
Enacting the Distributed Business Workflows Using
BPEL4WS on the Multi-agent Platform

Li Guo, Dave Robertson, and Yun-Heh Chen-Burger

CISA, Informatics, The University of Edinburgh, United Kingdom
L.Guo@sms.ed.ac.uk, {dr, Jessicac}@inf.ed.ac.uk

Abstract. This paper describes the development of a distributed multi-agent
workflow enactment mechanism using the BPEL4WS[1] specification. It demon-
strates that a multi-agent protocol (Lightweight Coordination Calculus (LCC)[8])
can be used to interpret a BPEL4WS specification to enable distributed busi-
ness workflow[5] using web services[2] composition on the multi-agent platform.
The key difference between our system and other existing multi-agent based
web services composition systems is that with our approach, a business process
model(system requirement) can be adopted directly in the multi-agent system,
thus reduce the effort on the validation and verification of the interaction protocol
(system specification). This approach also provides us with a lightweight way of
re-design of large component based systems.

1 Introduction

Composition of web services has received much interest as a means of supporting
Business-To-Business or enterprise application integration. Currently, there are two
main approaches for the web services composition: a static workflow technology based
approach, for example, BPEL4WS, which is de facto standard for distributed workflow
system using web services composition. Using such method, web services are described
as activities/atomic activities in a business process model. A workflow engine is used to
run the whole business process model, web services thus can be invoked as the business
process executes. The basic architecture of such system is shown in figure 1. However,

Fig. 1. The infrastructure of conventional workflow based web services composition system

the downside to this approach is that, although the workflow engine can execute these
invocations asynchronously (thus generating some degree of parallelism), the process
is still centralised, which means it suffers from the single point-of-failure weaknesses

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 35–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



36 L. Guo, D. Robertson, and Y.-H. Chen-Burger

that plague centralised designs[7] and in some environments, centralisation is not pos-
sible, for example, in a peer to peer mobile devices based environment. In addition, the
centralised design may require heavyweight servers. Because all the interactions must
go through the centralised server, if there are huge amounts of transactions taking place
at the same time, the central workflow engine becomes the bottleneck of the whole
system.

An alternative approach is to employ a multi-agent system for web services
coordination[8,10]. With this approach, each agent A in the multi-agent system is as-
sociated with a web service which contains the necessary external behaviours for the
participant (agent). The flow control logic is defined in the multi-agent system pro-
tocol which is passed between all the agents together with the messages to tell each
agent what to do next to enable their coordination. The infrastructure of the system is
depicted in figure 2. Although the centralised problem is overcome by using this ap-

Fig. 2. The infrastructure of MAS based web services composition system

proach, a shortcoming of it is that the interaction protocol (system specification) is at
a very low level of system design. It specifies the message passing that takes place
between different participants at implementation level, mixing both the business and
technical requirements. Therefore, huge effort on the validation and verification is re-
quired for the interaction protocol production in order to make sure that the protocol is
strictly consistent with the high level requirements of the business process model.

In this paper, we propose a novel approach, with which a business process model
(BPEL4WS specification) can be used to parameterise a generic multi-agent interac-
tion protocol, thus all the existing BPEL4WS specifications and available tools can
be exploited when we try to enact a distributed business workflow using web services
composition on a multi-agent platform. In section 2, the necessary background intro-
duction to the LCC protocol language and BPEL4WS is given. The infrastructure of our
system is given and explained in section 3. In section 4, we explain in detail how the
agents in the our system coordinate with each other using LCC protocol and BPEL4WS



Enacting the Distributed Business Workflows Using BPEL4WS 37

specification. In section 5, we use a simple example to demonstrate how our approach
works. A general discussion on our approach is given in section 6 and in section 7, the
conclusion and some possible future work are addressed.

