
T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 106 – 117, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Reconciling Agent Ontologies for Web
Service Applications

Jingshan Huang, Rosa Laura Zavala Gutiérrez, Benito Mendoza García,
and Michael N. Huhns

Computer Science and Engineering Department,
University of South Carolina,
Columbia, SC 29208, USA

{huang27, zavalagu, mendoza2, huhns}@engr.sc.edu

Abstract. Because there is still no agreed-upon global ontology, Web services
supplied by different providers typically have individual and unique semantics,
described by independently developed ontologies. The seamless connection of
these distributed Web services for business-to-business applications depends
heavily on reconciling the disparate semantics, possibly by integrating the
ontologies. In this paper, we describe an approach to reconcile ontologies from
distributed Web services. Our approach is totally automated, and features the
following: i) alignment of the ontologies is performed without previous
agreement on the semantics of the terminology in each ontology; ii) both
linguistic and contextual features are considered; iii) the use of WordNet for
linguistic analysis; iv) integration of heuristic knowledge for contextual
analysis; and v) inference of new relationships by applying several rules based
on domain-independent relationships and property lists. Experiments have been
carried out to show the promising results of our system.

1 Introduction

Web service applications, such as supply-chain purchase orders and automated order
enactment, have been shown to offer great potential value to businesses. Initial on-
line automation activities were tightly coupled in the sense that business partners
predefined the terms of their interaction using standards such as EDI and XML [12].
Recently, the emergence of Web services has led the software industry into a service-
oriented approach to software development. Service-oriented computing is a loosely
coupled methodology, based on the use of standard protocols (UDDI for discovery,
WSDL for description, BPEL4WS for coordination, and SOAP for communication).
The use of Web services provides greater flexibility with respect to the
interoperability, reuse, and development of applications in a distributed environment.

Although there can be some value in accessing a single Web service through a
semantically well-founded interface, a greater value is clearly derived through
enabling a flexible composition of services, which will not only create new services,
but also potentially add value to preexisting ones [1]. Therefore, the seamless
connection of distributed Web services becomes increasingly critical. However, due
to the lack of an agreed-upon global ontology, Web services from different providers

Reconciling Agent Ontologies for Web Service Applications 107

typically have heterogeneous semantics. Agents that automatically reconcile
ontologies, and thereby understand and integrate the information from different
sources, would greatly facilitate Web service-based application interoperability.

It is impractical to have a unique and global ontology that includes every concept
that is or might be included as part of the Web. However, it is reasonable that there
might be ontologies for specific domains and sub-domains of the Web, and even for
individual Web pages. It is clear, then, that the challenge is to be able to align and use
different ontologies.

In this paper, we describe PUZZLE, a system that implements an approach to
construct a merged ontology from distributed and independently designed ontologies.
We also explain the potential application of our system in Web service-based
transactions. We assume that: 1) we are dealing with Web services for similar
domains; 2) ontological representations have been derived from Web service
documentations, e.g., WSDL and SOAP specifications; and 3) agents are willing to
communicate with each other to reach consensus among ontologies.

In [2] the main technique for semantic mapping between two ontology concepts
relies on simple string and substring matching. We extend that work to incorporate:
further linguistic analysis; contextual analysis based on the properties of the concepts
in the ontology and the relationships among these concepts; extended use of WordNet
[10] to include the search of not only synonyms but also antonyms, plurals,
hypernyms, and hyponyms; use of the Java WordNet Library API [9] for performing
run-time access to the dictionary, instead of having to initialize the synonym set a
priori; integration of heuristic knowledge into the contextual analysis phase; and
reasoning rules based on the domain-independent relationships subclass, superclass,
equivalentclass, sibling, and each ontology concept’s property list to infer new
relationships among concepts. Existing research efforts incorporate some of these
features, but none has investigated them in combination.

The rest of the paper is organized as follows. Section 2 briefly discusses related
work in ontology matching. An overview of the PUZZLE system is given in
Section 3. Section 4 describes the details of our system. Section 5 reports the
experiments conducted and analyzes the results, and Section 6 concludes.

