
Engineering a Multi Agent Platform with
Dynamic Semantic Service Discovery and

Invocation Capability

Oguz Dikenelli1, Özgür Gümüs1, Ali Murat Tiryaki1, and Geylani Kardas2

1 Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

{oguzd, gumus, ali_tiryaki}@staff.ege.edu.tr
2 Ege University, International Computer Institute,

35100 Bornova, Izmir, Turkey
geylani@bornova.ege.edu.tr

Abstract. In this paper, an agent framework, which provides a build
in support for dynamic semantic service discovery and invocation within
the agent’s plan(s), is introduced. To provide such a support, a generic
plan structure is defined for semantic service integration. Developer can
reuse this generic plan and add it to any agent plan as a task to cre-
ate semantic service enabled plan(s). The platform executes this kind of
plan(s) with its build in support. Also, a case study is developed to show
the effectiveness of this approach in terms of integrating agents with web
services.

1 Introduction

Web Services can be considered as pluggable software components with language
and platform independent interfaces. Hence, other components can use the web
services dynamically through the published interfaces. This machine-readable
interface description of the web services gives opportunity to autonomous agents
to use them when they demand the functionality provided by the service. But,
it is not clear how agents will decide to use a web service and how they will
discover and invoke the right service in addition to its own duties.

In the literature, Semantic Markup for Web Services (OWL-S, formerly
DAML-S) [16] has been extensively used to implement semantic based service
discovery and execution of composite services. For example, some semantic ser-
vice matching engines have been implemented based on the DAML-S profile
ontology in [7] and [9]. Also, some works have been conducted to execute com-
posite services using DAML-S process ontology in [11], [12] and [13]. Moreover,
some integrated architectures have been proposed based on matchmaking in
[10] and [15] and brokering in [14] to handle discovery and invocation together.
However, the basic problem still remains: How can a developer build an agent
system that uses web services and how he/she integrates and synchronizes these
services’ execution with other agent related task(s). To solve this problem, first

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 141–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

142 O. Dikenelli et al.

of all agent platform must be developed that supports the execution of semantic
service integration type of task(s). In this paper, we introduce an implemented
agent platform that provides such a support. For this purpose, a generic plan
structure is defined using the Hierarchical Task Network (HTN) formalism for
semantic service discovery and dynamic invocation. Then, agent’s internal archi-
tecture is specially designed to execute plan(s) that includes the task(s) derived
from this generic plan. Also, a service is implemented within the platform to
give the semantic service matching service to the agents in the platform.

The paper is organized in the following manner. In section 2, the general ar-
chitecture of the platform is given. A design approach for the agent and semantic
service integration is discussed in section 3. Section 4 introduces the internal ar-
chitecture of the agent designed for execution of semantic service enabled plans.
The generic plan structure for semantic service integration is explained in section
5 and the last section gives a case study and concludes the work.

2 Software Architecture of the Agent Platform for
Semantic Service Integration

To be able to call a multi agent platform as semantic service enabled, agents of
the platform must be capable of executing plan(s) that include specific task(s)
for semantic service integration. We call this kind of plans as semantic service
enabled plans. It is clear that agent(s) requires a specific support from the plat-
form to execute this kind of plans. So, a conceptual architecture, that executes
semantic service enabled plans, must be defined first. Fig. 1 illustrates pack-
ages of such a conceptual architecture in a layered style. Of course, a general
purpose MAS platform requires additional services such as Directory Facilita-
tor, Agent Management Service and such an abstract architecture is defined in
FIPA’s Abstract Architecture Specification [5]. But, our purpose is only defining
and implementing packages which are responsible to execute semantic service
enabled plans. So, any platform can be made semantic service enabled by just
implementing package responsibilities defined in this paper.

Fig. 1. Packages of platform’s software architecture

Engineering a Multi Agent Platform 143

Bottom layer includes the communication layer that is responsible of ab-
stracting platform’s communication infrastructure implementation. It implements
FIPA’s Agent Communication and Agent Message Transport specifications [5]
to handle agent messaging. This layer has been developed and used as part of
our FIPA compliant agent development framework [2], [3] and then reused in
this implementation.