2 Background

2.1 Lightweight Coordination Calculus (LCC)

The Lightweight Coordination Calculus(LCC) is a language for representing coordi-
nation between distributed agents. In a multi-agent system the speech acts conveying
information between agents are performed only by sending and receiving messages. For
example, suppose a dialogue allows an agent a(r1,a1) to send a message m1 to agent
a(r2,a2) and agent a(r2,a2) is expected to reply with message m2. Assuming each agent
operates sequentially, the sets of possible dialogue sequences we wish to allow for the
two agents in the example are as given below, where M1⇒ A1 denotes a message, M1,
send to A1, and M2⇐ A2 denotes a message, M2, received from A2.

a(r1, a1) :: (m1⇒ a(r2, a2) then m2⇐ a(r2, a2))
a(r2, a2) :: (m1⇐ a(r1, a1) then m2⇒ a(r1, a1))

Any agent can change its role according to the definition of the dialogue:

a(r1, a1) :: m1⇒ a(r2, a2) then a(r3, a1)
a(r3, ID) :: m2⇒ a(r4, a3) then m3⇐ a(r4, a3)

The above clause means that agent a1 takes the role of r1 initially and after sending a
message m1 to agent a(r2,a2), it changes its role to r3 and then takes the appropriate
behaviours that are defined for a(r3,ID). This capability of LCC is very important for
the our work described in this paper.

We refer to this definition of the message passing behavior of the dialogue as the
dialogue framework. Its complete syntax can be found in [8]. A dialogue framework
defines a space of possible dialogues determined by message passing, so the protocols
allow constraints to be specified on the circumstances under which messages are sent
or received. Two forms of constraints are permitted:

• Constraints under which message, M, is allowed to be sent to agent A. We write
M⇒ A← C to attach a constraint C to an output message.
• Constraints under which message, M, is allowed to be received to agent A. We

write M⇐ A← C to attach a constraint C to an input message.

For the earlier example above, to constrain agent a(r1,a1) to send message m1 to agent
a(r2,a2) when condition c1 holds in a(r1,a1) we could write: m1⇒ a(r2,a2)← c1.

Agent dialogue may also assume common knowledge, either as an inherent part of
the dialogue or generated by agents in the course of a dialogue. This knowledge could
be expressed in any form, as long as it can be understood by appropriate agents. We
recognise the importance of preserving a shared understanding of knowledge between
agents but cannot cover this issue in the current paper. As a dialogue protocol is shared



38 L. Guo, D. Robertson, and Y.-H. Chen-Burger

among a group of agents it is essential that each agent when presented with a message
from that protocol can retrieve the state of the dialogue relevant to it and to that message
[8].

Pulling all the above elements together, we describe a LCC dialogue protocol as the
term:

protocol(S, F, K)

Where S is the dialogue state; F is the dialogue framework(sets of dialogue clauses);
and K is a set of axioms defining common knowledge assumed among the agents.

To enable an distributed workflow agent to confirm a LCC protocol it is necessary
to supply it with a way of unpacking any protocol it receives; finding the next moves
that it is permitted to take; and updating the state of the protocol to describe the new
state of dialogue. There are many ways of doing this but perhaps the most elegant way
is by applying rewrite rules (more detailed re-write rules can be found in [8]) to expand
the dialogues state. This works as follows1:

• An agent receives from some other agents a message with an attached protocol,
P , of the form protocol(S, F, K). The message is added to the set of messages
currently under consideration by the agent-giving the message set Mi.
• The distributed workagent extracts from P the dialogue clause, Ci, determining its

part of the dialogue.
• Applying the rewrite rules in [8] to give an expression of Ci in terms of protocolP

in response to the set of received messages, Mi, producing: a new dialogue clause
Cn; an output message set On and remaining unprocess messages Mn ( a subset
of Mi). These are produced by applying the protocol rewrite rules exhaustively to
produce the sequence:

〈 Ci

Mi,Mi+1,P,Oi−−−−−−−−−−−→ Ci+1, Ci+1
Mi+1,Mi+2,P,Oi+1−−−−−−−−−−−−−−−→ Ci+2, ..., Cn−1

Mn−1,Mn,P,On−−−−−−−−−−−−→ Cn〉

• The original clause, Ci, is then replaced in P by Cn to produce the new protocol,
Pn

• The distributed workflow agent can then send the messages in set On, each accom-
panied by a copy of the new protocol Pn.

