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Abstract. Because there is still no agreed-upon global ontology, Web services 
supplied by different providers typically have individual and unique semantics, 
described by independently developed ontologies. The seamless connection of 
these distributed Web services for business-to-business applications depends 
heavily on reconciling the disparate semantics, possibly by integrating the 
ontologies. In this paper, we describe an approach to reconcile ontologies from 
distributed Web services. Our approach is totally automated, and features the 
following: i) alignment of the ontologies is performed without previous 
agreement on the semantics of the terminology in each ontology; ii) both 
linguistic and contextual features are considered; iii) the use of WordNet for 
linguistic analysis; iv) integration of heuristic knowledge for contextual 
analysis; and v) inference of new relationships by applying several rules based 
on domain-independent relationships and property lists. Experiments have been 
carried out to show the promising results of our system. 

1   Introduction 

Web service applications, such as supply-chain purchase orders and automated order 
enactment, have been shown to offer great potential value to businesses. Initial on-
line automation activities were tightly coupled in the sense that business partners 
predefined the terms of their interaction using standards such as EDI and XML [12]. 
Recently, the emergence of Web services has led the software industry into a service-
oriented approach to software development. Service-oriented computing is a loosely 
coupled methodology, based on the use of standard protocols (UDDI for discovery, 
WSDL for description, BPEL4WS for coordination, and SOAP for communication). 
The use of Web services provides greater flexibility with respect to the 
interoperability, reuse, and development of applications in a distributed environment.  

Although there can be some value in accessing a single Web service through a 
semantically well-founded interface, a greater value is clearly derived through 
enabling a flexible composition of services, which will not only create new services, 
but also potentially add value to preexisting ones [1]. Therefore, the seamless 
connection of distributed Web services becomes increasingly critical. However, due 
to the lack of an agreed-upon global ontology, Web services from different providers 
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typically have heterogeneous semantics. Agents that automatically reconcile 
ontologies, and thereby understand and integrate the information from different 
sources, would greatly facilitate Web service-based application interoperability. 

It is impractical to have a unique and global ontology that includes every concept 
that is or might be included as part of the Web. However, it is reasonable that there 
might be ontologies for specific domains and sub-domains of the Web, and even for 
individual Web pages. It is clear, then, that the challenge is to be able to align and use 
different ontologies.  

In this paper, we describe PUZZLE, a system that implements an approach to 
construct a merged ontology from distributed and independently designed ontologies. 
We also explain the potential application of our system in Web service-based 
transactions. We assume that: 1) we are dealing with Web services for similar 
domains; 2) ontological representations have been derived from Web service 
documentations, e.g., WSDL and SOAP specifications; and 3) agents are willing to 
communicate with each other to reach consensus among ontologies. 

In [2] the main technique for semantic mapping between two ontology concepts 
relies on simple string and substring matching. We extend that work to incorporate: 
further linguistic analysis; contextual analysis based on the properties of the concepts 
in the ontology and the relationships among these concepts; extended use of WordNet 
[10] to include the search of not only synonyms but also antonyms, plurals, 
hypernyms, and hyponyms; use of the Java WordNet Library API [9] for performing 
run-time access to the dictionary, instead of having to initialize the synonym set a 
priori; integration of heuristic knowledge into the contextual analysis phase; and 
reasoning rules based on the domain-independent relationships subclass, superclass, 
equivalentclass, sibling, and each ontology concept’s property list to infer new 
relationships among concepts. Existing research efforts incorporate some of these 
features, but none has investigated them in combination.  

The rest of the paper is organized as follows. Section 2 briefly discusses related 
work in ontology matching. An overview of the PUZZLE system is given in  
Section 3. Section 4 describes the details of our system. Section 5 reports the 
experiments conducted and analyzes the results, and Section 6 concludes. 

2   Related Work 

A lot of research work has been carried out in ontology matching. There are two 
approaches to ontology matching [7]: instance-based and schema-based. All of the 
systems mentioned below belong to the latter, except for GLUE [8]. 

GLUE introduces well-founded notions of semantic similarity, applies multiple 
machine learning strategies, and can find not only one-to-one mappings, but also 
complex mappings. However, it depends heavily on the availability of instance data. 
Therefore, it is not practical for cases where there is an insignificant number of 
instances or no instances at all. 

