

Lecture Notes in Artificial Intelligence 3550
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Torsten Eymann Franziska Klügl
Winfried Lamersdorf Matthias Klusch
Michael N. Huhns (Eds.)

Multiagent
System Technologies

Third German Conference, MATES 2005
Koblenz, Germany, September 11-13, 2005
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Torsten Eymann
Universität Bayreuth, Wirtschaftsinformatik (BWL VII)
Universitätsstrasse 30, 95440, Bayreuth, Germany
E-mail: eymann@uni-bayreuth.de

Franziska Klügl
Universität Würzburg
Department of Artificial Intelligence and Applied Computer Science
Am Hubland, 97074 Würzburg, Germany
E-mail: kluegl@informatik.uni-wuerzburg.de

Winfried Lamersdorf
Universität Hamburg
Department of Informatics, Distributed and Information Systems (VSIS)
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
E-mail: lamersd@informatik.uni-hamburg.de

Matthias Klusch
DFKI, German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
E-mail: klusch@dfki.de

Michael N. Huhns
University of South Carolina, Department of Computer Science and Engineering
Columbia, SC 29208, USA
E-mail: huhns@sc.edu

Library of Congress Control Number: 2005931591
CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.2.12, D.1.3, J.1

ISSN 0302-9743
ISBN-10 3-540-28740-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28740-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11550648 06/3142 5 4 3 2 1 0

Preface

After two successful MATES conferences in Erfurt 2003 and 2004, the 3rd Ger-
man conference on Multi-agent System Technologies (MATES 2005) took place
in Koblenz, Germany, in September 2005, and was co-located with the 28th
German Conference on Artificial Intelligence (KI 2005).

Building on other agent-related events in Germany in the past, and organized
by the GI German Special Interest Group on Distributed Artificial Intelligence,
the MATES conference series aims at promoting the theory and applications of
agents and multiagent systems. Incorporating the 9th International Workshop on
Cooperative Information Agents (CIA 2005), the topics of interest for MATES
2005 also covered the fields of intelligent information agents and systems for the
Internet and the (Semantic) Web.

As in recent years, MATES 2005 provided a distinguished, lively and inter-
disciplinary forum for researchers, users, and developers of agent technology,
to present and discuss the latest advances of research and development in the
area of autonomous agents and multiagent systems. Accordingly, the topics of
MATES 2005 covered the whole range from the theory to applications of agent-
and multiagent technology. The technical program included a total of 24 scien-
tific talks, and demonstrations of selected running agent systems, and both the
MATES 2005 Best Paper and the CIA 2005 System Innovation awards.

The international Program Committee for MATES 2005 selected carefully 14
out of 54 submissions from all over the world to be accepted as full papers, and
an additional 5 short papers as well as 5 posters to be presented. The program
also included four distinguished invited speakers: Karl Aberer (EPF Lausanne,
Switzerland), John-Jules C. Meyer (Utrecht University, The Netherlands), Stef-
fen Staab (Universität Koblenz, Germany), and jointly with KI 2005, Luc Steels
(SONY Computer Science Lab Paris and Free University of Brussels), as well as
a doctoral colloquium and a mentoring program.

Finally, as general co-chairs and PC co-chairs, and in the name of all members
of the Steering Committee, we would like to thank all authors of submitted pa-
pers and all invited speakers for their contributions, all members of the Program
Committee as well as other reviewers for their careful, critical, and thoughtful re-
views, and all local conference organizers and others involved in helping to make
MATES 2005 a success. In addition, we would like to explicitly thank our sponsors
AgentLink III, Whitestein Technologies, Siemens, and the German Computer So-
ciety (GI), whose financial support helped to make this event possible.

We hope the attendees enjoyed MATES 2005 and the Koblenz conference
site both scientifically and socially and will continue to support MATES as a
conference series with many more successful events to come in the future!

June 2005 Torsten Eymann, Franziska Klügl, Winfried Lamersdorf,
Michael Huhns, Matthias Klusch

Organization

General Co-chairs

Matthias Klusch DFKI Saarbrücken, Germany
Michael Huhns University of South Carolina, USA

Program Co-chairs

Torsten Eymann Bayreuth University, Germany
Franziska Klügl Würzburg University, Germany
Winfried Lamersdorf Hamburg University, Germany

Program Committee

Karl Aberer EPF Lausanne, Switzerland
Elisabeth Andre University of Augsburg, Germany
Bernhard Bauer University of Augsburg, Germany
Wolfgang Benn TU Chemnitz, Germany
Monique Calisti Whitestein Technologies AG, Zürich, Switzerland
Cristiano Castelfranchi CNR, Italy
Thomas Christaller Fraunhofer AIS, Germany
Rosaria Conte NRC Rome, Italy
Stephen Cranefield University of Otago, New Zealand
Mehdi Dastani University of Utrecht, The Netherlands
Yves Demazeau Leibniz/IMAG, France
Jörg Denziger University of Calgary, Canada
Klaus Fischer DFKI Saarbrücken, Germany
Ana Garcia Serrano TU Madrid, Spain
Fausto Giunchiglia University of Trento, Italy
Marie-Pierre Gleizes IRIT Toulouse, France
Rune Gustavsson TH Blekinge, Sweden
Heikki Helin TeliaSonera, Helsinki, Finland
Heinrich Hussmann Universität München, Germany
Toru Ishida University of Kyoto, Japan
Stefan Kirn Uiversität Hohenheim, Germany
Ryszard Kowalczyk TU Swinburne, Australia
Daniel Kudenko University of York, UK
Jürgen Lind AgentLab München, Germany
Gabriela Lindemann HU Berlin, Germany
Jiming Liu Hong Kong Baptist University, China

VIII Organization

Stefano Lodi University of Bologna, Italy
Beatriz Lopez University of Girona, Spain
Jörg Müller Siemens, Germany
Heinz-Jürgen Müller Berufsakademie Mannheim, Germany
Werner Nutt Heriot-Watt University, Edinburgh, UK
Andrea Omicini University of Bologna, Italy
Sascha Ossowski University of Rey Juan Carlos Madrid, Spain
Michal Pechoucek TU Prague, Czech Republic
Paolo Petta OEFAI Vienna, Austria
Stefan Poslad Queen Mary University of London, UK
Frank Puppe Universität Würzburg, Germany
Alois Reitbauer ProFACTOR, Austria
Franz Rothlauf Universität Mannheim, Germany
Marie-Christine Rousset Université de Paris-Sud, France
Heiko Schuldt UMIT Innsbruck, Austria
Onn Shehory IBM Research, Israel
John Shepherdson British Telecom, UK
Steffen Staab Universität Koblenz, Germany
Rudi Studer TU Karlsruhe, Germany
Ingo Timm TZI, Universität Bremen, Germany
Robert Tolksdorf TU Berlin, Germany
Lin Uhrmacher Universität Rostock, Germany
Rainer Unland Universität Duisburg-Essen, Germany
Thomas Uthmann Johannes-Gutenberg Universität Mainz, Germany
Wiebe Van der Hoek University of Liverpool, UK
Laszlo Zsolt Varga MTA SZTAKI, Hungary
Daniel Veit TU Karlsruhe, Germany
Ning Zhong Maebashi IT, Japan

Additional Reviewers

Lars Braubach Jan Broersen
Philippe Cudre-Mauroux Fabius Klemm
Gianluca Moro M. Birna van Riemsdijk
Roman Schmidt Leendert van der Torre
Alexander Pokahr Pere Vila

Table of Contents

Invited Contributions

On the Convergence of Structured Search, Information Retrieval and
Trust Management in Distributed Systems

Karl Aberer, Philippe Cudré-Mauroux, Zoran Despotovic 1

Semantic Methods for P2P Query Routing
Alexander Löser, Steffen Staab, Christoph Tempich 15

Programming Cognitive Agents
John-Jules Ch. Meyer . 27

Workflows and Group Interaction

Enacting the Distributed Business Workflows Using BPEL4WS on the
Multi-agent Platform

Li Guo, Dave Robertson, Yun-Heh Chen-Burger 35

BSCA-P: Privacy Preserving Coalition Formation
Bastian Blankenburg, Matthias Klusch . 47

Towards Service Coalitions: Coordinating the Commitments in a
Workflow

Jiangbo Dang, Michael N. Huhns . 59

Reasoning about Utility

Modeling Minority Games with BDI Agents - A Case Study
Wolfgang Renz, Jan Sudeikat . 71

A Goal Deliberation Strategy for BDI Agent Systems
Alexander Pokahr, Lars Braubach, Winfried Lamersdorf 82

Estimating Utility-Functions for Negotiating Agents: Using Conjoint
Analysis as an Alternative Approach to Expected Utility Measurement

Marc Becker, Hans Czap, Malte Poppensieker, Alexander Stotz 94

X Table of Contents

The Dynamics of Knowledge

Reconciling Agent Ontologies for Web Service Applications
Jingshan Huang, Rosa Laura Zavala Gutiérrez,
Benito Mendoza Garćıa, Michael N. Huhns . 106

An Agent-Based Knowledge Acquisition Platform
David Sánchez, David Isern, Antonio Moreno . 118

An Agent Architecture for Ensuring Quality of Service by Dynamic
Capability Certification

Thorsten Scholz, Ingo J. Timm, Rainer Spittel . 130

Engineering a Multi Agent Platform with Dynamic Semantic Service
Discovery and Invocation Capability

Oguz Dikenelli, Özgür Gümüs, Ali Murat Tiryaki, Geylani Kardas . . . 141

Methodology and Simulation

Towards a Formal Methodology for Designing Multi-agent Applications
Amira Regayeg, Ahmed Hadj Kacem, Mohamed Jmaiel 153

LEADSTO: A Language and Environment for Analysis of Dynamics by
SimulaTiOn

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij,
Jan Treur . 165

Agent Tools and Agent Education

Towards a Distributed Tool Platform Based on Mobile Agents
Kolja Lehmann, Lawrence Cabac, Daniel Moldt, Heiko Rölke 179

The Distributed Weighing Problem: A Lesson in Cooperation Without
Communication

Tibor Bosse, Mark Hoogendoorn, Catholijn M. Jonker 191

Short Papers

An Adaptive Reputation Model for VOs
Arturo Avila-Rosas . 204

Realising Reusable Agent Behaviours with ALPHA
Rem Collier, Robert Ross, Gregory M.P. O’Hare 210

Table of Contents XI

Multi-agent System Specification Using TCOZ
Tim Miller, Peter McBurney . 216

ABACO, Coordination of Autonomous Entities
René Schumann, Jürgen Sauer . 222

Agent-Based Simulation for Testing Control Software of High Bay
Warehouses

Cornelia Triebig, Tanja Credner, Peter Fischer, Titus Leskien,
Andreas Deppisch, Stefan Landvogt . 229

Posters

Collaborative Agent-Based Knowledge Support for Empirical and
Knowledge-Intense Processes

Andrea Freßmann, Kerstin Maximini, Rainer Maximini,
Thomas Sauer . 235

Experiments in Neo-computation Based on Emergent Programming
Jean-Pierre Georgé, Marie-Pierre Gleizes, Pierre Glize 237

A Framework Based on Multi-agent Systems for Information Retrieval
Through Mobile Devices

Angela Carrillo Ramos, Jérôme Gensel, Marlène Villanova-Oliver,
Hervé Martin . 240

CASCOM: Context-Aware Service Co-ordination in Mobile P2P
Environments

Heikki Helin, Matthias Klusch, António Lopes, Alberto Fernández,
Michael Schumacher, Heiko Schuldt, Federico Bergenti,
Ari Kinnunen . 242

Author Index . 245

On the Convergence of Structured Search,

Information Retrieval and Trust Management in
Distributed Systems�

Karl Aberer, Philippe Cudré-Mauroux, and Zoran Despotovic

School of Computer and Communication Sciences,
EPFL, Lausanne, Switzerland

{karl.aberer, philippe.cudre-mauroux, zoran.despotovic}@epfl.ch

Abstract. The database and information retrieval communities have
long been recognized as being irreconcilable. Today, however, we witness
a surprising convergence of the techniques used by both communities
in decentralized, large-scale environments. The newly emerging field of
reputation based trust management, borrowing techniques from both
communities, best demonstrates this claim. We argue that incomplete
knowledge and increasing autonomy of the participating entities are the
driving forces behind this convergence, pushing the adoption of proba-
bilistic techniques typically borrowed from an information retrieval con-
text. We argue that using a common probabilistic framework would be
an important step in furthering this convergence and enabling a common
treatment and analysis of distributed complex systems. We will provide
a first sketch of such a framework and illustrate it with examples from
our previous work on information retrieval, structured search and trust
assessment.

1 Introduction

The database and information retrieval communities have long been perceived as
being irreconcilable. The different ways of how data is represented, interpreted
and processed are at the core of the divergence in focus of these communities.

The main problem addressed by the database community can be stated as
the efficient management of data represented in some first order logic language
and the efficient evaluation of queries specifying information needs unambigu-
ously through logical expressions. Recently this model has been extended in the
context of the Semantic Web to deal with distributed, heterogeneous informa-
tion sources by using shared first order conceptual models (ontologies) and a
common Web-based infrastructure.
� The work presented in this paper was supported (in part) by the National Com-

petence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS) and by the Computational Reputation Mechanisms for Enabling
Peer-to-Peer Commerce in Decentralized Networks Project, both supported by the
Swiss National Science Foundation under grant number 5005-67322 and 20512-
105287/1 respectively.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 1–14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 K. Aberer, P. Cudré-Mauroux, and Z. Despotovic

On the other hand, the information retrieval community focuses on finding
models for retrieving documents in response to incompletely or ambiguously
specified information needs by exploiting document features and user relevance
feedback. Web search engines are the most prominent incarnation of these tech-
niques for assessing relevance of documents in response to user requests for
information, using both textual content of documents and user feedback derived
from the link structure of the Web.

Attempts to reconcile the two communities reach far back in history. Even a
conference series, the International Conference on Information and Knowledge
Management (CIKM), is dedicated to this goal. We were interested to see to
which extent the interaction among the communities progressed, and analyzed
the program of the years 2003 and 2004. The result is not too impressive. Among
120 research papers we could identify 10 that are at the borderline of databases
and information retrieval, whereas the others are quite clearly belonging to the
fields of classical database, information retrieval or knowledge management. In
2004, two sessions on databases and information retrieval have been organized.
The topics addressed by the borderline papers are on storage management for re-
trieval systems, processing of XML documents and similarity search in databases.
The last two areas in fact indicate one reason why the boundary between the
database view of structured data processing and the information retrieval view
of content-oriented processing is starting to dissolve. It is the result of processing
specific data types that require both structural and content-oriented processing.

In this paper, we argue that recent developments in diverse areas, such as the
Semantic Web, peer-to-peer computing, sensor networks, agent technologies and
Web retrieval, indicate that the “semantic gap” between traditional logic-based
knowledge presentation and processing and the probabilistic approach taken in
information retrieval will be rapidly closing, for a very fundamental reason, that
goes beyond the requirement of processing specific data types.

In a distributed environment of autonomous information sources, informa-
tion and information needs can no longer be expressed concisely, as expected
by database and semantic web technologies, but have to deal with numerous
sources of uncertainty, thus requiring a probabilistic view in the processing of
data. In information retrieval, one deals with one specific kind of uncertainty,
uncertainty about users information needs. We claim that in distributed envi-
ronments, qualitatively different sources of uncertainty have to be dealt with as
well. This will require a structured framework to represent and process the dif-
ferent sources of uncertainty to provide insightful answers to users information
needs. This requirement goes well beyond existing capabilities of both database
and information retrieval techniques and systems.

We will illustrate this convergence process by providing several important ex-
amples of how the uncertainty resulting from autonomy and incomplete knowl-
edge in distributed environments affects information processing. These examples
are taken both from our own work and from some typical results found in the
literature. We will provide short summaries of these techniques and illustrate
by a simple example of a search problem how each of these techniques affects

On the Convergence of Structured Search, Information Retrieval 3

the information processing task for satisfying the search task. By doing this we
illustrate how using a probabilistic framework makes it possible to integrate dif-
ferent ways of dealing with uncertainty, just as first order logic is being used as
an integration framework for structured representation and reasoning over dis-
tributed information sources. This example-based analysis will allow us to derive
some basic conclusions on requirements and issues for extending the current Web
infrastructure for dealing with uncertainty in a systematic and integrated way.

2 Running Example: Getting Newspaper Articles About
Hot Days in Switzerland

To illustrate our claims, we introduce an example which is in our opinion repre-
sentative of the current challenges emerging in information management today.
The example starts as a simple SQL query posed against a relational database
but will be enriched throughout the paper as new sources of uncertainty are
introduced.

From June to August 2003, unusually high temperatures were reported across
Europe, including Switzerland. Imagine a journalist wanting to retrieve all news-
paper articles about hot days in Switzerland which appeared exactly on one of
those days. In a standard relational databases scenario, this could translate to a
SQL query like the following:

�

�

�

�

SELECT article.text
FROM articles, weather WHERE

article.text like %hot summer days%
and article.date = weather.date
and weather.temperature > 30

The query contains three predicates, q1, q2 and q3 representing some con-
dition on the content of articles, their publication date and some temperature
record respectively.

From a logical perspective, such a query can be considered as a logical ex-
pression q for which we have to find all objects d contained in a database such
that the implication d → q is true.

Expressing an information need in this form reflects several basic assumptions
being made, including the ability of the user to precisely express her information
need, the correct interpretation of the schematic information provided by the
database and the correctness of the data stored in the database. In practice, as
we will demonstrate in the following, none of these assumptions can be taken
for granted in realistic, distributed information systems.

3 Uncertainty on Users’ Information Needs

Since long it has been recognized that logics is not an appropriate framework
for information search when it comes to searching documents with textual con-
tent. Boolean retrieval has been an early attempt to apply logics for text search,

4 K. Aberer, P. Cudré-Mauroux, and Z. Despotovic

which has soon found its limitations. Due to the ambiguity of natural language,
there exists no strict relationship between queries expressed in natural language
against documents containing natural language text. Thus the discipline of in-
formation retrieval has developed a rich set of models for assessing the relevance
of documents for a given query. These models introduce an element of uncer-
tainty into the search process, since result objects are no more included into the
result set by virtue of a decidable property (a predicate) but whenever there is
indication that they might be relevant to some degree to the users information
need. These observations clearly apply to the clause q1 == article.text like
%hot summer days% of our example query, which in a current database system
(ideally) would not be resolved at the syntactic level searching for the exact
phrase, but using an underlying text retrieval system.

3.1 Running Example: Accounting for the Uncertainty on
Information Needs Through Probabilistic Retrieval

Since we are aiming at a probabilistic framework for dealing with uncertainty in
modern information systems, we provide here a short overview of information
retrieval from a probabilistic perspective, which follows the exposition given
by [5]. From a logical perspective, answering a query q with document d amounts
to proving that the implication d → q is true. In Boolean retrieval this means that
all terms of a (conjunctive) query q would appear in d. In contrast, probabilistic
retrieval adopts the following notion for answering a query q: the conditional
probability P (q|d) indicates of how relevant document d is to query q.

For computing this probability usually a concept space C of disjoint concepts
c ∈ C is introduced with a probability density function P (.) over C. Queries
and documents are considered as concept sets. Then the query answer can be
represented as follows:

P (q|d) =
P (q ∩ d)

P (d)
, P (d) =

∑
c∈d

P (c), P (q ∩ d) =
∑

c∈q,c∈d

P (c)

A popular type of concepts are terms taken from a vocabulary. Since the
concepts are considered as being independent we can further derive

P (q|d) =
P (q ∩ d)

P (d)
=

∑
c∈C P (d ∩ q ∩ c)

P (d)
=

∑
c∈C P (d ∩ q|c)P (c)

P (d)

If the concept space consists of the terms of a vocabulary, we may assume
that the probabilities P (d|c) and P (q|c) are known from analyzing the text
collection. For computing a query answer, a standard assumption that is made
in probabilistic retrieval is the maximum entropy principle, which states the
following independence:

P (d ∩ q|c) = P (d|c)P (q|c).

On the Convergence of Structured Search, Information Retrieval 5

Using this assumption we get

P (q|d) =
∑

c∈C P (d ∩ q|c)P (c)
P (d)

=
∑

c∈C P (d|c)P (q|c)P (c)
P (d)

=
∑
c∈C

P (q|c)P (c|d)

The last expression can be interpreted as the classical model of vector space
retrieval, the predominant model for modern text retrieval. Under this interpre-
tation, P (c|d) corresponds to the term weight for a document representation,
which is typically computed using a (heuristic) tf-idf scheme and gives the prob-
ability that a term is characteristic for a given document. P (q|c) corresponds to
the query term weight and gives the probability that a term is characteristic for
the result set of query q.

In summary, a predicate such as q1 == article.text like %hot summer
days% corresponds in a search model that is considering uncertainty on users’
information needs to a random variable q1 for which we have a method to com-
pute P (q1|d), the probability that a document is relevant to the predicate. The
method to compute this probability relies on an intermediary concept (or fea-
ture) space C, for which we assume to have probabilistic models for P (q1|c)
and P (c|d) for a random variable c over the concept space. The computation of
P (q1|d) is then performed by marginalization of the joint probability distribution
P (q1, c, d) exploiting the separation of the random variables q1 and d through c.

From a practical perspective, using a retrieval engine within a logics-based
query language such as SQL poses the question of how to reflect the probabilistic
evaluation of q1 into the query result. Two solutions are applicable: either only
result documents are included that exceed a certain threshold probability. This
seems to be problematic with respect to the interpretation of the result. Alterna-
tively the probability values are included into the result table. This might raise
efficiency concerns as the result set might become unacceptably large. As we will
show in the following, this is a problem that is not confined to the case of dealing
with users’ uncertainty on information need, but with dealing with uncertainty
in general.

4 Uncertainty on Knowledge Conceptualizations

Traditionally, knowledge representations have been based on subsets of first-
order logic in computer science. Indeed, it is widely recognized that knowledge
can be efficiently captured by characterizing classes of objects and their inter-
relationships. Databases have long used dialects derived from first-order logic to
represent or query data, while description logic, a subset of first-order logic, has
been chosen to back-up standards for the Semantic Web.

6 K. Aberer, P. Cudré-Mauroux, and Z. Despotovic

These representations have proven to be extremely useful for dealing with
knowledge bases or providing sound semantics to query processing. Until re-
cently, most information-processing tasks took place in controlled environments
where one had full control over the definitions of entities in the universe of
discourse. When semantic heterogeneity occurred, for examples when multiple
schemas or ontologies had to be merged together, some higher-order element
(e.g., an integrated schema) was statically introduced to consolidate knowledge in
a consistent manner. Thus, some well-known techniques such as Global-As-View
and Local-as-View to integrate heterogeneous databases and rewrite queries in
deterministic ways have been developed.

Today, however, with the advent of the Internet and the democratization
of Semantic Web tools facilitating knowledge elicitation in machine-processable
formats, the situation is quickly evolving. One cannot rely on global, centralized
schemas anymore as knowledge creation and consumption are getting more and
more dynamic and decentralized. In such settings, one has to account for the fact
that new knowledge and knowledge representations can appear on a continual
basis without any central coordination, while well-known sources might well dis-
appear without prior notice. As a corollary, it is getting more and more difficult
to get any kind of certainty about knowledge coming from heterogeneous and
dynamic sources over which one has little control.

In this context, uncertainty over knowledge gets particularly critical when
one considers agreement on knowledge conceptualizations. Traditionally, only
relevant information adhering to specific schemas, taxonomies or ontologies was
returned as result of a structured search. As more and more conceptualizations
get available from heterogeneous sources, one has to take into consideration the
tradeoff between maximizing the precision of the results (by focusing on well-
known information sources only) and the total number of relevant results (by
considering as many information sources as possible). Many different (semi-)
automatic schema mapping schemes have been explored recently. In most cases,
some probabilistic value can be returned indicating whether or not the outcome
of the mapping process makes sense. One could hence take advantage of these
probabilistic values upon deciding whether or not to include an information
source for a given structured query.

4.1 Running Example: Accounting for the Uncertainty on Shared
Conceptualizations Through Semantic Gossiping

To come back to our running example, let us imagine that the journalist has ac-
cess to various newspaper databases on the web. Each database was developed
independently of the other ones. All databases consider some sort of representa-
tion to encode the date on which a particular newspaper article was published.
However, some call this date published date, while other might call it dateDePub-
lication or pd field. Due to the fact that the schemas are continually evolving, ap-
pearing or disappearing without any central coordination, maintaining a global
schema from / to which all individual databases could be mapped is arguably im-
practicable. Instead, translation links (e.g., schema mappings, views) are defined

On the Convergence of Structured Search, Information Retrieval 7

between pairs of schemas. Those pairwise links permit to iteratively propagate
a query posed against a specific schema to other databases. This approach has
been taken in the new field of peer-to-peer data management.

The problem lies here in the fact that those links might be created (semi-) au-
tomatically, or might not be able to guarantee the outcome of a query mapping
deterministically. Different cases may occur in practice. For example, publica-
tion date might be erroneously mapped onto deletion date or could be imper-
fectly mapped onto a publicationWeek attribute of a weekly newspaper (coarser
degree of granularity for storing publication dates). Thus, we cannot expect the
outcome of a query mapping to be one hundred percent faithful to the original
query.

We engineered heuristics to quantify the degree to which a translated query
differs from the intended query. We termed these techniques Semantic Gossip-
ing [1,2] as they rely on gossiping a query through the various translation links
for deriving probabilistic guarantees on the translation process. From a high-level
perspective, our methods work as follows: after propagating queries throughout
the network of translations, we collect feedback information f , both from the
analysis of transitive closures of the query translation processes and from the
results received from other databases.

We illustrate how such an approach introduces uncertainty into query an-
swering for one specific type of approach when analyzing feedback received from
issuing queries to a peer-to-peer schema mapping network. Given a cycle of
mappings m, m1, . . . , mn and assuming all mappings are correct the composite
mapping results in a partial identity function. We call this positive feedback
f+. We denote with mi a random (Bernoulli) variable for a mapping mi be-
ing correct and assume a prior probability ε of a mapping mi being incorrect
P (mi = 1) = 1− ε. Furthermore we assume the probability δ of a mapping error
to be compensated in the last step of the cycle by another mapping error to be
known. Then we can derive the probability of receiving positive feedback, e.g.,

P (f+|m = 1) = (1 − ε)n + (1 − (1 − ε)n−1)δ

Similarly, other probabilities, e.g. P (f+|m = 0, ε, δ) can be computed. We
assume that we obtain a set of positive feedbacks F+ = {f+

1 , ..., f+
n } and of

negative feedbacks F− = {f−
1 , ..., f−

m}, F = F− ∪ F+ and want to determine
the probability P (m|F) of mapping m being correct under these observations.
Assuming independence of feedbacks (which in fact is an oversimplification for
a real mapping graph) we have

P (m|F) =
∏
f∈F

P (m|f).

From there, and from the assumption that we have no prior knowledge on m
(applying the maximum entropy principle implies P (m = 1) = P (m = 0)) we get

P (m|f) =
P (f |m)P (m)∑
m∈{0,1} P (f |m)

8 K. Aberer, P. Cudré-Mauroux, and Z. Despotovic

Thus, we can determine the conditional probability P (m|F) of a mapping m
being correct given some feedback information F . Applying this to our problem,
we can determine the probability P (q2|F) of the date predicate being semanti-
cally preserved after applying a mapping m for obtaining the date value, based
on feedback information about that mapping:

P (q2|F) =

∑
m∈{0,1} P (q2,F|m)P (m)

P (F)
=

∑
m∈{0,1}

P (q2|m)P (m|F)

making use of the independence assumption P (q2,F|m) = P (q2|m)P (F|m).

5 Uncertainty on Assertions

The quality or pertinence of assertions may greatly vary in decentralized settings.
Putting aside trust-related issues (see below for a discussion on this topic), we
can expect an ever increasing proportion of automatically-generated assertions
in large-scale environments. Fuzzy logic, probabilistic or machine-learning ap-
proaches will certainly all contribute at deriving new assertions from existing
ones.

Also of interest, the emerging field of sensor networks providing streams of
raw data from sensor measurements. Sensors cannot deliver continuous data on
extended periods of time due to energy constraints: In fact, there is a well-know
trade-off between the precision of sensor data on the one hand, and the battery
life of the sensors on the other hand. This implies the necessity of accounting for
uncertainty while processing assertions derived from a data acquisition network.
The question is, again, how to capture the degree of uncertainty related to the
new assertions and how to take advantage of these degrees to get meaningful
answers to queries.

5.1 Running Example: Accounting for the Uncertainty on Sensor
Measurements in Data Acquisition Networks

Recently, a few probabilistic approaches appeared for processing queries in sensor
networks. BBQ [3], for example, introduces the concept of model-based querying.
The approach is based on a probabilistic model that captures the correlations
among measurements of spatially and temporally correlated sensors, e.g., tem-
perature sensors, to support query answering. The probabilistic model is derived
from historical sensor measurements. For query answering, available sensor read-
ings are used to answer user queries by computing the posterior probabilities of
the measurement variables from the probabilistic model of the sensor network.
In this way missing or faulty readings can be interpolated by the probabilistic
model and opportunities for optimizing the physical cost of operating sensor net-
works can be taken advantage of, such as optimization of energy consumption
and reduction of deployment and maintenance cost. We provide in the following
a somewhat simplified high-level description of this approach.

On the Convergence of Structured Search, Information Retrieval 9

Let us assume that the temperatures in weather.temperature (q3) are gath-
ered by a data acquisition network consisting of n fixed sensors, scattered all
around Switzerland. They periodically transfer some temperature measurements
si to a central server. From historical measurements a probability density func-
tion P (s1, . . . , sn) is derived. This function captures correlations of temperature
measurements due to spatial vicinity of sensors. The model has been extended
to also consider temporal correlations. In the case of BBQ this probability den-
sity function is a multivariate Gaussian function. The temperature in Switzer-
land is then defined as the average value of the currently measured values, i.e.
t = 1

n

∑n
i=1 si. If P (s1, . . . , sn) is a multivariate Gaussian, P (t) follows a Gaus-

sian distribution also.
Assume now that a probably incomplete set of raw observations from a subset

of all sensors is available, S = {sj = so
j , j ∈ O}, O ⊆ {1, . . . , n}. Then the average

temperature can be determined by marginalization as follows

P (t|S) =
∫

P (s1, . . . , sn|S)It

(1
n

n∑
i=1

si

)
ds1 . . . dsn

where It(.) is the indicator function and

P (s1, . . . , sn|S) =
P (s1, . . . , sn)

P (S)

where sj = so
j for j ∈ O and sj = sj otherwise.

For evaluating predicate q3 we can derive from

P (q3|t) =
{

0 if t ≤ 30
1 if t > 30

in a now familiar way a probabilistic value for the predicate q3 being correctly
evaluated giving a set of raw measurements s gathered by sensors:

P (q3|S) =
∫

P (q3,S|t)P (t)
P (S)

dt =
∫

P (q3|t)P (t|S)dt.

6 Reputation-Based Trust Management in Decentralized
Settings

Up to this point we have considered the uncertainties resulting from interpreting
factual data (stored in some database) with respect to the intended semantics
of a user query. These models exploited intrinsic properties of the data objects
being searched for and their associated schemas. These intrinsic properties di-
rectly pertain to the query and data objects under consideration. In different
applications it can be observed that in addition to these intrinsic features also
extrinsic features derived from the context in which the data objects are being
used may have an important impact on the search. Trust is a typical example

10 K. Aberer, P. Cudré-Mauroux, and Z. Despotovic

of such extrinsic features. Going back to our running example, we might wonder
whether a given article with the content describing hot summer days can be
trusted or not. More precisely, only if the newspaper that published the article
can be trusted with a sufficiently high probability then we would like to see the
article included in the result set.

6.1 Running Example: Accounting for the Uncertainty on
Trustworthiness of the Information Providers

Imagine the following scenario. An article from a specific newspaper has been
reported as containing information on “hot summer days”, so the predicate q1
== article.text like %hot summer days% seems to be satisfied. It happened
that the user read many articles from that newspaper and was always satisfied
with the accuracy of their content. It is intuitively clear that the content from
a new article will be accepted by the user. Similarly, the user may use her
predominantly negative experiences with the newspaper to conclude that the
returned article has to be rejected. Both of these two cases are very extreme in
the sense that user knows whether to rely on the article content or not; there is
little uncertainty here. But the reality is normally somewhere in between.

First, the user may have some positive and some negative experiences with
the concerned newspaper. It becomes now unclear whether the predicate is sat-
isfied or not. Second, the user may have never heard about the newspaper, in
which case the problem becomes even more severe.

Along the previous discussion, we believe that the problem can be viewed
in the following way. Newspapers might be inclined to write in specific ways.
For example some may accurately transfer the factual information they collect.
Some may exaggerate so that a warm day becomes “very hot.” Some may lie
deliberately. The readers can behave similarly when reporting on how they view
specific newspapers. Their experiences with the newspaper constitute what we
call the newspaper’s reputation. But any given newspaper has many readers
and the notion of reputation normally extends to the entire readers community.
The readers can share their opinions, even newspapers can write in favor of
some other ones etc. So, technically, a whole graph may emerge that encodes
the readers’ opinions about newspapers, eventual newspapers’ statements about
other newspapers, even readers’ opinions about other readers are possible, they
may say a lot about whether a specific reader is bad-mouthing a newspaper for
a reason different than the quality of its articles.

There are many approaches that operate on such structures and try to estab-
lish trust of the involved entities. In our example this would mean that they can
predict how exactly a given newspaper writes. Three fields, web search, seman-
tic web and P2P systems offer good examples of such approaches. [6] presents
a well-known technique to rank web pages based on the web link structure. A
page is highly ranked if it has many incoming links and/or if the referring pages
are themselves highly ranked. The notion of trust is just implicitly present here,
in the relative order of the pages. Thus it is hard to talk about a probability of
being trustworthy given a link structure. The same holds for [8], which provide a

On the Convergence of Structured Search, Information Retrieval 11

characterization of a class of algorithms to efficiently compute the relative order
of the involved semantic statements. In our previous work [4], we establish the
link between reputation and trust in the probabilistic sense. We assume that
specific joint probability distributions determine the behavior of all involved en-
tities, in our example readers and newspapers, and derive their associated trust
as probability distributions over their possible performances.

As a simple example, let us assume that readers report the trustworthiness
of the newspapers they happen to read. Thus any newspaper gets associated
with a set R = {r1, r2, . . . , rn}, ri ∈ {0, 1}, with the following meaning: ith
(1 ≤ i ≤ n) reader claims that the newspaper’s trustworthiness is ri, where 1
stands for “trustworthy” and 0 “untrustworthy.” Consider now a reader who
wants to make use of this information to decide whether the newspaper can
be trusted or not. Having read a number of other newspapers and being able to
compare her own opinions about them with those of other readers our reader can
assess the probability that the rest of the reader population actually misreports.
Let λ denote this quantity. Denoting by θ the unknown probability that the
newspaper is trustworthy we can write the probability of receiving the reports
R:

L(θ) = [λθ + (1 − λ)(1 − θ)]
∑ n

i=1 ri [λ(1 − θ) + θ(1 − λ)]n−
∑ n

i=1 ri .

It is also called the likelihood of the sample set R. Note that it is a function of
the unknown probability θ only, all other variables are known. We wonder now
what θ maximizes L(θ) given our sample set. This value, denote it θ∗, is called
the maximum likelihood estimate of the unknown probability θ. In this example
we assumed that the newspapers can be either trustworthy or not. Refinements
that cover more outcomes are also possible.

Therefore, trust for a specific newspaper becomes a random Bernoulli vari-
able, denoted by tr and taking values 0 and 1, derived from directly observable
reputation reports R. From the maximum likelihood estimation we have a prob-
abilistic model for P (tr|R). Assuming that only results from trusted resources
should be included into the result we can state P (q1|d, tr) = P (q1|d) if tr = 1
and P (q1|d, tr) = 0 otherwise. Thus we get making the usual independence as-
sumption P (q1,R|tr) = P (q1|tr)P (R|tr)

P (q1|d,R) =

∑
tr∈{0,1} P (q1,R|d, tr)P (tr)

P (R)
= P (q1|d)P (tr = 1|R).

7 Search Under Uncertainty

As illustrated in the previous sections, the example search problem, formulated
in a logical framework originally, has a good likelihood to turn into a proba-
bilistic formulation in a distributed setting due to various sources of uncertainty
involved in the interpretation of data and user query formulations. Thus, an-
swering the original query, which we formulated as the conjunction of three
predicates q1, q2, and q3, results on computing the marginals of a joint proba-
bility distribution P (q, q1, q2, q3, d, c,R, tr,F , m,S, t). Finding an answer to the

12 K. Aberer, P. Cudré-Mauroux, and Z. Despotovic

ri

tr

q1

fi

m

q2

si

t

q3

q

di

c

didi riri fifi sisi

Fig. 1. A Bayesian Network summarizing the conditional dependencies for our running

example

search problem then corresponds to assessing the relevance of the query q when
d,R,F ,S have been observed. By making independence assumptions on the
sources of uncertainty, we can write the joint probability distribution as

P (q, q1, q2, q3, d, c,R, tr,F , m,S, t) =
P (q|q1, q2, q3)P (q1|c, tr)P (c|d)P (d)P (tr|R)P (R)
P (q2|m)P (m|F)P (F)P (q3|t)P (t|S)P (S)

The situation can be summarized in a graphical form, e.g., with the Bayesian
Network from Fig. 1 below1. For each source of uncertainty, we derive a model
from a set of observations. The model is in turn used to derive probabilistic
guaranties on the predicates of the query being satisfied or not. In the end, the
probability on the query being correctly evaluated for a given document and sets
of observations P (q = true|d,R,F ,S) can be computed as

P (q = true|d,R,F ,S)

=
∑

Q1,Q2,Q3

P (q = true|q1, q2, q3, d,R,F ,S)P (q1, q2, q3|d,R,F ,S)

=
∑

Q1,Q2,Q3

P (q = true|q1, q2, q3)P (q1|d,R)P (q2|F)P (q3|S)

= P (q1 = true|d,R)P (q2 = true|F)P (q3 = true|S)

with P (q1|d,R), P (q2|F) and P (q3|S) derived as above, Q1, Q2, Q3 ranging over
{true, false} for q1, q2, q3 and P (q = true|q1, q2, q3) = 1 if (q1 = true) ∧ (q2 =
true) ∧ (q3 = true) and 0 otherwise. These derivations can be efficiently han-
dled using well-known techniques such as Belief Propagation or Message-Passing
schemes.

Some of our independence assumptions might however not hold in general:
for example, trusting (tr) a source might well influence our model on the cor-
rectness on its mappings (m) or vice-versa. Also, detection of correct mappings
might depend on sensor data, while considering a specific document might be

1 Note that various Bayesian Networks can be derived from the aforementioned inde-
pendence assumptions. For a discussion on causality, we refer the interested readers
to [7].

On the Convergence of Structured Search, Information Retrieval 13

dependant on the trustworthiness of its source, etc. Handling complex condi-
tional relationships between various sources of uncertainty and their models is
way beyond the scope of this paper, but might play a crucial role in deriving
sufficiently precise heuristics in practice.

8 Conclusions

By now it should have become evident that a systematic treatment of uncertainty
in the management of distributed, autonomous information sources will become
(or already is) a necessity. We see this as a particularly urgent problem for the
emerging field of the Semantic Web which aims at supporting semantically rich
information representation for allowing more meaningful information processing,
both by humans and machines. Interpretation of data is inherently affected with
uncertainty.

A first and critical step for enabling management of uncertainty is the devel-
opment of and agreement on shared abstractions for representing and handling
uncertainty. This is similar to the step that has been taken by the Semantic Web
community in agreeing on common logical foundations. Description logics with
its many variants has been identified as the proper framework for at least the
following reasons. On the one hand it captures the essential elements of concep-
tual data models used in data management and knowledge representation, on
the other hand it provides a computationally tractable framework for reasoning.

Similar issues will have to be taken into account in the search for a common
abstraction framework for reasoning under uncertainty. It is a well known fact
that complete, probabilistic reasoning is as computationally intractable as rea-
soning in full first order logic is. AI has a long tradition in developing formalism
for reasoning under uncertainty, for example with research lines along Bayesian
networks or fuzzy logic. Choosing the proper one has to account for issues of
computational feasibility as well as for the possibility to bridge the gap be-
tween existing approaches for information processing, such as logical reasoning,
machine-learning or information retrieval. We foresee in particular the general
extension of usual model-theoretic constructs to take into account uncertainty as
an important step to improve structured search results in decentralized settings.
This has deep consequences, down to Tarski’s Truth definition. The question
is: can we provide precise semantics to various probabilistic interpretations in
decentralized settings while still developing pertinent, down-to-hearth heuristics
for combining or deriving data?

Having selected a proper framework of abstraction, a syntactic representation
compatible with existing and evolving Semantic Web standards, such as RDF
and OWL, has to be found. This appears to be a comparably trivial task at
the first glance. However, a challenge might also be hidden here. As we pointed
out earlier, current reasoning techniques for handling uncertainty have typically
be developed for isolated problems, and probabilistic statements are consoli-
dated only at the very end of processing queries, as illustrated for our example.
As soon as correlations among different aspects of uncertainty are considered,

14 K. Aberer, P. Cudré-Mauroux, and Z. Despotovic

quite surprising problems might occur, which appear to be similar in nature to
problems that have been addressed in developing Semantic Web languages, such
as RDF, and their processing. How can information on correlations of proba-
bilistic variables, respectively probabilistic statements, be represented in a dis-
tributed framework? We can view correlations as the equivalent of relationships,
whereas probabilistic variables can be considered as the equivalent of entities.
In a distributed setting, managing relationships introduces problems of address-
ing, assigning responsibilities for storage and management and interoperating
with existing infrastructures, all of which would also have to be addressed if
probabilistic correlations are managed in a distributed setting.

In summary, we believe that we are seeing today only the very first steps
towards an information processing infrastructure that truly accounts for the
inherent uncertainty in distributed information processing. Substantial research
and development will be required, and both challenging theoretical questions
and practical problems have to be mastered. The convergence of developments
in different fields such as information retrieval, databases and the Semantic Web
will be the main drivers for this development. The reward will be better qualified
responses to our ever increasing information needs.

References

1. K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. Start making sense: The Chatty
Web approach for global semantic agreements. Journal of Web Semantics, 1(1),
2003.

2. K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. The Chatty Web: Emergent
Semantics Through Gossiping. In International World Wide Web Conference
(WWW), 2003.

3. A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-
Driven Data Acquisition in Sensor Networks. In Very Large DataBases (VLDB),
pages 588–599, 2004.

4. Z. Despotovic and K. Aberer. A Probabilistic Approach to Predict Peers’ Perfor-
mance in P2P Networks. In Eighth International Workshop on Cooperative Infor-
mation Agents, CIA 2004, Erfurt, Germany, 2004.

5. N. Fuhr. Models in Information Retrieval. In European Summer School in Infor-
mation Retrieval (ESSIR), 2000.

6. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical report, Stanford University, Stanford, CA,
1998.

7. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
2000.

8. M. Richardson, R. Agrawal, and P. Domingos. Trust management for the semantic
web. In Proceedings of the Second International Semantic Web Conference, pages
351–368, Sanibel Island, FL, 2003.

Semantic Methods for P2P Query Routing

Alexander Löser1, Steffen Staab2, and Christoph Tempich3

1 CIS, University of Technology Berlin, Einsteinufer 17, 10587 Berlin, Germany
aloeser@cs.tu-berlin.de

2 ISWeb, University of Koblenz Landau 56016 Koblenz, Germany
staab@uni-koblenz.de

3 AIFB, University of Karlsruhe 76128 Karlsruhe, Germany
tempich@aifb.uni-karlsruhe.de

Abstract. Knowledge sharing in a virtual organization requires a knowledge life
cycle including knowledge provisioning, terminology alignment, determination
of resource location, query routing, and query answering. In this talk we focus
on the issue of determining a relevant resource in a completely decentralized
setting such as necessitated by peer-to-peer knowledge management in virtual
organizations. Requirements for this task include, e.g., full autonomy of peers as
well as full control over own resources and therefore preclude prominent resource
location and query routing schemes such as distributed hash tables. In order to
tackle given requirements we use a resource location and query routing approach
that exploits social metaphors of topical experts and experts’ experts as well as
semantic similarity of queries and information sources. The approach has been
fully tested in simulation runs and partially implemented in the system Bibster
(http://bibster.semanticweb.org).

1 Introduction

Finding relevant information from a heterogeneous set of information resources is a
longstanding problem in computing. In everyday life we observe that there are success-
ful strategies for finding relevant information in a social network of people. Studies of
social networks show that the challenge of finding relevant information may be reduced
to asking the ’right’ people. ‘The right people’ generally are the ones who either have
the desired piece of information and can directly provide the relevant content or the
ones who can recommend ‘the right people’. Milgram’s [11] and Kleinbergs [8] ex-
periments illustrated that people with only local knowledge of the network (i.e. their
immediate acquaintances) were quite successful at constructing acquaintance chains of
short length, leading to ’small world’ networks. In such a network, a query is forwarded
along that out going link which takes it ’closest’ to the destination. We observe that
such mechanisms in social networks work although

– people may not always be available to respond to requests,
– people may shift their interests and attention,
– people may not have exactly the ‘right’ knowledge, but only knowledge which is

semantically close.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 15–26, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

16 A. Löser, S. Staab, and C. Tempich

I.e., the real-world social network is highly dynamic with regard to availability of peers
and with regard to expertise about topics and it needs semantic similarity in order to
determine ‘the right person’.

Inspired by these observations and focussed by the requirements of semantic search
in the setting of distributed autonomous information sources, we have conceived INGA
a novel peer-to-peer algorithm where each peer plays the role of a person in a social
network. In INGA , facts are stored and managed locally on each peer constituting the
‘topical knowledge’ of the peer. A peer responds to a query by providing an answer
matching the query or by forwarding the query to what he deems to be the most ap-
propriate peers. For the purpose of determining the most appropriate peers, each peer
maintains a personal semantic shortcut index. The index is created and maintained in
our highly dynamic setting in a lazy manner, i.e. by analyzing the queries that are initi-
ated by users of the peer-to-peer network and that happen to pass through the peer.

The personal semantic shortcut index maintained at each peer reflects that a peer
may play the following four different roles for the other peers in the network (in de-
creasing order of utility):

– The best peers to query are always those that already have answered the query or
a semantically similar query in the past successfully. We call such peers content
providers.

– If no content providers are known, peers are queried that have issued semantically
similar queries in the past. The assumption is that this peer has been successful in
getting matching answers and now we can directly learn from him about suitable
content providers. We call such peers recommenders.

– If we do not know either of the above we query peers that have established a good
social network to other persons over a variety of general domains. Such peers form
a bootstrapping network.

– If we fail to discover any of the above we fall back to the default layer of neigh-
boring peers. To avoid overfitting to peers already known we occasionally select
random peers for a query. We call this the default network.

Seen from a local perspective, each peer maintains in its index information about some
peers, about what roles these peers play for which topic and how useful they were in the
past. Seen from a global perspective, each of the four roles results in a network layer of
peers that is independent from the other layers.

Contributions and Paper Organisation. In this paper, we propose an improved short-
cut selection strategy able to identify and semantical group peers with similar interests
efficiently in a dynamic setting. To our best knowledge, this is the first approach sim-
ulating volatile shortcut networks without any static peers. To adapt to the dynamics
of the networks and to bound the local index we present an index update policy com-
bining temporal, semantic and community locality. To further boost performance and
enhance recall in a dynamic setting we introduce in INGA recommender and bootstrap-
ping overlays. We have built a network simulator and conducted extensive experiments
under realistic conditions. Results show that INGA outperforms other state-of-the-art
approaches significantly while it displays small world characteristics.

Semantic Methods for P2P Query Routing 17

We describe the infrastructure to maintain the index and the semantic similarity
function to select peers in section 2. Section 3 shows the index structure and update
strategy for each type of shortcut. Section 4 presents our dynamic routing model. Sec-
tion 5 describes our simulation methodology and the results of our simulations.

2 System Architecture

Our peer selection strategies described in section 3 are implemented independent on top
of any unstructured P2P network. For evaluation purposes, though we use the SWAP
infrastructure [5]. We recall that it provides all standard peer-to-peer functionality such
as information sharing, searching and publishing of resources.

Building Blocks. We assume that each peer provides a unique peer identifer (PID). Sim-
ilar to file sharing networks each peer may publish all resources from its local content
database, so other peers can discover them by its requests (this also applies to resources
downloaded from other peers). All information is wrapped as RDF statements and
stored in an RDF repository 1. Additionally to local meta data (MKlusch isOrganizerOf
CIA2005) each resource is assigned a topic (MATES2005 isTypeOf AgentConference)
and hierarchical information about the topics is stored (AgentConference subTopicOf
Conference). The topics a peer stores resources for are subsequently referred to as the
peers own topics. Note, that our algorithm does not require a shared topic hierarchy,
though it is advantageous for it. For successful queries (own queries or those of other
peers), which returned at least one match, the shortcut management extracts informa-
tion about answering and forwarding peers to create, update or remove shortcuts in the
local shortcut index. Contrary to related approaches, such as DHTs, INGA peers only
index ’egoistically’, i.e. shortcuts on topics they requested themselves. The routing logic
selects ’most suitable’ peers to forward a query to, for all own queries or queries for-
warded from remote peers. The selection depends on the knowledge a peer has already
acquired for the specific query and the similarity between the query and locally stored
shortcuts.

Query and Result Messages. We use a simple query message model which is simi-
lar to the structure of a Gnutella query message. Each query message is a quadruple:
QM(q, b, mp, qid) where q is a SERQL query (cf. footnote 1). We support any SERQL
queries, however for routing purposes only the topic information is used. From a query
for all AgentbConferences organized by MKlusch, only AgentConference is utilized for
routing. b is the bootstrapping capability of the querying peer to allow the creation of
bootstrapping shortcuts, mp the message path for each query message containing the
unique PIDs of all peers, which have already received the query, to avoid duplicated
query messages, and qid a unique query ID to ensure that a peer does not respond to
a query it has already answered. Unique query IDs in INGA are computed by using
a random number generator that has sufficiently high probability of generating unique
numbers. A result message is a tuple: RM(r, mp, qid) where r represents the answer
to the query. We just consider results which exactly match the query. Besides the mes-
sage path mp is copied to the answer message to allow the creation of recommender

1 http://www.openrdf.org/

18 A. Löser, S. Staab, and C. Tempich

and content provider shortcuts. We generate simplified queries such as getdata(s,p,o)
with s, p, o being either concrete URIs or (for o only) literals. Furthermore, instead of
a general RDFS ontology, we assume that we have topic hierarchies, which exploit the
transitivity of RDF(S) subclassOf.

Semantic Similarity Function. In case the peers in the network share a common topic
hierarchy our routing algorithm uses not only exact index hits, but also exploits the
semantic similarity between a query and an indexed shortcut. We define the similarity
function sim : q × sc → [0; 1] between a query q and a shortcut sc, which are both
given by query terms in the same topic hierarchy, as according to [9] as :

simTopic(q, sc) =

{
e−αl · eβh−e−βh

eβh+e−βh if q 	= sc

1 otherwise
(1)

where l is the length of the shortest path between q and sc in the graph spanned by
the sub topic relation and h is the minimal level in the topic hierarchy of either q or
sc. α and β are parameters scaling the contribution of shortest path length l and depth
h, respectively. Based on the benchmark data set given in [9], we chose α = 0.2 and
β = 0.6 as optimal values.

3 Building and Maintenance of the Index

Each peer is connected to a set of other peers in the network via uni-directional short-
cuts. Hence, each peer can locally select all other peers it wants to be linked to. Follow-
ing the social metaphors in section 1, we generally distinguish between the following
types of shortcuts:

3.1 Content Provider and Recommender Shortcuts

Content Provider Layer. The design of the content provider shortcut overlay departs
from existing work as published by [13,14] and exploits the simple, yet powerful prin-
ciple of interest-based locality. When a peer joins the system, it may not have any
information about the interest of other peers. It first attempts to receive answers for
its queries by exploiting lower layers of the INGA peer network, e.g. by flooding. The
lookup returns a set of peers that store documents for the topic of the query. These peers
are potential candidates to be added to the content provider shortcut list. Each time the
querying peer receives an answer from a remote peer, content provider shortcuts sc to
new remote peers are added to the list in the form: sc(topic, pid, query hits,’c’, update),
where topic is the query terms taken from the query message, pid is the unique identifier
of the answering peer, query hits is the number of returned statements, ’c’ is the type
of content provider shortcuts and update is the time, when the shortcut was created or
the last time, when the shortcut was used successful. Subsequent queries of the local
peer or of a remote peer are matched against the topic column of the content provider
shortcut list. If a peer cannot find suitable shortcuts in the list, it issues a lookup through
lower layers, and repeats the process for adding new shortcuts. For an example consider
Figure 1(a). Peer 2 discovers shortcuts for the topic /Education/UML by flooding the
default network with a maximum number of hops (TTL) of three hops and creates two
content provider shortcuts to peer 3 and peer 5.

Semantic Methods for P2P Query Routing 19

2

3

5

?

Route by
Flooding

Content Provider
Shortcut

(a) Content provider shortcut creation

2

4

8

?

Route by
Flooding

Recommender
Shortcut

Content Provider
Shortcut

(b) Recommender shortcut creation

Fig. 1. Topic specific shortcut creation

Recommender Layer. To foster the learning process of recommender shortcuts, espe-
cially for new peers in the network, we consider the incoming queries that are routed
through ones peer. A recommender shortcut sc(topic,pid,query hits maxsim,rp, update)
is created, where topic is the set of query terms from the query message. The PID for a
respective shortcut is extracted from the query message as the PID of the querying peer.
Since we will get no information about the number of results retrieved for the query, we
set the number of query hits to 1. Finally r indicates the type of the shortcut for passive
recommender shortcut and update is the time, when the shortcut was created or the last
time, when the shortcut was used successfully. For an example consider again Figure
1(b). Peer 2 issues the query /Top/Education/UML. Peer 8 creates a shortcut to peer 2
since this query was routed through peer 8.

Content Provider and Recommender Index. We assume that each peer may only store a
limited amount of shortcuts, hence only knows a limited set of topic specific neighbors
it can route a query to. If the local index size is reached a peer has to decide, which
shortcut should be deleted from the index. For each shortcut in the index we compute a
rank based on the following types of localities:

Semantic locality. We measure the maximum semantic similarity maxsim between
the topic of a shortcut and the topics represented by the local content of a peer
according to equation 1. Hence, we retain a shortcut about topic t to a remote peer,
if t is close to our own interests.

LRU locality. To adapt to changes in the content and interests we use a LRU replace-
ment policy [1]. Shortcuts that have been used recently receive a higher rank. Each
local shortcut is marked with a time stamp when it was created. The time stamp
will be updated, if the shortcut will be used successful by the local peer. There is
thus an ’oldest’ and ’latest’ shortcut. The value update ∈ [0..1] is normalized with
difference between the shortcuts time stamp and the ’oldest’ time stamp divided by
the difference between the ’latest’ and the ’oldest’.

Community locality. We measure how close a shortcut leads us to a document. Con-
tent provider shortcuts, marked with a c, provide a one hop distance, we set type =
1. Recommender shortcuts, marked with a r require at least two hops to reach a
peer with relevant documents, we set type = 0.5.

20 A. Löser, S. Staab, and C. Tempich

We weight the localities and compute the index relevance according to equation 2.

relevance =
a ∗ maxsim + b ∗ type + c ∗ update

a + b + c
(2)

Shortcuts with the highest relevance are ranked at the top of the index, while peers with
a lower relevance are deleted from the index.

3.2 Bootstrapping Shortcuts

Bootstrapping shortcuts link to peers that have established many shortcuts for different
query topics to a lot of remote peers. We determine the bootstrapping capability by
analyzing the in-degree and out-degree of a peer. We use the out-degree as a measure
of how successful a peer discovers other peers by querying. To weight the out-degree,
we measure the amount of distinct sources a peer receives queries from. We use the
in-degree as a measure, that such a peer may share prestigious shortcuts with a high
availability. By routing a query along bootstrapping shortcuts, we foster the probability
to find a matching shortcut for a query and avoid the drawbacks of having to select peers
randomly, e.g. by flooding.

Discovery and Update. Each incoming query that is stored in our index includes the
bootstrapping information of the querying peer. While a peer is online it continually
updates its content/recommender index based on incoming queries and stores additional
bootstrapping shortcuts in the form sc(pid, bo), where pid is the PID of the querying
peer and bo it’s bootstrapping capability. Once an initial set of bootstrapping nodes is
found, a peer may route its queries to the nodes with the highest bo value. One calculates
it’s bo value using equation 3

Bo = (1 + |outdegree|) × (1 + |indegree|) (3)

where out-degree is the number of distinct remote peers one’s knows. To compute an
approximation of the in-degree without any central server we count the number of dis-
tinct peers that send a query via one’s peer. To do this from the message path of indexed
recommender shortcuts we scrutinize the pen-ultimate peers. The number of distinct
pen-ultimate peers denotes one’s in degree. To avoid zero values we limited the mini-
mum for both values to one.

3.3 Default Network Shortcuts

When a new peer enters the network, it has not yet stored any specific shortcuts in its
index. Default network shortcuts connect each peer p to a set of other peers (p’s neigh-
bors) chosen at random, as in typical Gnutella-like networks (e.g. using rendezvous
techniques).

4 Dynamic Shortcut Selection

The basic principle of shortcuts consists of dynamically adapting the topology of the
P2P network so that the peers that share common interests spontaneously form well-
connected semantic communities. To form such semantic communities, for each query

Semantic Methods for P2P Query Routing 21

INGA is executed in several steps executed locally and across the network, we already
described the steps in [14,10]. The task of the INGA shortcut selection algorithm Dy-
namic is to determine best matching candidates to which a query should be forwarded.
We rely on forwarding strategies, depending on the local knowledge for the topic of the
query a peer has acquired yet in its index:

– We only forward a query via it’s k best matching shortcuts.
– We try to select content and recommender shortcuts before selecting bootstrapping

and default network shortcuts.
– To avoid overfitting and accommodate a little volatility (especially in the form of

new joining peers), queries are also randomly forwarded to some peers.

Algorithm 1. Dynamic
Require: Query q, int k, int tGreedy

Ensure: TTLq < maxTTL
1: s← TopGreedy(q,Content/RecommenderShortcuts,(k,tGreedy)
2: if (|s| < k) then
3: s ← s + TopBoot(BootstrappingShortcuts,(k − |s|))
4: end if
5: s ← RandomFill(s,defaultNetworkShortcuts,f,k)
6: Return s.

In step 1 of algorithm Dynamic we select k peers from content or recommender short-
cuts in subroutine that match the topic of the query with the highest similarity. To avoid
forwarding queries along shortcuts with only low similarity we introduce a minimum
similarity threshold tgreedy . Subroutine TopGreedy browses trough the index of all con-
tent or recommender shortcuts and identifies the most similar matching shortcuts for a
query above tgreedy . If two shortcuts have the same similarity, we choose the shortcut
with the higher query hits value. The subroutine carefully selects the top-k peers for a
query by avoiding different shortcuts with overlapping peers step. If found less then k
shortcuts we select the top bootstrapping shortcuts (step 3) in subroutine TopBoot. It
works similar to TopGreedy, but selects the peers with highest bootstrapping capability
from the index. It also avoids overlapping peers within the set of selected shortcuts.
Finally, in subroutine RandomFill we fill the up remaining shortcuts randomly from the
default network and return the set of selected shortcuts. The algorithms task is twofold:
if the other subroutines fail to discover k peers for a query, it fills up remaining peers
until k is reached. The second task of the algorithm is to contribute some randomly
chosen peers to the selected set of k peers to avoid overfitting of the selection process
as known from simulated annealing techniques. The Dynamic algorithm terminates if
the query has reached its maximum number of hops.

5 Experimental Evaluation

Open Directory (DMOZ) as Real World Data Set. We base our simulation framework
on a data set of the open directory DMOZ.org, since it consists of realistic data about the

22 A. Löser, S. Staab, and C. Tempich

content distribution among persons within a large community. For the topic distribution
we select the 1657 topics in the first three levels of the DMOZ hierarchy that have one
or more editors assigned to them. We represent one editor by one peer and assume that
peers that are interests in a topic also store resources for this topic. We observed that
editors are distributed with a heavily tailored Zipf popularity over the topics: 755 topics
have 1 editor; 333 have 2 ; 204 have 3 ; . . . ; 44 have 6; . . . ;14 have 10 ; 1 topic has
32 editors. Furthermore some editors are interested in more then one topic. Again we
observed a heavily tailored Zipf distribution: 991 editors only have one topic; 295 two;
128 three ; ... one editor 20 and one editor has 22 topics.

Query Distribution. Queries are generated in the experiments by instantiating the
blueprint (∗; isT ypeOf ; topic), with topics arbitrarily chosen from the set of topics
that had at least one document. We generated 30000 queries, uniformly distributed over
the 1657 different topics. We choose a uniform query distribution instead of a ZIPF-
distribution, which is typically observed in file sharing networks [12]. This simulates
the worst case scenario, where we do not take advantage of often repeated queries for
popular topics.

Gnutella Style Network. The simulation is initialized with a network topology which re-
sembles the small world properties of file sharing networks2. We simulated 1024 peers.
In the simulation, peers were chosen randomly and they were given a randomly selected
query to question the remote peers in the network. The peers decide on the basis of their
local short cut which remote peers to send the query to. Each peer uses INGA to se-
lect up to pmax = 2 peers to send the query to. Each query was forwarded until the
maximal number of hops hmax = 6 was reached.

