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Abstract. The database and information retrieval communities have
long been recognized as being irreconcilable. Today, however, we witness
a surprising convergence of the techniques used by both communities
in decentralized, large-scale environments. The newly emerging field of
reputation based trust management, borrowing techniques from both
communities, best demonstrates this claim. We argue that incomplete
knowledge and increasing autonomy of the participating entities are the
driving forces behind this convergence, pushing the adoption of proba-
bilistic techniques typically borrowed from an information retrieval con-
text. We argue that using a common probabilistic framework would be
an important step in furthering this convergence and enabling a common
treatment and analysis of distributed complex systems. We will provide
a first sketch of such a framework and illustrate it with examples from
our previous work on information retrieval, structured search and trust
assessment.

1 Introduction

The database and information retrieval communities have long been perceived as
being irreconcilable. The different ways of how data is represented, interpreted
and processed are at the core of the divergence in focus of these communities.

The main problem addressed by the database community can be stated as
the efficient management of data represented in some first order logic language
and the efficient evaluation of queries specifying information needs unambigu-
ously through logical expressions. Recently this model has been extended in the
context of the Semantic Web to deal with distributed, heterogeneous informa-
tion sources by using shared first order conceptual models (ontologies) and a
common Web-based infrastructure.
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On the other hand, the information retrieval community focuses on finding
models for retrieving documents in response to incompletely or ambiguously
specified information needs by exploiting document features and user relevance
feedback. Web search engines are the most prominent incarnation of these tech-
niques for assessing relevance of documents in response to user requests for
information, using both textual content of documents and user feedback derived
from the link structure of the Web.

Attempts to reconcile the two communities reach far back in history. Even a
conference series, the International Conference on Information and Knowledge
Management (CIKM), is dedicated to this goal. We were interested to see to
which extent the interaction among the communities progressed, and analyzed
the program of the years 2003 and 2004. The result is not too impressive. Among
120 research papers we could identify 10 that are at the borderline of databases
and information retrieval, whereas the others are quite clearly belonging to the
fields of classical database, information retrieval or knowledge management. In
2004, two sessions on databases and information retrieval have been organized.
The topics addressed by the borderline papers are on storage management for re-
trieval systems, processing of XML documents and similarity search in databases.
The last two areas in fact indicate one reason why the boundary between the
database view of structured data processing and the information retrieval view
of content-oriented processing is starting to dissolve. It is the result of processing
specific data types that require both structural and content-oriented processing.

In this paper, we argue that recent developments in diverse areas, such as the
Semantic Web, peer-to-peer computing, sensor networks, agent technologies and
Web retrieval, indicate that the “semantic gap” between traditional logic-based
knowledge presentation and processing and the probabilistic approach taken in
information retrieval will be rapidly closing, for a very fundamental reason, that
goes beyond the requirement of processing specific data types.

In a distributed environment of autonomous information sources, informa-
tion and information needs can no longer be expressed concisely, as expected
by database and semantic web technologies, but have to deal with numerous
sources of uncertainty, thus requiring a probabilistic view in the processing of
data. In information retrieval, one deals with one specific kind of uncertainty,
uncertainty about users information needs. We claim that in distributed envi-
ronments, qualitatively different sources of uncertainty have to be dealt with as
well. This will require a structured framework to represent and process the dif-
ferent sources of uncertainty to provide insightful answers to users information
needs. This requirement goes well beyond existing capabilities of both database
and information retrieval techniques and systems.

We will illustrate this convergence process by providing several important ex-
amples of how the uncertainty resulting from autonomy and incomplete knowl-
edge in distributed environments affects information processing. These examples
are taken both from our own work and from some typical results found in the
literature. We will provide short summaries of these techniques and illustrate
by a simple example of a search problem how each of these techniques affects
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the information processing task for satisfying the search task. By doing this we
illustrate how using a probabilistic framework makes it possible to integrate dif-
ferent ways of dealing with uncertainty, just as first order logic is being used as
an integration framework for structured representation and reasoning over dis-
tributed information sources. This example-based analysis will allow us to derive
some basic conclusions on requirements and issues for extending the current Web
infrastructure for dealing with uncertainty in a systematic and integrated way.

