
canonical components as well as platform specific components in UML. Conse-
quently, a developer can use a UML tool to work with the framework. Figure 4
shows an overview of the overall process. Execution proceeds as follows: Within
a UML tool - in this case Poseidon UML - we create a component model3 (1).
We know that it can be extremely difficult to obtain the necessary information
for the UML specification in case that binary artifacts are to be integrated. Usu-
ally, reengineering techniques such as static or dynamic code analysis need to
be applied to extract as most information as possible. Often tools are used to
support the reengineering task and to create documentation and an architec-
tural description. However, we do not consider these activities in this work, but
assume that the components are already specified in UML.
3 In principle, this can be done either with UML 1.x or 2.0. However, most existing

tools support only UML 1.x so that we use a profile to describe components.
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Starting from the UML specification, components are annotated with the
property information available. This includes properties describing the required
communication and technologies as well as other properties that are known to
the developer (see Figure 5 for an example). Then we submit the model to the
Model Reasoner Service embedded in the Evolution and Validation Environment
(EVE)4 [24] (2). The service extracts the annotations in the model and attaches
itself to the Analytical Data on Artifacts and Models (ADAM) repository. The
service extracts the addressed part of the knowledge base (i.e. communication
properties described by a feature model) (3/4) and passes it to the reasoner,
combined with the information extracted from the model (5). The reasoner cal-
culates the match/conflict and returns its characteristics to the service (6). The
service embeds the resulting information in the model, attached to the associ-
ation (7). If the result is a conflict, a conflict description is generated. If the
result is a match, the service can fill in implied property information for each
component, if desired by the user.

EVE Ontology-Based Framework

Deductive Knowledge Base 
(ODIS,TRIPLE/XSB)

Structure
Model

Behavior
Model

Conflict
Model

Transformation Rules

Feature
Model

External Tools
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21

3
4
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7

Fig. 4. The Framework Architecture

3.3 Component Abstraction and Refinement

We utilize the idea of Model-Driven Development [19] to abstract components
into the canonical component model. The first step in the abstraction process
involves creating a platform specific model of component artifacts, e.g. EJB jars
→ EJB Platform Specific Model (PSM) models. This can be done by using
proprietary tools. Then transformation rules can be used to further abstract
these representations into a platform independent model.

Unfortunately, existing software development tools (such as Rose, ArgoUML
etc.) do not distinguish between Platform Independent Models (PIMs) and
PSMs. They only provide fixed mappings between models and source code. These
mappings are often defined as a one-to-one relationship (they generate code ar-
tifacts from UML classes). More sophisticated one-to-many mappings, which are
necessary for a model-driven development, are normally not addressed. Thus, it

4 EVE is a framework to support tool independent manipulation of UML models.
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is necessary to provide PIM-to-PSM mappings that can be customized in partic-
ular situations and that can be applied to several technologies. In this refinement
process, certain constructs can be mapped into different elements of a particular
platform. For example, a ’set type’ can be represented in different languages, e.g.
Java, and for each language the set can be transformed into several concepts,
e.g. a Collection class or a Vector class.

We use parameterized mapping rules describing exactly, which representa-
tion has to be generated. Parameterized transformation can also be based on
more complex issues. We already demonstrated a transformation of Enterprise
JavaBeans based on optimization issues [25]. The choices of a developer result
in transformations based on J2EE patterns.

3.4 Framework Architecture

The framework’s architecture (shown in Figure 4) is based on a deductive knowl-
edge base (XSB) that provides the reasoning capabilities. The models and their
associated rules are realized based on Triple [18], which is an ’RDF-aware’ ex-
tension of F-Logic [26]. Type and behavioral conflicts are checked with external
tools (Haskell, LTSA, FDR, fc2tools, Aldebaran).

As our mapping rules in Chapter 4 are specified in Triple we give a briefly
introduction: Triple was proposed by Decker et. al. in [18]. Triple is a language
designed to provide a reasoning service for the semantic web. Triple facts are very
similar to Resource Description Framework (RDF) statements. Triple supports
object-oriented features and distinguishes between instance data and schema
information (types/classes). Triple states facts as tuples (S,P,O,C): S for subject,
the entity to be described. P is a predicate that states the relation of interest,
O stands for an Object, which is either a Literal or another tuple. C describes
the context within which the tuple is valid. The ’context’ is a new construct
that allows specifying views of an object in different contexts. This feature is
extremely helpful because it divides up fact bases into chunks that can be used
as separate units.

An RDF statement can be formalized in Triple as

subject[predicate->object]@context.

Constraints for building such statements are formulated with the special
schema-vocabulary (RDFS) which essentially enables the definition of binary
relation signatures [27].

class1 [ rdfs:subClassOf -> class2 ].
prop [ rdfs:domain -> class2; rdfs:range -> class1 ].

A Triple-mapping is defined through a parameterized context. For example,
the clause

forall X @inv(X) {
forall U,V V[requiredBy->U] <- U[requires->V]@X.

}
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simply defines a mapping ’inv’ which filters and inverts the association ’requires’.
The source model of the mapping is the set of all statements in context X .
For each instantiation of the rule body with a statement of the source model a
statement according to the rule head will be produced. The target model contains
these statements which are in the context inv(X). For example, the query

forall s,p,o s[p->o]@inv(componentStructure12).

transforms the source model with context ’componentStructure12’ to the target
model with context ’inv(componentStructure12)’.

4 Conflict Analysis

Conflicts are differences between component descriptions that hinder a direct
integration. A sound integration requires the identification of all conflicts be-
tween two or more components. Unfortunately, this is often a problem, because
of missing specification, lack of formal methods and unknown communication
properties of the components and the underlying technology.

We base conflict identification on several relationships. These cover structural
and behavioral conflicts and furthermore address communicational properties of
components. We describe these relationships in the following sections based on
a simple example.

4.1 Example

Our running example comes from federated information systems, particularly
mediator-based information systems. A mediator is a kind of middleware that
performs queries against heterogeneous distributed data sources ([28]). If a client
queries a mediator, the mediator first calculates which data sources are capable
to answer the query or part of it (Planner component). Then, it queries these
sources, integrates the answers and delivers the result back to the client.

The Planner calculates its plans based on specified interfaces of the data
sources. These interface descriptions are called Query Capabilities(QC). A query
capability, shown at the bottom of Figure 5, consists of parameters that a data
source can process as well as of result attributes returned by the data source.
Query capabilities are managed by another component of the mediator: the
QCManager. The Planner uses QCs, obtained by the QCManager, to decide
which data sources have to be queried.

Figure 5 shows a UML representation of both components. The QCMan-
ager component is a Commercials Off-The-Shelf (COTS). It is implemented as
a SessionBean. In our scenario, we want to call this component from our Plan-
ner component. However, the Planner component is implemented as a JavaBean
and has slightly different requirements as provided by the QCManager. Figure 6
shows the representation of both components within our framework. This repre-
sentation shows the protocols associated to both components as well as the root
of the attached communication properties.
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Fig. 5. Component Comparison Example: The Figure shows the UML representation

of the PlannerType and the QCManagerType component. PlannerType is a JavaBean

component. Its port is linked with communication properties (’comProps’) required

by the component. QCManagerType is a SessionBean and therefore associated with

communication properties required by Session EJBs.

4.2 Structural Conflicts

Structural compliance between components can be reduced to the problem of
deciding if a ’subtype’ relationship between the provided and required interfaces
of components hold. Before, name conflicts between identical but differently
named elements need to be resolved by specifying correspondences that relate
these elements.

For the ’subtype’ relationship, we define several subtype rules for the com-
plex types (component, connector, interface, operation, etc.) that are needed for
conflict analysis. We assume that all elements (instances) in the framework are
correctly typed and that additional relationships between basic types (such as
Integers, Strings) and for newly introduced complex types are given as needed.
The subtype rules correspond to standard rules found in literature of type theory
such as by [29].

Two component types C1 and C2 can be composed, if the following predicate -
written C1

′compS′ C2 - holds:

∃i1 ∈ C1.requires.declares, i2 ∈ C2.provides.declares · i1 � i2

where i1, i2 are interface types and � denotes a subtype relationship based on
a ’minimal’ type system, which consists only of the types that are needed to
decide for conflicts between components.

Example. In the example, both interfaces are not in a subtype relationship. The
interfaces ’IQueryCapabilities’ and ’IQueryCapabilitiesNew’ have operations,
where the signatures of the operations do not match (IQueryCapabilities ��
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Fig. 6. Components as rendered by the Framework

IQueryCapabilitiesNew). Consequently, the framework generates a respective
type conflict.

4.3 Behavioral Conflicts

Structural compatibility does not guarantee a seamless integration of commer-
cials off-the-shelf. It misses the behavioral requirements and obligations of com-
ponents such as pre- and post-conditions, invariants, communication protocols
(call order of method invocations) etc. Without exact behavioral specifications,
mismatched behavior can only be identified by high effort in the integration
process.

In the context of this paper, we only consider process graphs. To decide
compatibility, we compare the process graphs (transition systems) of two com-
ponents. Component composition requires a simulation of the process graphs of
both components. We define a simulation as a relation R on the nodes of two
graphs g and h, which express the behavior of two components as follows:

1. The roots of g and h are related by R,
2. If R(r, s) and r

a−→ r′, then there exists a node s′ such that s
a−→ s′ and

R(r′, s′)

We define additional simulation relationships including silent actions. All def-
initions correspond to the certain kinds of bisimulation relationships as defined
by Gabbeek [30].

Two components C1 and C2 are compatible regarding their protocols - writ-
ten C1

′compB′ C2 if there is a simulation relationship C1 ⊆ C2 between these
components5.

Example. In the example, two process algebra expressions are attached to the
components. The first expression is attached to the requires port of the ’Plan-
ner’ component: R = getQCList → R, whereas the second expression is bound
5 As we base compatibility checks on model checkers, we are restricted by the abilities

of these tools to solve the given protocols.
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to the provides port of ’QCManager’: Q = getURL → Q1; Q1 = getURL →
Q1|getQC → Q1. Analyzing both graphs the framework first generates Naming-
Conflicts, because both graphs consist of different actions labels. Consequently,
there is no simulation relationship between the associated LTS. It is allowed to
define correspondences between actions. However, the correspondence between
the action labels getQCList ∼ getQC does not create a simulation. The cor-
respondence getQCList ∼ getURL would result in a simulation, but is seman-
tically invalid. The obvious correspondence getQCList ∼ getURL → getQC)
cannot be defined because it requires an intermediate component that accepts
the getQC call and forwards the sequence of both actions getURL and getQC.

4.4 Property Conflicts

We assume that the connector taxonomy as well as the taxonomy for technology
related features contain all relevant properties for communication. Component
comparison is based on the comparison of annotated features.Two entities are
compatible, if all features annotated to the ports of the entities are compati-
ble. For example, in Figure 5 PlannerType and QCManagerType would be
compatible - PlannerType ’compP’ QCManagerType, if their feature models
fmJavaPC and fmSessionBean are compatible.

As communication properties are expressed by a feature model, there are
three cases a conflict identification has to take into account: a feature is manda-
tory, i.e. it needs to be present for a successful communication, a feature is
optional, i.e. it may be used in a communication, or a feature is not present in
a feature model, i.e. it is not supported.

Two components are compatible, only if they are annotated with the same
mandatory features and the attributes of each feature are also compatible. The
relationship ’compP’ yields true between two components C1 and C2 if the fol-
lowing proposition holds:

∀n ∈{C1.r.comProps ∪ C1.r.techProps}
isMandatoryFeature(n) →
∃m ∈ {C2.q.comProps ∪ C2.q.techProps}·
n.fname = m.fname∧
isMandatoryFeature(m)

(1)

The symbols ’r’ and ’q’ refer to provides and requires relationships of compo-
nents and connectors. Mismatches are generated for all other cases. The matrix,
shown in Table 1 shows the generated mismatches for all value combinations. We
distinguish between failures and warnings. Warnings are generated if optional
features are involved. We interpret optional features as ’unknown’ values for two
reasons: Firstly, a component composition requires that the required features are
all known. We cannot compose components for which we are not sure if a partic-
ular property such as transactions are required or not. Secondly, a composition
of two components results in a connector generation that fits the requirements of
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Table 1. Compatibility Matrix between two Components

Component vs. Com-
ponent

mandatory optional unsupported

mandatory
√

w f
optional w w w
unsupported f w

√
w = warning
f = failure

involved components. Such a connector generation is not possible if the features
are not clearly defined, i.e. there shouldn’t be any free variation points in the
associated features.

Example. The analysis of the example components yields several conflicts, a part
of them are shown in Figure 7. The main reasons for the 15 failures of Figure 7
can be interpreted as follows:

– Transactions are unsupported by the Planner component but required by
the QCManagerComponent.

– The Planner component requires a static binding, whereas the QCManager-
Component as a distributed component requires a dynamic binding and fur-
thermore requires a initialization of the communication based on a Naming
service (JNDI).

– The QCManager requires security handling.

Fig. 7. Property Conflicts - failures

4.5 Conflict Generation

Conflicts are generated in two steps: Firstly, mismatches are identified by pred-
icates that are based on the proposed relationships, and secondly conflict state-
ments are generated based on the identified violations. Examples of both rules
are shown below.
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forall ?c,?d,?p failureMandatory(?c,?d,?f)
<-
getComFeatures(?d,?f) and
?f[sys:directType->core:MandatoryFeature;

core:fname->?n]@@ and
notInClientRole(?f) and
hasOnlyMandatoryParentFeatures(?f) and
hasNoVariablityElementsAsParent(?f) and
isFeatureNotBound(?c,?n).

forall A,B @failure(A,B) {
forall ?x, ?p, ?ns

?ns:?x[sys:directType->core:FeatureConflict;
core:concerns->A; core:relates->B;
core:concernsFeature->?ns:?p;
core:cause->’Mandatory feature of client

unsupported by server.’]
<-

failureUnsupported(A,B,?ns:?p) and
concatConflict(?x,?p,’Failure’).

forall ?x, ?p, ?ns
?ns:?x[sys:directType->core:FeatureConflict;

core:concerns->A; core:relates->B;
core:concernsFeature->?ns:?p;
core:cause->’Mandatory feature of server

unsupported by client.’]
<-

failureMandatory(A,B,?ns:?p) and
concatConflict(?x,?p,’Failure’).

}

The left predicate finds all mandatory features f that are annotated to an
element d, which is either a component type or a connector type, that are not
bound by element c. The identified features must be mandatory, relative to the
root of the feature model annotated by d: There must not be any optional feature
or variability element in the path from the root to f . This is one of the rules used
to find feature conflicts. A complete set of rules can be found in the technical
report to the framework [31].

The right rule generates conflict statements. The rule is included in a param-
eterized mapping with parameters A and B. A and B are for example the two
component types introduced above. In the framework a complete set of rules for
each case shown in table 1 are implemented.

5 Conclusion

This paper presented a framework for the identification of compositional con-
flicts in component-based systems. Within the framework, conflict identification
is based on the analysis of structural and behavioral aspects of component de-
scriptions. It also takes property-based descriptions of communicational require-
ments and technological aspects into account. Analysis identifies mismatched
behavior by evaluating customizable relationships in each context. Examples of
predefined relationships are subtypes, simulation and bisimulation as well as a
property-based relationships.

At present, property-based conflict identification is often underestimated.
Only a few approaches exist covering property-based description and analysis,
such as the connector taxonomy of Mehta/Medvidovic or architectural styles pro-
posed by Allan/Shaw. A property-based analysis has several advantages: Firstly,
properties can be used to transform conceptual models into specific represen-
tations covering particular communication requirements. Secondly, they enable
one to gain more information regarding incompletely specified components. Both
advantages are extremely important for analyzing components in the context of
modern software development.
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A property-based transformation paves the way for design reuse. It becomes
possible to reuse a conceptual model for different technologies. One can create a
EJB model or a CORBA model or a model for another language from a single
conceptual model. Regarding communication properties, different kinds of com-
munication can be generated for a conceptual model. For example, one can create
an EJB component accepting synchronous communication, e.g. a SessionBean
or asynchronous communication, e.g. a MessageBean from a single conceptual
component.

We believe that the framework can also be used to semi-automatically gener-
ate connectors. Currently, we focus on generating the protocol specifications of
connectors. Based on correspondences between the actions of two or more process
graphs, we derive the behavior description of a connector by utilizing the algo-
rithm proposed by Inverardi [32]. Furthermore, we gain additional requirements
for the connector by investigating the communication properties of components.
In the example, an additional initialization action needs to be added to the con-
nector process, because EJBs require to obtain instances via a naming server.
Other properties, such as the transaction feature of the QCManager component
can be used to generate the deployment descriptor of that component, when
generating the artifact.
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Abstract. The need to use position-dependent parameters often ham-
pers the definition of flexible, extensible, and reusable abstractions for
software composition. This observation has led us to explore the concept
of forms, which are first-class extensible records and that, in combination
with a small set of purely asymmetric operators, provide a core language
to address this issue. One interesting application of forms is the defi-
nition of contractual specifications to ensure that a component can be
safely combined with other components or deployed in a new context. In
fact, contractual specifications explicitly and formally state what a com-
ponent offers without entering into the details of how. In this paper, we
develop a formal form-based framework for the definition of contractual
specifications. More precisely, we study a substitution-free variant of the
lambda-calculus, called λF , where names are replaced with forms and
parameter passing is modeled using explicit contexts and show how the
λF-calculus can be used to define syntactic contractual specifications.

1 Introduction

Modern software systems are constantly growing in complexity and size. More-
over, in order to timely adapt to changing requirements those systems have to
be designed in a way that software evolution becomes feasible. The component-
oriented software development approach targets exactly this aspect and has be-
come the most promising software development technology today [19,23,28].

A successful component-based software development approach, however, not
only needs to provide abstractions to represent different component models
and composition techniques, but must also provide a systematic method for
constructing large software systems [4,16]. In particular, we need a specially-
designed composition language that allows for building applications as compo-
sitions of reusable software components [24]. This language, which should be
extensible, has to provide abstractions to instantiate, coordinate, and compose
components that are generally developed in different implementation language.
Furthermore, to guarantee flexible, reliable, and verifiable software composition,
such a composition language has to be based on a suitable formal foundation
[8,14,20,24]. A precise semantics is essential if we are to deal with multiple ar-
chitectural styles and component models within a common, unifying framework.
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There are several plausible candidates (e.g., λ-calculus, π-calculus, or vari-
ants of them) that can serve as a computational model for component-based
software development. Unfortunately, they often hamper the definition of gen-
eral purpose compositional abstractions, as they impose dependence on position
and arity of parameters [9,25]. For example, in the standard λ-calculus the func-
tions λ(x, y).x and λ(y, x).y are equivalent, but λ(x, y).x and λ(y, x).x
are different, as position matters in λ-calculus. Moreover, if we use de Bruijn in-
dices [11], then names disappear totally, as arguments to functions are uniquely
identified by their positions. Thus, if we abstract from position and use instead
the parameter names as keys functions like λ〈x, y〉.x and λ〈y, x〉.x become
indistinguishable.

This observation has led us to explore the concept of forms [13,15,24]. Forms
are first-class extensible records that define mappings from labels to values,
which, in combination with a small set of purely asymmetric operators, provide
a core language to define extensible, flexible, and robust compositional abstrac-
tions. Programmatically, forms are both compile-time and run-time entities. As
compile-time entities, forms can be used to denote components, component in-
terfaces, and component composition. At run-time, on the other hand, forms
provide uniform and language-neutral access to component services and support
runtime composition on demand.

Originally, forms were an integral part of the πL-calculus [13], a conser-
vative extension of the π-calculus, that already provides better support for
modeling concurrent component-oriented abstractions [13,24]. However, forms
are not bound to a particular computational model. They are an environment-
independent framework that has to be combined with a concrete target system
like the λ-calculus or the π-calculus.

In this paper, we study a substitution-free variant of the λ-calculus, called
λF , where names are replaced with forms and parameter passing is modeled us-
ing explicit contexts. Explicit contexts mimic λ-calculus substitutions. However,
unlike λ-calculus in which substitutions are meta-level operations [1], explicit
contexts have a syntactic representation to record named parameter bindings.

The design of the λF -calculus is greatly influenced by Dami’s λN -calculus
[9,10] that is also a calculus in which parameters are identified by names rather
than positions. However, there are two significant differences. First, in the λN -
calculus an application is split into two different parts: an expression a(l = b),
called bind expression, passes the value b under the name l to a; an expres-
sion a!, called close expression, ends a sequence of bind expressions and forces
the evaluation of a. A shortcoming of this approach is that binding expressions
cannot be pooled into an additional structure or used to encode monadic com-
munication patterns, which occur in rendezvous-based protocols like HTTP. For
example, the λN -term a(l = b)(m = c)! denotes an expression a! in which
the parameters l and m are bound to their corresponding values b and c.
Moreover, a(l = b)(m = c) actually stands for two distinct closures a(l = b)
and ((a(l = b))(m = c)), each requiring a separate interaction with the en-
vironment. In λF , on the other hand, we write a 〈〉〈l = b〉〈m = c〉 instead of
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a(l = b)(m = c)!. Here, the form 〈〉〈l = b〉〈m = c〉 is a structured argument
that can be consumed in one interaction.

Secondly, rather than using an informal meta-level operation to substitute
formal parameters with actual ones, we use explicit contexts [1,3]. These explicit
contexts have a syntactic representation based on forms. In practice, contexts
explicitly record named parameter bindings and provide an environment to re-
solve the occurrences of free variables in a λF -term. For example, the term a[b]
denotes an expression a, which is evaluated with respect to the context [b].
That is, all occurrences of free variables in a are resolved using form b. Thus,
the context [b] expresses the requirements posed by the free variables of a on
the environment [18]. In other words, if we close the component a by composing
it with a concrete environment or component b, then a[b] denotes a composite
component, where the services provided by b are used to satisfy the required
services of a.

On the other hand, explicit contexts also allow for the definition of (syntactic)
contractual specification [5]. Contractual specifications are used to ensure that
a component can safely be combined with other components or deployed in a
new context. Ideally, all conditions of a contract should be stated explicitly and
formally as part of an interface specification [26]. The information contained in a
contract should tells us what a component offers without entering into the details
of how it is implemented. For example, let T, S be form-based type expressions.
We write T [S] to express that we can close T by composing it with S. However,
since this composition denotes a contractual specification, we must check now
that the services provided by S satisfy the required type of T .

The remainder of this paper is organized as follows: In Section 2, we present
the λF -calculus. We proceed by using λF to specify syntactic contracts in Sec-
tion 3. We conclude with a summary of related and future work in Section 4.

2 The λF-Calculus

The primary objective of the definition of the λF -calculus is to study the effect
of replacing variables by forms in λ-calculus. So, we maintain a clear separation
between the syntactic categories of forms and λF -terms. The linkage between
expressions of both categories is modeled through a refined characterization of
the set of values.

Next, the question arises how to handle best substitution? In the classical
λ-calculus we write a{b/x} to denote the term a where all free occurrences of
b have been replaced with x. However, substitution in λ-calculus is a very ex-
pensive term-rewriting operation, which actually does not belong to the calculus
[1]. We address this issue by using explicit contexts [1,3], which have a form-
based syntactic representation. Explicit contexts are used for both forms and
λF -terms and they provide, therefore, a uniform way to resolve occurrences of
free variables.

We presuppose a countably infinite set, L, of labels, and let l, m, n range
over labels. We also presuppose a countably infinite set, V , of abstract values,
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and let a, b, c range over abstract values. We think of an abstract value as a
representation of any programming value like integers, objects, types, and even
forms. However, we do not require any particular property except that equality
and inequality be defined for elements of V . We use F, G, H to range over the
set of forms, and M, N to range over the set of λF -terms. The syntax of the
λF -calculus is given in Figure 1.

F, G, H ::= 〈〉 empty form
| X form variable
| F 〈l = V 〉 binding extension
| F · G form extension
| F\G form restriction
| F → l form dereference
| F [G] form context

V ::= E empty value
| a abstract value
| M λF − value

M, N ::= F form
| M.l projection
| λ(X) M abstraction
| M N application
| M [F ] λF − context

Fig. 1. Syntax of the λF-Calculus

Forms are used to denote both components and component composition. The
services that a component offers are specified as binding extensions. A binding
extension, written 〈l = s〉, denotes a component’s capability to perform a ser-
vice s that is published under the name l. For example, we write F.a to invoke
the service that is bound by label a in component F.

The expressive power of forms is due to the two asymmetric operators: form
extension and form restriction. Form extension, written F · G, allows one to add
or redefine a set of services simultaneously, whereas form restriction, written
F\G, can be seen as a dual operation that denotes a form, which is restricted
to all bindings of F that do not occur in G. In combination, these operators
provide the main building block in a fundamental concept for defining adapt-
able, extensible, and more robust software abstractions [13,16,24]. For example,
suppose we want to compose two components F and G, but we want to give a
specific service of F bound by label m precedence over a service bound by the
same label m in G. This operation represents a compositional style [2] that defines
a conditional update, which can be specified using both form extension and form
restriction: F · (G\〈〉〈m = F.m〉). Depending on the actual services defined by the
components F and G, we can distinguish three different situations covered by
F · (G\〈〉〈m = F.m〉):
• If the label m occurs neither in F nor G, then the label m does not occur in

the composition of F and G.
• If the label m does not occur in F, but in G, then G’s binding for label m occurs

in the composition of F and G.
• If the label m occurs in F, then F’s binding for label m occurs in the compo-

sition of F and G.
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Forms can also occur as values in binding extensions. These forms are called
nested forms and they facilitate the specification of structured component inter-
faces. To extract a nested form bound by a label l in a form F, we use F → l.
Note, however, that if the binding involving label l does not actually map a
nested form, then the result of F → l is 〈〉 – the empty form. The reason for this
is that we want to distinguish between components, which offer a set of services,
and component services themselves.

A form context F[G] denotes a closed form expression that is derived from F
by using G as an environment to look up what would otherwise be free variables
in F. We use form dereference to perform the lookup operation. That is, a free
variable is reinterpreted as label. For example, if X is a free variable in F and [G]
is a context, then the meaning of X in F is determined by the result of evaluating
G → X. In the case that G does not define a binding for X, the result is 〈〉, which
effectively removes the set of provided services associated with X from F. This
allows for an approach in which a sender and a receiver can communicate open
form expressions. The receiver of this open form expression can use its local
context to close (i.e., configure) the received form expression according to a site-
specific protocol, but may also chose to ignore it (e.g., the configuration of a
Web-browser to run an application associated with a specific MIME-type).

Forms and projections replace variables in λF . A form stands for an explicit
namespace [3] or module [12], which can comprise an arbitrary number of pro-
vided services. The form itself can contain free variables, which will be resolved in
the deployment environment or evaluation context. In other words, free variables
in a form expression allow for a computational model with late binding.

With projections we recover variable references of λ-calculus. We require,
however, that the subject of a projection denote a form. For example, the mean-
ing of F.l is the value bound by label l in form F. A projection a.l, where a is
not a form yields E , which means “no value”.

Both abstraction and application correspond to the notions used in λ-calculus.
As in λ-calculus, the X in λ(X) a stands for the parameter. But unlike λ-calculus,
we do not use substitution to replace free occurrences of this name in the body
of an abstraction. Parameter passing is modeled by explicit contexts.

A λF -context is the counterpart of a form-context. A λF -context denotes
a lookup environment for free variables in a λF -term. Moreover, λF -contexts
provide a convenient mechanism to retain the bindings of free variables in the
body of a function. For example, let λ(X) a be a function and [F] be a creation
context for it. Then we can use [F] to build a closure of λ(X) a. A closure is a
package mechanism to record the bindings of free variables of a function at the
time it was created. That is, the closure of λ(X) a is λ(X) (a[F]).

