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Abstract. This paper has two purposes. First, it defines a formal lan-
guage for specifying multi-agent systems. This language is expressive
enough to cover individual agent aspects (knowledge, goals, roles, ...)
as well as collective aspects of in terms of coordination protocols, orga-
nization structure and planning activities. Second, it provides a formal
design methodology based on stepwise refinements allowing to develop a
design specification starting from an abstract requirements one.

1 Introduction

Several researches tried to face the problem of developing software systems using
the agent concept. The majority of the suggested approaches are extensions of
either object oriented methodologies like, for example, AOAD [20] and MaSE [2],
or knowledge based methodologies, such as CoMoMAS [5]. The major problem
of these extensions is that they do not provide appropriate tools to model the
specific features of agents, such as mental states and social behaviours. Other
attempts, like Gaia [19], SODA [13] and Prometheus [14], sought to focus on the
social aspect of an agent group or an organization. These approaches, given that
they are based on semi-formal notations, they do not enable formal reasoning
about specifications. Approaches which make use of formal methods, like for ex-
ample, the framework suggested by Luck and d’Inverno using the Z language [10],
Concurrent-Metatem [4] based on temporal logic, and SLABS (Formal Specifi-
cation Language for Systems Agent-Based)[23], concentrate their effort only to
the specification phase. Recent work, such as ADK [21], although it based on
a formal approach and it covers the specification, design and implementation
phases, it completely ignores formal reasoning and particularly the verification
phases.

In order to overcome these insufficiencies and to master the inherent com-
plexity of multi-agent development, we suggest a formal design approach of
multi-agent systems based on stepwise refinements. It is recognized that the
formal approach represents an obvious but attractive challenge for Agent Ori-
ented Software Engineering [22]. Here, we try to take advantage of the potential
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of the formal methods in building reliable software. Doing so, we define, on the
one hand, a formal specification language which integrates the linear temporal
logic in the Z language, and on the other hand, a set of methodological prin-
ciples and hints which help the user to build in a systematic and incremental
way intra and inter agent aspects. This integration is motivated by recent ten-
dencies [15] which are directed towards (1) addressing aspects separated using
suitable languages and tools, and (2) integrating various approaches in a unified
development process[1]. Indeed, the Z language possesses all ingredients needed
to handle static and functional aspects of agents (i.e., the mental state and as-
sociated treatments), whereas temporal logic is considered as one of the most
eminent formalisms for specifying reactive systems [11]. In addition, approaches
based on stepwise refinements [17] proved their impact in developing several
software applications [8,3].

In order to provide a formal interpretation for our temporal operators we sug-
gest an operational semantics for multi-agent applications in terms of sequences
of system states. The definition of this temporal model within the Z notation
enables us to make use of tools supporting pure Z notation, such as Z/EVES
[12]. These tools allowed us to perform syntax, type, and domain checking of
our specifications and to reason about them by proving desired properties. Our
design process is composed of a number of refinement steps where each one
provides some methodological guidelines which help the developer to take the
suitable design decision as well as rules making it possible to ensure that a refined
specification satisfies the initial one.

This paper is organized as follows. Section 2 defines the specification language
and its semantics. Then, in section 3 we explain our specification and design
approach. Finally, we conclude with drawing some perspectives.

2 The Specification Language

We consider a multi-agent application as a collection of components which evolve
in a continuously changing environment containing active agents and passive ob-
jects. Accordingly, the specification of a multi-agent application includes descrip-
tions of the environment, the behaviour of individual agents (intra-agent), and
the communication primitives as well as the interaction protocols (inter-agent).
In addition, we may add to the collective part a description of the organizational
structures and planning activities.

For the specification of multi-agent applications, we use an integration of tem-
poral logic in Z schemas as described in our previous work [15]. This integration
will enable us to cover all the above mentioned aspects in a unified framework.
Indeed, the Z notation allows to describe all components (passive and active) in
terms of attributes and related properties. The temporal logic will enrich this
description with social behaviour and interaction properties.

2.1 The Z Notation

The Z notation, as presented in [18], is a model oriented formal specification lan-
guage which is based on set theory and first order predicate logic. This language
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is used to describe an application in terms of states and operations on them. In
order to structure specifications and to compose them Z uses a schema language.
The latter enables to collect objects, to encapsulate them, and naming them for
reuse. A schema consists of two parts: a declaration part and a predicate part
constraining the values of the declared variables. A Z schema has the following
form:

SchemaName
Declarations

Predicates

2.2 The Temporal Logic

The linear temporal logic, as presented by Manna and Pnueli [11], is suitable
for the specification and the verification of concurrent and interactive systems.
Actually, there is a variety of temporal operators that can be used to express
agents behavioural properties. However, all these operators can be defined in
terms of two basic operators. In this paper, we make use only of the necessary
operators for development of our multi-agent applications. In the following, we
briefly present these operators with an intuitive explanation. Let P be a logical
or a temporal formula:

�P P holds ”now”1 (� may be omitted);
� P ”always” P , i.e. P holds for the present and for all future points in time;
♦P ”eventually” P , i.e. P holds at some present or future point in time;◦P ”nexttime” P , i.e. P holds at the next point in time.