Volatile Network and Interest Shifts. We implemented the dynamic network model ob-
served for Gnutella networks of [12]: 60% of the peers have a availability of less then
20%, while 20% of the peers are available between 20 and 60% and 20 % are available
more then 60%. Hence only a small fraction of peers is available more than half of the
simulation time, while the majority of the peers is only online a fraction of the simu-
lation time. Users’ interest may change over time, e.g. to account for different search
goals. To simulate changing interests, after 15 queries, equal to ca. 15.000 queries over
all peers, each peer queries a complete different set of topics.

Evaluation Measures. We measure the search efficiency using the following metrics:

– Recall is a standard measure in information retrieval. In our setting, it describes the
proportion between all relevant documents in peer network and the retrieved ones.

– Messages represent the required search costs per query that can be used to indi-
rectly justify the system scalability.

– Clustering coefficient represents the compactness of the network. It captures how
many of a node’s neighbors are connected to each other. We define the clustering
coefficient as

C =
1
|V |

∑
v∈V

|E(Γv)|
kv ∗ (kv − 1)

(4)

2 We used the Colt library http://nicewww.cern.ch/∼hoschek/colt/

Semantic Methods for P2P Query Routing 23

0

0,05

0,1

0,15

0,2

0,25

0,3

0 5000 10000 15000 20000 25000 30000

 Queries

R
e
c
a
ll

INGA-40 IBL LRU-40 Naive Remindin

(a) Recall: Related Approaches

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

Queries

M
e

s
s
a

g
e

s

INGA-40 IBL LRU-40 Naive Remindin

(b) Messages: Related Approaches

Fig. 2. Comparison Recall and Message: Dynamic Network 1024 Peers, 6 Hops, k=2

where V denotes the set of peers in the network, kv denotes the maximum number
of shortcuts for a peer v, Γv the direct neighbors of a peer and E(Γv) represents a
function that counts the number of links in Γv .

– Average path length A short average path length denotes a highly directed infor-
mation flow between two peers in the network. Given two arbitrary selected peers
v1, v2 ∈ V and dmin(v1, v2) the minimum path length between v1 and v2, we
define the average path length as

d =
1(|V |
2

) ∑
v1 �=v2

dmin(v1, v2) (5)

INGA outperforms in terms of Messages. As a baseline we compare INGA against
the strategy of [13](IBL), REMINDIN [14] (all with an index size of 40 entries) and
of Gnutella (Naive). Figure 2(a) shows the recall in contrast to the maximum possible
recall in a dynamic network. After only 15 queries INGA nearly doubles the recall of
the naive approach and drastically outperforms IBL. Since INGA and REMINDIN use
similar strategies for creating shortcuts both achieve a similar recall. However, after
introducing new topics in the network, INGA ’s outperforms REMINDIN due to it’s
optimized index for a dynamic network. Figure 2(b) shows the number of messages.
Due to bootstrapping peers, that focus queries to a fraction of peers in the network,
INGA outperforms and halves the messages in contrast to a naive approach. In contrast
to REMINDIN INGA reduces the number of messages from about 85 to 58 messages.

Tradeoff Between Clustering and Recall. Small-world graphs are defined by compari-
son with random graphs with the same number of nodes and edges: first, a small-world
displays a small average path length, similar to a random graph; second, a small-world
has a significantly larger clustering coefficient than a random graph of the same size
[6]. To measure the small world characteristics for different index settings we con-
ducted experiments where we only consider the similarity locality (a = 10, b = 0, c =
0), only community locality (with a = 0, b = 10, c = 0), only LRU-locality (a = 0, b
= 0, c = 10) and an ’optimal’ combination (a = 3, b = 6, c = 1). We discover that the

24 A. Löser, S. Staab, and C. Tempich

0

0,05

0,1

0,15

0,2

0,25

0,3

0 5000 10000 15000 20000 25000 30000

Queries

C
lu

s
te

ri
n

g
 C

o
e

ff
ic

ie
n

t

INGA Community-40 INGA LRU-40 INGA-40

INGA Similarity-40 Default

(a) Clustering Coefficient Index Weights

0

1

2

3

4

5

6

7

8

0 5000 10000 15000 20000 25000 30000

Queries

A
v
e

ra
g

e
 P

a
th

 L
e

n
g

th

INGA LRU-40 INGA-40 INGA Community-40
Default INGA Similarity-40

(b) Average Path Length Index Weights

Fig. 3. Index Behavior: Dynamic Network 1024 Peers, 6 Hops, k=2

0

10

20

30

40

50

60

70

80

90

100

0 5000 10000 15000 20000 25000 30000

Queries

M
e

s
s
a

g
e

s

INGA-40 INGA LRU-40
INGA Community-40 INGA SIM-40

(a) Messages Index Weights

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 5000 10000 15000 20000 25000 30000

 Queries

R
e
c
a
ll

INGA-40 INGA LRU-40 INGA Community-40 INGA Similarity-40

(b) Recall Index Weights

Fig. 4. Index Behavior: Dynamic Network 1024 Peers, 6 Hops, k=2

INGA data-sharing graph displays small-world properties. Figure 3(b) shows, that all
index settings reduce the average path length in contrast to the default network. Due to
the peer dynamics the default network selects the most stable peers with a path length
of four hops while all index settings reduce the path length to 2 hops. However, INGA
LRU-40 stabilizes less than the other approaches. The clustering coefficient increases
for most of our index configurations. Only INGA LRU-40 decreases after a slight in-
crease the clustering coefficient. Hence a LRU strategy alone is not able to create a
highly clustered network. However, a high clustering coefficient does not correlate with
a high recall: Figure 3(a) shows that the high clustering coefficient of INGA SIM-40
outperforms while Figure 4(b) shows that the highest recall is achieved through the op-
timal setting INGA 40. Since clustering in the network focusses queries to a small set
of peers storing similar shortcuts it reduces the number of randomly discovered peers
as well. However, such randomness is crucial in a highly dynamic setting to achieve
a high document recall. We therefore recommend the INGA SIM-40 setting especially
for expert finder applications, that use a more static setting and that are optimized to-
wards knowing the right peers in contrast to a high document recall. For applications
that prefer a high document recall, we recommend the setting of INGA 40.

Semantic Methods for P2P Query Routing 25

6 Related Work

First approaches for efficient indexing in P2P architectures were central indices, that
have to transmit either meta data about the available content to central indexing peers,
like e.g. GlOSS [4] or Napster. One of today’s main technique for indexing P2P systems
are so-called distributed hash tables (DHTs)(see [2] for a survey) that without need of a
central index allow to route queries with certain keys to particular peers containing the
desired data. While the visualization of keys and objects in the same name space used
in structured overlays provides a elegant clean solution to routing within logarithmical
bounds it comes at the significant cost of destroying the locality of the content: Content
at a user’s desktop is co-located with other relevant items, structured overlays destroy
this locality meaning that enhanced opportunities for browsing and pre-fetching are
lost [7]. Unstructured networks, such as Gnutella, keep this locality, since a query is
forwarded to randomly picked neighbors. To bound the number of hops it can travel,
each query is tagged with a maximum number of hops (TTL). In addition Gnutella
employs a duplicate detection mechanism, so that peers do not forward queries that
they have already previously forwarded. To improve the efficiency of Gnutella routing
indices local index information are first introduced by [3]. This indexing strategy locally
stores information about specific queries and what peers were successfully queried in
the past. [13] first considers the semantics of the query to exploit interest-based locality
in a static network. They use shortcuts that are generated after each successful query and
are used to further requests, hence they are comparable to content provider shortcuts.
However their search strategy differs from ours, since they only follow a shortcut if it
exact matches a query, else they use a flooding approach. To update the index they use a
LRU strategy. REMINDIN [14] used a routing table storing content provider shortcuts
and a relaxation based routing strategy. The approach was only designed for a static
setting without any index size limitation, an assumptions that is not realistic.

7 Summary and Outlook

The novel design principle of our approach lies in the dynamic adaptation of the net-
work topology, driven by the history of successful or semantically similar queries. This
is memorized by using bounded local shortcut indexes storing semantically labelled
shortcuts and a dynamic shortcut selection strategy, which forwards queries to a com-
munity of peers that are likely to best answer queries. Shortcuts connect peers that share
similar interests and thus spontaneously form semantic communities that show typical
small world characteristics, e.g. a high clustering coefficient and a low average path
length. The clustering of peers within semantical communities drastically improves the
overall performance of our algorithm even in a highly volatile setting. In extensive sim-
ulations with different index strategies we have shown an trade-off between recall and
clustering: Especially in volatile networks leads ’over clustering’ to a local optimum
which reduces the recall for query. We hope that our findings will find their way into
future semantic query routing applications and will help them gaining the ability to
deliver high quality search results efficiently.

26 A. Löser, S. Staab, and C. Tempich

Acknowledgement. Research reported in this paper has been partially financed by EU in
the IST project SEKT (IST-2003-506826). Alexander Löser was generously funded by
the German Research Society, Berlin-Brandenburg School in Distributed Information
Systems (DFG grant GRK 316/3).

References

1. A. V. Aho, P. J. Denning, and J. D. Ullman. Principles of optimal page replacement. J. ACM,
18(1):80–93, 1971.

2. S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content distribution
technologies. ACM Comput. Surv., 36(4):335–371, 2004.

3. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In International
Conference on Distributed Computing Systems, july 2002.

4. L. Gravano and H. Garcı́a-Molina. Generalizing GlOSS to vector-space databases and broker
hierarchies. In International Conference on Very Large Databases, VLDB, pages 78–89,
1995.

5. P. Haase et al. Bibster - a semantics-based bibliographic peer-to-peer system. In Proc. of the
3rd International Semantic Web Conference, Japan. Springer, 2004.

6. A. Iamnitchi, M. Ripeanu, and I. Foster. Small-World File-Sharing Communities. In 23th.
IEEE InfoCom HongKong, 2004.

7. P. J. Keleher, B. Bhattacharjee, and B. D. Silaghi. Are virtualized overlay networks too
much of a good thing? In IPTPS ’01: Revised Papers from the First International Workshop
on Peer-to-Peer Systems, pages 225–231. Springer-Verlag, 2002.

8. J. Kleinberg. Navigation in a small world. Nature, 406, 2000.
9. Y. Li, Z. Bandar, and D. McLean. An Approach for messuring semantic similarity between

words using semantic multiple information sources. In IEEE Transactions on Knowledge
and Data Engineering, volume 15, 2003.

10. A. Löser, C. Tempich, B. Quilitz, W.-T. Balke, S. Staab, and W. Nejdl. Searching dynamic
communities with personal indexes. Technical report, University of Karlsruhe, Institute
AIFB, 2005.

11. S. Milgram. The small world problem. Psychology Today, 67(1), 1967.
12. S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer file

sharing systems. Multimedia Systems, 9(2), 2003.
13. K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Content Location Using Interest

Based Locality in Peer-to-Peer System. In Infocom. IEEE, 2003.
14. C. Tempich, S. Staab, and A. Wranik. REMINDIN:Semantic Query Routing in Peer-to-Peer

Networks based on Social Metaphers. In Proceedings of the 13th WWW Conference New
York. ACM, 2004.

Programming Cognitive Agents

(Invited Talk)

John-Jules Ch. Meyer

Institute of Information and Computing Sciences,
Utrecht University, The Netherlands

1 Introduction

Although there is a lot of theory around about cognitive agents since the seminal
work by researchers such as Bratman, Cohen & Levesque and Rao & Georgeff
practice of programming ’truly’ cognitive agents is still in its infancy. Of course,
several architectures have been proposed and even occasionally been imple-
mented, and there is a prospect of many potential applications of agent-based
systems, but is there a truly systematic way of programming agents with cog-
nitive / mental attitudes such beliefs, desires, intentions, goals, plans, commit-
ments, emotions...? We believe that for this dedicated agent-oriented languages
are needed. A number of these have been developed in the last decade or so. But
programming in them is still hard. Is there a methodology for agent-oriented
programming? Can one structure agent programs better making use of cognitive
notions? And how to verify that an agent program is correct? And how is this
combined with programming multi-agent systems and agent societies where co-
ordination of these autonomous agents and more generally social notions such
as norms seem most important? In this paper a number of the issues related
to programming cognitive (multi) agents will be discussed on the basis of work
done in Utrecht around the agent language 3APL.

2 The Philosophical Origins of Cognitive Agents

Although already in older literature, e.g. on philosophical logic, the term ‘agent’
is employed, I consider as the start of the present agent-oriented paradigm the
seminal work of the philosopher Michael Bratman [7] who gives a treatment of
the behaviour of a rational (human) agent in terms of mental/cognitive notions
such as beliefs, desires and intentions (BDI). Since then he himself [8] and others
have tried to get a more precise understanding of cognitive notions, either by
trying to formalise these in some logical framework [10,37,26,46] or by devising
architectures for intelligent agents [37,32].

3 Agent-Oriented Software Engineering

Although there is not complete agreement how, it is generally recognised that
by their very nature the design of programs using agents requires new software

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 27–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

28 J.-J. Ch. Meyer

engineering methods, techniques and tools ([47,3]). Some say that we do need
agent-related concepts (such as BDI) in the analysis and design phase of an
agent system [48] but for the implementation we can just use generic high-level
programming languages such as JAVA without any in-built agent facilities. To
the other extreme, and we are in this camp, some say that it only makes sense
to analyse and design in an agent-oriented way if also the implementation is
realised using agent concepts ([12], and to a certain extent also [9]).

3.1 Agent-Oriented Programming

In his pioneering paper [44] Shoham introduced the first agent-oriented language
in which agent concepts such as beliefs, commitments and commitment rules
were employed. Since then there have been proposed a number of programming
languages that may be called agent-oriented since they have some typical agent-
like features. These include (Concurrent) METATEM [20], Congolog [22] and
AgentSpeak(L) [36]. At the moment there are quite a number of agent-oriented
languages such as Jason (an interpreter for AgentSpeak), JACK, Jade, Jadex [5],
the latter three based on JAVA, and our own 3APL [25]. It is my impression
that at present among researchers in the field it is not yet completely clear to
what extent these languages must be based on mainstream ones like JAVA and
which agent concepts are really adequate or needed for ’true’ agent program-
ming. For instance, in the logical frameworks mentioned above one mostly has
some notion of declarative goal while in most agent programming languages -
if they have goals - goals are mostly procedural. We have tried to remedy this
situation in 3APL [13] by including both declarative and procedural goals. By
doing this it becomes really possible to program agents such that if they have
certain declarative goals they may adopt plans for these to achieve them and
while executing these plans they may find reasons to revise them. We feel this
is truly how an agent should behave.

3.2 Programming Agent Societies: How to Socialise Agents

Of course, for programming multi-agents of agent societies we need more. We
need communication between agents, but, more importantly, we need to co-
ordinate more or less autonomous agents! For this we can for a part draw on
theory and techniques from concurrency and distributed computing, and process
algebra in particular. For instance, we can adopt and adapt several communi-
cation / synchronisation mechanisms from Communicating Sequential Processes
(CSP) and Concurrent Constraint Programming (CCP) to describe agent com-
munication and co-ordination, and employ Structural Operational Semantics
(SOS) to specify this in a formal way, as we have done recently in [4].

Another problem related with agent communication, particularly within het-
erogeneous agent societies, concerns the language (ontology) agents use to reason
about their beliefs and communicate with each other. Of course, if agents stem
from different sources (designers) and have different tasks they will generally
employ different and distinct ontologies (concepts and their representations) for

Programming Cognitive Agents 29

performing their tasks. When communicating it is generally not efficacious to
try to transmit their whole ontologies to each other or to translate everything
into one giant ‘universal’ ontology if this would exist anyway. Rather we believe
it desirable that agents in their mutual conversation will build a mutual commu-
nication vocabulary or ontology which is sufficiently expressive for its purpose
but that is as small as possible. In a series of papers [15,16,17] we have tried to
come up with such an approach, which we will put to the test in a project on
personalised newspaper agents together with IBM.

But there is more: also true social notions such as roles, norms and other
deontic concepts come into play here. Typically, when devising an agent soci-
ety/MAS, we need to specify what the overall goals/task for the MAS is and
which norms are to obeyed by the agents in it, typically depending on their
role in the system. To be more precise, for developing agent societies the OperA
model [18] has been developed consisting of three layers (submodels), viz. the
organisational model, the social model, and the interaction model. The idea here
is to start out from the organisation of a MAS to be developed by specifying
the communication, normative and social structure, and in particular the roles,
and the goals and norms associated with these, that should be present in the
MAS; then in the social model go on to the specification of the (behaviour of
the role enacting) agents that inhabit the MAS, and finally specify exactly what
kind of interactions the agents in the MAS are supposed to have with each other,
taking into account the roles they play in the system. Furthermore, since in open
systems agents may come and go, it is crucial to consider the dynamics of role
playing agents. To this end we have looked at the dynamics of roles enacted by
agents in MASs [14].

A further interesting notion is that of an (e-)institution which is supposed to
govern/monitor/enforce such norms on the agents in the MAS [19]. Interesting
questions are then how to relate norms with protocols used by the institution,
in particular whether following the protocols given provably avoids violation of
the norms (cf. [1]. In contrast to what is typically the case when one verifies
programs with respect to formal specifications, one here encounters additional
interesting but difficult problems of matching rather abstract and perhaps even
deliberately vague norms with very concrete actions appearing in the protocols
(cf. [24]).

3.3 Semantics, Specification and Verification of Agent Programs

When devising new agent languages with new cognition-inspired notions it is
very important to know what these mean exactly. This means that we deem it
very important that an agent-oriented language has a formal semantics, either
in a denotational or an operational way [2]. A formal semantics not only guides
an unambiguous implementation but also renders the possibility to specify and
verify programs written in the language in a formal way. Unfortunately, this
idea is not yet universally recognised. The first language, Agent0, but also recent
languages such as JACK, Jade, and Jadex lack such a semantics. On the other
hand, one also see that for languages such as AgentSpeak / Jason and 3APL there

30 J.-J. Ch. Meyer

are formal semantics. (We ourselves have given a formal semantics of 3APL right
from its inception [25], and when devising new constructs for the languages such
as declarative goals we always give an operational or denotational semantics
to these [13,14,40,43,41,42]). Having established such a semantics one can go
further and try and think how the correctness of programs in such a language
might be established. To some extent one can re-use old techniques from program
correntness such as temporal logic and Hoare’s logic, but it is also obvious that
these need to be adapted and extended to cater for the new BDI-like constructs
available in these languages. For example, in [39] we have looked at the use of
dynamic logic for a trimmed-down version of 3APL in order to reason about
plan revision in its purest form, which may be viewed as a context-sensitive
(and therefore much more complicated!) form of (context-free) recursion. But,
although this is a nice theoretical result, there is a lot more to do before this
can be used in practice.

4 Getting Even More Cognitive: Beyond BDI?

One might wonder if using BDI-like notions in agent programming is the ultimate
use of cognitive-scientific notions. Does it make sense to incorporate even more,
such as emotions? Admittedly, at first sight this seems to be ridiculous. Even if
it were possible to formalise and implement emotions into agent, what would be
the purpose of this? To make agents cry and be unhappy? That would perhaps
not only be useless but even also unethical...! However, recent literature points
into a direction where emotions or rather emotional states might be very useful
for designing agent systems in a still better structured way...

4.1 Emotions in Agent Design

Apart from being an interesting issue for believers in Strong AI, emotions may
also serve an engineering purpose. Emotions make sense in describing the be-
haviour of intelligent agents, and may help structuring the design of agents. From
the psychological literature (e.g. [11,33,34]) it is already known that emotions
can be viewed as a structuring mechanism. “Emotional states organize ready
repertoires of action” [33]. This idea as it has been discovered regarding human
behaviour may also be directly employed by the designers of artificial agents!
First examples of this line of work can be found in [35,45,23]. The general idea
is that by distinguishing states that may be called ‘emotional’ in more or less
the same sense as certain states in agents are called mental / BDI-like, one can
specify and realise agent behaviour in an even more structured and principled
manner than already possible in BDI architectures. For example, it is evident
that an agent which in a state of emergency (‘panic’) has to react to its en-
vironment in a different way than when it is in a non-panic state. Also basic
emotions such as happiness, sadness, anger and fear have an influence on the
agent’s way of acting ([33,21,31]). In agent terms this means that the agent’s
deliberation cycle should take the emotional state into account when selecting
plans and goals. Another way to view this is that emotions are complementary

Programming Cognitive Agents 31

to ‘rational’ attitudes such as BDI (cf. [11]). Emotions may help the agent to
choose from the myriad of possibilities. “Emotions are heuristics” ([33]). At the
moment we are investigating how these ideas can be deployed in the setting of
our programming language 3APL [38].

5 The Future of Cognitive Agents

In our opinion the area of cognitive agents will increase further in importance.
The reason for this is that in numerous application areas the potential of incor-
porating ‘cognition’ or at least cognitive and social notions into systems that are
supposed to behave in a more or less intelligent way is recognized by increasingly
wider circles. These application areas range from logistic systems like air traf-
fic control to e-business application involving auctions and e-marketplaces, from
intelligent service providers on the semantic web, agents playing roles in virtual
environments such as games and instruction / training software, multi-agent ap-
proaches to grid computing realising high-performance computing for all kinds of
computation-intensive applications and intelligent user interfaces realising am-
bient intelligence in both working and home environments to personal assistants
taking the form of true ‘companions’ helping one with one’s professional and
leisurely activities. We deem the study of applications extremely important since
it is the only way to see whether the great promise of agent technology can really
be fulfilled. At the moment we are investigating the use of multi-agent systems
in a number of (partly externally funded) projects in areas as diverse as air traf-
fic control [27], multi-expert systems for multi-disciplinary domains (in which
multiple expert agents may ‘negotiate’ their findings [29,30]), mobile phone ap-
plications [28], judicial information systems, and we want to extend these to
the areas of gaming (with agents as virtual characters) and agent-driven com-
panions for assistance, entertainment and education & training purposes. In [6]
Brachman & Lemnios present ‘DARPA’s New Cognitive Vision’, amounting to
the expectation that, mainly to overcome flooding of information in the modern
information-based society, we need ‘cognitive computer systems’ that possess
cognitive capabilities (‘know what they are doing’), can assist humans in an au-
tonomous manner, and ‘can respond as robustly to surprise as natural systems
can’. The field of multi-agent systems is taken as one of the core technologies,
and it is our claim that the matters discussed in this paper should be addressed
to make this radiant future possible.

Acknowledgments. I would like to thank my colleagues, former colleagues and
students Huib Aldewereld, Robbert-Jan Beun, Frank de Boer, Mehdi Dastani,
Jurriaan van Diggelen, Frank Dignum, Virginia Dignum, Rogier van Eijk, Davide
Grossi, Koen Hindriks, Wiebe van der Hoek, Joris Hulstijn, Henk-Jan Lebbink,
Rick van der Ree, Birna van Riemsdijk, Javier Vázquez-Salceda, Wieke de Vries,
and Cilia Witteman for numerous discussions on many of the issues raised in
this paper.

32 J.-J. Ch. Meyer

References

1. H. Aldewereld, J. Vázquez-Salceda, F. Dignum & J.-J. Ch. Meyer, Verifying Norm
Compliancy of Protocols, to appear in Proc. ANI@REM 2005.

2. J.W. de Bakker, Mathematical Theory of Program Correctness, Prentice-Hall In-
ternational, London, 1980.

3. F. Bergenti, M.-P. Gleizes & F. Zambonelli (eds.), Methodologies and Software En-
gineering for Agent Systems, The Agent-Oriented Software Engineering Handbook,
Kluwer, Boston/Dordrecht, 2004.

4. F.S. de Boer, W. de Vries, J.-J. Ch. Meyer, R.M. van Eijk & W. van der Hoek,
Process Algebra and Constraint Programming for Modeling Interactions in MAS,
to appear in Applicable Algebra in Engineering, Communication and Computing,
2005.

5. R.H. Bordini, M. Dastani, J. Dix & A. El Fallah Seghrouchni (eds.), Multi-Agent
Programming, Kluwer, Boston/Dordrecht/London, 2005.

6. R. Brachman & Z. Lemnios, DARPA’s New Cogitive Systems Vision,
http://www.cra.org/CRN/articles/nov02/darpa.html

7. M.E. Bratman, Intentions, Plans, and Practical Reason, Harvard University Press,
Massachusetts, 1987.

8. M.E. Bratman, D. Israel & M. Pollack, Plans and Resource-Bounded Practical
Reasoning, J. of Computational Intelligence 4(4), 1988, pp. 349–355.

9. J. Castro, W. Kolp & J. Mylopoulos, Towards Requirements-driven Information
Systems Engineering: the TROPOS project, Information Systems 27, 2002, pp.
365–389.

10. P.R. Cohen & H.J. Levesque, Intention is Choice with Commitment, Artificial
Intelligence 42(3), 1990, pp. 213–261.

11. A.R. Damasio, Descartes’ Error: Emotion, Reason, and the Human Brain, Grosset
/ Putnam Press, New York, 1994.

12. M. Dastani, J. Hulstijn F. Dignum & J.-J. Ch. Meyer, Issues in Multiagent System
Development, in: Proc. 3rd Int. Joint Conf. On Autonomous Agents & Multi Agent
Systems (AAMAS 2004) (N.R. Jennings, C. Sierra, L. Sonenberg & M. Tambe,
eds.), ACM, New York, 2004, pp. 922-92

13. M. Dastani, M.B. van Riemsdijk, F. Dignum & J.-J. Ch. Meyer, A Program-
ming Language for Cognitive Agents: Goal-Directed 3APL, in: Programming
Multi-Agent Systems (Proc. ProMAS 2003) (M. Dastani, J. Dix, & A. El Fallah-
Seghrouchni, eds.), LNAI 3067, Springer, Berlin, 2004, pp. 111-130.

14. M. Dastani, M.B. van Riemsdijk, J. Hulstijn, F. Dignum & J.-J. Ch. Meyer, Enact-
ing and Deacting Roles in Agent Programming, in: Agent-Oriented Software Engi-
neering V (AOSE 2004), Revised Selected Papers (J. Odell, P. Giorgini, J.P. Müller,
eds.), New York, NY, USA, July 19, 2004, LNCS 3382, Springer, Berlin/Heidelberg,
2005, pp. 189-204.

15. J. van Diggelen, R.J. Beun, F. Dignum, R.M. van Eijk & J.-J. Ch.. Meyer, Optimal
Communication Vocabularies and Heterogeneous Ontologies, in: Agent Communi-
cation:international Workshop on Agent Communication (AC 2004) (R.M. van
Eijk, M.-Ph. Huget & F. Dignum,, eds.), LNAI 3396, Springer, Berlin/Heidelberg,
2005, pp. 76-90.

16. J. van Diggelen, R.J. Beun, F. Dignum, R. van Eijk & J.-J. Ch. Meyer, Com-
munication under Construction: Three Protocols for Lazy Ontology Alignment,
accepted for AMKM2005.

Programming Cognitive Agents 33

17. J. van Diggelen, R.J. Beun, F. Dignum, R. van Eijk & J.-J. Ch. Meyer, Combining
Normal Communication with Ontology Allignment, accepted for AC2005.

18. V. Dignum, A Model for Organizational Interaction (Based on Agents, Founded in
Logic), Ph.D. Thesis, Utrecht University, Utrecht, 2004.

19. M. Esteva, J. Padget & C. Sierra, Formalizing a Language for Institutions and
Norms, in: J.-J. Ch. Meyer & M. Tambe, eds.), Intelligent Agents VIII, LNAI
2333, Springer, Berlin, 2001, pp. 348–366.

20. M. Fisher. A Survey of Concurrent METATEM – The language and Its Applica-
tions. Temporal Logic – Proc. of the 1st Int. Conf. (D.M. Gabbay and H.J. Ohlbach,
eds.), LNAI 827, Springer, Berlin, 1994, pp. 480–505.

21. N. Frijda, The Emotions, Cambridge University Press, New York, 1987.

22. G. de Giacomo, Y. Lespérance, and H. Levesque. ConGolog, a Concurrent Pro-
gramming Language Based on the Situation Calculus. Artificial Intelligence 121
(1,2), 2000, pp. 109–169.

23. P.J. Gmytrasiewicz & C.L. Lisetti, Emotions and Personality in Agent Design and
Modeling, in: Intelligent Agents VIII (J.-J. Ch. Meyer & M. Tambe, eds.), LNAI
2333, Spinger, 2002, pp. 21–31.

24. D. Grossi, J.-J. Ch. Meyer & F. Dignum, Modal Logic Investigations in the Se-
mantics of Counts-as, accepted for ICAIL’05, 2005.

25. K.V. Hindriks, F.S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent Pro-
gramming in 3APL, Int. J. of Autonomous Agents and Multi-Agent Systems 2(4),
1999, pp. 357–401.

26. W. van der Hoek, B. van Linder & J.-J. Ch. Meyer, An Integrated Modal Approach
to Rational Agents, in: Foundations of Rational Agency (M. Wooldridge & A. Rao,
eds.), Applied Logic Series 14, Kluwer, Dordrecht, 1998, pp. 133–168.

27. G. Jonker, J.-J. Ch. Meyer & F. Dignum, A Market Mechanism for Airport Traffic
Planning, in: Proc. EUMAS’04 (C. Ghidini, P. Giorgini & W. van der Hoek, eds.),
Barcelona, 2004, pp. 365–375

28. F. Koch, J.-J. Ch. Meyer, F. Dignum & I. Rahwan, Programming Deliberative
Agents for Mobile Services: The 3APL-M Platform, accepted for ProMAS’05, 2005.

29. H.-J. Lebbink, C. Witteman & J.-J. Ch. Meyer,, A Dialogue Game Approach to
Multi- Agent System Programming, in: Proc. 16th Belgium-Netherlands Conf., on
Artif. Intell. (BNAIC-2004) (R. Verbrugge, N. Taatgen & L. Schomaker, eds.),
Univ. of Groningen, 2004, pp. 251-258.

30. H.-J. Lebbink, C. Witteman & J.-J. Ch. Meyer, A Dialogue Game to Offer an
Agreement to Disagree in: Programming Multi-Agent Systems (ProMAS 2004)
(R.H. Bordini, M. Dastani, J, Dix & A El Fallah-Seghrouchni, eds.),, LNAI 3346,
Springer, Berlin/Heidelberg, 2005, pp. 199-223.

31. J.-J. Ch. Meyer, Reasoning about Emotional Agents, in Proc.16th European Conf.
on Artif. Intell. (ECAI 2004) (R. López de Mántaras & L. Saitta, eds.), IOS Press,
2004, pp. 129-133.

32. J.P. Müller. The Design of —Intelligent Agents: A Layered Approach, Springer,
Berlin, 1996..

33. K. Oatley & J.M. Jenkins, Understanding Emotions, Blackwell Publishing,
Malden/Oxford, 1996.

34. A. Ortony, G.L. Clore & A. Collins, The Cognitive Structure of Emotions, Cam-
bridge University Press, Cambridge, 1988.

35. R.W. Picard, Does HAL cry digital tears? Emotion and Computers, Chapter 13
of: HAL’s Legacy (D.G. Stork, ed.), MIT Press, Cambridge MA, 1997.

34 J.-J. Ch. Meyer

36. A.S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. Agents Breaking Away (W. van der Velde and J. Perram, eds.), LNAI 1038,
Springer, Berlin, 1996, pp. 42–55.

37. A.S. Rao & M.P. Georgeff, Modeling rational agents within a BDI-architecture,
in Proceedings of the Second International Conference on Principles of Knowledge
Representation and Reasoning (KR’91) (J. Allen, R. Fikes & E. Sandewall, eds.),
Morgan Kaufmann, 1991, pp. 473–484.

38. R. van der Ree, Emotions in the Agent Language 3APL (working title), Master’s
Thesis, Utrecht University, Utrecht, to appear.

39. M.B. van Riemsdijk, F.S. de Boer & J.-J. Ch. Meyer, Dynamic Logic for Plan
Revision in Intelligent Agents, in Pre-Proceedings CLIMA V (5th Int. Workshop on
Computaional Logic in Multi-Agent Systems) (J. Leite & P. Torroni, eds.), Lisbon,
Portugal, September 29-30, 2004, pp. 196-211; to appear in post-proceedings.

40. M.B. van Riemsdijk, M. Dastani, F. Dignum & J.-J. Ch. Meyer, Dynamics of
Declarative Goals in Agent Programming, in Proc. DALT 2004 (J. Leite, A.
Omicini, P. Torroni & P. Yolum, eds.), AAMAS 2004, New York, 2004, pp. 17-
32; to appear in post-proceedings.

41. M. Birna van Riemsdijk, M. Dastani & J.-J. Ch. Meyer, Semantics of Declarative
Goals in Agent Programming, accepted for AAMAS’05, 2005.

42. M. Birna van Riemsdijk, M. Dastani & J.-J. Ch. Meyer, Subgoal Semantics in
Agent Programming, submitted.

43. M.B. van Riemsdijk, J.-J. Ch. Meyer & F.S. de Boer, Semantics of Plan Revision in
Intelligent Agents, in: Ch. Rattray, S. Maharaj & C. Shankland, (eds.), Algebraic
Methodology and Software Technology (Proc. AMAST 2004), Stirling, Scotland,
LNCS 3116, Springer, Berlin, 2004, pp. 426-442.

44. Y. Shoham. Agent-Oriented Programming. Artificial Intelligence 60(1), 1993, pp.
51–92.

45. A. Sloman, ‘Damasio, Descartes, Alarms, and Meta-Management’, in: Proc. IEEE
Int. Conf. on Systems, Man, and Cybernetics (SMC’98), IEEE Computer Society
Press, Los Alamitos CA, 1998, pp. 2652–2657.

46. M.J. Wooldridge. Reasoning about Rational Agents. MIT Press, Cambridge, MA,
2000.

47. M.J. Wooldridge & P. Ciancarini, Agent-Oriented Software Engineering: The State
of the Art, in: P. Ciancarini & M.J. Wooldridge, Agent-Oriented Software Engi-
neering, LNCS 1957, Springer, Berlin/Heidelberg, 2001, pp. 1–28.

48. M.J. Wooldridge, N.R. Jennings & D. Kinny, The Gaia Methodology for Agent-
Oriented Analysis and Design, Autonomous Agents and Multi-Agent Systems 3(3),
2000, pp. 285–312.

Enacting the Distributed Business Workflows Using
BPEL4WS on the Multi-agent Platform

Li Guo, Dave Robertson, and Yun-Heh Chen-Burger

CISA, Informatics, The University of Edinburgh, United Kingdom
L.Guo@sms.ed.ac.uk, {dr, Jessicac}@inf.ed.ac.uk

Abstract. This paper describes the development of a distributed multi-agent
workflow enactment mechanism using the BPEL4WS[1] specification. It demon-
strates that a multi-agent protocol (Lightweight Coordination Calculus (LCC)[8])
can be used to interpret a BPEL4WS specification to enable distributed busi-
ness workflow[5] using web services[2] composition on the multi-agent platform.
The key difference between our system and other existing multi-agent based
web services composition systems is that with our approach, a business process
model(system requirement) can be adopted directly in the multi-agent system,
thus reduce the effort on the validation and verification of the interaction protocol
(system specification). This approach also provides us with a lightweight way of
re-design of large component based systems.

1 Introduction

Composition of web services has received much interest as a means of supporting
Business-To-Business or enterprise application integration. Currently, there are two
main approaches for the web services composition: a static workflow technology based
approach, for example, BPEL4WS, which is de facto standard for distributed workflow
system using web services composition. Using such method, web services are described
as activities/atomic activities in a business process model. A workflow engine is used to
run the whole business process model, web services thus can be invoked as the business
process executes. The basic architecture of such system is shown in figure 1. However,

Fig. 1. The infrastructure of conventional workflow based web services composition system

the downside to this approach is that, although the workflow engine can execute these
invocations asynchronously (thus generating some degree of parallelism), the process
is still centralised, which means it suffers from the single point-of-failure weaknesses

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 35–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

36 L. Guo, D. Robertson, and Y.-H. Chen-Burger

that plague centralised designs[7] and in some environments, centralisation is not pos-
sible, for example, in a peer to peer mobile devices based environment. In addition, the
centralised design may require heavyweight servers. Because all the interactions must
go through the centralised server, if there are huge amounts of transactions taking place
at the same time, the central workflow engine becomes the bottleneck of the whole
system.

An alternative approach is to employ a multi-agent system for web services
coordination[8,10]. With this approach, each agent A in the multi-agent system is as-
sociated with a web service which contains the necessary external behaviours for the
participant (agent). The flow control logic is defined in the multi-agent system pro-
tocol which is passed between all the agents together with the messages to tell each
agent what to do next to enable their coordination. The infrastructure of the system is
depicted in figure 2. Although the centralised problem is overcome by using this ap-

Fig. 2. The infrastructure of MAS based web services composition system

proach, a shortcoming of it is that the interaction protocol (system specification) is at
a very low level of system design. It specifies the message passing that takes place
between different participants at implementation level, mixing both the business and
technical requirements. Therefore, huge effort on the validation and verification is re-
quired for the interaction protocol production in order to make sure that the protocol is
strictly consistent with the high level requirements of the business process model.

In this paper, we propose a novel approach, with which a business process model
(BPEL4WS specification) can be used to parameterise a generic multi-agent interac-
tion protocol, thus all the existing BPEL4WS specifications and available tools can
be exploited when we try to enact a distributed business workflow using web services
composition on a multi-agent platform. In section 2, the necessary background intro-
duction to the LCC protocol language and BPEL4WS is given. The infrastructure of our
system is given and explained in section 3. In section 4, we explain in detail how the
agents in the our system coordinate with each other using LCC protocol and BPEL4WS

Enacting the Distributed Business Workflows Using BPEL4WS 37

specification. In section 5, we use a simple example to demonstrate how our approach
works. A general discussion on our approach is given in section 6 and in section 7, the
conclusion and some possible future work are addressed.

2 Background

2.1 Lightweight Coordination Calculus (LCC)

The Lightweight Coordination Calculus(LCC) is a language for representing coordi-
nation between distributed agents. In a multi-agent system the speech acts conveying
information between agents are performed only by sending and receiving messages. For
example, suppose a dialogue allows an agent a(r1,a1) to send a message m1 to agent
a(r2,a2) and agent a(r2,a2) is expected to reply with message m2. Assuming each agent
operates sequentially, the sets of possible dialogue sequences we wish to allow for the
two agents in the example are as given below, where M1 ⇒ A1 denotes a message, M1,
send to A1, and M2 ⇐ A2 denotes a message, M2, received from A2.

a(r1, a1) :: (m1 ⇒ a(r2, a2) then m2 ⇐ a(r2, a2))
a(r2, a2) :: (m1 ⇐ a(r1, a1) then m2 ⇒ a(r1, a1))

Any agent can change its role according to the definition of the dialogue:

a(r1, a1) :: m1 ⇒ a(r2, a2) then a(r3, a1)
a(r3, ID) :: m2 ⇒ a(r4, a3) then m3 ⇐ a(r4, a3)

The above clause means that agent a1 takes the role of r1 initially and after sending a
message m1 to agent a(r2,a2), it changes its role to r3 and then takes the appropriate
behaviours that are defined for a(r3,ID). This capability of LCC is very important for
the our work described in this paper.

We refer to this definition of the message passing behavior of the dialogue as the
dialogue framework. Its complete syntax can be found in [8]. A dialogue framework
defines a space of possible dialogues determined by message passing, so the protocols
allow constraints to be specified on the circumstances under which messages are sent
or received. Two forms of constraints are permitted:

• Constraints under which message, M, is allowed to be sent to agent A. We write
M ⇒ A ← C to attach a constraint C to an output message.

• Constraints under which message, M, is allowed to be received to agent A. We
write M ⇐ A ← C to attach a constraint C to an input message.

For the earlier example above, to constrain agent a(r1,a1) to send message m1 to agent
a(r2,a2) when condition c1 holds in a(r1,a1) we could write: m1 ⇒ a(r2,a2) ← c1.

Agent dialogue may also assume common knowledge, either as an inherent part of
the dialogue or generated by agents in the course of a dialogue. This knowledge could
be expressed in any form, as long as it can be understood by appropriate agents. We
recognise the importance of preserving a shared understanding of knowledge between
agents but cannot cover this issue in the current paper. As a dialogue protocol is shared

38 L. Guo, D. Robertson, and Y.-H. Chen-Burger

among a group of agents it is essential that each agent when presented with a message
from that protocol can retrieve the state of the dialogue relevant to it and to that message
[8].

Pulling all the above elements together, we describe a LCC dialogue protocol as the
term:

protocol(S, F, K)

Where S is the dialogue state; F is the dialogue framework(sets of dialogue clauses);
and K is a set of axioms defining common knowledge assumed among the agents.

To enable an distributed workflow agent to confirm a LCC protocol it is necessary
to supply it with a way of unpacking any protocol it receives; finding the next moves
that it is permitted to take; and updating the state of the protocol to describe the new
state of dialogue. There are many ways of doing this but perhaps the most elegant way
is by applying rewrite rules (more detailed re-write rules can be found in [8]) to expand
the dialogues state. This works as follows1:

• An agent receives from some other agents a message with an attached protocol,
P , of the form protocol(S, F, K). The message is added to the set of messages
currently under consideration by the agent-giving the message set Mi.

• The distributed workagent extracts from P the dialogue clause, Ci, determining its
part of the dialogue.

• Applying the rewrite rules in [8] to give an expression of Ci in terms of protocol P
in response to the set of received messages, Mi, producing: a new dialogue clause
Cn; an output message set On and remaining unprocess messages Mn (a subset
of Mi). These are produced by applying the protocol rewrite rules exhaustively to
produce the sequence:

〈 Ci

Mi,Mi+1,P,Oi−−−−−−−−−−−→ Ci+1, Ci+1
Mi+1,Mi+2,P,Oi+1−−−−−−−−−−−−−−−→ Ci+2, ..., Cn−1

Mn−1,Mn,P,On−−−−−−−−−−−−→ Cn〉

• The original clause, Ci, is then replaced in P by Cn to produce the new protocol,
Pn

• The distributed workflow agent can then send the messages in set On, each accom-
panied by a copy of the new protocol Pn.

2.2 Business Process Execution Language for Web Service (BPEL4WS)

The Business Process Execution Language for Web Services (BPEL4WS) is an XML-
based language for describing workflow in a distributed environment using web ser-
vices. With support from IBM and Microsoft, it has become the de facto standard for
workflow description. A workflow described in BPEL4WS details the flow of control
and any data dependencies among a collection of web services being composed. When
enacted, the composition itself becomes available as a meta-web service, eligible for
inclusion in other compositions. BPEL4WS requires that all web services be described
with available WSDL descriptions. The main BPEL4WS notations are given in figure
3. Due to the industry’s increased focus on business process management and accep-
tance of BPEL4WS, vendors are producing new software tools for workflow design,

1 This part is taken from the paper[8].

Enacting the Distributed Business Workflows Using BPEL4WS 39

Fig. 3. Basic BPEL4WS Syntax[7]

specification, and enactment. An example of one such tool is IBM’s BPEL4WS Java
Runtime (BPWS4J) platform [6]. Think of the BPWS4J engine as an interpreter for the
workflow specification: when the engine receives a workflow description, it enacts the
workflow in a centralized manner.

3 A Multi-agent Platform For Distributed Business Workflow
Based on BPEL4WS

A BPEL4WS specification contains all the information for running a specified busi-
ness process model using web services composition, although it was not designed for
decentralised multi-agent enactment and, therefore, lacks explicit instructions about
how agents should coordinate. Although our multi-agent interaction protocol language
(LCC) is more amendable to multi-agent enactment, it requires huge amounts of extra
effort in the phases of protocol’s verification and validation to ensure that the proto-
col is strictly consistent with the requirement. As such, the method for performing the
BPEL4WS-to-multiagent-enactment is needed. The most straight forward way of do-
ing this is to perform language mapping from BPEL4WS to LCC. Thus, any BPEL4WS
specification can be translated to a LCC protocol automatically which is then used by
the agents in the multi-agent system. However, an issue that we need to consider is that
BPEL4WS is based on the paradigm of imperative programming langauge, while LCC
is based on the declarative programming paradigm. Translating a BPEL4WS specifica-
tion to a LCC protocol is actually the task of translating a imperative programme to a
declarative programme, which is not possible in all circumstances.

Therefore, we choose another approach for our work: producing a LCC protocol,
which acts as a BPEL4WS interpreter. The BPEL4WS specification and the LCC pro-
tocol (BPEL4WS interpreter) are passed together between the agents to enable their

40 L. Guo, D. Robertson, and Y.-H. Chen-Burger

coordination. This LCC protocol interpret an BPEL4WS specification so is generic for
this style of process model. Based on this idea, a BPEL4WS specification that is de-
fined in any fashion can be interpreted neatly by the LCC protocol when they are passed
together in the multi-agent system. The infrastructure of the system based on this ap-
proach is given in figure 4. With this infrastructure, the multi-agent interaction protocol,
the BPEL4WS specification and the messages are packed and passed together between
the agents. Once an agent receives the package, it processes: the incoming message (ini-
tiating appropriate behaviors), interaction protocol and BPEL4WS (resolving the next
action it needs to take), then it sends out a new package to the next agent to make the
coordination continue.

Fig. 4. The infrastructure of our generic MAS platform

4 Agent Coordination Using LCC Protocol and BPEL4WS
Specification

4.1 Express BPEL4WS Specification in a Plain String Form

In order to easily interpret the BPEL4WS specification using LCC protocol, we first
express the BPEL4WS specification in a plain string form rather than using its original
XML syntax directly. For simplicity, only several of the main syntaxes of BPEL4WS
model for our work are given below:

Model := {Description, Structure}
Description := partnerLink

(
name(Constant), parnterLinkType(Constant),
myRole(Constant), partnerRole(Constant)

)
|variable(name(Constant), messageType(Constant))|...

Structure := flow([Activity/Structure, Activity/Structure, ...])|
switch([condition(Condition, Activity/Structure), ...])|
while(condition(Condition, Activity/Structure)|
Structure/Activity then Structure/Activity|...

Enacting the Distributed Business Workflows Using BPEL4WS 41

Activity := invoke

⎛
⎜⎝

partnerLink(Constant), portType(Constant),
operation(Constant), inputV ariable(Constant),
outputV ariable(Constant), sourceLink(Constant),
targetLink(Constant))

⎞
⎟⎠

|receive

⎛
⎝ partnerLink(Constant), portType(Constant),

operation(Constant), variable(Constant),
sourceLink(Constant), targetLink(Constant)

⎞
⎠

|reply

⎛
⎝ partnerLink(Constant), portType(Constant),

operation(Constant), variable(Constant),
sourceLink(Constant), targetLink(Constant)

⎞
⎠

|assign

⎛
⎜⎜⎝

from

(
expression/opaque/variable(Constant),
property(Constant)

)
,

to(variable(Constant), property(Constant)),
sourceLink(Constant), targetLink(Constant)

⎞
⎟⎟⎠

|...
Condition := Term|Condition ∧ Condition|Condition ∨ Condition
Constant := Term

The structure (binary tree) for a BPEL4WS specification that is expressed using the
above syntaxes is shown in figure 5.

4.2 Relating the Basic BPEL4WS Activities to LCC Dialogues

The only way for the agents to coordinate with each other in a multi-agent system
is through message passing. Therefore, when adopting a BPEL4WS specification in
a multi-agent system, the first thing we need to do is to relate the BPEL4WS syntax
to message passing. Fortunately, one of the BPEL4WS design principles is to define
the interaction (message passing) between two partners through centralised workflow

Fig. 5. The structure of the BPEL4WS model in logical form

Fig. 6. Translations from BPEL4WS activities to LCC messages

42 L. Guo, D. Robertson, and Y.-H. Chen-Burger

engine. A centralised workflow engine sends and receives messages to/from the par-
ticipants to enable the interaction by using some basic activities. In our system, each
agent acts as a web service proxy. Instead of sending and receiving messages through a
centralised server, the messages are taking place directly between participants (agents).
Thus, the translation from the BPEL4WS basic activities to LCC dialogues is possible.
Space limitations prevent giving the entire translation here, but a segment of it is given
below:

4.3 Using LCC Protocol to Interpret the BPEL4WS Specification

In our approach, the LCC protocol is used as an interpreter to tell the agents how to
process the BPEL4WS specification attached. The basic idea is: each role defined in
the LCC protocol corresponds to a BPEL4WS syntax element. There are five arguments
defined for each of the LCC roles:

• Model: is a part of BPEL4WS model that is currently processed by the LCC proto-
col. Because the structure of the BPEL4WS specification is a binary tree, with our
approach, the deepest node is always processed first.

• MList: stores all the unprocessed parts of a BPEL4WS model and is used to mark
the states of the BPEL4WS model’s processing. Once a basic BPEL4Ws activity
is reached while an agent processes the BPEL4WS model, it starts a new dialogue
based on the activity and all of the unprocessed BPEL4WS model stored in MList
has to be passed to the next agent.

• V List: stores all the concrete values of the variables that are used in workflow
enactment. In the centralised environment, all the information about the variables
are controlled by the central server, whereas in the distributed environment, all of
such information have to be passed around.

• IDList: is used to connect a receive activity and its corresponding reply activity.
• Role: represents the real participant in the interaction defined in the partnerLink.

The definitions of some of the main LCC roles are given and explained below2:

a(interpreter(Model, MList, V List, IDList, Role), A1) ::⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PortType : Operation : InputV ariable ⇐ a(invoke(Model, MList, V List, IDList, Role2), A2)
then⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

null ← Model = ..[, partnerLink(), portType(), operation(), inputV ariable(),
outputV ariable(null), sourceLink(), targetLink()]

then⎛
⎜⎝

null ← MList = []
or
a(interpreter(Head, Rest, V List1, IDList, Role), A1)
← MList = [Head|Rest] and V List1 = [InputV ariable|V List]

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

or⎛
⎜⎝

PortType : Operation : InputV ariable : OutputV ariable ⇒
a(invoke(Model, MList, V List, IDList, Role2), A2)
← Model = ..[, partnerLink(), portType(), operation(), inputV ariable(),

outputV ariable(OutputV ariable), sourceLink(), targetLink()]

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or a(sequence(Model, MList, V List, IDList, Role), A1) ← is sequence(Model)
or a(flow(Model, MList, V List, IDList, Role), A1) ← isf low(Model)
or a(invoke(Model, MList, V List, IDList, Role), A1) ← is invoke(Model, Role)
or a(receive(Model, MList, V List, IDList, Role), A1) ← is receive(Model, Role)
or a(reply(Model, MList, V List, IDList, Role), A1) ← is reply(Model, Role)
...

2 The full protocol can be found at http://homepages.inf.ed.ac.uk/s0349668/Websites/tools/protocol.inst

Enacting the Distributed Business Workflows Using BPEL4WS 43

a(interpreter(Model, MList, V List, IDList, Role), ID) defined above is used to
control the role’s changing of the agents. Every agent takes this role first whenever it
receives a message associated with the unprocessed BPEL4WS model and then changes
to the appropriate role for processing the received BPEL4WS model. Only partial defi-
nitions of this role are given here for simplicity.

a(sequence(Model, MList, V List, IDList), A1) ::
a(interpreter(Model1, [Model2|MList], V List, IDList, Role), A1)

← process sequence(Model, Model1, Model2)

a(sequence(Model, MList, V List, IDList), A1) corresponds to the BPEL4WS se-
quence activity. Once an agent takes this role, it first gets the first child element Model1
of Model, stores the left child elements Model2 in Mlist and then changes its role to
interpreter to process Model1. For the other BPEL4WS structure activities, the basic
idea is same.

a(flow(Model, MList, V List, IDList), A5) ::
a(interpreter(Model1, [NewModel|MList], V List, IDList, Role), A5)

← process flow(Model, Model1, NewModel)

If the role of an agent is flow, the agent uses the constraint process flow(Model,
Model1, NewModel) to process the BPEL4WS flow activity (Model). The function
of the constraint is to extract one of the child elements (Model1) of Model and form
another flow activity (NewModel) using all the left child elements. An assumption
we make here is the flow activity has to be processed sequentially in the distributed
environment, which is the trade-off of eliminating the centralised server.

a(receive(Model, MList, V List, IDList, Role1), A1) ::
V List2 = [V ariable|V List] and IDList1 = [PortType : Operation : Partner : ID|IDList]

← PortType : Operation : V ariable ⇐ a(Partner, ID)
then⎛
⎜⎜⎜⎜⎜⎝

(
a(receive(Model, MList, V List, IDList, Role1), A1)

← ¬check receive(Model, PortType, Operation, V ariable, Partner)

)

or

⎛
⎝ a(interpreter(Head, Rest, V List2, IDList1, Role2), A1)

← check receive(Model, PortType, Operation, V ariable, Partner)
and MList = [Head|Rest]

⎞
⎠

or null ← MList = []

⎞
⎟⎟⎟⎟⎟⎠

When the role of an agent is receive, it waits for an incoming message and checks if
this message is the appropriate one. A message is a right one if it is sent from the right
partner of current agent and if it is defined with the right message type. If the message
is not what the agent waits for, the agent keeps waiting until it receives the proper one.
If the message is the right message, the agent changes its role to interpreter to process
the unprocessed BPEL4WS model in MList.

a(reply(Model, MList, V List, IDList, Role1), A1) ::

V ariable1 => a(Partner, ID) ←
⎛
⎝ process reply(Model, Partner, PortType, Operation, V ariable)

and get ID(Partner, PortType, Operation, IDList, ID)
and look up(V List, V ariable, V ariable1)

⎞
⎠

An agent sends a message in reply to a message that was received from a(Partner, ID).
The Partner and ID is stored in IDList to make sure that the message is sent to the
right partner.

a(invoke(Model, MList, V List, IDList, Role1), A1) ::
PortType : Operation : InputV ariable ⇒ a(interpreter(Model, MList, V List, IDList, Role2), A2)

← process invoke(Model, PortType, Operation, InputV ariable, Role2)

44 L. Guo, D. Robertson, and Y.-H. Chen-Burger

then⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

null ← Model = ..[, partnerLink(), portType(), operation(), inputV ariable(),
outputV ariable(null), sourceLink(), targetLink()]

or⎛
⎜⎜⎜⎜⎜⎜⎜⎝

PortType : Operation : InputV ariable : OutputV ariable
⇐ a(interpreter(Model, MList, V List, IDList, Role2), A2)
then⎛
⎜⎝

null ← MList = []
or
a(interpreter(Head, Rest, V List3, IDList, Role), A1)
← MList = [Head|Rest] and V List1 = [OutputV ariable, InputV ariable|V List]

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

When an agent is of the role invoke, it extracts the necessary information: PortType,
Operation and InputV ariable from the current BPEL4WS invoke activity (Model)
and sends it out to the next agent that is in the role of interpreter) for web service’s
invocation. If the outputVairable is defined in the current invoke activity, then there
will be a response from the message receiver later on. After the sender receives the re-
sponse, it will changes its role to interpreter to continuously process the unprocessed
BPEL4WS model.

5 A Simple Case Study

We use a simple example to illustrate how our approach works. The definition for the
input BPEL4WS specification is given as follows with all the irrelevant parts ignored:

< process name = ”loanApprovalProcess” >
< /variables >

< variable name = ”request” messageType = ”CreditInfoMessage”/ >
< variable name = ”approvalInfo” messageType = ”approvalMessage”/ >

< /variables >
< partnerLinks >

< partnerLink name = ”customer” partnerLinkType = ”LinkType” myRole = ”approver”/ >
< partnerLink name = ”approver” partnerLinkType = ”LinkType” partnerRole = ”approver”/ >

< /partnerLinks >
< sequence >

< receive name = ”receive” partner = ”customer” portType = ”approvalPT”
operation = ”approve” variable = ”request” >

< /receive >
< invoke name = ”invokeapprover” partner = ”approver” portType = ”approvalPT”

operation = ”approve” inputV ariable = ”request” outputV ariable = ”approvalInfo” >
< /invoke >
< reply name = ”reply” partner = ”customer” portType = ”loanApprovalPT”

operation = ”approve” variable = ”approvalInfo” >
< /reply >

< /sequence >
< /process >

The basic steps for the agents in our system to coordinate using the above BPEL4WS
model and LCC protocol are illustrated in figure 7 and are explained below:

• An agent, A1, receives the BPEL4WS specification, B together with the LCC pro-
tocol, P from section 4.2. It takes the role of a(interpreter(B, [], [], [],),A1). It
then tries the clauses that are defined in P to find the type of the B by using the
constraints is sequence/is invoke/...) to determine the next BPEL4WS operator.
For our example, the dominant operator in B is a sequence activity. A1 changes its
role to a(sequence(B, [], [], [],),A1).

• A1 processes B in the role of a(sequence(B, [], [], [],),A1) by using the constraint
process sequence(B,B1,B2) and gets the first element, B1, of B and the left ele-
ments B2 and then changes its role to a(interpreter(B1, [B2], [],),A1) to repeat
the first step.

Enacting the Distributed Business Workflows Using BPEL4WS 45

Fig. 7. Agent’s coordination for performing the illustrate example

• By repeating the first step, A1 changes its role to a(receive(B1, [B2], [], approver),

A1) and waits for the message PortT ype : Operation : request. Once A1 re-
ceives the message, following the instructions in P , it changes its role to
a(interpreter(B3, [B4], [request], [PortType : Operation : Customer : CustomerID],),A1)

in which B3 is the first child element of B2 and B4 contains the remaining child
elements of B2.

• By repeating the previous steps, A1 changes its role to a(invoke(...),A1) and
sends a appropriate message M to an agent A2 together with P1. A2 starts pro-
cessing the B4 after it receives the P1 and M. The coordination continues, until the
processing of B is finished.

6 Discussion

Our approach provides an opportunity to build a multi-agent based distributed workflow
system starting from a business process model rather than from a interaction protocol,
which narrows the gap between the high level requirement and system specification in
the development of multi-agent system and connects the business workflow commu-
nity and multi-agent community. Thus, business users can produce their own business
process models that can be used directly in the multi-agent system. Furthermore, since
there have been many techniques and tools available for current business process mod-
eling, they can be adopted directly for building the multi-agent system based on our
approach.

Notice that the LCC protocol used to interpret BPEL4WS models is independent of
any specific message passing infrastructure, although we have described it with respect
to a distributed and peer to peer infrastructure, it could equally well be deployed in
a more traditional server based style. Different styles of deployment are described in
detail in [8]. Furthermore, the protocol can be used prior to deployment in order to
predict behaviours and possible errors in interaction[10]. Another advantage is that the

46 L. Guo, D. Robertson, and Y.-H. Chen-Burger

workflow engine built using our approach is a real generic server. The only knowledge
of it is how to process the LCC protocol and how to invoke the web services but not
how to process the particular business process modelling language, which gives us a
very efficient and light way for the system re-design and re-implement. Even more
general, this approach can be used to adopt any functional requirement, as long as the
requirement is operational and can be represented by message passing, on the multi-
agent platform.

7 Conclusion and Future Work

In this paper, we have presented a novel technique for constructing distributed business
workflows using existing web services composition on a generic multi-agent system
platform, which particularly suits the inter-operations among enterprises. By using our
approach, a BPEL4WS specification can be used directly for constructing a multi-agent
system using web services composition. In such a system, all the real operations are
carried by web services that are associated with distributed agents. As mentioned in the
discussion section, our approach is not limited to workflow system but can fit any large
component based system.

We are currently working on writing the complete LCC protocol for processing the
full BPEL4WS syntaxes. We will then be able to test the protocol on a real multi-agent
platform to determine various benefits and drawbacks of our approach. After this, the
next stage is to solve the business level problem using our approach, such as how to do
the transactional control etc.

References

1. Business Process Execution Lanuage For Web Services specification,
http://www-128.ibm.com/developerworks/library/ws-bpel/.

2. W3C. Web Services reference, http://www.w3.org/2002/ws/.
3. Web Service Definition Language references http://www.w3.org/TR/wsdl.
4. MagentA, http://homepages.inf.ed.ac.uk/cdw/magenta.html.
5. The Workflow Management Coalition, http://www.wfmc.org/.
6. IBM. BPWS4J, http://www.alphaworks.ibm.com/tech/bpws4j.
7. J.M. Vidal, P. Buhler, and C. Stahl. Multiagent systems with workflows. IEEE Internet Com-

puting, 8(1):76-82, January/February 2004.
8. D. Roberston, A Lightweight Method for Coordination of Agent Oriented Web Services, Pro-

ceedings of AAAI Spring Symposium on Sematic Web Services, 2004.
9. P. A. Buhler, J. M. Vidal, H. Verhagen Adaptive Workflow = Web Services+Agents, Proceed-

ing of IEEE International Conference on Web Services 2003.
10. C. D. Walton Model Checking Multi-Agent Web Services, Proceeding of AAAI Symposium

of Semantic Web Services 2004.
11. P. Buhler and J. M. Vidal. Enacting BPEL4WS specified workflows with multiagent sys-

tems.In Proceedings of the Workshop on Web Services and Agent-Based Engineering, 2004.

BSCA-P: Privacy Preserving Coalition

Formation

Bastian Blankenburg and Matthias Klusch

DFKI - German Research Center for Artificial Intelligence,
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

{blankenb, klusch}@dfki.de

Abstract. In the setting of cooperation of rational web service agents
via coalition formation, we devise an algorithm BSCA-P to form recur-
sively bilateral Shapley value stable coalitions. The main focus lies on
privacy aspects: we show that the BSCA-P enables the formation of sub-
game stable and individually rational coalitions while hiding absolute
coalition values and payoffs, as well as allowing for anonymous service
requests and access.

1 Introduction

Several methods for coalition formation among agents in order to solve task allo-
cation problems have been introduced in the literature (see e.g.[9]). A coalition
is defined as a group of agents working together to accomplish complex tasks
which cannot (or at a greater cost) be done by single agents. In this context,
cooperative game theory provides a well developed and mathematically founded
framework to determine which coalitions should be formed and how the respec-
tive coalition values should be distributed in an individually rational and stable
manner [5] (i.e. no agents has an incentive to break away from its coalition).