2.2 Business Process Execution Language for Web Service (BPEL4WS)

The Business Process Execution Language for Web Services (BPEL4WS) is an XML-
based language for describing workflow in a distributed environment using web ser-
vices. With support from IBM and Microsoft, it has become the de facto standard for
workflow description. A workflow described in BPEL4WS details the flow of control
and any data dependencies among a collection of web services being composed. When
enacted, the composition itself becomes available as a meta-web service, eligible for
inclusion in other compositions. BPEL4WS requires that all web services be described
with available WSDL descriptions. The main BPEL4WS notations are given in figure
3. Due to the industry’s increased focus on business process management and accep-
tance of BPEL4WS, vendors are producing new software tools for workflow design,

1 This part is taken from the paper[8].



Enacting the Distributed Business Workflows Using BPEL4WS 39

Fig. 3. Basic BPEL4WS Syntax[7]

specification, and enactment. An example of one such tool is IBM’s BPEL4WS Java
Runtime (BPWS4J) platform [6]. Think of the BPWS4J engine as an interpreter for the
workflow specification: when the engine receives a workflow description, it enacts the
workflow in a centralized manner.

3 A Multi-agent Platform For Distributed Business Workflow
Based on BPEL4WS

A BPEL4WS specification contains all the information for running a specified busi-
ness process model using web services composition, although it was not designed for
decentralised multi-agent enactment and, therefore, lacks explicit instructions about
how agents should coordinate. Although our multi-agent interaction protocol language
(LCC) is more amendable to multi-agent enactment, it requires huge amounts of extra
effort in the phases of protocol’s verification and validation to ensure that the proto-
col is strictly consistent with the requirement. As such, the method for performing the
BPEL4WS-to-multiagent-enactment is needed. The most straight forward way of do-
ing this is to perform language mapping from BPEL4WS to LCC. Thus, any BPEL4WS
specification can be translated to a LCC protocol automatically which is then used by
the agents in the multi-agent system. However, an issue that we need to consider is that
BPEL4WS is based on the paradigm of imperative programming langauge, while LCC
is based on the declarative programming paradigm. Translating a BPEL4WS specifica-
tion to a LCC protocol is actually the task of translating a imperative programme to a
declarative programme, which is not possible in all circumstances.

Therefore, we choose another approach for our work: producing a LCC protocol,
which acts as a BPEL4WS interpreter. The BPEL4WS specification and the LCC pro-
tocol (BPEL4WS interpreter) are passed together between the agents to enable their



40 L. Guo, D. Robertson, and Y.-H. Chen-Burger

coordination. This LCC protocol interpret an BPEL4WS specification so is generic for
this style of process model. Based on this idea, a BPEL4WS specification that is de-
fined in any fashion can be interpreted neatly by the LCC protocol when they are passed
together in the multi-agent system. The infrastructure of the system based on this ap-
proach is given in figure 4. With this infrastructure, the multi-agent interaction protocol,
the BPEL4WS specification and the messages are packed and passed together between
the agents. Once an agent receives the package, it processes: the incoming message (ini-
tiating appropriate behaviors), interaction protocol and BPEL4WS (resolving the next
action it needs to take), then it sends out a new package to the next agent to make the
coordination continue.

Fig. 4. The infrastructure of our generic MAS platform

4 Agent Coordination Using LCC Protocol and BPEL4WS
Specification

4.1 Express BPEL4WS Specification in a Plain String Form

In order to easily interpret the BPEL4WS specification using LCC protocol, we first
express the BPEL4WS specification in a plain string form rather than using its original
XML syntax directly. For simplicity, only several of the main syntaxes of BPEL4WS
model for our work are given below:

Model := {Description, Structure}
Description := partnerLink

(
name(Constant), parnterLinkType(Constant),
myRole(Constant), partnerRole(Constant)

)

|variable(name(Constant), messageType(Constant))|...
Structure := flow([Activity/Structure, Activity/Structure, ...])|

switch([condition(Condition, Activity/Structure), ...])|
while(condition(Condition, Activity/Structure)|
Structure/Activity then Structure/Activity|...