In [3], a method is investigated for agents to develop local consensus ontologies to 
help in communications within a multiagent system of B2B agents. This work shows 
the potential brought by local consensus ontologies in improving how agents conduct 
B2B Web service discovery and composition. It also explores the influence of a 
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lexical database in ontology merging. However, it does not take into consideration the 
properties of ontology concepts. 

Cupid [5] combines linguistic and structural schema matching techniques, as well 
as the help of a precompiled dictionary. But it can only work with a tree-structured 
ontology instead of a more general graph-structured one.  As a result, there are many 
limitations to its application, because a tree cannot represent multiple-inheritance, an 
important characteristic in ontologies.  

For HELIOS [11], WordNet is used as a thesaurus for synonyms, hyponyms, 
hypernyms, and meronyms. However the thesaurus has to be initialized for each 
domain for which it is used. If additional knowledge or a different domain is needed, 
then the user has to input the respective terminology interactively. 

S-Match [4] is a modular system into which individual components can be plugged 
and unplugged. The core of the system is the computation of relations. Five possible 
relations are defined between nodes: equivalence, more general, less general, 
mismatch, and overlapping. Giunchiglia et al. claim that S-Match outperforms Cupid, 
COMA, and SF in measurements of precision, recall, overall, and F-measure. 
However, as Cupid does, S-Match uses a tree-structured ontology. 

3   Overview of Our Solution 

The goal of our work is to construct a consensus ontology from numerous 
independently designed ontologies. The main idea of our approach is that any pair of 
ontologies, G1 and G2, can be related indirectly through a semantic bridge consisting 
of other previously unrelated ontologies, even when there is no direct relationship 
between G1 and G2. The metaphor is that a small ontology is like a piece of jigsaw 
puzzle. It is difficult to relate two random pieces of a jigsaw puzzle until they are 
constrained by other puzzle pieces. Furthermore, for the semantic bridge between a 
given pair of ontologies G1 and G2, the more ontologies the semantic bridge 
comprises, the better the semantic match between G1 and G2. 

In order to construct a consensus ontology from a number of ontologies, we take 
two ontologies and merge them into a new one, and then we iteratively merge the 
resultant ontology with each additional one. We will explain next our method for 
merging two ontologies. 

We represent an ontology using a directed acyclic graph. In order to merge two 
ontologies, G1 and G2, we try to relocate each concept (node) from one ontology into 
the other one. We adopt a breadth-first order to traverse G1 and pick up a concept C as 
the target to be relocated into G2. Consequently, C’s parent set Parent(C) in the 
original graph G1 has already been relocated into the suitable place(s) in the 
destination graph G2 before the relocation of C itself.  

Firstly, we address the issue of the relocation value of a target concept C against 
any other concept C’. A relocation value is a value from 0 to 1, reflecting the 
likelihood of correctly relocating a concept. As equation 1 below indicates, a 
relocation value is calculated as the weighted sum of the values from linguistic 
matching and contextual matching. 

relocation value = wlinguistic * vlinguistic + wcontextual * vcontextual . (1) 
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When trying to match concepts, we consider both linguistic and contextual 
features. The meaning of an ontology concept is determined by its name and its 
relationship with other concept(s). In this paper, we assume that the linguistic factors 
contribute 70 percent and the contextual factors contribute 30 percent in concept 
matching. That is, wlinguistic is set to 0.7 and wcontextual is set to 0.3 in equation 1. The 
former is greater than the latter, because in our experiments, the input ontologies have 
less contextual information. Therefore, we do not want the contextual factors to 
dominate in the matching process. Notice that these weight values can always be 
customized according to different application requirements. 

We claim that there are five mutually exclusive relationships between any two 
concepts (see details in Section 4.2.2). From all the candidate concepts in the 
destination graph G, we build a list of candidate concepts for each type of relationship 
of C (see details in Section 4.1). Within each list, we calculate the relocation value of 
C against each concept in that list, and then choose the one producing the highest 
value. After we finish processing all candidate lists, we have sufficient information to 
be able to relocate C.  

4   Details of the PUZZLE System 

The following pseudocode describes the top level procedure of our algorithm. 