As a first example, consider the Church encoding of Booleans. In the standard
λ-calculus Booleans are encoded using position-dependent parameters:

True = λtrue.λfalse.true

False = λtrue.λfalse.false

Not = λarg.λtrue.λfalse.arg false true
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These encodings have the desired property that the application (Not True)
yields False. But they lack extensibility, that is, the possibility to add new
functionality without effecting the previous behavior of the encodings [9]. On
the other hand, the encodings in λF are extensible, as we eliminate position
dependency:

True = λ(X) X.true

False = λ(X) X.false

Not = λ(B) λ(V) B V〈true = V.false〉〈false = V.true〉

These encodings are equivalent to there λ-calculus counterparts. However,
all functions are now characterized by the arguments they are effectively using
and not by the ones they declare. The application (Not True) yields:

Not True = λ(V) B V〈true = V.false〉〈false = V.true〉 [〈〉〈B = True〉]

which is equivalent to False, as illustrated in the following:

False 〈〉〈true = a〉〈false = b〉
= X.false [〈〉〈X = 〈〉〈true = a〉〈false = b〉〉]
= (〈〉〈true = a〉〈false = b〉).false
= b

Similarly, it holds that

(Not True) 〈〉〈true = a〉〈false = b〉
= (λ(V) B V〈true = V.false〉〈false = V.true〉 [〈〉〈B = True〉])

〈〉〈true = a〉〈false = b〉
= (True V〈true = V.false〉〈false = V.true〉) [〈〉〈V = 〈〉〈true = a〉〈false = b〉〉]
= True 〈〉〈true = b〉〈false = a〉
= X.true [〈〉〈X = 〈〉〈true = b〉〈false = a〉〉]
= (〈〉〈true = b〉〈false = a〉).true
= b

We use denotational semantics to formalize the interpretation of forms and
λF -terms. The underlying semantic model of forms is that of interacting systems
[17]. Informally, the interpretation of forms (that is, their observable behavior)
is defined by an evaluation function [[]]F , which guarantees that feature access
is performed from right-to-left [15]. The reader should note, however, that in
contrast to standard records, a given binding may not be observable1 in a form
and, therefore, may not be used to redefine or hide an existing one.

Form composition may yield form expressions in which many of their bindings
have become inaccessible due to extension or restriction. Those bindings can be
garbage collected. Garbage collecting inaccessible bindings of a form F yields
a so-called normalized form F containing solely observable binding extensions.
In other words, form normalization yields an expression that is isomorphic to
a classical record. However, we still maintain position independency. That is,
1 A binding is not observable if it cannot be distinguished from E or 〈〉. For example,

the forms 〈〉〈m = E〉, 〈〉〈m = 〈〉〉, and 〈〉 are all considered equivalent.
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〈〉〈l = a〉〈m = b〉 and 〈〉〈m = b〉〈l = a〉 are behaviorally equivalent. Moreover, it
holds that for every form F that there exists a normalized form F , such that
F is behaviorally equivalent to F , written F ≈ F . We use F , G, H to range
over the set, F , of normalized forms, which is the smallest set that satisfies the
specification given in Figure 2. There exists an algorithm, called normalize,
that can generate a behaviorally equivalent normalized form F for every given
form F [15].

F ::=

{ 〈〉
〈〉〈l1 = v1〉〈l2 = v2〉 . . . 〈ln = vn〉 n > 0

∀ i, j ∈ {1 . . . n} ∧ i �= j : li �= lj and ∀ i ∈ {1 . . . n} : vi �= E ∧ vi �= 〈〉

Fig. 2. Normalized Forms

The meaning of a λF -term depends on its deployment context. A deployment
context is represented by a normalized form. We write [[a]]LF [H ] to evaluate
the λF -expression a in a deployment context H . For example, we can use the
encoding of Booleans as shown above to build a deployment context B. This
context defines three bindings: True, False, and Not:

B = 〈〉〈True = λ(X) X.true〉
〈False = λ(X) X.false〉
〈Not = λ(B) λ(V) B V〈true = V.false〉〈false = V.true〉〉

We can use B to evaluate (Not True) 〈〉〈true = a〉〈false = b〉, written

[[(Not True) 〈〉〈true = a〉〈false = b〉]]LF [B],

which yields

apply ([[(Not True)]]LF [B], B) 〈〉〈true = a〉〈false = b〉
= b.

The evaluation rules for forms and λF -terms are shown in Figure 3.
The operator apply is the heart of the λF -evaluation process. It actually

implements a lazy evaluation mechanism. The reason for this is that the first
argument (i.e., the operator) may not yield a closure.



90 M. Lumpe

Form evaluation:

[[〈〉]]F [H] = 〈〉 (f-empty)

[[X]]F [H] = 〈〈H → X〉〉 (f-var)

[[F 〈l = V 〉]]F [H] = ([[F ]]F [H])〈l = [[V ]]V [H]〉 (f-bind)

[[F · G]]F [H] = ([[F ]]F [H]) · ([[G]]F [H]) (f-pbind)

[[F\G]]F [H] = ([[F ]]F [H])\([[G]]F [H]) (f-pres)

[[F → l]]F [H] = 〈〈([[F ]]F [H]) → l〉〉 (f-deref)

[[F [G]]]F [H] = [[F ]]F [normalize (([[G]]F [H]) · H)] (f-context)

Value evaluation:

[[E ]]V [H] = E [[a]]V [H] = a [[M ]]V [H] = [[M ]]LF [H]

Form normalization:

[[F ]]F [H] = normalize ([[F ]]F [H]) (f-norm)

λF-evaluation:

[[F ]]LF [H] =

{
v if F ≡ X ∧ v = [[ H.X ]] �= E
[[F ]]F [H] otherwise (lf-form)

[[M.l]]LF [H] = [[ ([[M ]]LF [H]).l ]] (lf-proj)

[[λ(X) M ]]LF [H] = λ(X) (M [H]) (lf-abs)

[[M N ]]LF [H] = apply M N H (lf-app)

[[M [F ]]]LF [H] = [[M ]]LF [normalize (([[F ]]F [H]) · H)] (lf-context)

Projection evaluation (F̂ = [[F ]]F [H] and Ĝ = [[G]]F [H] for some H ):

[[ (〈〉).l ]], [[ a.l ]], [[ E .l ]]

[[ (λ(X) (M [H])).l ]]

}
= E

[[ (F̂ 〈m = V̂ 〉).l ]] = [[ F̂ .l ]] if m �= l

[[ (F̂ 〈l = V̂ 〉).l ]] =

{
V̂ if V̂ ∈ V
E otherwise

[[ (F̂ · Ĝ).l ]] =

{
[[ Ĝ.l ]] if [[ Ĝ.l ]] �= E ∨ 〈〈Ĝ → l〉〉 �= 〈〉
[[ F̂ .l ]] otherwise

[[ (F̂\Ĝ).l ]] =

{
E if [[ Ĝ.l ]] �= E ∨ 〈〈Ĝ → l〉〉 �= 〈〉
[[ F̂ .l ]] otherwise

Form dereference evaluation (F̂ = [[F ]]F [H] and Ĝ = [[G]]F [H] for some H ):

〈〈〈〉 → l〉〉 = 〈〉
〈〈(F̂ 〈m = V̂ 〉) → l〉〉 = 〈〈F̂ → l〉〉 if m �= l

〈〈(F̂ 〈l = V̂ 〉) → l〉〉 =

{
〈〉 if V̂ ∈ V
normalize V̂ otherwise

〈〈(F̂ · Ĝ) → l〉〉 =

{
〈〈Ĝ → l〉〉 if [[ Ĝ.l ]] �= E ∨ 〈〈Ĝ → l〉〉 �= 〈〉
〈〈F̂ → l〉〉 otherwise

〈〈(F̂\Ĝ) → l〉〉 =

{
〈〉 if [[ Ĝ.l ]] �= E ∨ 〈〈Ĝ → l〉〉 �= 〈〉
〈〈F̂ → l〉〉 otherwise

Fig. 3. Evaluation Rules
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The λF -operator apply is defined as follows:

apply M N F =

cases [[M ]]LF [F ] of

G : [[N ]]LF [ [[F · G]]F ] (c1)

a : a ([[N ]]LF [F ]) (c2)

E : E (c3)

λ(X) (M ′ [H ]) : [[M ′ [H ]]]LF [ 〈〉〈X = [[N ]]LF [F ]〉 ] (c4)
end

The first rule states that if the operator, denoted by M , evaluates to a (nor-
mal) form expression G, we evaluate the argument N in a new extended context
[[[F · G]]F ], where G defines a local refinement of F . Consider, for example, the
following evaluation

〈〉〈True = λ(X) X.true〉 (True 〈〉〈true = a〉〈false = b〉)
= (True 〈〉〈true = a〉〈false = b〉)[ 〈〉〈True = λ(X) X.true〉 ]
= (λ(X) X.true) (〈〉〈true = a〉〈false = b〉)
= (〈〉〈true = a〉〈false = b〉).true
= a

Here, the form 〈〉〈True = λ(X) X.true〉 provides a proper environment that al-
lows for the evaluation of the expression (True 〈〉〈true = a〉〈false = b〉) in a
meaningful way. This approach is similar to way the so-called sandbox expres-
sions are handled in the Piccola-calculus [2]. When evaluating a sandbox ex-
pression A;B the term left to the semicolon defines a root context or controlled
environment for the right-hand side agent. However, A in A;B may not evaluate
to a form. In this case the agent A;B is stuck and identified with E .

The second rule defines the evaluation of a system-depended expression, that
is, when the operator M evaluates to an abstract value a. The actual meaning of
a lies outside the λF -calculus. Therefore, the target system is responsible for the
proper handling of the expression a ([[N ]]LF [F ]). We have chosen this approach,
rather than using ⊥ (i.e., undefined), because the meaning of a ([[N ]]LF [F ]) is
not really undefined, but merely our knowledge about it is incomplete.

The third rule defines error propagation. If the operator (i.e., M) evaluates
to “no value”, the whole expression has no value. It will simply be discarded.

The fourth rule states that if operator M evaluates in context [F ] to a closure
λ(X) (M ′ [H ]), then the body of the closure (i.e., (M ′ [H ])) is being evaluated
in a new context [〈〉〈X = [[N ]]LF [F ]〉]. Thus, actual parameters are passed to a
functions as bindings in the evaluation context.

To illustrate the λF -evaluation process, consider the following example. To
simplify the presentation, we assume that both F1 and F2 do not contain any
free variables:



92 M. Lumpe

[[F1 (λ(X) (λ(Y) Y) X) F2]]
LF [〈〉]

= apply F1 ((λ(X) (λ(Y) Y) X) F2) 〈〉 (lf-app)

= [[(λ(X) (λ(Y) Y) X) F2]]
LF [[[〈〉 · F1]]F ] (c1)

= [[(λ(X) (λ(Y) Y) X) F2]]
LF [F1] (f-norm)

= apply (λ(X) (λ(Y) Y) X) F2 F1 (lf-app)

= [[((λ(Y) Y) X [F1])]]
LF [〈〉〈X = [[F2]]

LF [F1]〉] (c4)

= [[((λ(Y) Y) X [F1])]]
LF [〈〉〈X = F2〉] (lf-form)

= [[(λ(Y) Y) X]]LF [[[([[F1]]
F [〈〉〈X = F2〉]) · 〈〉〈X = F2〉]]F ] (lf-context)

= [[(λ(Y) Y) X]]LF [[[F1 · 〈〉〈X = F2〉]]F ]

= [[(λ(Y) Y) X]]LF [F1〈X = F2〉] (f-norm)
= apply (λ(Y) Y) X (F1〈X = F2〉) (lf-app)

= [[Y [F1〈X = F2〉]]]LF [〈〉〈Y = ([[X]]LF [F1〈X = F2〉])〉] (c4)

= [[Y [F1〈X = F2〉]]]LF [〈〉〈Y = F2〉] (lf-form)

= [[Y]]LF [[[([[F1〈X = F2〉]]F [〈〉〈Y = F2〉]) · 〈〉〈Y = F2〉]]F ] (lf-context)

= [[Y]]LF [[[(F1〈X = F2〉) · 〈〉〈Y = F2〉]]F ]

= [[Y]]LF [(F1〈X = F2〉)〈Y = F2〉] (f-norm)

= [[Y]]F [(F1〈X = F2〉)〈Y = F2〉] (lf-form)
= F2 (f-norm)

The above example illustrates that keyword-based parameter-passing can
effectively be modeled with form-based explicit contexts (e.g., [〈〉〈X = F2〉]).
Actual function arguments are encoded as bindings in the form that represents
the current context.

In λF , forms take the role of λ-calculus variables. But is it possible to embed
the λ-calculus in λF itself? Assume, for example, a closed λ-calculus term M .
Then the embedding of M into λF is given by the translation [[M ]] as specified
below:

[[x]] = x.arg
[[λx. M ]] = λ(x) [[M ]]
[[M N ]] = ([[M ]] 〈〉〈arg = [[N ]]〉)

Here, λ-calculus variables are encoded as projections, which extract the ac-
tual value. The encoding of abstractions maps a position-dependent function to
a position-independent functions, whereas the encoding of application builds a
form expression for the λ-term in argument position.

Unfortunately, a simple translation of a λ-calculus term does not neces-
sarily yield a position-independent λF -term. Suppose we want to specify a
recursive function definition (e.g., the length function for lists) of the form
f = λx.{body containing f}. That is, we want to write a function where the
term on the right-hand side of the = uses the very function that we are defining.
To solve this problem, we define a function g = λf.λx.{body containing f}
and a function h = (fix g), where fix is the applicative-order fixed-point com-
binator

fix = λf.((λx.f (λy.(x x) y)) (λx.f (λy.(x x) y)))

Now, we can translate (fix g) into λF , but the result would still be position-
dependent, since the sub-term (λx.f (λy.(x x) y)) forces a position-depen-
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dent order on g’s arguments. In particular, [[g]] is a λF -function that has to
be applied to a “self-replicator” (i.e., the fixed-point) before it can consume
any additional arguments. Further analysis reveals that in order to achieve a
position-independent encoding of (fix g), we need to be able to convert g into
an equivalent “uncurried” function, which can consume the self-replicator and
any additional arguments at the same time. But the application of g in term
(λx.f (λy.(x x) y)){f/g} does not allow this. We solve this problem by ap-
plying f later. That is, we move the application of f underneath the innermost
abstraction: λx.λy.(f (x x) y). We observe now that f has become a function
that takes two arguments. Replacing the sequence of arguments with a structured
argument (i.e., uncurrying f) yields the desired effect that the self-replicator and
any additional arguments are consumed at the same time. We call a fixed-point
operator with this property late applicative-order fixed-point combinator, which
is defined as

fixL = λf.((λx.λy.(f (x x) y)) (λx.λy.(f (x x) y)))

The encoding2 of fixL into λF is as follows:
[[fixL]] = λ(f) [[(λx.λy.(f (x x) y)) (λx.λy(f (x x) y))]]

= λ(f) [[(λx.λy.(f (x x) y))]] 〈〉〈arg = [[(λx.λy(f (x x) y))]]〉
= λ(f) (H 〈〉〈arg = H〉)

where H = λ(x) λ(y) (f.arg 〈〉〈arg = (x.arg 〈〉〈arg = x.arg〉)〉
〈〉〈arg = y.arg〉)

By further analyzing the expression H, we notice that a form expression of
the kind 〈〉〈arg = X.arg〉 is the same as X. Thus, we can rewrite H as follows:

H = λ(x) λ(y) (f.arg 〈〉〈arg = (x.arg x)〉 y)
In the next step, we use the fact that f.arg actually has to denote a position-

independent function, which can consume all arguments in any order at once:

H = λ(x) λ(y) (f.arg y〈arg = (x.arg x)〉)
Thus, a position-independent applicative-order fixed-point combinator in λF ,

written FIX, can be defined as follows:

FIX = λ(Fun) (H 〈〉〈self = H〉)
[〈〉〈H = λ(Fix) λ(Args) (Fun.f Args〈self = (Fix.self Fix)〉)〉]

The ability to define the fixed-point operator FIX in λF suggests that it
should be possible to embed arbitrary λ-terms in the λF -calculus. However, a
simple translation of a λ-term into a λF -term does not guarantee a position-
independent result. A more detailed study of embedding λ-calculus into λF is
part of future work.
2 In the encoding of fixL, the term H is still position-dependent, but the application

of the recursive function, denoted by Fun.f, is not.
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3 Contractual Specifications

The contractual specification of component interfaces has to guarantee that a
component can be safely combined with other components or deployed in a
new context. Ideally, all conditions of a contract should be stated explicitly and
formally as part of an interface specification. The information contained in a
contract should tell us what a component offers without entering into the details
of how it is provided. Beugnard et al [5] have identified four levels of component
contracts:

• Syntactic contracts to specify data type compatibility,
• Behavioral contracts to specify pre- and postconditions invariants,
• Synchronization contracts to specify constraints in concurrent contexts, and
• Quality-of-service contracts to specify quantitative properties like maximum

response time.

Each of these four levels is important, but in this paper we focus only on
syntactic contracts.

Consider, for example, the following code written in C#-like language:

using System;

public class OneMinute : MarshalByRefObject {
public override ILease InitializeLifetimeService() {

ILease lease = base.InitializeLifetimeService();

lease.InitialLeaseTime = TimeSpan.FromMinutes(1);

return lease;

}
}

This code defines a class OneMinute, which can be used to instantiate .NET
Remoting [21] objects with a lease time of one minute. OneMinute is derived from
MarshalByRefObject, a .NET class that enables access to objects across appli-
cation domain boundaries. The .NET Remoting infrastructure is an abstract
approach to support interprocess communication. The .NET lifetime service as-
sociates a lease with each remotely activated object and after the lease expires,
the object is removed from the system. The system assigns a default lifetime to
each Remoting object, but the user can redefine the default by overriding the
method InitializeLifetimeService. In the case of OneMinute, the lease will
expire after one minute.

Now, we can represent the class OneMinute as a λF -term using the approach
of Lumpe and Schneider [16]. The behavior of the class OneMinute can be cap-
tured by ΔOneMinute denoting the incremental modification defined by this class:

ΔOneMinute =
λ(I)〈〉〈 InitializeLifetimeService =

λ() ((I → super).InitializeLifetimeService 〈〉)
〈InitialLeaseTime = (TimeSpan.FromMinutes (〈〉〈value = 1〉))〉

The term (I → super).InitializeLifetimeService 〈〉) implements the call
to the inherited method InitializeLifetimeService, which returns a lease
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form. The binding InitialLeaseTime is then overridden to set the lease time to
one minute. To create the class OneMinute, we use the abstraction Class that
when applied to an appropriate model generator for C# yields a class builder
for C#-classes. We use CSharpClass to denote this class builder and apply it
the both the super class MarshalByRefObject and the incremental modification
ΔOneMinute to construct OneMinute:

OneMinute = CSharpClass (MarshalByRefObject 〈Δ = ΔOneMinute〉)
Suppose now that we would like to verify the correctness of this definition with-
out excessive dependencies on the features imported from the System namespace.
Based on a static analysis of this code, we might express what it provides as the
following form, where values are type expressions:

P = 〈〉〈OneMinute = () → 〈〉〈InitializeLifetimeService = () → ILease〉〉

that is, a default constructor called OneMinute, which yields an instance of
OneMinute that understands at least the InitializeLifetimeServicemethod,
which returns a lease object that implements the interface ILease. We can, how-
ever, say even more about the assumptions this definition places on its environ-
ment. In particular, instances of OneMinute will safely provide their services if
and only if the environment (i.e., the namespace System) satisfies the following
requirement:

R =
〈〉〈MarshalByRefObject = () → 〈〉〈InitializeLifetimeService = () → ILease〉
〈ILease = 〈〉〈InitialLeaseTime = TimeSpan〉〉
〈TimeSpan = 〈〉〈FromMinutes = (〈〉〈value = Integer〉) → TimeSpan〉〉

that is, the environment System, denoted by R, has to provide suitable defini-
tions for the types MarshalByRefObject, ILease, and TimeSpan. In particular, the
class MarshalByRefObject must define a default constructor and has to provide
a method InitializeLifetimeService, which returns a value that implements
the ILease interface. Furthermore, it is required that the ILease interface must
define a virtual field InitialLeaseTime that can be assigned a TimeSpan struc-
ture, which has at least a suitable FromMinutes method.

Thus, we can say that System denotes the required type, which expresses
the requirements posed by the free variables of class OneMinute. If we close
OneMinute by composing it with an environment or component like System,
written P [R], we must then check whether the services provided by System
satisfy the required type of OneMinute.

4 Conclusion and Future Work

In this paper, we have presented the λF -calculus, a substitution-free variant of
the λ-calculus in which names are replaced with forms and parameter passing is
modeled using explicit contexts. The λF -calculus, like Dami’s λN , is a calculus
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in which parameters are identified by names rather than positions. Position-
independent parameter specification allows for the development of extensible,
flexible, and reliable component-based application. The resulting flexibility of a
form-based programming model can also be seen, for example, in XML/HTML
forms [30], where fields are encoded as named (rather than positional) parame-
ters, in Python [29] and Common Lisp [27], where functions can be defined to
take arguments by keywords, and in Perl [31] where it is a common technique
to pass a map of name/value pairs as arguments to a function or method.

The definition of explicit contexts is inspired by the work of Achermann’s
Piccola-calculus [2] and the work on explicit substitutions by Abadi et al [1].
Substitution, as used in the classical λ-calculus, is actually a meta-level concept
and not part of the language. By making it part of the language, Abadi et al
argue that we can achieve a better correspondence between the language theory
and its implementation.

However, Abadi et al do not address the problem of position dependency. In
fact, explicit substitutions use de Bruijn indices [11] to correctly map parameters
to their actual values. The resulting operational semantics of substitutions is not
trivial and makes it cumbersome to trace the actual effects of them. On the other
hand, forms provide a convenient way to record parameter bindings in a small
and expressive framework.

We can use the λF -calculus to define (syntactic) contractual specifications.
Contractual specifications raise explicitly the confidence level in the develop-
ment of applications involving third-party components. The fundamental pur-
pose of a contractual specifications is to prevent the occurrence of run-time errors
while executing a component-based program, that is, contractual specifications
should impose a well-balanced set of constraints to enforce the correctness of a
component-based application. However, the verification process of contractual
specifications must be defined in a way such that the programmer can easily
predict whether a contract is satisfiable or not [6]. That is, a contract should
be defined in a manner that the reasons why the verification of it has failed are
self-evident.

The key challenge of the design of contractual specifications will be the proper
characterization of incomplete system knowledge and the definition of the veri-
fication rules for both form extension and form restriction. The form extension
operator is similar to asymmetric record concatenation [7,22,32] and takes two
forms and returns a new form in which the bindings of the argument forms are
merged. The specific nature of this operation makes it hard to find a suitable
type assignment. Some type systems [7,32] cannot assign a type to this operator
at all. In type systems that incorporate a subsumption rule the form extension
operator requires an additional set of constraints that limits the number of appli-
cable subtypes. Early results from recent work in this area [13,18] indicate that
the definition of a suitable component type system will go beyond “traditional”
type theories.

Acknowledgement. The author thanks Jean-Guy Schneider, Oscar Nierstrasz,
and the anonymous reviewers for their valuable comments and discussions.
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Abstract. Behavioral specifications that are integrated into compo-
nent interfaces are an important means for the correct construction of
component-based systems. Currently, such specifications are typically
limited to finite-state protocols because more expressive notions of pro-
tocol do not support reasonable basic composition properties, such as
compatibility and substitutability.

In this paper, we present first results of the integration into compo-
nent interfaces of a notion of non-regular protocols based on “non-regular
process types” introduced by Puntigam [17]. More concretely, we present
three contributions: (i) a motivation of the usefulness of non-regular pro-
tocols in the context of peer-to-peer applications, (ii) a language for
non-regular protocols and an outline of a suitable formal definition, (iii)
a discussion of basic composition properties and an analysis of how to
adequately integrate protocol-modifying operators in the model.

1 Introduction

Component-based programming promises to facilitate the construction of large-
scale applications by supporting the composition of simple building blocks into
complex applications. Explicit interfaces are commonly seen as being a funda-
mental means of components for this endeavor. Interfaces are intended to impose
strong restrictions on components: they should make explicit all the means for
communication and coordination of components. This requires a much stronger
notion of interface than is common in object-oriented programming languages,
where interactions may occur in a hidden fashion, e.g., through a state global to
two collaborating objects.

Interfaces of most component models, many academic ones (see, e.g., [22,2])
but in particular the major industrial ones, such as Sun’s Enterprise JavaBeans
(EJB) [4], define component interfaces as sets of method signatures represent-
ing the services a component provides or requires. Such interfaces do not pro-
vide much information about component implementations and the correctness
of their implementation is therefore very difficult to establish. Consequently, a
large number of specification methods, such as Rational Rose [11] and State
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Charts [9] enable specifications for component interfaces to be separated from
component implementations.

The integration of behavioral specifications into component interfaces has
been recognized early as a means to solve certain deficiencies of approaches rely-
ing on such specifications, in particular, the maintainability problem of separated
evolution of component specifications and implementations. By far the largest
class of approaches featuring integrated behavioral specifications are component
models which include regular, i.e., finite-state, protocols into interfaces (see, e.g.,
[25,24,3,15,7]). Regular protocols enable the definition of several properties, such
as compatibility and substitutability, useful for correctness proofs of components
and can be implemented quite simply.

While more expressive notions of protocol in interfaces are highly interesting
from a programming point of view, well-understood classes of protocols, such
as protocols based on context-free languages, do not offer reasonable definitions
of the above-mentioned basic composition properties. Consequently, more ex-
pressive protocols are rarely used in interfaces in order to construct components
(two notable exceptions being counter-constrained finite state machines [19] and
protocols based on symbolic transitions systems [14]).

In this paper, we present first results in the integration of a notion of non-
regular protocols into component interfaces based on the “non-regular process
types” introduced by Puntigam [17]. More concretely, we present three contribu-
tions. First, we motivate the usefulness of non-regular protocols in the context of
peer-to-peer (P2P) applications, which, due to their distributed and large-scale
nature, benefit from a component-based structure. Second, we present a proto-
col language in which such protocols can be defined and show how this language
can be formally grounded in Puntigam’s calculus. Third, we discuss how basic
composition properties are addressed in such a component model and present an
analysis how protocol operators defined for regular protocols can be integrated
into components with non-regular protocols.

The paper is structured as follows. In Sect. 2, we introduce trust management
in P2P applications as a motivating problem for the use of non-regular protocols.
Sect. 3 presents our component model, the corresponding protocol language,
and sketch its formal definition. In Sect. 4, we investigate basic composition
properties and the integration of protocol-modifying operators in our model.
Sect. 5 discusses related work. Finally, we conclude and discuss future work in
Sect. 6.

2 Motivation: Trust Management in P2P Applications

In order to motivate that expressive protocols are useful and later illustrate our
approach, we first consider peer-to-peer (P2P) architectures. P2P applications
are distributed applications which are characterized by the importance of scala-
bility and self-organization properties because of their typically very large user
base, and the use of unstable and often low-bandwidth connections on the client
but also server side [20].
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The need for scalability and support for reorganization has led to the de-
velopment of a large number of algorithms using P2P-specific protocols, among
others, for routing, data replication, and trust management in such networks.
Protocols are generally very useful for system-level applications (for recent work
on protocols and protocol manipulations in system-level C applications and rel-
evant references, see [5]). However, there is reason to believe that declarative
protocol descriptions are particularly interesting in the context of P2P applica-
tions. In fact, these applications do not only require relations to be managed
within a protocol but also among different instances of a protocol which are exe-
cuting at the same time, e.g., all instances of a protocol fetching different pieces
of the same video. Furthermore, P2P applications are usefully implemented us-
ing components due to their size (note that components here may mean sets of
strongly encapsulated C functions).

A specific algorithm for trust management in P2P networks to which proto-
cols can usefully be applied has been proposed by Aberer and Despotovic [1].
Their approach can be summarized as follows. Trust is computed by a statis-
tical analysis of past transactions of agents in a network. After each transac-
tion, agents may register complaints which are stored in a distributed, partially-
replicated, data structure which is organized into a virtual binary search tree.
The evaluation of trustworthiness of an agent in the network is essentially
done by searching for complaints about her. Moreover, the algorithm recursively
searches for complaints about complaining agents in order to judge whether the
latter could have attributed complaints maliciously. Without any further control,
this recursive process would obviously traverse all of the network. The crucial
property of this algorithm is that the search is “localized” by a cut-off heuris-
tic consisting in judging an agent trustworthy when a certain number of agents
yields a small enough number of complaints.

In order to illustrate our approach, we consider three specific (classes of)
protocols which are part of this algorithm.