In recent years, a number of CF methods which account for different real-
world problems have been proposed in the literature. Examples include [2,4] for
CF under uncertainty of coalition values, or [11,1] which consider inter-agent
trust in CF. The development of privacy preserving CF protocols, however, has
not received much attention yet. But it might be unacceptable for an agent that
others learn which services are accessed and which utility is achieved. Example
applications include health care web service agents, which form coalitions e.g. to
automatically handle insurance issues, transportation, hospital and medical per-
sonal assignments. But an agent responsible for transportation should probably
not need to know which patients are assigned to which doctors. In this paper,
we present a protocol which overcomes such privacy issues. More precisely, we
present a CF protocol which allows participating agents to

1. hide its (exact) payoff from all but one other agents,
2. hide its individual utility from all other agents,
3. anonymously request and access offered services,

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 47–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 B. Blankenburg and M. Klusch

4. hide the fact that a service from a specific agent has been accessed also from
other agents and

5. hide input/output data for services from all agents except the recipient.

The remainder of this paper is organized as follows: in section 2 we introduce
our model of web service agents and the coalition game model. In section 3 we
show how this model can be exploited to negotiate coalitions while hiding infor-
mation about coalition values, local worths and payoffs. In section 4 we adopt
an anonymous routing protocol to enable anonymous service access and intro-
duce other notions of anonymity. Finally, we propose and discuss the coalition
formation protocol BSCA-P in section 5, and conclude in section 6.

2 Coalitions of Web Service Agents

We define a web service as any computational process for which all input and
output data can be transferred over the internet. If a web service involves the
execution of other web services, it is called a composed web service. Otherwise,
it is called a primitive web service. A formal specification of a web service in an
appropriate language L is called a web service description (L-WSD). Examples
for L include WSDL for traditional web services or OWL-S for semantic web
services. A message containing an offer to execute a web service ws and an L-
WSD of ws is called a web service advertisement (L-WSA). A message containing
a request for the execution of a web service ws and an L-WSD of ws is called a
web service request (L-WSR). A comparison of two L-WSDs in order to find out
whether an advertised web service and a requested web service match is called
a web service matching (L-WSM). We then define an L-web service agent as an
agent which

1. offers any number (including zero) of web services,
2. is able to send L-WSAs for its offered web services,
3. requests any number (including zero) of web services,
4. possesses L-WSDs of its requested web services and
5. is able to perform L-WSMs.

In the following, we consider only sets of web service agents using the same
language L, and omit the ’L’ in our notation. We also say just ’agent’ instead of
’web service agent’. Ra denotes the set of all requests by agent a, and OSa the set
of all offered services by agent a. For simplicity, we assume that each agent only
offers primitive web services. The requesting agents might compute compositions
of these primitive services. We assume each agent a to have a certain private
monetary valuation wa(WS) for the accomplishment of each service it requests.
Finally, the execution of service WS by an agent a has a cost ca(WS).

We can now model this setting as a coalition game. Let A denote the set of
all agents in a given system. We call subsets C ⊆ A executing services for each
other a coalition. Let Ea(C) denote the set of all services executed by a, and
Ra(C) the set of all services of other members of C which are accessed by a.

BSCA-P: Privacy Preserving Coalition Formation 49

Table 1. Offered/requested services in example game

agent a offers ca(.) requests wa(.) agent a offers ca(.) requests wa(.)

a1 ws1 1 ws2 2 a2 ws2 1 ws4 2
ws3 2 ws3 3 a3 ws4 1 ws1 3

Then, a’s immediate monetary result (that is, without side-payments) of being
a member of C, which we call local worth of a in C, is determined by

lwa(C) :=
∑

WS∈Ra(C)

wa(WS) −
∑

WS∈Ea(C)

ca(WS) (1)

Thus, we can define an overall value

v(C) :=
∑
a∈C

lwa(C) (2)

of C, which we call C’s coalition value. The pair (A, v) then defines the coalition
game. In cooperative game theory, coalitions may not overlap. A configuration
(S, u) for a game (A, v) specifies a payoff distribution u : A �→ R for a coalition
structure S, a partition of A. u(a), a ∈ A denotes the payoff for agent a. u is
called individually rational iff ∀a ∈ A : u(a) ≥ v(a) and efficient iff ∀C ∈ S :∑

a∈C u(a) = v(C) We also write ∀C ⊆ A : u(C) :=
∑

ai∈C ui.
In order to implement a payoff distribution u, each agent generally will have

to make/receive side-payments. Keeping in mind the local worths we define the
total amount of side-payment that a has to receive from other agents in C as

spu(a, C) := u(a) − lwa(C) (3)

Of course, spu(a, C) can be negative, meaning that a has to make a side-payment
of |spu(a, C)| to other agents in C. We also write for C∗ ⊆ C:

spu(C∗, C) :=
∑

a∈C∗
spu(a, C) (4)

If C∗ = C, we just write spu(C).

Corollary 1. Let C ∈ S. Then spu(C) = 0 if an only if u is efficient wrt. S.

Example 1. Consider a game of three agents: A = {a1, a2, a3}. They offer and
request services according to table 1. Considering coalition C1 = {a1, a2}, we
have lwa1(C1) = wa1(ws2) + wa1(ws3)− ca1(ws3) = 3, lwa2(C1) = −ca2(ws2) =
−1 and v(C1) = 2.

A solution to a game is given by an individually rational and efficient con-
figuration which satisfies a chosen stability concept. Unfortunately, the classical
stability concepts are of high computational complexity, i.e. at least exponential.
However, we consider only the case where coalitions are built up by a bilateral

50 B. Blankenburg and M. Klusch

merging process. We thus utilize a simplified version of the Shapley value[8], the
(recursive) bilateral Shapley value:

The union C of two disjoint coalitions C1, C2 ⊂ A \ ∅ is called a bilateral
coalition. C1 and C2 are called subcoalitions of C. A bilateral coalition C is
called recursively bilateral iff it is the root node of a binary tree denoted TC for
which (a) every non-leaf node is a bilateral coalition and its subcoalitions are its
children and (b) every leaf node is a single-agent coalition. We denote the depth
of a node C∗ in TC by d(C∗, TC), i.e.

d(C∗, TC) =
{

d(C∗, TC) = 0 if C∗ = C
d(C∗, TC) = d(C∗∗, TC) + 1 otherwise, with C∗∗ ∈ TC , C∗ ⊂ C∗∗

A coalition structure S for (A, v) is called (recursively) bilateral if ∀C ∈
S : C is (recursively) bilateral or C = a, a ∈ A. The bilateral Shapley value
σb(C, Ci, v),Ci, i ∈ {1, 2} in the bilateral coalition C is defined as the Shapley
value of Ci in the game ({C1, C2}, v):

σb(Ci, C, v) =
1
2
v(Ci) +

1
2
(v(C) − v(Ck)) (5)

with k ∈ {1, 2}, k 	= i.
Given a recursively bilateral coalition structure S for a game (A, v), a payoff

distribution u is called recursively bilateral Shapley value stable iff for each C ∈ S,
every non-leaf node C∗ in TC : u(C∗

i) = σb(C∗
i , C∗, vC∗), i ∈ 1, 2 with ∀C∗∗ ⊆

A :

vC∗(C∗∗) =

⎧⎨
⎩

σb(C
p
k , Cp, vCp) if Cp ∈ TC , C∗ = C∗∗ = Cp

k ,
k ∈ 1, 2

v(C∗∗) otherwise
(6)

In other words, for a merge of two recursively bilateral coalitions, the coalition
value is distributed down the coalition tree applying the bilateral Shapley value
to the actual payoffs of the respective parent coalitions instead of their coalition
values.

Example 2. Consider again the game from example 1 and the bilateral coalition
C1 = {a1} ∪ {a2}. Since v({a1}) = 1 and v({a2}) = 0, we have σb({a1}, {a1} ∪
{a2}, v) = 1

2 + 1
2 (2 − 0) = 1.5 and σb({a2}, {a1} ∪ {a2}, v) = 1

2 (2 − 1) = 0.5
Now consider a merge of C1 with C2 = {a3} (C = C1∪C2). We have v(C) = 5

and v(C2) = 0, thus σb(C1, C, v) = 1+ 1
25 = 3.5 and σb(C2, C, v) = 1

2 (5−2) = 1.5
For a recursively bilateral Shapley value stable payoff distribution we have

to consider v∗ with v∗({a1, a2}) = 3.5 and for all other coalitions v∗(C) =
v(C): u(a1) = σb({a1}, {a1} ∪ {a2}, v∗) = 1

2 + 1
2 (3.5 − 0) = 2.25 and u(a2) =

σb({a2}, {a1} ∪ {a2}, v∗) = 1
2 (3.5 − 1) = 1.25.

3 Hiding Local Worths and Coalition Values

In this section we show that the recursively bilateral Shapley value is well-suited
when hiding coalition values and local worths. It is easy to see that (5) can be
rewritten as

BSCA-P: Privacy Preserving Coalition Formation 51

σb(Ci, C, v) = v(Ci) +
1
2
· (v(C) − v(C1) − v(C2)) (7)

with i ∈ {1, 2}. Thus, the additional value

av(C1, C2) := v(C1 ∪ C2) − v(C1) − v(C2) (8)

produced by forming coalition C1 ∪ C2 is evenly distributed among C1 and C2.
For recursively bilateral Shapley value stable payoff distributions, this means
that each child node in the coalition tree gets half of the additional payoff of
its parent node. The share of the total payoff that a node gets is thus directly
dependent on its depth in the tree, which is shown by the following lemma.

Lemma 1. Let (S1, u1) and (S2, u2) configurations for a game (A, v), with u1

and u2 being recursively bilateral Shapley value stable, and ∃C1, C2 ∈ S1 : C =
C1 ∪ C2 ∈ S2. Then

∀C∗ ∈ TC : u2(C∗) = u1(C∗) +
av(C1, C2)
2d(C∗,TC)

Proof. We use induction over d(C∗, TC): the case d(C∗, TC) = 0 is obvious be-
cause of the efficiency of σb and the definition of av.

For d(C∗, TC) = 1, we have C∗ = Ci, i ∈ {1, 2} and u2(Ci) = σb(Ci, C, v) =
v(Ci) + 1

2av(C). Again because of the efficiency of σb, v(Ci) = u1(Ci), and thus
v(Ci) + 1

2av(C) = u1(Ci) + av(C)

2d(C∗,TC) .
For d(C∗, TC) = k > 1 and the lemma holds for all C∗∗ with d(C∗∗, TC) < k,

we have C∗ = Cp
i , i ∈ {1, 2}, Cp ∈ TC , d(Cp

i , TC) = d(Cp, TC)+1 and u2(C
p
i) =

σb(C
p
i , Cp, vCi) with vCp

i
(Cp) = u2(Cp) = u1(Cp)+ av(C)

2d(Cp,TC) . Applying 6 and 7,
we get

u2(C
p
i) = v(Cp

i) +
1
2
(u2(Cp) − v(Cp

i) − v(Cp
k))

= v(Cp
i) +

1
2
(u1(Cp) +

av(C)
2d(Cp,TC)

− v(Cp
i) − v(Cp

k))

= v(Cp
i) +

1
2
(u1(Cp) − v(Cp

i) − v(Cp
k)) +

av(C)
2d(Cp,TC)+1

= u1(C
p
i) +

av(C)
2d(Cp

i ,TC)

For the merge of C1 and C2 to form C = C1 ∪ C2, we further define the
additional local worth of agent a ∈ Ci, i ∈ {1, 2}:

alwa(Ci, C) := lwa(C) − lwa(Ci), (9)

and the summarized additional local worth for a subcoalition C∗ ∈ TCi

alw(C∗, Ci, C) :=
∑

a∈C∗
(alwa(Ci, C)) (10)

52 B. Blankenburg and M. Klusch

Also, note that

av(C1, C2) =
∑
a∈C

lwa(C) −
∑

a∈C1

lwa(C1) −
∑

a∈C2

lwa(C2)

= alw(C1, C1, C) + alw(C2, C2, C) (11)

The following theorem shows that in order to compute its side-payment when
merging coalitions C1 and C2, each subcoalition C∗ ∈ TCi only needs to consider
its side-payment for the case without the merge, the additional value av(C1, C2)
and its additional local worth alw(C∗, Ci, C):

Theorem 1. Let (S1, u1) and (S2, u2) configurations for a game (A, v), with
u1 and u2 being recursively bilateral Shapley value stable, and ∃C1, C2 ∈ S1 :
C = C1 ∪ C2 ∈ S2. Then ∀C∗ ∈ TCi, i ∈ {1, 2}:

spu2(C
∗, C) = spu1(C

∗, Ci) +
alw(C1, C1, C) + alw(C2, C2, C)

2d(C∗,TC)
− alw(C∗, Ci, C)

Proof. Remember that for any u, spu(C∗, C) =
∑

a∈C∗ u(a)− lwa(C) = u(C∗)−∑
a∈C∗ lwa(C) (see 4). Because of lemma 1, 9 , 10 and 11, we can rewrite

spu2(C
∗, C) = u1(C∗) +

av(C1, C2)
2d(C∗,TC)

−
∑

a∈C∗
lwa(C)

= u1(C∗) +
av(C1, C2)
2d(C∗,TC)

−
∑

a∈C∗
(lwa(Ci) + alwa(Ci, C))

= spu1(C
∗, Ci) +

av(C1, C2)
2d(C∗,TC)

− alw(C∗, Ci, C)

= spu1(C
∗, Ci) +

alw(C1, C1, C) + alw(C2, C2, C)
2d(C∗,TC)

− alw(C∗, Ci, C)

Please note that in the case of C∗ = Ci, spu1(C∗, Ci) = 0 because Ci ∈ S1 and
corollary 1. It is thus clear that in order to obtain recursively bilateral Shapley
value stable payoff distributions by repeatedly merging coalitions, subcoalitions
have to inform each other only about their additional local worths. Absolute
local worths need not to be communicated, and absolute coalition values do not
have to be known at all.

The results of this section are employed in the specification of the coalition
formation protocol BSCA-P in section 5, but we give an example here:

Example 3. Consider again the situation from example 2. At first {a1} and {a2}
merge to form C1, with alwa1({a1}, C1) = 3 − 1 = 2 and alwa2({a2}, C1) =
−1 − 0 = −1. According to theorem 1 we get

spu({a1}) = 0+
2 + (−1)

21
−2 = −1.5 and spu({a2}) = 0+

2 + (−1)
21

−(−1) = 1.5

Thus, the net amount received by a1 and a2 are

u(a1) = lwa1(C1) + spu({a1}) = 3 − 1.5 = 1.5 = σb({a1}, {a1} ∪ {a2}, v)
u(a2) = lwa2(C1) + spu({a2}) = −1 + 1.5 = 0.5 = σb({a2}, {a1} ∪ {a2}, v)

BSCA-P: Privacy Preserving Coalition Formation 53

Second, C1 merges with C2 = {a3} to form C = C1∪C2. By looking at the service
offers and requests, the agents (and coalition C1 determine their additional local
worths:

alwa1({a1}, C) = 2 − 3 = −1, alwa2({a2}, C) = 1 + 1 = 2,

alw(C1, C1, C) = alwa1({a1}, C) + alwa2({a2}, C) = 1 and
alw(C2, C2, C) = 2 − 0 = 2

The additional coalition value is thus

av(C1, C2) = alw(C1, C1, C) + alw(C2, C2, C) = 3

Applying theorem 1 again, we get for the new payoff distribution u∗

spu∗(C1) = 0 +
1 + 2
21

− 1 = 0.5 and spu∗(C2) = 0 +
1 + 2
21

− 2 = −0.5.

The net payoffs of C1 and C2 are of course equal to their resp. bilateral
Shapley values:

u∗(C1) = lwa1(C) + lwa2(C) + spu∗(C1)
= 2 + 1 + 0.5 = 3.5 = σb(C1, C, v) and

u∗(C2) = lwa3(C) + spu∗(C2) = 2 − 0.5 = 1.5 = σb(C2, C, v)

For the side-payments within C1 we again apply theorem 1:

spu∗({a1}, C) = spu({a1}, C1) +
1 + 2
22

− (−1) = −1.5 + 0.75 + 1 = 0.25 and

spu∗({a2}, C) = 1.5 + 0.75 − 2 = 0.25

4 Anonymous Service Access

In this section, we introduce some anonymity and encryption concepts that en-
able anonymous and secure web service access.

To achieve this, we use an anonymous communication protocol based on
rerouting. In a rerouting protocol, a message is not directly sent to the receiver,
but travels over intermediate network nodes, or agents in our case. The specific
protocol we utilize is roughly based on onion routing [10]. It was originally defined
for HTTP-connections, but we adapt it here for our agent coalition formation
setting, by looking only at high-level messages sent between the agents instead of
technical details of an underlying protocol. Our focus is to enable the agents to
request and access services within their coalition anonymously. We thus also do
not bother about problems like possible eavesdropper agents or traffic analysis,
as such problems are out of scope of this paper.

The basic idea of the onion routing protocol is to wrap a message in sev-
eral layers of encryption and reroute it over several rerouting nodes such that
no single node is able to determine the sender and receiver of a message. Also,

54 B. Blankenburg and M. Klusch

Fig. 1. Two ways of a2 contacting a3 via Onion Routing

when one agent contacts another, the nodes over which messages are sent are
chosen randomly. Figure 1 illustrates this for a three-agent case. It incorpo-
rates a public/private key encryption method, such as the well-known RSA
method (originally proposed in [7]). Thus, we extend our agent model such
that every agent a is required to possess a private key privkeya and a match-
ing public key pubkeya for the chosen encryption method. Further, a needs to
be able to execute according encryption/decryption functions. In the following,
enc(pubkey, m) denotes a function that encrypts message m using the public key
pubkey, and dec(privkey, em) denotes the corresponding decryption function for
the encrypted message em using the private key privkey. To let agent a1 send an
encrypted message m to agent a2, a1 encrypts m by executing enc(pubkeya2, m),
sends the result em to a2 which decrypts it by executing dec(privkeya2 , em.
Thus, the agents need to perform an initial public key exchange. In the onion
protocol, actually only a part of a message is encrypted with the public key
method. This part contains a key for a symmetric encryption method, i.e. one
that uses the same key for encryption and decryption. The remainder of the
message is encrypted with this method. This is done because of performance
reasons, since symmetric encryption methods usually are much faster than pub-
lic key methods. However, we go not into those details here, and consider such
optimizations as part of the implementation of the enc and dec functions.

We are now ready to define our anonymous message sending algorithm:

Algorithm 1. To anonymously send a message m to agent a2 over i interme-
diate agents, agent a1 performs the following:

1. Randomly generate an ordered list L with length i + 1 of agents, such that
Lj 	= Lj+1, ∀1 ≤ j < i, and Li+1 = a2, where Lj is the agent at position j
in L.

2. Set emi+1 := enc(pubkeya2, m).
3. For l = i to 1 do:

(a) Set m∗ := (Ll+1, eml+1).
(b) Set eml := enc(pubkeyLl

, m∗).
4. Send em1 to L1.

For this to work, each agent also needs to implement an algorithm to handle
incoming encrypted messages:

BSCA-P: Privacy Preserving Coalition Formation 55

Algorithm 2. When receiving an encrypted message em, agent a1 performs:

1. Set m := dec(privkeya1 , em)
2. If m is of the form (a2, em), a2 ∈ A, send em to a2; else process m like an

incoming unencrypted message.

To measure a degree of anonymity, different notions have been proposed in the
literature, such as total or group anonymity, under possibilistic or probabilistic
interpretations (see e.g. [6,3]. Here, we will apply the concept of possibilistic
agent k-anonymity, which requires only that there exists some set of agents K
with size k, such that each a ∈ K is a possible sender. Specifically, this anonymity
is measured in the following way. When the two coalitions C1 and C2 perform a
merge to form C = C1 ∪C2, they need to compute and inform each other about
alw(C1, C1, C) and alw(C2, C2, C) (see section 3). Because of the definition of
the local worths, alw(Ci, Ci, C) > 0, i ∈ {1, 2}, means that in coalition Ci, more
worth is produced by agents getting services executed than costs are produced
due to agents executing services. All Agents in C thus can infer that at least
one agent a ∈ Ci accesses a service in Ck, k ∈ {1, 2}, k 	= i. We thus obtain the
degree of agent k-anonymity for agents in Ci wrt. agents in Ck:

aa(Ci, Ck) = |Ci|
However, the degree of agent k-anonymity of a wrt. other agents in Ci is in
general only k = 1. This is because in order to compute alw(Ci, Ci, C), each
subcoalition C∗ ∈ TCi has to compute alw(C∗, Ci, C) first. In particular, agent
a has in general to inform some other agent in Ci about alw({a}, Ci, C).

Thus, we also use the concept of service k-anonymity, expressing that an
agent a accesses any one of k possible services. In the case of agent a ∈ Ci

accessing a service in Ck, the degree of service k-anonymity for a wrt. to the
agents in Ci is equal to the total number of services offered by agents in Ck:

sa(Ci) = |
⋃

a∈Ck

OSa|

In the following, we assume that each agent maintains minimum k-anonymity
degrees aamin(WS) ∈ N and samin(WS) ∈ N for each service it is interested
in requesting. When forming the coalition C, agent a ∈ Ci then only requests a
service WS from an agent in Ck if these minimum degrees are met, i.e. WS ∈
Ra(C) if

aa(Ci, Ck) ≥ aamin(WS) and (12)
sa(Ci) ≥ samin(WS) (13)

hold.

5 Coalition Formation Protocol BSCA-P

In this section, we finally propose the coalition formation protocol BSCA-P
applying the concepts that have been introduced in the previous sections. In the

56 B. Blankenburg and M. Klusch

BSCA-P, each coalition is represented by one agent which is responsible for the
communication with other coalitions. To simplify the choice of a representative,
we assume there exists an ordering function o defined on the set of all agents.
We also assume that service offers, along with the service execution costs, are
made public beforehand (e.g., by broadcasting).

Algorithm 3. For a game (A, v), S0 := {{a}|a ∈ A}, r := 0 and ∀C ∈ S0 :
sp0(C) := 0. In every coalition C ∈ Sr, every agent a ∈ C performs:

1. Let C ∈ Sr, a ∈ C and S∗ := S \ C.
2. Communication:

(a) For all C∗ ∈ S∗ do:
i. Determine Ra(C∗) using the sets OSa∗ for each a∗ ∈ C∗, accounting

for costs and ensuring compliance with 12 and 13.
ii. For each service request which is both in Ra(C) and Ra(C∗), keep

only the least costly one.
iii. Set alwsa(C∗) := alwa(C, C∗).
iv. For each bilateral coalition Ca, Ca ∈ TC , a ∈ Ca, a = Rep(Ca),

wait for a message from Rep(Ca
i), i ∈ 1, 2, a /∈ Ca

i containing
alwsRep(C)(C∗) and set alwsa(C∗) := alwsa(C∗) + alwsRep(C)(C∗).

v. If a = Rep(C) then send alwsa(C∗) to Rep(C∗); else send alwsa(C∗)
to Rep(C+) with C+ ∈ TC , a = Rep(C+

i), i ∈ 1, 2, a 	= Rep(C+).
(b) If a = Rep(C) then receive alwsRep(C∗)(C) and set

alws(C∗) := alwsRep(C∗)(C) + alwsa(C∗) for all C∗ ∈ S∗; else go to
step 3i.

3. Coalition Proposals:
(a) Set Candidates := S∗, New := ∅ and Obs := ∅
(b) Determine a coalition C+ ∈ Candidates with ∀C∗ ∈ Candidates :

alwsa(C+) ≥ alwsa(C∗).
(c) Send a proposal to Rep(C+) to form coalition C ∪ C+.
(d) Receive all coalition proposals from other agents.
(e) If no proposal from Rep(C+) is received and Candidates 	= ∅,

set Candidates := Candidates \ {C+} and go to step 3b.
(f) If a proposal from Rep(C+) is received, then form the coalition C ∪C+:

i. If o(Rep(C)) < o(Rep(C+)) then set Rep(C ∪ C+) := Rep(C); else
set Rep(C ∪ C+) := Rep(C+).

ii. Inform all other Rep(C∗), C∗ ∈ S∗\C+ and all a∗ ∈ C, a∗ 	= a about
the new coalition and Rep(C ∪ C+)

iii. New := {C ∪ C+}, Obs := {C, C+}
(g) Receive all messages about new coalitions. For each new coalition C1 ∪

C2 and RepC1∪C2 , set Candidates := Candidates \ {C1, C2}, New :=
New ∪ {C1 ∪ C2} and Obs := Obs ∪ {C1, C2}.

(h) Send the sets New and Obs to all other coalition members a∗ ∈ C, a∗ 	= a
(i) If a 	= Rep(C) then receive the sets New and Obs from Rep(C).
(j) Set r := r + 1, Sr := (Sr−1 \ Obs) ∪ New.
(k) For each (sub-)coalition C∗ ∈ TC with Rep(C∗) = a, determine spr(C∗)

according to theorem 1 (using spr−1(C∗) instead of spu(C∗)).
(l) If Cr = Cr−1then stop; else go to step 2

BSCA-P: Privacy Preserving Coalition Formation 57

Theorem 2. With n = |A| and m := maxa∈A{|Ra|} , the computational com-
plexity of the BSCA-P is in O(n3m2).

Proof. In any round r, Sr ≤ n. The iteration in step 2a is thus done at most n
times. In step 2(a)i, for each service in Ra, a has to find an agent in the potential
partner coalition which offers this service at the least cost. The conditions 12
and 13 only have to be checked once for each service, for which we assume
negligible complexity. Thus, at most nm operations are required in this step.
Step 2(a)ii can be done in less than m2 steps. All other steps within and outside of
the iteration in step 2a are of less complexity. Thus, the complexity of one round
of the BSCA-P is in O(n)(O(nm) + O(m2)) = O(n2m2). Since the maximum
number of coalition merges is smaller than n (because after at most n−1 merges,
the grand coalition is formed), the number of rounds is also bound by n. The
overall complexity of the BSCA-P is thus O(n)O(n2m2) = O(n3m2).

Theorem 3. In the BSCA-P, the number of messages sent by an agent is in
O(n2).

Proof. During each iteration in step 2(a)i, in step 2(a)v a message to the agent’s
subcoalition representative or to Rep(C∗). Assuming that agents which are rep-
resentatives of several subcoalitions omit sending messages to themselves, and
with at most n iterations in step 2(a)i (see above), the number of messages sent
during the iteration is in O(n). The number of messages sent in step 3(f)ii is
also in O(n). Thus, with at most n rounds, the overall number of messages sent
by an agent in the BSCA-P is in O(n2)

When the protocol is finished and thus coalitions are formed, agents still have
to execute the following steps in order to implement the coalitions:

1. Each agent runs algorithm 2 continuously in order to enable anonymous
service access.

2. Concurrently, algorithm 1 is executed by the agents requesting services to
actually access these services at their providers.

3. All (sub-)coalition representatives execute their respective side-payments spr

for their (sub-)coalitions. Each representative only makes/receives payments
to/from representatives of immediate parent and child coalitions, such that
no additional information about payments is gained by any agent.

The last step ensures that only a representative of a two-agent coalition is
informed about individual side-payments, and only about two of them: its own,
and the other agent of the two-agent coalition. Therefore, only the first partner
agent that an agent a coalesces with might ever know a’s exact side-payment.
However, the individual utilities still remain hidden from all other agents.

6 Conclusions

In this paper, a privacy-preserving coalition formation protocol was proposed.
We have shown that in order to form recursively bilateral Shapley value stable

58 B. Blankenburg and M. Klusch

coalitions, individual payoffs may be hidden from most agents while individual
utilities can be completely hidden, and absolute coalition values need not to be
known at all. Also, we showed that within a coalition, services can be accessed
by cooperating agents with certain degrees of anonymity. Thus, agents can hide
the fact that they access specific services even from agents which are members
of the same coalition.

References

1. B. Blankenburg, R.K. Dash, S.D. Ramchurn, M. Klusch, and N.R. Jennings.
Trusted kernel-based coalition formation. In Proc. 4th Int. Conf. on Autonomous
Agents and Multi-Agent Systems, Utrecht, Holland, 2005. to appear.

2. Georgios Chalkiadakis and Craig Boutilier. Bayesian reinforcement learning for
coalition formation under uncertainty. In Proc. 3rd Int. Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), New York, USA, New York, USA,
2004. ACM Press.

3. Joseph Halpern and Kevin O’Neill. Anonymity and information hiding in multia-
gent systems. Journal of Computer Security, Special Edition on CSFW 16:75–88,
2003.

4. S. Kraus, O. Shehory, and Gilad Taase. The advantages of compromising in coali-
tion formation with incomplete information. In Proc. 3rd Int. Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2004), New York, USA, New
York, USA, 2004. ACM Press.

5. Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press,
Cambridge MA, USA, 1994.

6. A. Pfitzmann and M. Köhntopp. Anonymity, unobservability and pseudonymity:
a proposal for terminology. In International Workshop on Designing Privacy En-
hancing Technologies, pages 1–9, New York, 2001. Springer-Verlag.

7. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 26(1):96–99,
1983.

8. L. S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker, edi-
tors, Contributions to the Theory of Games II, volume 28 of Annals of Mathematics
Studies, pages 307–317. Princeton University Press, Princeton, 1953.

9. O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation.
Artificial Intelligence Journal, 101 (1-2):165–200, May 1998.

10. P F Syverson, D M Goldschlag, and M G Reed. Anonymous connections and onion
routing. In IEEE Symposium on Security and Privacy, pages 44–54, Oakland,
California, 4–7 1997.

11. J. Vassileva, S. Breban, and M. Horsch. Agent reasoning mechanism for long-
term coalitions based on decision making and trust. Computational Intelligence,
4(18):583–595, 2002.

Towards Service Coalitions: Coordinating the

Commitments in a Workflow

Jiangbo Dang and Michael N. Huhns

Department of Computer Science & Engr., University of South Carolina,
Columbia, SC 29208, USA. 1-803-777-3768

{dangj, huhns}@engr.sc.edu

Abstract. Web services are functionalities that can be engaged over the
Internet. A workflow is a set of Web services that are executed by carry-
ing out specified control and data flows among these services to address
some business needs. We believe that commitments among agents can be
used to model a workflow and coordinate several self-interested parties
to execute a workflow. This paper presents a methodology to infer com-
mitments and causal relationships from a workflow by utilizing semantic
descriptions of Web services. We provide an example scenario to show
how commitments of a workflow can be inferred. In addition, we use the
Petri net representation of a workflow to describe our algorithm. With
this technology, agents (service requestors and providers) engaged in a
workflow can negotiate with multiple agents to reach favorable agree-
ments and then coordinate their behaviors through the commitment op-
erations in the context of service-oriented environment, where one or
more self-interested parties can provide services to one or more other
parties.

1 Introduction

In supply chains, e-commerce, and Web services, the participants negotiate con-
tracts and enter into binding agreements with each other by agreeing on func-
tional and quality metrics of the services they request and provide. The function-
ality of a service is the most important factor, especially for discovering services.
Once discovered, however, services are engaged, composed, and executed by the
participants’ negotiating over issues besides QoS (quality of service) metrics to
maximize their profits.

As more complex business operations become candidates for automation, it
is difficult to find one Web service to fulfill a complete business process. The
situation becomes even more complicated when there is no single Web service,
but only a combination of several Web services that can satisfy a business need.
To solve this problem, various standards for coordinating the Web services have
been developed, such as BPEL4WS, OWL-S, and WS-Coordination. We use
OWL-S in our paper since it provides richer semantic descriptions than the
alternatives.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 59–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

60 J. Dang and M.N. Huhns

Semantic Web service technologies, such as OWL-S enable more flexible au-
tomation of service discovery and execution and monitoring, and support the
composition of more complicated workflows represented as composite services.
OWL-S provides a standard language for describing the composition of Web
services. Thus we can treat composite services as a process model.

Negotiation is a process by which agents communicate and compromise to
reach agreement on matters of mutual interest while maximizing their individ-
ual utilities. In a service-oriented environment, it is very likely there are multiple
service requestors and providers negotiating simultaneously. Concurrent negoti-
ation is preferred, since it is both time efficient and robust when an agent needs
to negotiate with multiple other agents to make a good deal or to request a
service involving multiple agents as in a workflow model.

Commitment among agents can be used to model business processes by
capturing the interactions among agents. Chopra and Singh [2] proposed a
commitment-based formalism to represent multiagent interaction protocols. To
be coordinated with other agents in a workflow execution, all participating agents
negotiate to reach beneficial contracts and coordinate their commitments to ful-
fill a business process. The commitments of the agents lend coherence to their
interactions over time. For our work, we are interested in inferring commitments
and causalities from a business process model and support multiple-issue con-
current negotiation for a workflow among collaborative parties in the future.

2 Background and Related Work

2.1 BPEL4WS, OWL-S, and SWRL

When we choose a representation for Web services, the trade-offs must be made
among the expressive power, the rigor, the ease of use, and the computational
tractability of a representation [10]. IBM, Microsoft and BEA released BPEL4WS
(Business Process Execution Language for Web services) for expressing work-
flows consisting of Web services. BPEL4WS enables the specification of exe-
cutable business processes (including Web services) and business process proto-
cols in terms of their execution logic or control flow.

OWL-S is an initiative of the Semantic Web community to facilitate auto-
matic discovery, invocation, composition, interoperation, and monitoring of Web
services through their semantic description [4]. OWL-S supports a richer seman-
tic description of Web services by: (1) a profile that describes what the service
does, (2) a process model that specifies how the service works in terms of inputs,
outputs, preconditions, and result, a.k.a., IOPR, and (3) a grounding that defines
how the service is accessed. Both OWL-S and BPEL4WS provide a mechanism
for describing a business process model. OWL-S augments the input and output
specifications of BPEL4WS with preconditions and results: this enables the side
effects of services to be encoded. We can then reason about how services may be
composed and infer the commitments and causalities from them.

Semantic Web Rule Language (SWRL) expressions may be used in OWL-
S preconditions, process control conditions (such as If-then-Else), and results.

Towards Service Coalitions: Coordinating the Commitments in a Workflow 61

SWRL expressions may also mention process inputs and outputs as variables,
thus tying together the two languages. SWRL can make OWL-S more powerful,
since it uses the expressive power of rules in a potential emerging standard. In
our work, we just use SWRL in a primitive way, as a conjunction of conditions.

2.2 Web Services and Workflow

Semantic Web services, as envisioned by Berners-Lee, are intended to be applied
not statically by developers, but dynamically by the services themselves through
automatic and autonomous selection, composition, and execution. Web services
are standard-based software components that can be accessed over the Internet
by other software components [6]. Web services can vary in functionality from
simple operations, such as a retrieval of a stock quote, to complex business
operations, such as supply chain problems.

Many efforts have been made to automate service composition. In [6], the au-
thors introduced a workflow composer agent to compose Web service workflows
by finding and matching the semantic descriptions of Web services. Mandell and
McIlraith [7] used a bottom-up approach to integrate Semantic Web technology
into automating the dynamic discovery and binding of Web services. Chung et
al. [3] presented a Web service framework to support collaborative product com-
merce. Given a workflow, what issues different participating agents negotiate to
reach service agreements and how to coordinate agents to execute a workflow are
still challenging problems. In this paper, we focus on how to infer commitments
from a workflow and extract issues for collaborative service negotiation.

Given a workflow consisting of several services, service agents negotiate with
one another and with resource agents to ensure that global constraints are not
violated and that global efficiencies can be achieved. As described in [10], the ser-
vice agents must be able to engage in negotiation, and they must be describable
declaratively, not procedurally, in terms of high level abstractions. As a binary
relationship binding two participants, a commitment is a proper abstraction for
coordinating different parties of a workflow.

2.3 Negotiation and Commitment

Current standards for Web services do not support multiple-issue negotiations.
As a result, several researchers have attempted to merge negotiation from the
MAS domain into Web service selection and composition. Petrone [8] proposed
a conversation model to enrich the communication and coordination capabilities
of Web services by adapting agent-based concepts to the communications among
Web services and users.

Multi-linked negotiation describes a situation where one agent needs to nego-
tiate with many other agents about different issues, and the negotiation over one
issue influences the negotiation over the other issues. Multi-linked negotiation
becomes important in a workflow scenario where a service requestor negotiates
with several service providers to reach agreements over a composite service.
Zhang et al. [14] presented a mechanism for multi-linked negotiation of task al-
location in a cooperative system where a contractee tries to ask another agent

62 J. Dang and M.N. Huhns

to fulfill one of its subtasks that it cannot do itself. Since their protocol does not
support concurrent negotiation, it is not possible for a contractee to coordinate
among multiple subtasks.

In [13], an approach is proposed to deal with multi-linked negotiation in the
context of task allocation. a partial order scheduler is used to find the consistence
range for issues in each task and the relationships among them by sorting all
issues with their flexibilities and dependencies. In their model, negotiation is
viewed as a multidimensional search over multiple issues (time, cost, and the
flexibility of the commitment). It is a plan-globally-then-negotiate-separately
procedure in which there is no mutual influence among negotiation threads.

Commitments are a key element of the semantics of agent communications [9].
Commitment among agents can be used to model business processes by captur-
ing the interactions among agents. In [11], researchers extract commitments from
a set of conversions via Dooley graphs and map Dooley graphs to π-calculus. The
formalization of π-calculus helps to derive useful properties and prove soundness
of their models. To further apply commitment into Web service, they [12] in-
tegrate commitments into service specification by which service providers and
requestors exchange commitments instead of messages. Most existing workflow
technologies can only apply centralized methods to coordinate and monitor the
execution of a workflow through the procedural specifications. In contrast, this
paper advances the state of the art in the following ways: Our methodology
(1) infers the commitments of service agents involved in a workflow; (2) allows
flexible workflow coordination through commitments; (3) makes it possible for
service agents to negotiate over issues from the inferred commitments to improve
their utilities while optimizing the workflow (4) potentially provides a way to
build a flexible and robust workflow by concurrent service negotiation.

The remainder of the paper is organized as follows: Section 3 introduces a
motivating workflow scenario and provides its Petri net representation. Section
4 identifies control constructs of a workflow in different representations and de-
scribes the algorithm to derive commitments from a workflow. Section 5 discusses
further issues related to negotiating a workflow, and Section 6 concludes.

3 A Motivating Scenario

In order to illustrate our methodology, we present a motivating workflow scenario
where several parties work together to produce a product. In Figure 1, there are
five service agents: ProductRequestor, ProductMaker, Analyzer, PartsMaker, and
Driller. ProductRequestor agent A initiates this workflow by sending a product
requirement to ProductMaker agent B. To meet A’s requirement, B designs this
product and send its design to the third party Analyzer C. C performs some
specific tests to ensure this design will meet the requirements. Once the product
design is approved, B will generate the requirements for different parts of this
product and send them to PartsMaker agent D. PartsMaker D will design these
parts and send the design to C. If C approves the parts design, D will produce
the parts for the product. In addition, if the design requires a specific treatment

Towards Service Coalitions: Coordinating the Commitments in a Workflow 63

like drilling, a Driller agent E will drill the parts. Finally, ProductMaker B will
polish the parts and assemble the product to finish this workflow.

This workflow is complicated because:

– From the workflow’s view, the structure of the workflow is dynamic and
uncertain, since it depends on the outputs/results from the antecedent pro-
cesses. For example, the execution of process DrillParts depends on the out-
put from the process DesignParts ; therefore, we can not know in advance
whether Driller agent E will be involved.

– From the participant’s view, the processes or tasks it needs to perform are
also uncertain. It depends on the input of ReceiveAnalysisRequest whether
the Analyzer agentC performsAnalyzeProductDesign process orAnalyzePart-
Design process. Moreover, C has to repeat its processes many times if the
outputs from DesignProduct or DesignParts cannot pass the tests.

Due to the dynamic property of workflow, we believe that commitments and con-
ditional commitments are the proper abstraction to characterize and coordinate
collaborative service agents in a workflow.

Fig. 1. A ProduceProduct Workflow Example

We describe the above workflow as a composite process in an OWL-S file. Its
behavior is described in terms of its process model, where the functionality of
each subprocess is described by its IOPR. OWL-S adopts two views of processes.
First, a process produces a data transformation from a set of inputs to a set of
outputs. Second, a process produces a transition in the world from one state
to another. This transition is described by the preconditions and results of the
process [4]. Inputs and outputs specify the data transformation produced by the
process. Inputs specify the information that the process requires for its execution.
The inputs are either provided by other processes in the process model or by
service clients through message passing. Equivalently, the outputs are either sent
to other processes through the data-flow constructs, or to other Web services.
The execution of a process may also result in changes of the state of the world.
Preconditions specify conditions that should be satisfied for a process to execute
correctly. The IOPRs for the ProduceProduct example are shown in Table 1.

64 J. Dang and M.N. Huhns

Table 1. IOPRs of the Processes from the ProduceProduct Example

Process Inputs Outputs Preconditions Results
SendProdRequirement ProductRequirements
CheckProdDesignStatus ProductRequirements ProductRequirements Set Approved

AnalysisReport
DesignProduct ProductRequirements ProductDesign
GeneratePartsRequirement ProductDesign PartRequirements
PolishParts Parts Parts Polished=true
AssembleProduct Parts Products
ReceiveAnalysisRequest Design Design

DesignType
AnalyzeProductDesign ProductDesign ?Approved

AnalysisReport
AnalyzePartsDesign PartDesign ?Approved

AnalysisReport
CheckPartDesignStatus PartsRequirements ProductRequirements Set Approved

AnalysisReport
DesignParts PartRequirements PartDesign
ProduceParts PartDesign Parts

?needDrilled
DrillParts Parts Parts Drilled=true

Conditions have a pervasive presence in OWL-S. They are used to describe
outputs and results that result from the execution of processes. They are also
used in the specification of constructs such as if-statements and loops. We use
the primitive SWRL rules encoded as XML Literals. These SWRL rules uses
rdf:List to represent a conjunction of expressions of true or false values.

In this example, the production of a product would follow the sequential
process of receiving a requirement, designing a product or parts, and analyzing
product design or parts design, producing a part, drilling if necessary, and pol-
ishing and assembling the product. ReceiveAnalysisRequest would involve the
atomic process of either AnalyzeProductDesign or AnalyzePartsDesign. More-
over, designing and analyzing would be an iterative process.

Petri nets have been used to model and analyze many kinds of processes, and
the colored Petri net extension facilitates the modeling of complex processes
where data and time are important factors. Petri nets for workflow modeling
provide: (1) a clear and precise formal representation, (2) an intuitive graphical
language, (3) full expressiveness with explicitly represented states, and (4) a
firm mathematical foundation for property investigation and analysis [1]. To
illustrate our algorithm, we transform our example workflow into a colored Petri
net. A Petri net N = (P, T, F) consists of a set of transitions T (bars), a set of
places P (ellipses), and a flow relation F (arcs) [1]. In a workflow Petri net, a
transition represents an atomic process and a place is a passive state. Petri nets
are well suited for modeling workflow processes, since there are many available
simulation tools for them [1]. Therefore, we can test the Petri nets to determine
the soundness and equivalence of workflows and those commitments inferred
from a workflow.

A Petri net extended with color, time, and hierarchy is called a high-level
Petri net [1]. In this paper we use the first extension to model conditions and
relations of processes within a workflow. Other extensions are useful in dealing
with time and scale issues of processes, which are beyond the scope of this

Towards Service Coalitions: Coordinating the Commitments in a Workflow 65

Fig. 2. A ProduceProduct Petri Net

paper. In a colored Petri net, each token has a value often referred to as ‘color’.
Transitions determine the values of the produced tokens on the basis of the
values of the consumed tokens, i.e., a transition describes the relation between
the values of the ‘input tokens’ and the values of the ‘output tokens’. It is
also possible to specify ‘preconditions’, which take the colors of tokens to be
consumed into account. These values match the inputs of a process, the outputs
and results of a process, and the preconditions of a process from an OWL-
S definition, respectively. Figure 2 shows the Petri net model of our example
workflow. The details are discussed in Section 4.

4 Deriving Commitments from a Workflow

4.1 Workflow Control Constructs

Given a workflow, four types of routing are identified by the Workflow Manage-
ment Coalition (WfMC) in specifying how cases are routed along the processes
that need to be executed: sequential, parallel, conditional and iteration. In the
process dimension, building blocks such as the AND-split, AND-join, OR-split,
OR-join, explicit OR-split, and explicit OR-join are used to model the routing [1].

Sequential routing is used to deal with causal relationships between tasks.
Consider t1 and t2 from Figure 2. If t2 is executed after the completion of t1,
then t1 and t2 are executed sequentially. Place p1 represents a result for t1 and
a precondition for t2. Parallel routing is used in situations where two processes
need to be executed, but the order of execution is arbitrary. Considering the two
sets of ProductMaker and PartsMaker in our example, processes after t1 can be
executed in parallel. To model such a parallel routing, two building blocks are
used: (1) the AND-split and (2) the AND-join. Conditional routing is used to
allow for a routing that may vary between cases. To model a choice between
two or more alternatives, the explicit OR-split is used. In Figure 2, t2 has two
output places p2 and p′2. The choice between p2 and p′2 is based on the attribute
Approved. If Approved is true, t6 will be executed, otherwise t3 is executed. The
iteration routing can be modeled using an explicit OR-split as the iteration of
t2 − t3 − t4 − t5 defined in Figure 2. t2 is a control task that checks the result of
t5. Based on this check, t3, t4, t5 may be executed once more.

66 J. Dang and M.N. Huhns

Fig. 3. The Building Blocks for Workflow Modeling [1]

All OWL-S control constructs can be categorized into the discussed four
classes of routings or modeled by PN (Petri net) building blocks from Figure
3, e.g., OWL-S Sequence is equal to the PN sequential routing, OWL-S Split
and Split-and-Join can be represented by the PN AND-split and AND-join,
OWL-S choice is equivalent to the PN explicit OR-split, OWL-S Any-Order
can be modeled by the PN parallel routing, OWL-S Condition and If-Then-Else
constructs can be represented by the PN conditional routings, OWL-S Iterate,
Repeat-While, and Repeat-Until may be modeled by the PN iteration routings.

4.2 Inference Algorithm

In service-oriented environments, the participating agents are distinguished by
the services they provide, the services they seek, and the negotiated service
agreements to which they commit. The coherent behavior of systems in such an
environment is governed by interactions among the agents, and commitments
are the proper abstraction to characterize the interactions for monitoring and
control of the systems [5].

A service is what an agent performs when it works on and completes a task or
process. In this paper, a workflow is represented as a composite service in OWL-S
format where each sub-service is described by its IOPR properties. Each sub-
service is associated with agents via a process of negotiation. The execution of the
workflow is monitored via commitments. A commitment is a well-defined data
structure with algebra of operations that have a formal semantics. The agent
that is bound to fulfill the commitment is called the debtor of the commitment.
The agent that is the beneficiary of the commitment is called the creditor. A
commitment has the form C(a; b; q), where a is its creditor, b is its debtor, and q is
the condition the debtor will bring about. A conditional commitment C(a; b; p →
q) denotes that if a condition p is brought about, then the commitment C(a; b; q)
will hold. Commitments capture the dependencies among the agents with regard
to the workflow and can be inferred by the algorithm 1.

We assume that the data flows and message mappings are well defined in
the semantic description. Let e(v1, v2) denote an arc from vertex v1 to vertex v2.
Given a workflow defined as a Petri net N = (P, T, F), we define a directed graph

Towards Service Coalitions: Coordinating the Commitments in a Workflow 67

N ′(V, E) where V = T and e(v1, v2) ∈ E if ∃p, e(v1, p) ∈ F and e(p, v2) ∈ F .
The neighbor nodes of v ∈ V are stored in adjacent(v) and the color of each
vertex v ∈ V is stored in the variable color(v). We define the start transaction
v0 as the root node of N ′.

Since same service agent may execute several atomic processes in one work-
flow, we need to distinguish between the concepts of agent and role. A role is an
abstraction of capabilities used by an agent in dealing with one atomic process.
An agent may have several roles, each associated with one commitment. Algo-
rithm 1 produces a set of commitments for service agents. Each commitment
is represented as the OWL-S IOPRs, which can be easily transformed into the
commitment format we defined in the previous section. These commitments can
be used in two ways: coordinating and guiding the negotiations among service
agents in a competitive service-oriented environment, and monitoring and con-
trolling the debtor agents to fulfill the workflow by fulfilling their committed
tasks. To make this possible, the services have to be defined with a semantic
description, and the preconditions/results and inputs/outputs should refer to an
ontology. Given IOPRs of the processes defined in Table 1 and the Petri net in
Figure 2, let us illustrate Algorithm 1 with our example scenario. For Driller E
with one process: DrillParts.

[DrillParts]
Input: Parts
Output: Parts
Precondition: Completed(ProduceParts) ∧ needDrilled
Result: Drilled

For ProductMaker B that owns three atomic processes: CheckProdDesign-
Status, DesignProduct, and GeneratePartRequirement.

[CheckProdDesignStatus]
Input: ProductRequirements ∧ AnalysisReport
Output: ProductRequirements ∧ AnalysisReport
Pre-conditions: Completed(SendProdReuqirement)
Result: Set Approved true or false

[DesignProduct]
Input: ProductRequirements
Output: ProductDesign
Pre-conditions: Completed(CheckProdDesignStatus)∧ ¬approved
Result:

[GeneratePartRequirement]
Input: ProductDesign
Output: PartsRequirements
Pre-conditions: Completed(CheckProdDesignStatus)∧ approved
Result:

68 J. Dang and M.N. Huhns

Algorithm 1. Commitment Inference Algorithm

Notations:
type(i) is the routing block type from vertex i;
Owner(i) is the debtor of the process i;
Q is an empty first-in, first-out queue;
enqueue(i, Q) adds element i into Q;
dequeue(Q) removes and returns the first element from Q;
Initialization:
foreach v ∈ V do

color(v) ← WHITE

end
enqueue(v0, Q);
color(v0) ← BLACK ;
Inference:
while Q �= φ do

i = dequeue(Q)
foreach v ∈ adjacent(i) do

if color(v) = WHITE then
color(v) ← BLACK;
enqueue(v, Q);

end
end
switch type(i) do

case Sequence

for j,where e(i, j) ∈ E do
precondition(j) = precondition(j) ∧ result(i) ∧ completed(i);

end
break;

case AND − split

forall j,where e(i, j) ∈ E do
precondition(j) = precondition(j) ∧ result(i) ∧ completed(i);

end
break;

case Explicit − OR − split

forall j,where e(i, j) ∈ E do
precondition(j) =
precondition(j) ∧ result(i) ∧ completed(i) ∧ OR − condition(i);

end
break;

end
forall j,where e(i, j) ∈ E do

if e(i, j) ∈ E ∧ owner(i) �= owner(j) then
remove e

end
end

Towards Service Coalitions: Coordinating the Commitments in a Workflow 69

5 Negotiation and Commitments for Workflows

In service-oriented environments, the participating agents negotiate and commit
to a service agreement about the execution and completion of a workflow. During
the negotiation, the agents communicate and compromise to reach an agreement
on matters of mutual interest while maximizing their utilities. The negotiated
agreements can be encapsulated as commitment promises [5]. These inferred
commitments and relations can be used for collaborative service negotiation.
Moreover, we can identify the significant paths or processes and improve the
robustness of a workflow by duplicating vital services through negotiations.

In a competitive service-oriented environment, explicit representation of com-
mitments is the proper abstraction to coordinate participating agents in a work-
flow since: (1) It refers to interagent dependencies through the IOPRs of a task,
thus allowing agents to recognize focus points in the revision process where co-
ordination with other agents is needed; and focusing the distributed search this
way benefits the efficiency of coordination; (2) An agent first tries to revise task
timings that do not involve its commitments during the process of revising its
local plan, this heuristic modularizes the revision as much as possible, making
it more scalable [5]. Therefore, a centralized workflow execution engine is not
necessary for coordinating, monitoring the execution of the workflows, and for
verifying the output of the workflow.

ebXML addresses the broad problem of B2B interaction from a workflow
perspective. ebXML uses Collaboration Protocol Profiles (CPP) to describe the
business processes supported by Web services. A Collaborative Partner Agree-
ment (CPA), an intersection of two CPPs, represents a technical agreement
between two or more partners. A business process in ebXML is considered to
be a set of business document exchanges between a set of Web services. OWL-
S descriptions could be used within ebXML to describe the business processes
of interacting Web services. The negotiations and commitments considered in
this paper provide a potential representation, semantics, and methodology for
establishing the CPA in ebXML.

6 Conclusions

This paper presents a methodology to infer commitments and relations from a
workflow by utilizing semantic descriptions of Web services. With a motivating
workflow scenario, we provide its semantic descriptions with IOPRs and a Petri
net representation. We first identify the control constructs and then describe the
algorithm to derive commitments from a workflow.

There are several possible directions for future work. First, this method can
be applied to support the negotiation for a composed service with different ser-
vice agents under constraints such as QoS and dependency issues. Second, we
can further explore the power of semantic rule language to describe the rela-
tions within a workflow. Third, a process algebra, π-calculus, can be adopted to
improve the flexibility of the current commitment model.

70 J. Dang and M.N. Huhns

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. Amit K. Chopra and Munindar P. Singh. Nonmonotonic commitment machines.
In Proceedings of the International Workshop on Agent Communication Languages
and Conversation Policies (ACL). Springer, 2003.

3. Moon-Jung Chung, Hong Suk Jung, Woongsup Kim, Ravi Goplannalan, and Hyun
Kim. A framework for collaborative product commerce using web services. In
ICWS, pages 52–60, 2004.

4. The OWL Service Coalition. OWL-S: Semantic Markup for Web Services.
5. Jiangbo Dang, Devendra Shrotri, and Michael N. Huhns. Distributed coordination

of an agent society based on obligations and commitments to negotiated agree-
ments. In Paul Scerri, editor, Challenges in the Coordination of Large-Scale Mul-
tiagent Systems. Springer Verlag, 2005.

6. Mikko Laukkanen and Heikki Helin. Composing workflows of semantic web ser-
vices. In Proceedings of the Workshop on Web-Services and Agent-based Engineer-
ing, 2003.

7. Daniel J. Mandell and Sheila A. McIlraith. Adapting bpel4ws for the semantic web:
The bottom-up approach to web service interoperation. In International Semantic
Web Conference, pages 227–241, 2003.

8. G. Petrone. Managing flexible interaction with web services. In Proc. Workshop
on Web Services and Agent-based Engineering (WSABE 2003), pages 41–47, Mel-
bourne, Australia, 2003.

9. Munindar P. Singh and Michael N. Huhns. Social abstractions for information
agents. In Matthias Klusch, editor, Intelligent Information Agents. Kluwer Aca-
demic Publishers, 1999.

10. Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing: Seman-
tics, Processes, Agents. Wiley, London, UK, 2005.

11. Feng Wan and Munindar P. Singh. Mapping dooley graphs and commitment
causality to the pi-calculus. In AAMAS ’04: Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems, pages 412–419,
Washington, DC, USA, 2004. IEEE Computer Society.

12. Feng Wan and Munindar P. Singh. Enabling persistent web services with commit-
ments. In Information Technology and Management (ITM)(In Press), 2005.

13. Xiaoqin Zhang, Victor Lesser, and Sherief Abdallah. Efficient Management of
Multi-Linked Negotiation Based on a Formalized Model. Autonomous Agents and
Multi-Agent Systems, 2004.

14. XiaoQin Zhang, Victor Lesser, and Rodion Podorozhny. Multi-Dimensional, Multi-
Step Negotiation for Task Allocation in a Cooperative System. Autonomous Agents
and MultiAgent Systems, 2003.

Modeling Minority Games with

BDI Agents - A Case Study

Wolfgang Renz and Jan Sudeikat

Multimedia Systems Laboratory,
Hamburg University of Applied Sciences,
Berliner Tor 7, 20099 Hamburg, Germany

Tel. +49-40-42875-8304
{wr, sudeikat}@informatik.haw-hamburg.de

Abstract. Binary decisions are common in our daily lives and often in-
dividuals can gain by choosing the minority’s side. The socio–economically
inspired Minority Game (MG) has been introduced as an exact model
of the famous El Farol’s Bar Problem, which exhibits complex behavior.
In this paper we show that the MG players can be naturally modeled
by agents using reactive planning, implemented with a common deliber-
ative programming paradigm, the Belief–Desire–Intention (BDI) model.
Our simulation framework is build in Jadex, a forthcoming platform im-
plementing BDI notions. Straightforward implementation of multi–agent
simulations is enabled by XML agent descriptions and referenced Java
classes. Design of the player agents and simulation results are shown.
As a case study, we introduce a new adaptive stochastic MG with dy-
namically evolving strategies. It exhibits different regimes, reaching from
optimal cooperation to destructive behavior, including the emergence of
the so called ”Schwarzer Peter” game, depending on control parameters.
We identify optimization mechanisms like rotation in the working regime
as well as metastable behavior.

1 Introduction

Individuals are often faced with difficult decisions. Research has shown that
the rationality assumed in economics and classical artificial intelligence – using
deductive reasoning breaks down under complication. While perfect theoretical
solutions can be found in simple scenarios, e.g. null-sum games via minimax–
search[1], complicated scenarios make deductive reasoning infeasible for individ-
uals.

Agents get overwhelmed because (1) their rationality is bounded and (2) in
interactive scenarios agents are often forced to make assumptions about the future
behavior of opponents, which do not behave rational (see [2] for an enjoyable jus-
tification). This leads to ill–defined problems for the individual. When deductive
reasoning fails, agents are forced to use inductive reasoning. To allow localized
deductions, simple internal hypothesises about the environment are evaluated
and revised continuously.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 71–81, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

72 W. Renz and J. Sudeikat

A famous setting to examine inductive reasoning is given by the El Farol
Bar Problem (EFBP) [2]. It is labeled according to a bar in Santa Fe, which is
only enjoyable to visit, if it is not too crowded – defined by a certain threshold.
Agents are regularly forced to decide, either to go there or to stay home. In order
to do so, they have to anticipate the current amount of customers. Their only
source of information is the history of attendings from past evenings. Obviously,
this leads to a situation, where inductive reasoning is needed.

A socio–economically inspired, exact formulation of this kind of scenario is
given in the so–called Minority Game (MG) [3]. An odd number of N players
have to make repeatedly binary decisions (e.g. yes or no, 1 or 0). In an economic
interpretation, the players can be regarded as consumers deciding to buy from
two suppliers. With a memory size of m there are 2m possible histories and 22m

possible strategies to predict the next choice of the majority.
Each player starts with a randomly generated set of these strategies. They

are merely predicting functions and can be described as hash tables, where the
key denotes the past history and the associated value is the prediction for the
next choice. After every round the agents get informed about the result. Agents
in the minority group get rewarded, e.g. by a score increment. In every round
the agents compare the actual result with the predictions of all their strategies,
in order to rate, which would have lead to proper predictions. Most accurate
strategies are used (ties get randomly broken) for future predictions.

This definition of the game does not allow agents to alter their set of strate-
gies, leading to quenched disordered system behavior. Several modifications of
the game have been introduced. These range from evolutionary approaches [4],[5]
to stochastic simplifications [6]. Despite exhaustive theoretical investigations on
the dynamic behavior and possible optimizations of populations (see [7] for an
overview), there are still open questions concerning the simultaneous optimiza-
tion of possibly deliberative behaviors [8]. Also the dynamics of MGs including
effective adaption mechanisms have to be further explored. In this paper, we keep
strategy space extremely simple and present a new adaptive stochastic MG with
its focus on dynamically evolving self–organization and emergent structures.

Complex systems science and statistical physics use multi–agent based sim-
ulations (MABS) to construct and analyze complex behavior of several individ-
uals [9],[10]. However, the computational models actually used are rarely agent
based, in the sense these systems are defined in Multi–Agent Systems (MAS)
and Distributed Artificial Intelligence (DAI) research [11]. Coming from the com-
puter science perspective, we argue that the MG can be naturally modeled with
BDI agents, allowing reactive planning. The computational models, developed
for numerical analysis, can be mapped on this deliberative architecture, designed
for general use.

Agent Based Software Engineering (AOSE) is an active research area, which
aims to simplify the construction of complex systems by the usage of natural ab-
stractions [12],[13]. A successful abstraction to describe and compute individual
agents is the deliberative Belief–Desire–Intention (BDI) model [14]. Methodolo-

Modeling Minority Games with BDI Agents - A Case Study 73

gies [15],[16] and tools [17] are in active development to support the construction
of software systems, using agents as the basic design and programming metaphor.

The above described results in MG simulation lead recently to the definition
of universality in MAS [18] and have implications for MAS design. Since in the
engineering of MAS is not only concerned with system behavior, but also with
the performance of individuals, this work examines regimes of behavior in respect
to individual gain.

The next Section introduces the BDI architecture and shows how the players
in the MG can be naturally modeled as BDI systems. A simplified stochastic
version of the MG is presented and analysed in section 3. Finally, section four
provides concluding remarks and future directions for research.

2 Modeling a Minority Game with BDI Agents

In general, two kinds of agent architectures can be distinguished. Reactive and
deliberative agents. The first ones react directly upon exterior input (e.g. sen-
sors), while the later ones operate on a symbolic representation of their envi-
ronment, to achieve intelligent behavior, particularly by means of planning. In
opposition to automatic planning, i.e. the synthesis of plans from first princi-
ples, research has led to agent architectures to allow reactive planning, where
agents use precompiled plans, developed at design time. E. g. the well known
procedural–reasoning system [19] has combined this approach with an architec-
ture that allows runtime practical reasoning.

2.1 BDI–Based Agent Models

A successful architecture to develop deliberative agents is the BDI model. Brat-
man [20] developed a theory of human practical reasoning, which describes ra-
tional behavior by the notions Belief, Desire and Intention. Implementations
of this model introduced the concrete concepts of goals and plans, leading to a
formal theory and an executable model [14],[21].