PUZZLE Algorithm – merge(G1, G2) 
  Input: Ontology G1 and G2  
  Output: Merged ontology G2 
  begin 
    new location of G1’s root = G2’s root 
    for each node C (except for the root) in G1 
     Parent(C) = C’s parent set in G1 
     for each member pi in Parent(C) 
        pj = new location of pi in G2 
         relocate(C, pj) 
       end for 
    end for 
  end 

4.1   Linguistic Matching 

The linguistic factor reflects how the ontology designer wants to encode the meaning 
of a concept by choosing a preferable name for it. PUZZLE uses both string and 
substring matching techniques when performing linguistic feature matching. 
Furthermore, we integrate WordNet by using the JWNL API in our system. In this 
way, we are able to obtain the synonyms, antonyms, hyponyms, and hypernyms of an 
English word, which has been shown to increase the accuracy of linguistic matching 
dramatically. In addition, WordNet performs some preprocessing, e.g., the 
transformation of a noun from plural form to singular form. 

We claim that for any pair of ontology concepts C and C’, their names NC and NC’ 
have the following mutually exclusive relationships, in terms of their linguistic 
features. 
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- anti-match: NC is a antonym of NC’, with the matching value vlinguistic = 0; 
- exact-match: either NC and NC’ have an exact string matching, or they are the 

synonyms of each other, with the matching value vlinguistic = 1; 
- sub-match: NC is either a postfix or a hypernym of NC’, with the matching value 

vlinguistic = 1; 
- super-match: NC’ is either a postfix or a hyponym of NC, with the matching value 

vlinguistic = 1; 
- leading-match: the leading substrings from NC and NC’ match with each other, 

with the matching value vlinguistic equaling the length of the common leading 
substring divided by the length of the longer string. For example, “active” and 
“actor” have a common leading substring “act”, resulting in a leading-match 
value of 3/6; 

- other: the matching value vlinguistic = 0. 

When relocating C, we perform the linguistic matching between C and all the 
candidate concepts. For each candidate concept C’, if an exact-match or a leading-
match is found, we put C’ into C’s candidate equivalentclass list; if a sub-match is 
found, we put C’ into C’s candidate subclass list; and if a super-match is found, we 
put C’ into C’s candidate superclass list. Then we continue the contextual matching 
between C and each concept in the three candidate lists to make the final decision. 

4.2   Contextual Matching 

The context of an ontology concept C consists of two parts, its property list and its 
relationship(s) with other concept(s). Notice that the latter is not explicitly expressed 
in any formula. Instead, we integrate the relationship factor into our system by the 
three reasoning rules specified in Section 4.3. 

4.2.1   Property List Matching 
Considering the property lists, P(C) and P(C’), of a pair of concepts C and C’ being 
matched, our goal is to calculate the similarity value vcontextual between them. 

vcontextual = wrequired * vrequired + wnon-required * vnon-required . (2) 

vrequired and vnon-required are the similarity values calculated for the required property list 
and non-required property list respectively. wrequired and wnon-required are the weights 
assigned to each list. In this paper, we choose 0.7 and 0.3 for wrequired and wnon-required. 
vrequired and vnon-required are calculated by the same procedure. 

Suppose the number of properties in two property lists (either required or non-
required ones), P1 and P2, is n1 and n2 respectively. Without loss of generality, we 
assume that n1 ≤ n2. There are three different matching models between two 
properties. 

1. total-match 
- The linguistic matching of the property names results in either an exact-

match, or a leading-match with vlinguistic ≥ 0.9; and 
- The data types match exactly. 

Let v1 = number of properties with a total-match, and f1 = v1/n1. Here f1 is a 
correcting factor embodying the integration of heuristic knowledge. We claim 
that between two property lists, the more pairs of properties being regarded as 
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total-match, the more likely that the remaining pairs of properties will also hit a 
match as long as the linguistic match between their names is above a certain 
threshold value. For example, assume that both P1 and P2 have ten properties. If 
there are already nine pairs with a total-match, and furthermore, if we find out 
that the names in the remaining pair of properties are very similar, then it is much 
more likely that this pair will also have a match, as opposed to the case where 
only one or two out of ten pairs have a total-match. 

2. name-match 
- The linguistic matching of the property names results in either an exact-

match, or a leading-match with vlinguistic ≥ 0.9; but 
- The data types do not match. 