– Optimizing Data Transfer. A P2P application typically stores data (com-
plaint data in the trust algorithm) in a partially-replicated manner. In such
cases, data transfer may be sped up by first choosing faster connection links
to duplicated data. (This is similar to the selection of the closest/fastest
mirror before downloading a popular software distribution such as Debian
Linux.) To this end, a protocol can be used which, optionally, first accesses
a list of links suggested by the system to locations where data replicas are
stored, and then repeatedly performs three operations: opening a connection,
send/receive data to evaluate the available bandwidth to/from the current
connection, and a close operation. Such a protocol can obviously be concisely
described using a regular, i.e., finite-state, protocol.

– Trust Computation. The algorithm for trust computation above essentially
relies on a sequence of send operations of queries for trust information about
an agent a1 and the corresponding responses containing the requested data.
This computation must be performed recursively because a response involv-
ing information returned from another agent a2 results in a query about the
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trustworthiness of a2. A correct evaluation of trust needs the reception of all
information in the right order (because the cut-off heuristic may rely on that
order). Such a protocol can be concisely defined in terms of a context-free
language mechanism for the specification of well-balanced nested structures.

– Cut-off Heuristic. It is frequently the case that heuristics which iteratively
gather information from an (even small) number of neighboring nodes can
be described (concisely) only using protocols of context-sensitive structure,
i.e., whose interaction structure is not even context-free. This is, e.g., the
case if an interaction structure involving four neighbors is equivalent to two
interleaved nested structures involving different pairs of neighbors (because,
in language-theoretic terms, the word anbmcndm cannot be generated by a
context-free grammar).

In the following we investigate support for the definition of protocols of such
structure and their property-based manipulation.

3 Components with Non-regular Protocols

There are by now a number of proposals of component models with explicit
protocols, e.g., CwEP [7,6] and SOFA [15]. These models augment traditional
component interfaces consisting of sets of method signatures by one or several
protocols. Furthermore, some additional protocol state may be present, e.g.,
component identities in the case of CwEP.

login logout

Method declarations

Protocol state: tokens

Interface

Implementation

Fig. 1. Structure of components with non-regular protocols

In this paper, we consider an integration of non-regular protocols introduced
by Puntigam [17]. Our components have the structure shown in Fig. 1. Compo-
nents consist of an interface and a set of method implementations. The interface
consists of three parts: a set of method signatures, a protocol declaration, and
an additional protocol state consisting of a set of tokens used as guards govern-
ing method application. Besides being able to define more expressive protocols
than regular ones, we are also interested in providing declarative means for the
description of such protocols.
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3.1 Syntax and Informal Semantics

Concretely, we propose to define component interfaces in terms of the language
generated by the grammar shown in Fig. 2. Such interfaces consist of a signature,
a protocol, and token declarations. We will now discuss the form and informal
semantics of these parts in turn.

The signature defines a set of method signatures each of which consists of five
constituents: the first three are the standard return types, method identifier, and
formal parameter declarations, respectively. The last two constituents define the
method’s dependencies on the token state: the fourth constituent specifies the
tokens which must be present in the token state for the method to be applicable,
in this case the specified tokens are removed from the state; the fifth constituent
specifies the tokens to be added to the token state when the method is executed.
Dependencies on method applicability expressed in terms of tokens enable non-
regular relationships within a protocol: it is, in particular possible to make the
application of a method call depend on a specific but arbitrary number of tokens,
which includes ‘∞’ representing an infinite number.

A protocol is a (parenthesized) sequence or choice of primitive constituents,
which are method call expressions or nested expressions. A method call is of the
standard form id(params). Method calls are executed asynchronously, synchro-
nization is to be performed by coordination between different components. A
nested protocol consists of a protocol delimited by an entering call and an exit
call. Note that nested expressions are the only protocol expressions which can
be named. This enables balanced nesting to be expressed on the protocol level
without forgoing automatic verification of composition properties. We will come
back to this issue in the discussion of a formalization of the protocol language
below.

Finally, the token state defines an initial set of tokens, i.e., a multiset consist-
ing of different token ids of different multiplicity. Furthermore, the declaration
of the token state may define symbolic ids for tokens.

Interface ::= Signature Protocol Token

Signature ::= ( MethodSig )∗

MethodSig ::= Type Id(Formals)[Toks][Toks]
Toks ::= ( Id[×nat] )∗

Protocol, P ::= Prim∗ | P� | P+ | [ P ] | (P ∨ P) | ( P )

Prim ::= Call | NestedExp
Call ::= Id(Actuals)
NestedExp ::= [ Id = ] nestedExp(Call,P,Call) | Id

Token ::= ( Id[×nat] ( Id = Id×nat )∗ )∗

Fig. 2. Syntax of non-regular protocols
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Note that while the increased expressiveness of the protocols generated by
this language is due to the dependence of method acceptance on tokens, the
language includes declarative support for regular and context-free structures.

3.2 P2P Trust Management Revisited

We are now ready to formulate the protocols for P2P trust management intro-
duced in Sect. 2 using our language:

– Optimizing Data Transfer. A protocol to evaluate the bandwidth of connec-
tions can be defined by the following protocol (to improve readability, we
take the liberty in the following to separate primitive protocol expressions
by semicolons.):

[ init; ] ( open; send ; receive ; close ; calculateBandwith)+
This protocol defines sequences of an optional initialization, followed by re-
peated sequences of bidirectional communications followed by a bandwidth
computation using the finite-state constructions of our protocol language.

– Trust Computation. Gathering of trust data up to a point when sufficient
data has been collected (as determined by a suitable heuristic) can be defined
as follows:

( G = nestedExp(sendQuery,G,getData); isSufficient )+
Through the use of the construct nestedExp, this protocol makes explicit
that acquisition of trust-related data can be recursive (in which case it must
be done in a well-balanced manner).

– Cut-off Heuristic. Certain protocols which are not of context-free structure
or which are difficult to describe using context-free structures can be defined
(easily) using token-based protocols. As a simple example of the latter case
consider a heuristic which prunes the trust data acquisition process by lim-
iting the nesting depth to a fixed but arbitrary depth n. This heuristic can
be defined by the following protocol:

t×n
void sendQuery(query)[t][]
( G = nestedExp(sendQuery,G,getData) ; isSufficient )+

This protocol first declares an appropriate number of tokens. The signature
declaration of method sendQuery states that it can only be applied in pres-
ence of a token. Furthermore the token is removed since it is not re-injected
in the token state (the last signature argument is empty). Therefore, the
nested expression in the last line will be applicable exactly n times after
which the token state will be empty.

3.3 Outline of a Formal Semantics

The protocol language shown in Fig. 1 has been designed such that its semantics
can be defined by a translation into the notion of non-regular process types
introduced by Puntigam [17]. This gives us a precise formal framework without
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reinventing the wheel. Furthermore, we can reuse notions of type correctness and
subtyping on process types to investigate basic properties of component-based
systems, in particular, compatibility and substitutability of components.

Since the contributions of this paper are the protocol language, motivation of
its usefulness (rather than its formal definition), and mechanisms for the manip-
ulation of such protocols, we limit the presentation of the formal underpinnings
to the following two issues: a brief overview of non-regular process types as in-
troduced by Puntigam, and an analysis of how the protocol language defined by
Fig. 1 can be translated into non-regular process types.

Non-Regular Process Types. The basic notions of non-regular process types
(henceforth also referred to simply as types) can be summarized as follows.
Types, denoted by {{{m}}}[[[s]]], consist of a set of (static) message signatures m and
a (dynamic) token state s. The token state is composed of descriptors of the
form xp|q indicating that p copies of token x exist and that the set of tokens
x has been divided q times. Using divisions, tokens can be passed to collabo-
rators, which at the same time updates the types of the sending and receiving
component accordingly. The dividend p can mainly be a natural number, ‘∞’,
which represents an infinite number of tokens, or an addition of two dividends.
The latter case permits to gather new tokens from a collaborator; analogously
to a division operation, this operation results in an update of the types of the
sending and receiving component. A divisor q = 0 indicates that all tokens are
present in the current token state.

Message signatures, denoted by m(t)(p)[i][o], consist of an identifier m, type
parameters t associated to the message, types p for formal parameters, and
incoming and outgoing tokens i, o. Message acceptance is defined similarly as
introduced previously: for a method to be acceptable, each state descriptor xp|q ∈
i must be present in the dynamic token state of the enclosing object and if q = 0
that descriptor must be the only one relating to x in the token state. The token
state is then updated by removing the tokens from i and adding the tokens in
o. In this way types keep track of exact numbers of tokens and allow them to be
passed around between objects.

The type-checking algorithm from [16] can also be used for the static checking
of non-regular process types. Hence, conditions involving exact token numbers
(including ∞) are statically checkable. Note, however, that the type system
of [17] allows such conditions to be applied only to components which contain
all token expressions of the types occurring in such conditions. In cases where the
underlying language does not explicitly support such types, they can be passed
along and checked during runtime.

Translation of the protocol language of Fig. 1. The protocol language shown
in Fig. 1 has been designed in order to be based on the formalism of non-regular
process types.

Our notions of token state and token manipulation through methods whose
signatures make token manipulations explicit are essentially defined as in Pun-
tigam’s approach.
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Our language has two features which have no direct counterpart in non-
regular types: regular expressions and nested expressions. Both of these can,
however, be expressed using types. Two essential constituents of the correspond-
ing translation are the following:

– Repetition of a method call can simply be defined using a token which is
consumed from and immediately re-injected in the token state to enable the
following call in the repetition.

m� := {{{m()(p)[x1|0][x1|0]}}}[[[x1|0]]]

Hence, m’s token state initially contains one x. A call to m (with arguments
conforming to p) requires one occurrence of x, which is removed from the
token state as part of method acceptance but immediately re-injected.

– Nesting can be defined by a type using tokens to count method invocations.
The main part of the corresponding translation is the following:

nestedExp(m,ε,n) :=
{{{m()( )[x1|0][x1|0, y], n()( )[x1|0, y][x2|0], n()( )[x2|0, y][x2|0]}}}[[[x1|0]]]

Here, m generates tokens y which are consumed by n. Furthermore, once the
first n has been accepted, m cannot be accepted anymore because no state
x1|0 is present in the token state anymore. Technically, this is achieved by
using the dividends 1 and 2, which, intuitively speaking, separate execution
of such a nested expression in two exclusive phases.

4 Protocol-Based Component Composition

One of the main advantages of the introduction of explicit protocols in com-
ponents is that composition of components can be defined in terms of protocol
composition. This enables, in particular, reasoning about black-box component
compositions which is almost impossible in the case of interfaces consisting of
method signatures only (since almost no knowledge about component implemen-
tations is available).

In this section we present first results relating to (properties of) the compo-
sition of components based on non-regular protocols. Since there is very little
directly related work, it is reasonable to start from results developed in the
context of components with regular protocols. To this end we have studied the
non-regular case by leveraging our previous work on the property-based compo-
sition of components based on finite-state protocols [8,6]. Concretely, we present
how two different issues related to properties of component composition carry
over (or not) from the regular to the non-regular case:

– Basic composition properties : compatibility and substitutability, which are
fundamental composition properties in component-based systems, have to be
defined differently in the non-regular case compared to finite-state protocols.

– Composition operators : we consider the definition of operators modifying the
structure of a protocol as well as operators modifying the protocol state.
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4.1 Basic Composition Properties

In component-based programming two fundamental composition properties are
traditionally considered: compatibility (the technical notion ensuring that com-
ponents flawlessly work with each other) and substitutability (which addresses
the question if a component can be substituted for another one without causing
faulty service provision). Approaches which use finite-state protocols to make
explicit part of the semantics of objects or components typically employ equiv-
alence and containment relationships over sets of traces and failures to define
such composition properties [13].

In contrast to finite-state languages, no decision procedures are known (or can
even exist) for these correctness notions in the case of context-free or even more
expressive languages. Non-regular process types enjoy, however, two decidable
relations, type equivalence and subtyping, which can be used to similar effect. In
fact, if t1 is equivalent to (a subtype of) t2 the set of traces generated by t1 is
equal to (larger than) the trace set of t2. Compatibility between collaborators
can therefore be expressed in terms of compatibility of the manipulation of token
states and type equivalence. Substitutability can be proven by using the subtype
relation and type equivalence.

To give an example of the usefulness of these type-based relationships for
substitutability of components, reconsider the cut-off heuristic introduced in
the context of trust computation in P2P networks. Different cut-off heuristics
which explore the complaint data base to different depths can be proved to
obey subtype relationships, thus ensuring that deeper-reaching heuristics are
substitutable for shallower ones (reflecting the fact that the former will yield
better trust evaluations than the latter).

An important property of the type-based relationships is that they are de-
fined for deterministic types only. Informally speaking, deterministic types are
characterized by having a unique follow state for any application of a method
declared within the type. The protocol language defined by Fig. 2 has been de-
signed to yield only deterministic types. In particular, all types corresponding
to protocols discussed in Sect. 3 are deterministic.

4.2 Composition Operators for Non-regular Protocols

In a model of components with protocol-based interfaces, composition of com-
ponents is naturally expressed through composition of protocols. Furthermore,
component composition can then be supported by a set of protocol-composition
operators which preserve (to a reasonable degree) fundamental composition
properties, such as component substitutability.

In previous work [7,6], we substantiated these claims for components with
regular protocols. In particular, we have defined a set of operators for the mod-
ification of the static structure of finite-state automata and operators for the
modification of a dynamic state associated to regular protocols. In the following
we present an analysis of how such operators can be integrated into a model of
components with non-regular protocols.



108 M. Südholt

Before considering concrete operators, let us note that there is a funda-
mental difference between the regular case and the non-regular one: protocol
structure is much more explicit in finite-state automata than in the non-regular
process types. The former directly represent execution traces through the au-
tomata structure, while a non-regular type {{{m}}}[[[t]]] represents traces only indi-
rectly through an inductive construction. Furthermore, it would be very unwieldy
to define the operators directly in terms of non-regular traces because the notions
of equivalence and subtyping are constructively defined only on types not sets of
traces. This issue is alleviated by using a protocol language such as that defined
in Fig. 2 because its constructs directly correspond to trace sets; an example
giving evidence for this claim can be found in the discussion of the definition of
start states for the union composition operator below. (We strongly believe that
declarative protocols even provide a reasonable solution to the issue. This is the
subject of on-going work, though, and not further discussed here.)

Structural Operators. We first consider the definition of three basic and funda-
mental structural operators, namely “union” (which, informally speaking, allows
to add at a certain state new branches to protocols), “concatenation” of proto-
cols, and general “insertion” of a protocol into another one.

Since process types do not represent the trace sets of protocols directly as
explained above, the definition of structural operators based on non-regular pro-
cess types therefore either has to be limited to structural properties directly
expressible on the type level or includes rather complex proofs involving the
trace sets generated by types.

It turns out that the three basic operators can be defined quite adequately
in terms of non-regular process types:

– A union operation, denoted {{{m1}}}[[[t1]]]∪s{{{m2}}}[[[t2]]], which adds a new protocol
(e.g., a new branch) to an existing protocol at a state s, can be directly
defined on the type level. Informally, the method signatures and token states
have to be merged, i.e., the result can be defined as {{{m1 ⊕m m2}}}[[[t1 ⊕t t2]]].
However, the functions ⊕m,⊕t cannot simply be defined to be multiset union
because two technical problems have to be resolved regarding the merge:
• Interference of the new parts and old parts of the resulting protocol has

to be avoided: when the new part is executed the state related to the
old part should not be affected. This can be achieved by an appropriate
renaming of the methods and tokens of the newly added protocol and
introduction of an adapter definition translating new names in case of
communication with collaborators expecting old ones.

• The definition of the starting state s is not obvious. In the case of regular
protocols the state typically is one explicitly enumerated in the definition
of the corresponding finite-state automata and related to other states
by the automata’s transition relation. For non-regular process types,
the state would have to be defined in terms of elements of the trace
set generated by the original protocol, however, only the token state is
directly accessible given the type definition and tokens do not represent
states meaningful w.r.t. to positions in method sequences.
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One approach to (partially) solve this problem is to introduce new tokens
and modify methods of the type such that they emit these new tokens
in order to mark specific positions as part of the type’s token state.
Note that this technique is strongly supported by our declarative pro-
tocol language. The translation, e.g., of a regular repetition such as �m
into a non-regular type, can automatically yield position markers useful
to define protocol states for composition operators.

– Concatenation can be treated similarly to the union operation in that it can
be defined as a union operation on final states. Its definition thus reduces
to the identification of final states which can frequently be done by using
specific tokens as end markers.

– Insertion can also be treated using the means above, requiring mainly iden-
tification of start and end states within protocols.

In order to conclude the discussion of these operators, let us note that the
properties of these operators carry over from the regular case (cf. [7,6]) to the
non-regular one. For instance, a protocol resulting from an application of the
union operator above can be substituted for any of the two original protocols
from the state s on.

State-manipulating Operators. A second group of protocol-related operators al-
lows the modification of the dynamic state of protocols. These include protocol-
modifying operators directly working on the protocol state but also operators
modifying the program execution and the protocol state at the same time. In
the following, we briefly discuss the integration into our model of two (classes)
of such operators which are analogous to operators put forward in the context
of components with regular protocols [7,8].

A first class of operators directly modifies the token state t of a type {{{m}}}[[[t]]].
Some of these operators introduce new tokens, e.g., to support the implementa-
tion of the structural operators discussed above. In this case, compatibility and
substitutability properties of the protocol are preserved. Other such operators
modify existing tokens, thus modifying the compatibility and substitutability
properties of the corresponding protocols. The extent to which such properties
still hold then have to be investigated on a case by case basis.

Another class of state-manipulating operators provide for the “spontaneous”
emission of messages without directly modifying the underlying protocol. Such
operators are useful, e.g., in order to adapt a component temporarily. In the
case of the trust management algorithm for P2P applications, such an operator
could be used, e.g., to temporarily augment the depth to which the underlying
distributed complaint data base is explored. Composition properties of such
operators also have to be proved on a case by case basis.

5 Related Work

There is little directly related work, i.e., work on protocols more expressive than
regular ones and which, in particular, consider their constructive use as part of a
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component model. One notable exception is recent work by Puntigam [18] who
proposes an integration of non-regular process types into a Java-like language
and discusses issues of such types related to hot-swapping of components. How-
ever, he does not consider a more declarative language for protocol definition
nor composition operators as discussed in this paper. Another interesting ap-
proach is Reussner’s work on counter-constraint finite state machines [19]. This
approach is close to our approach in terms of expressiveness: such automata al-
low the definition of certain non-regular (even some context-sensitive) protocols,
similar to the approach presented here. The exact relationship w.r.t. expres-
siveness between our approach and his approach is an interesting open research
question. However, Reussner does not consider a user-level language like that
presented here, does not provide an underlying typing discipline, and does not
consider composition operators. Finally, another approach which goes beyond
regular protocols is that by Pavel et al [14], who endow components with proto-
cols based on symbolic transition systems (STS). However, that work does not
include static property support as provided by non-regular process types and
does not consider composition operators.

The work presented in this paper has been motivated by a lack of expressive-
ness of the (many) approaches using finite-state protocols. However, as exploited
in this paper, work on regular protocols is still relevant for the non-regular case
w.r.t. the kinds of properties useful for component-based programming, be it
properties of protocol composition operators (e.g., those presented in [7,6]) or
adaptation properties (see, e.g., [25,21,24]).

There are several approaches using aspect-oriented techniques (in the sense
introduced by Kiczales [10]) to manipulate protocols, which share many of the
problems the present paper raises related to the definition of protocol-modifying
operators. Walter and Viggers [23] propose an aspect language using context-
free grammars to define patterns to be matched against Java source code. Their
protocol language therefore is more restricted than ours. Furthermore, they do
not consider any issues related to component encapsulation. Recently, we have
worked [8,6] on an aspect language for the manipulation of regular protocols.
This work defines, in particular, an aspect language for protocol manipulations.
Furthermore, it provides a discussion of several properties over regular protocols
which are subject to aspect weaving: in particular, preservation of finitude of
protocols in the presence of operators modifying the structure of protocols and
techniques for the analysis of interaction properties of aspects over components
with regular protocols.

There is a large body of work using specification means for non-regular pro-
tocols in the context of component-based programming. As two examples among
many more let us cite the work by Braccialia et al., who use protocol specifi-
cations based on the π-calculus in order to semi-automatically synthesize com-
ponent adapters, and work using symbolic transition systems (STS) for compo-
nent analysis [12]. Such approaches feature notions of protocols which are even
more expressive than that considered in this paper but cannot be used construc-
tively and, for a large part, do not support automatic checking of composition
properties.
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6 Conclusion and Further Work

In this paper we have presented the integration of a notion of non-regular proto-
cols in component interfaces. Concretely, we have presented three contributions.
We have motivated that such protocols naturally arise in P2P applications and
that our approach allows the concise formulation of the required protocols. We
have defined a protocol language for non-regular protocols including declarative
constructs for regular and context-free protocols. Furthermore, we have outlined
a translation of the protocol language into Puntigam’s calculus of non-regular
process types. Finally, we have discussed composition properties in our setting
as well as the integration of several protocol composition operators.

This paper presents a first step towards the definition of a component model
with non-regular protocols and much interesting work remains to do. As to the
protocol language, the current proposal provides a limited set of declarative
constructs (nested and regular expressions). This set of constructs should be
extended, thus reducing the use of token manipulations in protocol definitions.
As to the composition properties, operators should be more deeply explored and
more specific operators defined, e.g., for component adaptation. Finally, there
are open question concerning the underlying formal framework, in particular
its support for composition properties relevant for components and its efficient
realization.
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Abstract. Component-Based Software Engineering (CBSE) has now
emerged as a discipline for system development. An important issue
is to fill the gap between high-level models (needed for analysis) and
implementation. This paper describes a component model with explicit
symbolic protocols based on Symbolic Transition Systems (STSs), and
its implementation in Java. This implementation relies on controllers
that encapsulate protocols and channels devoted to (possibly remote)
communications between components.

Keywords: CBSE, Behavioural IDL, Explicit Protocols, Symbolic Tran-
sition Systems, Java, Controllers, Channels.

1 Introduction

With the increase in complexity of software systems, Component-Based Software
Engineering (CBSE) has emerged as a discipline that yields promising results
such as trusted and Off-The-Shelf components (COTS), improved component
reusability, semi- or automatic composition and adaptation of components into
architectures, better middleware, and so on.

The first important issue when designing a component model is related to
the definition of the component interfaces using Interface Description Languages
(IDLs). This has been initially addressed by industrial component infrastruc-
tures to statically (i.e., at compile time) generate skeletons and stubs for dis-
tributed components. More recently, this issue has turned to be at the core of the
most challenging issues in CBSE: component validation and trusted components,
(dynamic) adaptation, negotiation and choreography. The limit of IDLs based
on signature types has now been demonstrated [27]. For instance, type correct
communicating components may deadlock because they do not have compatible
protocols. Hence, it is now widely accepted that IDLs have to take into account
behavioural protocols, yielding Behavioural IDLs (BIDLs). These protocols may
be used either as a piece of documentation for the components, in a design-by-
contract process, to compose and check connections between components or even
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build adapters [8,27] when component interfaces do not match. Several formal
models dealing with such IDLs and protocols have been proposed. However, as
components exchange data using their provided and required services, formal
models have to take data into account while managing potential state-explosion
problems.

In this paper, we suggest using Symbolic Transition Systems [7,10,15] (STSs)
as the basis of a BIDL. This expressive formalism makes it possible to control
state explosion thanks to the use of guards and typed parameters associated to
the transitions. We show how STSs can be used as explicit protocols in a hi-
erarchical component model supporting multiple interfaces with heterogeneous
services (synchronous and asynchronous communications). We present the im-
plementation principles of the model in Java whereby the code of a primitive
component is synthesized from an STS protocol and Java code. A controller in-
tercepts the communications and calls the related service of the inner Java code
according to the protocol. The subcomponents of a compound component com-
municate via channels dealing with the guarded synchronous and asynchronous
communications.

The paper is organized as follows. Section 2 describes our component model.
Then Sect. 3 explains how our model can be implemented in Java to deal with ex-
plicit protocols and explicit component binding mechanisms. Section 4 presents
related approaches and Sect. 5 concludes.

2 STS-Oriented Component Model

Like any component model, our model builds on the ADL ontology [19]: architec-
tures or configurations made of components (with ports) and connectors (with
roles), and bindings between component ports and connector roles.

The specificities of our model are: heterogeneous interfaces incorporating
typed services of different kinds, explicit behavioural protocols, and the use of
Symbolic Transition Systems. We rely on a simple binding mechanism rather
than on complex connectors. For the time being, we only consider one-to-one,
one-way messages. We are also dealing only with static architectures. Our syntax
for interfaces was inspired by various component graphical notations, mainly
from the Olan ADL [5] (for the port symbols) and from process algebras such
as LOTOS [25] (for the input/output event schemes).

Symbolic Transition Systems (STS) [7,15] have initially been developed as a
solution to the state and transition explosion problem in value-passing process al-
gebras using substitutions associated to states and symbolic values in transition
labels. Our STSs (see example in Fig. 2) are a generalisation of these, associat-
ing a symbolic state and transition system with a data type description. This
description may be given using algebraic specifications [10,23], model-oriented
specifications [4] or even Java classes. STSs can be related to statecharts (see [22]
for details) but are simpler as far as semantics is concerned. They also improve
readability and abstraction of behavioural descriptions and makes it possible to
control the state and transition explosion problems.
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2.1 Architecture Example

In order to illustrate our proposal, we present a simplified flight ticket reserva-
tion system. The reservation system (see Fig. 1) contains a Company component,
a Bank component, and a Counter component. The Company is responsible for
proposing the available flights corresponding to a particular request. The Bank
manages the bank accounts of the clients. The Counter is the most impor-
tant component as it receives the requests from clients and then coordinates
the search, confirmation (by interacting with the Company), and payment (by
calling the Bank services) of the flight. As a coordinator, the Counter exposes
three interfaces: bookingIntf, paymentIntf and orderingIntf. While the first
two interfaces are used to connect the Counter to the Company and the Bank,
respectively, orderingIntf is used to interact with the clients. Here we omit
service types for conciseness. Boxes correspond to synchronous services and cir-
cles to asynchronous ones. Black symbols denote required services (emissions)
and white ones denote provided services (receipts).

cancelFlight

flightRequest

flightBook

flightNotAvailable

proposePrice

bookingIntf

company:Company

bookingIntf

flightRequest

cancelFlight

flightBook

flightNotAvailable

proposePrice

counter:Counter

bank:Bank

order

orderResponse

paymentIntf

orderResponse

order

accountIntf

orderingIntf

cancelFlight

flightBook

proposePrice

orderingIntf

cancelFlight

flightBook

proposePrice

ReservationSystem

Fig. 1. A Simplified Ticket Reservation System

Once connected, the Company, the Bank, and the Counter form a compound
component called ReservationSystem. A client component does not have to
know the internals of this component. It will only communicate through the
interface exposed by ReservationSystem. The interaction between a client and
the system is actually implemented within the Counter component, the exposed
interface is orderingIntf. Once the architecture has been built, all requests
coming from a client are transferred to the orderingIntf in the Counter.
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2.2 Primitive Component Protocol

In order to facilitate the understanding of STS protocols associated to compo-
nents we use a graphical description of STSs. The protocol described in Fig. 2
represents the allowed behaviour associated to the Company component. The
protocol consists of three states and several transitions between these states
corresponding to the messages that are received and emitted to and from the
component. In addition, the protocol specifies the message ordering. For exam-
ple, a booking (flightBook) or cancellation (cancelFlight) message cannot
be exchanged before a proposePrice message is received. The flightBook and
cancelFlight messages are guarded. They will be processed only if the corre-
sponding guard, a bracketed boolean expression depending on message parame-
ters, evaluates to true.

0

1

!proposePrice(Price price)

2

cancelFlight(Flight flight)
[wasProposed(flight)]

!flightNotAvailable()

flightBook(Flight flight,
ClientID client)

[wasProposed(Flight)]

?flightRequest(Flight flight)

?̂

?̂

Fig. 2. The Company STS Protocol

A ? character denotes the reception of a message and a ! character the send-
ing of a message. A ^ character further distinguishes asynchronous messages from
synchronous messages. Graphical descriptions of protocols are useful for human
understanding of dynamic systems. However, automated computation requires
a textual representation. We have defined a minimal component language [20]
based on Java to describe the interfaces and the protocol of a basic component.