Beliefs represent the local information an agent has about both its envi-
ronment and its internal state. Modeling the structure of the beliefs defines a
domain dependent abstraction of environmental entities. It can be seen as the
view–point of an agent. The goals represent their desires, commonly expressed
by certain target states in the beliefs. This concept allows to implement both
reactive and pro–active behavior. Reactive mechanisms are modeled by goals or
plans which are triggered by the occurrence of certain events, while pro-active
behavior is implemented by goals which are not directly triggered. Agents carry
out these goals on their own (see [22] for discussion of goals in BDI systems).
Finally, plans are the executable means by which agents achieve their goals. In
order to reach target states, agents deliberate which plans to execute. A library
of plans it available to the individual agent, from which it selects. Single plans
are not just a sequence of basic actions, but may also dispatch sub-goals.

74 W. Renz and J. Sudeikat

2.2 The Jadex Project

The Jadex research project1 [23],[24], provides the BDI–concepts on top of the
well known JADE2 Agent Platform [25]. A suite of tools facilitate the develop-
ment, deployment and debugging of Jadex–based MAS. The single agents consist
of two parts. First, they are described by the so–called Agent Description Files
(ADF), which denote the structures of beliefs and goals together with other im-
plementation dependent details in XML syntax. Secondly, the activities agents
can perform are coded in plans, these are ordinary Java-classes.

The goals and plans of the single agents can be described as a tree. Some
AOSE and Requirements Engineering (RE) methodologies use corresponding
trees to model agent behavior (see [26] for an overview). The nodes are goals
and plans, which both can dispatch subgoals. The leafs of these trees are plans,
since they are the only means to perform activities.

The following case study exemplifies how the reactive planning mechanism
can be used to model players in MG–scenarios. The strategies map directly to ex-
ecutable plans, which are used to make a decision for the next vote. Accordingly,
the goal hierarchy inside an MG agent expresses the decision process, which leads
to the selection of a certain strategy to be applied in the current round. From a
Software–Engineering point of view, the use of the Jadex platform is expedient,
since it allows convenient adjustment and enhancement of agents. New strategies
and goals can be added to the agents incrementally, already existing ones are not
effected. Development is eased by the usage of mainstream technologies, namely
Java3 and XML.4

3 An Adaptive Stochastic Minority Game with
Dynamically Changing Strategies

Here, a new adaptive stochastic version of the MG (SMG) with a very simple
strategy space is considered, which supports adaptive behavior by introducing
rules for time evolving probabilities. A number of papers have shown that some of
the interesting behavior of the MG is obtained from simplified SMG’s [5],[27],[28].
Our model, in the spirit of models recently discussed [29],[30] displays a dynam-
ical evolution of decision behavior of agents. It generalizes both the simplest
SMG [6] and the evolutionary MG (EMG) [4]. Specific behaviors emerge, i. e.
alternating or supplier loyal behavior, as the system evolves in time.

3.1 Definition of the MG

The game is round-based and consists of an odd number of N agents and two
suppliers. In order to choose one of the suppliers 0 or 1 at each time step, each
agent i keeps a probability pi(t) ∈ (0, 1) to change the supplier, i.e. it stays with
1 http://vsis-ww.informatik.uni-hamburg.de/projects/jadex
2 http://jade.tilab.com/
3 http://java.sun.com/
4 http://www.w3.org/XML/

Modeling Minority Games with BDI Agents - A Case Study 75

the same supplier as in the former step with probability 1 − pi(t). The result
of his choice is denoted by si(t) ∈ {0, 1}. The supplier chosen by the minority
of the agents in time step t makes them winners, the majority having chosen
the other supplier loose. At the beginning, suppliers si(0) are selected randomly
and the pi are chosen uniformly over the interval [0, 1], in our present study.
The dynamical evolution consists in the change of the agents probability pi(t)
after each round. After winning, the probability is multiplied by λ+ > 0 whereas
after loosing it is multiplied by λ− > 0 thereby limiting the maximum of the
probability to 1.0 in cases of λ+, λ− > 1 (see figure 1). Depending on λ+, λ−
the probability to change the supplier is increased or decreased after winning or
loosing, resp. Time evolution is expected to balance agents at mixed strategy or
can lead to the extreme cases of supplier–loyal strategy pi → 0 or deterministic
alternating strategy pi = 1.0. The parameters λ+,− span the control space of the
emerging adaptive behavior.

3.2 Implementation

Figure 1 gives a brief overview of the simple evolutionary MG. The upper left
corner shows the goal hierarchy of the single agents. The call (msg:request bid)

Fig. 1. The Goal hierarchy (upper left), the flow of control in the described Minority

Game (upper right) and example XML–code, describing the agents (bottom)

76 W. Renz and J. Sudeikat

for the next round (i+1) is processed by a plan in each single agent (AgentPlan).
Upon arrival a new goal (select supplier) is instantiated, which is achieved by a
dedicated plan (SelectionPlan). There are two possible subgoals, which will either
choose supplier 0 or 1. The selectionPlan is responsible to calculate the current
probability pi(t) and to decide the strategy to be used in the current round.
Agents get informed about the result of a round by reception of a message (msg:
round result). A Plan (RatePlan) is responsible to process this message which
leads to an update of the local beliefs.

The two XML-snippets in the lower half of Figure 1 were extracted from the
according ADF to visualize the internals of the stochastic agents. They show the
declaration of the agent’s goals (left hand side) and the reference to a Java class
(right hand side).

3.3 Simulation Results

Interesting quantities to observe are the difference of the attendance of the two
suppliers A(t) = N1(t) − N0(t) and its statistical properties, with:

A(t) = 2
N−1∑
i=0

si(t) − N si(t) ∈ {0, 1} (1)

The global loss of system according to unbalanced supplier-choices is measured
by the long–time average of Ā = 〈A(t)〉t, which can become non–zero only in
case of non–ergodic freezing, and

σ2(t) = A2(t) − Ā2 and its long–time average σ2 =
〈
σ2(t)

〉
t

(2)

Furthermore, the success of the individual agent is measured by its score, i.e. the
number of rounds won as a function of time. The individual success of the agent
population is contained in the score histograms and there statistical properties.
Interestingly enough, strict general statements on the relation between global
success and individual success have not been given in MGs so far, to our present
knowledge [8].

In the following, simulation results and arguments to understand the system
behavior are given. An analytical and numerical treatment of the underlying
Markov process is to be published in a separate paper.

There are at least five different regimes of behavior, the singular fixed–
strategies case, two segregation–freezing regimes, one with supplier–loyal the
other with deterministic alternating agents, and two regimes where solutions
with global cooperations compete with global and individual loss situations. In
the fixed–strategies case λ+ = λ− = 1, all agents keep their initial probabilities pi

and the system evolves in a stationary balanced state Ā = 0 with σ2 ≈ c1.0,1.0N
(cf. figure 2). The coefficient c1.0,1.0 is about a factor of 4 smaller than pure
random choice would generate. In comparison, the stochastic MG by [6] would
cause an increase proportional N2 for our conditions, cf. figure 2.

In the supplier–loyal freezing regime λ+, λ− < 1 time–evolution happens in
two stages. In the initial, mixing stage, the minority–supplier changes often and

Modeling Minority Games with BDI Agents - A Case Study 77

Fig. 2. Left : The global loss σ2 as a function of the number of agents N in the fixed–

strategies case λ+ = λ− = 1 is about a factor of 4 smaller than random choice (noise

traders [7]) would be. If we change our algorithm and let winning agents stay with their

supplier with probability one, we obtain the simple stochastic MG by [6], which leads

to O(N2) behavior with our initial distributions. In the working regime, nearly optimal

behavior is observed at low N . Right : Using a scaling of N with − log(λ−) inspired by

the information–theoretic interpretation of the adaption parameter λ−, a data collapse

is obtained with a crossover from asymptotic optimum at λ− → 1 (”Schwarzer Peter”)

to asymptotic O(N) at λ− �= 1.

the agents initial probabilities are mixed to some extend, depending on the smaller
of the λs, which limits the duration of this initial stage. In the final, freezing stage,
A(t) → Ā 	= 0in general and the minority–supplier is fixed with almost no agent
changing side any more, since the pi(t) become exponentially small.

A similar time–evolution in two stages is observed also in the deterministic–
alternation freezing regime λ+, λ− > 1. The difference is that after the initial
mixing stage, the freezing happens according to the fact that all pi = 1.0, and
all agents as well as the minority–supplier deterministically alternate.

In both freezing regimes, the agents segregate in two populations, the winners
and the losers where the fractions are determined by the ratio of the λs and by
the initial distribution of the pi(0), i.e. a memory effect, which is well-known
for freezing phenomena also in the MG. As a consequence, even in both freezing
regimes there are parameter ranges where the global loss Ā2 +σ2 is minimized in
o(1). Contrarily, segregation causes the almost constant majority of individual
agents to permanently loose in the freezing stage.

78 W. Renz and J. Sudeikat

Around the half–axis λ+ > 1, λ− = 1 an interesting phenomenon occurs,
well known as the ”Schwarzer Peter” game in german–speaking countries. It
means that finally a global optimum solution is obtained with an equal amount
of (n−1)/2 agents on both sides with pi = 1.0 alternating between the suppliers
and there is one agent with pj 	= 1.0. Now, always the group in which the agent
j stays is the majority and looses, i.e. pulls the ”short straw”, the agent j is the
”Schwarzer Peter”. As soon as we choose λ− slightly below 1, there are more
candidates for the ”short straw”, so that this role moves around the agents. Then
the loss of the single ”Schwarzer Peter” is distributed smoothly on all agents.
This is kind of a rotation mechanism resolves the segregation observed in the
freezing regime and leads to the working regime introduced in the following.

Now we come to discuss the regime λ+ > 1, λ− < 1, where winners increase
their probability to change the supplier in contrast to loosers, who increase the
tendency to stay. As long as λ− is not too small, an evolution towards mixed
strategies is observed and a nice balanced cooperative behavior is observed with
both global loss and individual loss even smaller than for the singular fixed–
strategies case. This regime can be called the working regime of our model. As
soon as λ− is too small, time–evolution again happens in two stages. The be-
ginning stage looks still balanced but a small fraction of agents happen to stick
to one supplier because they reach small pi. Still the minority–supplier changes,
and keeps the population homogeneous. This stage can stay for a longer time
before the sticky agents segregate and reach size N/2. Then, in the final stage
the minority–supplier is fixed and an ongoing condensation of the free agents to
the majority of non–changing agents occurs, leading to the worst situation, total
global and individual loss. This mechanism is reminiscent of nucleation and con-
densation phenomena at first order phase transitions, including the occurrence
of metastability in large systems. Analytical arguments supporting this analogy
will be published elsewhere.

Finally, in the regime λ+ < 1, λ− > 1 winners increase their tendency to stay
whereas losers increase there tendency to change. As long as the product λ− is
not too large, an evolution towards mixed strategies is observed for λ+ close to
1, which changes to a σ2 ∝ N2 for smaller λ+. These results are similar as those
in the fixed–probability model by [6]. If λ− is large enough, alternating behavior
becomes more and more dominant around the half–axis λ+ = 1, λ− > 1 where
the deterministic–alternation freezing regime sets on.

The rich behavior found in our simple stochastic MG with dynamically chang-
ing strategies is of conceptual interest in the understanding of self–organization
and cooperation of economic systems. Instead of quenched disorder in the ther-
mal MG model [7], our model contains annealed disorder in the freezing regimes.
Furthermore metastability and condensation phenomena can be analyzed by our
model, which have not been found in other MG models so far.

In [31] a symbiotic relationship between so–called producers and speculators
has been found. The producers are defined as agents which only apply one strat-
egy in every round, whereas speculators use a set of predictive strategies (>= 2).
While the producers introduce systematic biases into the market, the speculators

Modeling Minority Games with BDI Agents - A Case Study 79

remove them, leading to a systematic reduction of fluctuations, thus reducing
the losses of the whole population. The agents in our MG form a similar rela-
tionship. The selections of loyal agents (pi → 0) is predictable, which can be
exploited by alternating agents (pi = 1.0). In opposition to [31] the composition
of the whole population is not set at design time but adapts itself according to
λ+ and λ−.

4 Conclusions

In this paper we have presented the MG as an example of how reactive planning
can be used to model socio–economic systems with many members who rely on
inductive reasoning. We have introduced a new adaptive stochastic MG with
dynamically changing strategies which exhibits different regimes including best
optimization σ2 = O(1), classical scaling σ2 ∝ N and worst case σ2 ∝ N2.
These regimes evolve adaptively in a self–organized way leading to emergent
phenomena like the ”Schwarzer Peter” and rotation solutions at the boundary
of the working regime. The presented model opens a way to study adaptation
mechanisms in MGs with larger stategy space like in the classic MG. Furthermore
it is interesting to examine the behavior of our agents in mixtures with agents
using differing sets of strategies, e.g. so–called speculators, producers and noise
traders [31,32] or smart agents [29].

The presented modeling approach leads to further investigation in eco-
nomics and computer science. So far the MG has mostly been studied with
random boolean strategies or mathematically defined species. We have found
new metastable behaviors in our adaptive stochastic MG. It is certainly of large
interest to study the conditions under which such metastable behaviors can be
obtained in more realistic models. Also in specific application domains the aim
of an individual set of strategies is to model the application semantics, relevant
for the success of the individual agent [33].

Modeling in BDI notions, as described in this paper, can guide the search
for heuristic strategies to be applied in real life scenarios. Currently, AOSE is
based on heuristics [34] and methodologies concerning dedicated platforms [16].
A structured approach to identify successful mental attitudes to a given problem
will be a useful contribution to AOSE, since it will guide MAS programmers to
decide how sophisticated individual agents need to be (recently universality,
found in reactive MAS has been proposed for this purpose [18]), to solve certain
problems.

Acknowledgements

One of us (J.S.) would like to thank the Distributed Systems and Infor-
mation Systems (VSIS) group at Hamburg University, particularly Winfried
Lamersdorf, Lars Braubach and Alexander Pokahr for inspiring discussion and
encouragement.

80 W. Renz and J. Sudeikat

References

1. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Number
0-13-103805-2 in Series in Articial Intelligence. Prentice Hall (1995)

2. Arthur, W.B.: Inductive reasoning and bounded rationality. American Eco-
nomic Review 84 (1994) 406–11 available at http://ideas.repec.org/a/aea/aecrev/
v84y1994i2p406-11.html.

3. Challet, D., Zhang, Y.C.: Emergence of cooperation and organization in an evolu-
tionary game. Physica A 246, 407 (1997)

4. Metzler, R., Horn, C.: Evolutionary minority games: the benefits of imitation. In:
Physica A329. (2003) 484–498

5. Johnson, N., Hui, P., Jonson, R., Lo, T.: Self-organized segregation within an
evolving population. In: Physical Review Letters 82, 3360. (1999)

6. Reents, G., Metzler, R., Kinzel, W.: A stochastic strategy for the minority game.
In: Physica A 299. (2001) 253–261

7. Challet, D., Marsili, M., Zhang, Y.C.: Minority Games - Interacting agents in
financial markets. Number 0-19-856640-9 in Series: Oxford Finance Series. Oxford
University Press (2004)

8. Challet, D.: Competition between adaptive agents: from learning to collective
efficiency and back. In: chapter to appear in Collectives and the design of complex
systems. cond-mat/0210319, Springer (2003)

9. Shalizi, C.R.: Methods and techniques of complex systems science: An overview.
Nonlinear Sciences, nlin.AO/0307015 (2003)

10. Parunak, H.V.D., Savit, R., Riolo, R.L.: Agent-based modeling vs. equation-based
modeling: A case study and users’ guide. In: MABS. (1998)

11. Drogoul, A., Vanbergue, D., Meurisse, T.: Multi-agent based simulation: Where are
the agents? In: Proceedings of MABS’02 (Multi-Agent Based Simulation), LNCS,
Springer-Verlag (2002)

12. Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117 (2000)
277–296

13. Jennings, N.R.: Building complex, distributed systems: the case for an agent-based
approach. Comms. of the ACM 44 (4) (2001) 35–41

14. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of
the First Intl. Conference on Multiagent Systems, San Francisco (1995)

15. Wei, G.: Agent orientation in software engineering. Knowledge Engineering Review
16(4) (2002) 349–373

16. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W.: Evaluation of agent -
oriented software methodologies - examination of the gap between modeling and
platform. In Giorgini, P., Mller, J.P., Odell, J., eds.: Agent-Oriented Software
Engineering V, Fifth International Workshop AOSE 2004, Springer Verlag (2004)
126–141

17. Luck, M., Preist, P.M.C.: Agent Technology: Enabling Next Generation Comput-
ing. Number ISBN 0854 327886. Agentlink II (2003)

18. Parunak, H.V.D., Brueckner, S., Savit, R.: Universality in multi-agent systems.
In: AAMAS ’04: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems, IEEE Computer Society (2004) 930–937

19. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning: an experiment
with a mobile robot. In: Proceedings of the 1987 National Conference on Artificial
Intelligence (AAAI 87), Seattle, Washington (1987) 677–682

Modeling Minority Games with BDI Agents - A Case Study 81

20. M.E.Bratman: Intentions, Plans, and Practical Reason. Harvard Univ. Press.
(1987)

21. Rao, A.S.: Agentspeak(l): Bdi agents speak out in a logical computable language.
In: MAAMAW ’96: Proceedings of the 7th European workshop on Modelling au-
tonomous agents in a multi-agent world : agents breaking away, Springer-Verlag
New York, Inc. (1996) 42–55

22. Braubach, L., Pokahr, A., Lamersdorf, W., Moldt, D.: Goal representation for
bdi agent systems. In Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni,
A.E., eds.: Second International Workshop on Programming Multiagent Systems:
Languages and Tools. (2004) 9–20

23. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A short overview. In: Main
Conference Net.ObjectDays 2004. (2004) 195–207

24. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a bdi-
infrastructure for jade agents. EXP - in search of innovation (Special Issue on
JADE) 3 (2003) 76–85

25. Bellifemine, F., Rimassa, G., Poggi, A.: Jade a fipa-compliant agent framework.
In: In 4th International Conference on the Practical Applications of Agents and
Multi-Agent Systems (PAAM-99), London, UK (1999) 97108

26. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In
Proc. RE01 - Int. Joint Conference on Requirements Engineering (2001)

27. Cavagna, A.: Irrelevance of memory in the minority game. In: Phys. Rev. E 59.
(1999)

28. Burgos, E., Ceva, H.: Self organization in a minority game: the role of memory
and a probabilistic approach. In: cond-mat/0003179. (2000)

29. Xie, Y., Wang, B.H., Hu, C., Zhou, T.: Global Optimization of Minority Game by
Smart Agents. ArXiv Condensed Matter e-prints (2004)

30. Zhong, L.X., Zheng, D.F., Zheng, B., Hui, P.: Effects of contrarians in the minority
game. In: cond-mat/0412524. (2004)

31. Challet, D., Marsili, M., Zhang, Y.C.: Modeling market mechanism with minority
game. Physica A 276, 284, preprint cond-mat/9909265 (2000)

32. Zhang, Y.C.: Toward a theory of marginally efficient markets. Physica A 269, 30,
eprint arXiv:cond-mat/9901243 (1999)

33. Bazzan, A.L., Bordini, R.H., Andrioti, G.K., Vicari, R.M.: Wayward agents in a
commuting scenario (personalities in the minority game). In: Proc. of the Fourth
Int. Conf. on Multi-Agent Systems (ICMAS’2000), Boston, IEEE Computer Sci-
ence (2000)

34. Wooldridge, M., Jennings, N.: Software engineering with agents: Pitfalls and prat-
falls. In: IEEE Internet Computing. Volume 3. (1999)

A Goal Deliberation Strategy for BDI Agent Systems

Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf

Distributed Systems and Information Systems,
Computer Science Department, University of Hamburg

{pokahr, braubach, lamersd}@informatik.uni-hamburg.de

Abstract. One aspect of rational behavior is that agents can pursue multiple
goals in parallel. Current BDI theory and systems do not provide a theoretical
or architectural framework for deciding how goals interact and how an agent can
decide which goals to pursue. Instead, they assume for simplicity reasons that
agents always pursue consistent goal sets. By omitting this important aspect of
rationality, the problem of goal deliberation is shifted from the architecture to the
agent programming level and needs to be handled by the agent developer in an
error-prone ad-hoc manner. In this paper a goal deliberation strategy called Easy
Deliberation is proposed allowing agent developers to specify the relationships
between goals in an easy and intuitive manner. It is based on established concepts
from goal modeling as can be found in agent methodologies like Tropos and re-
quirements engineering techniques like KAOS. The Easy Deliberation strategy
has been realized within the Jadex BDI reasoning engine and is further explained
by an example application. To fortify the practical usefulness of the approach it is
experimentally shown that the computational cost for deliberation is acceptable
and only increases polynomially with the number of concurrent goals.

1 Introduction

Goal-directedness is one important characteristic of rational agents, because it allows
agents to exhibit pro-active behavior [19] and it is argued that the BDI (belief-desire-
intention) model [3] is well suited to describe this kind of agents [16]. Typically, goal-
directed agents should be capable of pursuing multiple goals simultaneously. As a con-
sequence the agent’s goals can interact positively or negatively with each other [18].
Positive interaction means that one goal contributes to the fulfillment of another one,
whereas negative contribution indicates a conflict situation in which one goal hinders
the other. Such contribution relationships between goals are commonly used in mod-
eling agent applications, e.g. in the Tropos methodology [7] and in the requirements
engineering technique KAOS [10]. Despite their usefulness, most implemented agent
systems based on the BDI model do not support any mechanism for handling goal re-
lationships at the architectural level. Hence, the cumbersome task of ensuring that the
agent will never process any conflicting goals at the same time is left to the agent de-
veloper.

The main aspect of goal deliberation is “How can an agent deliberate on its (pos-
sibly conflicting) goals to decide which ones shall be pursued?” [5]. Considering this
question from an architectural point of view it is of interest how a goal deliberation strat-
egy can be integrated into a BDI infrastructure. Thereby, the agent infrastructure has the

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 82–93, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Goal Deliberation Strategy for BDI Agent Systems 83

tasks to activate the strategy at certain points in time and to provide a clearly defined
interface by specifying the possible operations for conflict resolution and exploiting
positive goal interactions. These operations are constrained by the attitudes supported
by the agent architecture. E.g. only when the architecture distinguishes between goals
and desires the deliberation process can resort to both concepts.

Tackling the question from a strategy-centric point of view it is necessary to address
at least the following issues:

1. What are the important influence factors that can be used to drive the decision
process? As influence factors all of the agents attitudes such as the active goals or
plans can be considered. Additionally, several approaches utilize meta-information
about these attitudes such as resource requirements [17,18].

2. When and how often shall the agent deliberate about its goals? Generally, the strat-
egy could require that the agent engages in the deliberation process in regular in-
tervals (e.g. time or cycle driven) or on demand (e.g. when a new goal was created)
or in a mixture of both.

3. About what goal set shall the agent deliberate? The options range from deliberation
between just two goals to the consideration of all goals of an agent.

The approach presented in this paper proposes a deliberation strategy called Easy De-
liberation which allows for specifying the relationships between goals for conflict de-
tection. At runtime an extended BDI system ensures that the constraints of the concrete
deliberation settings, as specified by an agent developer, are respected and only consis-
tent goal sets are pursued at any one time. Main design rationale behind the strategy is
the ease of use for agent developers requiring minimal specification overhead.

The remainder of this paper is structured as follows: In Section 2 explicit goal repre-
sentation as necessary prerequisite for goal deliberation is discussed. Section 3 presents
the conceptualization, realization and experimental evaluation of the Easy Deliberation
strategy. A brief review of related work is introduced in Section 4. The paper concludes
with a summary and an outlook on future work.

2 Explicit Goal Representation

Realizing a goal deliberation strategy has the necessary prerequisite that an agent is
aware of its goals at any one time. In classical agent languages such as AgentSpeak(L)
[14] and current BDI systems such as JACK [9] or Jason [2] this prerequisite is not ful-
filled. The main reason for this shortcoming is that goals are represented in the transient
form of events, which causes an agent to only know about its goals at the moment they
need to be processed. As a consequence an agent e.g. cannot easily defer the process-
ing of a certain goal, because there is no semantics behind the event representing the
agent’s intended desire. Hence, in the several papers [5,16] this implicit representation
was criticized and different enhancements were proposed.

In this paper we build on the explicit representation of goals as described in [5]. In
short, it consists of a generic goal lifecycle (cf. Fig. 1) that exactly describes the states
and transition relationships of goals at runtime and forms the basis for different goal
types such as perform, achieve, query, maintain. Adopted goals can be in either of the

84 A. Pokahr, L. Braubach, and W. Lamersdorf

substates Option, Active or Suspended, whereby only active goals are currently pursued
by the agent. Options and suspended goals represent inactive goals, where options are
inactive, because the agent explicitly wants them to be, e.g. because an option conflicts
with some active goal. In contrast, suspended goals currently must not be pursued,
because their context is invalid. They will remain inactive until their context is valid
again and they become options.

Fig. 1. Goal lifecycle (adapted from [5])

Additionally, some basic properties common to all goal types have been defined.
Among those the most important ones are: A creation condition that defines when a
new goal instance is created; a context condition that describes when a goal’s execu-
tion should be suspended (to be resumed when the context is valid again); and a drop
condition that defines when a goal instance is removed. At runtime, goal state changes
occur, whenever one of the aforementioned conditions triggers or the agent intentionally
changes the state, e.g. by exploiting a goal deliberation mechanism for this purpose.

3 The Easy Deliberation Strategy

Integrating a goal deliberation strategy requires that the agent can engage into the delib-
eration process whenever the strategy demands. Additionally, the operations available
to the deliberation mechanism need to be clearly defined (cf. architectural viewpoint in
Section 1). As a foundation for the definition of available operations for goal delibera-
tion strategies, the generic goal lifecycle is used (see Fig. 1). For goal deliberation only
adopted goals are of relevance as they represent the goals an agent is aware of.

From this lifecycle the operations for activating an option and deactivating an active
goal, i.e. making it an option again, are derived as interface for goal deliberation, i.e.
these transitions should be under control of the deliberation strategy (bold transitions
in Fig. 1). This set of operations should not be considered as being the only possibility,
alternative strategies might incorporate other actions such as drop.

A Goal Deliberation Strategy for BDI Agent Systems 85

3.1 Strategy Conceptualization

The Easy Deliberation strategy is conceived to allow real-time goal deliberation even
when an agent pursues a multitude of goals simultaneously. The strategy is based on
practical considerations derived from example applications and ideas from goal mod-
eling as can be found in the agent methodology Tropos [7] and the requirements engi-
neering technique KAOS [10], which both propose directed contribution links between
goals. According to Section 1, the strategy will be explained by answering the charac-
teristic questions:

1. What are the important influence factors that can be used to drive the decision pro-
cess? The strategy is based only on information about goals, intentionally factoring
out the plan level. Two main concepts are used to describe deliberation information
within goal type declarations: cardinalities and inhibition arcs. Cardinalities can
be used to constrain the maximum number of active goals of a specific type at run-
time, whereas inhibition arcs are used to declare negative contribution relationships
between two goals on type level as well as on instance level. On the type level it
can be specified that a goal of a given type inhibits goals of the referenced type.
For a finer-grained specification instance-level relationships between goals can be
defined by attaching constraints to the inhibition links, which determine the goal in-
stances affected by the inhibition. The strategy requires the inhibition links forming
a directed acyclic graph to avoid infinite deliberation loops.

2. When and how often shall the agent deliberate about its goals? The deliberation
process is initiated on demand. In Fig. 1 the triggering state transitions are depicted.
Generally two different situations can arise, in which deliberation becomes neces-
sary: First, a goal can become an option either when a new goal is adopted or when
the context of a suspended goal becomes valid again. In these cases the deliberation
process needs to decide whether the new option can be activated and additionally
what the consequences of the activation are, i.e. which other active goals need to be
deactivated to avoid having conflicting goals (1: Deliberate new option). Second,
an active goal can become inactive when it gets suspended, finished or dropped.
In this case, the deliberation has to determine which options have been possibly
inhibited by the deactivated goal. For each of these options it needs to be checked
whether it can be reactivated (2: Deliberate deactivated goal).

3. About what goal set shall the agent deliberate? The deliberation process only has
to consider a local subset of the agent’s goals, derived from the goal that triggered
the deliberation with its state transition (see above). For goal types with cardinality,
all instances of the goal type have to be considered. In addition, all goals with
incoming and outgoing inhibition relationships to the triggering goal have to be
taken into account.

In the following both goal deliberation actions will be described more formally.
Given that all goals of an agent are in one of the states option, active or other defined
by the sets Γo, Γα, Γω, respectively, the full goal set of an agent is comprised of Γ =
Γo ∪ Γα ∪ Γωwith Γo ∩ Γα = Γo ∩ Γω = Γα ∩ Γω = ∅. A goal γ ∈ Γ is defined as
a tuple 〈gt, s〉 with gt being the user defined goal template in which creation, context
and drop condition among other things are specified and s ∈ {option, active, other}

86 A. Pokahr, L. Braubach, and W. Lamersdorf

being the actual state of the goal. For simplicity reasons other aspects of concrete goal
instances such as parameter values are not considered here.

The Deliberate new option action is responsible for activating an option γo =
〈gto, option〉 ∈ Γo, if allowed in the current context. Therefore, first it has to be
checked, if the goal can be activated by testing cardinality and inhibitions with the
predicate pact(γo) defined as:

pact(γo) : Γo → {true, false}, pact(γo) = ∀γ ∈ Γα(γ � γo)∧ | Γη |< fcard(gto)

with Γη = {γ = 〈gt, active〉 ∈ Γα | gt = gto ∧ γo � γ}

and fcard(gto) : Γ → N (cardinality function)

and →⊆ Γ × Γ (inhibition relation)

The predicate pact(γo) is to true, when there is no active goal that inhibits goal γo,
i.e. no pair (γ, γo), γ ∈ Γα is part of the inhibition relation →⊆ Γ × Γ , and when
the number of hindering goals in the set Γη is lower than the allowed cardinality of
this goal defined by the function fcard(γo). In the set of hindering goals are only those
active goals which have the same template as the considered option gt = gto and which
are not inhibited by the option γo � γ (because these active goals will be subsequently
be made to an option). If the goal could be activated it needs to be determined if other
currently active goals need to be deactivated. The set of active goals to be deactivated
Γinh is defined as Γinh = {γ ∈ Γα | γo → γ}, which includes all goals the newly
activated goal inhibits.

Thus, if an option can be activated the set of adopted goals changes so that the
option is made to an active goal and all newly inhibited active goals become options:

Γnew = Γ \ {γo} ∪ {〈gto, active〉} \ Γinh ∪ Γopt

with Γopt = {〈gt, option〉 | 〈gt, s〉 ∈ Γinh}
The Deliberate deactivated goal action has to compute for a just deactivated goal

γo = 〈gto, option〉 ∈ Γo the set of options Γtest for which it needs to be checked
whether they can be reactivated:

Γtest = {γ ∈ Γo | gt = gto ∨ γo → γ} with γ = 〈gt, option〉

This set is composed of all options which have the same template as the considered
goal gt = gto, because possibly cardinality allows for another goal of this type being
activated. Additionally, all options need to be considered, which were inhibited by the
deactivated goal γo → γ. Note, that this is not the same set as Γinh because in this case
inhibited options instead of active goals are considered. Of course, such goals will only
be activated if the deactivated goal was the only inhibitor. As result of performing this
action new Deliberate new option actions are produced for every option for which the
deactivated goal was a necessary condition being not activated.

A Goal Deliberation Strategy for BDI Agent Systems 87

3.2 Realization

The newly conceived deliberation strategy is designed in terms of operations (Deliber-
ate new option, Deliberate deactivated goal) which operate on the internal state of the
agent. These operations have to be performed at proper times, e.g. when a new goal is
adopted or an active goal is suspended or dropped (cf. Fig. 1). Therefore, these opera-
tions should not be executed continuously in each interpreter cycle. Instead, they should
be activated whenever the need for goal deliberation arises.

To allow such flexible activation of goal deliberation operations a new interpreter
architecture is proposed, which does not rely on a fixed interpreter cycle. The basic
idea of the architecture is to break up the traditional BDI interpreter cycle [15] into a
small set of self-contained meta-actions, which are invoked as needed, rather than being
executed in a fixed sequence. The resulting set of meta-actions roughly corresponds to
the steps of the original interpreter (see Fig. 2).

01 initialize-state();

02 repeat

03 options := option-generator(event-queue);

04 selected-options := deliberate(options);

05 update-intentions(selected-options);

06 execute();

07 get-new-external-events();

08 drop-successful-attitudes();

09 drop-impossible-attitudes();

10 end repeat

Fig. 2. Abstract interpreter (from [15]) and basic meta actions

The basic mode of operation of the proposed interpreter is depicted in Fig. 3. The
interpreter is based on a data structure called Agenda where all meta-actions to be pro-
cessed are collected. The interpreter continuously selects the next entry from the agenda
and executes it, thereby changing the internal state of the agent. The execution of an ac-
tion may further lead to the creation of new actions (direct effects), which are inserted
into the agenda. Moreover, state changes may cause side effects, e.g. when a goal has to
be dropped due to a changed belief. These side effects are also inserted to the agenda.
More details of this architecture can be found in [11,12].

The presented interpreter architecture has been realized in the Jadex BDI reasoning
engine [4,13], which establishes a rational agent layer on top of the JADE platform
[1]. In Jadex, an agent type is described within an XML-file that adheres to a BDI
metamodel specified in XML schema. In addition, for each plan used by the agent, a
plan body has to be implemented in an ordinary Java class.

To integrate the Easy Deliberation strategy into the Jadex system, the basic set of
interpreter meta-actions is extended with the newly defined Easy Deliberation actions
(Deliberate new option and Deliberate deactivated goal). The creation of these actions
is accomplished through conditions that guard the identified state transitions in the goal

88 A. Pokahr, L. Braubach, and W. Lamersdorf

Fig. 3. Interpreter architecture

lifecycle. In order to allow the specification of user-defined deliberation settings in ap-
plications the Jadex BDI metamodel has been extended to incorporate the cardinality
and inhibition settings directly within the XML agent specifications.

3.3 Example Application

To illustrate the strategy an example application called “cleaner world” is outlined (cf.
[5]). The basic idea is that an autonomous robot has at daytime the task to look for
waste in some environment and clean up the located pieces by bringing them to a near
waste-bin. At night it should stop cleaning and instead patrol around to guard its en-
vironment. Additionally, it always has to monitor its battery state and reload it at a
charging station when the energy level drops below some threshold. From this scenario
the four corresponding top-level goals PerformLookForWaste, PerformPatrol, Achieve-
CleanupWaste and MaintainBatteryLoaded are derived. Initially, a cleaner possesses a
PerformLookForWaste, a PerformPatrol, and a MaintainBatteryLoaded goal, whereas
AchieveCleanupWaste goals are created for every piece of waste it discovers. To ensure
correct operation several constraints must be met and are modeled by specific delibera-
tion settings as described next (cf. Fig. 4):

– Only one AchieveCleanupWaste goal must be active at the same time to avoid the
cleaner running to different pieces of waste concurrently. Therefore, the cardinality
of this goal type is restricted to one.

– The agent must pursue exactly one of the top-level goals at the same time, whereby
MaintainBatteryLoaded is the most important goal inhibiting all other goals. The
AchieveCleanupWaste goal inhibits the PerformLookForWaste goal to force the
agent to clean up known waste before looking for new. These inhibition relation-
ships are introduced at the type-level, i.e. they always apply to all instances of,
e.g., AchieveCleanupWaste goals. Note, that no deliberation is necessary to decide
between PerformLookForWaste and PerformPatrol, as these goals have different
contexts (at daytime vs. at night).

A Goal Deliberation Strategy for BDI Agent Systems 89

Fig. 4. Constraints between goals of a cleaner agent

01 <maintaingoal name="MaintainBatteryLoaded">
02 [omitted parameter and condition specs. for brevity]
03 <deliberation>
04 <inhibits ref="AchieveCleanupWaste"/>
05 <inhibits ref="PerformLookForWaste"/>
06 <inhibits ref="PerformPatrol"/>
07 </deliberation>
08 </maintaingoal>
09
10 <achievegoal name="AchieveCleanupWaste">
11 [omitted parameter and condition specs. for brevity]
12 <deliberation cardinality="1">
13 <inhibits ref="PerformLookForWaste"/>
14 <inhibits ref="AchieveCleanupWaste">
15 $beliefbase.my_location.getDistance($ref.waste.location) >
16 $beliefbase.my_location.getDistance($goal.waste.location)
17 </inhibits>
18 </deliberation>
19 </achievegoal>

Fig. 5. Cleaner agent XML fragment

– For improved performance, the cleaner should always clean up the nearest piece
of waste first. Hence, an instance-level inhibition arc for the AchieveCleanupWaste
goal is introduced. An AchieveCleanupWaste goal instance inhibits another one,
when its waste position is nearer to the agent. Note, that this constraint is not suf-
ficient to replace the cardinality condition introduced earlier, because two or more
waste pieces could have exactly the same distance from the cleaner.

The design decisions concerning the deliberation settings of the modeled goals can be
directly mapped to the implementation. The extended Jadex XML schema allows de-
liberation settings to be embedded into the agent’s goal specifications (see Fig. 5). The
Jadex interpreter then uses these specifications to execute the agent, thereby automati-
cally respecting all modeled dependencies between the goals.

3.4 Evaluation

For agents in dynamic domains, deliberation strategies are only useful, when they pro-
vide fast and efficient results, still allowing the agent to quickly react to changes in
the environment. The Easy Deliberation strategy was designed to be computationally

90 A. Pokahr, L. Braubach, and W. Lamersdorf

inexpensive, by only considering bilateral goal relationships. Therefore, the cost for de-
liberation should increase at most quadratically with the number of concurrent goals of
an agent. To verify this analytical expectations, an empirical evaluation was performed.

Figure 6 (a) shows the results from an artificial test case, in which an increasing
amount of concurrent goals with instance-level inhibition links has to be processed by
an agent. This represents a worst-case scenario, where every present goal competes with
any other goal. To obtain generalizable results, Application-specific code is omitted, i.e.
no complex actions are performed to achieve the goals. The data we were interested in
concerns the pure time for goal deliberation, the remaining time for goal processing
(including e.g. plan selection and execution) and the ratio between them. The first thing
to note is that the cost of goal processing increases linearly with the number of goals
(as shown by the trend function y with regression coefficient R2). This is due to more
plan instances being created, which have to be considered in the plan selection process.
Also one can see, that the cost of goal deliberation grows quadratically as expected. Not
surprisingly, the ratio between goal processing and deliberation approximates to 100%
very fast. With more than 100 concurrent goals, the agent spends 90 percent of its time
thinking about which goals to pursue. Nevertheless, the absolute costs of deliberation
are low (less than 100 ms even for 500 concurrent goals on a standard desktop PC1).

(a) Artificial test case (b) Cleaner example

Fig. 6. Evaluation results

To collect also data related to practice, a second evaluation was performed in the
cleaner example presented above. In this case not only the speed of the reasoning en-
gine was measured, but also the costs incurred by the application. Therefore, in Fig. 6
(b) the time needed for processing a single goal is about 100 times higher, due to the
need for computing distances between pieces of waste (for deliberation) and for per-
forming actions like moving the robot around. In this setting the robot starts with 100
cleanup goals which are processing in the order enforced by the deliberation settings.
One can see that the deliberation cost decreases faster, as the robot cleans up more and

1 Pentium 4(HT) 3 GHz, 512 MB RAM, WindowsXP, Sun Java 1.4.

A Goal Deliberation Strategy for BDI Agent Systems 91

more waste. Moreover, in this practical example, the relative time spent for goal delib-
eration does not exceed 14 percent of the total execution time, although the agent starts
with a large number of goals (100). Even though a generalization of these results for
other application domains cannot easily be drawn, this example is an indication for the
overhead incurred by using explicit goal deliberation being acceptable, when used in
the right context.

3.5 Discussion

The Easy Deliberation strategy has been used in several example applications and is
sufficiently expressive for a wide variety of settings. Nevertheless, due to its simplicity
it exhibits several conceptual limitations:

– The strategy does only consider bilateral relationships. Hence, it is impossible to
specify e.g. that two goals together are more important than another single goal.

– Conflicts between subgoals cannot always be resolved optimally, e.g. when a con-
flict between subgoals could be resolved by replacing one of the subgoals with
another non-conflicting subgoal [16].

– Conflicts at plan level are not considered, which means that inconsistencies be-
tween plans e.g. because of access to conflicting resources are not detected.

– Positive interactions between goals are not considered, which means that the strat-
egy cannot identify and exploit potentially common subgoals.

Although some of these limitations indicate that the strategy cannot be applied uni-
versally to all kinds of problems, it is a straight-forward and easily understandable
mechanism, due to reusing ideas from modeling approaches. The reason for choos-
ing inhibition links instead of using utility values is that it allows to adopt a local view
and frees the agent developer from establishing a global ordering between all goals.
Our practical experiences have shown that the explicit declaration of goal deliberation
information makes agent specifications simpler and more readable because concerns
are clearly separated. The overhead in many practical settings is low, because a typical
application consists of several different agents each deliberating only about small sets
of related goals. Moreover, empirical evaluations reveal that the strategy only incurs
low computational costs in general.

4 Related Work

The topic of goal deliberation within a single agent has not attracted much attention
in the BDI agent community yet. One reason for this deficiency is that most imple-
mented systems do not explicitly support goals and desires. Instead, these systems use
a transient representation of goals as a type of event rendering the consideration about
goals impossible [16]. In the area of planning agents a considerable amount of work has
been devoted to plan scheduling. Main objectives of plan scheduling concern avoiding
conflicts in plan execution and exploiting common steps via plan merging [6,8]. These
approaches are different in that they require agents to have complete plans and do not
support real-time decision control about goals and plans [17].

92 A. Pokahr, L. Braubach, and W. Lamersdorf

Our work concerning the Easy Deliberation strategy is similar to the work of Than-
garajah et al., who propose strategies for detecting and resolving conflicts [17] as well
as for exploiting positive goal interaction [18]. The influence factors of the conflict res-
olution strategy from [17] are annotated meta-data to plans and goals called “interaction
summaries” containing information about their effects, pre- and in-conditions. This in-
formation is used at runtime to defer the adoption of possibly conflicting goals resp. the
execution of plans. Compared to Easy Deliberation, the strategy greatly differs in the
amount and the kind of deliberation data used and the resulting behavior. Our approach
is designed to manage with minimal deliberation information based on agent modeling
techniques providing an easy usable mechanism. In contrast, Thangarajah et al. require
more detailed information that in return allows for handling conflicts also at plan level.
Furthermore, besides ensuring that only conflict free goals are pursued, our strategy
also respects the intended order of processing and is suitable for all goal types due to
the underlying generic goal lifecycle.

5 Conclusion and Outlook

This paper motivates the need for goal deliberation strategies. To release the agent de-
veloper from the burden of ensuring that an agent always pursues consistent goal sets,
an agent needs explicit information allowing it to deliberate about its goals, and au-
tonomously select an appropriate goal set based on the current situation. In this paper
the requirements for goal deliberation are discussed and a set of characteristic questions
for conceiving a specific goal deliberation strategy is proposed.

The Easy Deliberation strategy is developed based on concepts from agent modeling
techniques. It is designed to be intuitive to use with little specification effort and enables
an agent to deliberate about its goals by activating and deactivating certain goals. The
realization introduces two strategy specific meta-actions that are added to the underly-
ing BDI interpreter architecture, by determining their activation points. During agent
execution, the strategy enforces that only conflict free goals are pursued, additionally
respecting the relative order of goal importance. Practical experiences with different
applications indicate that the strategy considerably simplifies agent development and
only incurs a low computational overhead.

Future work is devoted to the further investigation of deliberation strategies. We
intend to experiment with alternative strategies, e.g. based on the work of Thangara-
jah et al. for comparing the effectiveness of different approaches in typical application
domains. Especially, it is interesting to evaluate the advantages of detecting also plan
conflicts and possibly extend the Easy Deliberation strategy in this respect.

References

1. F. Bellifemine, G. Caire, and G. Rimassa. JADE: The JADE platform for mobile MAS
applications. In Net.ObjectDays 2004: AgentExpo, 2004.

2. R. Bordini and J. Hübner. Jason User Guide, 2004.
3. M. Bratman. Intention, Plans, and Practical Reason. Harvard University Press, Cambridge,

Massachusetts, 1987.

A Goal Deliberation Strategy for BDI Agent Systems 93

4. L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A BDI Agent System Combining Mid-
dleware and Reasoning. In M. Klusch R. Unland, M. Calisti, editor, Software Agent-Based
Applications, Platforms and Development Kits. Birkhäuser, 2005.

5. L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for BDI Agent
Systems. In Proceedings of the Second Workshop on Programming Multiagent Systems (Pro-
MAS04), 2004.

6. B. Clement and E. Durfee. Identifying and resolving conflicts among agents with hierarchical
plans. In AAAI Workshop on Negotiation, 1999.

7. F. Giunchiglia, J. Mylopoulos, and A. Perini. The Tropos Software Development Methodol-
ogy: Processes, Models and Diagrams. In Proc. of 1st Int. Joint Conf. on Autonomous Agents
and Multiagent Systems (AAMAS’02), 2002.

8. J. Horty and M. Pollack. Evaluating new options in the context of existing plans. Artificial
Intelligence, 127(2):199–220, 2001.

9. N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents-Summary
of an Agent Infrastructure. In Proc.of the 5th ACM Int.Conf. on Autonomous Agents, 2001.

10. E. Letier and A. van Lamsweerde. Deriving operational software specifications from system
goals. SIGSOFT Softw. Eng. Notes, 27(6):119–128, 2002.

11. A. Pokahr, L. Braubach, and W. Lamersdorf. A BDI Architecture for Goal Deliberation.
In Proceedings of the Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’05), 2005.

12. A. Pokahr, L. Braubach, and W. Lamersdorf. A Flexible BDI Architecture Supporting Ex-
tensibility. In The 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Tech-
nology (IAT-2005), 2005.

13. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning Engine. In J. Dix
R. Bordini, M. Dastani and A. Seghrouchni, editors, Multi-Agent Programming. Kluwer,
2005.

14. A. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In
R. van Hoe, editor, Seventh European Workshop on Modelling Autonomous Agents in a Multi-
Agent World, Eindhoven, The Netherlands, 1996.

15. A. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proc. of the 1st Int. Conf.
on MAS (ICMAS’95), 1995.

16. J. Thangarajah, L. Padgham, and J. Harland. Representation and Reasoning for Goals in BDI
Agents. In Proc. of the 25th Australasian Computer Science Conf. (ACSC2002), 2002.

17. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Avoiding Interference Between
Goals in Intelligent Agents. In Proc. of the 18th Int. Joint Conf. on AI (IJCAI 2003), 2003.

18. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Exploiting Positive Goal In-
teraction in Intelligent Agents. In Proc. of in the 2nd Int. Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2003), 2003.

19. M. Wooldridge and N. Jennings. Intelligent Agents: Theory and Practice. The Knowledge
Engineering Review, 10(2):115–152, 1995.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 94 – 105, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Estimating Utility-Functions for Negotiating Agents:
Using Conjoint Analysis as an Alternative Approach to

Expected Utility Measurement

Marc Becker, Hans Czap, Malte Poppensieker, and Alexander Stotz

Department of Business Information Systems I,
University of Trier,

54296 Trier, Germany
{marc.becker, hans.czap, malte.poppensieker,

stot4101}@uni-trier.de

Abstract. Utility-based software agents are especially suited to represent
human principals in recurring automatic negotiation applications. In order to
work efficiently, utility-based agents need to obtain models of the relevant part
of the principal’s preference structure – represented by utility functions. So far
agent theory usually applies expected utility measurement. It has, as we will
show, certain shortcomings in real life applications. As an alternative, we
suggest an approach based on con-joint analysis, which is a well-understood
procedure widely used in marketing research and psychology, but gets only
small recognition in agent theory. It offers a user-friendly way to derive
quantitative utility values for multi-attribute alternatives from the principal’s
preferences. In this paper, we introduce the technique in detail along with some
extensions and improvements suited for agent applications. Additionally a
learning algorithm is derived, keeping track of changes of the principal’s
preference structure and adjusting measurement errors.1

1 Introduction

Negotiating software agents are discussed for basically two kinds of applications.
First, they can be applied in studying and evaluating the theoretic models of game
theory and economics. Second, negotiating software agents can be used for real life
problem solving. Examples of this range from negotiating network traffic to solving
complex equilibrium problems. One area of special interest is using software agents
as proxies for their human users (principals) in recurring situations where choices
between different alternatives have to be made. Most of the time, those alternatives
are characterized by multiple attributes.2

In this paper, we adopt the idea of utility functions to serve as the connection
between human principal and artificial agent. This requires a valid method for
measuring that part of a human’s utility function that is relevant for the fulfilment of a
given task and communicating it to the decision component of the artificial agent.

1 The German National Research Foundation [DFG] has supported this paper as part of their

priority research program “Multi-agent Systems and their Business Applications”.
2 An application example for this – using utility based agents for automated operating room

scheduling – is described in [7].

 Estimating Utility-Functions for Negotiating Agents 95

For this, we give an introduction to general utility theory in chapter 2. It is shown,
that while Expected-Utility-Theory (EU-Theory) still forms the backbone of game
theoretic modeling, it is not very well suited for agent applications. Therefore, we
propose using Conjoint-Analysis (CA), a technique which proved to be useful in
marketing analysis and which aims at providing a simple way for the assessment of
utility functions. In chapter 3 a general overview to CA is given, while in chapters 4
and 5 the basics of conjoint-analytical utility measurement are detailed.

Because using utility functions in agents cannot be based on a static one-time
utility evaluation, a learning mechanism must be established that accounts for the
inter-temporal validity of measurement. A still experimental learning mechanism that
integrates completely with negotiating agents and conjoint analytical utility
measurement is introduced in chapter 6. The concepts detailed in chapters 4 to 6 are
implemented in the LACAM-Software tool that is available at our homepage.3

2 Preferences and the Utility-Function

Basically, utility is understood as a measure of a person's wellbeing. This concept
dates back to the eighteenth and nineteenth century and relies on the work of British
utilitarian philosophers and economists. In their view the concept of wellbeing relates
directly to happiness, i.e. they tried to explain a person’s behaviour as his4 attempt to
maximize his wellbeing and happiness all at once [16].

Facing the difficulties of measuring a utility function, modern economists try to
explain people’s behaviour in terms of preferences, i.e. ordinal comparisons of
different events. In so far, the utility function of a person becomes a convenient
mathematical representation of his preferences, which is only valid on an ordinal scale
of measurement.

An ordinal approach suffices for the study of individual decision making where a
single individual has to adapt optimally to a given situation, which cannot be altered
by this individual himself. This results in a simple maximization problem, which is
not sufficient for many real life problems though. Real economic and social problems
have many elements in common with the maximization problem, but they usually
differ in one essential element: if two or more persons have to negotiate with each
other, the possible results for each individual not only depend on his own actions but
on those of all others as well. This leads to a situation in which all participants try to
maximize their individual utility functions, of which they do not control all variables.5
Solving negotiation problems implies that concessions and compromises have to be
made by every participant. This requires more knowledge than the information

3 In the final chapter, further information and download-links regarding the LACAM-Software

are provided.
4 In this paper, we usually use male forms when referring to people. Of course, everything

applies to female persons respectively.
5 In economic modelling, this problem is usually countered by the standard model of ‘perfect

competition’. By assuming a considerable great (ideally infinite) number of participants - and
introducing a bunch of further strict constraints - the influence of each individual participant
on market prices becomes negligible, which reduces market decision making back to
determining the optimal quantity adaptation, a problem that can again been solved by standard
maximizing approaches.

96 M. Becker et al.

transferred in preference rankings. The individuals need not only to know which
alternative they prefer, they must although have a notion about how much they prefer
one alternative to another, i.e. they must know the strength of their preferences.

To solve this problem, von Neumann and Morgenstern used an axiomatic approach
to prove the existence and the measurability of cardinal utility functions, based on the
Bernoulli-Principle. They showed that by introducing probabilities and lotteries to the
system of ordinal preference measurement, enough information is generated for
deriving interval scaled utility functions valid up to linear transformations [23].

Given an individual with a complete preference structure, i.e. the individual can tell
for any two events, which he prefers or if he is indifferent between them, EU-Theory
assumes that the individual cannot only compare alternative events but combinations
of events and stated probabilities.

Let the individual choose the best (Eb) and the worst event (Ew) from the set of
possible events. All other events in the individual's preference ordering are situated in
between Eb and Ew (Eb E1, E2 … En Ew). For determining the EU of event n (EU
(En)), the individual has to decide (hypothetically) between En and a lottery (L) in
which Eb happens with a probability p and Ew happens with the probability 1-p, i.e.
the individual must state the probability p at which he is indifferent between the sure
event En and the lottery (L). The indifference probability will then be recorded as EU
(En).

In practise, this is usually done by first setting p = 0. In this situation, the
individual will prefer En to L. Now p is gradually raised until it reaches the probability
p* at which the individual becomes indifferent between En and L. EU (En) then equals
the stated probability p*. By repeating these steps for every decision-relevant event, a
cardinal utility function for the individual is derived [15].

It is important to note, that the shown approach to utility theory aims mainly at
proving the existence of cardinal utility, thus only demonstrating a theoretical
approach to its measurement. It is not intended to develop a reliable empirical method
of utility measurement.

This is sufficient for using EU in academic reasoning, as it frees theoretical models
from the limits of approaches based on ordinal preference. Despite of this, it is not
suitable for most real-world applications, as will be shown below.

The first defect of the EU-approach is that expected utility differs from both the
classical notion (the numerical representation of wellbeing) and the modern notion
(the numerical representation of the strength of preferences) of utility. EU mixes the
individual’s strength of preferences inseparably with the individual’s attitude towards
risk. This remains uncritical for applications regarding a risky environment, the usual
subject of theoretical analysis. In reality though, decisions are most often made not
under risk but under uncertainty. While decision making under risk specifies
situations, in which each action leads to a set of possible specific outcomes, each
outcome occurring with a known probability, under uncertainty the probabilities of
these outcomes are completely unknown or even not meaningful. The risk centred
approach to utility and decision making of EU is simply not applicable in these
situations.

The differences between risk and uncertainty lead directly to the second defect of
EU. It assumes that people are able to compare different probabilities, because they
are trained to it from constantly making risky decisions in real life. Actually, they are

 Estimating Utility-Functions for Negotiating Agents 97

only trained to make decisions in uncertain situations, which require using heuristics,
best practises or feelings [8]. Even trained decision theorists regularly show irrational
decision behaviour in experiments about EU-measurement as is shown by the Allais-
Paradox [2].

Due to the fact that most people are regularly untrained in evaluating probabilities,
statements like “if the probability of the good outcome is raised by 1%, then I am
indifferent between the sure and the risky option”, do not seem to be more reliable
then a direct rating approach, in which individuals are asked to directly assign utility
values to concrete events.

Software agents that act as their principals' representatives need a utility function
that emulates the principal’s preference structure as exactly as possible. Utility
functions based on EU cannot achieve this, because of the defects shown above.
Given the deficits of EU and the requirements of agent applications, we propose using
CA as an alternative method of utility measurement that bases on a measurement
procedure resembling real life decision making.

3 Conjoint Analysis as an Alternative Approach to Utility
Measurement

In comparison to EU, CA offers an approach to utility measurement that has
considerably lower cognitive demands on the principal. Instead of enhancing
preference information by introducing lotteries and choice experiments, which adds a
great deal of complexity to the measurement procedure, CA aims at statistically
revealing additional information hidden in ordinal preference statements. This
increases the effort for designing measurement interviews, but leads to significant
reductions in complexity on the side of the respondent. In fact, he is only required to
create a preference ranking over some presented events.

The foundations of CA were laid out in a seminal paper by Luce and Tukey in
1964 [17]. During the last decades, CA has been successfully applied by
psychologists and marketing researchers to a number of different problems, but was
somewhat neglected in the decision sciences [9].

In CA, decision situations are described in the form of events. Every event is
characterized by a number of attributes, each attribute being made up of certain levels.
By decomposing the principal’s ordinal preference evaluation (ranking) of the events,
CA assigns each of these levels a cardinal utility value, called part-worth-utility
(short: part-worth). Relying on the fact, that through the ordering of multi-attributive
objects (or events) more information than a simple ordinal ranking is generated, the
relative importance of each attribute level can be calculated and expressed as part-
worth. This is done by analyzing the occurrence of the different attribute levels within
the ranking. Combining the part-worths by means of an additive utility function an
interval scaled total utility function – sufficient for agent negotiation applications – is
generated.

Applying CA to agent applications can be done in three consecutive steps that will
be detailed below:

First, the application specific survey design must be created. In this step the
foundations of valid measurement are laid. Using CA as an interface between

98 M. Becker et al.

principal and agent, easiness of handling in combination with good validity of
measurement is required.

Second, the actual conjoint interview consisting of preference measurement and
data analysis is conducted [3].

In addition to traditional CA, in agent applications a third step has to be included.
Because using utility functions in agents cannot be based on a static one-time utility
evaluation, a learning mechanism must be established that accounts for the inter-
temporal validity of measurement. Its main assignments consist of fixing
measurement errors and adjusting to over-time changes in the principal’s preference
structure.

3.1 Setting Up the Survey

As stated earlier, CA demands some effort in constructing the survey; especially the
correct determination of attributes and attribute levels for the specific application is
crucial. In order to generate valid results, there are some constraints on the selection
of attributes and attribute levels:

• All attributes relevant for the principal's decision have to be considered.
• The attributes must be independent of each other.
• There must be a compensatory relation between the attributes.

Though these constraints might appear to be very strict, most domains can be
modelled according to them.

The events that have been characterized in that way have to be presented to and
evaluated by the principal. An event presented to the principal is called a stimulus.
There are three different approaches for deriving the stimuli:

• full profile design,
• random design,
• systematic design.

In the full profile design, all possible events are presented. Because the amount of
possible events grows exponentially with the number of attributes, it can be
overwhelming for any principal to rate all of them, even with only a small number of
attributes and levels. In order to make CA practically useful for agent applications, a
method is required for reducing the quantity of stimuli, while still maintaining a good
quality of the resulting utility function.

In a random design, a certain number of stimuli are chosen without respect to the
distribution of the different attribute levels in the sample. It can be used to estimate
the utility over all events statistically. An advantage of this approach is that the size of
the sample can be chosen arbitrarily. Still, as a major drawback, some attribute levels
might not appear sufficiently often in the sample to allow an estimation of utility
values with sufficient validity.

The systematic approach usually finds a better set of stimuli than the random
design limiting the number of stimuli while still representing the set of all possible
events as close as possible. A systematic design can be used to guarantee uncorrelated
estimation of all part-worths [12].

 Estimating Utility-Functions for Negotiating Agents 99

Addelman has shown that the condition of "orthogonal frequencies" is sufficient to
achieve this goal. It requires every attribute level to appear with all levels of the other
attributes in proportional frequency to their number of appearances in the whole
sample. Addelman calls designs that hold this condition Orthogonal Main-Effect
Plans (OMEPs) and also suggests a method to construct them [1].

Unfortunately, this method requires some human intuition and is not appropriate to
be used with computer systems. Therefore an algorithm based on suggestions by
Jacroux is introduced here. His method guarantees to compute a minimal OMEP; that
is the design of smallest sample size that still allows uncorrelated estimation of part-
worths. The number of events in this design depends on the structure of attributes and
levels in each specific case [10].

The algorithm starts off by constructing a set of Mutually Orthogonal Latin
Squares (MOLS). A Latin Square of size n is a tableau of n rows and n columns which
are filled with n distinct symbols in a way that every symbol appears only once in
each row and in each column respectively. Two Latin Squares of the same size are
orthogonal, if superimposed on each other every ordered pair of symbols appears
exactly once. In a set of MOLS, every pair of squares is mutually orthogonal. For a
given size n there exist n-1 MOLS if n is a prime or a power of a prime. To construct
such a set of MOLS, Galois fields are used [19].

To create a sample for a symmetrical design (i.e. each attribute has the same
number of levels) for n+1 attributes each having n levels, all MOLS of size n are
superimposed on each other and row and column symbols are added to each cell.
Jacroux has shown that a minimal OMEP has

1 2
N s s= elements, if

1
s and

2
s satisfy

2
1 2 1 2 3

1,
min 2 , {lcm(,)}

x s y s
s s xy s s s x y xy

≥ ≥
= < ≤

where:

si = number of levels of attribute i with sn sn+1 for all n.
lcm(x,y) = least common multiplier of x and y.

With this information, the algorithm constructs a symmetrical design for 2
s levels

using MOLS, which needs to be adjusted in case of an asymmetrical design (i.e. the
attributes each have different numbers of levels) [10]. Additional levels for the first
attribute can be introduced by partially duplicating the sample, changing the levels of
only the first attribute. Other attributes that have too many levels are collapsed using a
n-to-1 relation. For instance, the scheme

0 0
1 1
2 0

can be used to collapse a three level attribute to a two level attribute. The resulting
design is a minimal OMEP, which is presented to the principal in order to be ranked.
Addelman has proven that using such corresponding schemes does not affect the
condition of orthogonal frequencies, thus allowing uncorrelated estimation of all part-
worths [1].

Unfortunately, there are a few combinations of attributes and levels this approach
cannot provide an OMEP for. One way to deal with these few cases would be to fall
back to a random sample implying all the problems for the validity of the results as
mentioned above. Instead, it seems more reasonable to alter the setup of the experiment
in order to use a number of attributes and attribute levels the algorithm can handle.

100 M. Becker et al.

3.2 Interview and Analysis

Having decided on the set of stimuli the next step is the analysis of the principal’s
preference structure. Therefore, the principal has to evaluate the stimuli. An intuitive
method for evaluation is the ranking method. It requires that the principal assigns a
rank to each stimulus according to his preferences.

Using CA in the context of agent systems, which relieve the principal from
coordination tasks, implies that the interaction with the principal should be as intuitive
and easy as possible. We propose the following approach:

A limited number of stimuli is presented to the principal at once and has to be
brought into the right order. Every additional stimulus is inserted into the existing order
by pair wise choice, i.e. the principal repeatedly decides between the new stimulus and
an already sorted stimulus just by stating his preference between the two alternatives.