2 Related Work

A lot of research work has been carried out in ontology matching. There are two
approaches to ontology matching [7]: instance-based and schema-based. All of the
systems mentioned below belong to the latter, except for GLUE [8].

GLUE introduces well-founded notions of semantic similarity, applies multiple
machine learning strategies, and can find not only one-to-one mappings, but also
complex mappings. However, it depends heavily on the availability of instance data.
Therefore, it is not practical for cases where there is an insignificant number of
instances or no instances at all.

In [3], a method is investigated for agents to develop local consensus ontologies to
help in communications within a multiagent system of B2B agents. This work shows
the potential brought by local consensus ontologies in improving how agents conduct
B2B Web service discovery and composition. It also explores the influence of a

J. Huang et al. 108

lexical database in ontology merging. However, it does not take into consideration the
properties of ontology concepts.

Cupid [5] combines linguistic and structural schema matching techniques, as well
as the help of a precompiled dictionary. But it can only work with a tree-structured
ontology instead of a more general graph-structured one. As a result, there are many
limitations to its application, because a tree cannot represent multiple-inheritance, an
important characteristic in ontologies.

For HELIOS [11], WordNet is used as a thesaurus for synonyms, hyponyms,
hypernyms, and meronyms. However the thesaurus has to be initialized for each
domain for which it is used. If additional knowledge or a different domain is needed,
then the user has to input the respective terminology interactively.

S-Match [4] is a modular system into which individual components can be plugged
and unplugged. The core of the system is the computation of relations. Five possible
relations are defined between nodes: equivalence, more general, less general,
mismatch, and overlapping. Giunchiglia et al. claim that S-Match outperforms Cupid,
COMA, and SF in measurements of precision, recall, overall, and F-measure.
However, as Cupid does, S-Match uses a tree-structured ontology.

3 Overview of Our Solution

The goal of our work is to construct a consensus ontology from numerous
independently designed ontologies. The main idea of our approach is that any pair of
ontologies, G1 and G2, can be related indirectly through a semantic bridge consisting
of other previously unrelated ontologies, even when there is no direct relationship
between G1 and G2. The metaphor is that a small ontology is like a piece of jigsaw
puzzle. It is difficult to relate two random pieces of a jigsaw puzzle until they are
constrained by other puzzle pieces. Furthermore, for the semantic bridge between a
given pair of ontologies G1 and G2, the more ontologies the semantic bridge
comprises, the better the semantic match between G1 and G2.

In order to construct a consensus ontology from a number of ontologies, we take
two ontologies and merge them into a new one, and then we iteratively merge the
resultant ontology with each additional one. We will explain next our method for
merging two ontologies.

We represent an ontology using a directed acyclic graph. In order to merge two
ontologies, G1 and G2, we try to relocate each concept (node) from one ontology into
the other one. We adopt a breadth-first order to traverse G1 and pick up a concept C as
the target to be relocated into G2. Consequently, C’s parent set Parent(C) in the
original graph G1 has already been relocated into the suitable place(s) in the
destination graph G2 before the relocation of C itself.

Firstly, we address the issue of the relocation value of a target concept C against
any other concept C’. A relocation value is a value from 0 to 1, reflecting the
likelihood of correctly relocating a concept. As equation 1 below indicates, a
relocation value is calculated as the weighted sum of the values from linguistic
matching and contextual matching.

relocation value = wlinguistic * vlinguistic + wcontextual * vcontextual . (1)

Reconciling Agent Ontologies for Web Service Applications 109

When trying to match concepts, we consider both linguistic and contextual
features. The meaning of an ontology concept is determined by its name and its
relationship with other concept(s). In this paper, we assume that the linguistic factors
contribute 70 percent and the contextual factors contribute 30 percent in concept
matching. That is, wlinguistic is set to 0.7 and wcontextual is set to 0.3 in equation 1. The
former is greater than the latter, because in our experiments, the input ontologies have
less contextual information. Therefore, we do not want the contextual factors to
dominate in the matching process. Notice that these weight values can always be
customized according to different application requirements.