Enacting the Distributed Business Workflows Using BPEL4WS 41

Activity := invoke

⎛
⎜⎝

partnerLink(Constant), portType(Constant),
operation(Constant), inputV ariable(Constant),
outputV ariable(Constant), sourceLink(Constant),
targetLink(Constant))

⎞
⎟⎠

|receive

⎛
⎝ partnerLink(Constant), portType(Constant),

operation(Constant), variable(Constant),
sourceLink(Constant), targetLink(Constant)

⎞
⎠

|reply

⎛
⎝ partnerLink(Constant), portType(Constant),

operation(Constant), variable(Constant),
sourceLink(Constant), targetLink(Constant)

⎞
⎠

|assign

⎛
⎜⎜⎝

from

(
expression/opaque/variable(Constant),
property(Constant)

)
,

to(variable(Constant), property(Constant)),
sourceLink(Constant), targetLink(Constant)

⎞
⎟⎟⎠

|...
Condition := Term|Condition ∧ Condition|Condition ∨ Condition
Constant := Term

The structure (binary tree) for a BPEL4WS specification that is expressed using the
above syntaxes is shown in figure 5.

4.2 Relating the Basic BPEL4WS Activities to LCC Dialogues

The only way for the agents to coordinate with each other in a multi-agent system
is through message passing. Therefore, when adopting a BPEL4WS specification in
a multi-agent system, the first thing we need to do is to relate the BPEL4WS syntax
to message passing. Fortunately, one of the BPEL4WS design principles is to define
the interaction (message passing) between two partners through centralised workflow

Fig. 5. The structure of the BPEL4WS model in logical form

Fig. 6. Translations from BPEL4WS activities to LCC messages



42 L. Guo, D. Robertson, and Y.-H. Chen-Burger

engine. A centralised workflow engine sends and receives messages to/from the par-
ticipants to enable the interaction by using some basic activities. In our system, each
agent acts as a web service proxy. Instead of sending and receiving messages through a
centralised server, the messages are taking place directly between participants (agents).
Thus, the translation from the BPEL4WS basic activities to LCC dialogues is possible.
Space limitations prevent giving the entire translation here, but a segment of it is given
below:

4.3 Using LCC Protocol to Interpret the BPEL4WS Specification

In our approach, the LCC protocol is used as an interpreter to tell the agents how to
process the BPEL4WS specification attached. The basic idea is: each role defined in
the LCC protocol corresponds to a BPEL4WS syntax element. There are five arguments
defined for each of the LCC roles:

• Model: is a part of BPEL4WS model that is currently processed by the LCC proto-
col. Because the structure of the BPEL4WS specification is a binary tree, with our
approach, the deepest node is always processed first.
• MList: stores all the unprocessed parts of a BPEL4WS model and is used to mark

the states of the BPEL4WS model’s processing. Once a basic BPEL4Ws activity
is reached while an agent processes the BPEL4WS model, it starts a new dialogue
based on the activity and all of the unprocessed BPEL4WS model stored in MList
has to be passed to the next agent.
• V List: stores all the concrete values of the variables that are used in workflow

enactment. In the centralised environment, all the information about the variables
are controlled by the central server, whereas in the distributed environment, all of
such information have to be passed around.
• IDList: is used to connect a receive activity and its corresponding reply activity.
• Role: represents the real participant in the interaction defined in the partnerLink.

The definitions of some of the main LCC roles are given and explained below2:

a(interpreter(Model, MList, V List, IDList, Role), A1) ::⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PortType : Operation : InputV ariable⇐ a(invoke(Model, MList, V List, IDList, Role2), A2)
then⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

null ←Model = ..[ , partnerLink( ), portType( ), operation( ), inputV ariable( ),
outputV ariable(null), sourceLink( ), targetLink( )]

then⎛
⎜⎝

null ←MList = []
or
a(interpreter(Head, Rest, V List1, IDList, Role), A1)
←MList = [Head|Rest] and V List1 = [InputV ariable|V List]