A primitive component results from the combination of an STS protocol and
existing Java code (henceforth referred to as a bare component). One important
issue is the compatibility or coherence between the bare component intrinsic
protocol (i.e., the execution protocol) and the externally-defined STS protocol.
There are different ways to address this issue. It is possible to provide a method
that extracts a compatible data type from the STS description [23]. But the bare
component and the protocol can also be developed separately. However they
have to be both syntactically and behaviourally compatible. Behavioural com-
patibility has been addressed in process algebra [6] and in state machines [3,27]
approaches.
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3 Implementation of the Model

The general idea of the implementation is depicted in Fig. 3. The purpose is to
attach an STS protocol to an already defined bare component. After attaching
the protocol, the result is another component (henceforth referred to as a con-
trolled component) with the same functionality as the initial one and in addition a
mechanism to check and impose the specified protocol. A bare component would
connect into an architecture using simple binding mechanisms (if the correspon-
dent is local) or RMI connections (if the correspondent is remote). A controlled
component would connect using a special connection based on communication
channels as we will see later in this section.

Functional Code

(implementation) +

x:X
protocol & communication
controller

precompiler

controlledx:ControlledX

Protocol

(STS)

In
te

rf
ac

e Functional Code

In
te

rf
ac

e

Fig. 3. General Idea

The guidelines to follow in order to implement a component in Java are dis-
cussed in Sect. 3.1. Our approach to attach a given protocol to a given component
is described in Sect. 3.2. Finally, Sect. 3.3 describes how channels are used to
connect components in an architecture.

3.1 Bare Components

In order to strictly encapsulate a bare component, we use an approach similar to
the one presented in [2]. A package is declared for each component. It includes
a class representing the interface of the component. This class is the only public
class in the package and only methods of this class can be public. As a result, the
internal classes and methods are invisible from outside the component bound-
aries. The clear advantage of such an approach is that the access to a component
is possible only through its explicitly specified interface, without imposing any
strong condition on the details of the implementation. At runtime, a bare com-
ponent instance may be composed of one or more objects, one or more active
entities, etc.

3.2 Protocol Implementation

To integrate protocols expressed as STSs, we have identified two major ap-
proaches. First, we could modify the code of a bare component so that it behaves
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flightNotAvailable
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controlledCompany:ControlledCompany

inChannel

outChannel

Fig. 4. Controlled Company

as specified by the protocol. One solution would be to use Aspect-Oriented Pro-
gramming [16], or bytecode altering techniques [9] to create a new Java class hier-
archy implementing the component with the protocol. The second approach does
not modify the initial code but rather creates a framework of classes around the
initial code. Once instantiated, this framework will become a component (with
the same functionality as the initial one) integrating the specified protocol.

We choose to implement our proposal by following the second approach (see
Fig. 4). In order to associate a protocol to a component at runtime, we use a
single, complementary active entity that plays the role of a controller for the
component (hence the name controlled component for the association of a bare
component and a protocol). The role of a controller is to: (i) intercept the mes-
sages sent or received by the actual component and (ii) decide whether these
messages are either allowed or forbidden. This can be achieved by implementing
the LogicalState pattern [14].

This pattern is implemented in two steps. First, all the possible states of
the protocol are declared as private variables in the controller (a Java thread).
Second, the actions to be taken when the component can receive a request (ac-
cording to the protocol state) are defined in the run method. The actions to
be taken when the component can send a message are defined in the methods
implementing the required operation of the component.

Before actually forwarding a message, the controller entity has to implement
two checks. The first check is related to the current state of the component (i.e.,
the component has to be in a state that allows the emission or reception of that
particular message). The second is the guard check. The guard is a conditional
expression implemented as a boolean operation in the bare component. While
the two conditions are not true, the message is not forwarded, and the execution
is possibly blocked. If the two checks succeed, the message is forwarded to the
bare component (for an incoming message) or to the correspondent controlled
component (for an outgoing message) and the current state of the protocol is
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updated. Outgoing messages are transmitted by employing a special entity called
channel.

3.3 Channel Connections

In order to connect components into an architecture, we follow [2] and employ
channels. A channel represents a one-to-one anonymous connection mechanism.
It is also directed: messages flow from its source (where messages are sent) to
its sink (where messages are received). Channels can be synchronous or asyn-
chronous, mobile, with conditions, etc. In addition to its coordination role, a
channel can be used in more sophisticated connection schemes. In this paper,
we consider that all the components are local and that the architecture is static.
However, a channel can also be employed to connect remote component in-
stances, possibly dynamically created at runtime.

To connect two interfaces we need two different channels. One channel is
oriented from interface I1 to interface I2. The second channel is oriented from I2
to I1. Created within the scope of the compound component, the channel ends are
transmitted as parameters to the communicating components (subcomponents)
at instantiation time. The fact that the channels are not exported outside the
scope of the compound component ensures that they are exclusively used by the
connected components.

In our implementation, we have created a class called Channel. This class
implements two interfaces WriteChannel and ReadChannel. The WriteChannel
interface defines the operation write related to the channel source. The
ReadChannel interface defines the operations read, commit, and cancel related
to the channel sink. The execution behaves differently depending on the com-
munication type. If the communication is synchronous, the sender blocks on the
write method until the receiver reads (and commits or cancels, depending on
the evaluation of the associated guard) the message. If the communication is
asynchronous, the write method blocks until the message is saved into a buffer,
built inside the channel entity. Our scenario considers only local applications. In
case of a distributed environment, a solution like the one given in [2] could be
easily reused.

While the Channel class can be reused as is in many different connections,
the controller classes have to be created for each bare component in the ar-
chitecture. This can be done manually of course, but an automated solution is
under development. In fact, the language used to define the interfaces and the
protocol of a component contains enough information to allow a tool to auto-
matically create the required classes for an application. A pre-compiler based
on the SableCC [13] framework has been developed. The pre-compiler takes as
input the description of (either primitive or compound) component classes and
generates the necessary controller classes.

In terms of performance we expect that our implementation imposes some
overhead computation when the full power of the STSs (for instance guards) is
not required due (i) to employing the communication channels that reify mes-
sages, (ii) to the message interception and forwarding, and (iii) to guard evalua-
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tion. Moreover, on reception, all asynchronous messages are initially saved into
incoming buffers inside the controller entity. Optimizations are possible in some
cases. For example, when components are located on the same machine, channels
could be replaced by direct connections. If components employ only synchronous
communication, the controller implementation can be simplified and some over-
head computation and memory space could be saved.

4 Related Work

In the last decade, formal models with behavioural descriptions have been pro-
posed either on their own [27,11,24] or in the context of software architec-
tures [1,17]. However, if they propose different analysis mechanisms for com-
ponent architectures, they do not address the issue of taking protocols into ac-
count within the implementation, which is a mandatory issue for seamless CBSE
development.

In the concurrent object-oriented community, PROCOL [26] is one of the
oldest proposals that deals with explicit protocols. PROCOL is a parallel C-based
object-oriented language with communication based on one-way synchronous
messages. As far as the protocols are concerned, PROCOL relies on rational
expressions extended with variables and guards. Each object is implemented as
a process within the Unix environment and communicates under the control
of a unique arbiter. Action sequencing is implemented by a nondeterministic
finite automaton that is equivalent (in the accepting language sense) to the
regular expression protocol of the object. Apart from the graphical presentation,
PROCOL protocols have the same expressive power as STSs.

In [18], the authors present techniques to relate concurrent Java programs
with a behavioural description given in the FSP (Finite State Processus) process
algebra. Rather than really taking into account FSP protocols within a program-
ming language, their goal is to be able to use FSP in a development process and
to analyse models of threaded concurrent Java programs before coding them.

In [12], the authors propose to integrate protocols within EJBs, at different
levels. These protocols are given as labelled FSMs (Finite State Models) enriched
by very specific data types (for instance, to handle lists of allowed receivers)
and related guards. Our context of work is different: we consider a hierarchical
component model, and our protocols are not limited to using a few specific data
types.

SOFA [21] introduces the notion of interface, compound and primitive archi-
tectures as well as usual means to connect services between the subcomponents
of an architecture. The description language introduces behavioural protocols
and employs first-class connectors. The behaviour protocols are regular expres-
sions denoting traces, i.e., sequences of events (required, provided, and internal
calls). These protocols may be associated with an interface, a frame, and an
architecture. [21] presents a model for the protocol-based description of hierar-
chical components. Regular expressions are concise but less readable than STSs.
Another limitation is that they do not consider data types and conditions.
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5 Conclusions

We have presented in this paper a hierarchical component model supporting mul-
tiple interfaces with asynchronous and synchronous services. The main feature of
this model is the introduction of explicit protocols based on symbolic transition
systems. Then, we have presented the principles of the implementation in Java of
our model. A component corresponds to a controller encapsulating the STS part
and a Java application provided with a well-defined component interface. The
controller has the responsibility of intercepting communications and of triggering
the right service on the inner Java code, depending on the state of the protocol.
The communications are implemented thanks to channels, a construct providing
benefits such as mobility, remote connections, and reusability. Channels are used
in our implementation to ensure that a message arrives to its destination and
also to notify the sender when the guard does not hold on the destination side.
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24. Mario Südholt. A model of components with non-regular protocols. In Proceedings
of the 4th International Workshop on Software Composition (SC’05), Lecture Notes
in Computer Science. Springer-Verlag, April 2005.

25. K. J. Turner, editor. Using Formal Description Techniques, An introduction to
Estelle, LOTOS and SDL. Wiley, 1993.

26. J. van den Bos and C. Laffra. PROCOL: A parallel object language with protocols.
In Norman Meyrowitz, editor, OOPSLA’89 Conference Proceedings, pages 95–102.
ACM Press, 1989.

27. D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.



Towards Distributed Contract Negotiation

in Component-Based Systems

Mesfin Mulugeta and Steffen Göbel
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Abstract. The consideration of non-functional properties like QoS or
security is crucial for many software applications, but it is also a chal-
lenging task. The combination of non-functional aspects and component-
based software engineering aims at simplifying the development of those
applications.

The Comquad project has employed this approach and has allowed
the specification of required and provided non-functional properties as
well as resource demand at the component level. The runtime environ-
ment, in particular the component container, negotiates contracts be-
tween components of an application.

In this paper we report on work in progress about a distributed con-
tract negotiation mechanism between components running in different
component containers on multiple nodes. We introduce a layered ne-
gotiation approach consisting of a coarse-grained negotiation between
component containers and a fine-grained negotiation between compo-
nents within a single container and across containers. We demonstrate
our ideas with a distributed video on-demand application.

1 Introduction

Component-based software engineering allows the composition of complex sys-
tems and applications out of well-defined parts. Nowadays several mature and
commercial component models (e.g. EJB, JavaBeans, .NET, COM+, etc.) exist
on the market. However, they provide only limited support for the development
of components and applications with Non-Functional Properties (NFPs). The
consideration of NFPs like Quality of Service (QoS) or security is crucial for
many software applications, e. g. video on-demand or banking scenarios. In the
Comquad project [7,9,16] we have developed a component model together with
a runtime environment that allows specifying NFPs of components. The compo-
nent model follows a classification by Cheesman and Daniels [4]: A component
specification defining the functional interfaces can have multiple implementa-
tions and each implementation can support multiple QoS profiles. A QoS profile
of a Comquad component represents an operating range describing provided
and required NFPs and the resource demand (cf. Fig. 1).

T. Gschwind, U. Aßmann, and O. Nierstrasz (Eds.): SC 2005, LNCS 3628, pp. 125–134, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



126 M. Mulugeta and S. Göbel
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Fig. 1. Relationship between component specification, implementations, and QoS pro-

files

The component container, which is the runtime environment for Comquad
components, selects appropriate implementations and QoS profiles based on re-
quirements of a client at runtime. This process is called contract negotiation
and results in a network of interconnected components that collaborate to ful-
fill the non-functional requirements of clients. The contract negotiation phase
also involves the reservation of necessary resources for all components of a net.
The underlying real-time operating system DROPS [10] together with resource
managers provides the necessary reservation capabilities for the component con-
tainer. So far the Comquad runtime environment only supports a single compo-
nent container, which means that all components must run on a single computer.
Obviously, this restriction is inappropriate for many applications.

In this paper, we introduce an approach for the distributed contract negotia-
tion between components running in different component containers on multiple
nodes. This two phased process consists of a coarse-grained negotiation between
the multiple containers, followed by a fine-grained negotiation of NFPs between
components.

The paper is structured as follows: In the next section we explain some addi-
tional details of Comquad by means of a sample video on-demand application.
In the third section we first discuss the requirements and challenges inherent in
a distributed contract negotiation and then present our two phase negotiation
approach. The paper closes with an examination of related work, a conclusion,
and an outlook to future work.

2 Example Scenario

In this section we introduce a Video-on-Demand (VoD) application to motivate
our distributed contract negotiation approach in the next section. The scenario
consists of one or more clients that access a video on a remote server and control
the playback, for example by issuing commands like play, rewind, pause, etc. A
component diagram of the sample application is shown in Fig. 2. For the sake of
clarity, we have omitted some components and interfaces that are not necessary
to illustrate the scenario.

The VideoServer component reads media files from the hard disk and
streams them to its remote clients via the ICompVideo interface. The media
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Fig. 2. Component diagram of the VoD application

files stored on the hard disk have been encoded in several versions with dif-
ferent formats and data rates. Comquad supports streams as special interface
type [9] and allows to specify NFPs for them. A Controller component acts
as intermediator between the GUI component implementing the user interface
and the VideoServer. The IControl interface controls the transmission of the
video flow through the ICompVideo interface by means of operations like play,
stop, rewind, and fast-forward. The VideoPlayer receives a remote video stream
by the ICompVideo interface, decompresses the video, and outputs the uncom-
pressed stream via the IUncompVideo interface to the VideoWindow component
where it is finally displayed.

Several different implementations of the VideoServer and VideoPlayer com-
ponents are available to handle the streaming of different qualities of encoded
media files, for example, depending on the available network bandwidth and the
client’s requirements. The implementations adhere to the same functional speci-
fication but differ in NFPs associated to the stream interfaces. The VideoPlayer
component also provides different QoS profiles for each implementation to of-
fer different levels of video preprocessing depending on the available CPU re-
sources. These QoS profiles are mapped to different internal configurations of
the VideoPlayer component. See [6] for more details.

Important NFPs used for stream and operational interfaces in the VoD appli-
cation are, for example, data rate, frame rate, and response time. For the speci-
fication of NFPs—offers, requirements, and resource demand—we use CQML+
[14], which is an extension of CQML [1].

A possible deployment scenario of the VoD application is depicted in Fig. 3.
To simplify our discussion, we considered only two nodes—ClientNode and
ServerNode—and a network between them as the target environment. Client-
Node is the client computer and ServerNode is a server at the service provider.
The Controller component is deployed on the same node as the VideoPlayer
and the VideoWindow component.

The GUI component is the client triggering the instantiation of all other
components. The component containers of ClientNode and ServerNode work
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Fig. 3. Deployment of the VoD application

together to select implementations and QoS profiles based on the client’s non-
functional requirements.

3 Contract Negotiation

In [3] four classes of contracts have been identified for a software component:
syntactic, behavioral, synchronization, and QoS. In this paper, we deal with
the fourth class of component contract: QoS. Our usage of the term contract
involves the collaborating components, containers, and platforms [19]. A QoS
contract between components is negotiated at runtime and defines the provided
and required QoS properties of each component. This component–component
contract depends on the contract that exists between the components and their
respective containers and the container–platform contract.

A QoS contract between two components can only be established if the level
of QoS offered by one component satisfies the expectations of the other one.
Otherwise, if no available implementation and QoS profile fulfills this condition, a
collaboration of the components is impossible. However, the client’s requirements
might be relaxed and the negotiation is restarted.

In our approach the container negotiates contracts between collaborating
components by selecting appropriate implementations and QoS profiles. In this
section we first discuss contract negotiation within a single container. We then
extend the approach to the contract negotiation between multiple containers
hosted on different computers.

3.1 Negotiation in a Single Container

Our current Comquad implementation supports contract negotiation in a single
container. This means that all the collaborating components are hosted in one
node. All required resources of these components are also provided by this node.
The client’s QoS requirements, specifying minimum and maximum values, drive
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the whole negotiation process. They have to be captured before the negotiation
begins. The contract negotiation is initiated when a client wants to create a spec-
ified component instance via the home interface of this component. The client
transmits QoS requirements together with the create request to the container.
Before the actual contract negotiation is started, the client’s QoS requirements
are translated into a QoS requirements of one or more components. The contract
negotiation is then performed in the container as outlined below [8].

1. Select a valid component net configuration. A component net represents
components that collaborate to handle the particular client’s request. A valid
component net configuration is one where the required and provided quality
statements for each connection in the component net conform to one another.
Some heuristics need to be done in the selection in order to decrease the
complexity of the search.

2. Compute the resource demand of the selected configuration.
3. Make resource reservations.
4. If reservation was successful, create component instances of the selected im-

plementation. Otherwise, if reservation failed and there are still more valid
configurations, go to step 1.

3.2 Negotiation in Multiple Containers

The multiple container case differs from the single container case in the following
aspects:

– The collaborating components are spread across different computers and
their resource demand is provided by the multiple nodes and a shared net-
work resource. The negotiation process needs to consider configurations and
available resources of multiple nodes (containers) and the network both in
isolation and collectively.

– QoS properties of component implementations across containers cannot be
simply matched based on their QoS expectation and QoS offer. The influence
of the network like latency and packet loss needs to be considered for NFPs
like response time, frame rate, etc.

– The network between the containers increases the complexity of the nego-
tiation process. Different communication service models are supported by
the network: guaranteed, priority-based, or best-effort. Moreover, compo-
nent implementations could require a specific network protocol.

– Multiple containers exchange messages during the negotiation process to
come to an agreement. For performance reasons the number of message ex-
changes between the containers must be minimized.

We propose a distributed contract negotiation approach to address the iden-
tified requirements. Each container integrates a contract manager acting as a
negotiating agent in the interaction between containers, in addition to its role
in local contract negotiation. We have identified two phases in our approach:
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(i) coarse-grained negotiation between the multiple containers and (ii) fine-
grained negotiation of the NFPs of components. The second phase is further
divided into negotiations between containers and negotiations locally in a single
container.

Coarse-grained negotiation: The agents of multiple containers need to negotiate
general terms before the actual NFP negotiations take place. For instance, the
containers need to agree on the type of communication service model provided
by the network, or on a specific transport protocol (TCP, RTP/UDP, etc) that
must be used to transfer data between components across containers.

In the VoD application example, a client may not support RSVP (Resource
Reservation Protocol) [18] while the server supports it. Hence, RSVP based guar-
anteed connections cannot be used and the parties need to agree on a different
connection type. In another case, the video service provider may offer its service
in two modes – interactive VoD and near VoD. Interactive VoD allows clients to
view a video using VCR-style functions such as pause, rewind and fast-forward.
In near-VoD some interactivity and part of the on-demand nature are sacrificed
to achieve cost-effectiveness or other objectives [2]. Each of these modes may
have their own requirements on the total number of clients supported and time
when the service is available. Before the negotiation of the NFPs, the client and
server need to agree either on interactive-VoD or near-VoD.

Fine-grained negotiation of the NFPs: Once the negotiating agents have agreed
on higher level terms, the fine-grained negotiation on the NFPs continues, with
the objective of selecting implementations and QoS profiles of components. This
selection can be done either (i.) centrally by one container, or (ii.) in a step
by step manner; i.e., first by selecting implementations of components that are
connected across containers followed by selections in each local container, or first
making selections in the client (server) container, then for components connected
across containers, and finally for components in the server (client) containers. In
a VoD or similar applications, the number of involved components can be many
and/or some components provide many implementations and QoS profiles. An
application that has four components, where two implementations are available
for each component and two QoS-profiles exist for each implementation, already
results in 44 = 256 configurations. Heuristic approaches are thus important to
decrease the negotiation time. Negotiation is made first between the containers,
followed by the local container negotiations. We believe this choice of ordering
helps in narrowing the search space of available configurations and reducing
the amount of message exchanges between containers. Moreover, it gives local
containers the freedom in the selection of local component implementations and
QoS profiles once agreement is reached between containers. As remote access is
a costly operation and as network failure is the most common cause of system
failure in the context of distributed environment, components are mostly co-
located in a node as far as possible. Component connections across containers
should be minimized.

The fine-grained distributed contract negotiation is performed as outlined
below:
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1. Do container–container negotiation. This is done by the container on the
server node assuming it has information about the QoS specification of all
components.
(a) Select a valid component net configuration as done for the single con-

tainer case but only consider components that are connected across con-
tainers. The computation of a valid configuration should take into ac-
count the network by appropriately modifying the NFPs of the compo-
nents.

(b) Compute network resource demand of the selected configuration.
(c) If available resources are sufficient, go to step 2.
(d) If available resources are insufficient and other valid configurations are

still available, go to step (a). If there are no more valid configurations,
relax the user’s requirements and go to step (a). If the user’s requirements
cannot be further relaxed, then notify the user and exit.

2. Repeat this step for all containers: Do local container negotiation with ad-
ditional constraints of the valid configuration obtained in step 1.

3. If all negotiations in step 2 are successful, make local container and
container–container resource reservations.

4. If any negotiation in step 2 fails or requires a change of the configuration
selected in the step 1, go to step 1.

5. If all negotiations are successful, create component instances of the selected
implementation. This establishes QoS contracts between the collaborating
components and the multiple containers.

We take the VoD application to demonstrate our ideas. The user’s QoS re-
quirements might be ”high quality media and fast interactive functions”. This
is translated into requirements on collaborating components as follows: (i) The
VideoPlayer’s ICompVideo interface expects to receive a QoS offer of data-
Rate = 96kbit/s and frameRate > 25s−1; (ii) the Controller’s IControl
interface expects responseT ime < 200ms. How this translation can be achieved
is out of scope of this paper. Component’s offered QoS depend on available re-
sources and the level of its used QoS. This dependency is captured in the QoS
profiles of components. A measurement framework [12] is used to estimate QoS
offer of components. The contract negotiation then proceeds as follows:

– The components that are connected across containers are VideoPlayer,
Controller, and VideoServer. To get a valid component configuration, a
matching is made between the available implementations and QoS profiles of
the VideoServer and the VideoPlayer, and also between the VideoServer
and the Controller. Table 1 shows different implementations of these com-
ponents and the NFPs of the specified interfaces.

– Based on the translated user’s requirements, the third implementation of
VideoServer is selected and this should be matched with the QoS ex-
pectations of the other two components. The responseT ime property of
VideoServer.IControlmust be modified before matching it with Control-
ler.IControl. This could be done by analyzing the network load and esti-
mating the latency introduced by the network. If the overall time is less
than 200 ms, the selected VideoServer implementation is valid for the
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Table 1. Component Implementations

Controller VideoPlayer VideoServer 
Imp 
no. 

IControl
(responseTime) 

Imp 
no. 

ICompVideo
(dateRate, frameRate)

Imp 
no. 

ICompVideo
(dateRate, frameRate) 

IControl
(responseTime) 

1 < 200 ms 1 (56 kbit/s, 25 s-1) 1 (56 kbit/s, 25 s-1) < 50 ms 

2 (96 kbit/s, 25 s-1) 2 (56 kbit/s, 15 s-1) < 100 ms

  3 (96 kbit/s, 25 s-1) < 50 ms

  4 (96 kbit/s, 15 s-1) < 100 ms

Controller component. Matching between the VideoServer and Video-
Player components results in selecting the 2nd implementation of the
VideoPlayer.

– For the selected configuration, network resource demand is computed. If
resources are available, local contract negotiation proceeds in the two con-
tainers under the constraint that the 3rd, 2nd, and 1st implementations have
been selected for the VideoServer, VideoPlayer, and Controller compo-
nents, respectively.

– If the available bandwidth is not enough, other configurations that fulfill
client’s minimum requirements are searched from Table 1. For instance, the
1st implementations of both VideoServer and VideoPlayer component can
be selected. Then the local negotiation process is repeated.

The distributed contract negotiation protocol proposed is not an optimal al-
gorithm in the sense that the selected configurations are not the ones with the
minimal resource requirements. Moreover, we have simplified our considerations
of the matching process of implementations and QoS profiles across the net-
work. Under a simplified scenario, for a network that provides QoS guarantees,
latency can be estimated on condition that the allocated bandwidth and the
size of the transported data are known. The effect of the different service mod-
els of the network—guaranteed, priority-based, and best-effort—on the NFPs of
components needs an in-depth investigation.

In our example, user’s requirements are fulfilled by the selected implemen-
tations and QoS profiles on all the NFPs. This does not always work. In more
complex situations the requirements for some NFPs (e.g. data rate and frame
rate) can be fulfilled while for the rest (e.g. response time) it is not possible.
In this case, other matching strategies should be applied. Capturing the user’s
relative preference for each NFP is useful for the selection. There are still more
complex situations of contract negotiation like the case when non-functional re-
quirements are conflicting. We would like to address these issues in the future.

4 Related Work

The work in [5] proposes a QoS-aware component framework that extends the
EJB container by integrating QoS services like resource reservation and negoti-
ation. The EJB container implements basic negotiation algorithms and isolates
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the business components from reservation services. The approach allows clients
to negotiate a single QoS dimension of method calls per second. But it does not
explain how component contracts can be negotiated in the multiple nodes.

Menascé et al [11] describe a model where a component provides a set of
interrelated services to other components. These components are QoS-aware
and are capable of engaging in QoS negotiations with other components of a
distributed application. The paper attempts to create a framework for software
components that are capable of negotiating QoS goals in a dynamic fashion using
analytic performance models. The QoS negotiation between two components
occurs by taking performance as a QoS requirement and concurrency level as
a means of negotiation element. Our treatment of QoS negotiation is generic,
which may be applied for a larger set of problems. Moreover, the negotiation
between components is handled in the container.

Some other projects that currently work on QoS support in software compo-
nents are CIAO and QuA. CIAO [17] builds a QoS-enabled CCM implementation
on top of TAO [15]. CIAO’s philosophy is a strong adherence to existing OMG
specifications such as RT/CORBA and CCM, and the extension of those. QuA
[13] aims at precisely defining an abstract component architecture, including the
semantics for general QoS specifications. The proof of concept is provided by
implementing an open framework for platform managed QoS.

5 Conclusions and Outlook

In this paper, we have discussed that contract negotiation of collaborating com-
ponents and their runtime environment is important for the support of non-
functional requirements in component-based applications. In our approach, the
container mediates the negotiation of the collaborating components. Contract ne-
gotiation has been discussed for a single container and multiple containers case.
Important challenges for supporting multiple container contract negotiations are
the consideration of resource constraints and possible conflicts at different nodes
and the network as well as the required negotiation time in large-scaled scenarios.
We proposed a two-phased negotiation approach to tackle these challenges.

However, the presented algorithm is not optimal in the sense that it does
not find configurations with minimal resource demand in all cases. In the future,
we want to come up with a more efficient algorithm or apply some heuristics.
Moreover, we would like also to address the effect of the different service models
of the network—guaranteed, priority-based, and best-effort—on the NFPs of
components.
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9. S. Göbel, C. Pohl, S. Röttger, and S. Zschaler. The COMQUAD Compo-
nent Model—Enabling Dynamic Selection of Implementations by Weaving Non-
functional Aspects. In 3rd International Conference on Aspect-Oriented Software
Development (AOSD’04), Lancaster, UK, 22–26 Mar. 2004.
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Abstract. Compared to other languages, the C++ language offers a less powerful
runtime type system, but a very powerful static type system. In AspectC++, this
is addressed by an extended join-point API that provides static type information
at compile-time and type-safe access to join-point-specific context information.
In this paper we show, how the use of static type information leads to the devel-
opment highly generic, but type-safe aspects that fit well into the C++ language
model. This is demonstrated by an example.