2 Running Example: Getting Newspaper Articles About
Hot Days in Switzerland

To illustrate our claims, we introduce an example which is in our opinion repre-
sentative of the current challenges emerging in information management today.
The example starts as a simple SQL query posed against a relational database
but will be enriched throughout the paper as new sources of uncertainty are
introduced.

From June to August 2003, unusually high temperatures were reported across
Europe, including Switzerland. Imagine a journalist wanting to retrieve all news-
paper articles about hot days in Switzerland which appeared exactly on one of
those days. In a standard relational databases scenario, this could translate to a
SQL query like the following:

�

�

�

�

SELECT article.text
FROM articles, weather WHERE

article.text like %hot summer days%
and article.date = weather.date
and weather.temperature > 30

The query contains three predicates, q1, q2 and q3 representing some con-
dition on the content of articles, their publication date and some temperature
record respectively.

From a logical perspective, such a query can be considered as a logical ex-
pression q for which we have to find all objects d contained in a database such
that the implication d → q is true.

Expressing an information need in this form reflects several basic assumptions
being made, including the ability of the user to precisely express her information
need, the correct interpretation of the schematic information provided by the
database and the correctness of the data stored in the database. In practice, as
we will demonstrate in the following, none of these assumptions can be taken
for granted in realistic, distributed information systems.

3 Uncertainty on Users’ Information Needs

Since long it has been recognized that logics is not an appropriate framework
for information search when it comes to searching documents with textual con-
tent. Boolean retrieval has been an early attempt to apply logics for text search,
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which has soon found its limitations. Due to the ambiguity of natural language,
there exists no strict relationship between queries expressed in natural language
against documents containing natural language text. Thus the discipline of in-
formation retrieval has developed a rich set of models for assessing the relevance
of documents for a given query. These models introduce an element of uncer-
tainty into the search process, since result objects are no more included into the
result set by virtue of a decidable property (a predicate) but whenever there is
indication that they might be relevant to some degree to the users information
need. These observations clearly apply to the clause q1 == article.text like
%hot summer days% of our example query, which in a current database system
(ideally) would not be resolved at the syntactic level searching for the exact
phrase, but using an underlying text retrieval system.

3.1 Running Example: Accounting for the Uncertainty on
Information Needs Through Probabilistic Retrieval

Since we are aiming at a probabilistic framework for dealing with uncertainty in
modern information systems, we provide here a short overview of information
retrieval from a probabilistic perspective, which follows the exposition given
by [5]. From a logical perspective, answering a query q with document d amounts
to proving that the implication d → q is true. In Boolean retrieval this means that
all terms of a (conjunctive) query q would appear in d. In contrast, probabilistic
retrieval adopts the following notion for answering a query q: the conditional
probability P (q|d) indicates of how relevant document d is to query q.

For computing this probability usually a concept space C of disjoint concepts
c ∈ C is introduced with a probability density function P (.) over C. Queries
and documents are considered as concept sets. Then the query answer can be
represented as follows:

P (q|d) =
P (q ∩ d)

P (d)
, P (d) =

∑

c∈d

P (c), P (q ∩ d) =
∑

c∈q,c∈d

P (c)

A popular type of concepts are terms taken from a vocabulary. Since the
concepts are considered as being independent we can further derive

P (q|d) =
P (q ∩ d)

P (d)
=

∑
c∈C P (d ∩ q ∩ c)

P (d)
=

∑
c∈C P (d ∩ q|c)P (c)

P (d)

If the concept space consists of the terms of a vocabulary, we may assume
that the probabilities P (d|c) and P (q|c) are known from analyzing the text
collection. For computing a query answer, a standard assumption that is made
in probabilistic retrieval is the maximum entropy principle, which states the
following independence:

P (d ∩ q|c) = P (d|c)P (q|c).