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

or⎛
⎜⎝

PortType : Operation : InputV ariable : OutputV ariable⇒
a(invoke(Model, MList, V List, IDList, Role2), A2)
←Model = ..[ , partnerLink( ), portType( ), operation( ), inputV ariable( ),

outputV ariable(OutputV ariable), sourceLink( ), targetLink( )]

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or a(sequence(Model, MList, V List, IDList, Role), A1)← is sequence(Model)
or a(flow(Model, MList, V List, IDList, Role), A1)← isf low(Model)
or a(invoke(Model, MList, V List, IDList, Role), A1)← is invoke(Model, Role)
or a(receive(Model, MList, V List, IDList, Role), A1)← is receive(Model, Role)
or a(reply(Model, MList, V List, IDList, Role), A1)← is reply(Model, Role)
...

2 The full protocol can be found at http://homepages.inf.ed.ac.uk/s0349668/Websites/tools/protocol.inst



Enacting the Distributed Business Workflows Using BPEL4WS 43

a(interpreter(Model, MList, V List, IDList, Role), ID) defined above is used to
control the role’s changing of the agents. Every agent takes this role first whenever it
receives a message associated with the unprocessed BPEL4WS model and then changes
to the appropriate role for processing the received BPEL4WS model. Only partial defi-
nitions of this role are given here for simplicity.

a(sequence(Model, MList, V List, IDList), A1) ::
a(interpreter(Model1, [Model2|MList], V List, IDList, Role), A1)
← process sequence(Model, Model1, Model2)

a(sequence(Model, MList, V List, IDList), A1) corresponds to the BPEL4WS se-
quence activity. Once an agent takes this role, it first gets the first child element Model1
of Model, stores the left child elements Model2 in Mlist and then changes its role to
interpreter to process Model1. For the other BPEL4WS structure activities, the basic
idea is same.

a(flow(Model, MList, V List, IDList), A5) ::
a(interpreter(Model1, [NewModel|MList], V List, IDList, Role), A5)
← process flow(Model, Model1, NewModel)

If the role of an agent is flow, the agent uses the constraint process flow(Model,
Model1, NewModel) to process the BPEL4WS flow activity (Model). The function
of the constraint is to extract one of the child elements (Model1) of Model and form
another flow activity (NewModel) using all the left child elements. An assumption
we make here is the flow activity has to be processed sequentially in the distributed
environment, which is the trade-off of eliminating the centralised server.

a(receive(Model, MList, V List, IDList, Role1), A1) ::
V List2 = [V ariable|V List] and IDList1 = [PortType : Operation : Partner : ID|IDList]
← PortType : Operation : V ariable⇐ a(Partner, ID)

then⎛
⎜⎜⎜⎜⎜⎝

(
a(receive(Model, MList, V List, IDList, Role1), A1)

← ¬check receive(Model, PortType, Operation, V ariable, Partner)

)

or

⎛
⎝ a(interpreter(Head, Rest, V List2, IDList1, Role2), A1)
← check receive(Model, PortType, Operation, V ariable, Partner)
and MList = [Head|Rest]

⎞
⎠

or null ←MList = []

⎞
⎟⎟⎟⎟⎟⎠

When the role of an agent is receive, it waits for an incoming message and checks if
this message is the appropriate one. A message is a right one if it is sent from the right
partner of current agent and if it is defined with the right message type. If the message
is not what the agent waits for, the agent keeps waiting until it receives the proper one.
If the message is the right message, the agent changes its role to interpreter to process
the unprocessed BPEL4WS model in MList.

a(reply(Model, MList, V List, IDList, Role1), A1) ::

V ariable1 => a(Partner, ID)←
⎛
⎝ process reply(Model, Partner, PortType, Operation, V ariable)

and get ID(Partner, PortType, Operation, IDList, ID)
and look up(V List, V ariable, V ariable1)

⎞
⎠

An agent sends a message in reply to a message that was received from a(Partner, ID).
The Partner and ID is stored in IDList to make sure that the message is sent to the
right partner.