Let v2 = number of properties with a name-match, and f2 = (v1 + v2)/n1. Similarly 
to f1, f2 also serves as a correcting factor. 

3. datatype-match 
Only the data types match. Let v3 = number of properties with a datatype-match. 

After we find all the possible matching models in the above order, we can calculate 
the similarity value v between the property lists as 

v = (v1* w1 + v2 * (w2 + w2’ * f1) + v3 * (w3 + w3’ * f2))/n1 . (3) 

where: 

- the value range of v is from 0 to 1; 
- wi (i from 1 to 3) is the weight assigned to each matching model. We use 1.0 for 

total-match, 0.8 for name-match, and 0.2 for datatype-match; 
- wi’(i from 2 to 3) is the correcting weight assigned to the matching models of 

name-match and datatype-match. We use 0.2 and 0.1 respectively; 

4.2.2   Relationships Among Concepts 
Given any two ontology concepts, we can have the following five mutually exclusive 
relationships between them: 

 subclass, denoted by ⊆  
 superclass, denoted by ⊇  
 equivalentclass, denoted by ≡  
 sibling, denoted by ≈  and 
 other, denoted by ≠  

OWL Full provides eleven relationship axioms [6]: subClassOf, equivalentClass, 
disjointWith, sameIndividualAs, differentFrom, subPropertyOf, equivalentProperty, 
inverseOf, transitiveProperty, functionalProperty, and inverseFunctionalProperty. 
The first three axioms will be used as follows. 

The subClassOf axiom will represent subclass-superclass relationship. The 
equivalentClass axiom will be used for specifying the equivalentclass relationship. As 
for sibling relationship, there is no direct support from OWL axioms. However, the 
disjointWith axiom is a good choice, given the condition that each ontology is 
reasonably designed. That is, we make an assumption that under a same parent class, 
all the siblings within the same level will be disjoint with each other. Otherwise, a 
new superclass should be added for those siblings with intersection. 
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4.3   Reasoning Rules 

PUZZLE uses three domain-independent rules, each regarding the relationship 
among ontology concepts, to incorporate the reasoning into our system. These rules 
are applied to concepts from different ontologies. Therefore, we refer to them as inter-
ontology reasoning. 

Suppose we have three ontologies A, B, and C, each of which is designed according 
to the OWL Full specification. Furthermore, let n(A), n(B), and n(C) be the sets of 
concepts in A, B, and C respectively, with ni(A), nj(B), and nk(C) be the individual 
concept for each set (i from 1 to |n(A)|, j from 1 to |n(B)|, and k from 1 to |n(C)|), and 
P(ni(A)), P(nj(B)), and P(nk(C)) be the property list for each individual concept. 

Consider the property lists P(ni(A)) and P(nj(B)), let si and sj be the set size of these 
two lists. There are four mutually exclusive possibilities for the relationship between 
P(ni(A)) and P(nj(B)): 

 P(ni(A)) and P(nj(B)) are consistent with each other if and only if 
i. Either si = sj or |si – sj|/(si + sj) ≤ 0.1, and 

ii. vcontextual ≥ 0.9 

We denote the corresponding concepts ni(A) and nj(B) by ni(A) ⎯→← p
nj(B); 

 P(ni(A)) is a subset of P(nj(B)) if and only if 
i. si ≤  sj, and 

ii. vcontextual ≥ 0.9 

We denote the corresponding concepts ni(A) and nj(B)  by ni(A) ⎯→⎯p  nj(B); 
 P(ni(A)) is a superset of P(nj(B)) if and only if 

i. si ≥  sj, and 
ii. vcontextual ≥ 0.9 

We denote the corresponding concepts ni(A) and nj(B)  by ni(A) ⎯⎯← p
nj(B); 

 Other. 