1 Introduction

Compared to languages like Java and C#, the C++ language has a less powerful run-
time type system, but a more powerful compile-time (static) type system. C#, while
still beeing a statically typed language, implements a unified type system where even
primitive value types offer the interface of the one and only root class System.object.
In Java all class types derive from Java.lang.Object. Due to autoboxing it is possible
in both languages (Java beginning with Java 5) to pass value type instances as object
references. Basically, Java and C# allow to treat “everything as an object” at runtime1.
This facilitates the development of “type generic code”, in the sense that such code can
deal with objects of any type at runtime.

In C++ there is no such common root class and the C++ runtime type information
(RTTI) system offers only a very limited set of runtime services. On the other hand,
C++ implements a static type system that offers a very high level of expressive power,
based on operator and function overloading, argument dependend name lookup and
C++ templates. This facilitates the development of highly generic code that can be in-
stantiated at compile-time with any type. In general, the C++ philosphy is to use gener-
icity at compile time, while Java and C# advise genericity at runtime2. The C++ model
of compile-time genericity has some clear advantages, as it allows a good separation of
concerns, typically results in very efficient code, and implicitly ensures type-safety.

Type genericity is particularly important for the development of aspects, as aspects
are typically intended to be broadly reusable and applicable. For example, the imple-
mentation of a tracing aspect that logs all actual parameter and result values of function
invocations, should be independent of the affected function’s signature, i.e. on its argu-
ment and result types. In AspectJ this is realized by providing a runtime join-point

1 Actually, it is the Smalltalk language that carried the “everything is an object” idea to the
extremes. However, Smalltalk offers no static type system.

2 This is even true with Java generics introduced in the Java 5, which are basically a syntatic
wrapper around the “treat everyting as an object” philosophy.
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API to advice implementations, which offers a unified interface to access the join-
point’s context information. This information includes the number of parameters, the
argument and return values (as Object), and (via the interface of Object and Java’s re-
flection capabilities) their runtime types. Our AspectC++ language offers very similar
runtime mechanisms. Additionally, the AspectC++ join-point API supports an alterna-
tive type-safe access to all parameter and result values. For this purpose, we extended
the AspectC++ runtime join-point API by a compile-time join-point API, which pro-
vides static type information about the current join-point at compilation time. We call
advice, which depends on static type information from the compile-time join-point API
generic advice [10].

1.1 Outline

The aim of this paper is to show, how the AspectC++ notion of generic advice can be
used to develop reusable, but type-safe aspect implementations that fit well into the
C++ philosphy of “doing as much as possible statically”. This is demonstrated by an
example. The example is an aspect that facilitates exception-based error propagation
for legacy third-party C-libraries like the Win32 API.

The rest of this paper is structured as follows. The next section provides a brief in-
troduction into the AspectC++ language and terminology and describes the AspectC++
join-point API. Section 3.1 explains the example project. Afterwards, some details
about the weaving process of AspectC++ are given in section 4. This is followed by
a discussion of the advantages and limitations of our approach in section 5. Finally, we
give an overview of related work and briefly summarize the paper.

2 AspectC++ Concepts and Terminology

AspectC++ [13] is a general purpose aspect-oriented language extension to C++ de-
signed by the authors and others. It is aimed to support the well-known AspectJ pro-
gramming style in areas with stronger demands on runtime efficiency and code density.
While beeing strongly influenced by the AspectJ language model [7,8], AspectC++ has
to support many additional concepts that are unique to the C++ domain. This ranges
from operator overloading, const correctness and multiple inheritance up to weaving in
template code.

The AspectC++ compiler, plugin for Eclipse, and documentation are available under
open source license from the AspectC++ homepage [1].

2.1 Basic Concepts [10]

The AspectC++ terminology is inspired by the terminology introduced by AspectJ. The
most relevant terms are join-point and advice. A join-point denotes a specific weaving
position in the target code (often called component code, too). Join-points are usually
given in a declarative way by a join-point description language. Each set of join-points,
which is described in this language, is called a pointcut. In AspectC++ the sentences
of the join-point description language are called pointcut expressions. For example the
pointcut expression
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call("% Service ::%(...)")

describes all calls to member functions of the class Service. The pointcut expression

call("% Service ::%(...)")
&& cflow( execution( "void error_%(...)" ) )

describes again all calls to member functions of the class Service. By combining (&&
operation) these join-points with the cflow pointcut function these join-points become
conditional. They are only affected by advice if the flow of control already passed a
function with a name beginning with error . Users may define pointcut expressions
of arbitrary complexity to describe the crosscutting nature of their aspects. A list of
all built-in pointcut functions of AspectC++ is available in the AspectC++ Language
Quick Reference Sheet [1].

The core of the join-point language are match-expressions. In AspectC++ these
expressions are quoted strings where % and ... can be used as wildcards3. They can
be understood as regular expressions matched against the names of known program
entities like functions or classes.The aspect code that is actually woven into the target
code at the join-points is called advice. Advice is bound to a set of join-points (given
by a pointcut expression). For example by defining the advice

advice call( "% Service::%(...)" ) : before() {
cout << "Service function invocation" << endl;

}

the program will print a message before any call to a member function of Service. The
advice code itself has access to its context, i.e. the join-point which it affects, at runtime
by a join-point API. Very similar to the predefined this-pointer in C++, AspectC++
provides a pointer called tjp, which provides the context information. For example the
advice

advice call( "% Service::%(...)" ) : before() {
cout << tjp->signature () << " invocation ";
cout << endl;

}

prints a message that contains the name of the function that is going to be called.

2.2 The AspectC++ Join-point API

Table 1 shows an excerpt from the join-point API, describing those parts that are rel-
evant in the context of this paper. The elements that are based on join-point-specific
static type information are emphasized. The upper part (types and enumerators) pro-
vides compile-time type information, which can be used to instantiate generic code
or template metaprograms by advice. The lower part (non-static methods) provides a

3 In AspectJ * is used as a wildcard, but this would result in ambiguities in C++. However, the
match mechanism exists in AspectJ, too.



138 D. Lohmann and O. Spinczyk

type-safe interface to the join-point context. These methods are bound at compile-time,
but called at runtime. For example, the function Arg<i>::ReferredType *arg() offers
a type-safe way to access argument values if the argument index is known at compile
time. Inside the advice body, the static part of the join-point API is provided as a class
JoinPoint. At runtime, the non-static members are accessed using the JoinPoint *tjp

pointer.

Table 1. An Excerpt from the AspectC++ Join-point API

compile-time types and enumerators:
That type of the affected class

Target type of the destination class (for call join-points)

Arg<i>::Type

Arg<i>::ReferredType

type of the i’th argument

with 0 ≤ i < ARGS

Result result type

ARGS number of arguments

JPID unique numeric identifier for this join-point

JPTYPE type of this join-point (call / execution / construction / destruction)

runtime static methods:
const char *signature() signature of the affected function

...

runtime non-static methods:
void proceed() execute original code (around advice)

That *that() object instance referred to by this

Target *target() target object instance of a call (for call join-points)

Arg<i>::ReferredType *arg() argument value instance of the i’th argument

Result *result() result value instance

...

3 Using Static Typing in Aspects - An Example

3.1 Motivation

Every program has to deal with the fact that operations may fail at runtime. Program-
ming language concepts for propagation and handling of runtime errors have evolved
over time. Today most developers favor exceptions for this purpose. However, especially
in the C/C++ world, there are still hundreds of legacy libraries that do not support ex-
ception handling and follow a more traditional approach of error handling by reporting
an error situation via the function’s return value. An error is returned either as an error
code, a boolean flag or as a special “magic value”. In the latter cases, a more descriptive
error code can typically be retrieved by calling a special library function or reading a
global variable. The C runtime library (CRT), for instance, provides the global variable
errno for this purpose.

Many libraries overload the indication of a runtime error with the functions regular
result. In such libraries, the result value has to be checked against a “magic value” to
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1 #include <windows.h>
2 HANDLE g_hConfigFile = NULL;
3

4 LRESULT WINAPI WndProc( HWND hWnd , UINT nMsg , WPARAM wParam, LPARAM lParam ) {
5 HDC dc = NULL;
6 PAINTSTRUCT ps = {0};
7

8 switch( nMsg ) {
9 case WM_PAINT:

10 dc = BeginPaint( hWnd , &ps );
11 ...
12 EndPaint(hWnd , &ps);
13 break;
14

15 case ...
16

17 default:
18 return DefWindowProc(hWnd , nMsg , wParam, lParam);
19 }
20 return 0;
21 }
22

23 int WINAPI WinMain( ... ) {
24 g_hConfigFile = CreateFile( "example.config", GENERIC_READ , 0,
25 NULL , OPEN_EXISTING, 0, NULL );
26

27 WNDCLASS wc = {0, WndProc , 0, 0, ... , "Example_Class"};
28 RegisterClass( &wc );
29

30 HWND hwndMain = CreateWindowEx( 0, "Example_Class", "Example", ... );
31 UpdateWindow( hwndMain );
32

33 MSG msg;
34 while( GetMessage( &msg, NULL , 0, 0 ) ) {
35 TranslateMessage( &msg );
36 DispatchMessage( &msg );
37 }
38 return 0;
39 }

Fig. 1. A Typical Win32 Application

determine if there was an error. The “magic value” itself often depends on the result
type. For instance, functions that perform floating point calculations return a double

which is either the result of the calculation or the special not-a-number (NaN) value in
case of an error. The CRT function fopen() returns a FILE* that is the handle to the
opened file or NULL in case of an error.

Error checking and handling by validation of function results is cumbersome. Typ-
ically, in the client code each function call needs to be surrounded by an if statement
with at least two or three additional lines to do the error handling. This results in heavily
tangled and almost unreadable code. As a consequence, this kind of error handling is of-
ten “forgotten” as C-style languages allow programmers to simply ignore the results of
a function call. At runtime this may lead to undefined behavior when the program con-
tinues execution with invalid internal state. With error propagation by exceptions this
could not happen, as an exception “can’t be ignored” and reported faults are thereby
detected as early as possible. Hence, it is a good idea to integrate calls to legacy li-
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braries into the error-handling-by-exception model. As this is a crosscutting concern,
we strive for a generic aspect-oriented solution. In the following we describe such a
generic aspect for one of most popular (and disliked) legacy libraries: the Win32 API.

3.2 The Example Application

Figure 1 shows the listing of a typical Win32 application. WinMain() is the entry point,
which performs the usual sequence of Win32 API calls to initialize the application and
start the main message loop: First a configuration file is opened (CreateFile()) and the
window class for the application’s main window is registered (RegisterClass()). After-
wards the main window is created (CreateWindowEx()) and an initial WM PAINT message
is sent to it (UpdateWindow()). The WM PAINT message is handled by the WndProc() win-
dow procedure, which acquires a device context (BeginPaint()), draws the window’s
content (not shown here) and then releases the device context (EndPaint()). After the
main window was created, the application finally enters the message loop to perform
all further processing.

Even if the application does not contain any error checking code, any of the above
mentioned API functions may fail at runtime. They all follow the Win32 convention by
indicating a failure by a “magic” return value and, in case of failure, providing more
information about the reason via GetLastError().

3.3 An Aspect to Throw on Win32 Errors

Our goal is now to develop an aspect that implements an exception-based error handling
for calls to the Win32 API. The general idea is to give after call advice to all Win32 API
functions. In the advice body, the return value of the API function is checked and, in
case of an error, an exception is thrown:

#include "Win32Error.h"
aspect ThrowWin32Errors {

advice call( win32:: Win32API() ) : after() {
if( win32::IsError( *tjp->result() ) {
throw win32::Exception (...);

}
}

};

The advice affects all calls to API functions that are described by the (exter-
nally defined) pointcut win32::Win32API(). Its implementation uses a helper func-
tion win32::IsError() that returns true if the passed result value, retrieved via
tjp->result(), indicates a failure. This is done by checking the result against the
“magic value”. The actual implementation of the helper function depends on the API
function called, or, more precisely, on its return type. In the example the following
Win32 API functions are used:

– EndPaint() and UpdateWindow() are of type BOOL.
BOOL functions indicate an error by returning FALSE.
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– BeginPaint() is of type HDC.
HDC functions indicate an error by returning NULL.

– CreateWindowEx() is of type HWND.
HWND functions indicate an error by returning NULL.

– RegisterClass() is of type ATOM.
ATOM functions indicate an error by returning 0.

– CreateFile() is of type HANDLE.
HANDLE functions indicate an error by either returning NULL or
INVALID HANDLE VALUE.

These few API functions already cover a significant part of the different return types
and “magic values” used by the Win32 API. The win32::IsError() helper function
is overloaded for each of these types to perform the check against the type-dependent
“magic values” (Figure 3, lines 12–26). The compiler’s overload resolution deduces
(at compile-time) for each join-point the correct helper function to call (Figure 2). In
the case the advice affects calls to a function of a type no compatible helper function
is defined for, the overload resolution process fails and results in a compile-time er-
ror. Note that this generic implementation of the advice code is only possible, because
tjp->result() is type-safe, as it returns a pointer of the real static type of the affected
function.

3.4 Providing Context Information

Our aspect performs a type-safe validation of the results of Win32 API calls and throws
a win32::Exception in case of an error. The exception object should include all context
information that can be helpful to figure out the reason for the actual failure. Besides
the Win32 error code, this should include a human readable string describing the error,
the signature of the called function (retrieved with tjp->signature()) and the actual
parameter values that were passed to the function.

The tricky part is to build a string from the actual parameter values. In AspectJ
one would iterate at runtime over all arguments and call Object.toString()on each
argument. However, in C++ it is not possible to perform this at runtime, as C++ types

Fig. 2. A Join-Point specific Compile-Time Switch
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1 namespace win32 {
2

3 struct Exception {
4 Exception( const std::string& w, DWORD c )
5 : where( w ), code( c )
6 {}
7

8 std::string where;
9 DWORD code;

10 };
11

12 inline bool IsError( HANDLE res ) {
13 return res == NULL || res == INVALID_HANDLE_VALUE;
14 }
15 inline bool IsError( ATOM res ) {
16 return res == 0;
17 }
18 inline bool IsError( HWND res ) {
19 return res == NULL;
20 }
21 inline bool IsError( HDC res ) {
22 return res == NULL;
23 }
24 inline bool IsError( BOOL res ) {
25 return res == FALSE;
26 }
27

28 // Translates a Win32 error code into a
29 // readable text message using the Win32
30 // FormatMessage() function
31 std::string GetErrorText( DWORD code ) {
32 char res[ 256 ];
33 FormatMessage(... , code , 0, res, ...);
34 return res;
35 }
36

37

38 pointcut Win32API() = "% CreateWindow%(...)"
39 || "% RegisterClass%(...)"
40 || "% BeginPaint(...)"
41 || "% UpdateWindow(...)"
42 || "% CreateFile%(...)"
43 || ...;
44 } // namespace Win32

Fig. 3. Win32 Errorhandling Helper

do not share a common root class that offers services like toString(). The C++ concept
to get a string representation of any type is based, once again, on static typing. It is
realized by overloading the stream operator ostream& operator < <(ostream&, T) for
each type T. Therefore, we have to iterate at compile-time over the join-point-specific
list of argument types to generate a sequence of stream operator calls, each processing
(later at runtime) an argument value of the correct type. This is implemented by a small
template metaprogram (Figure 4, lines 4–19), which is instantiated at compile-time with
the JoinPoint type (line 35) and iterates, by recursive instantiation of the template, over
the join-point-specific argument type list JoinPoint::Arg<I>. For each argument type,
a stream params class with a process() method is generated, which later at runtime
will stream the typed argument value (retrieved via tjp->arg<I>()) and recursively



On Typesafe Aspect Implementations in C++ 143

1 #include "Win32Error.h"
2

3 aspect ThrowWin32Errors {
4 // template metaprogram to stream a commaseparated sequence of
5 // arguments available at a joinpoint
6 template< class TJP, int N >
7 struct stream_params {
8 static void process( ostream& os, TJP* tjp ) {
9 os << *tjp->arg<TJP::ARGS -N>() << ", ";

10 stream_params< TJP, N - 1 >::process( os, tjp );
11 }
12 };
13 // specialization to terminate the recursion
14 template< class TJP >
15 struct stream_params< TJP, 1 > {
16 static void process( ostream& os, TJP* tjp ) {
17 os << *tjp->arg< TJP::ARGS - 1 >();
18 }
19 };
20

21 advice call( win32::Win32API() ) : after() {
22 if( win32::IsError( *tjp->result () ) ) {
23 ostringstream os;
24 DWORD c = GetLastError();
25

26 os << "WIN32 ERROR " << c << ": "
27 << win32::GetErrorText(c) << endl;
28 os << "WHILE CALLING: "
29 << tjp->signature() << endl;
30 os << "WITH: " << "(";
31

32 // Generate joinpoint-specific sequence
33 // of operations to stream all argument
34 // values
35 stream_params< JoinPoint , JoinPoint::ARGS >::process( os, tjp );
36 os << ")";
37

38 throw win32::Exception( os.str(), c );
39 }
40 } };

Fig. 4. An Aspect to Throw Win32 Errors as Exceptions

1 #include "Win32Error.h"
2

3 aspect CatchWin32Errors {
4 advice execution("% WinMain(...)"
5 || "% WndProc(...)" ) : around() {
6 try {
7 tjp->proceed();
8 }
9 catch( win32::Exception& e ) {

10 MessageBox( NULL , e.where.c_str(), NULL , MB_ICONERROR );
11 }
12 } };

Fig. 5. A Simple Aspect to Catch Win32 Errors
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call stream params::process() for the next argument (line 10). This implementation
is, again, type-safe. The compiler automatically deduces the stream operator to call for
a specific type. If no compatible operator is available, a compile-time error is thrown.

3.5 Handling Error Conditions

The exception handling itself is implemented, for demonstration purposes, as another
simple aspect (Figure 5). It just displays the context information in a message box. If,
for instance, the CreateFile() call (Figure 1, line 24) fails, because the configuration
file example.config does not exist, the following error message pops up:

For real-world applications, the CatchWin32Errors aspect can be easily extended to
implement advanced error handling concepts. For instance, a detailed error log can be
created and the Win32 debugger API might be used to dump the call stack before the
application is terminated.

4 Implementation Details

AspectC++ is a source-to-source weaver that transforms AspectC++ programs into C++
programs. The woven code can then be built with any standard-conforming C++ com-
piler, like g++ or VisualC++. In this section we show some details about this trans-
formation process, focussing on generic advice code and the compile-time join-point
API.

4.1 Aspect Transformation

AspectC++ generates a C++ class with a unique name for each join-point that is af-
fected by advice code. Advice code is transformed into a template member function
of the aspect, which in turn is transformed to a class. The unique join-point class is
passed as a template argument to the advice code. Thus, the advice code is generic
and can access all type definitions (C++ typedefs) inside the join-point class with
JoinPoint::Typename. Indirectly these types can also be used by using the type-safe
argument and result access function. The following code fragment shows advice code
after its transformation into a template function.
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// ...
template< class JoinPoint >
void __a0_after( JoinPoint *tjp ) {

if( win32::IsError( *tjp->result() ) ) {
// ...

}
};

4.2 Argument Type Sequences

In AspectC++ template-metaprograms can be used to iterate over the argument type
sequence of a join-point at compile time, as shown in the example. However, these
sequences have to be provided in a “metaprogram-friendly” way. Just generating
ArgType0, ArgType1, . . . , ArgTypeN would not allow metaprograms to iterate over these
types. For this purpose, the generated join-point-specific classes contain a template class
Arg<I> which provides all the type information for the I’th argument as typedefs.

Sequences of types can be implemented by recursive template definitions as in the
Loki[2] Typelist. For the AspectC++ we decided for an implementation with less de-
mands on the back-end compiler, based on explicit template specialization. The follow-
ing code shows a part of the generated type for the call join-point to RegisterClass()

in the WinMain() function (Figure 1, line 28).

struct TJP_main_1 {
typedef ::ATOM Result;
typedef void That;
typedef void Target;
enum { ARGS = 1 };
template <int I> struct Arg {};
template <> struct Arg <0> {

typedef ::WNDCLASSA *Type;
typedef ::WNDCLASSA *ReferredType ;

};
void **_args;
Result *_result;
inline Result *result() {return _result;}
inline static const char *signature () {return ...;}
inline void *arg (int n) {return _args[n];}
template<int I> typename Arg <I>:: ReferredType *arg(){

return (typename Arg <I>:: ReferredType *) arg(I);
}

};

Note that only the result and args attributes consume memory at runtime, as every-
thing else is resolved at compile-time.
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5 Discussion

As demonstrated by the ThrowWin32Errors aspect, the technique of using static typing
for generic advice implementations has some clear advantages regarding genericity and
type-safety. On the other hand, the strong focus on static typing and the template-based
implementation also implies some potential drawbacks. In this section we discuss the
major advantages and limitations of our approach.

5.1 Advantages of Generic Advice

Genericity is achieved, as generic advice can be applied to functions with any sig-
nature, even if they use primitive or POD data types. This seamless support of
non-class types is particulary important in the C/C++ domain. It is not possible to
implement a unified access to instances of such types by extending their interface,
e.g. using (baseclass-) introductions or other typical AOP idioms.

Separation of concerns is improved, as type-specific parts of the implementation (like
the comparison with a “magic value”) are separated out from the advice implemen-
tation in own external program entities. Thereby most of the advice code can be
reused. Moreover, this makes the aspect code more stable with respect to changes
in the component code. If, for instance, the result type of a function is changed to
some unknown new type, the missing helper function is detected at compile-time.
A non-generic aspect implementation that gives one advice per return type would
silently miss to match the function’s new signature.

Type-safety is guaranteed, as type errors are detected early at compile-time. Costly
and potentially dangerous runtime casts are avoided. In languages that do not offer
a type-safe access to the join-point’s context information, problems (like a missing
helper function) may not be detected before runtime.

5.2 Potential Limitations and Disadvantages

Code bloating is a potential problem, as generic advice is intantiated per join-point
which might result in a high number of (similar) template instantiations, each be-
ing compiled seperately into the machine code. This is a general and well known
issue in the C++ domain. It is difficult to judge its effects on real applications, as
they depend on many other properties, especially the optimization capabilities of
the compiler. For small template functions, which are inlined anyway, it has no ef-
fect at all.
In the example application, around 200 (BeginPaint(), 2 arguments) to 1000
(CreateWindowEx(), 11 arguments) additional bytes of code are generated for each
of the Win32 function matched by the ErrorException aspect. Most of this over-
head is induced by the generated streaming code. We estimate that a hand-written
tangled implementation of the same crosscutting concern would result in similar
costs, as it has to contain the same amount of streaming code. However, additional
calls of the same Win32 function result in (almost) no additional overhead. In these
cases the build system seems to be able to detect and optimize away the semanti-
cally identical template instantiations4.

4 All measurements were done using Microsoft Visual C++ 2003 using /O1 optimizations.
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Compile-time fixation limits the approach to those types that are known at build-type.
Generic advice can not be instantiated for additional types loaded dynamically at
runtime. This is an implicit property of static typing. It is no real limitation for lan-
guages like C++ or Ada, as these languages do not support runtime type loading
anyway. However, for Java or C#, which provide runtime class loading, this might
be an issue. A possible solution for such languages is to rely on static type infor-
mation as much as possible, but fall back to runtime type checking for types that
are not known at build time.

Strong type semantics is a prerequisite of taking advantage of the approach. If, for in-
stance, there is no general policy which “magic values” of a return type indicate a
failure, it is not possible to bind the required test function solely on the base of the
return type. However, if there are only a few exceptions from an otherwise general
rule, they can be handled by seperate advice.
The example ThrowWin32Errors aspect, for instance, can already be applied to most
functions of the Win32 base API in any program. It is easy to achieve complete cov-
erage by implementing the helper functions for the remaining return types. Very
few API functions, however, do not follow the general Win32 error handling con-
ventions5. Luckily, these few exceptions can easily be handled by giving specific
advice for them.

5.3 Conclusions

Overall, the approach fits well into languages like Ada and C++ that have a static typing
philosophy. Languages like Java or C#, which support static, but emphazise dynamic
typing, would even benefit from generic advice, although it might be necessary to ex-
tend the approach for these languages by some runtime mechanism that deals with
dynamically loaded classes. Such combination would make the most of both worlds.

6 Related Work

So far, no publications focus on the development of generic, but type-safe aspects in
languages with a sophisticated static type system as C++. C#, being currently a language
with focus on dynamic typing, will be extended by additional static concepts (templates)
in the next version [6]. However, the proposed extensions for integrating AOP into C#
(e.g. [12,11]) do not cover static typing in aspects, yet.

Several extensions have been suggested to increase the static genericity of AspectJ.
Instead of an extended join-point API, they are based on an extension of the join-point
description language by context-dependend logic variables that are bound at weaving-
time. Sally [5] focusses on genericity for structural aspects and proposes parametric
introductions as an extension of the inter-type declaration mechanism in AspectJ and
Hyper/J. LogicAJ [9] supports a similar mechanism called generic introductions and
facilitates the development of generic advice code as well as reasoning over non-type

5 The TlsGetValue() function, which is used to retrieve a thread-local storage value, is an ex-
ample. It does not use a “magic value”, but indicates success by clearing the GetLastError()
value.
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program entities like method names. While the use of of a logical language for this
purposes has some clear advantages, it also leads to a high level of complexity. As C++
is already a “rich” multi-paradigm language with respect to complexity and expressive
power, such an approach implies the risk of introducing redundant language concepts.
For instance, a compile-time type deduction engine is already available through tem-
plates. For AspectC++, our goal is therefore to carefully integrate AOP concepts with
the existing idioms and the philosophy of the C++ language.

The few existing work in the AOP/C++ domain focusses on using the preprocessor
or static type concepts like overloading and advanced template techniques to “simulate”
AOP in pure C++ [3,15,4].

7 Summary

The aim of this paper was to demonstrate, how static type information and a type-safe
join-point API can be used in generic advice for the development of broadly applicable
and type-safe aspects. By seperating out the type-specific parts (like the detection of an
error result) into own external functions, both a good separation of concerns and a high
level of type-safety is achieved.

Generic advice integrates well with the idioms of a language with a strong static
type system as C++, where it is common and desirable to “decide things at com-
pile time”. As shown in the example, this involves even the utilization of template-
metaprogramming techniques in advice code, e.g. to iterate over the function’s argu-
ments. Template-metaprogramming is known to be tricky and cumbersome, however,
there are promising attempts to reduce its complexity by carefully extending the C++
language [14]. Currently, templates permit to reach a level of genericity and type-safety
that is otherwise not feasable. Both, genericity and type-safety are very important prop-
erties for any aspect that is intended for reuse, like aspects from an aspect library. Such
aspects are potentially applied to functions with any signature, which includes functions
that use primitive and POD types. Thus, they should be able to deal with all those types
and, even more important, raise potential type errors at compile-time.
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Abstract. In addition to publishing composite services as reusable ser-
vices, compositions can also be reused by applying them to orchestrate
different component services. To do so, it is important to describe compo-
sitions using flexible bindings, which define only the minimal constraints
on the syntax and semantics of the services to be composed. This way,
the choice of which service to invoke can be delayed to later stages in
the life cycle of the composition. In the context of Web service compo-
sition, we refine the concept of binding beyond the basic distinction of
static and dynamic binding. Bindings can be evaluated during the de-
sign, the compilation, the deployment, the beginning of the execution of
a composition, or just before the actual service invocation takes place.
Considering the current limited support of dynamic binding in the BPEL
service composition language, we show how we addressed the problem
in JOpera, where modeling bindings does not require a specific language
construct as it can be considered a special application of reflection.

1 Introduction

Software components are – by definition – reusable [28]. In this paper we look
at reusability from the opposite perspective and ask the following question: are
compositions also reusable? Clearly, thanks to the recursive nature of most com-
position languages, compositions as a whole can be immediately reused as com-
ponents. Web services, a particular kind of component used to build service
oriented architectures [26], are also intended to be reused in many different
combinations (e.g., [34]). Likewise, composite services are typically published
themselves as Web services [24].

In addition to reuse based on packaging entire compositions as components,
compositions – as opposed to basic components – can also be reused along a
qualitatively different dimension. As it was informally exemplified by W. Tracz
in [28]:
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If you have components to reuse then you need to glue them together.
If you have patterns to reuse, then you have the glue into which you have
to stick pieces. After you glue pieces together long enough and you start
seeing a pattern, then you can reuse the glue too.