In our implementation, Agency package includes necessary infrastructure to
generate general purpose and goal directed agents similar to JADE [1] and DE-
CAF [6] platforms. It provides a build in agent operating system to schedule,
execute and monitor agent plan(s) which are defined in HTN formalism [8]. To
execute semantic service enabled plans, we have defined a generic HTN structure
that is specialized based on the domain requirements. Naturally, this plan can
be executed by the agency as the other HTN plans and it can be combined with
other plan(s).

Semantic Service Matcher (SSM) can be considered as a bridge between plat-
form and web services hosted outside of the platform. SSM uses service profile
concept of the OWL-S ontology for service advertisement and this advertisement
knowledge is used by internal semantic service matching engine for discovery of
the services upon request. We have used the service capability matching algo-
rithm originally proposed in [9] for semantic service matching engine implemen-
tation. Since our discussion on Generic Service Integration Plan in section 5
sometimes uses the concepts of this algorithm, we briefly introduce the concepts
used in the algorithm in this section. Capability matching algorithm matches
OWL-S profile’s input and output concepts of the advertisement and request.
Input and output concepts are taken values from specific domain ontology(ies)
and the match degree is determined by the minimal distance between the con-
cepts of these ontology(ies). Formally if outAD and outREQ represent the outputs
of the advertisement and the request respectively, algorithm defines four types
of match on outputs:

- exact match when outAD and outREQ are equal or outREQ is subclass of
outAD

- plug-in match when outAD is more generic than outREQ (outAD subsumes
outREQ)

- subsumes match when outAD is more specific than outREQ (outREQ sub-
sumes outAD)

- fail when neither of the conditions above satisfies
The scoring function is ordered as exact > plug-in > subsumed > fail. Same

can be applied to inputs but matchmaker prefers output matches over input
matches and input match scoring is used to sort equivalent output matches.
In our implementation, SSM is queried by the platform’s agent(s) with FIPA
RDF [5] content language using OWL-QL [4] query syntax in argument part of
the message. To be able to use the match degree within the QWL-QL, we have
extended the QWL-QL for querying the matching of semantic capability. Details
of this extension are discussed in section 5.

144 O. Dikenelli et al.

Ontology Manager Service (OMS) behaves mainly as a central repository
for the domain ontologies used within the platform and provides basic ontol-
ogy management functionality such as ontology deployment, ontology updating,
querying etc. But, the most critical support of the OMS for service integration
is its translation support between the service or domain ontologies. OMS pro-
vides a user interface to define mappings between the selected ontologies and
then handles the translation request(s) using the mapping knowledge. Through
the usage of the ontology translation support, any agent of the platform may
discover and/or invoke the services even if they use different ontologies.

“Generic Service Integration Plan” includes pre-defined tasks for dynamic
semantic service discovery and invocation. This generic plan executes stan-
dard tasks such as service discovery based on the service capability, selection
of matched services and invocation of selected service(s) in a pre-defined order
and under the pre-set conditional assumptions. The details of this plan are dis-
cussed in section 5. But, it has to be emphasized that behavior of some task(s)
may need to be modified depending to the application conditions. In this kind
of situations, developers have to modify the specific tasks of this plan to satisfy
the application requirements.

Top layer includes the application dependent plans that are defined by agent
developers to satisfy the system’s goal(s). To make these plans semantic service
enabled, “Generic Service Integration Plan” can be added to the plan as service
task.

3 A Design Approach for the Agent and Semantic
Service Integration

To be able to integrate semantic web services with agents, some well defined
activities are needed within the agent development methodology. These activities
are conducted to build up the elements of the conceptual architecture defined in
section 2. In the following, two activities are defined for this purpose.

Activity 1: Define the OWL-S based service profiles of each domain specific
services that may be used by the agents.

In the design phase, we must know interface of external services to be able
to write the actual agent plans that include service integration. So, an OWL-S
service profile is defined for different types of domain specific services that agents
may use. These profiles are stored in and build up the knowledge base of the
SSM. External services are advertised themselves to the SSM using these pre-
defined service profiles. The problem occurs when input and output parameters
of external service interface and profile take values from different ontologies. In
this case, service provider must define the mappings between ontologies of these
parameters using the transition service of the OMS and agents translate profile
values to the actual service interface values before the invocation. In this paper,
we do not consider this case since we have not integrated the OMS implemen-
tation with the platform yet.