In order to integrate these temporal operators in the framework of the Z
language, we give the following definition of temporal formulas according to
the syntax of Z. We distinguish atomic predicate formulas (formula), which are
closely related to the application to specify, and temporal formulas (Tempfor-
mula) which connect predicate formulas with temporal operators.

Tempformula ::= 〈〈formula〉〉 | ◦ 〈〈Tempformula〉〉 | � 〈〈Tempformula〉〉 |
♦ 〈〈Tempformula〉〉

We will show later that these operators are sufficient to express interesting prop-
erties of multi-agent applications.

2.3 The Semantics of Temporal Formulas

In this section we provide evaluation functions defining the semantics of our
temporal logic. This step is very significant since it enables us to translate tem-
poral formulae into the pure Z notation. Thus, it becomes easy to exploit the
1 We explain the operators while being based on a concept of ”time”, but really the

fundamental notion is the one of causality.



156 A. Regayeg, A.H. Kacem, and M. Jmaiel

automatic verification tools, such as Z/EVES or Isabelle, which accept merely
the standard syntax of Z.

First, we present the underlying time model. The basic unit of this time
model is the agent state. Let [State] be the set of possible agent states. A system
state (SysState) is defined as the union of the states of the agents belonging to
this system:

SysState
SysState : F State

A time model (Model) is defined as an axiomatic function that associates to each
point of time the corresponding system state, where the time is specified as the
set of natural numbers (Time == {x : N}):

Model == Time → SysState

Second, we provide an axiomatic function (E ) which evaluates a temporal
formula in a given model at a given point of time:

E : Temporalformula × Model × Time → bool

∀ f : Formula; m : Model ; t : Time
• E ((� f ),m, t) = T ⇔ AtomEval(f ,m t) = T

∀ f : Tempformula; m : Model ; t : Time •
E ((♦ f ),m, t) = T ⇔ (∃ t1 : Time | t1 ≥ t • E (f ,m, t1) = T )

∀ f : Tempformula; m : Model ; t : Time •
E ((� f ),m, t) = T ⇔ (∀ t1 : Time | t1 ≥ t • E (f ,m, t1) = T )

∀ f : Tempformula; m : Model ; t : Time •
E ((◦ f ),m, t) = T ⇔ (E (f ,m, (t + 1)) = T )

Next, we generalize the function E by making abstraction of the time parameter.
Hence, the function (Eva)below interprets temporal formulas with respect to a
given model:

Eva : Tempformula × Model → bool

∀ f : Tempformula; m : Model
• Eva(f ,m) = T ⇔ (∀ t : Time • (f ,m, t) ∈ domE ∧ E (f ,m, t) = T )

We can more generalize the function of evaluation by making abstraction of the
model. The following function defines a general interpretation of the temporal
operators:

Eval : Tempformula → bool

∀ f : Formula
• Eval(f ) = T ⇔ (∀m : Model • (f ,m) ∈ domEva ∧ Eva(f ,m) = T )

Finally, in order to use the temporal operators in their usual notations (i.e. �
for always) in the Z schemata it is necessary to introduce them as axiomatic
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functions defined with the interpretation function Eval. Thus, we could estab-
lish a logical equivalence between a temporal operator and the corresponding
predicate specified in the above function Eval. This equivalence is described for
the � operator as follows:

� f ⇔ Eval(� f ) = T

The other temporal operators are introduced with similar equivalences.

3 Formal Design Approach

In order to be useful, a formalism or a set of tools have to be supported with
a design approach. This approach should provide some principles that help and
guide the design process. In this section, some of those principles are clarified.
Indeed, our approach is based on two principal phases. The first one is a specifi-
cation phase in which we describe, in an abstract way, the user requirements. The
second one is a design phase based on a succession of refinements in terms of col-
lective behaviours (inter-agents) as well as individual behaviours (intra-agent).
The verification that the developed design specification satisfies the requirements
one is considered as essential tasks which is progressively performed during the
refinement steps.

3.1 Specification Phase

In this first phase, we specify the requirements which correspond, in the context
of multi-agent, to a common objective to be achieved by the agents. In our
approach, this stage provides also a description of the environment in which
the agents evolve and which includes, generally, the working space, the passive
objects, and the active entities representing the agents to be deployed.

1. Specification of the active entities: The description of an active entity (agent)
consists in presenting, in terms of temporal formulae, its static and dynamic
properties. This description is given by a Z schema of the following form:

Entity
atr1 : Type1, atr2 : Type2 . . . atrm : Typem

Spr1, . . . , Sprn ,
Cpr1, . . . , Cprn′

Where atri corresponds to an attribute, Spri represents a static property
and Cpri represents a behavioural property.