Along these lines, the main contribution of this paper consists of applying
such idea to Web service composition. In particular, we discuss what are the
requirements for service composition languages, techniques and tools to support
reusable composition. To this end, the notion of binding is very important, as it
captures the relationship between the composition and its component services
and defines what are the corresponding reusability constraints.

In practice, reusability is not the only issue related to the flexible binding of
services into compositions. Other interesting ones concern the testability and the
reliability of the compositions. These are also two very important aspects to be
taken into account when building distributed applications out of the composition
of Web services.

From a different perspective, current Web service technologies can be seen as
an evolutionary step of existing RPC [4] based middleware to cover distribution
at a World-wide-web scale [1]. In this sense, SOAP [29] is used as a wire-protocol,
WSDL [30] as the interface description language (IDL), while UDDI [19] was
meant to provide the foundation for a global registry infrastructure. Based on
this, the focus of this paper is to discuss how to apply the notion of binding
to address the Web service composition problem and to determine how well the
existing Web services composition languages and tools support it.

Given the current limited level of support for static and dynamic binding
in BPEL4WS [16], in this paper we present how reusable service compositions
can be built using JOpera. JOpera is an open research platform for service
composition developed at the Swiss Federal Institute of Technology. It features
a visual composition language [22], a set of rapid composition tools based on
Eclipse [20] and supports an extensible set of composition techniques [23].

This paper is organized as follows. We introduce the problem of binding in
service oriented architectures by showing some of the limitations of BPEL in
Section 2. Then, we refine the notion of flexible binding according to different
orthogonal aspects: its scope and its evaluation time. In Section 4 we present
how the JOpera system uses reflection to support flexible binding. In Section 5
we discuss related work in the context of Web service composition. In Section 6
we draw some conclusions.

2 Motivation

In service oriented architectures, binding is an abstraction mechanism to separate
implementation specific details from a high-level description of the functionality
of the services to be accessed. As an example, consider the approach followed by
WSDL, which separates the abstract description of a service interface (the port
type) from the transport protocols and the addressing information used to access
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Binding
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Fig. 1. Progressive refinement of a binding using BPEL

the corresponding service provider (the port). This separation of interface from
implementation fulfills the important requirement of adaptability that make a
composition reusable in an ever-changing distributed environment.

Building on this, BPEL1 uses the notion of abstract process and partner to
reflect the idea that the business processes modeling how different Web services
should be composed can be applied to different service providers. By extending
the WSDL standard service interface description with the declaration of a part-
ner link type, the process which defines how to compose different services does
not depend on specific services but can be customized to use different ones as
long as they fit with the expected link type.

As represented in Figure 1, during the life time of a process, a binding is
progressively refined going from a set of services to one specific service end
point. When a process is designed, it does not contain any reference to a specific
service, but it only lists partner port types. An abstract process is reused by
constructing a mapping between concrete service port type definitions and the
roles played by the various partners in the process. This mapping between WSDL
definitions and partners is set once the composition is deployed and it is fixed
for all executions of the composition.

As shown in the example (Figure 2), the only form of dynamic binding sup-
ported by BPEL consists of re-assigning end points which identify specific ports
within a service interface at runtime. End points are identified with the WS-
Addressing proposed standard [32]. Although this feature can be used to estab-
lish call-back relationships and allows to tap the flexibility offered by the separa-
tion between port types (interfaces) and ports (communication end-points), the
values for the port type and the operation themselves are fixed for each invoke

activity and cannot be changed as the process runs.

1 The Business Process Execution Language for Web Services (BPEL4WS or BPEL)
language specification represents the current state of the art in process-oriented Web
service composition languages. It is currently undergoing a standardization process
at OASIS, which may change some of its capabilities. In this example we refer to
version 1.1 [14].
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<

xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

name="AsyncEchoService" targetNamespace="urn:asyncEcho:Service"

xmlns:this="urn:asyncEcho:Service" suppressJoinFailure="no"

enableInstanceCompensation="no" abstractProcess="no">

< >

< name="caller" partnerLinkType="this:EchoPLT"

myRole="service" partnerRole="client"/>

</ >

< >

< name="echoMessage" messageType="this:EchoMessage"/>

</ >

< >

< name="echoReceive" partnerLink="caller"

portType="this:EchoService" operation="echo"

variable="echoMessage" createInstance="yes"/>

< >

< >

< variable="echoMessage" part="replyTo"/>

< partnerLink="caller"/>

</ >

</ >

< name="echoReply" partnerLink="caller"

portType="this:EchoClient" operation="echoCallback"

inputVariable="echoMessage"/>

</ >

process

partnerLinks

partnerLink

partnerLinks

variables

variable

variables

sequence

receive

assign

copy

from

to

copy

assign

invoke

sequence

Fig. 2. Example of dynamic redirection of service end points with BPEL. The assign

activity copies a service end point reference from the incoming message to the partner

link which is going to be invoked afterwards.

Thus, BPEL limits the scope of a binding depending on the time it is evalu-
ated. Although a static binding can refer to different services identified by their
port types, a dynamic binding is restricted to switch between the various ports
of the service. This limits the reusability of composite services modeled with
BPEL. Furthermore, by using WSDL port types to define constraints in the
roles that can be assumed by each partner, such constraints are expressed only
at the level of the syntactical description of the service interface and no explicit
provision for semantics is made [16]. Thus, services which do not match the in-
terface description contained in the binding will not be considered as potential
replacements. Conversely, it is not possible to discard services that use the same
syntactical signature, but provide incompatible functionality.

Before we present in detail how we address these limitations with JOpera, we
introduce the notion of flexible binding abstracting from the details of a specific
service composition language.
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3 Flexible Binding

In general, a binding of a service into a composition can be defined as the refer-
ence used to choose the service to be invoked as part of the compostion. As we
will discuss in the rest of this section, there are different ways of identifying the
services to invoke. Furthermore, a binding can be evaluated at different times
during the life cycle of a composition.

3.1 Modeling Bindings

Different composition languages may take different approaches to describing how
components are bound into the composition. In this paper we make very little
assumptions about how a composition language is used to model a composition.
In particular, we assume that a composition contains two different kinds of in-
formation. 1) A set of bindings {b}, used to identify which services should be
composed. 2) A model of the structural relationship between the bindings.

Although it is outside the scope of this paper to detail such model, it is
worth noting that based on the structure of the composition it is possible to
define constraints on the services that can be bound into it. For example, if the
composition includes information about the data flow dependencies between the
services, this information can be used to constrain the services that can be used.
On the one hand, the data flow of the composition defines what data each service
should be able to produce and consume. On the other hand, if two services are
connected, they must fit with one another, i.e., be able to exchange messages with
compatible content. As another example, if the composition includes control flow
dependencies between the operations to be invoked, only services which support
compatible interaction protocols can be used within such composition.
Binding by inclusion In the simplest case, services are statically bound into a
composition by inclusion (b = s). Thus, the description of a service s is mixed
with the description of the structure of the composition. Although this solution
already captures the relationship between the composition and its component
services, it is too simple in order to effectively model the reuse of either. With
it, services can only be reused by duplicating their description in different parts
of the compositions. Likewise, it is not straightforward to apply the same com-
position to invoke different services.
Binding by reference involves using references linking the composition to external
descriptions of the services to be invoked. Thus, a binding becomes b = t → s,
where t represents the name referencing a service and s describes the service to
be invoked. By using a reference, the service description can be stored separately
from the composition. This is an important step which enables to model reuse at
the level of the services, as it is now possible to have the same service referenced
by more than one binding within more than one composition. However, since
each binding uniquely identifies the service to be invoked, the model is not yet
powerful enough to reuse compositions, where a composition can be applied to
different services without modifying it.
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Binding by Constraint To support reusable compositions, we extend the previous
definition of binding to: b = t → S = {s : C(s)}, where now t represents the
reference to a set of services S. Thanks to this approach, a composition may be
reused since its bindings only contain the constraint C modeling the requirements
that a service should satisfy in order to be included in the composition.

Although this enables to reuse a composition, it remains to be defined how
to model such constraints as part of each binding and when to evaluate the
binding so that the actual service to be invoked can be determined based on
the available known services. Depending on the available services and the actual
set of constraints, it may occur that no service can be found as a result of the
binding’s evaluation. This condition will result in a failure of the execution of the
composition. More precisely, issues such as service substitutability [7] and what
is the information that should be provided to identify a service and to determine
its equivalence with others remain open [11]. This is an important problem, as
the services to be bound into a composition must fit within its structure. In
other words, not all possible services may comply with the syntax and semantics
assumed by the composition as well as by the other services which are part of
it.

The problem of modeling these constraints can be addressed at different lev-
els of abstraction. As we have shown in the example of the previous section,
depending on the compostion language, it may be possible to define alternative
communication end points associated with a given service interface. This way
the composition does not contain hard-coded information about specific access
paths to the service’s functionality, but only defines how one should be cho-
sen. Abstracting from the communication details, a larger number of services
could be bound into a reusable composition as long as they have a compatible
semantics [6]. Thus, as part of the binding, it should be possible to constrain
the interface of the referenced service accordingly (e.g., by using ontologies [2],
interface templates [8], service offerings and constraint groups [27], abstract func-
tionalities [17], or formal functional specifications [33]).

3.2 Evaluating Bindings

Once a composition includes flexible bindings that do not uniquely identify the
services to be composed, the composition system must evaluate such binding
(e(b) : b → s ∈ S) so that the evaluation e selects the service s to be in-
voked among all possible ones (S) that satisfy the binding’s constraints. For a
composition, the result of the evaluation of all of its bindings forms a binding
configuration, which describes which services are going to be used for each of its
bindings. This evaluation can be influenced by different factors (Figure 3).

First of all, it may be useful to restrict the set of the services targeted by a
binding. For example, blacklisting is used to guarantee that a set of services will
not be used when dereferencing the binding. This mechanism allows to ensure
that when an existing composition is reused, for example, untrusted providers,
whose services have been added to the blacklist, are excluded from the set of
services that can be bound into it.
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Fig. 3. Evaluating a binding using additional constraints

Conversely, whitelisting is used in a complementary way. Whereas a black-
listed service will not be considered, a binding constrained by a whitelist will
reference only services that are explicitly enumerated in such list. This way,
during the evaluation of the binding it is possible to control that the services
invoked by the composition, e.g., belong to a set of services that should be used
only for testing purposes.

Formally, the set of services that can be invoked I is related to the original
set S defined by the composition’s binding as follows:

I = (S ∩ W ) \ B

where W represents the set of whitelisted services and B the blacklist. Although
it is unlikely that a service belongs to both lists at the same time, with this
definition the blacklist has the higher priority.

In addition to these two policies that control by exclusion or inclusion what
are the services that can be chosen, the choice of the service resulting from the
binding’s evaluation can also be driven by Quality of Service considerations [18].
In this case a trade off is involved, e.g., each service is selected by minimizing
the price (or invocation cost) associated with it, while maximizing the expected
performance (e.g., in terms of the guaranteed response time of the service). This
kind of metadata is typically maintained by service registries (e.g., UDDI [19])
which use a combination of automatic tools and manual validation to ensure its
correctness. However, there is still a lot of work that remains to be done before
issues such as trust establishment can be dealt with in a fully automatic manner.

3.3 Beyond Static and Dynamic Binding

In the previous section we have presented what are some of the options that can
affect the evaluation of a binding, influencing the way a service is chosen to be
included in a composition. However, we have not discussed when this evaluation
may occur. During the life cycle of a composition, there are many opportunities
for taking such decision. Thus, the traditional distinction between static vs.
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dynamic (or early vs. late [10]) binding can be refined by differentiating between
the following evaluation times.

Registration Time. First of all, even before a composition is defined, pre-existing
services are classified using a registry. The way individual services are catalogued
affects how they can be discovered and referenced from a composition [9].

Composition Time. During the definition of a composition, the developer makes
a selection of the services to be invoked. At this stage, it is possible to establish
a fixed binding to the exact service which should be invoked (a form of early
binding). However, this limits the reusability of the composition, which would
have to be modified in order to be used with different services. As an alternative
it is also possible to associate some more limited constraints with each binding.
These constraints will influence the choice of the service, which is delayed to a
later stage.

Compilation Time. Before a composition can be executed, it is usually compiled
from the representation used to model it to a representation optimized for execu-
tion. Assuming that the compiler has access to quality of service metadata about
services, it can use this information to select which services should be bound into
the composition based on different policies [25]. Existing approaching advocating
the automatic selection of services based on whether they fit with the compo-
sition’s structural constraints can also be considered as a form of compile-time
binding [3]. Compilation time is also a good opportunity for checking the consis-
tency of the binding’s constraints with respect to the available services. Although
it is possible that services which satisfy a binding will become available after a
composition has been compiled, it may be useful to warn the developer about
potential problems due to missing services and unsatisfied bindings.

Deployment Time. At this point, the compiled service composition is deployed
in the execution environment. During deployment the composition changes of
hands, going from the control of the developer to the end user which will man-
age its execution. In fact, it is the latest opportunity for the developer of the
composition to customize it by selecting the specific services that should be
bound into it. Thus, as part of the deployment, a developer playing the role of
system integrator may select what are the actual service providers to use for the
particular installation. This way, a reusable composition can be tailored to use
different services each time it is deployed to be executed at a different site taking
into account the characteristics of the local environment.

Startup Time. After deployment, a composition is ready to be executed. Bindings
can also be evaluated at the very beginning of its execution. This way, as part
of the initialization phase of a specific execution it can be decided what are the
services that should be used. More precisely, binding on startup refers to the
possibility of further constraining the services to be invoked in a different way
each time the composition is run.

One interesting application example of this case concerns the testing of the
composition. In this scenario, while a composition is developed, it may not be pos-
sible to invoke production quality services. The services to be composed may not
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yet be available or it may not be possible to use them for testing the composition,
as they belong to a pre-existing system which is already in production. Thus, de-
velopers may find it useful to start a testing run of their composition by binding
some of its services to stubs which will be invoked for testing purposes only.
Invocation Time. This case is what is mostly referred to as dynamic binding
whereby the decision about which services should be used is delayed until the
latest possible time, i.e., when the service is about to be invoked.

Although all of the previously described evaluation times involved a certain
degree of manual intervention, in this case, we argue that is too late to do so. In
practice, the choice of the service during the binding’s evaluation should be fully
automated for two reasons. Asking a user operator to manually bind a service
invocation to a provider each time a service should be invoked would dramatically
affect the execution’s performance. Furthermore, it should not be assumed that
users monitoring the execution of the composition have complete knowledge
about details concerning bindings, which are typically under the purview of the
original developers of the composition.
Failed Invocation Time. A special case of dynamic binding, which we would like
to distinguish, concerns the re-evaluation of a binding in case of a failed service
invocation. The main purpose of this binding on retry mechanism is to enhance
the reliability of the composition by offering the capability of selecting a different
service if the one resulting from the first evaluation of the binding turns out – at
run-time – to be unavailable. More precisely, the default service referenced by the
binding is called as if the binding would have been a static one. If the invocation
succeeds, the execution of the composition continues normally. In case of failures
due, for example, to the temporary unavailability of the default remote service
provider, this mechanism allows to invoke a backup service which – in general –
is selected by re-evaluating the binding like in the case described previously.

4 Flexible Binding with JOpera

After giving a general description about flexible binding and how it can be used,
we proceed to show how these ideas have influenced the design of JOpera’s visual
composition language and the corresponding run-time infrastructure. In this
section we are argue that a composition language may support flexible bindings
without necessarily embodying this notion into a specific language construct.
Instead, we will show that different kinds of bindings can be all specified by
using reflection.

4.1 Modeling Bindings with Reflection

As opposed to introducing a specific language feature to support flexible bind-
ings, in JOpera we have taken a more general approach based on reflection.
Reflection is the ability of a computational system to represent and modify in-
formation about itself [15]. In JOpera, reflection is used to access and modify
metadata about the static structure of a composition, its current state of execu-
tion, as well as to interact with the services provided by the runtime system [21].
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In the first case, the composition language extends the basic service invocation
construct with system parameters (In the visual syntax, they are shaded in gray
and their name is prefixed with SYS). Thus, in addition to input and output
parameters describing the data which is sent and received from a service, the
system parameters allow to control the invocation mechanism and access re-
lated metadata. Furthermore, system services model the interaction between a
composition and the underlying runtime infrastructure.

In the context of this paper, reflection is a mechanism used to expose in the
composition language the binding and registry services provided by the runtime
environment so that they can be controlled from within a composition. More
precisely, we are interested in accessing a registry listing available services and
in controlling the way a binding is evaluated.

One of the advantages of reflection is that it leaves ample freedom to model
the constraints associated with a binding in many different ways. As we are
going to show, with reflection it is possible to distinguish which part of the
composition should be dynamically bound from the policy controlling how such
binding should be evaluated. In the most advanced case, through reflection, a
composition may – for instance – dynamically modify itself to bind to a service
whose interface requires some form of adaptation to fit with the rest of the
composition.

4.2 Bindings in the JOpera Visual Composition Language

In the rest of this section we illustrate with an example how to use reflection
to model different kinds of bindings constraints: fixed bindings, where the con-
straint determines exactly which service should be invoked; communication level
constraints, applied to the communication end points to be used by the services;
structural constraints, defining minimal requirements on the syntax of a service
interface; but also even how to remove all constraints, where a binding is left
completely free so that a composition may call any Web service.

The examples shown in Figures 4 and 5 involves a typical (and reusable)
interaction pattern between a client and a service playing the role of broker. More
precisely, depending on the client’s request, the broker will lookup what are the
available supplier services, forward them the original client request and gather
their corresponding bids, which are finally sent back to the client. Although this
is a simple example, it can be implemented in different ways depending on the
required level of reusability of the composition.

Fixed Binding. This is the simplest form of binding, where a service is statically
bound into a composition. In case of the example shown in Figure 4, this form
of binding is applied to the lookup service. With it, a default RegistryProvider

is assigned to the lookup service invocation. However, with the tools provided
with JOpera it is still possible to replace the registry service, both when the
composition is deployed as well as each time it is started.

Communication Level Constraints. In the case of services, whose interface is
bound to a given provider, it is still possible to dynamically choose the com-
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Fig. 4. The first version of the broker composite service using dynamic binding with

structural constraints

munication port (or end-point, in WSDL terminology) which should be used to
communicate with it. In both versions of the example, the Reply is constrained
to be invoked on the same port that was used to perform the Receive. In other
words, this binding constraint ensures that the answer of the broker composite
service goes back to the client which submitted the original request. In general, a
similar approach can be used to model constraints related to asynchronous mes-
sage exchanges so that a composition can be reused to handle the interaction
between different services that follow the same conversation [5].

Structural Constraints. As a general note, this example follows the principle of
separating the binding of the service invocation from the strategy used to evalu-
ate the binding. More concretely, the evaluation of a binding can be modeled as
the invocation of a lookup operation of a registry service. In this case, reflection
is used to expose the registry to which the appropriate query is sent. In addition
to JOpera’s internal registry, such lookup funcionality can also be provided by
an external registry (e.g., UDDI [19]) or search engine (e.g., Woogle [8]). Thus,
a binding constraint corresponds to a query to a service registry. Depending
on the capabilities of such registry, a query may be based on metadata iden-
tifying the context that should be used to filter the resulting list of services,
as shown in Figure 4. Not shown explicitly in the example, the query sent to
the Lookup service also includes a structural constraint on the interface of the
services to be returned. In particular, the composition specifies that candidate
services to be bound in place of the Forward invocation must comply with its in-
terface, i.e., they must accept at most one parameter (request) or a certain data
type (a floating point number as prescribed by XML schema [31]). Furthermore,
the result of the services must contain at least a parameter named bid of type
BidDocument. Depending on the matching algorithm employed by the particular
lookup service, these structural constraints would allow the composition to be
applied to services returning additional parameters (which are simply discarded
by the composition) and accepting a subset of the required input data parame-
ters, assuming that the service interface defines default values to be used for the
missing input parameters.
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Unconstrained Bindings. In the second version of the example shown in Figure
5, the broker composite service can be reused with minimal constraints on the
content of the messages that are exchanged between client and suppliers. By
using reflection to expose details such as the content of the raw SOAP mes-
sages (the SYS.soapin and SYS.soapout parameters), it is possible to reuse this
composition which only describes the interaction patterns between the services
involved, abstracting from the specific syntax of their interfaces.

More precisely, this broker composite service uses a ContentBasedLookup ser-
vice, which takes the content of a SOAP message to query a registry for com-
patible services that may be able to consume it. As opposed to the previous
example, in order to identify such services, the registry only returns the port

(or end-point) of the service that should be dynamically used by the Forward

service invocation. Furthermore, it is the registry’s responsibility to correlate
the incoming message with the available services which may be able to process
it. In the previous example, the extraction of the metadata to be used to find
matching services was done as part of the receipt of the message.

This example shows that it is possible to use reflection to access the internal
representation of a Web service invocation in order to express a binding which is
left completely free to be evaluated at the latest possible time. Clearly, the ex-
ample is a bit extreme, as all assumptions about the syntax of the data received
and produced by the services have been removed from the composition. Thus,
its expressiveness suffers as it is impossible to verify (neither statically or dy-
namically) that a service complies with the constraints that are associated with
its interface simply because such information is not included in the composition.

However, there may be cases for which this level of flexibility is clearly the
intended behavior. For these cases, the example of Figure 5 shows how to use a
ContentBasedLookup service to dynamically find a service matching with a mes-
sage that is going to be forwarded to it. In a similar way (Figure 6), it is possible
to extend the registry service with mediation functionality so that the message
used to lookup matching services can be transformed to be consumed by the
selected service, in case it cannot be forwarded directly.
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5 Related Work

The need for flexibile bindings was recently brought forward in [13], with the
argument that the requirements of pervasive computing would challenge current
component-based software engineering methodologies. In the context of Web
service composition, this challenge has been addressed in different ways, mostly
by including specific constructs in the corresponding composition languages. In
BPEL [14], as we have exemplified in Section 2, communication end-points can
be reassigned at runtime. Although this gives some limited flexibility, it does not
enhance the reusability of a composition, as all information about the port types
and operations that identify the Web service to be invoked are bound to constant
values. This is not the case in other languages, e.g., XL [12], where flexible
binding is supported by letting the argument of an invoke command represent
an arbitrary XQuery expression, which is evaluated at runtime to choose the
actual service to be invoked.

Reusability of Web service compositions is also the focus of [17], where com-
position “patterns” are modeled in terms of abstract “functionalities”. Following
this approach, the actual Web services come into play at “pattern-specialization
time”, when developers manually select the services which match the function-
alities required by the composition. In the same paper the important trade-off
between the abstraction (i.e., potential reusability) of a pattern and its expres-
siveness is identified. The example of Figure 5 can be interpreted along the same
lines. Given the lack of assumptions made by the composition about its compo-
nents, it is true that the composition can be reused with many services. However,
the expressiveness of the composition suffers, as no constraints are given in order
to choose such services.

6 Conclusion

In this paper we have presented a different perspective on how to reuse Web
service compositions. Not only can compositions of Web services be published
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themselves as a Web service, but it should be possible to apply the same com-
position to coordinate different but compatible services.

To do so, we introduced the notion of flexible binding describing the rela-
tionship between a composition and its components. In order to enable reusable
compositions, a binding should be modeled in terms of constraints. These iden-
tify a set of candidate services from which one will be chosen to be invoked after
the evaluation of the corresponding binding. Such constraints can be expressed
in many different ways: for example, queries over classification meta-data or
quality of service information, requirements about the syntax and semantics of
service interfaces, as well as blacklisting and whitelisting of service providers.
Furthermore a binding can be evaluated at different times during the lifecy-
cle of a composition, going beyond the classic distinction between early and
late binding, we have exemplified several different points in time (registration,
composition, compilation, deployment, startup, invocation and retry on failure)
in which a binding may be fully evaluated or more constraints can be added
to it. Thanks to the flexible binding linking the description of the composi-
tion to the description of the components, which are kept separate, not only
compositions become reusable but their reliability and testability may be im-
proved.

Given the wide range of different approaches to modeling bindings that have
been introduced in existing composition languages and tools, but also consid-
ering the partial support for flexible binding of the state-of-the-art BPEL4WS
language and related tools, in this paper we suggest a different approach based
on reflection. With it, it is not necessary to include explicit constructs in a
composition language to model flexible binding. Instead, flexible binding can be
considered as a particular application of reflection, whereby – as we have shown
with several examples – parts of the underlying composition infrastructure are
exposed from within the composition language. One advantage of this approach
is that it is possible to distinguish how a service is bound into a composition
from the strategy used to evaluate such binding.
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Abstract. Aspects that trigger on a sequence of join points instead
of on a single join point are not explicitly supported in current Aspect-
Oriented approaches. Explicit protocols are however frequently employed
in Component-Based Software Development and business processes and
are as such valid targets for aspect application. In this paper, we pro-
pose an extension of the JAsCo aspect-oriented programming language
for declaratively specifying a protocol fragment. The proposed pointcut
language is equivalent to a finite state machine. Advices can be attached
to every transition specified in the pointcut protocol. Furthermore, the
complement of a protocol can also be used for triggering aspects. The
JAsCo tools support the stateful aspects language and implement it very
efficiently by employing the JAsCo run-time weaver. As a validation of
the approach, we present a case study in the context of reaction busi-
ness rules.

1 Introduction

Aspect-Oriented Programming (AOP) [15] is a recent software programming
paradigm that aims at providing a better separation of concerns. At its root is the
observation that some concerns cannot be cleanly modularized using traditional
abstraction mechanisms such as class hierarchies. These so-called crosscutting
concerns will therefore inevitably appear scattered across different modules of the
system, making them difficult to comprehend and maintain. Typical examples
of such concerns are tracing, synchronization and transaction management.

In order to enable a clean modularization of crosscutting concerns, AOP
techniques such as AspectJ [16] introduce the concept of an aspect, in addition
to the use of regular classes. An aspect defines a set of join points in the target
application where advices alter the regular execution. The set of joint points is
declaratively specified through a pointcut. The aspect logic is then automatically
woven into the target application.

Although AOP research originally focused on a model where aspects are in-
voked on static locations in the compile-time structure of the program, it was
early on argued that the applicability of certain so-called jumping aspects [3]
can only be expressed in terms of dynamic conditions. Most of the current ap-
proaches therefore feature a dynamic join point model, i.e. a model where the
join points are run-time events of the program execution. As such, it becomes
possible to invoke aspect behavior based on run-time types, call-stack context
(e.g. AspectJ’s cflow() pointcut), dynamically evaluated expressions,. . .
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Describing the applicability of aspects in terms of a sequence or protocol of
run-time events however, is generally not supported. With the exception of the
cflow() pointcut, the pointcuts of current mainstream AOP languages cannot
refer to the history of previously matched pointcuts in their specification. In
order to trigger an aspect on a protocol sequence of join points, one is obliged to
program code for maintaining a state regarding the occurrence of relevant join
points, as such implementing the protocol by hand. Not only is this a cumber-
some task, but it is also conceptually undesirable, because it involves mixing the
aspect-applicability control-mechanism with the advice code itself.

Explicit protocols are nevertheless frequently encountered in a wide range of
fields such as Component-Based Software Development [25,10], data communi-
cations [19] and business processes [1]. We therefore believe that protocols are
valid targets for aspect application, and argue that it is desirable to support them
in the pointcut language itself; delegating the actual control-mechanism imple-
mentation to the weaver. This paper proposes an extension of the JAsCo [18]
programming language for stateful aspects that can declaratively specify a pro-
tocol of expected pointcuts.

The paper is structured as follows. Section 2 introduces the JAsCo language
and illustrates the need for explicit support of protocols. The JAsCo extension
for supporting stateful aspects is discussed in section 3. Section 4 focuses on the
implementation details of our approach, while section 5 validates it by presenting
a case study. Finally, we discuss related work in section 6 and end up with
conclusions in section 7.