Engineering a Multi Agent Platform 145

Activity 2: Specialize the Generic Service Integration Plan for each required
service(s).

Application dependent agent plans may need one ore more external services
whose profiles are defined in activity 1. So, developers first identify such services
in this activity, then “Generic Service Integration Plan” is specialized for these
services using the defined service profiles. Finally, specialized service plans are
integrated with the actual application dependent plans.

4 Agent’s Internal Architecture

As we stated in section 2, our agent’s internal architecture executes plans rep-
resented with HTN formalism. HTN structure consists of two types of tasks.
Complex task includes a “reduction schema” knowledge that defines the decom-
position of the complex task to the sub tasks. The second type of tasks is the
primitive tasks (actions) that can be executed by the internal architecture di-
rectly. Each task also has “provision/outcome links” that are used to propagate
values between the tasks. So, internal architecture dynamically opens the com-
plex task using the “reduction schema” knowledge, identifies input/output values
of each task with “provision/outcome links”, executes primitive tasks and prop-
agates output values other dependent task(s).

In addition to complex and primitive tasks, we have defined a new task
type called as “service” task to execute semantic service enabled plans. “Service”
task is different because it always takes values from OWL-S profile concepts.
Moreover, input and output concepts of the requested service(s) are mandatory
values for “service” task to be able to discover the requested service(s). In HTN
formalism, complex and primitive task types propagate data values through its
provision link. Similarly, “service” task can take values through provision link if
it is dependent to some task(s) which produce the required data. But if input
and output of the requested service are not provided by other task(s), it must be
provided as constant. So, “service” task is responsible to collect all of the values
of input and output concepts from provision link and internal constant values
to pass them to subtasks. Hence, this task is handled differently by the internal
architecture when it is encountered.

The overall structure of agent’s internal architecture is shown in Fig. 2. This
architecture is specially designed to execute semantic service enabled plans. But,
of course, it can also execute HTN structure(s) that includes only complex and
primitive tasks. As it can be seen from Fig. 2, the internal architecture is com-
posed of four functional modules: dispatcher, matcher, scheduler and executer.
Each module runs concurrently in a separate Java thread and uses the common
data structures. All together, they match the goal extracted from the incoming
FIPA-ACL message to an agent plan, schedule and execute the plan following
the predefined HTN structure. In the following, we briefly explain responsibili-
ties of each module during plan execution with an emphasis on semantic service
integration.

146 O. Dikenelli et al.

Fig. 2. Agent’s internal architecture

When a FIPA-ACL message is put into the incoming message queue by the
communication infrastructure layer, the dispatcher is notified. Dispatcher then
parses the message and checks whether it is reply of a previous message or not. If
it is a reply message, then the dispatcher finds out the task waiting for that reply
from the pending queue, sets the provision(s) for that task and puts the task
to the ready queue if all the other provisions of task are set. If it is not a reply
message, then the dispatcher creates a new objective, puts it to the objective
queue and notifies the matcher.

Matcher is responsible for matching the incoming objective to a pre-defined
plan by querying the “Match Ontology”. There can be two kinds of plans. They
are called as service integration plan and ordinary plan. The service integration
plan aims only semantic service discovery and invocation. The ordinary plan
may include “service” task(s) and becomes semantic service enabled plan or it
includes only complex and primitive tasks. The “Match Ontology” is defined in
OWL including Match and Template concepts and the method of QueryManager
interface returns the MatchedTemplate object to the matcher. Matcher identifies
the type of the plan from MatchedTemplate object and creates a ServiceTemplate
object for service plan or TaskTemplate object for ordinary plan by setting its
parameters using the returned template. It then puts the created object to the
task queue and notifies the scheduler.

Scheduler works differently for complex task and “service” task. If it gets a
TaskTemplate from the task queue, it understands that it is a complex task.
Then, it gets the name of the task from the TaskTemplate and creates a Com-
plexTask object by getting its class definition from task structure library. This
ComplexTask may include “service” task(s). The class definition taken includes
the reduction schema which holds the subtasks of the task. Then, the scheduler
interprets the reduction schema and puts the ready actions to the ready queue
by creating a ReadyActionTemplate and notifies Executor. It also places the pro-

Engineering a Multi Agent Platform 147

vision waiting action(s) into the pending queue and the complex task(s) to the
task queue by creating a TaskTemplate object. If it finds a “service” task in the
reduction schema, it creates a ServiceTemplate object and puts it into the task
queue for execution.