On the Convergence of Structured Search, Information Retrieval 5

Using this assumption we get

P (q|d) =
∑

c∈C P (d ∩ q|c)P (c)
P (d)

=
∑

c∈C P (d|c)P (q|c)P (c)
P (d)

=
∑

c∈C

P (q|c)P (c|d)

The last expression can be interpreted as the classical model of vector space
retrieval, the predominant model for modern text retrieval. Under this interpre-
tation, P (c|d) corresponds to the term weight for a document representation,
which is typically computed using a (heuristic) tf-idf scheme and gives the prob-
ability that a term is characteristic for a given document. P (q|c) corresponds to
the query term weight and gives the probability that a term is characteristic for
the result set of query q.

In summary, a predicate such as q1 == article.text like %hot summer
days% corresponds in a search model that is considering uncertainty on users’
information needs to a random variable q1 for which we have a method to com-
pute P (q1|d), the probability that a document is relevant to the predicate. The
method to compute this probability relies on an intermediary concept (or fea-
ture) space C, for which we assume to have probabilistic models for P (q1|c)
and P (c|d) for a random variable c over the concept space. The computation of
P (q1|d) is then performed by marginalization of the joint probability distribution
P (q1, c, d) exploiting the separation of the random variables q1 and d through c.

From a practical perspective, using a retrieval engine within a logics-based
query language such as SQL poses the question of how to reflect the probabilistic
evaluation of q1 into the query result. Two solutions are applicable: either only
result documents are included that exceed a certain threshold probability. This
seems to be problematic with respect to the interpretation of the result. Alterna-
tively the probability values are included into the result table. This might raise
efficiency concerns as the result set might become unacceptably large. As we will
show in the following, this is a problem that is not confined to the case of dealing
with users’ uncertainty on information need, but with dealing with uncertainty
in general.

4 Uncertainty on Knowledge Conceptualizations

Traditionally, knowledge representations have been based on subsets of first-
order logic in computer science. Indeed, it is widely recognized that knowledge
can be efficiently captured by characterizing classes of objects and their inter-
relationships. Databases have long used dialects derived from first-order logic to
represent or query data, while description logic, a subset of first-order logic, has
been chosen to back-up standards for the Semantic Web.
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These representations have proven to be extremely useful for dealing with
knowledge bases or providing sound semantics to query processing. Until re-
cently, most information-processing tasks took place in controlled environments
where one had full control over the definitions of entities in the universe of
discourse. When semantic heterogeneity occurred, for examples when multiple
schemas or ontologies had to be merged together, some higher-order element
(e.g., an integrated schema) was statically introduced to consolidate knowledge in
a consistent manner. Thus, some well-known techniques such as Global-As-View
and Local-as-View to integrate heterogeneous databases and rewrite queries in
deterministic ways have been developed.

Today, however, with the advent of the Internet and the democratization
of Semantic Web tools facilitating knowledge elicitation in machine-processable
formats, the situation is quickly evolving. One cannot rely on global, centralized
schemas anymore as knowledge creation and consumption are getting more and
more dynamic and decentralized. In such settings, one has to account for the fact
that new knowledge and knowledge representations can appear on a continual
basis without any central coordination, while well-known sources might well dis-
appear without prior notice. As a corollary, it is getting more and more difficult
to get any kind of certainty about knowledge coming from heterogeneous and
dynamic sources over which one has little control.

In this context, uncertainty over knowledge gets particularly critical when
one considers agreement on knowledge conceptualizations. Traditionally, only
relevant information adhering to specific schemas, taxonomies or ontologies was
returned as result of a structured search. As more and more conceptualizations
get available from heterogeneous sources, one has to take into consideration the
tradeoff between maximizing the precision of the results (by focusing on well-
known information sources only) and the total number of relevant results (by
considering as many information sources as possible). Many different (semi-)
automatic schema mapping schemes have been explored recently. In most cases,
some probabilistic value can be returned indicating whether or not the outcome
of the mapping process makes sense. One could hence take advantage of these
probabilistic values upon deciding whether or not to include an information
source for a given structured query.