Rules 1 and 2 consider two ontologies, A and B. 
[Rule 1]. This rule is straightforward, claiming that the superclass/subclass 

relationship of a class is transferable to its equivalent class(es). 
- Preconditions: 

ni(A) ≡  nk(B) and (ni(A) ⊆  nj(A) or ni(A) ⊇  nj(A)) 
- Conclusion: 

nk(B) ⊆  nj(A) or nk(B) ⊇  nj(A) 
[Rule 2]. If two classes share the same parent(s), then their relationship is one of: 

equivalentclass, superclass, subclass, and sibling. For example, if we know that two 
classes have similar names and similar property lists, we still cannot conclude that 
they must be equivalent to each other, considering the possibility of the existence of 
badly designed ontologies. However, if we also know that these two classes have the 
same parent(s), then the probability of them being equivalent will dramatically 
increase. 
- Preconditions: 

ni1(A) ⊇  ni2(A) and nk1(B) ⊇  nk2(B) and 
ni1(A) ≡  nk1(B) and 
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1. ni2(A) ⎯→← p
nk2(B) and (the names of ni2(A) and nk2(B) have either an exact-

match, or a leading-match with vlinguistic ≥ 0.65) 

2. ni2(A) ⎯→⎯p
nk2(B) and the name of nk2(B) is a sub-match of the name of 

ni2(A) 

3. ni2(A) ⎯⎯← p
nk2(B) and the name of nk2(B) is a super-match of the name of 

ni2(A) 
4. None of above three holds 

- Conclusion: 
1. ni2(A) ≡  nk2(B) 
2. ni2(A) ⊇  nk2(B) 
3. ni2(A) ⊆  nk2(B) 
4. ni2(A) ≈  nk2(B) 

 
Rule 3 considers three ontologies, A, B, and C. 

[Rule 3]. If two classes have no direct relationships between them, we consider a 
third one to see if it can provide a semantic bridge between the original two. In 
theory, the more ontologies the semantic bridge comprises, the more likely we can 
succeed in discovering the hidden relationships that are not obvious originally. 
- Preconditions: 

ni1(A) ≡  nj1(C) and nj2(C) ≡  nk2(B) and 
nk1(B) ⊆  nk2(B) and nj1(C) ⊆  nj2(C) and 

1. ni1(A) ⎯→← p  nk1(B) and (the names of ni1(A) and nk1(B) have either an exact-
match, or a leading-match with vlinguistic ≥ 0.65) 

2. ni1(A) ⎯→⎯p  nk1(B) and the name of nk1(B) is a sub-match of the name of 
ni1(A) 

3. ni1(A) ⎯⎯← p  nk1(B) and the name of nk1(B) is a super-match of the name of 
ni1(A) 

4. None of the above three holds 
- Conclusion: 

1. ni1(A) ≡  nk1(B) 
2. ni1(A) ⊇  nk1(B) 
3. ni1(A) ⊆  nk1(B) 
4. ni1(A) ≈  nk1(B) 

5   Experiments and Discussion of Our Results 

First, we envision the following example application of PUZZLE in Web service-
based transactions. In the domain of real estate, there might be many reasons why 
different agencies would like to communicate with each other. Consider the case 
where a real estate agent did not initially find any housing matching a client’s 
requirements. It would be helpful if that agent directly connected to other agents and 
found something for the client, instead of sending the client away to find another 
agent. The ability of an agent to reach other potential suppliers would lead to better 
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service, less work for the client, and ultimately happier clients. Another situation is 
that several agencies might want to put together a unified interface to users, so that all 
of them together offer a wider range of options to clients. In order to carry out 
communications among agencies without the need to agree on predefined data 
interchange formats, the agencies can benefit from automated ontology matching 
abilities as provided by PUZZLE. 

In this section, we describe a set of experiments we conducted, whose purpose was 
to determine whether or not PUZZLE generates a consensus ontology. We evaluate 
PUZZLE in terms of precision, recall, and merging convergence. 

5.1   Experimental Setup 

 Test ontologies 
Three sets of ontologies in three different domains, i.e., “Building”, “Human”, and 
“Sports” were used for evaluating the performance of the PUZZLE system. They 
were constructed by graduate students in computer science and engineering at our 
university. There are 16 ontologies for the domain of “Building”, having between 
10 and 15 concepts with 19 to 38 properties and 31 to 49 relationships among the 
concepts. For the other 2 domains, no property was defined for any concept. We 
have 54 ontologies for the domain of “Human”, with between 7 and 28 concepts; 
and 23 ontologies for the domain of “Sports”, with between 4 and 22 concepts. 