If scheduler gets ServiceTemplate object from the task queue, it gets its task
structure from service structure library. Service structure library holds only ser-
vice integration plans that are derived by reusing our generic service integration
plan structure. At this point, scheduler creates ServiceTask object, it gets OWL-
S profiles input and output concepts from ServiceTask, and then it passes this
knowledge as a parameter to the sub-task found in the reduction schema. Sub-
tasks are handled in a same way of complex task scheduling.

Executor first gets the name of the primitive task from the ReadyActionTem-
plate and creates an Action object using the class definition that it retrieved from
the action library corresponding to the primitive task name. Secondly, it calls
the Do() method of the Action object. The result queue is updated using the
outcome of the executed action. One important point is that if there are action(s)
waiting for that outcome in the pending queue, the related provisions of these
actions are set based on the outcome. These actions are put into the ready queue
if their all other provisions are already set, otherwise they continue to wait in
the pending queue until all other provisions are set by different outcomes.

5 Generic Plan Structure for Semantic Service
Integration

In this section, we introduce the structure of the generic plan that is specially
designed for semantic service integration. The workflow of the plan can be de-
scribed as follows: When an agent requires executing semantic service, it first
must discover the desired service using SSM. After that, it must select the most
suitable service among the discovered services. Finally, the selected service is
invoked directly communicating with its providers. The HTN structure for this
workflow is illustrated in Fig. 3. Each node in this HTN structure represents a
task of HTN formalism. Provision links are located in the left side of the node
and outcome links are in the right side. The sub-task(s) of a complex task is
represented with a line drawn between them. The responsibility of each task is
written inside of the node.

The top level task is called as “execute semantic web service”. This task is
a “service” task that may be included to any plan to make it semantic service
enabled. Also, “execute semantic web service” tasks can be connected to each
other to create composite semantic web services.

“Execute semantic web service” task must include input and output param-
eters of desired semantic web service and match degree to discover the service.
These parameters can be passed through the provision link or defined as con-
stant(s) during the creation of the real plan derived reusing the generic structure.
“Execute semantic web service” task propagate the required parameters to its
sub-tasks using the provision link structure. After the all tasks are executed,

148 O. Dikenelli et al.

Fig. 3. Generic plan structure for semantic service integration

the result of the “execute semantic web service” task is propagated to other
task(s) with OK outcome. If a desired service can not be found or any problem
is occurred during the service invocation, it ends with fail outcome.

First sub-task of the “execute semantic web service” is called as “discover
service” task which is responsible of discovering the service with the desired
capability. It takes input and output parameters of desired semantic web service
and match degree from “execute semantic web service” task. “Discover service”
task includes two primitive tasks (actions) named as “form a query for service
discovery” and “send query message” to inquire the SSM.

“Form a query for service discovery” action inherits the provisions of “discover
service” task. This action forms a query using the parameters passed through its
provision to discover the desired semantic web service. This query must include
input and output parameters of the desired service and a match degree for each
parameter since SSM uses this knowledge to semantically match the requested
service with the advertised ones. As it is said before, our platform uses OWL-
QL to query the SSM for service discovery. Since SSM knows only the OWL-S
ontology and match degree is not defined in OWL-S ontology, it’s not possible
to specify match degree in OWL-QL for querying OWL-S profiles. So, we have
extended OWL-QL to be able to prepare queries that include match degree for
semantic service discovery. This extension is called as OWL-QL-S. An OWL-QL-
S query may include an exact-match parameters list, a plug-in-match parameters
list and a subsume-match parameters list. These lists contain URI references
that occur in the query, and no URI reference can be an item of more than

Engineering a Multi Agent Platform 149

one of these lists. Thus, an OWL-QL-S query that prepared to discover OWL-S
semantic web service(s) is capable of specifying the match degree that will be
accepted for every input and output parameter.

“Send query message” action takes the OWL-QL-S query as provision and
prepares a FIPA-ACL message to discover the desired service. Then it sends
this message to the SSM. FIPA-RDF content language is used to transfer OWL-
QL-S query. So, OWL-QL-S query is located in the argument property of the
FIPA-RDF action.