We claim that there are five mutually exclusive relationships between any two
concepts (see details in Section 4.2.2). From all the candidate concepts in the
destination graph G, we build a list of candidate concepts for each type of relationship
of C (see details in Section 4.1). Within each list, we calculate the relocation value of
C against each concept in that list, and then choose the one producing the highest
value. After we finish processing all candidate lists, we have sufficient information to
be able to relocate C.

4 Details of the PUZZLE System

The following pseudocode describes the top level procedure of our algorithm.

PUZZLE Algorithm – merge(G1, G2)
 Input: Ontology G1 and G2
 Output: Merged ontology G2
 begin
 new location of G1’s root = G2’s root
 for each node C (except for the root) in G1
 Parent(C) = C’s parent set in G1
 for each member pi in Parent(C)
 pj = new location of pi in G2
 relocate(C, pj)
 end for
 end for
 end

4.1 Linguistic Matching

The linguistic factor reflects how the ontology designer wants to encode the meaning
of a concept by choosing a preferable name for it. PUZZLE uses both string and
substring matching techniques when performing linguistic feature matching.
Furthermore, we integrate WordNet by using the JWNL API in our system. In this
way, we are able to obtain the synonyms, antonyms, hyponyms, and hypernyms of an
English word, which has been shown to increase the accuracy of linguistic matching
dramatically. In addition, WordNet performs some preprocessing, e.g., the
transformation of a noun from plural form to singular form.

We claim that for any pair of ontology concepts C and C’, their names NC and NC’
have the following mutually exclusive relationships, in terms of their linguistic
features.

J. Huang et al. 110

- anti-match: NC is a antonym of NC’, with the matching value vlinguistic = 0;
- exact-match: either NC and NC’ have an exact string matching, or they are the

synonyms of each other, with the matching value vlinguistic = 1;
- sub-match: NC is either a postfix or a hypernym of NC’, with the matching value

vlinguistic = 1;
- super-match: NC’ is either a postfix or a hyponym of NC, with the matching value

vlinguistic = 1;
- leading-match: the leading substrings from NC and NC’ match with each other,

with the matching value vlinguistic equaling the length of the common leading
substring divided by the length of the longer string. For example, “active” and
“actor” have a common leading substring “act”, resulting in a leading-match
value of 3/6;

- other: the matching value vlinguistic = 0.

When relocating C, we perform the linguistic matching between C and all the
candidate concepts. For each candidate concept C’, if an exact-match or a leading-
match is found, we put C’ into C’s candidate equivalentclass list; if a sub-match is
found, we put C’ into C’s candidate subclass list; and if a super-match is found, we
put C’ into C’s candidate superclass list. Then we continue the contextual matching
between C and each concept in the three candidate lists to make the final decision.

4.2 Contextual Matching

The context of an ontology concept C consists of two parts, its property list and its
relationship(s) with other concept(s). Notice that the latter is not explicitly expressed
in any formula. Instead, we integrate the relationship factor into our system by the
three reasoning rules specified in Section 4.3.

4.2.1 Property List Matching
Considering the property lists, P(C) and P(C’), of a pair of concepts C and C’ being
matched, our goal is to calculate the similarity value vcontextual between them.

vcontextual = wrequired * vrequired + wnon-required * vnon-required . (2)

vrequired and vnon-required are the similarity values calculated for the required property list
and non-required property list respectively. wrequired and wnon-required are the weights
assigned to each list. In this paper, we choose 0.7 and 0.3 for wrequired and wnon-required.
vrequired and vnon-required are calculated by the same procedure.

Suppose the number of properties in two property lists (either required or non-
required ones), P1 and P2, is n1 and n2 respectively. Without loss of generality, we
assume that n1 ≤ n2. There are three different matching models between two
properties.

1. total-match
- The linguistic matching of the property names results in either an exact-

match, or a leading-match with vlinguistic ≥ 0.9; and
- The data types match exactly.