4.1 Running Example: Accounting for the Uncertainty on Shared
Conceptualizations Through Semantic Gossiping

To come back to our running example, let us imagine that the journalist has ac-
cess to various newspaper databases on the web. Each database was developed
independently of the other ones. All databases consider some sort of representa-
tion to encode the date on which a particular newspaper article was published.
However, some call this date published date, while other might call it dateDePub-
lication or pd field. Due to the fact that the schemas are continually evolving, ap-
pearing or disappearing without any central coordination, maintaining a global
schema from / to which all individual databases could be mapped is arguably im-
practicable. Instead, translation links (e.g., schema mappings, views) are defined
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between pairs of schemas. Those pairwise links permit to iteratively propagate
a query posed against a specific schema to other databases. This approach has
been taken in the new field of peer-to-peer data management.

The problem lies here in the fact that those links might be created (semi-) au-
tomatically, or might not be able to guarantee the outcome of a query mapping
deterministically. Different cases may occur in practice. For example, publica-
tion date might be erroneously mapped onto deletion date or could be imper-
fectly mapped onto a publicationWeek attribute of a weekly newspaper (coarser
degree of granularity for storing publication dates). Thus, we cannot expect the
outcome of a query mapping to be one hundred percent faithful to the original
query.

We engineered heuristics to quantify the degree to which a translated query
differs from the intended query. We termed these techniques Semantic Gossip-
ing [1,2] as they rely on gossiping a query through the various translation links
for deriving probabilistic guarantees on the translation process. From a high-level
perspective, our methods work as follows: after propagating queries throughout
the network of translations, we collect feedback information f , both from the
analysis of transitive closures of the query translation processes and from the
results received from other databases.

We illustrate how such an approach introduces uncertainty into query an-
swering for one specific type of approach when analyzing feedback received from
issuing queries to a peer-to-peer schema mapping network. Given a cycle of
mappings m, m1, . . . , mn and assuming all mappings are correct the composite
mapping results in a partial identity function. We call this positive feedback
f+. We denote with mi a random (Bernoulli) variable for a mapping mi be-
ing correct and assume a prior probability ε of a mapping mi being incorrect
P (mi = 1) = 1− ε. Furthermore we assume the probability δ of a mapping error
to be compensated in the last step of the cycle by another mapping error to be
known. Then we can derive the probability of receiving positive feedback, e.g.,

P (f+|m = 1) = (1 − ε)n + (1 − (1 − ε)n−1)δ

Similarly, other probabilities, e.g. P (f+|m = 0, ε, δ) can be computed. We
assume that we obtain a set of positive feedbacks F+ = {f+

1 , ..., f+
n } and of

negative feedbacks F− = {f−
1 , ..., f−

m}, F = F− ∪ F+ and want to determine
the probability P (m|F) of mapping m being correct under these observations.
Assuming independence of feedbacks (which in fact is an oversimplification for
a real mapping graph) we have

P (m|F) =
∏

f∈F
P (m|f).

From there, and from the assumption that we have no prior knowledge on m
(applying the maximum entropy principle implies P (m = 1) = P (m = 0)) we get

P (m|f) =
P (f |m)P (m)∑
m∈{0,1} P (f |m)
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Thus, we can determine the conditional probability P (m|F) of a mapping m
being correct given some feedback information F . Applying this to our problem,
we can determine the probability P (q2|F) of the date predicate being semanti-
cally preserved after applying a mapping m for obtaining the date value, based
on feedback information about that mapping:

P (q2|F) =

∑
m∈{0,1} P (q2,F|m)P (m)

P (F)
=

∑

m∈{0,1}
P (q2|m)P (m|F)

making use of the independence assumption P (q2,F|m) = P (q2|m)P (F|m).

5 Uncertainty on Assertions

The quality or pertinence of assertions may greatly vary in decentralized settings.
Putting aside trust-related issues (see below for a discussion on this topic), we
can expect an ever increasing proportion of automatically-generated assertions
in large-scale environments. Fuzzy logic, probabilistic or machine-learning ap-
proaches will certainly all contribute at deriving new assertions from existing
ones.