“Select service(s)” action is executed when a reply message, which includes
matched service profiles, is sent by the SSM. The matched service profiles are
passed to this action as external provision. “Select service(s)” action is responsible
of selecting the most appropriate service(s) among all the sent ones. In our
implementation, SSM returns the matched services by sorting according to match
degrees and “select service(s)” selects the first one. But, this task may vary
depending to the overall requirements of the plan. For example, an application
may require invoking all exactly matched services. In this kind of situation, plan
developer has to modify the original action implementation according to the
application requirements. At the end of the action, selected service profile(s)
is sent with the OK outcome to the “invoke service(s)” action. If no service
is selected, “select service(s)” action and consequently “execute semantic web
service” task end with fail outcome.

“Invoke service(s)” action takes the selected service profile(s) and values of
service’s input parameters through the provision links and invokes selected ser-
vice(s). This version of our implementation is capable to call atomic semantic
web services. In other words, invocation of composite semantic web services is
not supported yet. To invoke an atomic semantic web service, first of all, the
URI of the WSDL document and operation name of service must be obtained
from the corresponding OWL-S grounding document. WSDL document contains
all the information that is required to invoke a web service dynamically such as
network address, operation name, types of input and output parameters etc [17].

6 Case Study

To give ideas in a more concrete way, we designed an agent based information
system prototype for tourism domain. We considered only a single scenario in
which traveler tries to find and reserve a suitable hotel room for his/her holiday.
The system includes a traveler agent that interacts with outside semantic web
services to satisfy the requirements of this scenario.

Following our design approach, we first identified possible external domain
service profiles that traveler agent can use to satisfy its goal. First of all, this
system requires a service to find the hotels which satisfy travel preferences of the
user. So, the first service profile is defined for this service and it takes “activity”
and “location” as service input parameters and returns “hotel” individuals as out-
put. We have implemented three actual services of this type and registered them
to SSM by selecting different “activity”, “location” and “hotel” concepts from re-

150 O. Dikenelli et al.

lated domain ontologies. Second service is defined for querying room availability
and it takes “date” as input parameter and returns “room availability” as out-
put. We have also created three actual services of this type and registered them
to SSM. It must be pointed out that knowledge about the “hotel” individual is
stored in the “contactInformation” concept of OWL-S profile during registration
of this service and then used in “find a room” service task as service selection
criteria. Final service is designed to make reservation. It takes “date” as input
parameter and returns “reservation result” individual as output.

After we have defined the service profiles, we try to model traveler agent’s
plan that uses the defined services to satisfy the scenario at hand. This plan’s
HTN structure is shown in Fig. 4. As shown in the figure; the plan includes
“three” service tasks that are defined considering the service profiles identified
as the first activity. At this point, all of these service tasks are created from the
generic service integration plan by specializing its actions based on the require-
ments of the plan.

Fig. 4. Hotel reservation plan structure

First action of the plan finds the user’s activity and location preferences
using the predefined preferences ontology and passes them to the “find a hotel”
“service” task for the execution of the “service” task. Since this task reuses the
structure of the generic service integration plan, it first executes the “discover
service” complex task of the generic plan. Subtasks of “discover service” complex
task are reused as is since they require only the input and output parameters
of the searched service. “Select service(s)” action is used as is also since SMM
sends the matched profiles as sorted. It takes the matched service profiles send by
SMM and pass them to the “invoke service(s)” action. “Invoke service(s)” action

Engineering a Multi Agent Platform 151

specialized to invoke the services starting from the top of the list using the values
of input parameters. If an invoked service returns a list of hotels successfully, it
stops and passes the list of hotels to the next task.

The found hotels are passed to the “reservation” task which includes two
“service” sub-tasks, one for finding an available room and one for making reser-
vation. These sub-tasks also reuse the structure of the generic service integration
plan. They use sub-tasks of “discover service” complex task as is. However, “find
a room” “service” task specializes the “select service(s)” action to select the ser-
vices that provided by one of the given hotels and “make reservation” “service”
task specializes the same action to select the service provided by the given hotel
that has an available room. “Find a room” “service” task specializes the invoke
service(s) action that continues to invoke selected room availability services until
it gets an output indicating an available room. Upon the completion of service
invocation, “find a room” “service” task passes the found hotel that has an avail-
able room to the “make reservation” “service” task for realizing the reservation.
This “service” task uses “invoke service(s)” action as is since only one service
is passed to this action from “select service(s)” action. At the end, reservation
details are given to the client.