Let v1 = number of properties with a total-match, and f1 = v1/n1. Here f1 is a
correcting factor embodying the integration of heuristic knowledge. We claim
that between two property lists, the more pairs of properties being regarded as

Reconciling Agent Ontologies for Web Service Applications 111

total-match, the more likely that the remaining pairs of properties will also hit a
match as long as the linguistic match between their names is above a certain
threshold value. For example, assume that both P1 and P2 have ten properties. If
there are already nine pairs with a total-match, and furthermore, if we find out
that the names in the remaining pair of properties are very similar, then it is much
more likely that this pair will also have a match, as opposed to the case where
only one or two out of ten pairs have a total-match.

2. name-match
- The linguistic matching of the property names results in either an exact-

match, or a leading-match with vlinguistic ≥ 0.9; but
- The data types do not match.

Let v2 = number of properties with a name-match, and f2 = (v1 + v2)/n1. Similarly
to f1, f2 also serves as a correcting factor.

3. datatype-match
Only the data types match. Let v3 = number of properties with a datatype-match.

After we find all the possible matching models in the above order, we can calculate
the similarity value v between the property lists as

v = (v1* w1 + v2 * (w2 + w2’ * f1) + v3 * (w3 + w3’ * f2))/n1 . (3)

where:

- the value range of v is from 0 to 1;
- wi (i from 1 to 3) is the weight assigned to each matching model. We use 1.0 for

total-match, 0.8 for name-match, and 0.2 for datatype-match;
- wi’(i from 2 to 3) is the correcting weight assigned to the matching models of

name-match and datatype-match. We use 0.2 and 0.1 respectively;

4.2.2 Relationships Among Concepts
Given any two ontology concepts, we can have the following five mutually exclusive
relationships between them:

 subclass, denoted by ⊆
 superclass, denoted by ⊇
 equivalentclass, denoted by ≡
 sibling, denoted by ≈ and
 other, denoted by ≠

OWL Full provides eleven relationship axioms [6]: subClassOf, equivalentClass,
disjointWith, sameIndividualAs, differentFrom, subPropertyOf, equivalentProperty,
inverseOf, transitiveProperty, functionalProperty, and inverseFunctionalProperty.
The first three axioms will be used as follows.

The subClassOf axiom will represent subclass-superclass relationship. The
equivalentClass axiom will be used for specifying the equivalentclass relationship. As
for sibling relationship, there is no direct support from OWL axioms. However, the
disjointWith axiom is a good choice, given the condition that each ontology is
reasonably designed. That is, we make an assumption that under a same parent class,
all the siblings within the same level will be disjoint with each other. Otherwise, a
new superclass should be added for those siblings with intersection.

J. Huang et al. 112

4.3 Reasoning Rules

PUZZLE uses three domain-independent rules, each regarding the relationship
among ontology concepts, to incorporate the reasoning into our system. These rules
are applied to concepts from different ontologies. Therefore, we refer to them as inter-
ontology reasoning.

Suppose we have three ontologies A, B, and C, each of which is designed according
to the OWL Full specification. Furthermore, let n(A), n(B), and n(C) be the sets of
concepts in A, B, and C respectively, with ni(A), nj(B), and nk(C) be the individual
concept for each set (i from 1 to |n(A)|, j from 1 to |n(B)|, and k from 1 to |n(C)|), and
P(ni(A)), P(nj(B)), and P(nk(C)) be the property list for each individual concept.

Consider the property lists P(ni(A)) and P(nj(B)), let si and sj be the set size of these
two lists. There are four mutually exclusive possibilities for the relationship between
P(ni(A)) and P(nj(B)):

 P(ni(A)) and P(nj(B)) are consistent with each other if and only if
i. Either si = sj or |si – sj|/(si + sj) ≤ 0.1, and

ii. vcontextual ≥ 0.9

We denote the corresponding concepts ni(A) and nj(B) by ni(A) ⎯→← p
nj(B);

 P(ni(A)) is a subset of P(nj(B)) if and only if
i. si ≤ sj, and

ii. vcontextual ≥ 0.9

We denote the corresponding concepts ni(A) and nj(B) by ni(A) ⎯→⎯p nj(B);
 P(ni(A)) is a superset of P(nj(B)) if and only if

i. si ≥ sj, and
ii. vcontextual ≥ 0.9

We denote the corresponding concepts ni(A) and nj(B) by ni(A) ⎯⎯← p
nj(B);

 Other.