Also of interest, the emerging field of sensor networks providing streams of
raw data from sensor measurements. Sensors cannot deliver continuous data on
extended periods of time due to energy constraints: In fact, there is a well-know
trade-off between the precision of sensor data on the one hand, and the battery
life of the sensors on the other hand. This implies the necessity of accounting for
uncertainty while processing assertions derived from a data acquisition network.
The question is, again, how to capture the degree of uncertainty related to the
new assertions and how to take advantage of these degrees to get meaningful
answers to queries.

5.1 Running Example: Accounting for the Uncertainty on Sensor
Measurements in Data Acquisition Networks

Recently, a few probabilistic approaches appeared for processing queries in sensor
networks. BBQ [3], for example, introduces the concept of model-based querying.
The approach is based on a probabilistic model that captures the correlations
among measurements of spatially and temporally correlated sensors, e.g., tem-
perature sensors, to support query answering. The probabilistic model is derived
from historical sensor measurements. For query answering, available sensor read-
ings are used to answer user queries by computing the posterior probabilities of
the measurement variables from the probabilistic model of the sensor network.
In this way missing or faulty readings can be interpolated by the probabilistic
model and opportunities for optimizing the physical cost of operating sensor net-
works can be taken advantage of, such as optimization of energy consumption
and reduction of deployment and maintenance cost. We provide in the following
a somewhat simplified high-level description of this approach.
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Let us assume that the temperatures in weather.temperature (q3) are gath-
ered by a data acquisition network consisting of n fixed sensors, scattered all
around Switzerland. They periodically transfer some temperature measurements
si to a central server. From historical measurements a probability density func-
tion P (s1, . . . , sn) is derived. This function captures correlations of temperature
measurements due to spatial vicinity of sensors. The model has been extended
to also consider temporal correlations. In the case of BBQ this probability den-
sity function is a multivariate Gaussian function. The temperature in Switzer-
land is then defined as the average value of the currently measured values, i.e.
t = 1

n

∑n
i=1 si. If P (s1, . . . , sn) is a multivariate Gaussian, P (t) follows a Gaus-

sian distribution also.
Assume now that a probably incomplete set of raw observations from a subset

of all sensors is available, S = {sj = so
j , j ∈ O}, O ⊆ {1, . . . , n}. Then the average

temperature can be determined by marginalization as follows

P (t|S) =
∫

P (s1, . . . , sn|S)It

( 1
n

n∑

i=1

si

)
ds1 . . . dsn

where It(.) is the indicator function and

P (s1, . . . , sn|S) =
P (s1, . . . , sn)

P (S)

where sj = so
j for j ∈ O and sj = sj otherwise.

For evaluating predicate q3 we can derive from

P (q3|t) =
{

0 if t ≤ 30
1 if t > 30

in a now familiar way a probabilistic value for the predicate q3 being correctly
evaluated giving a set of raw measurements s gathered by sensors:

P (q3|S) =
∫

P (q3,S|t)P (t)
P (S)

dt =
∫

P (q3|t)P (t|S)dt.

6 Reputation-Based Trust Management in Decentralized
Settings

Up to this point we have considered the uncertainties resulting from interpreting
factual data (stored in some database) with respect to the intended semantics
of a user query. These models exploited intrinsic properties of the data objects
being searched for and their associated schemas. These intrinsic properties di-
rectly pertain to the query and data objects under consideration. In different
applications it can be observed that in addition to these intrinsic features also
extrinsic features derived from the context in which the data objects are being
used may have an important impact on the search. Trust is a typical example
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of such extrinsic features. Going back to our running example, we might wonder
whether a given article with the content describing hot summer days can be
trusted or not. More precisely, only if the newspaper that published the article
can be trusted with a sufficiently high probability then we would like to see the
article included in the result set.