2. Specification of the system: The system includes active entities (agents) and
passive entities belonging to the working space. This specification is given
by a set of formulas relating passive entities with active ones. Generally, this
leads to a Z schema of the form:
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System
obj1 : TypeObject1, . . . , objk : TypeObjectk
Entities : set of Entity

Pr1, Pr2, . . . , Prl

Where obji corresponds to a passive entity, Entities represents a set of enti-
ties, and Pri represents a temporal formula.

3. Requirements Specification: This specification describes what we require from
the system to develop. In the context of multi-agent application, this corre-
sponds to a set of temporal formulas specifying the Common Objective (CO)
in terms of the desired future state.
According to the Z approach, such a specification is well expressed with a
specialization of the System schema:

ReqSpec
System

CO1, CO2, . . . , COn

Where COi represents a temporal formula.

3.2 Design Phase

The basic idea consists in performing a sequence of refinements made by special-
izations of Z schemas for data refinement, and derivation of temporal formulas
for behavioural refinement. The refinement steps are supported by a set of rules
which help the transitions between specifications. The refinements are carried
out at two complementary levels. The first, is the collective level which will be
augmented by properties referring, primarily, to collective aspects (inter-agent)
characterizing, in particular, organization and communication structures. The
second level rather stresses the individual aspects (intra-agent) by extending the
specifications of the active entities provided in the first phase.

Collective Level. Designing the collective aspects of a multi-agent application
is made, in our approach, within three aspects : (1) cooperation strategy, (2)
organization structure and (3) interaction protocol.

1. Cooperation Strategy
Step 1: Cooperation Strategy definition
Starting from CO and using a hierarchical representation, we iterate the
composition, based on logical connections, of the requirements specification
(ReqSpec schema) until we obtain elementary temporal formulas in a way
that each one corresponds to a subgoal.
That is, for each formula COi which composed CO , we generate by de-
composition and transformation a finite set of temporal formulas connected
by the logical connectors (∧,∨). The conjonction ∧ indicates a sequence
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of subgoals whereas the disjonction ∨ presents different subgoals for the
achievement of the goal.
Finally, we obtain a list of scenarios for COi where each one is described by
a sequence of elementary temporal formulas. These formulas represent the
different local goals: {bli1, . . . , blin}.
At the end of this step, we generate a graph and/or which summaries the
various decomposition levels.

Each scenario leads to the following specification which corresponds to a
refinement of the ReqSpec specification:

Implementation0

System

bli1, bli2, . . . , blin

This refinement step requires the proof of the following theorem for each
scenario of COi present in the requirements specification:

theorem CoopScenario
bli1, bli2, . . . , blin � COi

2. Organization Structure
The organization structure implicitly defines a control strategy to be re-
spected by these entities. It is, generally, defined in terms of temporal for-
mulas referring to several entities at the same time.
Here, we invent a suitable organization structure for the system to be devel-
oped. We, first, identify the necessary roles, then we assign a role for each
active entity belonging to the system.
(a) Social Level

– Step 2: Identification of roles
In our approach, an agent role is formally represented by a set of
temporal formulas corresponding to local goals.
Hence, starting form the above defined local goals, we can regroup
them according to predicates (actions) present in the various for-
mulas describing the different local goals blij . Thus, we will have as
many roles as actions describing the various local goals.

rolei == {bli1, . . . , blik}
Where bli1, . . . , blik present the same action.
This step leads to a refined specification:

Implementation1

Implementation0

R : P1 Role

∀ bl : BL • ∃ r : Role • bl ∈ r
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This regroupment must respect the following completeness theorem
which guarantees that every local goal is associated to a role:

theorem completeness⋃m
i=1 rolei = {bli1, bli2, . . . , blin}

– Step 3: Definition of organization relationships
At this level, we refer to the model [9] where a Generic organization
structure OrgStructure is defined by a finite set of relations between
the various necessary roles [OrgRelationship] for the achievement of
a common objective.
Our goal, in this step, is to express how starting from the set of roles
defined in the previous step, we find the various possible organiza-
tion relationships.
We propose, for this definition, to search the common arguments
present in the predicates describing the local goals of different roles.
A common argument for two or several local goals of different roles
proves the existence of an organizational relation between these roles.
After a succession of iterations, we obtain a set of organization rela-
tionships connecting the various roles.
This step leads to a refined specification:

Implementation2

Implementation1

Rorg : P1 OrgRelationship

∀ r :Role • ∃rorg :OrgRelationship | rorg ∈ Rorg • r ∈ dom rorg

In this context, a constraint to check is that each role must have at
least a relationship to one or more other roles. This is guaranteed by
the proof of the following theorem:

theorem RoleRelation
∀ r ∈ Role • r ∈ domSorg

(b) Agent Level
This level consists on defining the agents for which each role will be
associated. Then, we instantiate the different organization relationships,
defined in the previous level, in order to find the eventually organization
links between these agents.
– Step 4: The role assignation

This step consists on defining, given a set of roles, the agents which
will be charged with each one of these roles.
To find the number of the necessary agents for each role, we need
to define the precedence order between the various local goals of the
retained roles. This order relation is based on the different temporal
operators describing the list of local goals. Thus, we can define a
precedence graph for the common objective.
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The basic idea consists on referring to precedence order of the differ-
ent local goals in order to avoid assigning simultaneous local goals to
the same agent. Also, one agent can have more than one role provided
that the local goals of these various roles are not in contradiction.
Thus, several scenarios can arise.
At this level, we can define a first refinement of Entity schema where
we add the concept of role:

Entity1

Entity
roles : P1 Role

Then, we can refine the system specification as follows:

Implementation3

Implementation2

∀ r : Role | r ∈ R • ∃ e : Entity1 | e ∈ entities • r ∈ e.roles

– Step 5: The acquaintances definition (organisation links)
The distribution of the roles induces an instantiation of the generic
organisation structure, called concrete organisation structure Con-
creteOrg [9].
An organization link is defined as follows:

OrganisationLink
E : P Entity

#E ≥ 2

An organization link OrganisationLink makes it possible to associate
two or several agents of different roles. Thus, each relation between
two roles, described in the previous level (Step 2.1.b), will be ex-
pressed in term of organization links referring to a set of agents.

Implementation4

Implementation3

organisationlinks : P1 OrganisationLink

∀Or : organisationlinks • ∀ e : Entity •
e ∈ entities ⇔ e ∈ Or .E

At this stage, the following theorem must be proofed indication that
every organization link instantiates an organization relationship:

theorem Instantiation
∀OR : OrgRelationship • r : P1 Role | r ∈ domOR •

∃OL : OrganisationLink • OL.E .R ∈ r
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3. Interaction Protocol:
Step 6: Interaction Protocol definitions
Having his role, each entity have some communication acts whose will be
achieved (CommActi).
Thus we can describe the Implementationi schema:

Implementationi

Implementationi−1

CommActi1, CommActi2, . . . , CommActin

Each formula (CommActi) is a temporal formula that describes a communi-
cation act.
These formulas are found by deriving each rolei formula using the Achiev
function which associate for each role the necessary communication acts
commacts :

theorem RoleAchiev
∀ role : Role • ∃ commacts : P1 Action •

Achiev(role) = commacts

Individual Level. The specification of the individual futures is generated by
the definition of the different entity capabilities allowing the realization of the
actions defined in the collective level as well as cooperative, organizational and
interactive actions.
Step 7: Individual Capabilities definitions
In order to execute each communication act, an entity must be equipped by some
capabilities as well as send and receive capabilities.
Also, due to the execution of each communication act, an entity have some
internal actions whose must be executed as well as the knowledge updates.
We denote by Behavi these different actions describing the behaviour of each
entity.
We obtain the specifications describing the individual properties of each agent
which will be regarded as an entity to implement separately.
For each entity, we can found a refined schema as:

EntityImpl
Entity1

Behav1, Behav2, . . . , Behavl

Each Behavi can be derived from one or more communication acts using the
Execute function which associate to a set of communication acts a behavioural
action describing the internal updates due to the execution of these acts :

theorem BehavDerivation
∃Commacts : P1 CommAct • ∃BehavAct : Action •

Execute(Commacts) = BehavAct
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The design phase leads to a detailed specification of the environment and de-
tailed behaviours of the active entities. The refinement specification corresponds
to the schema for the system (System) extended with the union of the properties
added at both collective and individual levels.

4 Conclusion

In this paper, we proposed a formal approach for specifying and verifying multi-
agent applications. Our main contribution consists in defining a methodology
that permits to develop, step by step, in an incremental way, a design from
an abstract specification. Some case studies are under realization (e.g. the con-
flicts control in the air-traffic). The introduction of a temporal model for multi-
agent applications in the Z framework enabled us to exploit a Z supporting tool
(Z/EVES) for syntax and type checking as well as theorem proving.

However, it is necessary to point out that these first results, even original
and promising, constitute a modest contribution to the definition of a formal
methodology for the design process of multi-agent applications.

Finally, some future works deserve to be undertaken. Indeed, each proposed
step should be supported by verification tools. Also, we intend to provide tools
which help to generate more concrete specifications, using process algebra, CSP
[6] for example, instead of temporal logic. These more concrete specifications can
be implemented using the system SPIN [7]. This latter enables us (1) to simulate
the system behaviour, and (2) to verify the desired temporal properties.
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