Rules 1 and 2 consider two ontologies, A and B.
[Rule 1]. This rule is straightforward, claiming that the superclass/subclass

relationship of a class is transferable to its equivalent class(es).
- Preconditions:

ni(A) ≡ nk(B) and (ni(A) ⊆ nj(A) or ni(A) ⊇ nj(A))
- Conclusion:

nk(B) ⊆ nj(A) or nk(B) ⊇ nj(A)
[Rule 2]. If two classes share the same parent(s), then their relationship is one of:

equivalentclass, superclass, subclass, and sibling. For example, if we know that two
classes have similar names and similar property lists, we still cannot conclude that
they must be equivalent to each other, considering the possibility of the existence of
badly designed ontologies. However, if we also know that these two classes have the
same parent(s), then the probability of them being equivalent will dramatically
increase.
- Preconditions:

ni1(A) ⊇ ni2(A) and nk1(B) ⊇ nk2(B) and
ni1(A) ≡ nk1(B) and

Reconciling Agent Ontologies for Web Service Applications 113

1. ni2(A) ⎯→← p
nk2(B) and (the names of ni2(A) and nk2(B) have either an exact-

match, or a leading-match with vlinguistic ≥ 0.65)

2. ni2(A) ⎯→⎯p
nk2(B) and the name of nk2(B) is a sub-match of the name of

ni2(A)

3. ni2(A) ⎯⎯← p
nk2(B) and the name of nk2(B) is a super-match of the name of

ni2(A)
4. None of above three holds

- Conclusion:
1. ni2(A) ≡ nk2(B)
2. ni2(A) ⊇ nk2(B)
3. ni2(A) ⊆ nk2(B)
4. ni2(A) ≈ nk2(B)

Rule 3 considers three ontologies, A, B, and C.

[Rule 3]. If two classes have no direct relationships between them, we consider a
third one to see if it can provide a semantic bridge between the original two. In
theory, the more ontologies the semantic bridge comprises, the more likely we can
succeed in discovering the hidden relationships that are not obvious originally.
- Preconditions:

ni1(A) ≡ nj1(C) and nj2(C) ≡ nk2(B) and
nk1(B) ⊆ nk2(B) and nj1(C) ⊆ nj2(C) and

1. ni1(A) ⎯→← p nk1(B) and (the names of ni1(A) and nk1(B) have either an exact-
match, or a leading-match with vlinguistic ≥ 0.65)

2. ni1(A) ⎯→⎯p nk1(B) and the name of nk1(B) is a sub-match of the name of
ni1(A)

3. ni1(A) ⎯⎯← p nk1(B) and the name of nk1(B) is a super-match of the name of
ni1(A)

4. None of the above three holds
- Conclusion:

1. ni1(A) ≡ nk1(B)
2. ni1(A) ⊇ nk1(B)
3. ni1(A) ⊆ nk1(B)
4. ni1(A) ≈ nk1(B)

5 Experiments and Discussion of Our Results

First, we envision the following example application of PUZZLE in Web service-
based transactions. In the domain of real estate, there might be many reasons why
different agencies would like to communicate with each other. Consider the case
where a real estate agent did not initially find any housing matching a client’s
requirements. It would be helpful if that agent directly connected to other agents and
found something for the client, instead of sending the client away to find another
agent. The ability of an agent to reach other potential suppliers would lead to better

J. Huang et al. 114

service, less work for the client, and ultimately happier clients. Another situation is
that several agencies might want to put together a unified interface to users, so that all
of them together offer a wider range of options to clients. In order to carry out
communications among agencies without the need to agree on predefined data
interchange formats, the agencies can benefit from automated ontology matching
abilities as provided by PUZZLE.

In this section, we describe a set of experiments we conducted, whose purpose was
to determine whether or not PUZZLE generates a consensus ontology. We evaluate
PUZZLE in terms of precision, recall, and merging convergence.