6.1 Running Example: Accounting for the Uncertainty on
Trustworthiness of the Information Providers

Imagine the following scenario. An article from a specific newspaper has been
reported as containing information on “hot summer days”, so the predicate q1
== article.text like %hot summer days% seems to be satisfied. It happened
that the user read many articles from that newspaper and was always satisfied
with the accuracy of their content. It is intuitively clear that the content from
a new article will be accepted by the user. Similarly, the user may use her
predominantly negative experiences with the newspaper to conclude that the
returned article has to be rejected. Both of these two cases are very extreme in
the sense that user knows whether to rely on the article content or not; there is
little uncertainty here. But the reality is normally somewhere in between.

First, the user may have some positive and some negative experiences with
the concerned newspaper. It becomes now unclear whether the predicate is sat-
isfied or not. Second, the user may have never heard about the newspaper, in
which case the problem becomes even more severe.

Along the previous discussion, we believe that the problem can be viewed
in the following way. Newspapers might be inclined to write in specific ways.
For example some may accurately transfer the factual information they collect.
Some may exaggerate so that a warm day becomes “very hot.” Some may lie
deliberately. The readers can behave similarly when reporting on how they view
specific newspapers. Their experiences with the newspaper constitute what we
call the newspaper’s reputation. But any given newspaper has many readers
and the notion of reputation normally extends to the entire readers community.
The readers can share their opinions, even newspapers can write in favor of
some other ones etc. So, technically, a whole graph may emerge that encodes
the readers’ opinions about newspapers, eventual newspapers’ statements about
other newspapers, even readers’ opinions about other readers are possible, they
may say a lot about whether a specific reader is bad-mouthing a newspaper for
a reason different than the quality of its articles.

There are many approaches that operate on such structures and try to estab-
lish trust of the involved entities. In our example this would mean that they can
predict how exactly a given newspaper writes. Three fields, web search, seman-
tic web and P2P systems offer good examples of such approaches. [6] presents
a well-known technique to rank web pages based on the web link structure. A
page is highly ranked if it has many incoming links and/or if the referring pages
are themselves highly ranked. The notion of trust is just implicitly present here,
in the relative order of the pages. Thus it is hard to talk about a probability of
being trustworthy given a link structure. The same holds for [8], which provide a
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characterization of a class of algorithms to efficiently compute the relative order
of the involved semantic statements. In our previous work [4], we establish the
link between reputation and trust in the probabilistic sense. We assume that
specific joint probability distributions determine the behavior of all involved en-
tities, in our example readers and newspapers, and derive their associated trust
as probability distributions over their possible performances.

As a simple example, let us assume that readers report the trustworthiness
of the newspapers they happen to read. Thus any newspaper gets associated
with a set R = {r1, r2, . . . , rn}, ri ∈ {0, 1}, with the following meaning: ith
(1 ≤ i ≤ n) reader claims that the newspaper’s trustworthiness is ri, where 1
stands for “trustworthy” and 0 “untrustworthy.” Consider now a reader who
wants to make use of this information to decide whether the newspaper can
be trusted or not. Having read a number of other newspapers and being able to
compare her own opinions about them with those of other readers our reader can
assess the probability that the rest of the reader population actually misreports.
Let λ denote this quantity. Denoting by θ the unknown probability that the
newspaper is trustworthy we can write the probability of receiving the reports
R:

L(θ) = [λθ + (1 − λ)(1 − θ)]
∑ n

i=1 ri [λ(1 − θ) + θ(1 − λ)]n−
∑ n

i=1 ri .

It is also called the likelihood of the sample set R. Note that it is a function of
the unknown probability θ only, all other variables are known. We wonder now
what θ maximizes L(θ) given our sample set. This value, denote it θ∗, is called
the maximum likelihood estimate of the unknown probability θ. In this example
we assumed that the newspapers can be either trustworthy or not. Refinements
that cover more outcomes are also possible.

Therefore, trust for a specific newspaper becomes a random Bernoulli vari-
able, denoted by tr and taking values 0 and 1, derived from directly observable
reputation reports R. From the maximum likelihood estimation we have a prob-
abilistic model for P (tr|R). Assuming that only results from trusted resources
should be included into the result we can state P (q1|d, tr) = P (q1|d) if tr = 1
and P (q1|d, tr) = 0 otherwise. Thus we get making the usual independence as-
sumption P (q1,R|tr) = P (q1|tr)P (R|tr)

P (q1|d,R) =

∑
tr∈{0,1} P (q1,R|d, tr)P (tr)

P (R)
= P (q1|d)P (tr = 1|R).