a(invoke(Model, MList, V List, IDList, Role1), A1) ::
PortType : Operation : InputV ariable⇒ a(interpreter(Model, MList, V List, IDList, Role2), A2)
← process invoke(Model, PortType, Operation, InputV ariable, Role2)



44 L. Guo, D. Robertson, and Y.-H. Chen-Burger

then⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

null ←Model = ..[ , partnerLink( ), portType( ), operation( ), inputV ariable( ),
outputV ariable(null), sourceLink( ), targetLink( )]

or⎛
⎜⎜⎜⎜⎜⎜⎜⎝

PortType : Operation : InputV ariable : OutputV ariable
⇐ a(interpreter(Model, MList, V List, IDList, Role2), A2)
then⎛
⎜⎝

null ←MList = []
or
a(interpreter(Head, Rest, V List3, IDList, Role), A1)
←MList = [Head|Rest] and V List1 = [OutputV ariable, InputV ariable|V List]

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

When an agent is of the role invoke, it extracts the necessary information: PortT ype,
Operation and InputV ariable from the current BPEL4WS invoke activity (Model)
and sends it out to the next agent that is in the role of interpreter) for web service’s
invocation. If the outputVairable is defined in the current invoke activity, then there
will be a response from the message receiver later on. After the sender receives the re-
sponse, it will changes its role to interpreter to continuously process the unprocessed
BPEL4WS model.

5 A Simple Case Study

We use a simple example to illustrate how our approach works. The definition for the
input BPEL4WS specification is given as follows with all the irrelevant parts ignored:

< process name = ”loanApprovalProcess” >
< /variables >

< variable name = ”request” messageType = ”CreditInfoMessage”/ >
< variable name = ”approvalInfo” messageType = ”approvalMessage”/ >

< /variables >
< partnerLinks >

< partnerLink name = ”customer” partnerLinkType = ”LinkType” myRole = ”approver”/ >
< partnerLink name = ”approver” partnerLinkType = ”LinkType” partnerRole = ”approver”/ >

< /partnerLinks >
< sequence >

< receive name = ”receive” partner = ”customer” portType = ”approvalPT”
operation = ”approve” variable = ”request” >

< /receive >
< invoke name = ”invokeapprover” partner = ”approver” portType = ”approvalPT”

operation = ”approve” inputV ariable = ”request” outputV ariable = ”approvalInfo” >
< /invoke >
< reply name = ”reply” partner = ”customer” portType = ”loanApprovalPT”

operation = ”approve” variable = ”approvalInfo” >
< /reply >

< /sequence >
< /process >

The basic steps for the agents in our system to coordinate using the above BPEL4WS
model and LCC protocol are illustrated in figure 7 and are explained below:

• An agent, A1, receives the BPEL4WS specification, B together with the LCC pro-
tocol, P from section 4.2. It takes the role of a(interpreter(B, [], [], [], ),A1). It
then tries the clauses that are defined in P to find the type of the B by using the
constraints is sequence/is invoke/...) to determine the next BPEL4WS operator.
For our example, the dominant operator in B is a sequence activity.A1 changes its
role to a(sequence(B, [], [], [], ),A1).
• A1 processesB in the role of a(sequence(B, [], [], [], ),A1) by using the constraint

process sequence(B,B1,B2) and gets the first element, B1, of B and the left ele-
ments B2 and then changes its role to a(interpreter(B1, [B2], [], ),A1) to repeat
the first step.



Enacting the Distributed Business Workflows Using BPEL4WS 45

Fig. 7. Agent’s coordination for performing the illustrate example

• By repeating the first step, A1 changes its role to a(receive(B1, [B2], [], approver),

A1) and waits for the message PortT ype : Operation : request. Once A1 re-
ceives the message, following the instructions in P , it changes its role to
a(interpreter(B3, [B4], [request], [PortType : Operation : Customer : CustomerID], ),A1)

in which B3 is the first child element of B2 and B4 contains the remaining child
elements of B2.
• By repeating the previous steps, A1 changes its role to a(invoke(...),A1) and

sends a appropriate message M to an agent A2 together with P1. A2 starts pro-
cessing the B4 after it receives the P1 andM. The coordination continues, until the
processing of B is finished.