After the ranking is finished, the part-worths for the different attribute levels are
calculated based on the order6 of the stimuli revealed by the principal. Assuming an
additive utility function, the principal’s total utility for a multi-attributive event E0 is
represented by the sum of its part-worths [12]:

1 1

0

0

0

0

*(

where:
(Total utility of the event

 Part worth utility of level of attribute
1 if level of attribute occurs in

0 else

)

) =
=

=

jMJ

jm jm
j m

jm

jm

xU E

U E E
m j

m j E
x

β

β

= =

=

Assuming that the distance between the ranks revealed by the principal is equidistant,
the rank order can be interpreted metrically. Estimating the part-worths can now
simply be done by an ordinary least square regression.7

The part-worths (ßjm) of the attribute levels are calculated by subtracting the base

utility (p) from the average empirical rank (
jm

p) of an attribute level:
jm jm

p pβ = −

The term base utility refers to the average rank of all stimuli:

1

N

i

i

p

p
N

==

The average empirical rank of an attribute level is denoted as the average rank of all
stimuli containing a certain attribute level:

6 Notice that the rank number is reversed. That means that the highest rank is assigned to the

most preferred stimulus.
7 Actually, this is the ‘quick and dirty method’ for deriving part-worths, that is used by most

commercial conjoint applications like SPSS, and which assumes equidistance between the
ranks revealed by the principal. More correct is the application of non-metric algorithms like
MONANOVA [13], [14], LINMAP [22] or PREFMAP [5], which lead to slightly better
results at the cost of greater complexity [6]. In the LACAM-Software presented below,
MONANOVA is implemented as an addition to the OLS-Regression.

where:
 Rank of stimulus

 = Number of stimuli
i

p i
N

=

 Estimating Utility-Functions for Negotiating Agents 101

1

1

*

N

i

i

jm N

i

ijm

ijm

p b

p

b

=

=

=

where:
 Average empirical rank of the attribute

 with the level
1 if level of attribute occurs in the stimulus

=
0 else

=
jm

ijm

p

j m
m j i

b

Given the part-worths of the different attribute levels the total utility of any event can
easily be calculated according to the additive utility function [3].

The found part-worths represent the principal’s preference structure as close as
possible. With the help of those part-worths, the total utility of every possible event
can be calculated. Therefore, they can be used as the basis for agent negotiation
processes. Unfortunately the principal’s preference structure is likely not to be stable
over time. In order not to confront the principal with the whole conjoint interview
again, there is a need to develop an alternative that requires less involvement of the
principal.

4 Learning

Considering the fact that individual preferences may change over time, a utility
function that was determined once by CA cannot be regarded as statically valid for
ever. Instead, an agent system that is supposed to be in use for a longer period must be
able to dynamically adjust to changes within the principal's preferences. That is, it
needs to detect if the agents utility function still represents the principals preferences
correctly and adjust it in case it does not.

To accomplish this task, user interaction is required. As, obviously, intelligent
agents are supposed to make their principals' lives easier, too much interaction is not
beneficial. Research has shown that while most users are willing to give some short
feedback about the quality of the agent's work, they consider a longer procedure as
frustrating and annoying [20]. Keeping that in mind, we have designed a procedure
for permanently monitoring the quality of the agent's utility model, while reducing
communication with the principal to a minimum.

4.1 Learning Process

The learning process proposed in this chapter is based on the main idea that in order
to facilitate easy communication, the principal only needs to respond to a single
question after selected negotiations done by the agent. For this, he must evaluate the
actual result of the negotiation (Er) together with the next possible alternative the
agent would have been able to reach (Ea). Note that the latter was not preferred by the
agent because its total utility is considered lower than the utility of Er in its model.
The principal must now state if the agent's behaviour was correct, taking into account

102 M. Becker et al.

these two outcomes. In case it was, the system acted accurately, and there is no need
to change the utility function. Otherwise, there must be an inaccuracy in the utility
model, or the user would not have disapproved the agent's decision.

Here exists a typical Credit-Assignment-Problem, where it is not evident which of
the part-worths to assign the blame for the wrong decision [21]. Therefore, the
algorithm regards all part-worths relevant for Er or Ea as equally responsible for the
wrong decision. That means that in order to correct the model, the part-worths of all
attribute levels that occur in Er will be lowered by a constant factor. Respectively, the
values involved in Ea will be raised.

Consider the recent part-worths ßjm as determined with the metric solution or
MONANOVA. Analyzing the events Er and Ea a set of ‘change values’ ßjm is
determined, with:

if level of attribute occurs in and not in

if level of attribute occurs in and not in

else

-1,

1,

0,

r a

a rjm

m j E E

m j E Eγ =

The corrected part-worths ßjm' are then calculated as:

ßjm'=ßjm+w · ßjm

The factor w is included as a weight that is used to account for the distance between
Er and Ea. If the total utility of the two events differs greatly, w must be chosen higher
than in a case with a small gap. Specifically, we set it in such a way that the total
utility of Er and Ea will match, if they are calculated basing on the new part-worths
ßjm'. To do this, the linear equation of total utility – as presented in chapter 3 - is
solved for w. Over time, with this method, the calculated part-worths converge
asymptotically against the values that correctly represent the principal's preferences.

By using the weight w, the set of corrected part-worths ßjm' can be calculated.
Figure 2 illustrates how this procedure influences the ranking of objects. In the new
model, the total utility values for the result of the negotiation and the next possible
outcome are now equal. Note that other objects might also change their position in the
ranking as their total utility is affected by the change of part-worths.

Result

Object 3

Object 4

Possible
Outcome

Object 1

Object 6

Before After

Result

Object 3

Object 4

Possible
Outcome

Object 1

Object 6

Fig. 1. Improved ranking after applying new part-worths

 Estimating Utility-Functions for Negotiating Agents 103

4.2 Gradual Learning

Psychology scholars distinguish two different forms of attitude change towards
certain issues: Conditioning is associating the issue with a positive or negative mood
created by another factor and thus changing the opinion towards it [18]. Persuasion is
general communication that aims at altering decisions [4]. Both of these two forms
are usually considered persistent.

Still, psychological research has shown that a great deal of a person's recorded
attitudes depends on the mood the person is actually in. Of course, these discrepancies
are tightly coupled with the mood and will diminish when it changes.

A learning algorithm must therefore try to recognize permanent changes of
preference structure caused by either conditioning or persuasion but should be
invariant to temporal changes caused by certain moods. In order to accomplish this, a
function for assessing the consistency of a perceived change in preferences with the
user behavior in the past is needed. This consistency can be identified by performing a
trend analysis over historically recorded part-worths. A high similarity between the
part-worths ßjm', as calculated in chapter 4.1, and the trend-induced values suggest a
permanent preference change; while a high difference implies mood-based behavior.

A trend analysis can be done by calculating a linear trend function for each part-
worth, using OLS-Regression. The trend function can then be used for estimating
trend-induced part-worths ˆ

jm
β valid for the current point of time. The resulting value

is then compared with ßjm' and the weight w adjusted, depending on the distance
between the two values:

ˆ| |
ˆ(1 , if | ' | 0.2

' 0.2

0, else

)jm jm

jm jm

'
w

w

β β
β β

−
⋅ − − <

=

Based on this, the new set of part-worths ßjm'' can be calculated as:

'' '
jm jm jm

wβ β γ= + ⋅

By regularly updating the agent’s utility function with these adapted part-worths a
constant operation of an agent system can be maintained.

5 Conclusion

In this paper, we dealt with a central problem of agent theory; that is how to align the
actions of an agent to a principal's preference structure. Especially we focused on a
situation where recurring decisions have to be made between different multi-
attributive alternatives. We suggested using a utility-based decision component in
such a case, which leads to the problem of determining the principal's utility function.
Expected Utility measurement as the standard approach to accomplish this has certain
deficits. Although it has played an important role in game and decision theory, we
consider it as impractical for agent applications. We have therefore described conjoint
analysis as a more practicable method for determining human utility functions. Our

104 M. Becker et al.

examination also provided a method to reduce the number of stimuli that have to be
evaluated by the principal making CA more easily applicable for real life situations.

While CA has been evaluated thoroughly in many studies and approved functional,
our learning algorithm still undergoes empirically evaluation and development. To
apply our ideas in practice, we developed a specialized conjoint analysis tool for
agent applications (LACAM – Learning Agents and Conjoint Analytical Methods), as
part of our Policy-Agents Hospital-Scheduling MAS. Designed as a self-contained
system component LACAM can be easily adapted to existing utility-based agent
systems. Readers are encouraged to download and evaluate it at our project
homepage: http://www.wi.uni-trier.de/forschung/projekte/projekte/Agenten.htm. A
more extensive (German) documentation [11] of the software tool is available on this
page as well. We also extended the software with the presented learning algorithm
that is still experimental. Further development and testing will take place during the
course of the project. Any remarks regarding the software tool and especially the
learning component are very welcome.

References

[1] Addelman, S.: Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments, in:
Technometrics, Vol. 4(1), 1962, pp. 21-46.

[2] Allais, M.: Le Comportement de l’Homme Rationnel devant le Risque: critique des
Postulats et Axiomes de l’Ecole Américaine, in: Econometrica, Vol. 21, 1953, pp.
503-546.

[3] Backhaus, K.; Erichson, B.; Plinke, W.; Weiber, R.: Multivariate Analysemethoden –
Eine anwendungsorientierte Einführung, Berlin 2000.

[4] Brembeck, W.; Howell, W.: Persuasion – A Means of Social Influence, 2nd Ed.,
Englewood Cliffs, NJ 1976.

[5] Caroll, J.D.: Individual Differences and Multidimensional Scaling, in: R.N. Sheppard;
A.K. Romney; S.B. Nerlove (Hrsg.), Multidimensional Scaling: Theory and Applications
in the Behavioral Sciences, Vol. 1, 1972, pp. 105-155.

[6] Chattin, P.; Wittink, D. R.: Further Beyond Conjoint Measurement: Towards a
Comparison of Methods, in Perrault, W. D. (ed): Advances in Consumer Research,
Chicago 1977.

[7] Czap, H.; Becker, M.: Multi-Agent Systems and Microeconomic Theory: A Negotiation
Approach to solve Scheduling Problems in High Dynamic Environments, in Proceedings
of 36th Annual Hawaii International Conference on System Sciences (CD-Rom), Hawaii
2003.

[8] Gingerenzer, G.; Selten, R. (eds.): Bounded Rationality: The Adaptive Toolbox,
Cambridge 2001.

[9] Green, P. E.; Krieger, A.M.; Wind, Y.: Thirty Years of Conjoint Analysis: Reflections
and Prospects, in: Inter-faces, Vol. 31/3, 2001, pp. 56-73.

[10] Jacroux, M.: A Note on the Determination and Construction of Minimal Orthogonal
Main-Effect Plans, in: Technometrics, Vol. 34(1), 1992, pp.92-96.

[11] Kessler, M.; Poppensieker, M.; Porten, M.; Stotz, A.; Zub, D.: Lernende Agenten &
conjoint-analytische Verfahren - Entwicklung einer Conjoint-Analyse-Software zur
Verwendung in FIPA-konformen Multiagentensystemen, Studienprojekt am Lehrstuhl für
Wirtschaftsinformatik I der Universität Trier, Trier 2004.

 Estimating Utility-Functions for Negotiating Agents 105

[12] Klein, M.: Die Conjoint-Analyse: Eine Einführung in das Verfahren mit einem Ausblick
auf mögliche sozialwissenschaftliche Anwendungen, in: ZA-Information No. 50, 2002,
pp. 7-45.

[13] Kruskal, J.B.: Analysis of Factorial Experiments by Estimating Monotone Transformation
of Data, in: Journal of the Royal Statistical Society, Series B, Vol. 27, 1965, pp. 251 -263.

[14] Kruskal, J.B.: Nonmetric Multidimensional Scaling: A Numerical Approach, in:
Psychometrika, Vol. 29/2, 1964, pp. 1-27.

[15] Laux, H.: Entscheidungstheorie, Berlin et al 2003.
[16] Luce, R. D.; Raiffa, H.: Games and Decisions – Introduction and Critical Survey, New

York 1957.
[17] Luce, R. D.; Tukey, J. W.: Simultaneous Conjoint Measurement: A New Type of

Fundamental Measurement, in: Journal of Mathematical Psychology, Vol. 1, 1964, pp.
1-27.

[18] Oskamp, S.: Attitudes and Opinions, 2nd Ed., Englewood Cliffs, NJ 1991.
[19] Raghavarao, D.: Constructions and Combinatorial Problems in Design of Experiments,

New York 1971.
[20] Schiaffino, S.; Amandi, A.: User – interface agent interaction: personalization issues, in:

International Journal of Human-Computer Studies, Vol. 60, 2004, pp. 129-148.
[21] Sen, S.; Weiss, G.: Learning in Multiagent Systems, in: Weiss, G. (ed.): Multiagent

Systems – A Modern Approach to Distributed Artificial Intelligence, Cambridge 1999.
[22] Srinivasan, V.; Shocker, A.D.: Estimating the Weight for Multiple Attributes in a

Composite Criterion Using Pairwise Judgements, in: Psychometrika, No. 38/ 1973, pp.
473-493.

[23] Von Neumann, J.; Morgenstern O.: Theory of Games and Economic Behavior, Princeton
1942.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 106 – 117, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Reconciling Agent Ontologies for Web
Service Applications

Jingshan Huang, Rosa Laura Zavala Gutiérrez, Benito Mendoza García,
and Michael N. Huhns

Computer Science and Engineering Department,
University of South Carolina,
Columbia, SC 29208, USA

{huang27, zavalagu, mendoza2, huhns}@engr.sc.edu

Abstract. Because there is still no agreed-upon global ontology, Web services
supplied by different providers typically have individual and unique semantics,
described by independently developed ontologies. The seamless connection of
these distributed Web services for business-to-business applications depends
heavily on reconciling the disparate semantics, possibly by integrating the
ontologies. In this paper, we describe an approach to reconcile ontologies from
distributed Web services. Our approach is totally automated, and features the
following: i) alignment of the ontologies is performed without previous
agreement on the semantics of the terminology in each ontology; ii) both
linguistic and contextual features are considered; iii) the use of WordNet for
linguistic analysis; iv) integration of heuristic knowledge for contextual
analysis; and v) inference of new relationships by applying several rules based
on domain-independent relationships and property lists. Experiments have been
carried out to show the promising results of our system.

1 Introduction

Web service applications, such as supply-chain purchase orders and automated order
enactment, have been shown to offer great potential value to businesses. Initial on-
line automation activities were tightly coupled in the sense that business partners
predefined the terms of their interaction using standards such as EDI and XML [12].
Recently, the emergence of Web services has led the software industry into a service-
oriented approach to software development. Service-oriented computing is a loosely
coupled methodology, based on the use of standard protocols (UDDI for discovery,
WSDL for description, BPEL4WS for coordination, and SOAP for communication).
The use of Web services provides greater flexibility with respect to the
interoperability, reuse, and development of applications in a distributed environment.

Although there can be some value in accessing a single Web service through a
semantically well-founded interface, a greater value is clearly derived through
enabling a flexible composition of services, which will not only create new services,
but also potentially add value to preexisting ones [1]. Therefore, the seamless
connection of distributed Web services becomes increasingly critical. However, due
to the lack of an agreed-upon global ontology, Web services from different providers

Reconciling Agent Ontologies for Web Service Applications 107

typically have heterogeneous semantics. Agents that automatically reconcile
ontologies, and thereby understand and integrate the information from different
sources, would greatly facilitate Web service-based application interoperability.

It is impractical to have a unique and global ontology that includes every concept
that is or might be included as part of the Web. However, it is reasonable that there
might be ontologies for specific domains and sub-domains of the Web, and even for
individual Web pages. It is clear, then, that the challenge is to be able to align and use
different ontologies.

In this paper, we describe PUZZLE, a system that implements an approach to
construct a merged ontology from distributed and independently designed ontologies.
We also explain the potential application of our system in Web service-based
transactions. We assume that: 1) we are dealing with Web services for similar
domains; 2) ontological representations have been derived from Web service
documentations, e.g., WSDL and SOAP specifications; and 3) agents are willing to
communicate with each other to reach consensus among ontologies.

In [2] the main technique for semantic mapping between two ontology concepts
relies on simple string and substring matching. We extend that work to incorporate:
further linguistic analysis; contextual analysis based on the properties of the concepts
in the ontology and the relationships among these concepts; extended use of WordNet
[10] to include the search of not only synonyms but also antonyms, plurals,
hypernyms, and hyponyms; use of the Java WordNet Library API [9] for performing
run-time access to the dictionary, instead of having to initialize the synonym set a
priori; integration of heuristic knowledge into the contextual analysis phase; and
reasoning rules based on the domain-independent relationships subclass, superclass,
equivalentclass, sibling, and each ontology concept’s property list to infer new
relationships among concepts. Existing research efforts incorporate some of these
features, but none has investigated them in combination.

The rest of the paper is organized as follows. Section 2 briefly discusses related
work in ontology matching. An overview of the PUZZLE system is given in
Section 3. Section 4 describes the details of our system. Section 5 reports the
experiments conducted and analyzes the results, and Section 6 concludes.

2 Related Work

A lot of research work has been carried out in ontology matching. There are two
approaches to ontology matching [7]: instance-based and schema-based. All of the
systems mentioned below belong to the latter, except for GLUE [8].

GLUE introduces well-founded notions of semantic similarity, applies multiple
machine learning strategies, and can find not only one-to-one mappings, but also
complex mappings. However, it depends heavily on the availability of instance data.
Therefore, it is not practical for cases where there is an insignificant number of
instances or no instances at all.

In [3], a method is investigated for agents to develop local consensus ontologies to
help in communications within a multiagent system of B2B agents. This work shows
the potential brought by local consensus ontologies in improving how agents conduct
B2B Web service discovery and composition. It also explores the influence of a

J. Huang et al. 108

lexical database in ontology merging. However, it does not take into consideration the
properties of ontology concepts.

Cupid [5] combines linguistic and structural schema matching techniques, as well
as the help of a precompiled dictionary. But it can only work with a tree-structured
ontology instead of a more general graph-structured one. As a result, there are many
limitations to its application, because a tree cannot represent multiple-inheritance, an
important characteristic in ontologies.

For HELIOS [11], WordNet is used as a thesaurus for synonyms, hyponyms,
hypernyms, and meronyms. However the thesaurus has to be initialized for each
domain for which it is used. If additional knowledge or a different domain is needed,
then the user has to input the respective terminology interactively.

S-Match [4] is a modular system into which individual components can be plugged
and unplugged. The core of the system is the computation of relations. Five possible
relations are defined between nodes: equivalence, more general, less general,
mismatch, and overlapping. Giunchiglia et al. claim that S-Match outperforms Cupid,
COMA, and SF in measurements of precision, recall, overall, and F-measure.
However, as Cupid does, S-Match uses a tree-structured ontology.

3 Overview of Our Solution

The goal of our work is to construct a consensus ontology from numerous
independently designed ontologies. The main idea of our approach is that any pair of
ontologies, G1 and G2, can be related indirectly through a semantic bridge consisting
of other previously unrelated ontologies, even when there is no direct relationship
between G1 and G2. The metaphor is that a small ontology is like a piece of jigsaw
puzzle. It is difficult to relate two random pieces of a jigsaw puzzle until they are
constrained by other puzzle pieces. Furthermore, for the semantic bridge between a
given pair of ontologies G1 and G2, the more ontologies the semantic bridge
comprises, the better the semantic match between G1 and G2.

In order to construct a consensus ontology from a number of ontologies, we take
two ontologies and merge them into a new one, and then we iteratively merge the
resultant ontology with each additional one. We will explain next our method for
merging two ontologies.

We represent an ontology using a directed acyclic graph. In order to merge two
ontologies, G1 and G2, we try to relocate each concept (node) from one ontology into
the other one. We adopt a breadth-first order to traverse G1 and pick up a concept C as
the target to be relocated into G2. Consequently, C’s parent set Parent(C) in the
original graph G1 has already been relocated into the suitable place(s) in the
destination graph G2 before the relocation of C itself.

Firstly, we address the issue of the relocation value of a target concept C against
any other concept C’. A relocation value is a value from 0 to 1, reflecting the
likelihood of correctly relocating a concept. As equation 1 below indicates, a
relocation value is calculated as the weighted sum of the values from linguistic
matching and contextual matching.

relocation value = wlinguistic * vlinguistic + wcontextual * vcontextual . (1)

Reconciling Agent Ontologies for Web Service Applications 109

When trying to match concepts, we consider both linguistic and contextual
features. The meaning of an ontology concept is determined by its name and its
relationship with other concept(s). In this paper, we assume that the linguistic factors
contribute 70 percent and the contextual factors contribute 30 percent in concept
matching. That is, wlinguistic is set to 0.7 and wcontextual is set to 0.3 in equation 1. The
former is greater than the latter, because in our experiments, the input ontologies have
less contextual information. Therefore, we do not want the contextual factors to
dominate in the matching process. Notice that these weight values can always be
customized according to different application requirements.

We claim that there are five mutually exclusive relationships between any two
concepts (see details in Section 4.2.2). From all the candidate concepts in the
destination graph G, we build a list of candidate concepts for each type of relationship
of C (see details in Section 4.1). Within each list, we calculate the relocation value of
C against each concept in that list, and then choose the one producing the highest
value. After we finish processing all candidate lists, we have sufficient information to
be able to relocate C.

4 Details of the PUZZLE System

The following pseudocode describes the top level procedure of our algorithm.

PUZZLE Algorithm – merge(G1, G2)
 Input: Ontology G1 and G2
 Output: Merged ontology G2
 begin
 new location of G1’s root = G2’s root
 for each node C (except for the root) in G1
 Parent(C) = C’s parent set in G1
 for each member pi in Parent(C)
 pj = new location of pi in G2
 relocate(C, pj)
 end for
 end for
 end

4.1 Linguistic Matching

The linguistic factor reflects how the ontology designer wants to encode the meaning
of a concept by choosing a preferable name for it. PUZZLE uses both string and
substring matching techniques when performing linguistic feature matching.
Furthermore, we integrate WordNet by using the JWNL API in our system. In this
way, we are able to obtain the synonyms, antonyms, hyponyms, and hypernyms of an
English word, which has been shown to increase the accuracy of linguistic matching
dramatically. In addition, WordNet performs some preprocessing, e.g., the
transformation of a noun from plural form to singular form.

We claim that for any pair of ontology concepts C and C’, their names NC and NC’
have the following mutually exclusive relationships, in terms of their linguistic
features.

J. Huang et al. 110

- anti-match: NC is a antonym of NC’, with the matching value vlinguistic = 0;
- exact-match: either NC and NC’ have an exact string matching, or they are the

synonyms of each other, with the matching value vlinguistic = 1;
- sub-match: NC is either a postfix or a hypernym of NC’, with the matching value

vlinguistic = 1;
- super-match: NC’ is either a postfix or a hyponym of NC, with the matching value

vlinguistic = 1;
- leading-match: the leading substrings from NC and NC’ match with each other,

with the matching value vlinguistic equaling the length of the common leading
substring divided by the length of the longer string. For example, “active” and
“actor” have a common leading substring “act”, resulting in a leading-match
value of 3/6;

- other: the matching value vlinguistic = 0.

When relocating C, we perform the linguistic matching between C and all the
candidate concepts. For each candidate concept C’, if an exact-match or a leading-
match is found, we put C’ into C’s candidate equivalentclass list; if a sub-match is
found, we put C’ into C’s candidate subclass list; and if a super-match is found, we
put C’ into C’s candidate superclass list. Then we continue the contextual matching
between C and each concept in the three candidate lists to make the final decision.

4.2 Contextual Matching

The context of an ontology concept C consists of two parts, its property list and its
relationship(s) with other concept(s). Notice that the latter is not explicitly expressed
in any formula. Instead, we integrate the relationship factor into our system by the
three reasoning rules specified in Section 4.3.

4.2.1 Property List Matching
Considering the property lists, P(C) and P(C’), of a pair of concepts C and C’ being
matched, our goal is to calculate the similarity value vcontextual between them.

vcontextual = wrequired * vrequired + wnon-required * vnon-required . (2)

vrequired and vnon-required are the similarity values calculated for the required property list
and non-required property list respectively. wrequired and wnon-required are the weights
assigned to each list. In this paper, we choose 0.7 and 0.3 for wrequired and wnon-required.
vrequired and vnon-required are calculated by the same procedure.

Suppose the number of properties in two property lists (either required or non-
required ones), P1 and P2, is n1 and n2 respectively. Without loss of generality, we
assume that n1 ≤ n2. There are three different matching models between two
properties.

1. total-match
- The linguistic matching of the property names results in either an exact-

match, or a leading-match with vlinguistic ≥ 0.9; and
- The data types match exactly.

Let v1 = number of properties with a total-match, and f1 = v1/n1. Here f1 is a
correcting factor embodying the integration of heuristic knowledge. We claim
that between two property lists, the more pairs of properties being regarded as

Reconciling Agent Ontologies for Web Service Applications 111

total-match, the more likely that the remaining pairs of properties will also hit a
match as long as the linguistic match between their names is above a certain
threshold value. For example, assume that both P1 and P2 have ten properties. If
there are already nine pairs with a total-match, and furthermore, if we find out
that the names in the remaining pair of properties are very similar, then it is much
more likely that this pair will also have a match, as opposed to the case where
only one or two out of ten pairs have a total-match.

2. name-match
- The linguistic matching of the property names results in either an exact-

match, or a leading-match with vlinguistic ≥ 0.9; but
- The data types do not match.

Let v2 = number of properties with a name-match, and f2 = (v1 + v2)/n1. Similarly
to f1, f2 also serves as a correcting factor.

3. datatype-match
Only the data types match. Let v3 = number of properties with a datatype-match.

After we find all the possible matching models in the above order, we can calculate
the similarity value v between the property lists as

v = (v1* w1 + v2 * (w2 + w2’ * f1) + v3 * (w3 + w3’ * f2))/n1 . (3)

where:

- the value range of v is from 0 to 1;
- wi (i from 1 to 3) is the weight assigned to each matching model. We use 1.0 for

total-match, 0.8 for name-match, and 0.2 for datatype-match;
- wi’(i from 2 to 3) is the correcting weight assigned to the matching models of

name-match and datatype-match. We use 0.2 and 0.1 respectively;

4.2.2 Relationships Among Concepts
Given any two ontology concepts, we can have the following five mutually exclusive
relationships between them:

 subclass, denoted by ⊆
 superclass, denoted by ⊇
 equivalentclass, denoted by ≡
 sibling, denoted by ≈ and
 other, denoted by ≠

OWL Full provides eleven relationship axioms [6]: subClassOf, equivalentClass,
disjointWith, sameIndividualAs, differentFrom, subPropertyOf, equivalentProperty,
inverseOf, transitiveProperty, functionalProperty, and inverseFunctionalProperty.
The first three axioms will be used as follows.

The subClassOf axiom will represent subclass-superclass relationship. The
equivalentClass axiom will be used for specifying the equivalentclass relationship. As
for sibling relationship, there is no direct support from OWL axioms. However, the
disjointWith axiom is a good choice, given the condition that each ontology is
reasonably designed. That is, we make an assumption that under a same parent class,
all the siblings within the same level will be disjoint with each other. Otherwise, a
new superclass should be added for those siblings with intersection.

J. Huang et al. 112

4.3 Reasoning Rules

PUZZLE uses three domain-independent rules, each regarding the relationship
among ontology concepts, to incorporate the reasoning into our system. These rules
are applied to concepts from different ontologies. Therefore, we refer to them as inter-
ontology reasoning.

Suppose we have three ontologies A, B, and C, each of which is designed according
to the OWL Full specification. Furthermore, let n(A), n(B), and n(C) be the sets of
concepts in A, B, and C respectively, with ni(A), nj(B), and nk(C) be the individual
concept for each set (i from 1 to |n(A)|, j from 1 to |n(B)|, and k from 1 to |n(C)|), and
P(ni(A)), P(nj(B)), and P(nk(C)) be the property list for each individual concept.

Consider the property lists P(ni(A)) and P(nj(B)), let si and sj be the set size of these
two lists. There are four mutually exclusive possibilities for the relationship between
P(ni(A)) and P(nj(B)):

 P(ni(A)) and P(nj(B)) are consistent with each other if and only if
i. Either si = sj or |si – sj|/(si + sj) ≤ 0.1, and

ii. vcontextual ≥ 0.9

We denote the corresponding concepts ni(A) and nj(B) by ni(A) ⎯→← p
nj(B);

 P(ni(A)) is a subset of P(nj(B)) if and only if
i. si ≤ sj, and

ii. vcontextual ≥ 0.9

We denote the corresponding concepts ni(A) and nj(B) by ni(A) ⎯→⎯p nj(B);
 P(ni(A)) is a superset of P(nj(B)) if and only if

i. si ≥ sj, and
ii. vcontextual ≥ 0.9

We denote the corresponding concepts ni(A) and nj(B) by ni(A) ⎯⎯← p
nj(B);

 Other.

Rules 1 and 2 consider two ontologies, A and B.
[Rule 1]. This rule is straightforward, claiming that the superclass/subclass

relationship of a class is transferable to its equivalent class(es).
- Preconditions:

ni(A) ≡ nk(B) and (ni(A) ⊆ nj(A) or ni(A) ⊇ nj(A))
- Conclusion:

nk(B) ⊆ nj(A) or nk(B) ⊇ nj(A)
[Rule 2]. If two classes share the same parent(s), then their relationship is one of:

equivalentclass, superclass, subclass, and sibling. For example, if we know that two
classes have similar names and similar property lists, we still cannot conclude that
they must be equivalent to each other, considering the possibility of the existence of
badly designed ontologies. However, if we also know that these two classes have the
same parent(s), then the probability of them being equivalent will dramatically
increase.
- Preconditions:

ni1(A) ⊇ ni2(A) and nk1(B) ⊇ nk2(B) and
ni1(A) ≡ nk1(B) and

Reconciling Agent Ontologies for Web Service Applications 113

1. ni2(A) ⎯→← p
nk2(B) and (the names of ni2(A) and nk2(B) have either an exact-

match, or a leading-match with vlinguistic ≥ 0.65)

2. ni2(A) ⎯→⎯p
nk2(B) and the name of nk2(B) is a sub-match of the name of

ni2(A)

3. ni2(A) ⎯⎯← p
nk2(B) and the name of nk2(B) is a super-match of the name of

ni2(A)
4. None of above three holds

- Conclusion:
1. ni2(A) ≡ nk2(B)
2. ni2(A) ⊇ nk2(B)
3. ni2(A) ⊆ nk2(B)
4. ni2(A) ≈ nk2(B)

Rule 3 considers three ontologies, A, B, and C.

[Rule 3]. If two classes have no direct relationships between them, we consider a
third one to see if it can provide a semantic bridge between the original two. In
theory, the more ontologies the semantic bridge comprises, the more likely we can
succeed in discovering the hidden relationships that are not obvious originally.
- Preconditions:

ni1(A) ≡ nj1(C) and nj2(C) ≡ nk2(B) and
nk1(B) ⊆ nk2(B) and nj1(C) ⊆ nj2(C) and

1. ni1(A) ⎯→← p nk1(B) and (the names of ni1(A) and nk1(B) have either an exact-
match, or a leading-match with vlinguistic ≥ 0.65)

2. ni1(A) ⎯→⎯p nk1(B) and the name of nk1(B) is a sub-match of the name of
ni1(A)

3. ni1(A) ⎯⎯← p nk1(B) and the name of nk1(B) is a super-match of the name of
ni1(A)

4. None of the above three holds
- Conclusion:

1. ni1(A) ≡ nk1(B)
2. ni1(A) ⊇ nk1(B)
3. ni1(A) ⊆ nk1(B)
4. ni1(A) ≈ nk1(B)

5 Experiments and Discussion of Our Results

First, we envision the following example application of PUZZLE in Web service-
based transactions. In the domain of real estate, there might be many reasons why
different agencies would like to communicate with each other. Consider the case
where a real estate agent did not initially find any housing matching a client’s
requirements. It would be helpful if that agent directly connected to other agents and
found something for the client, instead of sending the client away to find another
agent. The ability of an agent to reach other potential suppliers would lead to better

J. Huang et al. 114

service, less work for the client, and ultimately happier clients. Another situation is
that several agencies might want to put together a unified interface to users, so that all
of them together offer a wider range of options to clients. In order to carry out
communications among agencies without the need to agree on predefined data
interchange formats, the agencies can benefit from automated ontology matching
abilities as provided by PUZZLE.

In this section, we describe a set of experiments we conducted, whose purpose was
to determine whether or not PUZZLE generates a consensus ontology. We evaluate
PUZZLE in terms of precision, recall, and merging convergence.

5.1 Experimental Setup

 Test ontologies
Three sets of ontologies in three different domains, i.e., “Building”, “Human”, and
“Sports” were used for evaluating the performance of the PUZZLE system. They
were constructed by graduate students in computer science and engineering at our
university. There are 16 ontologies for the domain of “Building”, having between
10 and 15 concepts with 19 to 38 properties and 31 to 49 relationships among the
concepts. For the other 2 domains, no property was defined for any concept. We
have 54 ontologies for the domain of “Human”, with between 7 and 28 concepts;
and 23 ontologies for the domain of “Sports”, with between 4 and 22 concepts.

5.2 Experimental Results and Analysis

Our experiments simulate having a set of agents, each of which has a local ontology
and is willing to communicate with the other agents. They try to reconcile their local
ontologies to form a consensus one.

5.2.1 Evaluation of the Resultant Ontology
To decide whether a consensus ontology is obtained, we asked two ontology experts
to carry out a manual mapping and we compared their results with ours. Both
precision and recall measurements are applied in the evaluation during the process of

Fig. 1. Precision and Recall Measurements of Resultant Ontology for “Building”

Reconciling Agent Ontologies for Web Service Applications 115

merging ontologies one at a time. The evaluation result is shown in Figure 1. Due to
the space limit, we only show the result for “Building” domain and omit the other
two. Notice that this result is not statistically valid but indicative. Both measurements
reflect a promising result, especially for “Building” domain. For “Human” and
“Sports” domain, the results are not as good as that of “Building” domain. The reason
is straightforward. Although in Section 3 we mention that our experiment ontologies

(a)

(b)

(c)

Fig. 2. (a) Merging Convergence Experiment for “Building”. (b) Merging Convergence
Experiment for “Human”. (c) Merging Convergence Experiment for “Sports”.

J. Huang et al. 116

have less contextual information than linguistic one, we claim that contextual factor
does play an important role in determining the mapping among ontology concepts.
That is the reason we chose ontologies of both with and without properties in the
experiment. The result verifies our claim.

5.2.2 Analysis of Merging Convergence
One hypothesis is that as each additional ontology is merged into a consensus one,
there should be fewer new items (concept, relationship, or property) added to the
consensus. To test this hypothesis, the following experiment has been conducted. We
calculated the number of newly discovered information at certain points during the
merging process. For different domain, the testing points chosen are different. For
example, in “Building” domain we picked up the points when the first, second, fifth,
tenth, twelfth, thirteenth, and fifteenth ontologies were merged. For the other two
domains, please refer to figure 2-b and 2-c, which together with figure 2-a, show the
results of this hypothesis-verifying experiment.

Out of the 16 ontologies in “Building” domain we had available for our
experiments, we considered all possible combinations of the order by which they
could be merged, in order to remove any bias that might be introduced by the
presence of unusual ontology samples. This is a huge number; for example, there are
1680 combinations when the second ontology is to be merged, and 25000 for the fifth
one. It is impossible to try all these orders. Our solution is that if the population size is
less than or equal to 30 we try all possible orders; otherwise we randomly choose a
sample space of size 30. The experiment data in “Human” and “Sports” domains was
treated in the same way.

A monotonically decreasing pattern is shown in Figure 2-a. As the number of
ontologies already merged increases, the number of concepts, relationships, and
properties learned from additional ontologies decreases. We believe that the number
of new items will eventually converge to zero, although the sixteen ontologies we
have available for this experiment are not enough to verify this belief. In figure 2-b
and 2-c, the similar monotonically decreasing pattern is found. However, the
converge tendency is not so obvious, comparing to that in figure 2-a. In “Building”
domain, when the last ontology was being merged, the number of newly discovered
concepts is around 37% of that number when the 0th ontology being merged, i.e., at
the very beginning of the merging process. The corresponding percentages in the
“Human” and “Sports” domains are 65% and 74%, respectively. This is again due to a
lack of property information. In fact, sometimes it is even difficult for ontology
experts to determine a potential mapping in the absence of a property list.

6 Conclusion and Future Work

Ontology matching is a critical operation in the Semantic Web, especially for
business-to-business applications. In this paper, we presented the PUZZLE system, a
schema-based approach combined with inter-ontology reasoning, which learns to
reconcile ontologies for applications within a single domain. This completely
automated matching is carried out at the schema level, without a previous agreement
over the different terminology semantics. PUZZLE considers both linguistic and

Reconciling Agent Ontologies for Web Service Applications 117

contextual features of an ontology concept, integrates heuristic knowledge with
several matching techniques, and incorporates the reasoning among ontologies. A set
of experiments showed a promising result from this system.

Future work includes: adopting machine learning techniques to make agents more
intelligent; considering other relationships, such as partOf, hasPart, causeOf, and
hasCause; integrating the OWL Validator into our system; and testing our method
against other well-known ones in ontology matching, by using more general ontology
libraries.

References

1. Singh, M. P., and Huhns, M. N.: Service-Oriented Computing Semantics, Processes,
Agents. 1st edn. Wiley (2005)

2. Stephens, L., Gangam, A., and Huhns, M. N.: Constructing Consensus Ontologies for the
Semantic Web: A Conceptual Approach. In: World Wide Web Journal, Vol. 7, No. 4.
Kluwer Academic Publishers (2004) 421 – 442

3. Williams, A., Padmanabhan, A., and Blake, M. B.: Local Consensus Ontologies for B2B-
Oriented Service Composition. In: Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems. ACM Press (2003)
647 – 654

4. Giunchiglia, F., Shvaiko, P., and Yatskevich, M.: S-Match: an algorithm and an
implementation of semantic matching. In: Proceedings of the 1st European Semantic Web
Symposium, Vol. 3053. Springer-Verlag (2004) 61 – 75

5. Madhavan, J., Bernstein, P. A., and Rahm, E.: Generic Schema Matching with Cupid. In:
Proceedings of the 27th VLDB Conference. Springer-Verlag (2001)

6. W3C: OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref (2004)
7. Rahm, E., and Bernstein, P. A.: A survey of approaches to automatic schema matching. In:

The VLDB Journal, Vol. 10. Springer-Verlag (2001) 334 – 350
8. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., and Halevy, A.: Learning to match

ontologies on the Semantic Web. In: The VLDB Journal, Vol. 12. Springer-Verlag (2003)
303 – 319

9. JWNL: Java WordNet Library – JWNL 1.3. http://sourceforge.net/projects/jwordnet/
(2003)

10. Miller, A. G.: WordNet: A Lexical Database for English. In: Communications of the
ACM, Vol. 38, No. 11. ACM Press (1995) 39 – 41

11. Castano, S., Ferrara, A., Montanelli, S., and Racca, G.: Matching Techniques for Resource
Discovery in Distributed Systems Using Heterogeneous Ontology Descriptions. In:
Proceedings of the International Conference on Information Technology: Coding and
Computing (ITCC04), Vol. 1. IEEE Computer Society Press (2004) 360 – 366

12. Zavala Gutiérrez, R. L. and Huhns, M. N.: On Building Robust Web Service-Based
Applications. In: Extending Web Services Technologies: The Use of Multi-Agent
Approaches. Kluwer Academic Publishing (2004)

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 118 – 129, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Agent-Based Knowledge Acquisition Platform

David Sánchez, David Isern, and Antonio Moreno

University Rovira i Virgili (URV),
Department of Computer Science and Mathematics (DEIM),
Av. Països Catalans, 26. 43007 Tarragona, Catalonia, Spain

{david.sanchez, david.isern, antonio.moreno}@urv.net

Abstract. Accessing up-to-date information in a fast and easy way implies the
necessity of information management tools to explore and analyse the huge
number of available electronic resources. The Web offers a large amount of
valuable information, but its human-oriented representation and its size makes
extremely difficult any kind of computer-based processing. In this paper, a
combination of distributed AI and information extraction techniques is pro-
posed to tackle this problem. In particular, we have designed a multiagent sys-
tem that composes ontologies from taxonomies of terms. Moreover, the ob-
tained ontology is used to represent, in a structured way, the currently available
web resources. The paper analyses the application of this approach in some ex-
amples in the medical domain.

1 Introduction

Researchers typically assess the evolution of their discipline by reading scientific
journals, attending conferences or, quite often, by hearsay. On the other side, the Web
offers a way for fast data access and information exchange that could represent a great
help but, unfortunately, it is impossible to analyse manually due to the huge amount
of available resources and their weak structure.

These electronic repositories are usually accessed by means of keyword-based
search engines (e.g. Google, Altavista) allowing a user to retrieve information by
stating a combination of words that have to appear in the retrieved documents. This
type of search usually suffers from two problems derived from the nature of the query
and the lack of structure in the documents: a) the difficulty to set the most appropriate
and restrictive search query, and b) the tedious evaluation of the huge amount of po-
tential resources obtained. Moreover, while search engines provide support for the
automatic retrieval of information, the tasks of extracting and structuring relevant
information and its further processing remain to be done by the human user. In this
sense, a methodology for representing the web resources in a structured way depend-
ing on the main topics of a desired domain can be a great help for any researcher.
Thus, the important point is to find a way of creating and representing the domain’s
knowledge structure efficiently. Here is where ontologies [4] become indispensable.

In general, ontologies allow organizing and centralizing knowledge in a formal,
machine, and human understandable way, making themselves an essential component
to many knowledge-intensive services like the Semantic Web [3], knowledge man-

 An Agent-Based Knowledge Acquisition Platform 119

agement, and electronic commerce. However, they are traditionally built entirely by
hand, capturing the knowledge in a static way. This knowledge is usually evolvable
(especially in technological domains) and an ontology maintenance process is re-
quired to keep the ontological knowledge up-to-date. A computer-based ontology
construction process becomes a very important deal for information engineers, espe-
cially with highly dynamic domains like the Web. The building process has been
described by several authors [6, 10] by five main steps: i) identification of concepts
and instances, ii) word sense disambiguation, iii) taxonomic construction, iv) identifi-
cation of non taxonomic relations, and v) ontology population.

However, the processing of a huge repository like the Web is a very time consum-
ing task. In order to handle this problem, the agent paradigm is a promising technol-
ogy for information retrieval. Multiagent systems provide some advantages with re-
spect to traditional systems such as scalability, flexibility and autonomy [18] and they
are very suitable for implementing dynamic and distributed systems. Several projects
applying MAS to information retrieval and knowledge acquisition such as [7, 13]
indicates that agents can provide domain independence and flexibility to this type of
systems. Although agents could operate in a completely autonomous way, in our case
the supervision of a human expert is recommended to limit the search only to the
knowledge areas that are really interesting for the desired domain, maximizing the
throughput of the learning process.

So, in this paper we present a combination of new AI methodologies to extract
knowledge from the Web to build semi-automatically an ontology of concepts and web
resources for a given domain, through a distributed agent-based platform.

The rest of the paper is organized as follow. Section 2 introduces the methodology
used to obtain taxonomies of terms, discover instances and propose non-taxonomical
relations. Section 3 describes the agent-based platform used to compose a final ontol-
ogy from individual taxonomies of terms, under the supervision of a human expert.
Section 4 explains the way of representing the results and discusses the evaluation
against other information retrieval systems in relation to precision and recall. The
final section contains the conclusions and proposes lines of future work.

2 Taxonomy Creation from Unstructured Documents

The basis of the proposed ontology construction process is the intensive use of a
methodology [16] for constructing taxonomies of terms and web resources that are
relevant for a domain. The most important characteristic of the method is that the
whole process is performed automatically and autonomously directly from the Web.

The algorithm is based on analysing a large number of web sites in order to find
important concepts for a domain by studying the neighbourhood of an initial keyword
that characterizes the desired searched domain. Concretely, in the English language,
the immediate anterior word for a keyword is frequently classifying it (expressing a
semantic specialization of the meaning), whereas the immediate posterior one repre-
sents the domain where it is applied [8]. So, on the one hand, the previous word for a
specific keyword is used for obtaining the taxonomical hierarchy of terms (e.g. breast
cancer will be a subclass of cancer). The process is repeated recursively in order to

120 D. Sánchez, D. Isern, and A. Moreno

create deeper-level subclasses (e.g. metastatic breast cancer is a subclass of breast
cancer). On the other hand, the posterior word for the specific keyword is used to
categorise the web resources, considered as a tag that expresses the context in where
the searched domain is applied (e.g. colorectal cancer research will be a domain of
application of colorectal cancer covered on a specific web document). Moreover,
particular examples (i.e. proper names) for a discovered concept are found based on
the way that they are represented in the text, considering them as instances in the
defined hierarchy. In both cases, the most representative web sites for each class or
instance are also retrieved and categorised according to the specific topic covered.
Finally, a polysemy detection algorithm is performed in order to disambiguate
polysemic domains. This algorithm performs a clusterisation of the discovered sub-
classes, in order to group the most similar ones, detecting automatically different sets
of terms that correspond with different word senses.

Fig. 1. Examples of classes, instances and URLs discovered for the lung cancer domain

 An Agent-Based Knowledge Acquisition Platform 121

The result of the process is a hierarchical and categorized organization of the avail-
able resources according to the classes –concepts- and instances -particular examples-
discovered for the given domain (see Fig. 1 for an example of the obtained hierarchy
for the lung cancer domain).

In order to detect and extract relevant information from the Web, the method relies
on a search engine for searching and accessing the available web resources. It con-
structs dynamically the appropriate search queries for the search engine, obtaining the
most adequate corpus of web resources at each time. Moreover, the search engine is
also used for checking the relevance of the extracted terms and evaluating the strength
of the taxonomical relationships between them through a statistical analysis based on
the number of estimated results available in the Web.

As an additional step, the methodology analyses and extracts the sentences from
where concepts of the taxonomy are extracted. This knowledge could be very useful
in a latter stage of the ontology construction process to obtain more complex relations
like non-taxonomical ones. Concretely, analysing the subject and the object of a sen-
tence we can infer a new relationship between them according to the verb (which can
express a taxonomical or non taxonomical relationship). Some authors such as [9]
have been used that approach successfully for ontology learning.

In order to ease a future evaluation of the discovered set of sentences, the analyser
applies several syntactic processing tools to obtain a simplified but meaningful view
of the original sentence. Then it uses several Natural Language Processing tools to
analyse the sentence syntactically and select only those ones that express knowledge
in a simplified way, excluding ambiguous syntactical constructions like conditionals
or futures (some examples of selected sentences can be found in Table 1). Sentences
that accomplish a set of simplicity rules like the described ones are typically called
text nuggets, and they are commonly used for different knowledge acquisition and
information extraction tasks [14].

As will be shown in section 3, the additional knowledge acquired by the analysis of
those sentences will be used by the proposed agent-based platform (with the supervi-
sion of a human expert) in order to discover non-taxonomical relationships, expand
the analysis and build a final ontology for the domain.

3 Distributed Ontology Building Process

Once an initial taxonomy of terms that are relevant for the domain is obtained through
the described methodology we can use the discovered knowledge to find more com-
plex relationships and performs further analysis. Concretely, using the extracted sen-
tences for particular discovered terms, we can find other concepts that are related to
the domain with a certain relationship (in many cases, a non-taxonomical one). With
that new concept, a new taxonomical analysis in the same way as has been described
can be performed, obtaining a complex network of knowledge with the rich semantics
that ontologies require. In this case, some of the previously obtained knowledge (e.g.
the concept from which this one has been obtained) can be added to the queries per-
formed in order to restrict and contextualize the search, obtain the most suitable re-
sources and, in consequence, improve the throughput of the learning process.

122 D. Sánchez, D. Isern, and A. Moreno

However, the described process for creating taxonomies is a very time consuming
task, especially when dealing with such a general and enormous repository as the
Web. Concretely, accessing and downloading web documents online overheads the
execution and affects seriously on the system’s performance. So, if we plan to per-
form several taxonomical analysis iteratively, they may suppose a computational cost
that is hard to be assumed by a centralized approach.

However, as several tasks of the learning process can be performed concurrently
(e.g. construct different taxonomies, evaluate text nuggets, cluster terms, etc.) a dis-
tributed approach can promise a great improvement over a centralised one. However,
as the execution requirements are very dynamic as they are defined by the knowledge
acquired at execution time, coordination, flexibility and dynamicity are fundamental.
In order to handle this problem, the agent paradigm is a promising technology for
information retrieval [18].

Therefore, we present a supervised agent-based platform for building ontologies
from the combination of taxonomies of several interrelated terms that are selected into
a semiautomatic way.

3.1 Multiagent System Architecture

The system is composed of several autonomous entities (agents) that could be de-
ployed around a network. Each agent can be considered as an execution unit that
follows a particularly modeled behavior and interacts (communicates) with other
ones, coordinating their execution for achieving a common goal. The inter-agent
communication allows them to share partial results and coordinate their efforts in
order to construct the final ontology. Concretely, there are three kinds of agents in the
MAS:

a) User Agent (UA): allows the human expert to interact with the system. Through
this agent, she can configure, initialize and control the construction process in or-
der to obtain an ontology that fits with her interests.

b) Internet Agent (IA): It implements the taxonomy construction methodology de-
scribed in section 2. For a specific initial query, it performs the web search process
and returns the result. The coordinated action of several IAs with specific queries
allows obtaining a set of partial results (taxonomies) that can be joined and inter-
related adequately in order to build the final ontology. As this construction process
is very time consuming, it is important that these agents could execute concur-
rently (or in parallel using a computer network) and co-ordinately in order to
achieve the highest efficiency. They are highly reusable components as they are
initialized and finished dynamically depending on the ontology construction’s re-
quirements.

c) Coordinator Agent (CA): it coordinates the ontology construction process by re-
ceiving orders from the user and creating, configuring and finalising the appropri-
ated IAs to explore web domains. Partial results obtained from the execution of
each IA are received and composed to create the final ontology. Note that al-
though the ontology construction is centralised by this agent, its work load in rela-
tion to the IAs (even with several machines available) is quite reduced.

 An Agent-Based Knowledge Acquisition Platform 123

3.2 Ontology Construction Steps

The system is composed of several types of agents that coordinate their work to
model and solve the ontology construction process in an efficient and scalable way.
Moreover, the supervision of a human expert is required to drive the search towards
the knowledge areas in which she is interested, retrieving the highest amount of
useful knowledge with the maximum efficiency. As shown in Fig. 2, the steps of the
process are:

Fig. 2. Steps of the agent-based ontology building process

• The process begins when the user introduces through the UA (see Fig. 2a) the
initial parameters of the search: the concept that represents the domain in which
she is interested, number of web sites to evaluate and maximum depth of each hi-
erarchy (C0, nw and md respectively). The UA sends this information to the CA that
will start to construct the associated ontology.

• Then, as it is shown in Fig. 2b, the CA creates and initializes the first IA that starts
building the taxonomy that corresponds with the initial concept by creating the ini-
tial search query. This IA executes the methodology described in section 2 and re-
turns the following results: the taxonomy T0 associated with the initial concept, a
set of related web pages for each concept and instance found, and a set of relevant
sentences (S) involving the discovered concepts in the form Subject (Ci) + Verb (Vi) +
[Preposition] + Object (Cj). Either the Subject or the Object must contain a concept in-
cluded in the taxonomy; the other will be a new term. Both are related with the re-

124 D. Sánchez, D. Isern, and A. Moreno

lationship specified by the verb (which can be taxonomical or non-taxonomical)
and will be used to retrieve new knowledge for the domain. Examples of sentences
for the cancer domain are listed in Table 1.

• At this point the CA includes T0 in the ontology (only composed of the initial
concept) and sends the set of sentences to the UA. Then the human expert must
consider which of these proposals are correct and/or interesting for her interests in
order to continue the search. So, the user selects a subset of sentences (SS) to be
evaluated (see Fig. 2c), sending them to the CA. Concretely, each one expresses a
relationship between a concept (Ci) that is included in the current partial ontology
and a new one (Cj) that defines another domain to be explored; the relation be-
tween them will be labelled with the verb Vi (optionally a prepositional verb). For
instance, for the discovered concept breast cancer for the cancer domain, the term
radiotherapy could be found in a proposed sentence with the verb receives, repre-
senting a non-taxonomical relation in the ontology. It is also possible to specify
which of those concepts and relations will be expanded through new web searches
(e.g. polyp) and which ones will be included directly into the ontology without
evaluation as they represent simple facts (e.g. hair loss, smokers).

• For each new concept (Cj) extracted from each selected sentence in SS that should
be evaluated and has not been considered yet, the CA creates and initializes a set
of IAs to build several taxonomies associated to those concepts. In order to main-
tain the initial context, the CA attaches the root concept (C0) to all queries speci-
fied for each IA, as shown in Fig. 2c. Future improvements can consider also Ci or
other previously acquired knowledge for the domain as a bootstrap for contextual-
izing new searches.

• Again, the IAs builds taxonomies for each new concept concurrently with the
specific execution conditions, and finally they send a new set of results (terms, re-
lationships, web resources, instances, etc) to the CA.

• The CA joins the new taxonomies obtained (Tj) by the IAs into the global ontol-
ogy, by relating the new concepts with the existing ones through the relationships
specified by the verbs of the sentences from which they were extracted. Note that
the direction of the relation will depend on the role of each concept into the origi-
nal sentence (subject or object). This is a very critical process in order to obtain a
coherent and useful representation of the knowledge. As will be described in the
final section, several questions that are not fully developed at this moment regard-
ing the joining of partial results and the processing of verb labels in a semantic
way should be considered carefully.

• In addition to the taxonomies, new sentences sets are received by the CA that will
send them to the UA to perform a new user-centred evaluation. The process will
be repeated while the user selects new interesting terms to be evaluated.

At the end of the process, the CA will store the final ontology composed of several
is-a taxonomies interrelated with verb-labelled relationships. This knowledge does
not give a complete view of the full domain and all its relationships, but it offers a
representation of the knowledge in which the user is interested over a specific domain
(e.g. treatments and symptoms of certain types of cancers).

 An Agent-Based Knowledge Acquisition Platform 125

4 Case Study: Cancer Domain

For illustrative purposes, in this section we will show the results obtained for a medi-
cal domain such as cancer, and how it could be useful for a medical researcher to
extract or structure this specific knowledge from the Web.

The ontology building process begins with a concept given by the user, in this
case, the term cancer. As a result of this first search, a taxonomy for that term con-
taining several concepts related to cancer is obtained in a tree-based way. For in-
stance, at the first level of the taxonomy, different kinds of cancer are identified (e.g
lung cancer, colorectal cancer, breast cancer). Recursively, these concepts can con-
tain different subclasses such as metastatic, metachronous or nonpolyposis, in the
case of colorectal cancer. In addition to this hierarchy, a list of sentences that can
contain non taxonomic relations are presented to the user (see examples in Table 1).

Table 1. Examples of sentences obtained from web sites. Bold represents the user’s choice.

Concept Sentences
breast cancer [breast_cancer][receives][radiotherapy]

[the pill][protects][against][breast_cancer]
[most breast_cancers][are][ductal carcinomas]

colon cancer [colon_cancers][start][as][polyps]
colorectal cancer [most colorectal_cancers][begin][as][a polyp]

[all colorectal_cancer patients][require][a colostomy]
[most colorectal_cancers][start][in][the glandular cells]

lung cancer [lung_cancer][causes][paraneoplastic syndromes]
[spiral_scans][find][lung_cancer]
[lung_cancer][tend to develop][in][smokers]
[asbestos exposure][increases][lung_cancer risk]
[lung_cancer treatment][depends][on][tumor size]

cervical cancer [cervicography or colposcopy][screening][for][cervical_cancer]
skin cancer [ozone depletion][increases][skin_cancer risk]

[fair-skinned people][develop][skin_cancers]
cranial radiotherapy [cranial_radiotherapy][causes][hair loss]
beam radiotherapy [external beam_radiotherapy][include][x-ray therapy]
hyperplastic polyp [hyperplastic_polyps][occur][in][normal gastric mucosa]

[colorectal hyperplastic_polyps][are][benign lesions]

The user can select the ones that she considers correct and covers a desired related
topic (marked in bold). For instance if she is interested in treatment and prevention
for breast cancer she could select the first two sentences of the list that are related to
radiotherapy and the pill respectively. In this case, radiotherapy is evaluated for ob-
taining a new taxonomy and the pill is considered as a simple fact. All those partial
results are joined creating a final complete ontology as shown in Fig. 3.

It is important to note that each concept of the final ontology stores valuable web
information for the domain, like the categorized list of available web sites and a set of
instances that represent proper names like healthcare organizations or institutions (see
some examples for the lung cancer class in Fig.1).

126 D. Sánchez, D. Isern, and A. Moreno

Fig. 3. Part of the ontology obtained for the cancer domain

5 Ontology Representation and Evaluation

The final ontology composed of the CA is stored in the standard representation lan-
guage OWL: a semantic markup language for publishing and sharing ontologies on
the Web [3]. It is supported by many ontology visualizers and editors, like Protégé,
allowing the user to explore, understand, analyse or even modify the ontology easily.

Concerning the evaluation of ontologies, it is recognized to be an open problem
[5]. Regarding our proposal, the evaluation is a task that, at this moment, is a matter
of current research. However, some evaluations have been performed manually and
others are planned to be performed automatically comparing the results against other
methodologies or available semantic repositories such as WordNet.

In our case, as the non-taxonomical relations have been selected by a human ex-
pert, we have centred the evaluation in the automatically obtained taxonomies. Their
evaluation is performed manually at this moment. Whenever it is possible, a represen-
tative human made classification is taken as the ideal model of taxonomy to achieve
(Gold Standard). Then, several tests for that domain are performed with different

 An Agent-Based Knowledge Acquisition Platform 127

sizes of search. For each one, we apply the standard measures recall and precision
(see an example of evaluation for the Cancer domain in Fig. 4). As a measure of com-
parison of the quality of the obtained results against similar available systems, we
have evaluated precision and recall against hand-made web directory services and
taxonomical search engines (a detailed evaluation of those system can be found in
[17]). For the first case, we have used Yahoo, as it can be considered the most popular
human-made directory-based search engine. For the second case, we have selected the
taxonomical search engine Clusty as it seems to be the one that provides best and
more complete results from the available ones and AlltheWeb as it provides high
quality query refinements involving domain related terms. This comparison can also
give us an idea of the potential improvement of our structuring and representation of
web resources (as shown in section 2) in relation to the results presented by currently
available web search engines.

Some conclusions from the evaluation of the results for several domains are:

• The performance of the candidate selection procedure is high as the number of
mistakes (incorrectly selected and rejected items) is maintained around 15-20%.

• The growth of the number of discovered concepts (and in consequence the recall)
follows a logarithmic distribution in relation to the size of the search due to the re-
dundancy of information and the relevancy-based sorting of web sites presented
by the search engine. Moreover, when a certain point in which a considerable
amount of concepts has been discovered is reached, precision tends to decrease
due the growth of false candidates. As a consequence, analysing a large amount of
web sites does not imply obtaining better results than with a more reduced corpus
due to, among other reasons, the ranking algorithms of the web search engines that
potentially present the most relevant and useful web sites in first place.

• Comparing the performance to Yahoo, we see that although its precision is the
highest, as it has been made by humans, the number of results (recall) is quite lim-
ited. In relation to the automatic search tools, Clusty and AlltheWeb, the first one
tends to return more results (recall) but with low precision whereas the second
one offers an inverse situation. In both cases, the performance (recall-precision
compromise) is easily surpassed by our proposal.

a) Cancer test: Precision

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200 250 300 350 400

Pages

%
 P

re
ci

si
o

n

Proposed Yahoo Clusty AlltheWeb

b) Cancer test: Recall

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200 250 300 350 400

Pages

%
 R

ec
al

l

Proposed Yahoo Clusty AlltheWeb

Fig. 4. Evaluation of results for the Cancer taxonomy

128 D. Sánchez, D. Isern, and A. Moreno

6 Conclusions

Some authors have been working on ontology learning from different kinds of struc-
tured information sources (like data bases or knowledge bases [12]). However, taking
into consideration the amount of resources available easily on the Internet, we believe
that ontology creation from unstructured documents like web sites is an important line
of research. In this sense, many authors [1, 2, 11] are putting their efforts on process-
ing natural language texts. In most cases, an ontology of basic relations (WordNet) is
used like a semantic repository. Moreover, in most cases, a relevant corpus of docu-
ments carefully selected is used as a starting point. In consequence, these approaches
have problems with very concrete domains, or dynamic environments like the Web.

In contrast, our proposal does not start from any kind of predefined knowledge,
like WordNet and, in consequence, it can be applied over domains that are not typi-
cally considered in semantic repositories as, for example, Biosensors [15]. Moreover,
the supervision of a human expert that allows driving the search only to the desired
areas of knowledge, and the distributed execution based on agents, improve the effi-
ciency and the throughput. These facts result in a scalable and suitable method for
acquiring knowledge from a huge and dynamic repository as the Web. The final on-
tology and the structured list of web sites can be a great help for many knowledge
intensive tasks as the Semantic Web [3] and for improving the accessing of web re-
sources in relation to the currently available web search engines.

As future lines of research, some topics can be proposed:

• In the current version, the number of potential sentences returned for human
evaluation could be quite high. To assist the user in this task, we plan to perform a
filtering process to obtain only the most common or relevant sentences or those
whose verbs could be the most important or frequent for the searched domain.

• A detailed study on the casuistry of the taxonomy joining process should be con-
sidered carefully in order to detect implicit relationships from redundant or
equivalent concepts among the obtained taxonomies.