7 Search Under Uncertainty

As illustrated in the previous sections, the example search problem, formulated
in a logical framework originally, has a good likelihood to turn into a proba-
bilistic formulation in a distributed setting due to various sources of uncertainty
involved in the interpretation of data and user query formulations. Thus, an-
swering the original query, which we formulated as the conjunction of three
predicates q1, q2, and q3, results on computing the marginals of a joint proba-
bility distribution P (q, q1, q2, q3, d, c,R, tr,F , m,S, t). Finding an answer to the
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ri

tr

q1

fi

m

q2

si

t

q3

q

di

c

didi riri fifi sisi

Fig. 1. A Bayesian Network summarizing the conditional dependencies for our running

example

search problem then corresponds to assessing the relevance of the query q when
d,R,F ,S have been observed. By making independence assumptions on the
sources of uncertainty, we can write the joint probability distribution as

P (q, q1, q2, q3, d, c,R, tr,F , m,S, t) =
P (q|q1, q2, q3)P (q1|c, tr)P (c|d)P (d)P (tr|R)P (R)
P (q2|m)P (m|F)P (F)P (q3|t)P (t|S)P (S)

The situation can be summarized in a graphical form, e.g., with the Bayesian
Network from Fig. 1 below1. For each source of uncertainty, we derive a model
from a set of observations. The model is in turn used to derive probabilistic
guaranties on the predicates of the query being satisfied or not. In the end, the
probability on the query being correctly evaluated for a given document and sets
of observations P (q = true|d,R,F ,S) can be computed as

P (q = true|d,R,F ,S)

=
∑

Q1,Q2,Q3

P (q = true|q1, q2, q3, d,R,F ,S)P (q1, q2, q3|d,R,F ,S)

=
∑

Q1,Q2,Q3

P (q = true|q1, q2, q3)P (q1|d,R)P (q2|F)P (q3|S)

= P (q1 = true|d,R)P (q2 = true|F)P (q3 = true|S)

with P (q1|d,R), P (q2|F) and P (q3|S) derived as above, Q1, Q2, Q3 ranging over
{true, false} for q1, q2, q3 and P (q = true|q1, q2, q3) = 1 if (q1 = true) ∧ (q2 =
true) ∧ (q3 = true) and 0 otherwise. These derivations can be efficiently han-
dled using well-known techniques such as Belief Propagation or Message-Passing
schemes.

Some of our independence assumptions might however not hold in general:
for example, trusting (tr) a source might well influence our model on the cor-
rectness on its mappings (m) or vice-versa. Also, detection of correct mappings
might depend on sensor data, while considering a specific document might be

1 Note that various Bayesian Networks can be derived from the aforementioned inde-
pendence assumptions. For a discussion on causality, we refer the interested readers
to [7].
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dependant on the trustworthiness of its source, etc. Handling complex condi-
tional relationships between various sources of uncertainty and their models is
way beyond the scope of this paper, but might play a crucial role in deriving
sufficiently precise heuristics in practice.

8 Conclusions

By now it should have become evident that a systematic treatment of uncertainty
in the management of distributed, autonomous information sources will become
(or already is) a necessity. We see this as a particularly urgent problem for the
emerging field of the Semantic Web which aims at supporting semantically rich
information representation for allowing more meaningful information processing,
both by humans and machines. Interpretation of data is inherently affected with
uncertainty.

A first and critical step for enabling management of uncertainty is the devel-
opment of and agreement on shared abstractions for representing and handling
uncertainty. This is similar to the step that has been taken by the Semantic Web
community in agreeing on common logical foundations. Description logics with
its many variants has been identified as the proper framework for at least the
following reasons. On the one hand it captures the essential elements of concep-
tual data models used in data management and knowledge representation, on
the other hand it provides a computationally tractable framework for reasoning.