2 Introduction to JAsCo

The JAsCo [18] AOP approach is an aspect-oriented extension for Java that
allows for a clean modularization of crosscutting concerns. The JAsCo language
stays as close as possible to the original Java syntax and concepts and introduces
two new entities, namely Aspect Beans and Connectors. An aspect bean is an
extended version of a regular Java Bean that allows describing crosscutting con-
cerns independently of concrete component types and APIs. JAsCo connectors
on the other hand are used for deploying one or more reusable aspect beans
within a concrete component context and provide support for describing their
mutual interactions.

A typical example of a crosscutting concern is the run-time checking of timing
contracts [21]. Instead of inserting the logic behind these contracts at various
places within the base code, one can modularize this behavior into a single entity
by employing a JAsCo aspect bean. Figure 1 illustrates the implementation of
the dynamic timer aspect bean.

Typically, an aspect bean contains one or more hook definitions that im-
plement the crosscutting behavior and usually a number of ordinary Java class
members which are shared among all hooks. The DynamicTimer aspect bean of
figure 1 describes a TimeStamp hook (lines 18-29) and the notification system
for its listeners (lines 3-16). The TimeStamp hook is responsible for capturing
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1 class DynamicTimer {
2
3 private Vector<TimeListener> listeners = new Vector<TimeListener>();
4 private long timestampbefore, timestampafter;
5
6 void addTimeListener(TimeListener aListener) {
7 listeners.add(aListener);
8 }
9 void removeTimeListener(TimeListener aListener) {
10 listeners.remove(aListener);
11 }
12 void notifyTimeListeners(Method method, long time) {
13 for (TimeListener listener : listeners) {
14 listener.timeStampTaken(method,time);
15 }
16 }
17
18 hook TimeStamp {
19 TimeStamp(timedmethod(..args)) {
20 execute(timedmethod);
21 }
22 before {
23 timestampbefore = System.currentTimeMillis();
24 }
25 after {
26 timestampafter = System.currentTimeMillis();
27 notifyListeners(thisJointPoint,timestampafter-timestampbefore);
28 }
29 }
30 }

Fig. 1. The JAsCo-aspect for dynamic timing

a timestamp and notifying its listeners whenever some functionality of a com-
ponent is executed. To this end, the TimeStamp hook describes a constructor
(lines 19-21), which specifies in an abstract way when the normal execution of
a method should be interrupted in order to trigger the aspect behavior. Each
constructor receives several abstract method parameters as inputs which are
bound to one or more concrete method signatures whenever the hook is explic-
itly deployed using a connector. The constructor body (line 20) outlines when
the behavior of the hook should be triggered. In case of the TimeStamp hook,
the crosscutting behavior is performed whenever one of the methods bound to
the abstract method parameter timedmethod is executed. The advices of a hook,
namely before, replace, after, after throwing and after returning, are
employed for specifying the various actions a hook needs to perform whenever
its behavior is triggered. The implementation of an advice is able to refer to
the arguments of the abstract method parameters and accesses the currently
visited joinpoint and its reflective information by employing the thisJoinPoint
keyword. In the aspect bean of figure 1, the before advice describes that a times-
tamp should be taken prior to the execution of timedmethod (lines 22-24). The
after advice calculates the time that was required to execute the timedmethod
method and announces it to all registered listeners (lines 25-28)1.

1 Notice that the aspect bean implements a very simplistic timestamping mechanism
in order to keep the example simple and easy to understand. The provided imple-
mentation is not thread-safe and does not work for recursive methods.
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1 connector TimeConnector {
2 DynamicTimer.TimeStamp timer =
3 new DynamicTimer.TimeStamp (void ComponentX.a());
4 timer.before();
5 timer.after();
6 }

Fig. 2. The JAsCo connector for dynamic timing

Abstract and reusable aspect beans are deployed onto a concrete component
context by making use of connectors. Each connector allows to explicitly in-
stantiate and initialize one or more logically related hooks. Figure 2 illustrates a
connector that instantiates the TimeStamp hook of Figure 1 onto the a() method
of the ComponentX component (lines 2-3). As a result, the abstract method pa-
rameter timedmethod of the TimeStamp hook constructor is bound to this given
method. Additionally, it is specified that the before and after advices need
to be executed whenever a join point of the newly instantiated hook timer is
encountered (lines 4-5). To sum up, this connector specifies that whenever the
a() method of the ComponentX component is executed, a timestamp is taken and
the corresponding listeners are notified afterwards in order to verify whether the
a() method satisfies the specified timing contracts.

The DynamicTimer aspect bean is suitable to perform time contract verifica-
tion on a single method. It can however not be reused to verify timing contracts
on a full component protocol. Imagine one wants to check whether a particular
component protocol methodA-methodB-methodC is executed within a predefined
time period. These methods can occur in any sequence, so it does not suffice
to just add a before advice to methodA and an after advice to methodC in
order to time this protocol. One has to explicitly keep track of the protocol.
The ProtocolDynamicTimer aspect bean, illustrated in figure 3, presents an
ad-hoc solution to implement the time contract verification of this particular
protocol. It extends the basic DynamicTimer aspect bean, this way inheriting
the listener notification system. For each step in the protocol, a dedicated hook
is introduced, which implements the associated actions. When methodA of hook
ProtocolMethodA is executed (lines 7-9), a timestamp is taken (line 11) and
the boolean value methodAExecuted associated with that step of the protocol is
set (line 12). This before advice is only performed the very first time protocol
methodA-methodB-methodC is executed. This behavior is enforced through the
isApplicable method (line 14). This additional JAsCo language construct is a
method that allows to describe a run-time condition which ensures that the ad-
vices of an aspect bean are only performed when its body evaluates to true (sim-
ilar to the if pointcut designator in AspectJ). By employing the isApplicable
method, the advices associated with hook ProtocolMethodCwill not be executed
as long as the boolean value associated with ProtocolMethodB is not set to true
(line 36). As such, the three hooks defined within the ProtocolDynamicTimer
aspect bean ensure that the associated listeners are only notified when a full
methodA-methodB-methodC protocol is encountered.

Although the aspect bean illustrated in Figure 3 can be used to verify whether
the particular component protocol is performed within a specified time period,
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1 class ProtocolDynamicTimer extends DynamicTimer {
2
3 boolean methodaexecuted, methodbexecuted = false;
4
5 hook ProtocolMethodA {
7 ProtocolMethodA(methodA(..args)) {
8 execute(methodA);
9 }
10 before {
11 timestampbefore = System.currentTimeMillis();
12 methodaexecuted = true;
13 }
14 isApplicable() { return !methodaexecuted; }
15 }
16
17 hook ProtocolMethodB {
18 ProtocolMethodB(methodB(..args)) {
19 execute(methodB);
20 }
21 before {
22 methodbexecuted = true;
23 }
24 isApplicable() { return methodaexecuted; }
25 }
26
27 hook ProtocolMethodC {
28 ProtocolMethodC(methodC(..args)) {
29 execute(methodC);
30 }
31 after {
32 timestampafter = System.currentTimeMillis();
33 notifyListeners(method,timestampafter-timestampbefore);
34 methodaexecuted = false; methodbexecuted = false;
35 }
36 isApplicable() { return methodbexecuted; }
37 }
38
39 }

Fig. 3. The JAsCo-aspect for dynamic timing of a component protocol

it requires to explicitly capture each possible state of the protocol in a separate
hook. As such, one is obliged to describe and implement the full protocol by hand,
as a protocol sequence of join points is not explicitly supported using regular
JAsCo and other state-of-the-art aspect-oriented approaches. This also involves
tangling the description of the applicability of the aspect with its behavior. In the
next section, an extension to the JAsCo language is proposed, which allows to
declaratively specify a protocol of expected pointcuts. Advices can be attached
to each step of the pointcut protocol, allowing to describe the time contract
verification of a component protocol in a more declarative way.

3 Stateful Aspects Language

Mainstream aspect-oriented approaches rarely support protocol history condi-
tions. In many cases, it is only possible to refer to previous join points when
they still have an activation record on the stack (i.e. using the cflow() key-
word in AspectJ). In order solve this limitation, Douence et al. [6,7] propose
a formal model for aspects with general protocol based triggering conditions,
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named stateful aspects. In this section, we illustrate how the JAsCo language is
extended with stateful pointcut expressions, based on this formal model.

1 class ProtocolDynamicTimer extends DynamicTimer {
2
3 hook StatefulProtocolTimer {
4
5 long timestamp;
6
7 StatefulProtocolTimer(methodA(..args),methodB(..args),methodC(..args)) {
8 ATrans: execute(methodA) > BTrans;
9 BTrans: execute(methodB) > CTrans;
10 CTrans: execute(methodC) > ATrans;
11 }
12
13 before ATrans() {
14 timestamp=System.currentTimeMillis();
15 }
16 after CTrans() {
17 long resultingtime = System.currentTimeMillis();
18 notifyListeners(calledmethod,resultingtime-timestamp);
19 }
20
21 }
22 }

Fig. 4. The JAsCo stateful aspect for dynamically checking a timing contract of a
component protocol

In figure 3, an ad-hoc solution was presented for implementing time contract
verification of a protocol methodA-methodB-methodC. Figure 4 illustrates how
the same protocol can be declaratively described by making use of the JAsCo
stateful aspect language. The constructor of the hook StatefulProtocolTimer
(line 7-11) describes a protocol-based pointcut expression. Every line in the con-
structor defines a new transition within the protocol. Each transition is labeled
with a name (e.g. ATrans), defines a JAsCo compatible pointcut expression (e.g.
execute(methodA)) and specifies one or more destination transitions that are
matched after the current transition is fired. A transition fires when its pointcut
expression evaluates to true. For example, the ATrans transition only fires when-
ever the concrete method(s) bound to the abstract method parameter methodA
are executed. In that case, transition BTrans is activated and will be evaluated
for the subsequent join points encountered in the application.

A stateful aspect always starts by evaluating the first defined transition.
As a result, a protocol methodA-methodB-methodC is described. In between the
fired transitions, other join points can also be encountered. As such, a sequence
of events methodA-methodX-methodC-methodB-methodC is also a valid instance
for the defined protocol and will trigger the associated transitions. Notice that
the JAsCo stateful aspect pointcut does not have to specify the full protocol of
the application; a protocol fragment is sufficient.

On every transition defined in the stateful constructor, advices can be at-
tached which are executed whenever the transition is fired. For example, the
before ATrans advice (line 13-15) is only triggered whenever the transition
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ATrans is fired. In other words, the advice is executed whenever the concrete
method(s) bound to the abstract method parameter methodA are executed in
that state of the stateful aspect. To sum up, the StatefulProtocolTimer hook
will take a timestamp before the protocol methodA-methodB-methodC is exe-
cuted and will notify all interested listeners after the full protocol is performed.

3.1 Advanced Language Features

In addition to attaching advices on each transition separately, it is also possi-
ble to describe global advices that are triggered for all fired transitions. In this
case, the advice is specified as usual, but the transition label is omitted. It is
also possible to attach a specific isApplicable method to a particular transi-
tion in the protocol. As such, the transition will only be fired when both the
pointcut expression and the isApplicable condition evaluate to true. Likewise
to advices, a global isApplicable condition can be specified which is applied
to all transitions. In that case, transitions are only fired when they satisfy their
pointcut expression and both the global and local isApplicable conditions. The
following code fragment shows both a global and local isApplicable condition.
1 isApplicable() { //global condition for all transitions
2 // returns true if advices should be executed
3 }
4 isApplicable XTrans() { //local condition only relevant for the transition XTrans
5 // returns true if advices should be executed for the XTrans transition
6 }

The JAsCo stateful aspects constructor can also specify multiple destination
transitions for a given transition. The syntax is illustrated in the code fragment
below. After firing the XTrans transition, both the YTrans and QTrans transi-
tions are evaluated for subsequent encountered join points (line 2). Note that the
destination transitions are evaluated in the sequence defined in the destination
expression. As such, when both the YTrans and QTrans transitions are applica-
ble for a given join point, only the YTrans transition will be fired and only the
YTrans destination transitions will be evaluated for subsequent encountered join
points. This allows to keep the protocol deterministic and efficient to execute. It
is also possible to omit a destination transition for a certain transition. In that
case, when the transition fires, no more transitions need to be evaluated and the
aspect dies. This concept is illustrated by the QTrans transition (line 3). Also
notice that this transition describes a more involved pointcut designator using
the cflow keyword.

In case the stateful aspect requires to start by evaluating more than one
transition, the start keyword can be employed. This keyword is followed by a
list of starting transitions for matching join points when the aspect is deployed.
Multiple start transitions are specified similarly to multiple destination transi-
tions, by using || as delimiters. When no start transition is specified, the first
defined transition is used as the starting one.
1 start > XTrans || QTrans; //starting with two transitions
2 XTrans: execute(methodA) > YTrans || QTrans; //two destination transitions
3 QTrans: execute(methodB) && !cflow(methodC); //no destination transition
4 YTrans: execute(methodC) > YTrans;
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The syntax proposed in the previous paragraphs provides a way for specifying
powerful protocols but might be tedious in case of simple protocols. Therefore
JAsCo also supports a simpler syntax for protocols that do not require multiple
destination transitions for a given transition. The following code fragment shows
a constructor that is equivalent to the constructor of figure 4. Labeling transitions
is still possible in order to be able to attach local advices to specific transitions.
Notice that the label start automatically refers to the first transition.

1 StatefulProtocolTimer(methodA(..args),methodB(..args),methodC(..args)) {
2 ATrans: execute(methodA) > execute(methodB) > CTrans: execute(methodC) > start;
3 }

Normally, aspects are instantiated explicitly in a connector and this instance
is used for all encountered join points. In case of protocol checking stateful
aspects, it is sometimes desirable to have a unique instance of the stateful as-
pect for every execution thread in the application as every thread is typically
related to a different interaction. JAsCo allows automatically instantiating mul-
tiple instances for a single hook instantiation expression by using specialized
keywords in front of the instantiation expression in the connector. The following
keywords are supported: perobject, perclass, permethod, perall, percflow
and perthread. Thus, in order to obtain a unique aspect instance per execution
thread, the perthread keyword can be used. The JAsCo run-time system will
automatically manage the aspect instances for every thread. This is illustrated
by the following code fragment:

1 static connector PerThreadConnector {
2 perthread ProtocolDynamicTimer.StatefulProtocolTimer timer =
3 new ProtocolDynamicTimer.StatefulProtocolTimer(void ComponentX.a(),
4 void ComponentX.b(), void ComponentX.c());
5 }

3.2 Protocol Complement

The JAsCo stateful aspects language currently supports triggering aspects on
a protocol fragment. However, the opposite, namely triggering aspects on ev-
ery join point besides the defined protocol, can also be useful in many cases.
For example, Farias et al. [10] identify that in the context of checking security
policies of Enterprise Java Beans (EJBs), explicit protocols are necessary. The
current EJB specification only allows to describe that particular methods need
to adhere to a given security policy. It is however often required that only the
protocol methodA-methodB-methodC on a given component X is allowed for cer-
tain users. Farias et al. propose a formal model to specify the allowed protocol
of a component, based on finite state machines [12]. As already identified in lit-
erature [23], security concerns are typical examples of crosscutting concerns and
thus good targets for AOP.

JAsCo supports triggering aspects on the opposite of a protocol using the
complement keyword. Figure 5 illustrates a contract checking aspect that makes
sure that all invocations on a certain component, besides the defined proto-
col, are blocked. The stateful aspect defines the same protocol as the one in
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1 class ProtocolChecker {
2
3 hook StatefulProtocolCheck {
4
5 StatefulProtocolCheck(methodA(..arg),methodB(..arg),methodC(..arg),methodsContext(..arg)) {
6 complement[execute(methodsContext)]:
7 ATrans: execute(methodA) > BTrans;
8 BTrans: execute(methodB) > CTrans;
9 CTrans: execute(methodC) > ATrans;
10 }
11
12 replace complement() {
13 throw new SecurityException(
14 "This protocol on component"+thisJoinPoint.getClassName()+" is not allowed!");
15 }
16 }
17 }

Fig. 5. The JAsCo stateful aspect for checking a security contract

figure 4, namely a protocol methodA-methodB-methodC. The additional comple-
ment definition states that the aspect is interested in the complement of the
protocol. The complement expression is also able to specify a JAsCo compat-
ible pointcut designator in order to limit the complement to a certain set of
join points. This is often required in the context of checking security contracts
of a component. It is not very useful to trigger the aspect on every possible
protocol fragment outside the given protocol, because this would also include
methods on other components. Therefore, JAsCo allows to limit the set of join
points to which the complement of the protocol is computed. For example, the
StatefulProtocolCheck, illustrated in figure 5, defines that the complement is
only triggered when methods bound to methodsContext (line 5) are executed
and not exactly following the defined protocol. Advices can be attached to the
complement of a protocol by specifying the complement keyword after the advice
name. In this case, a replace complement advice is specified (lines 12-15) that
replaces the original behavior and throws a security exception instead. More-
over, it is still possible to attach advices to transitions in the allowed protocol
by using the syntax introduced before.

Figure 6 illustrates the connector that deploys the security protocol checking
aspect bean onto the a-b-c protocol of the componentX component (lines 3-4).
The methodsContext abstract method parameter of the aspect bean is bound
to all methods of componentX. As a result, whenever a method is executed
on componentX that falls outside the defined protocol a-b-c, like for example
a-b-d-c, a security exception is thrown.

1 static connector SecurityConnector {
2
3 ProtocolChecker.StatefulProtocolCheck checker = new ProtocolChecker.StatefulProtocolCheck(
4 void componentX.a(), void componentX.b(), void componentX.c(), void componentX.*());
5 }

Fig. 6. Connector for deploying the security protocol contract checking aspect
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4 Implementation Discussion

The JAsCo stateful aspects language is equivalent to a Deterministic Final Au-
tomaton (DFA) [12] because every expression defines one DFA transition, two
DFA states and possibly several connection DFA transitions for the destinations.
Therefore, the JAsCo compiler compiles a stateful aspect constructor to a DFA
that is interpreted at run-time. Every transition of a DFA contains a representa-
tion of the pointcut definition and possibly an isApplicable condition. When
a join point is encountered, the outgoing transitions of the current state are
evaluated with the given join point and when a match is encountered, the state
machine moves to the destination state. When this event occurs, all associated
advices are executed. Because of this implementation strategy, a stateful aspect
can be executed very efficiently. It suffices to check only the transitions of the
current state, as JAsCo stateful aspect protocols are regular and can be inter-
preted by a regular DFA. When non-regular protocols are allowed, a history of
all relevant encountered events should be maintained, which is very expensive.

A naive approach for integrating the stateful aspect would be weaving it
at all possible join points defined within the protocol. However, this induces
a performance overhead at all these join points, while the stateful aspect is
only interested in a limited set of join points corresponding to the subsequent
transitions that are to be evaluated. JAsCo is a dynamic AOP language and
features a genuine run-time weaver that is able to weave and unweave aspects
at run-time [20]. The run-time performance of JAsCo is even able to compete
with AspectJ’s, which is a statically woven AOP approach [13]. Because of this
run-time weaver, the JAsCo stateful aspect language induces only a minimal
performance overhead. The JAsCo run-time weaver only weaves the stateful
aspect at those join points where the aspect is currently interested in. When a
transition is fired, the weaver unweaves the aspect at the join points associated
with the current transition and weaves it back in at the join points relevant for
the subsequent transitions. As such, a real jumping aspect is realized. Notice
that when the aspect dies because no subsequent transitions are defined, it is
completely unwoven. As a result, no performance overhead for the aspect is
endured any longer.

The weaving process itself does however also require a significant overhead.
Therefore, when a given protocol is encountered many times in a short time
interval, it might be more efficient to weave the aspect at all possible join points
of the protocol instead of weaving and unweaving it on-the-fly. This can be
configured in JAsCo by using the novel Java 1.5 annotations (meta-data). When
the @jasco.runtime.aspect.WeaveAll annotation is supplied to the hook, as
illustrated by the code fragment below, the run-time weaver weaves the aspect at
all join points and never unweaves it unless the aspect itself is manually removed
or dies.
1 @jasco.runtime.aspect.WeaveAll
2 hook StatefulHook { ...

A proof-of-concept implementation for the JAsCo stateful aspect extension
is made available through the regular JAsCo distribution [14].
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5 Case Study

To illustrate the usefulness of stateful aspects, an example of reaction business
rules is presented. Business rules are volatile and tend to change faster than the
core application functionality. Therefore, and due to the crosscutting nature of
their integration with the core application [17,5,11], it is recommended to keep
them decoupled from the rest of the application. In previous work [4], aspects
were successfully employed for integrating business rules that are triggered at
single events that denote dynamic points within the core application. In this
case study however, business rules that depend on complex behavioral states of
the system are considered.

The presented case study is based on an application used in the context of the
ADAPSIS2 (Adaptation of IP Services based on Profiles) project [24]. One of the
research topics of this project is the development of an approach that allows to
mine end-user profiles, building on existing component-based applications. The
main problem is that these applications are generally not designed to allow end-
user profile mining. As a concrete research artifact, an e-commerce application
is developed that allows customers to buy different products online, such as
books, music and movies. This application is an adaptive web application as it
incorporates data mining strategies in order to analyze the purchasing behavior
of the customers. The Data4s data mining engine is employed to react according
to the customer’s behavior in an intelligent way. AOP is used to capture all
relevant data for the data mining engine and influencing the behavior of the
original application depending on the mined information and the user profile. For
gathering application events, it is often required to keep track of the history of the
user’s interactions with the web application. When regular aspects are employed,
this historical information results hard-coded in the aspects themselves, making
them difficult to comprehend and evolve. With the advent of JAsCo stateful
aspects, this problem can be tackled in a more declarative way.

Consider for instance a set of business rules that define a categorization of
the customers, depending on their susceptibility to promotions. These rules allow
understanding the interests of the different customers to better accommodate to
their needs and goals. Promotions can be viewed and purchased from different
product-specific web pages as well as from the home page of the shop. Normally,
different customers react to the advertisement of promotions in different ways.
Some customers for instance tend to browse to the promotions as a first reaction
when accessing the shop’s home page. Others might prefer to browse the available
books, music or videos first and later on decide whether to choose a promotion.
The following business rules determine the different degrees of sensitivity to
promotions:

1. High promotion-prone customer : The customer browses the promotions as
his/her first action

2 ADAPSIS is partly funded by the IWT, Flanders (Belgium), partners are the Uni-
versity of Brussels (VUB), Alcatel Belgium and Data4s Future Technologies.
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1 class MediumPromotionProneCustomerAspect {
2
3 hook MediumPromotionProneCustomerHook {
4
5 MediumPromotionProneCustomerHook(
6 browseProducts(Category category),accessPromotions(CustomerID customer)) {
7 start > browseProdTrans;
8 browseProdTrans : execute(browseProducts) > browseProdTrans || browsePromTrans;
9 browsePromTrans : execute(accessPromotions);
10 }
11
12 after browsePromTrans () {
13 CustomerManager.classifyCustomer(customer, MediumPromotionProneCustomer);
14 }
15 }

Fig. 7. Medium promotion-prone customer business rule

2. Medium promotion-prone customer : The customer browses first either the
books, the music or the videos and only then he/she accesses the promotions

3. Low promotion-prone customer : The customer first browses the books and
the music and the videos and then he/she accesses the promotions

4. Promotion-insensitive customer : The customer never follows the promotions
links

In this example a single action, such as the browsing of the promotions, can-
not be analyzed in isolation. In order to classify a customer in different categories,
it is required to know which actions the customer already performed. In order to
keep track of the customer history and trigger the customer classification, state-
ful aspects are employed. Figure 7 illustrates a stateful aspect implementing the
medium promotion-prone customer business rule. In this example, the customer
starts by browsing a catalog of products (line 8) and checks out the promo-
tions afterwards (line 9). Figure 8 illustrates how the medium promotion-prone
customer business rule is deployed within the e-commerce application.

Stateful aspects can also be employed to implement more complex patterns
of behavior such as the following action sequence which could be performed by
a customer:

1 getPromotions > browseBooks > browseCDs > browseVideos > getPromotions

Without stateful aspects, it would not be straightforward to detect this path
of execution. We can imagine making the distinction between the place in the sys-
tem where the promotions and the products are retrieved. However, this change
would not be sufficient to distinguish the contextual difference between the first

1 static connector MediumPromotionProneCustomerConnector{
2
3 MediumPromotionProneCustomerHook hook1 =
4 new MediumPromotionProneCustomerHook(
5 * ProductManager.browse*(*), * PromotionManager.getPromotions(CustomerID));
6
7 }

Fig. 8. Connector for deploying the medium promotion-prone customer business rule
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and second invocation of the getPromotions and would imply tangling of code to
manually keep track of the states. Stateful aspects avoid this problem, allowing
the expression of complex contextual scenarios in a natural and non-invasive way.

6 Related Work

Douence et al. propose a model for supporting stateful aspects [6,7,8] as a part
of their formal aspect model. The advantage of this formal model is that it
allows to automatically deduce possible malicious interactions between aspects.
Furthermore, the model supports composition of stateful aspects using well-
defined composition operators. A proof of concept implementation of this model
is also available [9]. This implementation is however based on static program
transformations and as such it requires to advice all possible join points defined
within the protocol. The JAsCo implementation improves on this because only
a subset of the join points are actually advised.

Walker et al. introduce declarative event patterns (DEPs) [22] as a means to
specify protocols as patterns of multiple events. They augment AspectJ aspects
with special DEP constructs (called tracecuts) that can be advised similarly to
pointcuts. Their approach is based on context-free grammars, and involves a
transformation of the DEP constructs into standard AspectJ aspects containing
an event parser, similar to the transformation realized by parser generators in
compiler technology. While DEPs can recognize properly nested events and thus
possess an even higher degree of declarative expressibility than the JAsCo ap-
proach, they only provide for the ability to attach advice code to entire protocols.
Separate transitions of the protocol cannot be advised, and several overlapping
protocols (realized through several independent event parsers) would have to be
employed to mimic this possibility of JAsCo. Furthermore, the fact that DEPs
lose their identity in a preprocessing step that reduces them to standard as-
pects, rules out the possibility for optimizations by a weaver that analyzes the
feasible transitions of the protocol. Also, there are some unresolved issues in
the current implementation of DEPs regarding optimal conservation of relevant
execution traces.

7 Conclusions

In this paper we introduce an extension of the JAsCo language that enables
triggering aspects on a sequence of join points. The JAsCo stateful aspects ex-
tension allows to declaratively specify a regular protocol. Advices can be attached
to each transition in the protocol. JAsCo also allows to trigger aspects on the
complement of a protocol given a set of join points. Because of the declara-
tive specification, the stateful aspect is easier to understand and evolve than a
manual implementation using singular join points. In addition, the declarative
specification allows to optimize the execution of the stateful aspect. By employ-
ing dynamic AOP, the stateful aspect behavior is only woven at those join points
the aspect is currently interested in.
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A limitation of the current approach is that JAsCo stateful aspects can only
specify regular protocols. Protocols that require a non-regular language (like for
example n times A; B; n times A, where n can be a different number in every
occurance of the protocol), cannot be represented. The advantage of keeping the
protocols regular is that they can be efficiently evaluated using a DFA. A naive
implementation of a non-regular protocol would require to keep the complete
history of all encountered join points in memory, which is not very practical. In
literature, several domain-specific optimization techniques for interpreting non-
regular languages have been proposed [2]. Extending the JAsCo stateful aspects
language to non-regular protocols while still allowing an efficient implementation
is subject for future work.
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9. R. Douence and M. Südholt. A model and a tool for event-based aspect-oriented
programming (EAOP). Technical Report 02/11/INFO, Ecole des Mines de Nantes,
2002.
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Abstract. Prior to being composed to a software system, generic com-
ponents must be configured according to the requirements imposed by
the user and the reuse context. Practice shows that most of these con-
figuration operations are invasive in nature. Thus, modular composition
alone cannot solve this problem. This paper presents a methodology for
invasive configuration of software systems from generic components. Our
approach extends type genericity by allowing in addition to type refer-
ence fragments general program fragments and metaoperators as con-
figuration parameters. We will introduce our software adaptation tool
called Inject/J together with the concepts behind it. The tool serves as
an infrastructure for the implementation of our approach. We will also
present a case study with some preliminary experiences of the practical
application of our approach.

1 Introduction

Every mature engineering discipline takes advantage of reusing existing compo-
nents. Depending upon the engineering discipline, reusable components can be
found on different levels of abstraction, e.g. starting from nuts and bolts up to
prefabricated building blocks.