5.2   Experimental Results and Analysis 

Our experiments simulate having a set of agents, each of which has a local ontology 
and is willing to communicate with the other agents. They try to reconcile their local 
ontologies to form a consensus one.  

5.2.1   Evaluation of the Resultant Ontology 
To decide whether a consensus ontology is obtained, we asked two ontology experts 
to carry out a manual mapping and we compared their results with ours. Both 
precision and recall measurements are applied in the evaluation during the process of 
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Fig. 1. Precision and Recall Measurements of Resultant Ontology for “Building” 
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merging ontologies one at a time. The evaluation result is shown in Figure 1. Due to 
the space limit, we only show the result for “Building” domain and omit the other 
two. Notice that this result is not statistically valid but indicative. Both measurements 
reflect a promising result, especially for “Building” domain. For “Human” and 
“Sports” domain, the results are not as good as that of “Building” domain. The reason 
is straightforward. Although in Section 3 we mention that our experiment ontologies  
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Fig. 2. (a) Merging Convergence Experiment for “Building”. (b) Merging Convergence 
Experiment for “Human”. (c) Merging Convergence Experiment for “Sports”. 
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have less contextual information than linguistic one, we claim that contextual factor 
does play an important role in determining the mapping among ontology concepts. 
That is the reason we chose ontologies of both with and without properties in the 
experiment. The result verifies our claim. 

5.2.2   Analysis of Merging Convergence 
One hypothesis is that as each additional ontology is merged into a consensus one, 
there should be fewer new items (concept, relationship, or property) added to the 
consensus. To test this hypothesis, the following experiment has been conducted. We 
calculated the number of newly discovered information at certain points during the 
merging process. For different domain, the testing points chosen are different. For 
example, in “Building” domain we picked up the points when the first, second, fifth, 
tenth, twelfth, thirteenth, and fifteenth ontologies were merged. For the other two 
domains, please refer to figure 2-b and 2-c, which together with figure 2-a, show the 
results of this hypothesis-verifying experiment. 

Out of the 16 ontologies in “Building” domain we had available for our 
experiments, we considered all possible combinations of the order by which they 
could be merged, in order to remove any bias that might be introduced by the 
presence of unusual ontology samples.  This is a huge number; for example, there are 
1680 combinations when the second ontology is to be merged, and 25000 for the fifth 
one. It is impossible to try all these orders. Our solution is that if the population size is 
less than or equal to 30 we try all possible orders; otherwise we randomly choose a 
sample space of size 30. The experiment data in “Human” and “Sports” domains was 
treated in the same way. 

A monotonically decreasing pattern is shown in Figure 2-a. As the number of 
ontologies already merged increases, the number of concepts, relationships, and 
properties learned from additional ontologies decreases. We believe that the number 
of new items will eventually converge to zero, although the sixteen ontologies we 
have available for this experiment are not enough to verify this belief. In figure 2-b 
and 2-c, the similar monotonically decreasing pattern is found. However, the 
converge tendency is not so obvious, comparing to that in figure 2-a. In “Building” 
domain, when the last ontology was being merged, the number of newly discovered 
concepts is around 37% of that number when the 0th ontology being merged, i.e., at 
the very beginning of the merging process. The corresponding percentages in the 
“Human” and “Sports” domains are 65% and 74%, respectively. This is again due to a 
lack of property information. In fact, sometimes it is even difficult for ontology 
experts to determine a potential mapping in the absence of a property list. 

6   Conclusion and Future Work 

Ontology matching is a critical operation in the Semantic Web, especially for 
business-to-business applications. In this paper, we presented the PUZZLE system, a 
schema-based approach combined with inter-ontology reasoning, which learns to 
reconcile ontologies for applications within a single domain. This completely 
automated matching is carried out at the schema level, without a previous agreement 
over the different terminology semantics. PUZZLE considers both linguistic and 
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contextual features of an ontology concept, integrates heuristic knowledge with 
several matching techniques, and incorporates the reasoning among ontologies. A set 
of experiments showed a promising result from this system. 

Future work includes: adopting machine learning techniques to make agents more 
intelligent; considering other relationships, such as partOf, hasPart, causeOf, and 
hasCause; integrating the OWL Validator into our system; and testing our method 
against other well-known ones in ontology matching, by using more general ontology 
libraries. 
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