• Regarding to the discovered verb labelled relationships, in order to obtain an
easily usable and interoperable knowledge base, verb expressions should be
simplified (e.g. the verbal form “is usually included into” expresses a “part of”
type relationship). In this sense, some basic relationship types can be considered
for this task (e.g. is-a, part-of, related-to, similar-to, cause/effect, result, etc).

• Several executions from the same domain and parameters in different moments
can give us different ontologies, maintaining the results up-to-date. A study about
the changes between them can tell us how a domain evolves.

• As mentioned before, ways for automate or at least easing the evaluation of every
step of the ontology learning process will be studied.

Acknowledgements

The work has been supported by Departament d'Universitats, Recerca i Societat de la
Informació of Catalonia.

 An Agent-Based Knowledge Acquisition Platform 129

References

1. Alfonseca E. and Manandhar S.: An unsupervised method for general named entity recog-
nition and automated concept discovery. In Proceedings of the 1st International Conference
on General WordNet, Mysore, India, 2002.

2. Ansa O., Hovy E., Aguirre E., Martínez D.: Enriching very large ontologies using the
WWW. In Proceedings of of the Ontology Learning Workshop of the European Confer-
ence of AI (ECAI-00), Berlin, Germany, 2000.

3. Berners-lee T., Hendler, J., Lassila O.: The semantic web. Scientific American (284):5,
pp.34-43. 2001.

4. Fensel D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Com-
merce. Springer-Verlag, 2001.

5. Fensel D. and Gómez-Pérez, A.: A Survey on Ontological Tools. Deliverable 1.3. On-
toWeb: Ontology-based Information Exchange Management, 2000.

6. Fernández-López M., Gómez-Pérez A., Juristo N.: METHONTOLOGY: From Ontological
Art Towards Ontological Engineering. In Proceedings of Spring Symposium on Ontologi-
cal Engineering of AAAI. Stanford University. USA, 1997.

7. Gibbins N., Harris S. and Shadbolt N.: Agent-based semantic web services. Journal of Web
Semantics: Science, Services and Agents on the World Wide Web, (1):2, pp 141-154, 2003.

8. Grefenstette G.: SQLET: Short Query Linguistic Expansion Techniques: Palliating One-
Word Queries by Providing Intermediate Structure to Text. In Proceedings of: Information
Extraction: A Multidisciplinary Approach to an Emerging Information Technology.
RIAO'97. LNAI 1299, pp. 97-114. Montreal, Quebec, Canada, 1997.

9. Kavalec, M., Maedche, A. and Skátek, V.: Discovery of Lexical Entries for Non-
taxonomic Relations in Ontology Learning. In: Proceedings of SOFSEM 2004: Theory and
Practice of Computer Science, LNCS 2932, pp. 249-256. Merin, Czech Republic, 2004.

10. Lamparter S., Ehrig M., Tempich C.: Knowledge Extraction from Classification Schemas.
In Proceedings of CoopIS/DOA/ODBASE 2004, LNCS 3290, pp. 618-636, Larnaca,
Cyprus, 2004.

11. Maedche A., Staab S.: Discovering conceptual relations from text. In Proceedings of ECAI
2000. IOS Press, Berlin, Germany, 2000.

12. Manzano-Macho D., Gómez-Pérez A.: A Survey of Ontology Learning Methods and Tech-
niques. Deliverable 1.5. OntoWeb: Ontology-based Information Exchange Management,
2000. Available at www.ontoweb.org.

13. Moreno A., Riaño D., Isern D., Bocio J., Sánchez D., Jiménez L.: Knowledge Explotation
from the Web. In Proceedings of 5th International Conference on Practical Aspects of
Knowledge Management (PAKM 2004). LNAI 3336. Viena, Austria, 2004.

14. Pa ca, M.: Finding Instance Names and Alternative Glosses on the Web: In Proceedings of
Computational Linguistics and Intelligent Text Processing: 6th International Conference,
(CICLing 2005), LNCS 3406, pp.280-292. Mexico City, Mexico, 2005.

15. Sánchez, D. and Moreno, A.: Creating ontologies from Web documents. Recent Advances
in Artificial Intelligence Research and Development. IOS Press, vol. 113, pp.11-18. 2004.

16. Sánchez, D. and Moreno, A.: Automatic Generation of Taxonomies from the WWW. In:
Proceedings of the 5th International Conference on Practical Aspects of Knowledge Man-
agement. LNAI 3336, pp. 208-219. Vienna, Austria, 2004.

17. Yeol Yoo, S. and Hoffmann, A.: A New Approach for Concept-Based Web Search. In
Proceedings of AI 2003: Advances in Artificial Intelligence: 16th Australian Conference
on AI, LNAI 2903, pp. 65–76. Perth, Australia, 2003.

18. Wooldridge, M.: An Introduction to multiagent systems. John Wiley and Sons, Ltd., West
Sussex, England, 2002.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 130 – 140, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Agent Architecture for Ensuring Quality of Service
by Dynamic Capability Certification

Thorsten Scholz, Ingo J. Timm, and Rainer Spittel

University of Bremen, Center for Computing Technologies (TZI)
{scholz, i.timm, rasp}@tzi.de

Abstract. Agents and web services encapsulate key functionalities and therefore offer
a high degree of flexibility and scalability. Semantic web services integrate explicit
service descriptions with formal semantics allowing for reasoning on service
discovery, chaining, and application. The key challenge here is the identification of
appropriate services, which is supported by research on semantic web services.
However, problems with assessing quality of service just start to begin when services
have been discovered. In this paper, we will propose an agent-based approach for
third-party quality of service certification enabling reliable distributed problem
solving which is evaluated prototypically.

1 Introduction

Nowadays web services have been established as de-facto standard for interface
design and implementation in large-scale applications, e.g., business information
systems. They encapsulate key functionalities and therefore offer a high degree of
flexibility and scalability. However these interfaces use implicit semantics for
capability description and thus prevent reasoning about the offered services. In
context of the semantic web, semantic web services (e.g. [Solanki et al. 2004], [Mika
et al. 2004]) integrate explicit service descriptions with formal semantics allowing for
enhanced reasoning on service discovery, service chaining, and service application.
Especially the approach of dynamic service chaining based on sophisticated
inferences, e.g., AI-planning, is a promising approach for solving a broad variety of
problems. This approach is comparable to team formation in multiagent research, e.g.,
model of cooperation [Wooldridge 2000]. Analogously, the process of service
chaining can be decomposed into four steps: Identification, service-chain formation,
application planning, and application execution. In current research, there are
numerous approaches addressed to one or multiple of these steps (e.g. [Mika et al.
2004], [Hübner et al. 2004], [Lutz 2004]). The key challenge in this process is the
identification of appropriate services [Timm and Woelk 2003], which is supported by
research on semantic web services. However, problems just start to begin when web
services have been discovered: How is the quality of service in highly dynamic
environments ensured?

In this paper, we will propose an approach for third-party certification of quality of
service. In the next section, we will outline the fundamental concepts for capability
description, service discovery, and quality of service. In the following sections we
will present a framework and a resulting architecture for service certification which

 An Agent Architecture for Ensuring Quality of Service 131

has been implemented prototypically. A first evaluation of this approach is discussed
in section 5 and compared to related work in section 6. Finally we will discuss our
results and present future research challenges.

2 Rationale

Ensuring quality of service in highly dynamic environments requires the combination
of various existing technologies. We propose that the combination of quality of
service models, capability representation, and yellow pages services is a promising
approach to enable reliable, distributed problem solving. In the following sections, we
will outline ongoing research in these three areas.

2.1 Quality of Service (QoS)

Assessing quality of services is crucial to the selection process, i.e., which service is
suited best for solving a given problem. Quality measures are multi-dimensional and
are expressed in a QoS model (e.g. [Liu et al. 2004], [Sheth et al. 2002]). These
models distinguish between domain dependent dimensions, specifying specific
business criteria, and generic quality criteria, specifying, e.g., execution price,
response time, reliability, and reputation of the service and are based on an
organisational viewpoint taken in, e.g., the work of [Garvin 1988]. Specific QoS
criteria are identified in [Ran 2003], where the author distinguishes four dimensions
of quality for web services: run-time related, transaction support related,
configuration management and cost related, and security related issues. Here, as part
of the configuration management, the completeness criterion is defined as a measure
for the discrepancy between a specified and the actual provided set of features of the
service. To assess the key quality measure of completeness – whether a service is
capable of solving a problem at all, and to what degree – and which is in focus of this
paper, an explicit representation of service capabilities and problem descriptions is
required.

2.2 Capabilities

Retrieving a service to solve a specific problem implies the existence of a formal
description of (a) the offered service capabilities and (b) the given problem. To
provide the dynamic selection of distributed services to solve a problem, a
standardized protocol to access services is needed. The World Wide Web Consortium
(W3C) defines web service architectures and protocols to access those [W3C 2002],
e.g., the description language WSDL [Christensen et al. 2001] to define a web service
framework. The WSDL defines the web interfaces and the language to access the web
service. Describing the capabilities of web services, with respect to using this
information for dynamic inference processes, formal description languages, e.g.,
DAML-S [Ankolekar et al. 2002] and OWL-S [Martin et al. 2004] are needed. The
combination of DAML-S and WSDL offers a formal framework to describe semantics
of web services. The domain of geospatial information systems is a representative for
a sophisticated use of (semantic) web services, i.e. the Open Geospatial Consortium

132 T. Scholz, I.J. Timm, and R. Spittel

(OGC) is developing standards for geospatial and location based services1. The OGC
catalogue service provides service information, metadata and the type of service,
encoded in ISO19119. Additionally, the OGC compatible services provide access to
mandatory and optional metadata and structure of service data, encoded in XML,
using an OGC XML-schema. However, these static descriptions of service
capabilities limit the dynamic aspects distributed problem solving essentially. Work
on capability management in the multiagent system community focuses on inferences
on capabilities in order to enable higher applicability of a provided service (e.g.
[Timm and Woelk 2003], [Scholz et al. 2004], [Guttmann and Zukerman 2004]) and
thus allowing for enhanced dynamic behaviour of the overall system. Based on a
representation of service capabilities, infrastructures like catalogues or yellow pages
are used for match-making of service consumers and service providers.

2.3 Yellow Pages Services

In an environment where service providers and consumers are distributed across the
internet, infrastructures for catalogue services are required in order to enable the
dynamic retrieval of service providers. In the multiagent system community, the
FIPA2 standardizes the directory facilitator (DF) as part of an agent platform [Fipa
2003]. The DF is an implementation of a yellow pages service for agents, managing
service descriptions of agents. In the web service community, the Universal
Description, Discovery, and Integration of web services (UDDI) is used as a
catalogue service [Oasis 2004], which provides a service publishing and an inquiry
API. A more sophisticated approach is used within the OGC catalogue services. They
support the discovery, access, maintenance and organization of geospatial information
and related resources of web services by adding a set of formal metadata descriptions
for the services. The identification of the best-fitting service is supported by using
semantic descriptions of the content of services [Hübner et al. 2004].

Summarizing, yellow pages services integrate basic capability descriptions without
inferences in order to perform the match-making process between service consumer
and provider. Yet, integration of more sophisticated capability management with a
quality of service measure into the catalogue service appears to be a promising
approach to enable a framework for reliable distributed computing.

3 Conceptual Framework

Specific requirements for this framework arise from the internet where services are
distributed across the net, availability cannot be assured, and there is no authority to
guarantee the quality of a provided service. In our approach we propose a conceptual
framework with the objective to support integrated identification, evaluation, and
selection of services for reliable behaviour of applications using distributed services.
On a conceptual level, three main components are mandatory:

• Capability management for the identification of the best-fitting service, i.e.,
services are identified on basis of their capabilities. The problem here is to

1 See http://www.opengeospatial.org/
2 Foundation for Intelligent Physical Agents, http://www.fipa.org

 An Agent Architecture for Ensuring Quality of Service 133

match a given task to capabilities; in real-life applications this includes not only
direct but also fuzzy mappings [Scholz et al. 2004].

• Certification management for the evaluation of the services, i.e., available
services need to be evaluated according to the offered capabilities as well as
other quality issues resulting in a quality measurement.

• Catalogue management for supporting the service retrieval process, i.e., it
integrates capability and certification management for providing a unified
service exploration interface for service consumers.

These components are the basis for mapping service consumers to service
providers. The process for this mapping includes three steps: service registration,
service validation, and service retrieval. The registration at a catalogue is required in
order to publish the service for usage by consumers. In order to enable reliable
behaviour of the service, the framework requires a service to certify its capabilities
prior to registration, which is step two in the mapping process. After certification of
abilities, the services are published with their QoS and consumers can query the
catalogue for services fulfilling their quality criteria. Additionally, the consumer may
provide feedback to the catalogue service about the experienced quality of the used
service. When expectations of quality were not met, the catalogue service will re-
certify the service.

The key idea of the framework is the agent-based integration of explicit capability
representation, certification of capabilities, and publishing of certified services. This
approach uses a QoS model with focus on capabilities as a first step, but is easily
extended with other QoS measures, e.g., availability, costs or duration to solve the
problem.

4 Architecture

To implement the framework, the three main components identified in the prior
section have to be agentified and integrated. In Figure 1, the architecture for the agent
system realising an integrated catalogue, capability, and certification management is
visualised. The agent for catalogue management is implementing the key-role and is
responsible for managing service registration inquiries, invocation of the certification
process, and providing an exploration interface to query on registered services. It
utilises the capability management for the match-making between consumer problems
and service problem solving capabilities.

The agent for certification management certifies QoS of service providers with
regard to provided capabilities using the capability management agent for inference
on capabilities. The certification of problem solving capabilities is performed by
putting the service to the test with a set of problems and a standard solution. Problems
are domain specific, and are either taken from the problem database (PDB) or created
dynamically by a problem generator agent. These agents need to be adapted for each
domain in order to generate relevant problems for the certification process. The
results from service are evaluated according to a standard solution. On this basis a
measure of completeness, which is the QoS for the provided capability, may be
derived. The QoS are stored in a database (QoS DB), which is updated in regular
intervals with re-certification of the services.

134 T. Scholz, I.J. Timm, and R. Spittel

Fig. 1. Architecture for dynamic certification of services

The capability management allows for dynamic inference on capabilities and
match-making to problem descriptions. It performs the match-making process
between consumer and service by inferences on combination and recombination of
singleton to more compositional capabilities to enable classification of problems. This
allows for a more sophisticated match-making process, since the capabilities are not
only considered at design-time of the system, but also at run-time. For details on the
algorithm and representation, please refer to [Scholz et al. 2004].

In the following sections, the processes of registration, validation, and retrieval are
discussed in more detail.

4.1 Registration and Validation

Prior to the registration of a service in the catalogue, the provided capabilities of the
service have to be certified. This process is explained in Fig. 2: The service submits a
registration requests (register) with the catalogue to the catalogue management,
consisting of the name of the service, its physical address, and the list of capabilities.
The catalogue management requests the certification of the service by the certification
management with the same information as provided in the original request. The
certification management uses the capability management implicitly in order to
identify the problem domain, and receives standard problems from the problem
database or dynamically generated problems from the problem generator. The list of
problems is sent to the service requesting the registration. The solved problems are
returned to the certification management, which assesses the QoS on basis of standard
solutions and notifies the catalogue management of the completion of the certification
process. Finally the service is informed, that its registration in the catalogue is
completed.

To upkeep the quality of the certificates of available services, they have to be
reviewed continuously. The certification management initiates the process and sends
out the request to certificate available services and the results are stored in the QoS-
database.

 An Agent Architecture for Ensuring Quality of Service 135

Fig. 2. Process of registration and validation

4.2 Retrieval

A service consumer using the exploration interface of the catalogue management is, in
most cases, interested in the services capable of solving its problem with the highest
quality. The process of retrieving the service with the highest quality from the
catalogue is shown in figure 3: A consumer requests a service from the catalogue for
problem solving (query services). The request consists of the name of the consumer,
the physical address, and the problem description based on the capability
management. The catalogue management matches the problem with help of the
capability management to a set of registered services and retrieves their QoS

Fig. 3. Process of service retrieval and feedback

136 T. Scholz, I.J. Timm, and R. Spittel

information from the certification management, which were stored in the QoS
Database (QoS DB). The list of available services with added QoS information is
returned to the service consumer (list of services), which selects an appropriate
service to solve the problem (problem, solution).

Changes in the QoS occurring between the regular re-certification processes are
addressed by consumer feedback. Upon reception of the solution, the consumer may
evaluate the result and, in case of lacking quality, may inform the catalogue
management of the discrepancy between expected and received quality (feedback).
This would initiate an immediate re-certification of the consulted service by the
certification management.

5 Experiments

In order to evaluate the proposed approach, a first set of experiments was launched
using a multiagent implementation on basis of Jade 3.23. A user-oriented approach is
used, evaluating the benefit of certification and catalogue management.

These experiments include the registration and validation process as well as a first
step for the retrieval of services from the catalogue. The feedback from the service
consumer to the catalogue management is omitted here, but will be considered in
future experiments.

5.1 Design

The experiment is focused on route planning, where the service consumer is looking
for the shortest path between two locations. Four sub-optimal search algorithms on
graphs were implemented defining four services of this purpose: greedy search,
breath-first search, depth-first search, and iterated depth-first search [Russel and
Norvig 2003]. The certification management is implemented as defined above, i.e., it
uses a problem generator for creating random problem graphs with an increasing
number of nodes and edges. In the generated graphs, there may be sub-graphs, not
connected with each other. For performance measurement, the optimal search
algorithm A* is implemented. The QoS measure is specified as the ratio of optimal
solution length (A*) divided by the test service resulting length.

The experimental process is divided into two steps: In the certification step,
services are tested by the certification management and QoS results are registered.
The catalogue management is realized by the directory facilitator of the agent
platform, with the modification that prior to an entry in the DF, a service agent is
certified by the certification management agent. After the certification process is
completed, the search agents are taken into the DF catalogue with a description of
their abilities (search on graphs) and the QoS measure.

In the second step, two virtual service consumers are created. The consumer
“certified” uses the service certified as performing best in the catalogue. The second
consumer “random” selects a service provider by random. Additionally, they are
generating problems, asking for the shortest path in a random graph – with varying
amount of nodes (from 5 to 500). Each of the agents is creating 2.500 problem graphs.
The results are documented with the QoS measure described above.

3 http://jade.tilab.com

 An Agent Architecture for Ensuring Quality of Service 137

We chose the search problem domain since shortest path algorithms are fully
understood, and an optimal algorithm exists creating an objective and valid QoS
measure.

5.2 Results

The outcome differences for both consumer types are striking (cf. Fig. 4). Selection
on a random base leads to results, varying within the complete interval of [0, 1], i.e.,
no result found (0) or optimal solution (1). The mean QoS is 0.438 with standard
deviation of 0.444. A remarkable proportion of “no results found” caused by use of
depth-first search yields a median of 0 for the random agent.

Considering the “certified” consumer, a different picture evolves. The range of
results is limited within the upper half of the interval [0, 1]. Especially, the outcome
“no results found” never appeared. The mean QoS of certified consumer is 0.880 with
standard deviation of 0.133.

 Fig. 4. Box-and-Whisker Plot Fig. 5. QoS by amount of nodes

There seems to be a benefit using certification for service selection. For validation
of this thesis, statistical testing has been performed. The two-sample t-Test for QoS
resulted in a highly significant t-value of 47.620 (p-value < 0.001). In order to protect
these results from invalid assumptions, a non-parametric test, the Kruskal-Wallis-test,
has been computed, too. The resulting p-value is smaller than 0.001 again.

Theoretical considerations of the underlying problem domain, propose decreasing
QoS if amount of nodes is increased. A more sophisticated result of the experiment is
that this decrease comes out to be different for the consumer types (cf. Figure 5).

Summarizing, there is evidence for the benefit of certification management in this
experimental setting. The prototype and experiments may be considered as a
feasibility proof of our approach in this specific domain. However, this is a first result
and further experiments, especially in different domains, are required for further
conclusions.

138 T. Scholz, I.J. Timm, and R. Spittel

6 Related Work

The certification and quality of available services is an important issue in current
research. In the field of web services, [Sheth et al. 2002] propose a service-oriented
middleware which has an integrated QoS model supporting its automatic
computation. The QoS measure is proposed to be fine-tuned by simulation of changes
in a workflow prior to execute that change. This approach defines a model which
lacks an explicit representation of service capabilities and focuses on standard issues
like time, cost, and reliability and therefore leaves the question unanswered, whether a
service is capable of solving a problem, and to what degree. In [Liu et al. 2004], the
authors propose a QoS model, distinguishing between generic and domain dependent
quality criteria. The model is used in a QoS registry, where web services are
registered with a QoS based on reputation and user feedback. This approach also
lacks a formal representation of service capabilities, and focuses on the basic criteria
like execution time and pricing. However the approach of multiple QoS measures is
considered in our framework; the prototypical implementation uses a domain-specific
QoS. [Ran 2003] defines a model for web service discovery with QoS, by introducing
a certification component to the common UDDI architecture. The author presents a
broad, informal model for QoS, including a completeness measure. Nevertheless, the
approach defines a static approach to certification and does not define its process. In
the multiagent system community, [Rovatsos et al. 2003] define a communication
based performance measure for self diagnosis. The authors define a generic model for
measuring the performance of agent communication actions which can be used for
self-repairing and self-optimising, which is, to some extend a QoS measure.
Nevertheless, this approach focuses on measuring communication efforts and is not
suited for measuring quality of service. A different approach to reliable behaviour of
distributed services is trust (e.g. [Dash et al. 2004], [Falcone and Castelfranchi 2004]).
In these approaches, a trust model, based on, e.g., a service consumer community, is
used for assessing the reliability of a service. These approaches are different to the
one presented in this paper, since they lack representation of service capabilities and
certification mechanisms.

7 Conclusions and Future Work

In this paper, we presented a framework for automated service certification for
reliable distributed problem solving. The framework includes a quality of service
model integrating capability assessment and problem-based completeness measure for
dynamic capability certification. Our proposed agent-based architecture implements
the framework and supports agents for registration, certification, and retrieval of
services. A first step approach has been implemented and evaluated for the search-
problem domain.

The results of the evaluation indicate, that automated certification of service
capabilities enhances the overall performance of the system with respect to quality of
the distributed problem solving. As a speciality of this domain, relevance increases by
problem size. However, this observation is based on a domain which is formally well-
understood and moreover on an objective quality measure.

 An Agent Architecture for Ensuring Quality of Service 139

In future work, we are going to adapt this approach to different domains of
application: On a technical level, GIS domains will be taken into consideration; on an
application level, logistic services will be investigated. These domains allow for a
more sophisticated evaluation of the approach with consideration of higher problem
complexity and missing objective quality measure. To address the expected problems,
multi-dimensional QoS models and explicit trust-models will be integrated. Finally,
we are going to apply this approach to agent-based process planning and production
control within the IntaPS project.

Acknowledgements

Part of the work was funded by the Deutsche Forschungsgemeinschaft (DFG) in the
IntaPS-3 project within the SPP 1083 program as well as the Collaborative Research
Center on Autonomous Logistic Processes (SFB 637), and by the European
Community in the project GeoShare.

References

[Ankolekar et al. 2002] Ankolekar A., Burstein M., Hobbs J.R., Lassila O., McDermott D.,
Martin D., McIlraith S.A., Narayanan S., Paolucci M., Payne T. (2002): DAML-S: Web
Service Description for the Semantic Web. Proceedings of the 1st International Semantic
Web Conference (ISWC 02), 2002. Springer Verlag, Berlin.

[Christensen et al. 2001] Christensen E., Curbera F., Meredith G., and Weerawarana S.
(2001): Web Services Description Language (WSDL): http://www.w3c.org/TR/2001/
NOTE-wsdl-20010315 2001. (last visited 2005/01)

[Dash et al. 2004] Dash R.K., Ramchurn S.D., Jennings N.R. (2004): Trust-Based Mechanism
Design. Proceedings of the 3rd International Joint Conference on Autonomous Agents &
Multiagent Systems (AAMAS 2004). ACM Press, New York, 2004, pp. 748-755

[Falcone and Castelfranchi 2004] Falcone R., Castelfranchi C. (2004): Trust Dynamics: How
Trust is Influenced by Direct Experiences and by Trust itself. Proceedings of the 3rd
International Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS
2004). ACM Press, New York, 2004, pp. 740-747

[Fipa 2003] FIPA Agent Discovery Service Specification. Document Nr.: PC00095A, 2003.
http://www.fipa.org/specs/fipa00095/ (last visited Jan. 2005).

[Garvin 1988] Garvin D. (1988): Managing Quality: The strategic and Competitive Edge. Free
Press, New York, 1988.

[Guttmann and Zukerman 2004] Guttmann C. and Zukerman I. (2004): Towards Models of
Incomplete and Uncertain Knowledge of Collaborators’ Internal Resources. Proceedings of
the 2nd German Conference on Multiagent System Technologies (MATES 2004). Springer
Verlag, Heidelberg, 2004, pp. 58-72.

[Hübner et al. 2004] Hübner, S., Spittel, R., Visser, U. & Vögele, T. (2004): Ontology-Based
Search for Interactive Digital Maps. IEEE Intelligent Systems 19(3), pp. 80-86, IEEE
Computer Society Press.

[Liu et al. 2004] Liu Y., Ngu A.H.H., and Zeng, L. (2004): QoS Computation and Policing in
Dynamic Web Service Selection. Proceedings of the WWW2004 Vol. 2, ACM Press, New
York, 2004, pp. 66-73

140 T. Scholz, I.J. Timm, and R. Spittel

[Lutz 2004] Lutz, M. (2004): Non-taxonomic Relations in Semantic Service Discovery and
Composition. 1st "Ontology in Action" Workshop, in conjunction with 16th Conference on
Software Engineering and Knowledge Engineering (SEKE 2004), Banff, Canada, pp.
482-485.

[Martin et al. 2004] Martin D., Burstein M., Hobbs J., Lassila O., McDermott D., McIlraith S.,
Narayanan S., Paolucci M., Parsia B., Payne T., Sirin E., Srinivasan N., Sycara K. (2004):
OWL Semantic Markup for Web Services: http://www.w3.org/Submission/2004/SUBM-
OWL-S-20041122/ (last visited 2005/01)

[Mika et al. 2004] Mika P., Oberle D., Gangemi A., Sabou M. (2004): Foundations for Service
Ontologies: Aligning OWL-S to DOLCE. Proceedings of the WWW2004 Vol. 1, ACM
Press, New York, 2004, pp. 563-572

[Oasis 2004] OASIS (2004): UDDIv3 Specification. http://uddi.org/pubs/uddi_v3.htm (last
visited 2005/01)

[Ran 2003] Ran, S. (2003): A Model for Web Services Discovery With QoS. SIGecom Exch.
Journal 4(1), ACM Press, New York, 2003, pp. 1-10

[Rovatsos et al. 2003] Rovatsos M., Schillo M., Fischer K., Weiß G. (2003): Indicators for Self-
Diagnosis: Communication-Based Performance Measures. Proceedings of the 1st German
Conference on Multiagent System Technologies (MATES 2003). Springer Verlag,
Heidelberg, 2004, pp. 25-37

[Russel and Norvig 2003] Russel S.J. and Norvig P. (2003): Artificial Intelligence – A modern
Approach (Second Edition). Pearson Education Inc., New Jersey, 2003

[Scholz et al. 2004] Scholz, T., Timm, I. J., and Woelk, P.-O. (2004): Emerging Capabilities in
Intelligent Agents for Flexible Production Control. In: Katalinic et al. (Eds.): Proceedings
of the International Workshop on Emergent Synthesis (IWES 2004), Budapest, Hungary.

[Sheth et al. 2002] Sheth A., Cardoso J., Miller J., Kochut K., and Kang M. (2002): QoS for
Service-oriented Middleware. Proceedings of the 6th World Multiconference on Systemics,
Cybernetics and Informatics (SCI02), July 2002, pp. 528--534

[Solanki et al. 2004] Solanki M., Cau A., Zedan H. (2004): Augmenting Semantic Web Service
Description with Compositional Specification. Proceedings of the WWW2004 Vol. 1, ACM
Press, New York, 2004, pp. 544-552

[Timm and Woelk 2003] Timm, I. J. and Woelk, P.-O. (2003): Ontology-based Capability
Management for Distributed Problem Solving in the Manufacturing Domain, In: Schillo, M.
et al. (Eds.): Proceedings of the first German Conference on Multi-Agent System
Technologies (MATES 2003), Erfurt. LNAI 2831. Springer: Berlin, pp. 168-179.

[W3C 2002] W3C Web Services Architecture Working Group: Web services Glossary.
http://www.w3c.org/TR/2002/WD-ws-gloss-20021114/ (last visited 2005/01)

[Wooldridge 2000] Wooldridge M. J. (2000): Reasoning about Rational Agents. The MIT
Press, Cambridge, Massachusetts, 2000.

Engineering a Multi Agent Platform with
Dynamic Semantic Service Discovery and

Invocation Capability

Oguz Dikenelli1, Özgür Gümüs1, Ali Murat Tiryaki1, and Geylani Kardas2

1 Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

{oguzd, gumus, ali_tiryaki}@staff.ege.edu.tr
2 Ege University, International Computer Institute,

35100 Bornova, Izmir, Turkey
geylani@bornova.ege.edu.tr

Abstract. In this paper, an agent framework, which provides a build
in support for dynamic semantic service discovery and invocation within
the agent’s plan(s), is introduced. To provide such a support, a generic
plan structure is defined for semantic service integration. Developer can
reuse this generic plan and add it to any agent plan as a task to cre-
ate semantic service enabled plan(s). The platform executes this kind of
plan(s) with its build in support. Also, a case study is developed to show
the effectiveness of this approach in terms of integrating agents with web
services.

1 Introduction

Web Services can be considered as pluggable software components with language
and platform independent interfaces. Hence, other components can use the web
services dynamically through the published interfaces. This machine-readable
interface description of the web services gives opportunity to autonomous agents
to use them when they demand the functionality provided by the service. But,
it is not clear how agents will decide to use a web service and how they will
discover and invoke the right service in addition to its own duties.

In the literature, Semantic Markup for Web Services (OWL-S, formerly
DAML-S) [16] has been extensively used to implement semantic based service
discovery and execution of composite services. For example, some semantic ser-
vice matching engines have been implemented based on the DAML-S profile
ontology in [7] and [9]. Also, some works have been conducted to execute com-
posite services using DAML-S process ontology in [11], [12] and [13]. Moreover,
some integrated architectures have been proposed based on matchmaking in
[10] and [15] and brokering in [14] to handle discovery and invocation together.
However, the basic problem still remains: How can a developer build an agent
system that uses web services and how he/she integrates and synchronizes these
services’ execution with other agent related task(s). To solve this problem, first

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 141–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

142 O. Dikenelli et al.

of all agent platform must be developed that supports the execution of semantic
service integration type of task(s). In this paper, we introduce an implemented
agent platform that provides such a support. For this purpose, a generic plan
structure is defined using the Hierarchical Task Network (HTN) formalism for
semantic service discovery and dynamic invocation. Then, agent’s internal archi-
tecture is specially designed to execute plan(s) that includes the task(s) derived
from this generic plan. Also, a service is implemented within the platform to
give the semantic service matching service to the agents in the platform.

The paper is organized in the following manner. In section 2, the general ar-
chitecture of the platform is given. A design approach for the agent and semantic
service integration is discussed in section 3. Section 4 introduces the internal ar-
chitecture of the agent designed for execution of semantic service enabled plans.
The generic plan structure for semantic service integration is explained in section
5 and the last section gives a case study and concludes the work.

2 Software Architecture of the Agent Platform for
Semantic Service Integration

To be able to call a multi agent platform as semantic service enabled, agents of
the platform must be capable of executing plan(s) that include specific task(s)
for semantic service integration. We call this kind of plans as semantic service
enabled plans. It is clear that agent(s) requires a specific support from the plat-
form to execute this kind of plans. So, a conceptual architecture, that executes
semantic service enabled plans, must be defined first. Fig. 1 illustrates pack-
ages of such a conceptual architecture in a layered style. Of course, a general
purpose MAS platform requires additional services such as Directory Facilita-
tor, Agent Management Service and such an abstract architecture is defined in
FIPA’s Abstract Architecture Specification [5]. But, our purpose is only defining
and implementing packages which are responsible to execute semantic service
enabled plans. So, any platform can be made semantic service enabled by just
implementing package responsibilities defined in this paper.

Fig. 1. Packages of platform’s software architecture

Engineering a Multi Agent Platform 143

Bottom layer includes the communication layer that is responsible of ab-
stracting platform’s communication infrastructure implementation. It implements
FIPA’s Agent Communication and Agent Message Transport specifications [5]
to handle agent messaging. This layer has been developed and used as part of
our FIPA compliant agent development framework [2], [3] and then reused in
this implementation.

In our implementation, Agency package includes necessary infrastructure to
generate general purpose and goal directed agents similar to JADE [1] and DE-
CAF [6] platforms. It provides a build in agent operating system to schedule,
execute and monitor agent plan(s) which are defined in HTN formalism [8]. To
execute semantic service enabled plans, we have defined a generic HTN structure
that is specialized based on the domain requirements. Naturally, this plan can
be executed by the agency as the other HTN plans and it can be combined with
other plan(s).

Semantic Service Matcher (SSM) can be considered as a bridge between plat-
form and web services hosted outside of the platform. SSM uses service profile
concept of the OWL-S ontology for service advertisement and this advertisement
knowledge is used by internal semantic service matching engine for discovery of
the services upon request. We have used the service capability matching algo-
rithm originally proposed in [9] for semantic service matching engine implemen-
tation. Since our discussion on Generic Service Integration Plan in section 5
sometimes uses the concepts of this algorithm, we briefly introduce the concepts
used in the algorithm in this section. Capability matching algorithm matches
OWL-S profile’s input and output concepts of the advertisement and request.
Input and output concepts are taken values from specific domain ontology(ies)
and the match degree is determined by the minimal distance between the con-
cepts of these ontology(ies). Formally if outAD and outREQ represent the outputs
of the advertisement and the request respectively, algorithm defines four types
of match on outputs:

- exact match when outAD and outREQ are equal or outREQ is subclass of
outAD

- plug-in match when outAD is more generic than outREQ (outAD subsumes
outREQ)

- subsumes match when outAD is more specific than outREQ (outREQ sub-
sumes outAD)

- fail when neither of the conditions above satisfies
The scoring function is ordered as exact > plug-in > subsumed > fail. Same

can be applied to inputs but matchmaker prefers output matches over input
matches and input match scoring is used to sort equivalent output matches.
In our implementation, SSM is queried by the platform’s agent(s) with FIPA
RDF [5] content language using OWL-QL [4] query syntax in argument part of
the message. To be able to use the match degree within the QWL-QL, we have
extended the QWL-QL for querying the matching of semantic capability. Details
of this extension are discussed in section 5.

144 O. Dikenelli et al.

Ontology Manager Service (OMS) behaves mainly as a central repository
for the domain ontologies used within the platform and provides basic ontol-
ogy management functionality such as ontology deployment, ontology updating,
querying etc. But, the most critical support of the OMS for service integration
is its translation support between the service or domain ontologies. OMS pro-
vides a user interface to define mappings between the selected ontologies and
then handles the translation request(s) using the mapping knowledge. Through
the usage of the ontology translation support, any agent of the platform may
discover and/or invoke the services even if they use different ontologies.

“Generic Service Integration Plan” includes pre-defined tasks for dynamic
semantic service discovery and invocation. This generic plan executes stan-
dard tasks such as service discovery based on the service capability, selection
of matched services and invocation of selected service(s) in a pre-defined order
and under the pre-set conditional assumptions. The details of this plan are dis-
cussed in section 5. But, it has to be emphasized that behavior of some task(s)
may need to be modified depending to the application conditions. In this kind
of situations, developers have to modify the specific tasks of this plan to satisfy
the application requirements.

Top layer includes the application dependent plans that are defined by agent
developers to satisfy the system’s goal(s). To make these plans semantic service
enabled, “Generic Service Integration Plan” can be added to the plan as service
task.

3 A Design Approach for the Agent and Semantic
Service Integration

To be able to integrate semantic web services with agents, some well defined
activities are needed within the agent development methodology. These activities
are conducted to build up the elements of the conceptual architecture defined in
section 2. In the following, two activities are defined for this purpose.

Activity 1: Define the OWL-S based service profiles of each domain specific
services that may be used by the agents.

In the design phase, we must know interface of external services to be able
to write the actual agent plans that include service integration. So, an OWL-S
service profile is defined for different types of domain specific services that agents
may use. These profiles are stored in and build up the knowledge base of the
SSM. External services are advertised themselves to the SSM using these pre-
defined service profiles. The problem occurs when input and output parameters
of external service interface and profile take values from different ontologies. In
this case, service provider must define the mappings between ontologies of these
parameters using the transition service of the OMS and agents translate profile
values to the actual service interface values before the invocation. In this paper,
we do not consider this case since we have not integrated the OMS implemen-
tation with the platform yet.

Engineering a Multi Agent Platform 145

Activity 2: Specialize the Generic Service Integration Plan for each required
service(s).

Application dependent agent plans may need one ore more external services
whose profiles are defined in activity 1. So, developers first identify such services
in this activity, then “Generic Service Integration Plan” is specialized for these
services using the defined service profiles. Finally, specialized service plans are
integrated with the actual application dependent plans.

4 Agent’s Internal Architecture

As we stated in section 2, our agent’s internal architecture executes plans rep-
resented with HTN formalism. HTN structure consists of two types of tasks.
Complex task includes a “reduction schema” knowledge that defines the decom-
position of the complex task to the sub tasks. The second type of tasks is the
primitive tasks (actions) that can be executed by the internal architecture di-
rectly. Each task also has “provision/outcome links” that are used to propagate
values between the tasks. So, internal architecture dynamically opens the com-
plex task using the “reduction schema” knowledge, identifies input/output values
of each task with “provision/outcome links”, executes primitive tasks and prop-
agates output values other dependent task(s).

In addition to complex and primitive tasks, we have defined a new task
type called as “service” task to execute semantic service enabled plans. “Service”
task is different because it always takes values from OWL-S profile concepts.
Moreover, input and output concepts of the requested service(s) are mandatory
values for “service” task to be able to discover the requested service(s). In HTN
formalism, complex and primitive task types propagate data values through its
provision link. Similarly, “service” task can take values through provision link if
it is dependent to some task(s) which produce the required data. But if input
and output of the requested service are not provided by other task(s), it must be
provided as constant. So, “service” task is responsible to collect all of the values
of input and output concepts from provision link and internal constant values
to pass them to subtasks. Hence, this task is handled differently by the internal
architecture when it is encountered.

The overall structure of agent’s internal architecture is shown in Fig. 2. This
architecture is specially designed to execute semantic service enabled plans. But,
of course, it can also execute HTN structure(s) that includes only complex and
primitive tasks. As it can be seen from Fig. 2, the internal architecture is com-
posed of four functional modules: dispatcher, matcher, scheduler and executer.
Each module runs concurrently in a separate Java thread and uses the common
data structures. All together, they match the goal extracted from the incoming
FIPA-ACL message to an agent plan, schedule and execute the plan following
the predefined HTN structure. In the following, we briefly explain responsibili-
ties of each module during plan execution with an emphasis on semantic service
integration.

146 O. Dikenelli et al.

Fig. 2. Agent’s internal architecture

When a FIPA-ACL message is put into the incoming message queue by the
communication infrastructure layer, the dispatcher is notified. Dispatcher then
parses the message and checks whether it is reply of a previous message or not. If
it is a reply message, then the dispatcher finds out the task waiting for that reply
from the pending queue, sets the provision(s) for that task and puts the task
to the ready queue if all the other provisions of task are set. If it is not a reply
message, then the dispatcher creates a new objective, puts it to the objective
queue and notifies the matcher.

Matcher is responsible for matching the incoming objective to a pre-defined
plan by querying the “Match Ontology”. There can be two kinds of plans. They
are called as service integration plan and ordinary plan. The service integration
plan aims only semantic service discovery and invocation. The ordinary plan
may include “service” task(s) and becomes semantic service enabled plan or it
includes only complex and primitive tasks. The “Match Ontology” is defined in
OWL including Match and Template concepts and the method of QueryManager
interface returns the MatchedTemplate object to the matcher. Matcher identifies
the type of the plan from MatchedTemplate object and creates a ServiceTemplate
object for service plan or TaskTemplate object for ordinary plan by setting its
parameters using the returned template. It then puts the created object to the
task queue and notifies the scheduler.

Scheduler works differently for complex task and “service” task. If it gets a
TaskTemplate from the task queue, it understands that it is a complex task.
Then, it gets the name of the task from the TaskTemplate and creates a Com-
plexTask object by getting its class definition from task structure library. This
ComplexTask may include “service” task(s). The class definition taken includes
the reduction schema which holds the subtasks of the task. Then, the scheduler
interprets the reduction schema and puts the ready actions to the ready queue
by creating a ReadyActionTemplate and notifies Executor. It also places the pro-

Engineering a Multi Agent Platform 147

vision waiting action(s) into the pending queue and the complex task(s) to the
task queue by creating a TaskTemplate object. If it finds a “service” task in the
reduction schema, it creates a ServiceTemplate object and puts it into the task
queue for execution.

If scheduler gets ServiceTemplate object from the task queue, it gets its task
structure from service structure library. Service structure library holds only ser-
vice integration plans that are derived by reusing our generic service integration
plan structure. At this point, scheduler creates ServiceTask object, it gets OWL-
S profiles input and output concepts from ServiceTask, and then it passes this
knowledge as a parameter to the sub-task found in the reduction schema. Sub-
tasks are handled in a same way of complex task scheduling.

Executor first gets the name of the primitive task from the ReadyActionTem-
plate and creates an Action object using the class definition that it retrieved from
the action library corresponding to the primitive task name. Secondly, it calls
the Do() method of the Action object. The result queue is updated using the
outcome of the executed action. One important point is that if there are action(s)
waiting for that outcome in the pending queue, the related provisions of these
actions are set based on the outcome. These actions are put into the ready queue
if their all other provisions are already set, otherwise they continue to wait in
the pending queue until all other provisions are set by different outcomes.

5 Generic Plan Structure for Semantic Service
Integration

In this section, we introduce the structure of the generic plan that is specially
designed for semantic service integration. The workflow of the plan can be de-
scribed as follows: When an agent requires executing semantic service, it first
must discover the desired service using SSM. After that, it must select the most
suitable service among the discovered services. Finally, the selected service is
invoked directly communicating with its providers. The HTN structure for this
workflow is illustrated in Fig. 3. Each node in this HTN structure represents a
task of HTN formalism. Provision links are located in the left side of the node
and outcome links are in the right side. The sub-task(s) of a complex task is
represented with a line drawn between them. The responsibility of each task is
written inside of the node.

The top level task is called as “execute semantic web service”. This task is
a “service” task that may be included to any plan to make it semantic service
enabled. Also, “execute semantic web service” tasks can be connected to each
other to create composite semantic web services.

“Execute semantic web service” task must include input and output param-
eters of desired semantic web service and match degree to discover the service.
These parameters can be passed through the provision link or defined as con-
stant(s) during the creation of the real plan derived reusing the generic structure.
“Execute semantic web service” task propagate the required parameters to its
sub-tasks using the provision link structure. After the all tasks are executed,

148 O. Dikenelli et al.

Fig. 3. Generic plan structure for semantic service integration

the result of the “execute semantic web service” task is propagated to other
task(s) with OK outcome. If a desired service can not be found or any problem
is occurred during the service invocation, it ends with fail outcome.

First sub-task of the “execute semantic web service” is called as “discover
service” task which is responsible of discovering the service with the desired
capability. It takes input and output parameters of desired semantic web service
and match degree from “execute semantic web service” task. “Discover service”
task includes two primitive tasks (actions) named as “form a query for service
discovery” and “send query message” to inquire the SSM.

“Form a query for service discovery” action inherits the provisions of “discover
service” task. This action forms a query using the parameters passed through its
provision to discover the desired semantic web service. This query must include
input and output parameters of the desired service and a match degree for each
parameter since SSM uses this knowledge to semantically match the requested
service with the advertised ones. As it is said before, our platform uses OWL-
QL to query the SSM for service discovery. Since SSM knows only the OWL-S
ontology and match degree is not defined in OWL-S ontology, it’s not possible
to specify match degree in OWL-QL for querying OWL-S profiles. So, we have
extended OWL-QL to be able to prepare queries that include match degree for
semantic service discovery. This extension is called as OWL-QL-S. An OWL-QL-
S query may include an exact-match parameters list, a plug-in-match parameters
list and a subsume-match parameters list. These lists contain URI references
that occur in the query, and no URI reference can be an item of more than

Engineering a Multi Agent Platform 149

one of these lists. Thus, an OWL-QL-S query that prepared to discover OWL-S
semantic web service(s) is capable of specifying the match degree that will be
accepted for every input and output parameter.

“Send query message” action takes the OWL-QL-S query as provision and
prepares a FIPA-ACL message to discover the desired service. Then it sends
this message to the SSM. FIPA-RDF content language is used to transfer OWL-
QL-S query. So, OWL-QL-S query is located in the argument property of the
FIPA-RDF action.

“Select service(s)” action is executed when a reply message, which includes
matched service profiles, is sent by the SSM. The matched service profiles are
passed to this action as external provision. “Select service(s)” action is responsible
of selecting the most appropriate service(s) among all the sent ones. In our
implementation, SSM returns the matched services by sorting according to match
degrees and “select service(s)” selects the first one. But, this task may vary
depending to the overall requirements of the plan. For example, an application
may require invoking all exactly matched services. In this kind of situation, plan
developer has to modify the original action implementation according to the
application requirements. At the end of the action, selected service profile(s)
is sent with the OK outcome to the “invoke service(s)” action. If no service
is selected, “select service(s)” action and consequently “execute semantic web
service” task end with fail outcome.

“Invoke service(s)” action takes the selected service profile(s) and values of
service’s input parameters through the provision links and invokes selected ser-
vice(s). This version of our implementation is capable to call atomic semantic
web services. In other words, invocation of composite semantic web services is
not supported yet. To invoke an atomic semantic web service, first of all, the
URI of the WSDL document and operation name of service must be obtained
from the corresponding OWL-S grounding document. WSDL document contains
all the information that is required to invoke a web service dynamically such as
network address, operation name, types of input and output parameters etc [17].

6 Case Study

To give ideas in a more concrete way, we designed an agent based information
system prototype for tourism domain. We considered only a single scenario in
which traveler tries to find and reserve a suitable hotel room for his/her holiday.
The system includes a traveler agent that interacts with outside semantic web
services to satisfy the requirements of this scenario.

Following our design approach, we first identified possible external domain
service profiles that traveler agent can use to satisfy its goal. First of all, this
system requires a service to find the hotels which satisfy travel preferences of the
user. So, the first service profile is defined for this service and it takes “activity”
and “location” as service input parameters and returns “hotel” individuals as out-
put. We have implemented three actual services of this type and registered them
to SSM by selecting different “activity”, “location” and “hotel” concepts from re-

150 O. Dikenelli et al.

lated domain ontologies. Second service is defined for querying room availability
and it takes “date” as input parameter and returns “room availability” as out-
put. We have also created three actual services of this type and registered them
to SSM. It must be pointed out that knowledge about the “hotel” individual is
stored in the “contactInformation” concept of OWL-S profile during registration
of this service and then used in “find a room” service task as service selection
criteria. Final service is designed to make reservation. It takes “date” as input
parameter and returns “reservation result” individual as output.

After we have defined the service profiles, we try to model traveler agent’s
plan that uses the defined services to satisfy the scenario at hand. This plan’s
HTN structure is shown in Fig. 4. As shown in the figure; the plan includes
“three” service tasks that are defined considering the service profiles identified
as the first activity. At this point, all of these service tasks are created from the
generic service integration plan by specializing its actions based on the require-
ments of the plan.

Fig. 4. Hotel reservation plan structure

First action of the plan finds the user’s activity and location preferences
using the predefined preferences ontology and passes them to the “find a hotel”
“service” task for the execution of the “service” task. Since this task reuses the
structure of the generic service integration plan, it first executes the “discover
service” complex task of the generic plan. Subtasks of “discover service” complex
task are reused as is since they require only the input and output parameters
of the searched service. “Select service(s)” action is used as is also since SMM
sends the matched profiles as sorted. It takes the matched service profiles send by
SMM and pass them to the “invoke service(s)” action. “Invoke service(s)” action

Engineering a Multi Agent Platform 151

specialized to invoke the services starting from the top of the list using the values
of input parameters. If an invoked service returns a list of hotels successfully, it
stops and passes the list of hotels to the next task.

The found hotels are passed to the “reservation” task which includes two
“service” sub-tasks, one for finding an available room and one for making reser-
vation. These sub-tasks also reuse the structure of the generic service integration
plan. They use sub-tasks of “discover service” complex task as is. However, “find
a room” “service” task specializes the “select service(s)” action to select the ser-
vices that provided by one of the given hotels and “make reservation” “service”
task specializes the same action to select the service provided by the given hotel
that has an available room. “Find a room” “service” task specializes the invoke
service(s) action that continues to invoke selected room availability services until
it gets an output indicating an available room. Upon the completion of service
invocation, “find a room” “service” task passes the found hotel that has an avail-
able room to the “make reservation” “service” task for realizing the reservation.
This “service” task uses “invoke service(s)” action as is since only one service
is passed to this action from “select service(s)” action. At the end, reservation
details are given to the client.

7 Conclusion

Developers can create semantic web service enabled plans using the support
provided by the architecture introduced in this paper. Two activities should be
performed to develop plans with such a capability. First, service profile of each
domain specific service should be defined with use of a service ontology. Those
services will be used by platform’s agents in their plans. Second, for each required
service, the plan called “Generic Service Integration Plan” should be specialized.
We believe that the above mentioned support simplifies the semantic service
based multi agent system development and bridges the gap between the agent
and semantic service worlds.

References

1. Bellifemine, F., Poggi, A., and Rimassa, G.: Developing multi-agent systems with
a FIPA-compliant agent framework. Software Practice and Experience, 31 (2001)
103-128.

2. Erdur, R.C. and Dikenelli, O.: A standards-based agent framework for instantiating
adaptive agents. In Proceedings of The Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2003), pages 984-985, ACM
Press, 2003.

3. Erdur, R.C. and Dikenelli, O.: A FIPA-Compliant Agent Framework with an Extra
Layer for Ontology Dependent Reusable Behaviour. In Proceedings of Advances in
Information Systems, Second International Conference (ADVIS 2002), LNCS 2457,
Springer, 2002.

152 O. Dikenelli et al.

4. Fikes, R., Hayes, P, Horrocks, I.: OWL-QL - A Language for Deductive Query
Answering on the Semantic Web. Knowledge System Laboratory, Standford Uni-
versity, 2003, avail-able at http://ksl-web.standford.edu/KSL-Abstracts/KSL-03-
14.html

5. FIPA: FIPA Specifications, http://www.fipa.org
6. Graham, J.R., Decker, K.S., Mersic, M.: DECAF - A Flexible Multi Agent System

Architecture. Journal of Autonomous Agents and Multi-Agent Systems, 7, 7-27,
2003.

7. Li, L. and Horrocks, I.: A Software Framework for Matchmaking Based on Semantic
Web Technology. In Proceedings of the Twelfth International Conference on World
Wide Web, pages 331-339. ACM Press, 2003.

8. Paolucci, M. et al.: A Planning Component for RETSINA Agents, Intelligent
Agents VI, LNAI 1757, N.R. Jennings and Y. Lesperance, eds., Springer Verlag,
2000.

9. Paolucci, M., Kawamura, T., Payne, T., R., Sycara, K.: Semantic Matching of
Web Services Capabilities. In Proc. of the International Semantic Web Conference
(ISWC’02), Springer Verlag, Sarddegna, Italy, June 2002.

10. Paolucci, M. and Sycara, K.: Autonomous Semantic Web Services. IEEE Internet
Computing, September - October 2003, Published by the IEEE Computer Society

11. Sheshagiri, M., desJardins M., Finin T.: A Planner for Composing Services de-
scribed in DAML-S. Workshop on Planning for Web Services, Trento, 2003.

12. Sirin, E., Hendler, J., Parsia B.: Semi-automatic Composition of Web Services using
Semantic Descriptions. Web Services: Modeling, Architecture and Infrastructure
workshop in conjunction with ICEIS2003, April 2003.

13. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using SHOP2. Journal of Web Semantics, 1(4):377-396, 2004

14. Sycara, K., Paolucci, M., Soudry, J., Srinivasan, N.: Dynamic Discovery and Coor-
dination of Agent-Based Semantic Web Services. IEEE Internet Computing 8(3):
66-73 (2004)

15. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, in-
teraction and composition of Semantic Web Services. Journal of Web Semantics,
Elsevier, pp. 27-46, 2003

16. The OWL Services Coalition: Semantic Markup for Web Services (OWL-S), 2004,
http://www.daml.org/services/owl-s/1.1/

17. W3C: Web Services Description Language (WSDL) 2.0, http://www.w3.org/
TR/wsdl20

Towards a Formal Methodology for Designing

Multi-agent Applications

Amira Regayeg1, Ahmed Hadj Kacem1, and Mohamed Jmaiel2

1 Faculté des Sciences Économiques et de Gestion de Sfax,
B.P. 1088, 3018 Sfax, Tunisia

{Amira.Regayeg, Ahmed}@fsegs.rnu.tn
2 École Nationale d’Ingénieurs de Sfax,

B.P.W., 3038 Sfax, Tunisia
Mohamed.Jmaiel@enis.rnu.tn

Abstract. This paper has two purposes. First, it defines a formal lan-
guage for specifying multi-agent systems. This language is expressive
enough to cover individual agent aspects (knowledge, goals, roles, ...)
as well as collective aspects of in terms of coordination protocols, orga-
nization structure and planning activities. Second, it provides a formal
design methodology based on stepwise refinements allowing to develop a
design specification starting from an abstract requirements one.

1 Introduction

Several researches tried to face the problem of developing software systems using
the agent concept. The majority of the suggested approaches are extensions of
either object oriented methodologies like, for example, AOAD [20] and MaSE [2],
or knowledge based methodologies, such as CoMoMAS [5]. The major problem
of these extensions is that they do not provide appropriate tools to model the
specific features of agents, such as mental states and social behaviours. Other
attempts, like Gaia [19], SODA [13] and Prometheus [14], sought to focus on the
social aspect of an agent group or an organization. These approaches, given that
they are based on semi-formal notations, they do not enable formal reasoning
about specifications. Approaches which make use of formal methods, like for ex-
ample, the framework suggested by Luck and d’Inverno using the Z language [10],
Concurrent-Metatem [4] based on temporal logic, and SLABS (Formal Specifi-
cation Language for Systems Agent-Based)[23], concentrate their effort only to
the specification phase. Recent work, such as ADK [21], although it based on
a formal approach and it covers the specification, design and implementation
phases, it completely ignores formal reasoning and particularly the verification
phases.

In order to overcome these insufficiencies and to master the inherent com-
plexity of multi-agent development, we suggest a formal design approach of
multi-agent systems based on stepwise refinements. It is recognized that the
formal approach represents an obvious but attractive challenge for Agent Ori-
ented Software Engineering [22]. Here, we try to take advantage of the potential

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 153–164, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

154 A. Regayeg, A.H. Kacem, and M. Jmaiel

of the formal methods in building reliable software. Doing so, we define, on the
one hand, a formal specification language which integrates the linear temporal
logic in the Z language, and on the other hand, a set of methodological prin-
ciples and hints which help the user to build in a systematic and incremental
way intra and inter agent aspects. This integration is motivated by recent ten-
dencies [15] which are directed towards (1) addressing aspects separated using
suitable languages and tools, and (2) integrating various approaches in a unified
development process[1]. Indeed, the Z language possesses all ingredients needed
to handle static and functional aspects of agents (i.e., the mental state and as-
sociated treatments), whereas temporal logic is considered as one of the most
eminent formalisms for specifying reactive systems [11]. In addition, approaches
based on stepwise refinements [17] proved their impact in developing several
software applications [8,3].

In order to provide a formal interpretation for our temporal operators we sug-
gest an operational semantics for multi-agent applications in terms of sequences
of system states. The definition of this temporal model within the Z notation
enables us to make use of tools supporting pure Z notation, such as Z/EVES
[12]. These tools allowed us to perform syntax, type, and domain checking of
our specifications and to reason about them by proving desired properties. Our
design process is composed of a number of refinement steps where each one
provides some methodological guidelines which help the developer to take the
suitable design decision as well as rules making it possible to ensure that a refined
specification satisfies the initial one.

This paper is organized as follows. Section 2 defines the specification language
and its semantics. Then, in section 3 we explain our specification and design
approach. Finally, we conclude with drawing some perspectives.

2 The Specification Language

We consider a multi-agent application as a collection of components which evolve
in a continuously changing environment containing active agents and passive ob-
jects. Accordingly, the specification of a multi-agent application includes descrip-
tions of the environment, the behaviour of individual agents (intra-agent), and
the communication primitives as well as the interaction protocols (inter-agent).
In addition, we may add to the collective part a description of the organizational
structures and planning activities.

For the specification of multi-agent applications, we use an integration of tem-
poral logic in Z schemas as described in our previous work [15]. This integration
will enable us to cover all the above mentioned aspects in a unified framework.
Indeed, the Z notation allows to describe all components (passive and active) in
terms of attributes and related properties. The temporal logic will enrich this
description with social behaviour and interaction properties.

2.1 The Z Notation

The Z notation, as presented in [18], is a model oriented formal specification lan-
guage which is based on set theory and first order predicate logic. This language

Towards a Formal Methodology for Designing Multi-agent Applications 155

is used to describe an application in terms of states and operations on them. In
order to structure specifications and to compose them Z uses a schema language.
The latter enables to collect objects, to encapsulate them, and naming them for
reuse. A schema consists of two parts: a declaration part and a predicate part
constraining the values of the declared variables. A Z schema has the following
form:

SchemaName
Declarations

Predicates

2.2 The Temporal Logic

The linear temporal logic, as presented by Manna and Pnueli [11], is suitable
for the specification and the verification of concurrent and interactive systems.
Actually, there is a variety of temporal operators that can be used to express
agents behavioural properties. However, all these operators can be defined in
terms of two basic operators. In this paper, we make use only of the necessary
operators for development of our multi-agent applications. In the following, we
briefly present these operators with an intuitive explanation. Let P be a logical
or a temporal formula:

�P P holds ”now”1 (� may be omitted);
� P ”always” P , i.e. P holds for the present and for all future points in time;
♦P ”eventually” P , i.e. P holds at some present or future point in time;◦P ”nexttime” P , i.e. P holds at the next point in time.

In order to integrate these temporal operators in the framework of the Z
language, we give the following definition of temporal formulas according to
the syntax of Z. We distinguish atomic predicate formulas (formula), which are
closely related to the application to specify, and temporal formulas (Tempfor-
mula) which connect predicate formulas with temporal operators.

Tempformula ::= 〈〈formula〉〉 | ◦ 〈〈Tempformula〉〉 | � 〈〈Tempformula〉〉 |
♦ 〈〈Tempformula〉〉

We will show later that these operators are sufficient to express interesting prop-
erties of multi-agent applications.

2.3 The Semantics of Temporal Formulas

In this section we provide evaluation functions defining the semantics of our
temporal logic. This step is very significant since it enables us to translate tem-
poral formulae into the pure Z notation. Thus, it becomes easy to exploit the
1 We explain the operators while being based on a concept of ”time”, but really the

fundamental notion is the one of causality.

156 A. Regayeg, A.H. Kacem, and M. Jmaiel

automatic verification tools, such as Z/EVES or Isabelle, which accept merely
the standard syntax of Z.

First, we present the underlying time model. The basic unit of this time
model is the agent state. Let [State] be the set of possible agent states. A system
state (SysState) is defined as the union of the states of the agents belonging to
this system:

SysState
SysState : F State

A time model (Model) is defined as an axiomatic function that associates to each
point of time the corresponding system state, where the time is specified as the
set of natural numbers (Time == {x : N}):

Model == Time → SysState

Second, we provide an axiomatic function (E) which evaluates a temporal
formula in a given model at a given point of time:

E : Temporalformula × Model × Time → bool

∀ f : Formula; m : Model ; t : Time
• E ((� f),m, t) = T ⇔ AtomEval(f ,m t) = T

∀ f : Tempformula; m : Model ; t : Time •
E ((♦ f),m, t) = T ⇔ (∃ t1 : Time | t1 ≥ t • E (f ,m, t1) = T)

∀ f : Tempformula; m : Model ; t : Time •
E ((� f),m, t) = T ⇔ (∀ t1 : Time | t1 ≥ t • E (f ,m, t1) = T)

∀ f : Tempformula; m : Model ; t : Time •
E ((◦ f),m, t) = T ⇔ (E (f ,m, (t + 1)) = T)

Next, we generalize the function E by making abstraction of the time parameter.
Hence, the function (Eva)below interprets temporal formulas with respect to a
given model:

Eva : Tempformula × Model → bool

∀ f : Tempformula; m : Model
• Eva(f ,m) = T ⇔ (∀ t : Time • (f ,m, t) ∈ domE ∧ E (f ,m, t) = T)

We can more generalize the function of evaluation by making abstraction of the
model. The following function defines a general interpretation of the temporal
operators:

Eval : Tempformula → bool

∀ f : Formula
• Eval(f) = T ⇔ (∀m : Model • (f ,m) ∈ domEva ∧ Eva(f ,m) = T)

Finally, in order to use the temporal operators in their usual notations (i.e. �
for always) in the Z schemata it is necessary to introduce them as axiomatic

Towards a Formal Methodology for Designing Multi-agent Applications 157

functions defined with the interpretation function Eval. Thus, we could estab-
lish a logical equivalence between a temporal operator and the corresponding
predicate specified in the above function Eval. This equivalence is described for
the � operator as follows:

� f ⇔ Eval(� f) = T

The other temporal operators are introduced with similar equivalences.