7 Conclusion

Developers can create semantic web service enabled plans using the support
provided by the architecture introduced in this paper. Two activities should be
performed to develop plans with such a capability. First, service profile of each
domain specific service should be defined with use of a service ontology. Those
services will be used by platform’s agents in their plans. Second, for each required
service, the plan called “Generic Service Integration Plan” should be specialized.
We believe that the above mentioned support simplifies the semantic service
based multi agent system development and bridges the gap between the agent
and semantic service worlds.

References

1. Bellifemine, F., Poggi, A., and Rimassa, G.: Developing multi-agent systems with
a FIPA-compliant agent framework. Software Practice and Experience, 31 (2001)
103-128.

2. Erdur, R.C. and Dikenelli, O.: A standards-based agent framework for instantiating
adaptive agents. In Proceedings of The Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2003), pages 984-985, ACM
Press, 2003.

3. Erdur, R.C. and Dikenelli, O.: A FIPA-Compliant Agent Framework with an Extra
Layer for Ontology Dependent Reusable Behaviour. In Proceedings of Advances in
Information Systems, Second International Conference (ADVIS 2002), LNCS 2457,
Springer, 2002.

152 O. Dikenelli et al.

4. Fikes, R., Hayes, P, Horrocks, I.: OWL-QL - A Language for Deductive Query
Answering on the Semantic Web. Knowledge System Laboratory, Standford Uni-
versity, 2003, avail-able at http://ksl-web.standford.edu/KSL-Abstracts/KSL-03-
14.html

5. FIPA: FIPA Specifications, http://www.fipa.org
6. Graham, J.R., Decker, K.S., Mersic, M.: DECAF - A Flexible Multi Agent System

Architecture. Journal of Autonomous Agents and Multi-Agent Systems, 7, 7-27,
2003.

7. Li, L. and Horrocks, I.: A Software Framework for Matchmaking Based on Semantic
Web Technology. In Proceedings of the Twelfth International Conference on World
Wide Web, pages 331-339. ACM Press, 2003.

8. Paolucci, M. et al.: A Planning Component for RETSINA Agents, Intelligent
Agents VI, LNAI 1757, N.R. Jennings and Y. Lesperance, eds., Springer Verlag,
2000.

9. Paolucci, M., Kawamura, T., Payne, T., R., Sycara, K.: Semantic Matching of
Web Services Capabilities. In Proc. of the International Semantic Web Conference
(ISWC’02), Springer Verlag, Sarddegna, Italy, June 2002.

10. Paolucci, M. and Sycara, K.: Autonomous Semantic Web Services. IEEE Internet
Computing, September - October 2003, Published by the IEEE Computer Society

11. Sheshagiri, M., desJardins M., Finin T.: A Planner for Composing Services de-
scribed in DAML-S. Workshop on Planning for Web Services, Trento, 2003.

12. Sirin, E., Hendler, J., Parsia B.: Semi-automatic Composition of Web Services using
Semantic Descriptions. Web Services: Modeling, Architecture and Infrastructure
workshop in conjunction with ICEIS2003, April 2003.

13. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using SHOP2. Journal of Web Semantics, 1(4):377-396, 2004

14. Sycara, K., Paolucci, M., Soudry, J., Srinivasan, N.: Dynamic Discovery and Coor-
dination of Agent-Based Semantic Web Services. IEEE Internet Computing 8(3):
66-73 (2004)

15. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, in-
teraction and composition of Semantic Web Services. Journal of Web Semantics,
Elsevier, pp. 27-46, 2003

16. The OWL Services Coalition: Semantic Markup for Web Services (OWL-S), 2004,
http://www.daml.org/services/owl-s/1.1/

17. W3C: Web Services Description Language (WSDL) 2.0, http://www.w3.org/
TR/wsdl20

	Introduction
	Software Architecture of the Agent Platform for Semantic Service Integration
	A Design Approach for the Agent and Semantic Service Integration
	Agent's Internal Architecture
	Generic Plan Structure for Semantic Service Integration
	Case Study
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