5.1 Experimental Setup

 Test ontologies
Three sets of ontologies in three different domains, i.e., “Building”, “Human”, and
“Sports” were used for evaluating the performance of the PUZZLE system. They
were constructed by graduate students in computer science and engineering at our
university. There are 16 ontologies for the domain of “Building”, having between
10 and 15 concepts with 19 to 38 properties and 31 to 49 relationships among the
concepts. For the other 2 domains, no property was defined for any concept. We
have 54 ontologies for the domain of “Human”, with between 7 and 28 concepts;
and 23 ontologies for the domain of “Sports”, with between 4 and 22 concepts.

5.2 Experimental Results and Analysis

Our experiments simulate having a set of agents, each of which has a local ontology
and is willing to communicate with the other agents. They try to reconcile their local
ontologies to form a consensus one.

5.2.1 Evaluation of the Resultant Ontology
To decide whether a consensus ontology is obtained, we asked two ontology experts
to carry out a manual mapping and we compared their results with ours. Both
precision and recall measurements are applied in the evaluation during the process of

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Ontologies Merged

P
r
e
c
i
s
i
o
n

a
n
d

R
e
c
a
l
l

Precision of Equivalent Concepts Recall of Equivalent Concepts

Fig. 1. Precision and Recall Measurements of Resultant Ontology for “Building”

Reconciling Agent Ontologies for Web Service Applications 115

merging ontologies one at a time. The evaluation result is shown in Figure 1. Due to
the space limit, we only show the result for “Building” domain and omit the other
two. Notice that this result is not statistically valid but indicative. Both measurements
reflect a promising result, especially for “Building” domain. For “Human” and
“Sports” domain, the results are not as good as that of “Building” domain. The reason
is straightforward. Although in Section 3 we mention that our experiment ontologies

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Ontologies Already Merged

Number of Concepts Discovered

Number of Relationships Discovered

Number of Properties Discovered

(a)

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45 50

Number of Ontologies Already Merged

Number of Concepts Discovered Number of Relationships Discovered

(b)

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of Ontologies Already Merged

Number of Concepts Discovered Number of Relationships Discovered

(c)

Fig. 2. (a) Merging Convergence Experiment for “Building”. (b) Merging Convergence
Experiment for “Human”. (c) Merging Convergence Experiment for “Sports”.

J. Huang et al. 116

have less contextual information than linguistic one, we claim that contextual factor
does play an important role in determining the mapping among ontology concepts.
That is the reason we chose ontologies of both with and without properties in the
experiment. The result verifies our claim.

5.2.2 Analysis of Merging Convergence
One hypothesis is that as each additional ontology is merged into a consensus one,
there should be fewer new items (concept, relationship, or property) added to the
consensus. To test this hypothesis, the following experiment has been conducted. We
calculated the number of newly discovered information at certain points during the
merging process. For different domain, the testing points chosen are different. For
example, in “Building” domain we picked up the points when the first, second, fifth,
tenth, twelfth, thirteenth, and fifteenth ontologies were merged. For the other two
domains, please refer to figure 2-b and 2-c, which together with figure 2-a, show the
results of this hypothesis-verifying experiment.

Out of the 16 ontologies in “Building” domain we had available for our
experiments, we considered all possible combinations of the order by which they
could be merged, in order to remove any bias that might be introduced by the
presence of unusual ontology samples. This is a huge number; for example, there are
1680 combinations when the second ontology is to be merged, and 25000 for the fifth
one. It is impossible to try all these orders. Our solution is that if the population size is
less than or equal to 30 we try all possible orders; otherwise we randomly choose a
sample space of size 30. The experiment data in “Human” and “Sports” domains was
treated in the same way.