In this paper we present our ongoing work on a methodology for feature-
driven, invasive configuration of software systems from generic components. In
order to be reusable in various contexts, a component has to be generic with re-
spect to certain supported features. Configuring a generic component according
to the requirements imposed by the user and the reuse context is the process
of binding these features in an appropriate way. In this paper we focus on the
technical part of this methodology, which is the invasive configuration of generic
components, although the process of mapping features to specifications of con-
crete configurations of generic components is also part of our methodology. Nev-
ertheless, the case study presented in section 4 gives a first impression on how
this part works in our methodology.

Non-invasive configuration fails, because the necessary adaptations required
during the configuration of a generic component are usually not local with respect
to the used decomposition technique. This is due to the fact that a feature which
is to be bound usually cannot be found as a module in the implementation
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of a reusable component, but in the form of distributed program fragments.
This is also true if a decomposition technique other than the object-oriented
decomposition is used. This is a direct consequence of the so-called ”tyranny”
of the primary decomposition [8].

When configuring a generic component, an end-user is interested in the con-
crete result, and not in how the configuration itself is implemented. Therefore,
the specification of a configuration should be declarative and oriented at the ap-
plication level. The configuration itself should have well defined semantics. This
means that a contract guaranteed by the component cannot be broken through
an unappropriate configuration of this component. The resulting code should be
efficient, i.e. it should be comparable with a manual implementation. Particu-
lary, the resulting component should not contain any unnecessary indirections
introduced while configuring the component.

The remainder of this paper is organized as follows. In the next section, we
introduce our approach for configuration of generic components by specifying the
model and the concepts it is based on. In section 3, we introduce our software
adaptation tool Inject/J, which serves as a technical infrastructure for invasive
configuration of generic components. We also sketch which extensions are nec-
essary to fully support our approach. Preliminary experiences of the practical
application of our approach are presented in section 4. We give a short overview
of related work in section 5 before we conclude in section 6.

2 Approach

The starting point of our approach is type genericity, which is a very basic
invasive technique. Type genericity fulfils all the properties postulated in the last
section. From a user’s point of view, configuration of a generic type is declarative
and it has well defined semantics. Unfortunately, it is limited to types, or more
exactly, to type reference fragments.

Our approach extends type genericity by not only allowing type reference
fragments as configuration parameters, but arbitrary program fragments.

2.1 Generic Program Fragments as Units of Composition

In our model, a software system is the result of a hierarchical composition of
different program fragments. From this point of view, configuring a software
system means to select and compose program fragments in such a way that
the user’s requirements are fulfilled. Hierarchical composition is performed at
so-called variation points, i.e. program fragments of a finer granularity can be
composed at these points. In order to be composable, a program fragment must
have a composition interface together with a contract specifying the composition
conditions. In practice, we do not want to specify program fragments that are
particular to one specific configuration, but fragments that can be reused in
different configurations. This leads us to the notion of generic fragment types.
In our model, a generic fragment type has the following properties:
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– A name which uniquely identifies this generic fragment type.
– A super type denoting that this generic fragment type is a specialization

of the stated fragment type. Through this subtype relation together with
the name, certain semantics are associated with this new generic fragment
type. The top-level types are given by the language metamodel, e.g. class
fragments, method fragments etc. For example, a specialization of a general
method fragment could be a method fragment computing the maximum of
two numbers, thus it has extended semantics.

– A configuration interface which specifies the possible parameterization of
the generic fragment type, i.e. which other fragments can be plugged into
instances of this generic fragment type. The configuration interface consists
of two parts:

1. A list of typed formal configuration parameters: They specify which types
of fragments can be plugged into instances of this generic fragment type
as well as which fragments are provided by this generic fragment type for
parameterization of the fragments to be plugged in. Thus, configuration
parameters denote a required and a provided interface.

2. Additional construction constraints which may influence allowed types of
formal parameters during (partial) configuration. With these additional
constraints, fragment-global constraints can be enforced which cannot
be expressed through typed configuration parameters, e.g. dependencies
between configuration parameters.

– A construction plan that describes how fragments have to be composed based
upon given constraints, i.e. how to bind fragments given at the configura-
tion interface to the variation points of this generic fragment type and, in
the case of the provided interface, how to bind provided fragments to the
required interface of the plugged in fragments. This means that the fragment
has control over the composition of its subordinate fragments, thus it can
guarantee a correct fragment composition to the extent that is specified in
the construction plan.

– A generic implementation using declared variation points. This generic im-
plementation can be seen as a fragment template which can be instantiated
through configuration.

Generic fragment types can have any arbitrary level of abstraction, starting
from simple expressions or statements up to method fragments, class fragments
or the whole system. If a generic fragment type has no configuration parameters,
it is referred to as a static fragment type.

In our model, a generic component can be regarded as a generic fragment
type of a reasonable granularity, since one associates a certain size with the term
”component”. Examples for a reasonable granularity are method fragments, class
fragments or even more coarse grained fragments. Since our model does not
distinguish between the different fragment granularities, we will use the term
generic fragment type in the remainder of this paper.
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2.2 Typed Metaoperators

As stated in section 1, not all features can be implemented by plugging in one
program fragment at one predefined variation point. Such features must be im-
plemented by injecting or even removing similar fragments at various variation
points. From a programmer’s and a maintainability point of view, explicitly
declaring all these variation points together with a fragment for each variation
point is inconvenient and often not manageable. This is why we introduce the
notion of typed metaoperators.

A typed metaoperator consists of a fragment template together with a meta-
program specifying how and where these fragment templates have to be instanti-
ated and injected into the resulting code through transformation or generation.
Variation points can be explicitly declared or computed based on program ana-
lysis results. The latter are also available during instantiation of the fragment
template, since this may require context information.

Like generic fragment types, metaoperators have a name and a super type.
Thus, a metaoperator defines a new type describing its semantics, i.e. its effects
on the program. In particular, a metaoperator can be a subtype of any arbitrary
generic fragment type. Being of such a type, together with explicitly specified
pre- and postconditions, the metaoperator guarantees that its application has
the same effect as composing an instance of the super type or even results in a
fragment of the super type in the case of generation. For example, a metaopera-
tor inlining a method fragment has the same effects on the program as composing
the corresponding method fragment with a class fragment, provided that certain
preconditions hold. As a consequence, metaoperators can be used as parameters
for the instantiation of generic fragment types. Given that the type of a meta-
operator is compatible to the type of one of the configuration parameters, the
metaoperator can be used to bind this configuration parameter.

3 Tool Support

From a technical perspective, our approach is based on Inject/J1 [4] [5], a tool
for invasive software adaptation2.

In this section, we first give a brief overview on the concepts of Inject/J be-
fore we introduce the Inject/J software transformation language. In the follow-
ing we refer to the program which is to be composed and configured as the object
program, and the programming language, this program is written in, as the object
language.

3.1 Inject/J Model

Inject/J models object programs as collections of program fragments. These
fragments are internally represented in the form of an attributed tree, the adap-
1 http://sf.net/projects/injectj
2 Inject/J itself uses the software transformation engine Recoder,

http://sf.net/projects/recoder
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tation model. Fragments represent subtrees within this model. The adaptation
model captures the syntactical structure and the static semantics of these pro-
gram fragments and is constructed using standard compiler techniques.

Program fragments are composed at certain designated points in the adapta-
tion model which we call weaving points. These weaving points are the technical
equivalent to our variation points. As not every syntactical element can be added
to, or removed from the program at any place, weaving points can only be bound
to fragments of a matching type, i.e. fragments that do not break the syntax of
the object language in the given context. Weaving points compare to join points
known from AspectJ or Assmann’s hooks [1].

We distinguish both implicit and declared weaving points. Implicit weaving
points are defined by the syntax of the object language: Every place, where
a fragment of a certain type can be added to the program or removed from
it, is an implicit weaving point. Declared weaving points are implicit weaving
points marked with an additional semantical annotation. The following listing
illustrates how this works for Java.
public class MyClass {

public /** annotation @name SyncStrategy
@type Modifier[" synchronized"]
@optional true*/

void criticalMethod( Object o){. . .}

public Object nonCriticalMethod( int i){. . .}
. . .

}

The adaptation model is input to the composition program. The composi-
tion program specifies algorithmically, how a given object program in an object
language (e.g. a Java-program) will be modified by introducing new program
fragments or by removing unnecessary program fragments from the object pro-
gram.

A composition program typically consists of two tasks. First, it navigates
through the adaptation model in order to identify weaving points to introduce
new fragments or places where to remove unnecessary program fragments. Sec-
ond, the actual fragment operations are performed.

To navigate through the adaptation model and to identify program frag-
ments, model queries can be used. Model queries are side-effect-free predicates
and functions over the adaptation model. They provide structural information,
type- and cross-reference information as well as information about qualitative
and quantitative properties of program fragments, such as software metrics.

For introducing or removing program fragments, the following operations are
defined:

– insert(<weaving point>, <fragment>): Inserts a new program fragment
at the specified weaving point. This corresponds to adding a new subtree to
the model.

– oldFragment = replace(<weaving point>, <newFragment>): Replaces
an existing fragment, currently bound to a weaving point, with another frag-
ment. If newFragment = ε, then the existing fragment is simply removed
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from the program. This corresponds to replacing or removing an existing
subtree in the model.

These two basic operations are complete as they allow for arbitrary tree
modifications. They work, however, solely on a syntactical level. Using them
as-is would add considerable complexity to the task of specifying a composition
program. Thus, we introduced the concept of semantic transformations.

Semantic transformations group semantically connected fragment operations
and hide them behind an interface. Semantic transformations guarantee at least
correctness with respect to the static syntax and semantics of the object lan-
guage. Additional fragment operations, such as correcting the syntactical struc-
ture when introducing a fragment at a certain weaving point (flattening) or
correcting applied occurrences of an identifier when replacing its defining occur-
rence, are performed automatically

With the help of pre- and post-conditions, additional effects (e.g. semantic
effects) can be enforced. Pre- and post-conditions are specified with first-order
logic by means of model queries. Beyond that, semantic transformations are
atomic: they succeed completely and fulfill their contract or they do not generate
any effects. That is, if the pre-condition of a semantic transformation is not
fulfilled, the operation is not executed. If the post-condition of the semantic
transformation is not fulfilled, the entire transformation is rolled back.

3.2 Inject/J Transformation Language

Composition programs are specified with the help of the Inject/J transforma-
tion language. This language is a dynamically typed scripting language which
combines declarative elements, e.g. for identifying weaving points, with impera-
tive elements, e.g. for performing the actual transformation.

The following listing shows a very simple example of an Inject/J script,
which introduces a new fragment at method entry by instantiating a generic
implementation as defined in section 2:
script HelloWorld() {
foreach c in classes do {
foreach m in c.methods do {

m.afterEntry(
${ System.out.println(" In method <c.name >.<m.signature >!");}$

);
}

}
}

The generic implementation is instantiated by binding variation points within
the fragment (parts of a string literal in this example) to appropriate syntactical
elements provided by the script.

For navigation through the adaption model, Inject/J provides a number
of mechanisms such as name patterns to match named fragments (e.g. class
fragments) by regular patterns over names, or detection patterns, which are
arbitrary graph patterns over the program model. These different mechanisms
can also be combined. The following listing gives a brief overview:
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script HelloWorld {
// detection pattern
pattern MyPattern(pname ):(c) {
vars m;
private vars meths;
init {

// use a name pattern to match methods with certain parameter types
meths = method ( ’**.m(java.util.ArrayList , ** ’));

}
conditions {
(c.package == pname), (m in c.methods ), (m in meths), (m.mccabe > 10);

}
}

. . .
// search each occurrence of detection pattern MyPattern in the
// program model
foreach p in MyPattern(’’mypckg ’’)(classes ) do {

p.m.afterEntry(${
System.out.println(" Method <p.m.signature > in class <p.c.name >");

}$);
}

In the above example, only complex methods (McCabe complexity greater
than 10) which are defined in classes of a certain package (’’mypckg’’) and take
java.util.ArrayList as first parameter are matched.

Inject/J comes with an extensive library of semantic transformations which
range from refactorings to operations known from AOP.

Additionally, Inject/J provides a number of built-in types for each type of
fragments as well as a number of general-purpose data types (e.g. strings and
lists). The language has quantors (i.e., foreach and exists) and directly sup-
ports first-order predicate logic, e.g. for contracts of semantic transformations.
Further features include code blocks3, transactions for isolating transformation
sequences with uncertain result, e.g. in case of user interaction, as well as a
library concept. For a more detailed description of the Inject/J language fea-
tures, we refer you to [4] or the Inject/J language specification4.

3.3 Necessary Extensions to Inject/J

To support our approach presented in section 2, the language and the tool In-
ject/J have to be extended. Basically, there are three extensions which have to
be implemented:

1. A more advanced type system for generic fragment types. Currently, Injec-
t/J has a static type system, i.e. no new types can be declared. Besides some
simple types, Inject/J supports only the ”base” fragment types given by
the object language’s metamodel.

2. Support for typed metaoperators. Metaprograms are currently implemented
using scripts or library functions. These scripts do not have a type as required
by our approach.

3 similar to closures in Smalltalk, Syntax: [p|stmt(p);], i.e. p is the parameter
which can be used in statement(s) stmt

4 http://prdownloads.sourceforge.net/injectj/Language.pdf?download
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3. Syntactical extensions. In order to specify generic fragment types efficiently,
new syntactical elements have to be introduced to the Inject/J language,
like explicit construction plans. A first impression of how these syntactical
elements can look like can be found in the next section.

Currently, we are implementing a prototypical version of Inject/J which
natively supports these new concepts.

4 Case Study

In this section, we present a first case study which demonstrates how generic
fragment types can be specified and instantiated by using the extended version
of our software adaptation tool Inject/J as proposed in section 3.3.

4.1 Analysis of the Java Collection Framework

We took the Java Collection Framework (JCF)5 as a starting point for our
case study. The goal was to sketch how to make the JCF more generic by using
generic fragment types. First we tried to identify the features implemented by the
framework from a user’s point of view. Additionally, we took the design decisions6

presented by the JCF creators into account, especially to find features which
were identified during the design of the JCF but which were not implemented
for various reasons. Last but not least, we tried to identify features which would
additionally be interesting for a user of the JCF. The resulting feature diagram
in FODA notation (see [3]) can be found in Fig. 1.

Although the domain of an end user and the domain of the designers of a col-
lection framework usually do not differ very much, since both are programmers,
the features are not exactly the same. This is due to the fact that a designer
has to consider very technical features. An excerpt of the technical features a
designer has to cope with for the domain of collections is presented in Fig. 2.

We used the Design Spaces approach [2] to specify the mapping between
the user and the producer domain. Design Spaces are basically a more formal
notation for feature models than the FODA notation together with a technique
based on correlation functions to specify the mapping between features of differ-
ent Design Spaces. Fig. 3 shows an excerpt of this mapping, where ADS denotes
the Application Domain Space (thus, the user’s domain) and PDS the Producer
Domain Space (the designer’s domain). The correlation factor is a value in the
continuous range -1.0. . .1.0, where -1.0 means that if the features and their values
in one Design Space are chosen in a way that the feature expression evaluates to
true, then the features and the feature values of the other Design Space have to
be chosen in a way that the corresponding feature expression evaluates to false.
A correlation factor of 1.0 denotes an implication. Thus, a factor of 0.5 means

5 http://java.sun.com/j2se/1.4.2/docs/guide/collections/
6 http://java.sun.com/j2se/1.4.2/docs/guide/collections/designfaq.html
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Fig. 1. Collection features from a user perspective

that if one feature is chosen, it is a good idea to choose the other feature as well,
but it is not mandatory.

In this case study, we also used the Design Spaces approach to describe the
mapping of the implementation Domain Space to a selection of generic fragment
types and their parameterization, thus to configuration specifications.

4.2 Implementation with Generic Fragment Types

In the following code samples, we use the proposed extended version of our adap-
tation language Inject/J introduced in section 3 to specify generic fragment
types and metaoperators. Using this language, a generic fragment type HashSet
can be specified as follows:
fragment HashSet <

TypeReferenceFragment Tin, required;
HashSetPutElementMethodFragment<TypeReferenceFragment Tout ,

Attribute ds> putMethod , optional;
HashSetRemoveElementMethodFragment<TypeReferenceFragment Tout ,

Attribute ds> removeMethod , optional;
SynchronizeAttributeAccessOperator<Attribute ds> synchronizer , optional;
boolean immutable = false , required

> extends ClassFragment ,

conditions { immutable -> putMethod== null && removeMethod== null &&
forall a in data.referencingAccesses.filter(
[x|return !x.surroundingMethod.isConstructor]):

a.isReadAccess; };
{

// construction plan
construction {

// bind provided interface
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bind HashSet .data -> ds;
bind Tin -> Tout;

// bind required interface
bind put -> putMethod;
bind remove -> removeMethod;
bind elemType -> Tin;
i f (putMethod!= null || removeMethod!= null && ! immutable)

execute synchronizer <HashSet .data >;
}

// generic implementation
implementation {

public class HashSet {
private @( TypeReferenceFragment elemType)[] data;
public HashSet () { ... };
public boolean contains (@( TypeReferenceFragment elemType) element )
{

...
}

@( HashSetGetElementMethodFragment put);
@( HashSetRemoveElementMethodFragment remove);

}
}

}

memory management

internal data structure

hash tablelinked list

one-way double linked

tree

binary balanced

array

dynamic resizing synchronisation

exclusive accessparallel read

prefer readerprefer writer

container

Fig. 2. Collection features from a technical point of view

(ADS.order=yes) -1.0 (PDS.hashtable=yes)
(ADS.concurrentaccess=yes AND NOT ADS.immutability=yes) 1.0 (PDS.synchronisation=yes)
(ADS.concurrentaccess=yes AND ADS.write.frequency.high=yes) 0.5 (PDS.preferwriter=yes)
(ADS.concurrentaccess=yes AND ADS.read.frequency.high=yes) 0.5 (PDS.preferreader=yes)

Fig. 3. Mapping between application and producer domain (excerpt)

As stated in section 2, a generic fragment type has a name (HashSet) and a
super type (ClassFragment). Thus, in this example a new fragment type is de-
clared, in particular a class fragment type implementing a hash set concept. The
configuration interface is given by the formal parameters and the condition part.
The formal parameters specify with which fragment types the generic fragment
type can be parameterized and whether this parameterization is optional or re-
quired. The semantics of what these fragments do is described by their types.
It is possible to distinguish formal parameters of the required interface and the
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formal parameters of the provided interface, i.e. fragments that can be plugged
into instances of the generic fragment type and fragments that are provided by
instances of the generic fragment type. In this case, the type reference fragment
Tin, the method fragments putMethod and removeMethod, the metaoperator
synchronizer as well as the boolean value immutable are part of the required
interface, while the type reference fragment Tout and the attribute ds are part of
the provided interface. The conditions block specifies constraints which cannot
be expressed by the fragment type system.

The construction plan in this example is simple, since the provided frag-
ments are bound in a straightforward way. It is important to note that the
generic fragment type itself controls whether and when a fragment is bound or
a metaoperator is executed. In this example, synchronization is applied only if a
metaoperator is given (otherwise the execute statement does nothing) and if it
is necessary to synchronize the access to the data stored in HashSet instances.

The following generic fragment type extends the type HashSetRemoveEle-
mentMethodFragment, hence instances can be plugged into instances of the
generic fragment type HashSet. It implements the removal of an element in
a hash set.
fragment DefaultHashSetRemoveElementMethodFragment<

TypeReferenceFragment T, required;
Attribute dataAttribute , required>

extends HashSetRemoveElementMethodFragment<T, dataAttribute >,

conditions {
(dataAttribute.type.isArray ) &&
(dataAttribute.componentType.equals(T))

}
{

construction {
bind elemType -> T;
bind storage -> dataAttribute;

}
implementation {

public boolean remove(@( elemType : TypeReferenceFragment) element ) {
...
storage [i] = null;
...

}
}

}

Since in our approach the type of a fragment defines its semantics, it is also
possible to plug in a typed metaoperator as a parameter. Being of an appropriate
type, the metaoperator guarantees to have the same effects as binding an instance
of a ”simple” generic fragment type. The following operator is a subtype of
HashSetRemoveElementMethodFragment, but instead of providing a concrete
method fragment, it inlines the implementation code at all places the remove
method is invoked. This also means that the operator has to be executed after
the whole system has been composed.
operator InliningHashSetRemoveElementOperator<

TypeReferenceFragment T, required;
Attribute dataAttribute , required>

extends HashSetRemoveElementMethodFragment<T, dataAttribute >
{

dataAttribute.setPublic(true);
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foreach a in this.bindings . referencingAccesses do {
// Calls to method remove are inlined at all places the method is
// referenced. The necessary statements are generated and injected by
// this metaoperator.
// No implementation of method remove will be inserted in class HashSet.

}
}

The following examples are metaoperators which implement different syn-
chronization strategies sketched in feature diagram Fig. 2. Synchronization is a
feature which is not local with respect to the object-oriented decomposition, thus
adding this feature to instances of a generic fragment type results in adaptations
distributed all over the corresponding fragment or even the whole system. The
places where the new synchronization fragments have to be injected is computed
by the metaoperator by using suitable program analysis results.
operator ExclusiveAttributeAccessOperator<Attribute dataAttribute >

extends SynchronizeAttributeAccessOperator<dataAttribute >,

conditions {
foreach acc in dataAttribute.referencingAccesses:

acc.surroundingClass == dataAttribute.surroundingClass;
}

{
// Synchronizes access the "Java collection way" by adding the
// modifier " synchronized" to all methods ( except constructors).
meths = []; meths.setUnique;
foreach acc in dataAttribute.referencingAccesses do {

i f (!acc.surroundingMethod.isConstructor)
meths.add(acc. surroundingMethod);

}
foreach m in meths do { m.setSynchronized(true); }

}

operator SynchronizeAttributeAccessPrioritiseRead<Attribute dataAttribute >
extends SynchronizeAttributeAccessOperator<dataAttribute >

{ ... }

operator SynchronizeAttributeAccessPrioritiseWrite<Attribute dataAttribute >
extends SynchronizeAttributeAccessOperator<dataAttribute >

{ ... }

Now that we have presented how to specify generic fragment types and typed
metaoperators using an extended version of our Inject/J language, the spec-
ification of a concrete configuration, i.e. of generic fragment types instances, is
fairly simple. The configuration of a generic fragment type HashSet which can
have strings as elements and which allows adding new elements but no removing
of elements and that does not support synchronization results in the following
specification:
HashSet < ${java.lang. String}$;

DefaultHashSetPutElementMethodFragment,
null ,
null

>

The same HashSet which additionally supports the features of removing
elements and safe concurrent access can be described as follows:
HashSet < ${java.lang. String}$;

DefaultHashSetPutElementMethodFragment,
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InliningHashSetRemoveElementOperator,
SynchronizeAttributeAccessPrioritiseWrite

>

After the desired configuration has been specified, the concrete implemen-
tation is built by using the techniques described in section 3, e.g. composing
the method fragments and class fragments, binding type reference fragments or
applying metaoperators.

4.3 Discussion

Using our approach, we are able to implement an extended, more configurable
version of the JCF. Configuring the feature of supported element types has been
solved with the introduction of type genericity in Java 5, but our approach al-
lows for the configuration of more advanced features, e.g. expressing immutabil-
ity, functionality like addition or removal of elements or different synchronization
strategies. By using invasive techniques, we are able to avoid disadvantages im-
posed by the Java language, e.g. huge numbers of interfaces and implementation
classes for expressing features through the language’s type system as presented
in the Java Collection Framework Design FAQ7 or unnecessary and even error-
prone8 indirections.

The specification of a concrete configuration can be done in a declarative
way, i.e. it is possible to specify what is wanted, not how it is build. This helps
to push the level of abstraction towards the application level. Based on the con-
figuration specification of a generic fragment type, the resulting implementation
can be build by an extended version of our tool Inject/J. This compares to type
genericity, where the user specifies what is needed and the compiler internally
builds the resulting class or inserts appropriate type casts.

Well defined semantics are introduced by defining a type system for frag-
ments as well as for metaoperators. This allows to guarantee the correctness of a
configuration which can be expressed through a type system. By typing metaop-
erators, their effects on the instances of generic fragment types can be predicted,
in contrast to general metaprogramming.

Our case study also showed that in our future work we must take into ac-
count that more advanced techniques for identifying concrete binding times and
for computing their order are necessary. For example, in our case study, the
metaoperator InliningHashSetRemoveElementOperator has to be bound (i.e.
executed) after the configured (i.e. instantiated) generic fragment type HashSet
is composed with other fragments to the resulting system at the earliest, while
instances of the generic fragment type DefaultHashSetRemoveElementMethod-
Fragment can be composed with HashSet before the latter is composed with

7 http://java.sun.com/j2se/1.4.2/docs/guide/collections/designfaq.html
8 The JCF provides wrapper implementations which synchronize the access to a col-

lection. However, it is possible to access the collection in an unsynchronized fashion
by using the original unwrapped object. This may cause subtle runtime errors, since
this unwanted usage cannot be detected by the compiler.
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other fragments. Binding order has to be considered because of dependencies
between generic fragment types. Some dependencies are declared by the required
and provided interfaces provided by the generic fragment type. Especially in
conjunction with metaoperators, the possibility to declare explicit dependen-
cies has to be improved, e.g. the ExclusiveAttributeAccessOperator oper-
ator is only allowed to be executed after the instance of the generic fragment
type DefaultHashSetPutElementMethodFragment has been bound, otherwise
the remove method remains unsynchronized.

5 Related Work

There are several invasive techniques that can be used for configuration and
composition purposes. The most visible among them are probably preprocessors
like the one found in C or C++. However, preprocessors have no well defined
semantics. They are character based and not related to the structure of the pro-
gramming language, thus no correctness of the resulting implementation can be
guaranteed. In addition to preprocessors, another invasive configuration tech-
nique found in C++ emerged in the last few years: Template Metaprogramming
(TMP, [3]). But TMP also has some drawbacks: It is limited to C++, it is
very hard to systematically implement metaprograms and the results are almost
unmaintainable for the average programmer.

Traits as described in [7] offer the ability to compose classes from methods,
avoiding the problems known from multiple inheritance and mixins. However, the
implementation of a feature often affects only parts of a method (i.e., the state-
ment and the expression level). Extracting these statements into trait methods
results in an unnatural method decomposition.

A technique which addresses the closed specification of cross-cutting features
is aspect-oriented programming (AOP, [6]). The most prominent AOP tool is
without doubt AspectJ9. The main critique is that AspectJ only supports
fragment composition, but no fragment decomposition or fragment removal,
which is necessary in some cases, such as optimization operations.

Invasive software composition as introduced in [1] and implemented by the
COMPOST system10 can be used as an implementation technique for our ap-
proach. However, we chose Inject/J as an implementation base in order to
benefit from its expressive script language which can to a large extent be used
to specify generic fragment types and metaoperators.

On the process level, which was not the focus of this paper, our approach
can be seen as a concrete instance of the generative programming paradigm [3].

6 Conclusion

In this paper we have presented an approach for invasive configuration of pro-
gram fragments. We introduced the notion of generic fragment types, which
9 http://www.eclipse.org/aspectj

10 http://www.the-compost-system.org
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consist of a configuration interface, a construction plan and the actual generic
implementation. In our approach, instances of generic fragment types are the
units of hierarchical composition, i.e. a fragment can be plugged into another
fragment. The semantics of a fragment is given by its type together with addi-
tional constraints. The configuration interface describes which fragments can be
composed, while the construction plan determines how the actual composition is
executed based on the generic implementations of the involved fragments. As a
reaction to crosscutting features, we also introduced typed metaoperators. They
consist of a fragment template together with a metaprogram specifying how and
where these fragment templates have to be instantiated and injected into the re-
sulting code through transformation or generation. Like generic fragment types,
they have a type specifying their semantics. We sketched how an extended ver-
sion of our software adaptation tool Inject/J can be used as an implementation
base for our approach.

Our future work will be targeted at two directions. On the technical level, we
will implement the proposed extensions to Inject/J. The other direction is to
improve our initial process that maps end-user visible features to configuration
specifications of generic components.
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