3 Formal Design Approach

In order to be useful, a formalism or a set of tools have to be supported with
a design approach. This approach should provide some principles that help and
guide the design process. In this section, some of those principles are clarified.
Indeed, our approach is based on two principal phases. The first one is a specifi-
cation phase in which we describe, in an abstract way, the user requirements. The
second one is a design phase based on a succession of refinements in terms of col-
lective behaviours (inter-agents) as well as individual behaviours (intra-agent).
The verification that the developed design specification satisfies the requirements
one is considered as essential tasks which is progressively performed during the
refinement steps.

3.1 Specification Phase

In this first phase, we specify the requirements which correspond, in the context
of multi-agent, to a common objective to be achieved by the agents. In our
approach, this stage provides also a description of the environment in which
the agents evolve and which includes, generally, the working space, the passive
objects, and the active entities representing the agents to be deployed.

1. Specification of the active entities: The description of an active entity (agent)
consists in presenting, in terms of temporal formulae, its static and dynamic
properties. This description is given by a Z schema of the following form:

Entity
atr1 : Type1, atr2 : Type2 . . . atrm : Typem

Spr1, . . . , Sprn ,
Cpr1, . . . , Cprn′

Where atri corresponds to an attribute, Spri represents a static property
and Cpri represents a behavioural property.

2. Specification of the system: The system includes active entities (agents) and
passive entities belonging to the working space. This specification is given
by a set of formulas relating passive entities with active ones. Generally, this
leads to a Z schema of the form:

158 A. Regayeg, A.H. Kacem, and M. Jmaiel

System
obj1 : TypeObject1, . . . , objk : TypeObjectk
Entities : set of Entity

Pr1, Pr2, . . . , Prl

Where obji corresponds to a passive entity, Entities represents a set of enti-
ties, and Pri represents a temporal formula.

3. Requirements Specification: This specification describes what we require from
the system to develop. In the context of multi-agent application, this corre-
sponds to a set of temporal formulas specifying the Common Objective (CO)
in terms of the desired future state.
According to the Z approach, such a specification is well expressed with a
specialization of the System schema:

ReqSpec
System

CO1, CO2, . . . , COn

Where COi represents a temporal formula.

3.2 Design Phase

The basic idea consists in performing a sequence of refinements made by special-
izations of Z schemas for data refinement, and derivation of temporal formulas
for behavioural refinement. The refinement steps are supported by a set of rules
which help the transitions between specifications. The refinements are carried
out at two complementary levels. The first, is the collective level which will be
augmented by properties referring, primarily, to collective aspects (inter-agent)
characterizing, in particular, organization and communication structures. The
second level rather stresses the individual aspects (intra-agent) by extending the
specifications of the active entities provided in the first phase.

Collective Level. Designing the collective aspects of a multi-agent application
is made, in our approach, within three aspects : (1) cooperation strategy, (2)
organization structure and (3) interaction protocol.

1. Cooperation Strategy
Step 1: Cooperation Strategy definition
Starting from CO and using a hierarchical representation, we iterate the
composition, based on logical connections, of the requirements specification
(ReqSpec schema) until we obtain elementary temporal formulas in a way
that each one corresponds to a subgoal.
That is, for each formula COi which composed CO , we generate by de-
composition and transformation a finite set of temporal formulas connected
by the logical connectors (∧,∨). The conjonction ∧ indicates a sequence

Towards a Formal Methodology for Designing Multi-agent Applications 159

of subgoals whereas the disjonction ∨ presents different subgoals for the
achievement of the goal.
Finally, we obtain a list of scenarios for COi where each one is described by
a sequence of elementary temporal formulas. These formulas represent the
different local goals: {bli1, . . . , blin}.
At the end of this step, we generate a graph and/or which summaries the
various decomposition levels.

Each scenario leads to the following specification which corresponds to a
refinement of the ReqSpec specification:

Implementation0

System

bli1, bli2, . . . , blin

This refinement step requires the proof of the following theorem for each
scenario of COi present in the requirements specification:

theorem CoopScenario
bli1, bli2, . . . , blin � COi

2. Organization Structure
The organization structure implicitly defines a control strategy to be re-
spected by these entities. It is, generally, defined in terms of temporal for-
mulas referring to several entities at the same time.
Here, we invent a suitable organization structure for the system to be devel-
oped. We, first, identify the necessary roles, then we assign a role for each
active entity belonging to the system.
(a) Social Level

– Step 2: Identification of roles
In our approach, an agent role is formally represented by a set of
temporal formulas corresponding to local goals.
Hence, starting form the above defined local goals, we can regroup
them according to predicates (actions) present in the various for-
mulas describing the different local goals blij . Thus, we will have as
many roles as actions describing the various local goals.

rolei == {bli1, . . . , blik}
Where bli1, . . . , blik present the same action.
This step leads to a refined specification:

Implementation1

Implementation0

R : P1 Role

∀ bl : BL • ∃ r : Role • bl ∈ r

160 A. Regayeg, A.H. Kacem, and M. Jmaiel

This regroupment must respect the following completeness theorem
which guarantees that every local goal is associated to a role:

theorem completeness⋃m
i=1 rolei = {bli1, bli2, . . . , blin}

– Step 3: Definition of organization relationships
At this level, we refer to the model [9] where a Generic organization
structure OrgStructure is defined by a finite set of relations between
the various necessary roles [OrgRelationship] for the achievement of
a common objective.
Our goal, in this step, is to express how starting from the set of roles
defined in the previous step, we find the various possible organiza-
tion relationships.
We propose, for this definition, to search the common arguments
present in the predicates describing the local goals of different roles.
A common argument for two or several local goals of different roles
proves the existence of an organizational relation between these roles.
After a succession of iterations, we obtain a set of organization rela-
tionships connecting the various roles.
This step leads to a refined specification:

Implementation2

Implementation1

Rorg : P1 OrgRelationship

∀ r :Role • ∃rorg :OrgRelationship | rorg ∈ Rorg • r ∈ dom rorg

In this context, a constraint to check is that each role must have at
least a relationship to one or more other roles. This is guaranteed by
the proof of the following theorem:

theorem RoleRelation
∀ r ∈ Role • r ∈ domSorg

(b) Agent Level
This level consists on defining the agents for which each role will be
associated. Then, we instantiate the different organization relationships,
defined in the previous level, in order to find the eventually organization
links between these agents.
– Step 4: The role assignation

This step consists on defining, given a set of roles, the agents which
will be charged with each one of these roles.
To find the number of the necessary agents for each role, we need
to define the precedence order between the various local goals of the
retained roles. This order relation is based on the different temporal
operators describing the list of local goals. Thus, we can define a
precedence graph for the common objective.

Towards a Formal Methodology for Designing Multi-agent Applications 161

The basic idea consists on referring to precedence order of the differ-
ent local goals in order to avoid assigning simultaneous local goals to
the same agent. Also, one agent can have more than one role provided
that the local goals of these various roles are not in contradiction.
Thus, several scenarios can arise.
At this level, we can define a first refinement of Entity schema where
we add the concept of role:

Entity1

Entity
roles : P1 Role

Then, we can refine the system specification as follows:

Implementation3

Implementation2

∀ r : Role | r ∈ R • ∃ e : Entity1 | e ∈ entities • r ∈ e.roles

– Step 5: The acquaintances definition (organisation links)
The distribution of the roles induces an instantiation of the generic
organisation structure, called concrete organisation structure Con-
creteOrg [9].
An organization link is defined as follows:

OrganisationLink
E : P Entity

#E ≥ 2

An organization link OrganisationLink makes it possible to associate
two or several agents of different roles. Thus, each relation between
two roles, described in the previous level (Step 2.1.b), will be ex-
pressed in term of organization links referring to a set of agents.

Implementation4

Implementation3

organisationlinks : P1 OrganisationLink

∀Or : organisationlinks • ∀ e : Entity •
e ∈ entities ⇔ e ∈ Or .E

At this stage, the following theorem must be proofed indication that
every organization link instantiates an organization relationship:

theorem Instantiation
∀OR : OrgRelationship • r : P1 Role | r ∈ domOR •

∃OL : OrganisationLink • OL.E .R ∈ r

162 A. Regayeg, A.H. Kacem, and M. Jmaiel

3. Interaction Protocol:
Step 6: Interaction Protocol definitions
Having his role, each entity have some communication acts whose will be
achieved (CommActi).
Thus we can describe the Implementationi schema:

Implementationi

Implementationi−1

CommActi1, CommActi2, . . . , CommActin

Each formula (CommActi) is a temporal formula that describes a communi-
cation act.
These formulas are found by deriving each rolei formula using the Achiev
function which associate for each role the necessary communication acts
commacts :

theorem RoleAchiev
∀ role : Role • ∃ commacts : P1 Action •

Achiev(role) = commacts

Individual Level. The specification of the individual futures is generated by
the definition of the different entity capabilities allowing the realization of the
actions defined in the collective level as well as cooperative, organizational and
interactive actions.
Step 7: Individual Capabilities definitions
In order to execute each communication act, an entity must be equipped by some
capabilities as well as send and receive capabilities.
Also, due to the execution of each communication act, an entity have some
internal actions whose must be executed as well as the knowledge updates.
We denote by Behavi these different actions describing the behaviour of each
entity.
We obtain the specifications describing the individual properties of each agent
which will be regarded as an entity to implement separately.
For each entity, we can found a refined schema as:

EntityImpl
Entity1

Behav1, Behav2, . . . , Behavl

Each Behavi can be derived from one or more communication acts using the
Execute function which associate to a set of communication acts a behavioural
action describing the internal updates due to the execution of these acts :

theorem BehavDerivation
∃Commacts : P1 CommAct • ∃BehavAct : Action •

Execute(Commacts) = BehavAct

Towards a Formal Methodology for Designing Multi-agent Applications 163

The design phase leads to a detailed specification of the environment and de-
tailed behaviours of the active entities. The refinement specification corresponds
to the schema for the system (System) extended with the union of the properties
added at both collective and individual levels.

4 Conclusion

In this paper, we proposed a formal approach for specifying and verifying multi-
agent applications. Our main contribution consists in defining a methodology
that permits to develop, step by step, in an incremental way, a design from
an abstract specification. Some case studies are under realization (e.g. the con-
flicts control in the air-traffic). The introduction of a temporal model for multi-
agent applications in the Z framework enabled us to exploit a Z supporting tool
(Z/EVES) for syntax and type checking as well as theorem proving.

However, it is necessary to point out that these first results, even original
and promising, constitute a modest contribution to the definition of a formal
methodology for the design process of multi-agent applications.

Finally, some future works deserve to be undertaken. Indeed, each proposed
step should be supported by verification tools. Also, we intend to provide tools
which help to generate more concrete specifications, using process algebra, CSP
[6] for example, instead of temporal logic. These more concrete specifications can
be implemented using the system SPIN [7]. This latter enables us (1) to simulate
the system behaviour, and (2) to verify the desired temporal properties.

References

1. D. Bjorner. New results and trends in formal techniques for the development of
software for transportation systems. In G. Tarnai and E. Schnieder, editors, Pro-
ceedings of the FORMS2003: Symposium on Formal Methods for Railway Operation
and Control Systems, pages 69–76, Braunschweig, Germany, 1999.

2. S. Deloach and M. Wood. Analysis and design using mase and agenttool. In
Proceedings of the 12th Midwest Artificial Intelligence and Cognitive Science Con-
ference MAICS 2001, Miami University, Oxford, Ohio, 2001.

3. F. Erasmy and E. Sekerinski. Stepwise refinement of control software-a case study
using raise. In M. Naftalin, T. Denvir, and M. Bertran, editors, FME’94: Industrial
Benefit of Formal Methods, pages 547–566. Springer, Berlin, Heidelberg, 1994.

4. M. Fisher. A survey of concurrent MetateM – the language and its applications. In
Proc. 1st InternationalConf. Temporal Logic, Lecture Notes in Computer Science,
pages 480–505. Springer-Verlag, 1994.

5. N. Glaser. The comomas methodology and enironment for multi-agent system
development. In DAI, pages 1–16, 1996.

6. C.A. Hoare. Communicating Sequential Processes. Prentice Hall International,
1985.

7. G.J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

8. M. Jmaiel and P. Pepper. Development of communication protocols using algebraic
and temporal specifications. Computer Networks Journal, 42:737–764, 2003.

164 A. Regayeg, A.H. Kacem, and M. Jmaiel

9. M. Loulou, A. Hadj-Kacem, and M. Jmaiel. Formalization of cooperation in MAS:
Towards a generic conceptual model. In The IX Ibero-American Conference on Ar-
tificial Intelligence (IBERAMIA 2004), volume 3315 of Lecture Notes in Artificial
Intelligence, pages 43–52. Springer-Verlag, 2004.

10. M. Luck and M. d’Inverno. A formal framework for agency and autonomy. In
Proceedings of the first international conference on Multi-Agent Systems, pages
254–260. AAAI Press/MIT Press, 1995.

11. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

12. I. Meisels and M. Saaltink. The Z/EVES 2.0 reference manual. Technical Report
TR-99-5493-03e, ORA Canada, Canada, 1999.

13. A. Omicini. Soda: Societies and infrastructures in the analysis and design of agent-
based systems. In AOSE, pages 185–193, 2000.

14. L. Padgham and M. Winikoff. Prometheus: A methodology for developing intelli-
gent agents. In AOSE, pages 174–185, 2002.

15. A. Regayeg, A. Hadj-Kacem, and M. Jmaiel. Specification and Verification of
Multi-Agent Applications using Temporal Z. In Proceedings of IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT’04), pages 260–266,
Beijing, China, September 2004.

16. A. Regayeg, A. Hadj-Kacem, and M. Jmaiel. Towards a formal methodology for
developing multi-agent applications using temporal Z. In The 3rd ACS/IEEE
International Conference on Computer Systems and Applications (AICCSA’05),
Cairo, Egypt, January 2005.

17. D. Sannella. Algebraic specification and program development by stepwise refine-
ment. In Proc. 9th Intl. Workshop on Logic-based Program Synthesis and Trans-
formation, LOPSTR’99, volume 1817 of Lecture Notes in Computer Science, pages
1–9. Springer, 2000.

18. M. Spivey. The Z notation (second edition). Prentice Hall International, 1992.
19. M. Wooldridge, N. Jenning, and D. Kinny. The Gaia methodology for agent-oriented

analysis and design. Autonomous Agents, 3, 2000.
20. M. Wooldridge, N. R. Jennings, and D. Kinny. A methodology for agent-oriented

analysis and design. In Oren Etzioni, Jörg P. Müller, and Jeffrey M. Bradshaw,
editors, Proceedings of the Third International Conference on Autonomous Agents
(Agents’99), pages 69–76, Seattle, WA, USA, 1999. ACM Press.

21. H. Xu and S. M. Shatz. A framework for model-based design of agent-oriented
software. IEEE Transactions on Software Engineering, 29(1):15–30, January 2003.

22. F. Zambonelli and A. Omicini. Challenges and research directions in agent-oriented
software engineering. Autonomous Agents and Multi-Agent Systems, 9(3):253–283,
2004.

23. H. Zhu. A formal specification language for agent-oriented software engineering.
In Proceedings of AAMAS’2003, pages 1174–1175, Melbourne, Australia, 2003.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 165 – 178, 2005.
© Springer-Verlag Berlin Heidelberg 2005

LEADSTO: A Language and Environment
for Analysis of Dynamics by SimulaTiOn

Tibor Bosse1, Catholijn M. Jonker2, Lourens van der Meij1, and Jan Treur1

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{tbosse, lourens, treur}@cs.vu.nl
http://www.cs.vu.nl/~{tbosse, lourens, treur}

2 Nijmegen Institute for Cognition and Information, Division Cognitive Engineering,
Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

C.Jonker@nici.kun.nl

Abstract. This paper presents the language and software environment
LEADSTO that has been developed to model and simulate the dynamics of
Multi-Agent Systems (MAS) in terms of both qualitative and quantitative con-
cepts. The LEADSTO language is a declarative order-sorted temporal language,
extended with quantitative means. Dynamics of MAS can be modelled by
specifying the direct temporal dependencies between state properties in succes-
sive states. Based on the LEADSTO language, a software environment was de-
veloped that performs simulations of LEADSTO specifications, generates simu-
lation traces for further analysis, and constructs visual representations of traces.
The approach proved its value in a number of projects within different domains
of MAS research.

1 Introduction

Two important phases in the development of Multi-Agent Systems are the Design
phase and the Implementation phase. In principle, the result of the Design phase is a
high-level description (a model) of the system to be developed which, when encoded
in some programming language, solves a particular problem. To this end, the problem
is decomposed into modules, of which the functions and interfaces are specified in
detail [10]. Then, the result of the Design phase, the (technical) specification, can
serve as a starting point for the Implementation phase. However, an important prob-
lem is the validation of this specification: can it be proven that the specification shows
the expected behaviour (e.g. as described by requirements) before it is actually im-
plemented? Especially when the specification is given in terms of abstract high-level
concepts this is a non-trivial task.

To contribute to the validation of Multi-Agent System specifications, this paper in-
troduces the language and software environment LEADSTO. LEADSTO can be used
to model the dynamics of systems to be designed, on the basis of highly abstract proc-
ess descriptions. If those dynamics are modelled correctly, the LEADSTO software
environment can use them for simulation of the desired behaviour of the system. Al-
though such simulations are no formal proof, they can contribute to an informal vali-

166 T. Bosse et al.

dation of the specification: by performing a number of simulations, it can be tested
whether the behaviour of the specification is satisfactory. Therefore, LEADSTO may
be an important tool to bridge the gap between the Design and the Implementation
phase.

Generally, in simulations various formats are used to specify basic mechanisms or
causal relations within a process, see e.g., [1], [5], [9]. Depending on the domain of
application such basic mechanisms need to be formulated quantitatively or qualita-
tively. Usually, within a given application explicit boundaries can be given in which
the mechanisms take effect. For example, “from the time of planting an avocado pit, it
takes 4 to 6 weeks for a shoot to appear”.

As mentioned above, in order to simulate a system to be designed, it is important to
model its dynamics. When considering current approaches to modelling dynamics, the
following two classes can be identified: logic-oriented modelling approaches, and
mathematical modelling approaches, usually based on difference or differential equa-
tions. Logic-oriented approaches are good for expressing qualitative relations, but less
suitable for working with quantitative relationships. Mathematical modelling ap-
proaches (e.g., Dynamical Systems Theory [9]), are good for the quantitative rela-
tions, but expressing conceptual, qualitative relationships is very difficult. In this
article, the LEADSTO language (and software environment) is proposed as a lan-
guage combining the specification of qualitative and quantitative relations.

In Section 2, the LEADSTO language is introduced. Section 3 provides examples
from existing case studies in which LEADSTO has been applied. Section 4 describes
the tools that support the LEADSTO modelling environment in detail. In particular,
the LEADSTO Property Editor and the LEADSTO Simulation Tool are discussed.
Section 5 compares the approach to related modelling approaches, and Section 6 is a
conclusion.

2 Modelling Dynamics in LEADSTO

Dynamics can be modelled in different forms. Based on the area within Mathematics
called calculus, the Dynamical Systems Theory (DST) [9] advocates to model dynam-
ics by continuous state variables and changes of their values over time, which is also
assumed continuous. In particular, systems of differential or difference equations are
used. This may work well in applications where the world states can be modelled in a
quantitative manner by real-valued state variables and the world’s dynamics shows
continuous changes in these state variables that can be modelled by mathematical
relationships between real-valued variables.

Not for all applications dynamics can be modelled in a quantitative manner as re-
quired for DST. Sometimes qualitative changes form an essential aspect of the dy-
namics of a process. For example, to model the dynamics of reasoning processes in
Intelligent Agents usually a quantitative approach will not work. In such processes
states are characterised by qualitative state properties, and changes by transitions
between such states. For such applications often qualitative, discrete modelling ap-
proaches are advocated, such as variants of modal temporal logic; e.g., [6]. However,
using such non-quantitative methods, the more precise timing relations are lost too.

 LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn 167

For the approach used in this paper, it was decided to consider time as continuous,
described by real values, but to allow both quantitative and qualitative state proper-
ties. The approach subsumes approaches based on simulation of differential or differ-
ence equations, and discrete qualitative modelling approaches, but also combines
them. For example, it is possible to model the exact (real-valued) time interval for
which some qualitative property holds. Moreover, the relationships between states
over time are described by either logical or mathematical means, or a combination
thereof. This is explained below in more detail.

Dynamics is considered as evolution of states over time. The notion of state as
used here is characterised on the basis of an ontology defining a set of properties that
do or do not hold at a certain point in time. For a given (order-sorted predicate logic)
ontology Ont, the propositional language signature consisting of all state ground atoms
(or atomic state properties) based on Ont is denoted by APROP(Ont). The state properties
based on a certain ontology Ont are formalised by the propositions that can be made
(using conjunction, negation, disjunction, implication) from the ground atoms. A state
S is an indication of which atomic state properties are true and which are false, i.e., a
mapping S: APROP(Ont) → {true, false}.

To specify simulation models a temporal language has been developed. This lan-
guage (the LEADSTO language) enables one to model direct temporal dependencies
between two state properties in successive states, also called dynamic properties. A
specification of dynamic properties in LEADSTO format has as advantages that it is
executable and that it can often easily be depicted graphically. The format is defined
as follows. Let α and β be state properties of the form ‘conjunction of atoms or nega-
tions of atoms’, and e, f, g, h non-negative real numbers. In the LEADSTO language
the notation α →→e, f, g, h β (also see Figure 1), means:

If state property α holds for a certain time interval with duration g, then after some delay
(between e and f) state property β will hold for a certain time interval of length h.

α
β

t1

e

g h

t2

time

f
t0

Fig. 1. The timing relationships

An example dynamic property that uses the LEADSTO format defined above is the
following: “observes(agent_A, food_present) →→ 2, 3, 1, 1.5 belief(agent_A, food_present)”. Infor-
mally, this example expresses the fact that, if agent A observes that food is present
during 1 time unit, then after a delay between 2 and 3 time units, agent A will believe
that food is present during 1.5 time units. In addition, within the LEADSTO language
it is possible to use sorts, variables over sorts, real numbers, and mathematical opera-
tions, such as in “has_value(x, v) →→ e, f, g, h has_value(x, v*0.25)”.

168 T. Bosse et al.

Next, a trace or trajectory γ over a state ontology Ont is a time-indexed sequence of
states over Ont (where the time frame is formalised by the real numbers). A
LEADSTO expression α →→e, f, g, h β, holds for a trace γ if:

∀t1: [∀t [t1–g ≤ t < t1 α holds in γ at time t] ∃d [e ≤ d ≤ f & ∀t' [t1+d ≤ t' < t1+d+h β holds in γ
at time t']

An important use of the LEADSTO language is as a specification language for
simulation models. As indicated above, on the one hand LEADSTO expressions can
be considered as logical expressions with a declarative, temporal semantics, showing
what it means that they hold in a given trace. On the other hand they can be used to
specify basic mechanisms of a process and to generate traces, similar to Executable
Temporal Logic (cf. [1]).

Finally, the LEADSTO format can be graphically depicted in a causal graph-like
format, such as in Figure 2. Here, state properties are indicated by circles and
LEADSTO relationships by arrows. An arc denotes a conjunction between state prop-
erties. Agents are indicated by dotted boxes. Circles that are depicted within an agent
denote its internal (mental) state properties. Circles that are depicted on the left or
right border of an agent denote, respectively, its input and output state properties, and
circles that are depicted outside an agent denote state properties of the external world.
Notice that this simple form leaves out the timing parameters e, f, g, h. A more detailed
form can be obtained by placing the timing parameters in the picture as labels for the
arrows. For more details about the LEADSTO language, see Section 4.

Fig. 2. Example of a graphical representation of two LEADSTO properties

3 Applications

The LEADSTO environment has been applied in a number of research projects in
different domains. In this section, an example LEADSTO specification is given for a
specific domain: a Multi-Agent System for ant behaviour, adopted from [3]. The
world in which the ants live is described by a labeled graph as depicted in Figure 3.
Locations are indicated by A, B,…, and edges by E1, E2,… The ants move from
location to location via edges; while passing an edge, pheromones are dropped. The
objective of the ants is to find food and bring this back to their nest. In this example
there is only one nest (at location A) and one food source (at location F).

food_present

observes(agent_A,
food_present)

no_enemies

observes(agent_A,
no_enemies)

performs(agent_A, eat_food)

to_be_performed
(agent_A, eat_food)

belief(agent_A, no_enemies)

belief(agent_A, food_present)

 LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn 169

Fig. 3. An ants world

In [3], the dynamics of this system are formalised in LEADSTO, and some simula-
tions are shown for different situations. A number of LEADSTO expressions that have
been used for the simulation are shown in Box 1. For the complete specification, see [3].

In Figure 4 an example of a resulting simulation trace is shown. The upper part of
the figure shows qualitative information; the lower part shows quantitative informa-
tion. Time is on the horizontal axis. In the upper part, the state properties are on the
vertical axis. Here, a dark box on top of the line indicates that the property is true
during that time period, and a lighter box below the line indicates that the property is
false. For example, the state property to_be_performed(ant2, pick_up_food) is true from
time point 20 to 21. Because of space limitations, only a selection of important state
properties was depicted. In the lower part, different instantiations of state property
pheromones_at_E1(X) are shown, with different (real) values for X. For example, from
time point 1 to 7 the amount of pheromones on E1 is 0.0.

Box 1. Example LEADSTO specification

LP5 (Selection of Edge)
This property models (part of) the edge selection mechanism of the ants. It expresses that, when an

ant a observes that it is at location l coming from edge e0, and there are two other edges connected to

that location, then the ant goes to the edge with the highest amount of pheromones. Formalisation:
observes(a, is_at_location_from(l, e0)) and neighbours(l, 3) and connected_to_via(l, l1, e1) and observes(a, phero-

mones_at(e1, i1)) and connected_to_via(l, l2, e2) and observes(a, pheromones_at(e2, i2)) and e0 ≠ e1 and e0 ≠ e2 and e1

≠ e2 and i1 > i2 →→0,0,1,1 to_be_performed(a, go_to_edge_from_to(e1, l1))

LP9 (Dropping of Pheromones)
This property expresses that, if an ant observes that it is at an edge e from a location l to a location l1,

then it will drop pheromones at this edge e. Formalisation:

observes(a, is_at_edge_from_to(e, l, l1)) →→0,0,1,1 to_be_performed(a, drop_pheromones_at_edge_from(e, l))

LP13 (Increment of Pheromones)
This property models (part of) the increment of the number of pheromones at an edge as a result of

ants dropping pheromones. It expresses that, if an ant drops pheromones at edge e, and no other ants

drop pheromones at this edge, then the new number of pheromones at e becomes i*decay+incr. Here,

i is the old number of pheromones, decay is the decay factor, and incr is the amount of pheromones

dropped. Formalisation:
to_be_performed(a1, drop_pheromones_at_edge_from(e, l1)) and ∀l2 not to_be_performed(a2,

drop_pheromones_at_edge_from(e, l2)) and ∀l3 not to_be_performed(a3, drop_pheromones_at_edge_from(e, l3)) and a1

≠ a2 and a1 ≠ a3 and a2 ≠ a3 and pheromones_at(e, i) →→0,0,1,1 pheromones_at(e, i*decay+incr)

e6

e9

e7

e10

e8

e5

e4e3e2

e1

A

B C D

F

 E

 H G

170 T. Bosse et al.

Although this picture provides a very simple example (involving only three ants), it
demonstrates the power of LEADSTO to combine (real-valued) quantitative concepts
with (conceptual) qualitative concepts.

Fig. 4. Example simulation trace

Thus, Figure 4 shows an easy to read (important for the communication with the
domain expert), compact, and executable representation of an informal model for ant
behaviour. Moreover, the example demonstrates the power of conceptual modelling
based on highly abstract process descriptions. In less than 3 pages of code, the global
dynamics of ant behaviour are so well defined that the specification actually runs. The
specification took only a couple of days to construct, making the LEADSTO approach
valuable for proof-of-concept simulations, thus important for Agent-Oriented Soft-
ware Engineering.

Finally, note that the ant example does not fully exploit the power of to use real-
valued time parameters (in fact, most of the rules use the values 0,0,1,1 for the pa-
rameters e, f, g, h, see Box 1). Nevertheless, in a number of other domains the use of
real-valued time parameters turned out to be beneficial, since it allows for more real-
istic simulations of dynamic processes. An example domain where this was the case,
is the domain of adaptive agents based on classical conditioning, see [2].

4 Tools

In this section, the LEADSTO software environment is presented. Basically, this
environment consists of two programs: the Property Editor (a graphical editor for
constructing and editing LEADSTO specifications) and the Simulation Tool (for per-
forming simulations of LEADSTO specifications, generating data-files containing
traces for further analysis, and showing traces). Apart from the LEADSTO language
constructs introduced in Section 2 the LEADSTO software has a number of other

 LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn 171

language constructs. Section 4.1 discusses some details. Next, Section 4.2 introduces
the Property Editor and Section 4.3 deals with the Simulation Tool. Section 4.4 de-
scribes the algorithm used to generate simulations. Finally, Section 4.5 provides some
implementation details and discusses possible improvements for the future.

4.1 Details of the LEADSTO Language

There are various representations of LEADSTO specifications. A graphical represen-
tation is shown in Section 4.2 when discussing the Editor. In this section all language
constructs are discussed using a formal representation, based on the way specifica-
tions are stored.

Variables. The language uses typed variables in various constructs. A variable is
represented as <Var-Name>:<Sort>.

Sorts. Sorts may be defined as a set of instances that may be specified: sortdef(<Sort-
Name>, [<Term>,…]). There are also built-in sorts such as integer, real, and ranges of
integers represented as for example between(2,10).

Atoms. Atoms may be terms built up from names with argument lists where each
argument must be a term or a variable, for example: belief(x:AGENT, food_present).

LEADSTO rules. LEADSTO rules are introduced in Section 2. They are represented
as:

leadsto([<Vars>,] <Antecedent-Formula>, <Consequent-Formula>, <Delay>, where

<Delay> := efgh(<E-Range>,<F-Range>, <G-Range>,<H-Range>))
1

<Vars> := “[“ <Variable>,... “]”

For example, α →→0, 0, 1, 1 β is represented as leadsto(alfa, beta, efgh(0,0,1,1)). Variables
occurring in LEADSTO rules must be explicitly declared as <Variable> entries.

Formulae. LEADSTO rules contain formulae. The current implementation allows
conjunctions and universal quantification over typed variables. Some variables are
global, encompassing the whole rule. Other - local - variables are part of universal
quantification of some conjunction. The first kind of variables may be of infinite
types. Currently, local variables must be of finite types. Some of these restrictions –
such as on not allowing disjunction – will be removed in a next version. This will
have no effect on the performance of the algorithm discussed in Section 4.4, but will
make the details of the algorithm more complex. Other restrictions with respect to
variables of infinite type will remain.

Time/Range. Time and Range values occurring in LEADSTO rules and interval con-
structs may be any number or expression evaluating to a number.

Constants. Constants may be defined using the following construct: constant(<Name>,
<Value>). A constant(C1, a(1)) entry in a specification will lead to C1 being substituted
by a(1) everywhere in the specification.

Intervals. During simulation, some atom values will be derived from LEADSTO
rules. Others are not defined by rules but represent constant values of atoms over a
certain time range. They are expressed as: interval([<Vars>,]<Range>,<LiteralConjunction>).

1 The reason for grouping the delay is to make it easier to use delay constants.

172 T. Bosse et al.

Periodically reoccurring constant values are represented as: peri-
odic([<Vars>,]<Range>,<Period>,<LiteralConjunction>), where

<Range> := range(<Start-Time>,<End-Time>)
<Vars> := “[“ <Variable>,... “]”
<Period> : an expression or constant or variable representing a number.
<LiteralConjunction> := <Literal> { and <Literal> }*
<Literal> := <Atom> | not <Atom>

For example, an entry interval([X:between(1,2)], range(10,20), a(X)) makes a(1) and a(2)
true in the time range (10,20). Likewise, an entry periodic(P, range(0,1), 10) makes P
true in time ranges (0,1), (10,11), (20,21), and so on.

Simulation Range. The time range over which the simulation must be run is ex-
pressed by means of the constructs start_time(<Time>) and end_time(<Time>).

Visualisation of Traces. The construct display(<Tag-Name>, <Property>) is used to spec-
ify details of how to display the traces. The <Tag-Name> argument makes it possible to
define multiple views of a trace. The active view may be specified from within the
User Interface of the Simulation Tool. A number of properties may be specified, for
showing or hiding certain atoms, for sorting atoms, for grouping atoms into a graph,
and so on.

4.2 Property Editor

The Property Editor provides a user-friendly way of building and editing LEADSTO
specifications. It was designed in particular for laymen and students. The tool has
been used successfully by students with no computer science background and by
users with little computer experience. By means of graphical manipulation and filling

Fig. 5. The LEADSTO Property Editor

 LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn 173

in of forms a LEADSTO specification may be constructed. The end result is a saved
LEADSTO specification file, containing entries discussed in section 4.1. Figure 5
gives an example of how LEADSTO specifications are presented and may be edited
with the Property Editor. This screenshot corresponds to (part of) the specification
given in Box 1.

4.3 Simulation Tool

Figure 6 gives an overview of the Simulation Tool and its interaction with the
LEADSTO Property Editor.

Fig. 6. Simulation Tool Architecture

The bold rectangular borders define the separate tools. The lines with arrows repre-
sent data transport; the dashed arrows represent control. The Property Editor is used
to generate and store LEADSTO specification files. The Simulation Tool loads these
specification files. The overall control of the Simulation Tool is handled by the Con-
trol-GUI component. The Simulation Tool can perform the following activities:

• Loading LEADSTO specifications, performing a simulation and displaying the
result.

• Loading and displaying existing traces (without performing simulation).
• Adjusting the visualisation of traces.

Loading and simulating a LEADSTO specification is handled in four steps:

1. The Specification Loader loads the specification.
2. The Intermediate Code Generator initialises the trace situation with values de-

fined by interval and periodic entries in the specification. The LEADSTO rules

 Simulation Tool

Trace Files

Internal
Trace Storage

Trace Visualisation
GUI

Trace Loader

Control
GUI

LEADSTO
Property Editor LEADSTO

Specification

LEADSTO Specification Loader

Intermediate Code Generator

Runtime System

174 T. Bosse et al.

are preprocessed: constants are substituted, universal quantifications are ex-
panded and the rules are partially compiled into Prolog calls.

3. The actual simulation is performed by the Runtime System. This is the part that
contains the algorithm, discussed in the next section.

4. At the end of a simulation the result is stored internally by the Internal Trace
Storage component. The result can be saved as a trace file containing the evo-
lution over time of truth values of all atoms occurring in the simulation, and
will be visualised by the Trace Visualisation GUI. In principle, traces are
three-valued, using the truth values true, false, and unknown. Saved trace files
can be inspected later by the simulation tool and can be used by other tools,
e.g., for automated analysis.

Note that visualisation of traces is integrated into the Simulation Tool through the
Trace Visualisation GUI component. It is possible to select what atoms must be
shown and in what order (sorting) etc. Figure 4 is an example of the visualisation of
the result of a simulation.

4.4 Simulation Engine Algorithm

In this section a sketch of the simulation algorithm is given. The core of the semantics
is determined by the LEADSTO rules, for example leadsto(alpha,beta, efgh(e, f, g, h)) or
(in the notation of Section 2) α →→e, f, g, h β. The state properties α, β are internally
normalised. Currently, only state properties that can be simplified to conjunctions of
literals are allowed.

Restrictions on delays
The parameters g and h are time intervals, they must be >= 0. The algorithm allows
only causal rules, e,f >= 0. Allowing e,f < 0 would lead to non-causal behaviour (any
trace situation could have an effect arbitrarily in the past) and an awkward simulation
algorithm. The causal nature of the semantics of LEADSTO rules results in a straight-
forward algorithm: at each time point, a bound part of the past of the trace (the maxi-
mum of all g values of all rules) determines the values of a bound range of the future
trace (the maximum of f + h over all LEADSTO rules).

Outline of the algorithm
First all interval and periodic entries are handled by setting the ranges of atoms accord-
ing to their definition. Next, for the algorithm a time variable HandledTime is intro-
duced: all LEADSTO rules with antecedent range up to HandledTime have fired. The
idea is to propagate HandledTime until HandledTime >= EndTime2 via the following steps:

1. At a certain HandledTime, a value for NextTime is calculated. This will be the
first time in the future after HandledTime that firing of a LEADSTO rule with its
g-interval (see Figure 1) extending past HandledTime may have effect in the
form of some consequent atom set. The time increment will be at least as big as
the minimum of e + h over all LEADSTO rules.

2. An (optional) Closed World Assumption is performed for all selected atoms in
the range (HandledTime, NextTime), i.e., all unknown atoms in this range are made
false.

2 EndTime is the time up to which the simulation should be run.

 LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn 175

3. All LEADSTO rules are applied for which the range of the antecedent ends be-
fore or overlaps with NextTime.

4. Set HandledTime := NextTime
5. Continue with step 1 until HandledTime >= EndTime

4.5 Implementation Details

The complexity of the current algorithm is proportional to the number of LEADSTO
rules in the specification, to the number of incremental time steps of the algorithm
(which is at most equal to the length of the simulation divided by the minimum of e +
h over all LEADSTO rules) and (at most) to the number of matching antecedent at-
oms per LEADSTO rule (limited by the number of atoms set during the simulation).
A number of optimizations already improve the performance, such as only consider-
ing antecedent atoms that have matching values in the (HandledTime, NextTime) time
range and not considering LEADSTO rules that have been tested to not fire until
some time in the future.

The software was written in SWI-Prolog/XPCE, and consists of approximately
20000 lines of code. The approach for the design and implementation has been to
first focus on a complete implementation that is easily adaptable, with acceptable
performance for the current users. For an impression of the performance: the simula-
tion of Section 3 took two seconds on a regular Personal Computer. More complex
LEADSTO simulations have been created that take about half an hour to run. For
example: one simulation with 170 LEADSTO rules, 2000 time steps, with 15000
atoms set, took 45 minutes.

There is room for further performance improvement of the algorithm. One possi-
ble improvement is to increase the time increment NextTime – HandledTime introduced
in the algorithm above. Global analysis of dependency of LEADSTO rules should
improve the performance, for instance by trying to eliminate simple rules with small
values of their e + h parameters. Furthermore, the LEADSTO language is being ex-
tended with constructs for probabilistic rules, and with constructs for systematically
generating traces of LEADSTO specifications for a range of parameters.

5 Related Work

In the literature, a number of modelling approaches exist that have similarities to the
approach discussed in this paper. Firstly, there is the family of approaches based on
differential or difference equations (see, e.g., [9]). In these approaches, to simulate
processes by mathematical means, difference equations are used, for example, of the
form: Δx = f(x) Δt or x(t + Δt) = x(t) + f(x(t)) Δt. This can be modelled in the LEADSTO
language as follows (where d is Δt): has_value(x, v) →→d, d, d, d has_value(x, v+f(v)*d). This
shows how the LEADSTO modelling language subsumes modelling approaches
based on difference equations. In addition to those approaches the LEADSTO lan-
guage allows to express qualitative and logical aspects.

Another modelling approach, Executable Temporal Logic [1], is based on temporal
logic formulae of the form ϕ & χ ψ, where ϕ is a past formula, χ a present formula
and ψ a future formula. In comparison to this format, the LEADSTO format is more

176 T. Bosse et al.

expressive in the sense that it allows order-sorted logic for state properties, and allows
one to express quantitative aspects. Moreover, the explicitly expressed timing pa-
rameters go beyond Executable Temporal Logic. On the other hand, within Executa-
ble Temporal Logic it is allowed to refer to different past states at different points in
time, and thus to model more complex relationships over time. For the LEADSTO
language the choice has been made to model only the basic mechanisms of a process
(e.g., the direct causal relations), like in modelling approaches based on difference
equations, and not to model the more complex mechanisms.

The Duration Calculus [11] is a modal logic for describing and reasoning about
the real-time behaviour of dynamic systems, where states change over time and are
represented by functions from time (reals) to the Boolean values (0 and 1). It is an
extension of Interval Temporal Logic [7], but with continuous time, and uses inte-
grated durations of states as interval temporal variables. Assuming finite variability of
state functions (i.e., between any two time points only a finite number of state
changes occurs), the axioms and rules of Duration Calculus constitute a complete
logic (relative to Interval Temporal Logic). A number of interesting tools have been
created around (subsets of) Duration Calculus, see, e.g., [8] for information on model
checking duration calculus formulae. Duration Calculus itself is not directly used for
creating executable models, but environments for executable code exist (e.g., PLC
automata, see [4]) for which a semantics is given in Duration Calculus.

Another family of modelling approaches based on causal relations is the class of
qualitative reasoning techniques (see, e.g., [5]). The main idea of these approaches is
to represent quantitative knowledge in terms of abstract, qualitative concepts. Like the
LEADSTO language, qualitative reasoning can be used to perform simulation. A
difference with LEADSTO is that it is a purely qualitative approach, and that it is less
expressive with respect to temporal and quantitative aspects.

6 Conclusion

This article presents the language and software environment LEADSTO that has been
developed to model and simulate the dynamics of Multi-Agent Systems on the basis
of highly abstract process descriptions. If those dynamics are modelled correctly, the
LEADSTO software environment can use them for simulation of the desired behav-
iour of the system. Although such simulations are no formal proof, they can contrib-
ute to an informal validation of the specification: by performing a number of simula-
tions, it can be tested whether the behaviour of the specification is satisfactory. There-
fore, LEADSTO may be an important tool to bridge the gap between the Design and
the Implementation phase.

Within LEADSTO, dynamics can be modelled in terms of both qualitative and
quantitative concepts. It is, for example, possible to model differential and difference
equations, and to combine those with discrete qualitative modelling approaches. Ex-
isting languages are either not accompanied by a software environment that allows
simulation of the model, or do not allow the combination of both qualitative and
quantitative concepts.

The language LEADSTO is a declarative order-sorted temporal language extended
with quantitative notions (like integer, and real). Time is considered linear, continu-

 LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn 177

ous, described by real values. Dynamics can be modelled in LEADSTO as evolution
of states over time, i.e., by modelling the direct temporal dependencies between state
properties in successive states. The use of durations in these temporal properties fa-
cilitates the modelling of such temporal dependencies. In principle, accurately model-
ling the dynamics of processes may require the use of a dense notion of time, instead
of the more practiced variants of discrete time. The problem in a dense time frame of
having an infinite number of time points between any two time points is tackled in
LEADSTO by the assumption of “Finite Variability” (see Section 5 and, e.g., [11]).
Furthermore, main advantages of the LEADSTO language are that it is executable and
allows for graphical representation.

The software environment LEADSTO was developed especially for the language.
It features a dedicated Property Editor that proved its value for laymen, students and
expert users. The core component is the Simulation Tool that performs simulations of
LEADSTO specifications, generates simulation traces for further analysis, and visual-
ises the traces.

The approach proved its value in a number of research projects in different do-
mains. It has been used to analyse and simulate behavioural dynamics of agents in
cognitive science (e.g., human reasoning, creation of consciousness, diagnosis of
eating disorders), biology (e.g., cell decision processes, the dynamics of the heart),
social science (e.g., organisation dynamics, incident management), and artificial intel-
ligence (e.g., design processes, ant colony behaviour). LEADSTO is so rich that it can
be used to model phenomena from diverse perspectives. It has, for example, been
used to model cognitive processes from a psychological/BDI perspective and from a
physical/neurological perspective. For more publications about these applications, the
reader is referred to the authors’ homepages.

References

1. Barringer, H., M. Fisher, D. Gabbay, R. Owens, & M. Reynolds (1996). The Imperative
Future: Principles of Executable Temporal Logic, Research Studies Press Ltd. and John
Wiley & Sons.

2. Bosse, T., Jonker, C.M., Los, S.A., Torre, L. van der, and Treur, J., Formalisation and
Analysis of the Temporal Dynamics of Conditioning. In: J.P. Mueller and F. Zambonelli
(eds.), Proc. of the Sixth Int. Workshop on Agent-Oriented Software Engineering,
AOSE'05. To appear, 2005.

3. Bosse, T., Jonker, C.M., Schut, M.C., and Treur, J, Simulation and Analysis of Shared Ex-
tended Mind. In: Davidsson, P., Gasser, L., Logan, B., and Takadama, K. (eds.), Proc. of
the First Joint Workshop on Multi-Agent and Multi-Agent-Based Simulation, MAMABS'04,
2004, pp. 191-200.

4. Dierks, H. PLC-automata: A new class of implementable real-time automata. In M. Ber-
tran and T. Rus, editors, Transformation-Based Reactive Systems Development (ARTS'97),
volume 1231 of Lecture Notes in Computer Science, pages 111-125. Springer-Verlag,
1997.

5. Forbus, K.D. Qualitative process theory. Artificial Intelligence, vol. 24, no. 1-3, 1984, pp.
85-168.

178 T. Bosse et al.

6. Meyer, J.J.Ch., and Treur, J. (volume eds.), Agent-based Defeasible Control in Dynamic
Environments. Series in Defeasible Reasoning and Uncertainty Management Systems (D.
Gabbay and Ph. Smets, series eds.), vol. 7. Kluwer Academic Publishers, 2002.

7. Moszkowski, B., and Manna, Z. Reasoning in Interval Temporal Logic. In Clarke, E., and
Kozen, D., editors, Proceedings of the Workshop on Logics of Programs, volume 164 of
LNCS, pages 371–382, Pittsburgh, PA, June 1983. Springer Verlag.

8. Pandya, P.K., Model checking CTL[DC]. In: Proceedings of TACAS 2001, Genova,
LNCS 2031, Springer-Verlag, April 2001.

9. Port, R.F., Gelder, T. van (eds.) (1995). Mind as Motion: Explorations in the Dynamics of
Cognition. MIT Press, Cambridge, Mass.

10. Vliet, H., van. Software Engineering: Principles and Practice. John Wiley & Sons, Ltd,
2000.

11. Zhou, C., Hoare, C.A.R., and Ravn, A.P. A Calculus of Durations, Information Processing
Letter, 40, 5, pp. 269-276, 1991.

Towards a Distributed Tool Platform Based on

Mobile Agents

Kolja Lehmann, Lawrence Cabac, Daniel Moldt, and Heiko Rölke

University of Hamburg, Department of Computer Science,
Vogt-Kölln-Str. 30, D-22527 Hamburg

{8lehmann, cabac, moldt, roelke}@informatik.uni-hamburg.de

Abstract. Nowadays many software development (SD) projects are pla-
ced in a distributed setting, concerning both the software itself and the
resources, processes and actors needed to create or maintain the software.
Therefore, tools and methods to support software engineering should be
distributed as well.

In a SD project many different actors play different roles, all interact-
ing with one another. The software engineering paradigm most suited for
this kind of organization in which autonomous actors act and interact is
the paradigm of agent-oriented software development (AOSE).

This article presents a MAS-based tool platform (cooperative infras-
tructure) which integrates different tools that are distributed over several
agent platforms.

The eventual goal of this platform is to create a distributed software
development environment. This should easily allow interaction, coordi-
nation and cooperation between different participating parties in a soft-
ware development process, by allowing them to communicate, negotiate,
synchronize resources, etc. in a transparent, distributed and dynamic
setting.

Keywords: Multi-agent system, agent, AOSE, distributed IDE, dis-
tributed software development, software development tools, Mulan, nets-
within-nets, Petri nets, Plug-in Agent, Renew.

1 Introduction

Software development processes today are getting increasingly more distributed
and shared among multiple organizations. Parts of software can be manufac-
tured offshore to reduce costs, while central components are left for more trusted
companies with a better reputation. Design, specification and quality assurance
(QA) might be performed in yet another place. Therefore, new tools are needed
to support the collaboration between different people in different organizations
working together towards a common goal, namely the production or mainte-
nance of a software product. These software tools need to integrate the different
views of the stakeholders on the software and to allow them to work together.

Current integrated development environments are well suited to support a
single user in the development process. However, in increasingly dynamic settings

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 179–190, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

180 K. Lehmann et al.

of distributed development teams, flexibility and support for collaborative work
is still not adequately integrated.

In our view the agent-oriented software development paradigm is best suited
for this kind of challenge for a couple of reasons. By applying the AOSE paradigm
it is possible to provide a similar structure of the application domain model and
the technical domain model. This is of advantage for the construction of complex
highly dynamical software systems [22]. The AOSE paradigm is designed to
integrate different autonomous software entities: agents, that all have their own
goals and are interacting to achieve these goals.

For example a customer has the goal to obtain a software that meets his or
his companies needs. A developer wants to have all information and resources
at hand to perform his work. The QA department needs access to the test-
ready releases and communication channels to communicate the problems found.
All these different users can be further integrated by applying a flexible work-
flow management system that delegates tasks between the involved parties. This
workflow system can be distributed within the multi-agent system as well.

Our approach for the development of this kind of distributed development
environment is described in this article. It is based on different kinds of interact-
ing agents on a fine-grained level. Every user is represented by an agent, but also
all functionality is provided by different kinds of Tool Agents, that plug into the
users User Agent and interact with each other to provide the desired functional-
ity. Other agents within the multi-agent system provide additional functionality
like persistence of agents between sessions, user authentication and tool creation.

Our approach also incorporates the notions and concepts from plug-in system
architectures [2,3,4]. These concepts allow to construct large, flexible and adapt-
able systems from smaller composable elements, in which functionality can be
extended or altered by adding, changing or removing plug-ins. The combination
of both leads to the concept of pluggable agents or Plug-in Agents.

This article describes first steps that have been made towards the develop-
ment of such a system, the architecture implemented so far and envisioned for the
future. Therefore, Section 2 will introduce the basics on which this work is based,
especially our MAS framework Mulan, Section 3 describes the architecture of
the system. It focusses on the aspects that have already been implemented and
hints at the direction of further development. Since mobile agents are used for
the deployment of services, Section 4 describes the way mobility is implemented
using our architecture based on the framework Mulan.

2 Basic Concepts

In this section we will introduce the agent system architecture Mulan together
with the Capa extension. Mulan is implemented using the reference net for-
malism (and Java) so we start with an overview on reference nets.

2.1 Reference Nets

Reference Nets [11] are expressive high-level Petri nets that allow nets to be
nested within nets in dynamical structures (nets-within-nets [20]). In contrast

Towards a Distributed Tool Platform Based on Mobile Agents 181

to ordinary Petri nets, where tokens are passive elements, tokens in nets-within-
nets are active elements, i.e. Petri nets. In general we distinguish between two
different kinds of token semantics: value semantics and reference semantics. In
value semantics tokens can be seen as direct representations of nets. This allows
for nested nets that are structured in a hierarchical order because nets can
only be located at one location. In reference semantics arbitrary structures of
net-nesting can be achieved because tokens represent references to nets. These
structures can be hierarchical, acyclic or even cyclic.

Reference Nets are object-oriented nets, which may be modelled and exe-
cuted using the Petri net-IDE Renew [12]. Similar to objects in object-oriented
programming languages, where objects are instantiations of classes, net instances
are instantiations of net templates. Net templates define the structure and be-
havior of nets just like classes define the structure and methods of objects. While
the net instance has a marking that determines its status, the net template deter-
mines only the behavior and initial marking that is common to all net instances
of one type.

Communication between different nets (net instances) is possible via syn-
chronous channels. Synchronous channels resemble method calls in object-orien-
ted programming languages, but they are more powerful. They temporarily fuse
two (or more) transitions and allow the passing of arguments in either directions.
Furthermore, the enabledness of the channel is determined by all participating
transitions, not only by one caller.

2.2 The Multi-agent System Mulan

Today, agents and multi-agent systems (MAS) are one of the most important
structuring concepts for complex software systems. By including attributes like
autonomy, cooperation, adaptability and mobility, agents go well beyond the
concept of objects and object-oriented software development.

The multi-agent system architecture Mulan [14] is based on the nets-within-
nets paradigm, which is used to describe the natural hierarchies in an agent
system. Mulan is implemented in Reference Nets using Renew [12]. Mulan
has the general structure as depicted in Figure 1: Each box describes one level
of abstraction in terms of the net hierarchy. Each upper level net contains net

add
re pro

protocols

platforms

communication
 structure

p3

p2

p1

a

pi

kb

p

send msgreceive msg

in

external
communication

internal
communication

remove

agents

protocols in
conversations

knowledge base

outremove

p4

O
MO

Z
start

subcall

stop

process

out

in

agent platform agent protocolmulti agent system

Fig. 1. Agent system as nets-within-nets

182 K. Lehmann et al.

tokens, whose structures are made visible by the ZOOM lines.1 The figure shows
a simplified version of Mulan, since for example several inscriptions and all
synchronous channels are omitted. Nevertheless, Mulan is an executable model.

The Multi-agent System View. The net in the upper left of Figure 1 de-
scribes an agent system, whose places contain agent platforms as tokens. The
transitions describe communication or mobility channels that build up the infras-
tructure. The multi-agent system net shown in the figure is just an illustrating
example, the number of places and transitions or the interconnections have no
further meaning.

The Platform View. By zooming into the platform token on place p1, the
structure of a platform becomes visible, shown in the upper right box. The
central place agents hosts all agents that currently reside on this platform. Each
platform offers services to the agents, some of which are indicated in the figure.2

Agents can be created (transition add) or destroyed (transition remove). Agents
can communicate by message exchange. Two agents of the same platform can
communicate by the transition internal communication, which binds two agents,
the sender and the receiver, to pass one message over a synchronous channel.
Transition (external communication) only binds one agent, since the other agent is
bound on a second platform somewhere else in the agent system. Also mobility
facilities are provided on a platform: agents can leave the platform (via the
transition new) or enter the platform (via the transition destroy).

In the diagram some details of the platform are hidden for the reason of
simplicity. An important feature that cannot be seen is that a platform may
itself act as an agent. By this means, arbitrary hierarchies of agents and platforms
are possible, in particular a platform is able to encapsulate its agents from the
outside world.

The Agent View. An agent is a message processing entity. It must be able to
receive messages, possibly process them and generate messages of its own. Each
agent consists of exactly one agent net that is its interface to the outside world
(in the lower right corner of the figure) and an arbitrary number of protocols
(lower left corner) defining its behavior. The agent may exchange messages with
other agents via the platform. This is done using the transitions receive message
and send message. These two transitions are the only interconnection of the agent
to the rest of the (multi-) agent system, so the agent is a strongly encapsulated
entity.

The central point of activity of a such an agent is the selection of protocols
and therewith the commencement of conversations. The protocol selection can
basically be performed pro-actively (the agent itself starts a conversation) or re-
actively (protocol selection based on a conversation activated by another agent).
In the case of the pro-active protocol selection, the place knowledge base is the
main enabling condition, the protocols are a side condition.
1 This zooming into net tokens should not to be confused with place refinement.
2 Note that only mandatory services are mentioned here. A typical platform will offer

more and specialized services, for example implemented by special service agents.

Towards a Distributed Tool Platform Based on Mobile Agents 183

The Interaction View. The activities of an agent are modeled as protocol
Petri nets (or short: protocols) – an example is given in the lower left corner of
the figure. The variety of protocols ranges from simple linear step-by-step plans
to complex dynamic workflows. Petri nets are well suited for the modeling of
procedures or process flows, which can be seen by their wide-spread use in the
area of (business) process modeling [21].

2.3 Capa

Capa (Concurrent Agent Platform Architecture) [6] is a partial re-implementa-
tion of the Mulan framework. Capa ensures the compatibility of the Mulan
framework to the FIPA specifications [7]. The internal structure of the agents
and the possibilities sketched above are not touched by Capa.

A part of the compliance to the FIPA specifications concerns the manage-
ment of an agent platform. In particular, an AMS (agent management system)
and a DF (directory facilitator) have to be provided. This is done by placing
special agents on each platform that offer the mandatory services. Additional
services may be offered by agents residing on the platform. Agents migrating to
a platform may offer new services previously lacking on this platform.

3 Tool Platform Architecture

This section describes the static and dynamic architecture of the tool platform.
It is comprised of different interacting agents, that fulfill different tasks. Figure 2
shows the interaction of these agents. The first architecture of the platform has
been proposed in [15].

Tool Agent

Tool Agent
Legacy
Application

Server
Agent

UATool Agent

User Agent

Platform BPlatform A

Platform C

Tool Agent

Tool Factory

Tool Agent

Mobile Agent

Platform D

Fig. 2. Architecture of the tool platform

The goal here is to achieve a flexible, adaptable system architecture that is
capable of supporting the collaborative work of flexibly and dynamically struc-
tured groups. For this the system needs to be extensible and should also be
similarly structured as the application domain.

184 K. Lehmann et al.

First we will introduce our notion of extensibility, then we will go into detail
how this extensibility can be included into the Mulan /Capa framework. Fi-
nally, we discuss how mobility of Mulan agents can provide more flexibility for
the system to achieve that reflects a highly dynamical setting in a distributed
work environment.

3.1 Extensibility

In software engineering, components have been introduced as units of extensibil-
ity [19, p. 68]. Likewise, extensibility in the agent-oriented view is a first-order
concept. In our notion we integrate the two notions into a concept of a migrating
agent and a pluggable component to form a Plug-in Agent. A Plug-in Agent is
capable of extending the functionality of another agent or component [2,3,4]. To
achieve the possibility to extend the functionality offered by an agent or a group
of agents – sometimes on remote, distributed platforms – the agent uses mobility,
which is another first order concept in the agent-oriented paradigm. In this case
mobility is a very useful concept that bridges the gap between flexible / adaptable
and distributed systems.

3.2 Tool Agent Registration

The system consists of a number of interconnected agent platforms. For example,
a user who wishes to use the system will start a new platform on his local
system. This platform can contain any number of agents, but to start with, the
user creates only an instance of the User Agent (UA). This agent acts as a local
representative of the user in the distributed system. It is equipped with protocols
to discover and register with Tool Agents (TAs), that perform some kind of task
on behalf of the user.

In order to register a new Tool Agent, the User Agent first needs to find
out where to get it. To that end, it queries the platform’s Directory Facilitator
agent (DF) for agents that offer a “Tool Factory” service. On request, the Tool
Factory (TF) will then send a list of tools it is able to provide. At the moment,
the list of tool agents is static, a format for the description of TAs still needs to
be designed. This description also needs to include a description of dependencies
between these agents.

The UA then displays the list of tools to the user who chooses the functional-
ity for his session. The UA sends a request to the Tool Factory, which instantiates
the new TA, sends it to the UA’s platform if necessary and performs the mu-
tual registration. The actual process of migrating the TA to another platform is
described in detail in Section 4.

In order to acquire a new Tool Agent, the User Agent sends a request message
to a Tool Factory Agent (TF), which knows the different kinds of TAs and is ca-
pable of generating new instances on behalf of the user. At this point the TF can
also perform checks on the access rights of the user to determine whether or not
the requested tool is accessible to the user or perform some kind of customization
of the tool agent. For example, if the TA needs to communicate with some kind
of server agent, the Tool Factory could instantiate the TA with the address of

Towards a Distributed Tool Platform Based on Mobile Agents 185

the server. These are common instantiation features in a dynamical / pluggable
system.

3.3 Tool Agents

Tool Agents provide the functionality that the system has to offer. This func-
tionality can be provided in different ways (see Figure 2): As a wrapper around
a legacy application, by contacting some kind of server agent (as in the White-
board example in Section 5.2), by directly communicating with another TA
connected to a different UA (as in the chat example in Section 5.2) or all by
itself.

Additionally a TA can provide extension points for other TAs registered
with the same UA. By using this mechanism, more complex functionality can
be flexibly built as a combination of simpler agents,3 leading to a dynamically
adaptable system through (self-)composing plug-ins.

3.4 User Interface

The basic user interface is provided by the User Agent and consists of not much
more than a frame that can be filled with content and in the simplest case a list
of TAs to register.

Once a Tool Agent is registered with a User Agent it sends a reference of
its user interface part to the UA. There are in principle several different ways
to approach the UI-integration. One is to have the TA send only a description
of UI-elements, like input fields, buttons, etc. and leave it up to the User Agent
to render those elements. The UA listens for events on the UI and sends those
events as ACL-Messages to the Tool Agent, that can be located on an arbitrary
platform. The Tool Agent then decides how to handle these events [15].

However, this mechanism is too slow for a real time user interaction. It also
prevents a flexible UI. Another more tightly coupled mechanism was chosen
for the implementation. Here the TA4 is required to reside on the same agent
platform, more exactly within the same Java Virtual Machine as the User Agent,
so that its user interface can directly be referenced.

The exact ways in which different Tool Agents can work together and share
parts of the User Interface still needs to be defined. At the moment every Tool
Agent’s specific UI is realized as a tab of its own within a tab folder in the User
Agent’s UI.

4 Mobility

One characteristic that is often mentioned in the definition of agents is the
notion of agent mobility. However, mobile agents are not very often implemented
3 Examples for different kinds of plug-in-mechanisms are the IDE Eclipse [1] and the

Renew engine [13]. The difference here is that the plugins are realized on a higher
level by dynamic composition of agents.

4 Or at least its UI part.

186 K. Lehmann et al.

because this comes with a number of difficult problems, security being among
the most important ones. On the other hand the practical use of mobile agents
is often not very clear. Therefore, other aspects of agency, like autonomy and
interaction are more widely implemented in agent systems.

Our tool platform uses mobile agents as a means to distribute functionality
within the system. Mobility is provided by Mulan /Capa, using protocols to
control the migration processes. Tool Agents are created at central locations
within the system and then migrated to the spot where they are needed. However,
those centrally located services can be redundant and distributed.

4.1 Uses of Mobility

The individual working environment of a user of the platform can be seen as his
configuration of connected Tool Agents and their internal states. Mobility comes
into play at two points: First, when a user first requests a new Tool Agent, it
is created by a Tool Factory agent, which is a central service provider and will
often reside on a different platform than the user requesting the TA, comparable
to a web-service.5 Before the TA can provide functionality to the user, it needs
to migrate to that user’s platform.