A monotonically decreasing pattern is shown in Figure 2-a. As the number of
ontologies already merged increases, the number of concepts, relationships, and
properties learned from additional ontologies decreases. We believe that the number
of new items will eventually converge to zero, although the sixteen ontologies we
have available for this experiment are not enough to verify this belief. In figure 2-b
and 2-c, the similar monotonically decreasing pattern is found. However, the
converge tendency is not so obvious, comparing to that in figure 2-a. In “Building”
domain, when the last ontology was being merged, the number of newly discovered
concepts is around 37% of that number when the 0th ontology being merged, i.e., at
the very beginning of the merging process. The corresponding percentages in the
“Human” and “Sports” domains are 65% and 74%, respectively. This is again due to a
lack of property information. In fact, sometimes it is even difficult for ontology
experts to determine a potential mapping in the absence of a property list.

6 Conclusion and Future Work

Ontology matching is a critical operation in the Semantic Web, especially for
business-to-business applications. In this paper, we presented the PUZZLE system, a
schema-based approach combined with inter-ontology reasoning, which learns to
reconcile ontologies for applications within a single domain. This completely
automated matching is carried out at the schema level, without a previous agreement
over the different terminology semantics. PUZZLE considers both linguistic and

Reconciling Agent Ontologies for Web Service Applications 117

contextual features of an ontology concept, integrates heuristic knowledge with
several matching techniques, and incorporates the reasoning among ontologies. A set
of experiments showed a promising result from this system.

Future work includes: adopting machine learning techniques to make agents more
intelligent; considering other relationships, such as partOf, hasPart, causeOf, and
hasCause; integrating the OWL Validator into our system; and testing our method
against other well-known ones in ontology matching, by using more general ontology
libraries.

References

1. Singh, M. P., and Huhns, M. N.: Service-Oriented Computing Semantics, Processes,
Agents. 1st edn. Wiley (2005)

2. Stephens, L., Gangam, A., and Huhns, M. N.: Constructing Consensus Ontologies for the
Semantic Web: A Conceptual Approach. In: World Wide Web Journal, Vol. 7, No. 4.
Kluwer Academic Publishers (2004) 421 – 442

3. Williams, A., Padmanabhan, A., and Blake, M. B.: Local Consensus Ontologies for B2B-
Oriented Service Composition. In: Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems. ACM Press (2003)
647 – 654

4. Giunchiglia, F., Shvaiko, P., and Yatskevich, M.: S-Match: an algorithm and an
implementation of semantic matching. In: Proceedings of the 1st European Semantic Web
Symposium, Vol. 3053. Springer-Verlag (2004) 61 – 75

5. Madhavan, J., Bernstein, P. A., and Rahm, E.: Generic Schema Matching with Cupid. In:
Proceedings of the 27th VLDB Conference. Springer-Verlag (2001)

6. W3C: OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref (2004)
7. Rahm, E., and Bernstein, P. A.: A survey of approaches to automatic schema matching. In:

The VLDB Journal, Vol. 10. Springer-Verlag (2001) 334 – 350
8. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., and Halevy, A.: Learning to match

ontologies on the Semantic Web. In: The VLDB Journal, Vol. 12. Springer-Verlag (2003)
303 – 319

9. JWNL: Java WordNet Library – JWNL 1.3. http://sourceforge.net/projects/jwordnet/
(2003)

10. Miller, A. G.: WordNet: A Lexical Database for English. In: Communications of the
ACM, Vol. 38, No. 11. ACM Press (1995) 39 – 41

11. Castano, S., Ferrara, A., Montanelli, S., and Racca, G.: Matching Techniques for Resource
Discovery in Distributed Systems Using Heterogeneous Ontology Descriptions. In:
Proceedings of the International Conference on Information Technology: Coding and
Computing (ITCC04), Vol. 1. IEEE Computer Society Press (2004) 360 – 366

12. Zavala Gutiérrez, R. L. and Huhns, M. N.: On Building Robust Web Service-Based
Applications. In: Extending Web Services Technologies: The Use of Multi-Agent
Approaches. Kluwer Academic Publishing (2004)

	Introduction
	Related Work
	Overview of Our Solution
	Details of the PUZZLE System
	Linguistic Matching
	Contextual Matching
	Reasoning Rules

	Experiments and Discussion of Our Results
	Experimental Setup
	Experimental Results and Analysis

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