6 Discussion

Our approach provides an opportunity to build a multi-agent based distributed workflow
system starting from a business process model rather than from a interaction protocol,
which narrows the gap between the high level requirement and system specification in
the development of multi-agent system and connects the business workflow commu-
nity and multi-agent community. Thus, business users can produce their own business
process models that can be used directly in the multi-agent system. Furthermore, since
there have been many techniques and tools available for current business process mod-
eling, they can be adopted directly for building the multi-agent system based on our
approach.

Notice that the LCC protocol used to interpret BPEL4WS models is independent of
any specific message passing infrastructure, although we have described it with respect
to a distributed and peer to peer infrastructure, it could equally well be deployed in
a more traditional server based style. Different styles of deployment are described in
detail in [8]. Furthermore, the protocol can be used prior to deployment in order to
predict behaviours and possible errors in interaction[10]. Another advantage is that the



46 L. Guo, D. Robertson, and Y.-H. Chen-Burger

workflow engine built using our approach is a real generic server. The only knowledge
of it is how to process the LCC protocol and how to invoke the web services but not
how to process the particular business process modelling language, which gives us a
very efficient and light way for the system re-design and re-implement. Even more
general, this approach can be used to adopt any functional requirement, as long as the
requirement is operational and can be represented by message passing, on the multi-
agent platform.

7 Conclusion and Future Work

In this paper, we have presented a novel technique for constructing distributed business
workflows using existing web services composition on a generic multi-agent system
platform, which particularly suits the inter-operations among enterprises. By using our
approach, a BPEL4WS specification can be used directly for constructing a multi-agent
system using web services composition. In such a system, all the real operations are
carried by web services that are associated with distributed agents. As mentioned in the
discussion section, our approach is not limited to workflow system but can fit any large
component based system.

We are currently working on writing the complete LCC protocol for processing the
full BPEL4WS syntaxes. We will then be able to test the protocol on a real multi-agent
platform to determine various benefits and drawbacks of our approach. After this, the
next stage is to solve the business level problem using our approach, such as how to do
the transactional control etc.

References

1. Business Process Execution Lanuage For Web Services specification,
http://www-128.ibm.com/developerworks/library/ws-bpel/.

2. W3C. Web Services reference, http://www.w3.org/2002/ws/.
3. Web Service Definition Language references http://www.w3.org/TR/wsdl.
4. MagentA, http://homepages.inf.ed.ac.uk/cdw/magenta.html.
5. The Workflow Management Coalition, http://www.wfmc.org/.
6. IBM. BPWS4J, http://www.alphaworks.ibm.com/tech/bpws4j.
7. J.M. Vidal, P. Buhler, and C. Stahl. Multiagent systems with workflows. IEEE Internet Com-

puting, 8(1):76-82, January/February 2004.
8. D. Roberston, A Lightweight Method for Coordination of Agent Oriented Web Services, Pro-

ceedings of AAAI Spring Symposium on Sematic Web Services, 2004.
9. P. A. Buhler, J. M. Vidal, H. Verhagen Adaptive Workflow = Web Services+Agents, Proceed-

ing of IEEE International Conference on Web Services 2003.
10. C. D. Walton Model Checking Multi-Agent Web Services, Proceeding of AAAI Symposium

of Semantic Web Services 2004.
11. P. Buhler and J. M. Vidal. Enacting BPEL4WS specified workflows with multiagent sys-

tems.In Proceedings of the Workshop on Web Services and Agent-Based Engineering, 2004.


	Introduction
	Background
	Lightweight Coordination Calculus (LCC)
	Business Process Execution Language for Web Service (BPEL4WS)

	A Multi-agent Platform For Distributed Business Workflow Based on BPEL4WS
	Agent Coordination Using LCC Protocol and BPEL4WS Specification
	Express BPEL4WS Specification in a Plain String Form
	Relating the Basic BPEL4WS Activities to LCC Dialogues
	Using LCC Protocol to Interpret the BPEL4WS Specification

	A Simple Case Study
	Discussion
	Conclusion and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