Similar issues will have to be taken into account in the search for a common
abstraction framework for reasoning under uncertainty. It is a well known fact
that complete, probabilistic reasoning is as computationally intractable as rea-
soning in full first order logic is. AI has a long tradition in developing formalism
for reasoning under uncertainty, for example with research lines along Bayesian
networks or fuzzy logic. Choosing the proper one has to account for issues of
computational feasibility as well as for the possibility to bridge the gap be-
tween existing approaches for information processing, such as logical reasoning,
machine-learning or information retrieval. We foresee in particular the general
extension of usual model-theoretic constructs to take into account uncertainty as
an important step to improve structured search results in decentralized settings.
This has deep consequences, down to Tarski’s Truth definition. The question
is: can we provide precise semantics to various probabilistic interpretations in
decentralized settings while still developing pertinent, down-to-hearth heuristics
for combining or deriving data?

Having selected a proper framework of abstraction, a syntactic representation
compatible with existing and evolving Semantic Web standards, such as RDF
and OWL, has to be found. This appears to be a comparably trivial task at
the first glance. However, a challenge might also be hidden here. As we pointed
out earlier, current reasoning techniques for handling uncertainty have typically
be developed for isolated problems, and probabilistic statements are consoli-
dated only at the very end of processing queries, as illustrated for our example.
As soon as correlations among different aspects of uncertainty are considered,
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quite surprising problems might occur, which appear to be similar in nature to
problems that have been addressed in developing Semantic Web languages, such
as RDF, and their processing. How can information on correlations of proba-
bilistic variables, respectively probabilistic statements, be represented in a dis-
tributed framework? We can view correlations as the equivalent of relationships,
whereas probabilistic variables can be considered as the equivalent of entities.
In a distributed setting, managing relationships introduces problems of address-
ing, assigning responsibilities for storage and management and interoperating
with existing infrastructures, all of which would also have to be addressed if
probabilistic correlations are managed in a distributed setting.

In summary, we believe that we are seeing today only the very first steps
towards an information processing infrastructure that truly accounts for the
inherent uncertainty in distributed information processing. Substantial research
and development will be required, and both challenging theoretical questions
and practical problems have to be mastered. The convergence of developments
in different fields such as information retrieval, databases and the Semantic Web
will be the main drivers for this development. The reward will be better qualified
responses to our ever increasing information needs.
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2. K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. The Chatty Web: Emergent
Semantics Through Gossiping. In International World Wide Web Conference
(WWW), 2003.

3. A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-
Driven Data Acquisition in Sensor Networks. In Very Large DataBases (VLDB),
pages 588–599, 2004.

4. Z. Despotovic and K. Aberer. A Probabilistic Approach to Predict Peers’ Perfor-
mance in P2P Networks. In Eighth International Workshop on Cooperative Infor-
mation Agents, CIA 2004, Erfurt, Germany, 2004.

5. N. Fuhr. Models in Information Retrieval. In European Summer School in Infor-
mation Retrieval (ESSIR), 2000.

6. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical report, Stanford University, Stanford, CA,
1998.

7. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
2000.

8. M. Richardson, R. Agrawal, and P. Domingos. Trust management for the semantic
web. In Proceedings of the Second International Semantic Web Conference, pages
351–368, Sanibel Island, FL, 2003.


	Introduction
	Running Example: Getting Newspaper Articles About Hot Days in Switzerland
	Uncertainty on Users' Information Needs
	Running Example: Accounting for the Uncertainty on Information Needs Through Probabilistic Retrieval

	Uncertainty on Knowledge Conceptualizations
	Running Example: Accounting for the Uncertainty on Shared Conceptualizations Through Semantic Gossiping

	Uncertainty on Assertions
	Running Example: Accounting for the Uncertainty on Sensor Measurements in Data Acquisition Networks

	Reputation-Based Trust Management in Decentralized Settings
	Running Example: Accounting for the Uncertainty on Trustworthiness of the Information Providers

	Search Under Uncertainty
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