Secondly, when a user quits his work, he can decide to store his workspace
in a central repository, so he can recall it later and continue working in his
configuration on another desktop if needed. Therefore, the configuration of Tool
Agents needs to be migrated to some kind of agent base (repository), from where
it can later be recalled.6 That way the problems of mobility and persistence are
solved in one go, as persistence is merely declared as a special case of mobility.
At the moment, this repository agent is not yet implemented, though.

Other applications of mobility in this context are automated version control
or software distribution.

4.2 Protocols for Migration

The basic migration process (see Figure 3) only transmits the knowledge base of
an agent and not the protocols (i.e. the code) that are referenced from within the
knowledge base. This has different implications, mainly empowering the receiving
platform. The agent platform can decide which protocols to offer to an agent
on this platform and which versions of these protocols. This is an important
decision with regard to security (see Section 4.3).

On the other hand, it is possible that an agent will not work as expected on
another platform if protocols are present in another version or are completely
missing. This problem could be solved by using dynamic protocol composition.
As almost all Mulan-protocols are made up of Netcomponents[5], a possible way
to go would be the specification of protocols as a combination of Netcomponents
that are authorized by the platform.
5 Generally it would be sufficient to have one Tool Factory for an organization, but

with several cooperating organizations there could be multiple instances, maybe
offering different kinds of TAs.

6 For example by providing a username and password.

Towards a Distributed Tool Platform Based on Mobile Agents 187

Directory Facilitator

move(User’s platform)

getContent
prepare for
migration

done

done

transmit-agent

recreateAgent

afterMigration
activities

agentState(knowledge base)

deregister
deregister

done

Migrating AgentAgent Management
System (AMS)

Remote AMS
(target platform)

quit agent
locally

Fig. 3. Agent Interaction Protocol for the Migration Process

Another possibility is sending the protocol code along with the agents. This
would however weaken the position of the platform. As we are using Petri nets
for protocols, mechanisms to check compliance of protocols to certain rules could
be grounded on Petri net properties, like invariants and liveness properties [16].

4.3 Security

Probably the most difficult aspect of mobile software agents are the different
security issues. All of them cannot be extensively discussed here, but merely
mentioned together with some points on how to handle them. These issues can
be grouped into message level security, protection against malicious agents and
protection against malicious hosts. These issues have partially been treated for
our agent Petri net-based approach in earlier publications (see [9,10]).

5 Implementation and Example Applications

This section describes the current status of implementation of the tool platform,
together with some example Tool Agents that have been implemented so far.
There is a basic User Agent, a Tool Factory Agent and two different Tool Agents,
along with the necessary ontologies and protocols to have them work together.

For communication there is an ontology defined for all issues concerning the
management of Tool Agents, which must be understood by all agents. Addition-
ally every class of Tool Agents can define their own ontologies for their special
purposes.

5.1 Protocols

The behavior of agents in Mulan is specified by protocols that are executed by
these agents. Like the ontologies, there are general protocols of the platform as

188 K. Lehmann et al.

well as individual protocols for different types of Tool Agents. The protocols of
the platform concern the finding, creating and registering of Tool Agents.

The User Agent will find the Tool Factory by means of the directory facili-
tator agent, which is part of every FIPA-compliant platform. To distribute this
work over multiple platforms, the CentralDF was developed, a mechanism of
hierarchically integrating DFs on different agent platforms [8].

5.2 Example Tool Agents

Two example Tool Agents have been implemented with this platform to explore
the possibilities for its use. The first one is a simple chat application, the second
one is a white-board that allows several users to simultanously work on a docu-
ment. The functionality of these applications is not very elaborate, because the
main focus was a proof of concept study.

The chat tool only needs one type of tool agent, the Chat Agent. It offers
the user a window where he can select other users to communicate with. To
find those, first the platforms’s directory facilitator is queried for agents that
implement the ChatAgent service. Those are then asked for the names of the
User Agents they are connected to.

After selecting a chat partner, another window is opened for the communi-
cation between the two agents, which is then simply accomplished by sending
ACL inform messages between the agents, containing the statements in a format
defined in the ontology.

While the chat application is an example for functionality provided by a TA
communicating with another TA on a different UA, the White-board application
uses a dedicated White-board Server Agent that controls a shared resource.
The system can contain any number of server agents that can hold different
documents. The TAs can check out a copy of this document and provide the
user with an interface to edit it. Changes can then be checked in with the server
agent and published to the other TAs.

This shows how different communication patterns can be applied within the
basic architecture to achieve different results. Other patterns are of course pos-
sible, for example the communication of TAs that are connected to the same UA
to provide a functionality together or communication with resources outside the
multi-agent system, like a web-service.

6 Results and Conclusion

This article has presented the basics of a distributed tool platform based on mo-
bile Mulan agents. For a more intuitively structured design we provide generic
User Agents and Tool Agents that can be adapted for specific application needs.
The goal of the system is to present a software development environment that
is distributed and facilitates distributed work. The current status of the project
and the tools implemented so far have been shown. This study has shown that an
integrated application to support cooperative work in a flexible and application-
reflective manner can be implemented by the means of a multi-agent system,

Towards a Distributed Tool Platform Based on Mobile Agents 189

respectively agent technologies. This allows for the adaptation of the software
to the needs of users.

Our solution provides the basic features that are needed in such an environ-
ment: flexibility, extensibility, adaptability and the possibility for individual con-
figuration. This can be extended to form an integrated environment for collabo-
rative, distributed work, which can eventually lead to an agent technology-based
IDE for the development of agent application. Technological aspects have been
covered by providing an architecture with the focus on distributed agent-based
workflows [18]. This architecture allows for inter-organizational coordination of
activities. Furthermore, we have provided a smooth integration of agent concepts
with Web Services in [17]. This will allow us to use appropriate technological
means to support the conceptual work presented here.

References

1. Bolour Computing Azad Bolour. Notes on the eclipse plug-in architecture.
http://www.eclipse.org/articles/Article-Plug-in-architecture/

plugin architecture.html, July 2003.
2. Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Heiko Rölke. Agent tech-

nologies for plug-in system architecture design. In Proc. of AOSE, LNCS, Utrecht,
Netherlands, 2005. Springer-Verlag. accepted poster presentation / to be published.

3. Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Heiko Rölke. Modeling
dynamic architectures using nets-within-nets. In Proc. of ICATPN, LNCS, Miami,
2005. Springer-Verlag. accepted paper / to be published.

4. Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Heiko Rölke. Multi-agent
concepts as basis for dynamic plug-in software architectures. In Proc. of AAMAS,
Utrecht, Netherlands, 2005. ACM. to be published.

5. Lawrence Cabac, Daniel Modt, and Heiko Rölke. A Proposal for Structuring Petri
Net-Based Agent Interaction Protocols. In Wil van der Aalst and E. Best, editors,
Proc. of ATPN, volume 2679 of LNCS, pages 102–120, Eindhoven, Netherlands,
June 2003. Springer-Verlag.

6. M. Duvigneau, D. Moldt, and H. Rölke. Concurrent architecture for a multi-agent
platform. In Fausto Giunchiglia, James Odell, and Gerhard Weiß, editors, Proc. of
AOSE 2002, volume 2585 of LNCS, Berlin, 2003. Springer Verlag.

7. FIPA. Foundation for Intelligent Physical Agents. http://www.fipa.org, June
2004.

8. Foundation for Intelligent Physical Agents. Distributed directory facilitator - a pro-
posal for the fipa adhoc first cft. http://www.fipa.org/docs/input/f-in-00063/,
May 2002.

9. Thomas Jacob, Olaf Kummer, Daniel Moldt, and Ulrich Ultes-Nitsche. Imple-
mentation of Workflow Systems using Reference Nets – Security and Operability
Aspects. In Kurt Jensen, editor, Proc. of CPN, 2002. DAIMI PB: Aarhus, Den-
mark, August 28–30, number 560.

10. Michael Köhler and Heiko Rölke. Modelling Sandboxes for Mobile Agents using
Nets within Nets. In N. Busi and F. Martinelli, editors, Workshop on Issues in
Security and Petri Nets (WISP’03) at ATPN. University of Eindhoven, 2003.

11. Olaf Kummer. Referenznetze. Logos-Verlag, Berlin, 2002.
12. Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew – The Reference

Net Workshop. http://www.renew.de, June 2004. Release 2.0.

190 K. Lehmann et al.

13. O. Kummer et. al. An extensible editor and simulation engine for Petri nets:
Renew. In Jordi Cortadella and Wolfgang Reisig, editors, Proc. of ICATPN 2004,
number 3099 in LNCS, pages 484–493, Berlin, 2004. Springer Verlag.

14. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling the structure and
behaviour of Petri net agents. In Proc. of ICATPN 2001, volume 2075 of LNCS,
pages 224–242, Berlin, 2001. Springer Verlag.

15. Kolja Lehmann and Vanessa Markwardt. Proposal of an Agent-based System for
Distributed Software Development. In Daniel Moldt, editor, Proc of MOCA 2004,
pages 65–70, Aarhus, Denmark, October 2004.

16. Kolja Lehmann and Daniel Moldt. Modelling and Analysis of Agent Protocols
with Petri Nets. In Gabriela Lindemann, Jörg Denzinger, and Ingo J. et al. Timm,
editors, Proc. of MATES 2004, volume 3187 of LNCS, page 85, Erfurt, Germany,
2004. Springer-Verlag.

17. Daniel Moldt, Sven Offermann, and Jan Ortmann. A petri net-based architecture
for web services. In Proceedings of the Workshop on Service-Oriented Comput-
ing and Agent-Based Engineering, AAMAS, Utrecht, Netherlands, 2005. accepted
paper / to be published.

18. C. Reese, J. Ortmann, S. Offermann, D. Moldt, K. Lehmann, and T. Carl. Ar-
chitecture for distributed agent-based workflows. In Proceedings of the Workshop
on Agent-Oriented Information Systems, AAMAS, Utrecht, Netherlands, 2005. ac-
cepted paper / to be published.

19. J. Sametinger. Software Engineering with Reusable Components. Springer Verlag,
Berlin, 1997.

20. Rüdiger Valk. Petri Nets as Token Objects - An Introduction to Elementary Object
Nets. In J. Desel and M. Silva, editors, 19th International Conference on Appli-
cation and Theory of Petri nets, Lisbon, Portugal, number 1420 in LNCS, pages
1–25, Berlin, 1998. Springer-Verlag.

21. Wil van der Aalst, Jörg Desel, and Andreas Oberweis, editors. Business Process
Management: Models, Techniques, and Empirical Studies. Number 1806 in LNCS.
Springer-Verlag Berlin, 2000.

22. Heinz Züllighoven. Object-Oriented Construction Handbook. Morgan Kaufmann
Publishers and dpunkt.verlag, Heidelberg, Germany, 2005.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 191 – 203, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Distributed Weighing Problem:
A Lesson in Cooperation Without Communication

Tibor Bosse1, Mark Hoogendoorn1, and Catholijn M. Jonker2

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{tbosse, mhoogen}@cs.vu.nl
2 Radboud Universiteit Nijmegen, Nijmegen Institute for Cognition and Information,

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
C.Jonker@nici.ru.nl

Abstract. Cooperative problem solving without communication is an often-
studied field within multi-agent research. Realistic problems investigated in this
particular field are complex and difficult to model, and therefore not suitable for
education. This paper presents the distributed weighing problem as a novel
problem to be used for educational purposes within the domain of cooperation
without communication. An example agent-based architecture is developed of
which parts can be provided to students as a starting-point for practical
exercises in cooperative problem solving without communication. Two example
strategies are discussed and implemented using this example architecture.
Moreover, it is shown how such strategies can be tested and formally validated
against a number of desired properties. The educational benefits of the
distributed weighing problem are presented as observed in a course for 6 groups
of each 3 students.

1 Introduction

Coordination and cooperation between agents has been a topic of research for many
years (see for example [5] and [9]), and is a part of everyday life. For instance, within
the port of Rotterdam coordination is essential [14]. The port has approximately 24
terminals and about 120 sea vessels and barges are continuously loading and
unloading containers. Coordination is needed to determine routes for the vessels and
barges in such a way that they do not have to wait too long for other ships when they
arrive at a certain terminal.

In the above example, the port authorities communicate with the ships to determine
a schedule that is satisfactory for all parties. However, in a number of cases of
cooperation between agents, no communication takes place (see also [7]). For
instance, without communication people often coordinate their actions so that they do
not bump in to each other on the street. Management games such as the broken
squares problem [1] have been developed to train people in cooperation without
communication. The broken squares problem requires the players to each construct a
square out of a set of given parts. The parts, however, are distributed randomly across
the individuals, therefore they need to forward those broken parts to other players for

192 T. Bosse, M. Hoogendoorn, and C.M. Jonker

which those parts are useful. The problem is solved when all individuals have formed
their individual goal square. Also in the domain of software agents cooperation with
limited or no communication plays a role. Agents might not have all the information
or abilities they need to reach a certain goal. They may need to cooperate with other
agents to be able to reach that goal. The problem solving capacity of the overall
system increases with the cooperation capacity of the agents in the system. However,
the communication load increases with the number of agents, which makes it
attractive to solve the cooperation problem using limited communication.

As the examples show, in a number of cooperation problems communication is not
possible or unnecessary. Students in the fields of artificial intelligence, computer
science, information science, and management need to be familiar with solving such
problems. Especially, the IT-related students need to be trained in the development of
cooperative software agents. Suitable problems for educational purposes are problems
that can easily be modelled. Scalability of the problem allows for testing the
generality of the solution. Problems identified in the literature for cooperation without
communication are often very hard to model. The broken squares problem for
example entails modelling the different shapes of the pieces of the puzzle, the shapes
that can be created when combining pieces of puzzles, and so on. Therefore it is hard
to get students to study this type of problem in depth.

To improve the quality of education in cooperation without communication, this
paper introduces a problem that is purely cooperative and can be solved without
communication. The problem is derived from the twelve balls problem (see [11]), also
known as the twelve coins problem. It involves twelve balls, each with the same
appearance, of which one has a deviating weight which can either be lighter or
heavier compared to the other balls. The balls can be put on a balance and weighed
against each other. The goal of the problem is to find the deviating ball, and determine
how it deviates from the rest (whether it is heavier or lighter). An additional
restriction applies: The maximum number of weighings allowed is three.

The twelve balls problem, which is initially a centralized problem, can easily be
modelled as a distributed problem without communication. To this end, each ball is
represented by one agent that can decide to jump on the balance or not. The common
goal is to derive the solution for the problem. The agents representing the balls are not
allowed to communicate with each other. As the emphasis is on cooperation and not
on efficiency of the solution, the requirement of solving the problem within three
weighings is dropped. To ensure the eventual solution of the problem, no repetition of
weighings is allowed, so the combined strategy of the agents should always result in
performing a different weighing than before. In the rest of the paper this distributed
problem is addressed as the distributed weighing problem. The number of balls can
easily be scaled to any preferred number.

The distributed weighing problem is explained in more detail in section 2. Section
3 describes an example design of a component-based multi-agent system that models
the problem. This design can serve as a starting-point in practical assignments in
cooperation without communication. Example strategies that can be used by the
agents are shown in more detail in section 4. Section 5 shows how such strategies can
be tested and formally validated against a number of desired properties. Experiences
in using the problem in education are discussed in Section 6. Section 7 compares the
work with related literature and presents conclusions.

The Distributed Weighing Problem: A Lesson in Cooperation Without Communication 193

2 The Distributed Weighing Problem

This section describes the distributed weighing problem at a more detailed level,
including the assumptions that agents are allowed to make on the behaviour of other
players in the puzzle. Two possible protocols for the problem are introduced, and their
differences discussed. Thereafter, a theoretical overview is presented of the possible
types of agents one can encounter when solving the problem.

2.1 Puzzle Design

The distributed weighing problem is a derivative of the twelve balls problem,
explained in the introduction, in which an arbitrary number of balls is used. Each ball
is represented by an agent. All balls but one have exactly the same weight. The
deviating ball is either heavier or lighter than the others. The goal of the game is to
determine which ball is the deviating ball and to determine the deviation (heavier of
lighter). The puzzle is solved when at least one ball knows the answer. Actions of a
ball are observable to others. A ball has the following options:

1. join_left. If not already on the balance, the ball agent can select this option when
it wants to join the left scale.

2. join_right. If not already on the balance, the ball agent can perform this action in
case it wants to join the right scale.

3. do_nothing. This option can be used in case the ball agent is satisfied with the
current balance configuration. If the agent is already on the balance, this is its
only course of action. This design choice simplifies the problem of detecting that
an agent decides not to join any scale.

A balance is available to perform the weighings determined by the balls. The game
begins with an empty balance. After a weighing is performed, all agents are
automatically removed from the balance.

The weighing process is performed according to a sequential protocol. In this
protocol all balls get turns in a predetermined order. At the beginning an empty
balance is observed by the first ball in line. After a ball has performed the chosen
response action (possibly the observable “do_nothing”), the next ball observes the
new situation. For example, ball B observes a situation with ball A on the left scale
and an empty right scale. After all agents have performed the “do_nothing” action
after each other, the balance performs the weighing and the agents observe the result
of the weighing (i.e., one scale heavier than the other, or both scales equal). When
playing this protocol, each ball knows after which other agent it has the turn. The first
ball knows it has the turn at the beginning of the game.

In fact, the sequential protocol reflects a specific type of cooperation without
communication. In such cooperation problems, where the parties involved contribute
to the problem sequentially, their main concern is what action they have to perform.
In cooperation problems where the parties involved contribute to the problem in
parallel, an additional concern is when to perform the action. In future work, the
distributed weighing problem will be used to study parallel cooperation as well.

194 T. Bosse, M. Hoogendoorn, and C.M. Jonker

2.2 Types of Agents

In order to ensure success, the agents are allowed to assume that the other agents will
also behave with some intelligence and with the same goal in mind. In this section
(and only this section) this assumption is dropped for the purpose of identifying all
possible kinds of agents. In principle, three different types of agents can be identified:

A. Nasty. This agent tries to cause loops. A loop means that the same weighing is
done over and over again. Nasty agents do not meet the benevolent requirement
presented in [13] which roughly states that agents want to help each other
whenever possible.

B. Dummy. A dummy agent performs arbitrary moves without any notion of
previous weighings, or the possible consequences of his moves. Therefore the
strategy can non-intentionally cause loops. Such an agent might also confuse
agents that try to solve the problem in a more intelligent fashion.

C. Progressive. Progressive agents are those who always move towards the
solution. Three basic strategies can be distinguished in the behaviour of the
agent:

C-a. Non-repetitive. An agent that follows a non-repetitive strategy tries to prevent
a weighing that has already been done. If the other agents are also non-
repetitive, no loops will emerge during the problem solving process. Success is
ensured if the agents keep performing weighings until they know the answer.

C-b. Information-eager. Agents following an information-eager strategy only aim
for weighings from which new information can be derived. For example, a first
weighing of ball A and B on the left scale against ball C and D on the right
scale results in a balance. Therefore, it is known that all the balls are non-
deviant, and a weighing of ball A against ball B would not add any information
and is not accepted in the information-eager strategy.

C-c. Efficient. For each number of balls there is a minimal number of weighings
that is always enough to find a solution. For the general problem (from [10])
with a maximum of n weighings the maximum number of balls for which the
solution can be determined, m, is defined as: m ≤ (3n - 3) / 2. In case of the
twelve balls problem that is always three weighings. An agent that follows an
efficient strategy aims at finding the solution in that amount of weighings.

For educational purposes the focus is on agents of type C. Agents of type A and B
are considered less interesting, because they do not cooperate. When strictly
following the strategies of type C, the robustness relationships depicted in Table 1
hold. Robust means that the agents find a solution. As the table shows, strict C-a
agents are robust against all other C agents, since these also try to prevent repetition.
Strict C-b agents are robust against other strict C-b agents and strict C-c agents, but
not against strict C-a agents. This is because a strict C-b agent assumes that the others
are also information-eager. If this is not the case, a situation might occur which the
agent cannot handle. For example, consider the situation sketched above when it is
known that ball A and B are non-deviant. Then, a strict C-a agent might still propose
a weighing of ball A against B, whilst a strict C-b agent will not allow this. As a
result, the C-b agent will not be able to derive any appropriate action for the situation.
For similar reasons, strict C-c agents are only robust against other strict C-c agents.

The Distributed Weighing Problem: A Lesson in Cooperation Without Communication 195

Table 1. Robustness of C-
strategies

 C-a C-b C-c
C-a + + +
C-b - + +
C-c - - +

Section 4 presents the strategies of a type C-a and of
a type C-b agent. A type C-c agent is not considered,
since the focus is on finding a solution using a simple
strategy, not on finding it in an efficient manner. It is
however easy to incorporate such a strategy in the
design presented in the next section.

3 Example Design of a Multi-agent System for the Distributed
Weighing Problem

This Section presents an example design of a multi-agent system for the distributed
twelve balls problem. Students can, based on their experience in modelling and
designing multi-agent systems, be provided with parts of this model as a starting-point
for the exercise.

3.1 Top Level

The multi-agent system is designed using the component-based agent modelling
approach DESIRE; cf. [3]. The highest level of abstraction consists of the agents
representing the balls (called ball_A, ball_B, and so on) and the External World. The
agents can perform actions in the external world, and observe the external world.

The execution of actions generated by the agents is modelled as follows. After an
agent generates a certain action to be performed (e.g., jump on the left scale of the
balance), this action is transferred to the external world, where the result of the action
will occur (e.g., ball A is currently on the left scale of the balance). Thus, the
execution of physical actions by the agents is modelled as part of the component
external world. The action do_nothing represents the fact that an agent does not move
for a certain period of time. Introducing this as an action makes the problem of
knowing when an agent finished his turn easy.

Besides performing actions, the agents can observe the world. In the simplest
model, these observations are not modelled explicitly (i.e., the agents do not have to
determine pro-actively when to observe what). Instead, every relevant aspect of the
world is transferred automatically from the external world to the agents in the form of
observation results. These observation results include the current position of the balls
on the balance, the results of weighings, and the actions performed by others.

3.2 Agent Level

The composition of the agents is based on the generic agent model as described in [3].
In the current model, four of the generic agent components are used, namely Own
Process Control, World Interaction Management, Maintenance of Agent Information,
and Agent Specific Task.

According to the generic agent model, the task of the component Own Process
Control is to control the agent’s own activities (e.g., determining, monitoring and
evaluating its own goals, plans and characteristics). In the current domain, this is done
by maintaining the following information: the agent’s own name, the name of the

196 T. Bosse, M. Hoogendoorn, and C.M. Jonker

current protocol, and other information associated with the protocols. For example,
for the sequential protocol, the agent needs to know either the order in which the
agents are allowed to perform actions (e.g., A-B-C-D-E-F-G-H-I-J-K-L-A), or the
name of the agent ahead of it.

The component World Interaction Management takes care of the processes
involved in interaction with the external world, i.e., observation interpretation,
directed observation initiation, and action performance. The component passes actions
and observation results (e.g., concerning the current position of the balls on the
balance) from the relevant other components to the world and vice versa.

The task of the component Maintenance of Agent Information is to maintain
(partial) agent models, containing relevant information about the state of the
surrounding agents. In most applications, this information is obtained in two different
ways: by observing the other agents and by communicating with them. Obviously, in
the distributed weighing domain only the first approach occurs. For this domain, the
agent models are restricted to the assumed weights of the agents (including itself). At
any time, to each agent exactly one of the following values is assigned: {unknown,
neutral, heavier_or_neutral, lighter_or_neutral, heavier, lighter}. Initially, each agent gets the
value unknown. In later stages of the process, these values are updated in accordance
with the observed weighing results. A number of knowledge rules are used to perform
this modification:

• each ball occurring in a balanced weighing gets the value neutral
• each ball not occurring in an unbalanced weighing gets the value neutral
• each ball occurring on the lower scale in one weighing, and occurring on the

higher scale in another weighing, gets the value neutral
• each unknown ball occurring on the lower scale in a weighing gets the value

heavier_or_neutral
• each unknown ball occurring on the higher scale in a weighing gets the value

lighter_or_neutral
• if one ball is lighter_or_neutral and all other balls are neutral, then this ball gets the

value lighter
• if one ball is heavier_or_neutral and all other balls are neutral, then this ball gets

the value heavier

Moreover, it is assumed that all agents have perfect recall.
Within the generic agent model specific tasks (e.g., design, diagnosis, information

retrieval) can be modelled in the component Agent Specific Task. For the current
domain, the specific task can be described as the determination of actions to be
performed, based on the current situation of the balance. Thus, the output of this
component is a proposal of the form join_left, join_right, or do_nothing. The exact
knowledge used within Agent Specific Task depends on the strategy used by the
agent, as described in the next section.

4 Example Strategies

This section describes a concrete example of a strict non-repetitive and a strict
information-eager strategy. These examples show that the problem is relatively easy
to solve. Moreover, they illustrate what comes into play when designing such

The Distributed Weighing Problem: A Lesson in Cooperation Without Communication 197

strategies. The current strategies were used to construct strict C-a and strict C-b type
agents that were tested in different combinations (see Section 5).

4.1 Non-repetitive Strategy

Non-repetitive strategies require looking ahead at the possible options that can still be
performed without resulting in repetition. Without these calculations it is impossible
to determine whether jumping on a scale can or cannot result in a new weighing of m
to m balls, for some m. Two solutions are considered here: (1) Generate all possible
weighings; (2) Use a mathematical formula to calculate the amount of options left.

A first option is to generate all possible weighings that might result after jumping
on one of the scales, until you find one that has not been done in the past. If such a
weighing cannot be found, try the same for jumping on the other scale. If that does
not work either, then don’t jump on any scale. However, its exponential character
makes this option unsuitable for scaling to larger numbers.

A second option is to mathematically calculate how many possible weighings can
be constructed in total, considering the current balance after an action of the agent
(i.e. join_left, join_right, do_nothing), and the amount of balls still not on the balance.
Thereafter, sum up the amount of past weighings of which the current proposal
combined with the action of the agent is a subset. If there are more possible weighings
than past weighings, the action for which the calculation was done is allowed to be
performed. The number of possible weighings can be calculated as follows: Choose a
type of weighing: m:m, where m varies from 1 to half the number of balls in the
game. Let l denote the amount of available places on the left side of the balance with
respect to your choice m, and r the amount of available places on the right side again
with respect to m. For example, if you aim for a 3:3 weighing, and there is already
one ball on the right scale, then r is 2. The amount of balls not on the balance is n. A
formula to calculate the number of possible weighings w given these parameters is:

!

)(

!

)(
)1(1

0

r

jn

l

in

w

rl

lj

l

i

−
×

−
=

∏∏
−+

=

−

=

This number can be calculated for every possible value of m. The specific strategy
determines which value is attempted first. The agent has the following arbitrary
preference: (1) join_left; (2) join_right; (3) do_nothing.

4.2 Information-Eager Strategy

An agent that follows an Information-Eager strategy aims at weighings that provide
some new information. Thus, if all agents are of this type, such weighings will indeed
be performed until one of the agents solves the problem. In other words, after an
Information-Eager agent has performed an action, the possibility to obtain a weighing
that provides new information is still open (unless this was already impossible before
the agent’s action). A strategy of this type does not need to consider all remaining
possibilities, because it can make use of its knowledge about the weights of the
existing balls. For example, if a certain agent has the value lighter_or_neutral, and there
is a ball with value heavier_or_neutral on the left scale, then it may be wise to join this

198 T. Bosse, M. Hoogendoorn, and C.M. Jonker

YES

Do nothing
 Am I already on

the balance?

YES

Join the other scale
 Does one of the scales con-

tain the maximally allowed
number of balls?

YES

Perform this action

Is there an action that
immediately results in an
advantageous weighing?

NO

 Perform an action based
on a special sub-case

NO

NO

ball on the left scale, because the resulting weighing is guaranteed to change the value
of one of these balls (as long as other balls “complete” the weighing to ensure that
both scales contain an equal amount). A number of different strategies of this type can
be implemented. The strategy that is described in this section uses a two-step
algorithm. In the first step the current situation is classified. In the second step an
appropriate action is selected, based on the current situation.

In the first step, a number of different situations can be distinguished. The main
distinction is between advantageous weighings and non-advantageous weighings. A
weighing is advantageous if it is guaranteed to provide new information, no matter
what the other balls do (as long as they “complete” the weighing, which is assumed).
Advantageous weighings are weighings that (1) contain an unknown ball, (2) contain a
heavier_or_neutral and a lighter_or_neutral ball on one scale, (3) contain a
heavier_or_neutral ball on both scales, or (4) contain a lighter_or_neutral ball on both
scales. Examples of the non-advantageous weighings are the case that all balls are
neutral, the case that one ball is heavier_or_neutral and the rest is neutral, and so on.

When the current situation is classified, an appropriate action can be determined.
In order to do this, the current strategy uses the algorithm depicted in Figure 1. As can
be seen in the figure, first an agent has to verify whether it is already on the balance,
because then the only possible action is do_nothing. When the agent is not on the
balance, it checks whether one of the scales contains the maximally allowed number
of balls, which is exactly half of the total number of balls (e.g. for the twelve balls
problem, it is 6). If this is the case, the agent has to jump on the other scale in order to
complete the weighing. The next step is to check whether an action exists that
immediately results in an advantageous weighing. For example, if a certain agent has
the value lighter_or_neutral, and there is already a ball with value lighter_or_neutral on the
left scale, then join_right is such an action.

However, if such an action cannot be
found, then the action to be performed
depends on the specific situation. For
reasons of space, the knowledge used in this
last step is not represented completely in
Figure 1. However, an example sketch of
such a knowledge rule is the following: “if I
am neutral, and the left scale contains more
balls than the right scale, and there are still
two lighter_or_neutral balls not on the
balance, then I will join_left”. The idea of
this rule (and of many similar rules) is that
the agent leaves empty spaces for the balls
of which it is known that they will
contribute to an advantageous weighing.
Note that in general, this strategy has a
preference for jumping on the balance when
possible. An advantage of this approach is
that the action do_nothing is often avoided,
which minimizes the risk of accidentally
accepting a non-advantageous weighing.

Fig. 1. Action selection algorithm

The Distributed Weighing Problem: A Lesson in Cooperation Without Communication 199

5 Testing Strategy Performance

The system described in the previous sections has been used to run a complete set of
simulation experiments for six balls. The different parameters used in the experiments
were the strategy used by each agent (i.e., either non-repetitive or information-eager),
the name of the deviating ball, and the type of the deviating ball (i.e., either lighter or
heavier). Hence, 768 (= 26 * 6 * 2) experiments have been performed in total. In all
experiments, the sequential protocol was used for performance of actions. Similar
experiments can be performed with student implementations to determine how well
their strategies perform.

After performing the experiments, the resulting traces were automatically
translated to a format that is suitable for the LEADSTO environment [2]. This
environment has an automated checker, which offers the possibility to formally verify
dynamic properties against traces. This checker takes a formally specified property
and a set of traces as input, and verifies whether the property holds for the traces. For
formal specification of the properties, the Temporal Trace Language TTL was used,
cf. [12]. This language is based on sorted first-order predicate logic, and allows
making explicit references to time points and traces. Using the automated checker,
relevant properties can be checked against traces generated by a particular
implementation of the distributed weighing problem. Hence, using such tools enables
automatic performance measurement of the strategies that have been implemented
(e.g. by students). Some examples of such properties are the following (both in
informal and in formal TTL notation):

reasoning_successfulness(γ:trace)
In trace γ, eventually there will be a time point t on which some ball knows the solution. Formalisation:

∃t:time ∃b1,b2:ball ∃ v:value
[state(γ, t) |= belief(b1, has_value(b2, v), pos) ∧ state(γ, t) |= deviating_ball(b2, v)]

no_repetition(γ:trace)
In trace γ, no weighing w will be performed twice. Formalisation:
∀t1:time ∀w:weighing

[state(γ, t1) |= to_be_performed(w) ¬∃t2:time [t2>t1 ∧ state(γ, t2) |= to_be_performed(w)]]

reasoning_continuation(γ:trace)
In trace γ, as long as there is no ball that knows the solution, a new weighing w will be performed.
Formalisation:

∀t1:time ∀b1,b2:ball
[[state(γ, t1) |=/= belief(b1, has_value(b2, heavier), pos) ∧
 state(γ, t1) |=/= belief(b1, has_value(b2, lighter), pos)]
 ∃t2:time ∃w:weighing [t2>t1 ∧ state(γ, t2) |= to_be_performed(w)]]

strong_new_information(γ:trace)
In trace γ, after each observation result, each ball will update the agent model of at least one of the balls
before the next observation result is available. Formalisation:

∀t1:time ∀o1:obs_result ∀b1:ball
[state(γ, t1) |= observation_result(o1, pos)
 ∃t2,t3:time ∃b2:ball ∃v1,v2:value

[t2<t1<t3 ∧ v1≠v2 ∧ state(γ, t2) |= belief(b1, has_value(b2, v1), pos)
 ∧ state(γ, t3) |= belief(b1, has_value(b2, v2), pos)
 ∧ ¬[∃t4:time ∃o2:obs_result

t1<t4<t3 ∧ o2≠o1 ∧ state(γ, t4) |= observation_result(o2, pos)]]]

200 T. Bosse, M. Hoogendoorn, and C.M. Jonker

efficiency(γ:trace)
In trace γ a solution is found within 3 weighings. Formalisation:
reasoning_successfulness(γ)∧
∃ t1,t2,t3:time ∃ w1,w2,w3:weighing

[state(γ, t1) |= to_be_performed(w1) ∧ state(γ, t2) |= to_be_performed(w2) ∧
 state(γ, t3) |= to_be_performed(w3) ∧ t1<t2<t3 ∧
 ([(t4:time (w4:weighing

state((, t4) |= to_be_performed(w4) (t4 (t1 (t4 (t2 (t4 (t3]]

A summary of the results of the evaluation of the example strategies introduced in
Section 4 can be found in Table 2. The properties are on the vertical axis, whereas
three different categories of traces are on the horizontal axis. The cells indicate the
percentages of generated traces for which a particular property holds. As can be seen
in this table, the experiments in which all agents use the non-repetitive calculation
strategy (C-a) of Section 4 were always successful (100%). Moreover, in these traces
no repetition of weighings occurs, and the reasoning continues until the solution is
known. As could be expected, not all of these traces (66.7%) satisfy the property
strong_new_information. The reason for this is that these agents do not care whether
they always derive new information, as long as there is no repetition of weighings. As
a result, these traces do not always satisfy the property efficiency either. However,
remember that the efficiency of the process is not considered as a measure of
successful cooperation. On the other hand, the traces where all agents use the
information-eager strategy (C-b) as given in Section 4 always derive new information.
Of course, these traces are still not always efficient. Furthermore, these traces always
satisfy the properties reasoning_successfulness, no_repetition, and reasoning_continuation.

Table 2. Results of the automated checks - percentage of traces for which the property holds

 all agents C-a all agents C-b some C-a, some C-b
reasoning successfulness 100 100 74.6

no repetition 100 100 78.8
reasoning continuation 100 100 95.8
strong new information 66.7 100 70.4

efficiency 50.0 33.3 41.7

The most interesting category is the set of “mixed” traces (where some agents used
strategy C-a, and some agents used C-b). Table 2 shows that none of the properties
succeeded for all of these traces. To be specific, 25.4% of the mixed traces was not
successful. In fact, there were two reasons for failure: in 21.2% of the cases the same
weighing was repeated forever (i.e., the property no_repetition failed), in 4.2% of the
cases the reasoning stopped because an agent could not derive an action at all (i.e., the
property reasoning_continuation failed). Closer examination of the unsuccessful traces
led to the conclusion that the agent causing the failure was always of type C-b. In
addition, the reason of failure had always to do with the agent’s assumption that the
other agents were also of type C-b. Based on this assumption, a strict information-
eager agent can only deal with those situations where it is still possible to derive new
information. In case a strict information-eager agent encounters another situation, it
can show unpredictable behaviour (e.g., leading to repetition of weighings, or to
termination of the reasoning).

The Distributed Weighing Problem: A Lesson in Cooperation Without Communication 201

Based on the above, it may be concluded that an agent using the non-repetitive
strategy of Section 4.1 can successfully cooperate with other agents that use this
strategy (although they do not always derive new information) and with agents that
use the information-eager strategy of Section 4.2. On the contrary, agents using the
information-eager strategy can cooperate with other agents of this strategy, but not
always with agents of the non-repetitive strategy. This confirms the predictions about
robustness made in Section 2.2. This is an important finding, because it has
consequences for the requirements that may be defined when using the problem for
educational purposes. For example, when students implement an agent of type C-b, it
will not always have to be successful when cooperating with an agent of type C-a.

6 Educational Results

Six groups of each three 3rd year Bachelor students in Artificial Intelligence were
given the assignment to implement the distributed weighing problem within 4 weeks
time. They were each provided with an implemented external world and had to design
and implement the agents representing the balls, including their strategies. The
assignment required that their agent should be of type C (i.e., either C-a, C-b or C-c).

The solutions of the groups were tested in different settings, and evaluated using
the properties described in Section 5. First the solutions were tested when all agents in
the system used the same solution strategy (i.e., implemented by the same group). In
this test the systems of three of the six groups only solved the problem in some
settings (i.e., not for all possibilities of deviation). This indicates that they must have
made some mistake, since it follows from Table 1 that agents should always be robust
against agents using the same strategy. The other three groups succeeded in all
settings. The second test consisted of using agents designed by different groups in one
multi-agent system. Here, again in some cases no solution was found. In a subset of
these cases this was to be expected. For example, when a C-b agent tried to cooperate
with a C-a agent (see again Table 1). However, there were also some failures in cases
where agents of the same type tried to cooperate. The most common types of failure
in these cases were: (1) Derivation of multiple actions (e.g., an agent trying to jump
on both scales at the same time); (2) No derivation of an action at all. The
experiments were shown to all groups in a joint session. The students found it difficult
to believe that the others would not follow the same line of reasoning as they did.
After letting them explain to one another what kind of strategy they incorporated into
their agent, the students understood that the assumptions they had made regarding the
strategy of other agents were too strong. This gave them an important insight into the
difficulties accompanying cooperation without communications.

Besides evaluating the performance of the strategies, students were also graded for
the documentation they had written regarding their agent design and strategy. A
standard evaluation form has been developed for this purpose, which comprises
elements such as analysis, conceptual design, detailed design and rationale.

7 Discussion and Conclusion

The distributed weighing problem introduced in this paper has been designed with the
goal of creating a cooperation problem without communication that is scalable, that is

202 T. Bosse, M. Hoogendoorn, and C.M. Jonker

relatively easy with respect to meta-reasoning required of the agents, and for which it
is easy to create a simulated environment.

Other (educational) problems from the field of logic (e.g., the muddy children
problem [8]) and from the field of distributed problem solving (e.g., the mutual
exclusion problem [6]) do not have all these advantages. The muddy children problem
is scalable, and simulating the environment is easy, but the problem is heavy in terms
of reasoning. The mutual exclusion problem, on the contrary, is a too easy in terms of
reasoning. In the mutual exclusion problem, the parties involved do not have to reason
at all about the consequences of their actions. The distributed weighing problem
offers a nice alternative, since it requires a bit of reasoning about consequences of
actions. However, explicit meta-reasoning (see for example [4]) is unnecessary,
because of the assumption that all agents will aim for non-repetitive weighings, and
the allowance of suboptimal solutions. Under these circumstances the problem can be
solved by agents that operate according to the following: “my move aims for non-
repetitive weighings, and I assume other agents do the same”.

An example solution to the problem was implemented in an agent-based
framework, and rigorously tested for two example strategies of levels believed
suitable for educational purposes. The two strategies were discussed and compared.
Moreover, a methodology was presented to evaluate the performance of strategies,
based on formal validation of properties. Using this methodology, the example
strategies put forward were formally validated with respect to a number of desired
properties.

The educational use of the problem was promising. The students found the
problem interesting and challenging, and were confronted with their own faulty
assumptions on other students’ reasoning. To be able to design correct strategies for
the problem, it turned out to be essential to make adequate assumptions about other
agents, and to maintain some model of future possibilities. Therefore, the distributed
weighing problem showed to be an appropriate problem for the education of
cooperation without communication.

References

1. Bavelas, A. The five squares problem - An instructional aid in group cooperation. Studies
in Personnel Psychology, 5, 29-38.

2. Bosse, T., Jonker, C.M., Meij, L., van der, and Treur, J. LEADSTO: a Language and
Environment for Analysis of Dynamics by SimulaTiOn. Proc. of the Third German
Conference on Multi-Agent System Technologies, MATES 2005. Lecture Notes in AI,
Springer Verlag, 2005 (this volume).

3. Brazier, F.M.T., Jonker, C.M., and Treur, J., Principles of Component-Based Design of
Intelligent Agents. Data and Knowledge Engineering, vol. 41, 2002, pp. 1-28.

4. Corkill, D., Lesser, V., The use of meta-level control for coordination in a distributed
problem solving network. In Proceedings of the Eighth International Joint Conference on
Artificial Intelligence, Karlsruhe, Germany, August 1983, pp. 748 – 756.

5. Dignum, F., Agent Communication and Cooperative Information Agents. In M. Klusch
and L. Kerschberg (eds.) Cooperative Information Agents IV - The Future of Information
Agents in Cyberspace (LNCS-1860), Springer-Verlag, 2000, pages 191-207.

The Distributed Weighing Problem: A Lesson in Cooperation Without Communication 203

6. Dijkstra, E.W. Co-operating Sequential Processes. In: Programming Languages, Genuys,
F. (Ed), London, Academic Press, 1965.

7. Doran, J.E., Franklin, S., Jennings, N.R., Norman, T.J., On Cooperation in Multi-Agent
Systems, The Knowledge Engineering Review, 1997 (3), pp. 309-314.

8. Fagin, R., Halpern, J.Y., Moses, Y., and Vardi, M.Y. Reasoning About Knowledge. The
MIT Press: Cambridge, MA, 1995.

9. Genesereth, M.R., Ginsberg, M.L., and Rosenschein, J.S., Cooperation Without
Communication, The National Conf. on AI, Philadelphia, PA., August 1986, pp. 51-57.

10. Goodstein, R.L., Find the penny, Mathematical Gazette, December 1945, pp. 227-229.
11. Grossman, H.D., The Twelve-Coin Problem, Scripta Mathematica, vol. 11, December

1945, pp. 360-363.
12. Jonker, C.M., Treur, J., and Wijngaards, W.C.A., A Temporal Modelling Environment for

Internally Grounded Beliefs, Desires and Intentions. Cognitive Systems Research Journal,
vol. 4(3), 2003, pp. 191-210.

13. Rosenschein, J., Genesereth, M. Deals among rational agents. In Proc. of the Ninth Int.
Joint Conference on Artificial Intelligence, LA, California, August 1985, pp. 91-99.

14. Schut M.C., Kentrop M., Leenaarts M., Melis M., and Miller I., APPROACH:
Decentralised Rotation Planning for Container Barges. In: Lopez de Mataras R. and Saitta
L., editors, Proceedings of the Sixteenth European Conference on Artificial Intelligence
(ECAI 2004), IOS Press, 2004, pp. 755-759.

An Adaptive Reputation Model for VOs

Arturo Avila-Rosas

Instituto Mexicano del Petróleo,
Eje Central 152, México DF, CP 07730, México

aavilar@imp.mx

Abstract. Because Virtual Organisations (VOs) essentially involve co-
operating two or more organisations or agents to pursue a common ob-
jective, satisfactory cooperation is vital to their success. However, before
an agent made the decision to go ahead with the VO, it needs to be con-
fident that the rest of the potential partners will be act cooperatively. We
show that reputation is a basic ingredient in the formation of VOs. Repu-
tation is computed using an adaptive algorithm, so agents can learn and
adapt their reputation models of their partners according to their recent
behaviour. Our approach is especially powerful if the agent participates
in a VO in which the members can change their behaviour to exploit
their partners. The reputation model presented in this paper deals with
the questions of deception and fraud that have been ignored in current
models of VO formation.

1 Introduction

Recently, a large number of new collaborative, networked organisations have
emerged, having as motivation the explosive progress in computer networks and
communication systems, but also as a reaction to market pressures that demand
customised, high quality products and services at lower costs and, at the same
time, shorter production and marketing times. Promising greater flexibility, re-
source optimisation and responsiveness in competitive open environments, VOs
are an example of this trend that has pervaded not only business domains but
other areas such as e-science. The concept of a VO has been used to describe the
aggregation of autonomous and independent organisations connected through a
network and brought together to deliver a product or service in response to a
customer need [3]. What distinguishes VOs from other forms of organisation is
the full mutual dependence of their members to achieve their goal and therefore
the need for cooperation. However, open environments in which VOs are em-
bedded involve organisations and individuals that do not necessarily share the
same objectives and interests that they might not know in advance, and where
they might not trust each other, but should work together and help each other
to achieve a common goal. One of the key omissions in the computational repre-
sentation of VOs relates to the need to take into account more subjective facets
like the reputation of the individuals, which helps to cope with heterogeneity,
autonomy and diversity of interests among members. We observe that current

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 204–209, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Adaptive Reputation Model for VOs 205

solutions underestimate the possibility of swindle in VOs. A common flaw is as-
suming that the partners selected are fully competent and honest. Since partners
represent organisations or individuals who want to maximise their utilities by
joining a VO, they have a strong incentive to misrepresent the value of their
contributions and enjoy more benefits of cooperative associations [1]. Further,
partners are selected in relation to the abilities they claim to have, but it is pos-
sible that they do not have such abilities. However, due to lack of information
about past interactions, it is difficult to detect and control these situations. This
paper considers the introduction of reputation into VOs, by providing a repu-
tation model based on the adaptive evaluation of direct experiences to identify
trustworthy individuals to join VO.

The remainder of this paper is organised as follows. The requirement for
reputation systems for VOs are discussed in Section 2. In Section 3 we present our
reputation model for VOs which is based on reinforcement learning techniques.
Section 4 reviews related work, and Section 5 present our conclusions.

2 Requirements

The objective of this section is to delineate the requirements for building a
reputation system in order to serve as a decision-making variable in the selection
of partners, promote cooperation, produce trust and induce good behaviour in
the members of a VO.

1. Distributed reputation management. Because VOs do not depend on the
presence of any centrally trusted authority, there is a need for distributed
mechanisms that enable the partners in a VO to collect, store, manage and
disseminate reputation in a personalised fashion.

2. Dynamism. Due to limitations in time and intense task pressures, partners
in a VO should be able to quickly use a reduced number of interactions to
estimate the reputation of a partner and; at the same time, take partner
selection decisions without having a significant impact, in terms of time
consumption, on the formation of a VO.

3. Adaptability. Reputation must be updated dynamically to adapt the values
of reputation towards true quality of service. This suggests that the updating
process should be a learning process about another’s true abilities, that cap-
tures the observed performance through the reputation of the partner. This
leads to discarding updating methods that diminish the impact of strategic
changes in partner behaviour that intend to milk high values of reputation
by intentionally deteriorating the provision of the service.

4. Predictability. Reputation must provide information to predict the future
performance of a partner and eventually the risk involved of interacting
with it. That is, based on a partner’s previous performance, reputation must
provide an indication of its future performance and willingness to accomplish
a task.

206 A. Avila-Rosas

3 Direct Reputation Model

In this section we introduce our model of reputation, which is based upon SPO-
RAS. SPORAS was chosen because some of its design guidelines are consistent
with our specific requirements. Particularly, since SPORAS is an adaptive repu-
tation model that updates the reputation values after each interaction, removing
the effects of obsolete data in some manner, it is ideal for environments where the
behaviour of VO members is changing through the time because the relationships
among them are themselves changing as a function of their interests and goals.
We start by defining mathematically the concepts of reputation and impressions.
Next we describe the methods used in our model for updating reputation.

3.1 Reputation

We define the reputation of an agent as a perception regarding its intention and
competences, which is held by other agents through the formation and dissem-
ination of subjective evaluations based on experiences and observations of past
actions. Here, these evaluations are called impressions. From the definition, the
observed behaviour of others is collected through: (i) direct experiences, with
interaction histories serving as a strong evidence for estimating someone reputa-
tion or (ii) via the testimony of others, known as recommenders. On the basis of
the source of reputation, two concepts of reputation may be derived, namely di-
rect reputation and social reputation. The concept of social reputation is beyond
the scope of this paper.

3.2 Direct Reputation

Direct reputation (DR) is defined as the weighted average evaluation that an
agent makes of another’s competence, and gives the extent to which the target
is good or bad with respect to a given behaviour or action. Direct reputation is
context-dependent so that an agent is reputed according to the service provided.
In our algorithm we adopt the ideas of Shapiro [5], then direct reputation is
computed as the average of impressions received within the most recent time
window,

W = [t − ε, t] , (1)

where ε defines a time interval that limits the set of interactions and in which im-
pressions are used to compute a direct reputation value. Impressions are weighted
from 0 to 1 to indicate the notion of importance of an impression in relation to
others for calculating reputation. The direct reputation values vary in the range
of [0,1] and are used only to represent comparative values in this continuous
space from bad reputation (values near 0) to good reputation (values near 1).
The direct reputation of i in the perspective of j in context k is represented as:

DRk
ij ∈ [0, 1].

An Adaptive Reputation Model for VOs 207

3.3 Impression

We define an impression as an evaluative opinion that is formed by any en-
tity (individual, organisation, etc.) based on a discrete experience with another
partner, coupled with the partner’s performance. An impression is related with
a dimension that describes just one of the qualities of the service as required by
agent j. Mathematically, the impression appear as follows,

impd
ij ∈ [0, 1],

Qij = {d ∈ k|k is a context}, (2)

where i is the service provider whose interaction with the service consumer j
left in it the strong impression imp in relation to dimension d, and Qij is the
set of dimensions for evaluating a service provider in context k. The numbers
used for impressions are merely reference values for making comparisons, each
consumer establishes a personal threshold of acceptable values for the dimension
d evaluated.

3.4 Updating Direct Reputation

Each agent updates its reputation value of a service provider every time it re-
ceives impressions from either direct (immediate or observed interactions) or
indirect experiences. In order to update the reputation values (after receiving
t rated experiences or impressions) we use the following reinforcement learning
based action update rules:

DRt = DRt−1 + α · [impt − DRt−1]. (3)

Reputation, in Eq.(3), can be interpreted as the aggregation of the previous
value of reputation plus a factor that strengthens or weakens that value. This
factor indicates the proximity of the recent impression to the past reputation,
and shows of how well the previous reputation predicts the latest given impres-
sion. The update rule in Eq.(3) is a linear function which is required in an open
environment where the number of prior interactions may be reduced, and repu-
tation cannot be updated in the long term through a non-linear function because
an agent could cheat on many occasions before the reputation is updated. Now,
if α is near 1 then all the previous history will be forgotten, otherwise, if α is
near 0 then the previous history will be preserved.

The factor α is also known as a learning rate, and is an indicator of how long
past experiences will last in the memory of the system. For our purposes, we
consider α as a function α(DRt−1, impt) with the following properties that are
based on the ideas of Carbo et al. [2]:

– The function α(DRt−1, impt) determines how fast the reputation value
changes after an experience and how this affects the memory of the system.
This depends on the accuracy of the predictions suggested by the impres-
sions received; that is, how much similarity exists between the expectation
formed by the previous reputation values and the last rating.

208 A. Avila-Rosas

– Similarity will be estimated through a similarity function β(DRt−1, impt) ∈
(0, 1):

β(DRt−1, impt) = 1 − e−10·ABS(E−imp), (4)
where E is the estimated rating based on the past reputation and rating:

E =
DRt−1 + impt−1

2
. (5)

– Finally, the function α(DRt−1, imp) is updated as follows:

α(DRt, imp) =
α(DRt−1, imp) + β(DRt−1, imp)

2
. (6)

4 Related Work

Zacharia and Maes in [6] present SPORAS, which is a centralised reputation sys-
tem that establishes reputation for users in an on-line community (for example
chat rooms, auctions or newsletters groups), based on the aggregation of rates
given by users after each transaction. Reputation in SPORAS aims to predict
future performance of the users. In order to make accurate predictions using a
small computational space, a recursive and adaptive algorithm for updating rep-
utation is used. This aggregation method then allows newer rates to count more
than older ones. Because SPORAS is a centralised reputation system, it is not
viable for VOs where partners need personalised reputation values calculated
from assembled rates of those they trust already rather than those they do not
know. Moreover, mediators are designed and operated by parties whose inter-
ests may sometimes diverge from those of the electronic community. Although
the assumption made in SPORAS to make reputation values dependent on the
reputation of the entity who is providing a feedback is correct, it mixes two
different dimensions of reputation. While a user can be reputed as completely
unable to cheat on deals, nonetheless that same user may be a bad evaluator of
other users. That is, being an excellent service provider does not mean being an
honest evaluator.

REGRET is a reputation system developed by Sabater and Sierra [4] that
adopts a sociological approach for computing reputation in societies of agents
trading well defined products inside an e-commerce environment. Although RE-
GRET provides a very simple method for aggregating rates (or impressions that
are the result of evaluating direct interactions) based on the weighted sum of
the impressions (more relevance is given to the recent ones), its major contribu-
tion is the vision of reputation through of three dimensions. These dimensions
are called the individual dimension, social dimension and ontological dimension.
As discussed earlier, VOs require to a certain extent that the reputation of a
partner is assessed in a reactive form to detect possible opportunistic behaviour.
However, REGRET’s main idea consists of emphasising the freshness of infor-
mation. Computations in REGRET give a fixed high relevance to recent rates
over older ones according to a time dependent function, and, moreover the rates
are aggregated in a way that can be sensitive to noise since they are simply
summed.

An Adaptive Reputation Model for VOs 209

5 Conclusions and Future Work

We have provided a critical overview of the state of the art in the field of VOs
and reputation. We argue that subjective aspects of partners such as their com-
petences and trustworthiness should be taken into account in partner selection
decisions, since these aspects ultimately influence cooperation between partners.
Moreover, we assert that reputation plays an important role in VOs when mem-
bers decide who to interact with and when to interact, by providing information
about the past behaviour of potential partners, their abilities and reliability. In
particular, we assert the importance of reputation not only in the formation
process of VO but in the operation process.

Additionally, we discussed the requirements for building reputation systems
that pursue three basic objectives in the formation and operation of VOs: (1)
they provide useful information about potential partners for selecting the most
appropriate, and eventually enable the formation of VOs; (2) they foster trust
among the partners of the VO by revealing each partner’s capabilities and pre-
dicting its future behaviour; and (3) they offer a means for enhancing coopera-
tion by detecting and deterring deceptive behaviour through imposing collective
sanctions on defectors.

Although this paper has answered how reputation is relevant to recognise
cooperative partners through direct interactions, it opens up more research op-
portunities and questions that are unanswered. Moreover, there are other issues
that were not faced in this paper, due to the bounds imposed on the research,
and still need to be addressed.

References

1. S. Braynov and T. Sandholm. Trust revelation in multiagent interaction. In Proceed-
ings of CHI’02 Workshop on Philosophy and design of Socially Adept Technologies,
pages 57–60, Minneapolis, USA, 2002.

2. J. Carbo, J. Molina, and J. Davila. Trust management through fuzzy reputation.
International Journal of Cooperative Information Systems, 12(1):135–155, 2003.

3. E. Oliveira and A. Rocha. Agents advanced features for negotiation in electronic
commerce and virtual organisations formation processes. In Agent Mediated Elec-
tronic Commerce, the European AgentLink Perspective, volume 1991 of Lectures
Notes in Artificial Intelligence, pages 77–96, 2000.

4. J. Sabater and C. Sierra. Reputation and social network analysis in multi-agent
systems. In Proceedings of the First International Joint Conference on AAMAS,
pages 475–482, Bologna, Italy, 2002.

5. Carl Shapiro. Consumer information, product quality, and seller reputation. The
Bell Journal of Economics, 13:20–35, 1982.

6. G. Zacharia and P. Maes. Trust management through reputation mechanisms. Ap-
plied Artificial Intelligence, 14(8):881–907, 2000.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 210 – 215, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Realising Reusable Agent Behaviours with ALPHA

Rem Collier1, Robert Ross2, and Gregory M.P. O’Hare1

1 Practice & Research in Intelligent Systems & Media (PRISM) Laboratory,
Department of Computer Science, University College Dublin (UCD),

Belfield, Dublin 4, Ireland
{rem.collier, gregory.ohare}@ucd.ie

2 Department of Computer Science,
University of Bremen, Germany

robertr@tzi.de

Abstract. This paper describes how roles have been used to engender reuse
within the ALPHA agent programming language.

1 Introduction

In many programming paradigms, how to support the reuse of program code has long
been considered a central issue. This is not the case for Agent-Oriented Programming
(AOP) languages, where researchers are still focusing on answering the question:
what are the most appropriate features for an agent programming language?
However, with the emergence of more mature languages, such as 3APL [4] and Nuin
[6], there is a growing need to investigate how reuse might be supported. This issue
was highlighted with respect to the Zeus [9] agent platform, where the lack of support
for reuse was a significant problem for the commercial developers who used earlier
versions of the tool [7].

One approach to reuse is through the concept of a role. Roles are widely
recognized as a key concept in the analysis and design of multi-agent systems [1, 14]
and are often viewed as a valuable level of abstraction, which can be used to define
common behaviours that may be reused in the design of many different types of
agent. This has led some researchers to argue that there is a need for a new class of
Role-Oriented Programming Environment [10]. However, a recent survey of role-
based approaches for agent development [2], found that the notion of a role is less
well established with respect to the implementation of agents. Two exceptions to this
are [7] which describes a role-based approach to the fabrication of Zeus agents, and
Role EP [13], which uses roles to support the programming of travelling/collaboration
tasks for mobile agents.

In terms of AOP, [5] presents a role-based extension to the pre-existing 3APL
programming language [4]. Underpinning this extension is a formal model of a role
that combines information received, objectives, and rules that define conditional
norms and obligations. This model is used first to motivate the design of a role-
playing agent, whose structure is formally specified, and then to drive the design of a
revised agent interpreter. However their work does not consider how this model
might be used to engender reuse within the language.

 Realising Reusable Agent Behaviours with ALPHA 211

This paper builds on the work presented in [5] by discussing the role-based
approach to reuse that has been engendered in the ALPHA programming language
[12], which sits at the heart of the Agent Factory framework [3]. Specifically, we
explore how OOP reuse mechanisms such as inheritance, composition, and
aggregation can be applied to AOP. To achieve this, we model an agent as a set of
role templates that can be instantiated as appropriate. This approach is based on
practical experience gained from the use of the ALPHA programming language in the
development of a number of real world application domains [11] [8].

2 ALPHA - A Language for Programming Hybrid Agents

ALPHA [12] is an agent programming language that supports the development of
agents that use a mental state architecture to reason about how best to act. Due to
space constraints, only a brief summary of ALPHA is presented here. For a detailed
overview of the formal model that underpins the language, see [3].

ALPHA supports the fabrication of agents whose mental state is comprised of
beliefs, goals, and commitments. Beliefs describe - possibly incorrectly - the state of
the environment in which the agent is situated, goals describe future states of the
environment that the agent would like to bring about, and commitments describe the
activity that the agent is committed to realising. The behaviour of the agent is
realised primarily through a purpose-built execution algorithm that is centred about
the notion of commitment management [3].

Within ALPHA, commitments are viewed as the mental equivalent of a contract.
As such, they define a course of action/activity that the agent has agreed to, when it
must realise that activity, to whom the commitment was made, and finally, what
conditions, if any, would lead to it not having to fulfil the commitment. Commitment
management is then a meta-level process that ALPHA agents employ to manipulate
their commitments based upon some underlying strategy known as a commitment
management strategy. This strategy specifies a set of sub-strategies that define how
an agent adopts, refines, and realises its commitments.

The principal sub-strategy that underpins the behaviour of ALPHA agents is
commitment adoption. Commitments are adopted either as a result of a decision to
realise some activity, or through the refinement of an existing commitment. The
former type of commitment is known as a primary commitment and the latter as a
secondary commitment. The adoption of a primary commitment occurs as a result of
one of two processes: (1) in response to a decision to attempt to achieve a goal using a
plan of action, or (2) as a result of the triggering of a commitment rule. Commitment
rules define situations (a conjunction of positive and negative belief atoms) in which
the agent should adopt a primary commitment.

A key feature of ALPHA, which differentiates it from other agent programming
languages, is the inclusion within the language of a set of programming constructs
that allow the developer to explicitly specify how each agent can interact with its
environment. Specifically, ALPHA includes a PERCEPTOR and an ACTUATOR
construct, which specify how the agent senses and effects its environment
respectively. These constructs associate Java classes that implement the sensors and
effectors of an agent with the behaviour of that agent which is specified in ALPHA.

212 R. Collier, R. Ross, and G.M.P. O’Hare

The set of actuators and perceptors that are specified for a given agent is known as the
embodiment configuration of that agent.

3 Supporting Roles in ALPHA

As is described in the previous section, an ALPHA agent program traditionally takes
the form of a set of commitment rules together with an initial mental state and an
embodiment configuration. The ability to compose new ALPHA agent programs
from pre-existing programs that are stored in different physical files, known as role
files, was previously supported via the USE_ROLE construct. The initial motivation
for the inclusion of this construct was to support the decomposition of ALPHA agent
programs into their constituent roles, facilitating the reuse of those roles at compile
time. However, this approach, whilst flexible, has proven to be inadequate for a
number of reasons: (1) the concept of a role only exists up to compile time; hence the
agent is not aware, at run-time, of the role(s) that it is playing; (2) the relationship that
exists between the different roles is not clear - it can be viewed as either a weak form
of inheritance or as composition depending on the nature of the underlying code; and
(3) lack of support for the templatisation of the roles makes the specification generic
role implementations more difficult.

Perhaps the main cause underlying the inadequacy of this approach is that the
USE_ROLE construct is, in essence, the equivalent of the #include construct of C.
Such a construct is insufficient to provide support for the composition, extension, and
templatisation of roles. As a result, the construct has since been re-cast as an
IMPORT construct, and ALPHA has been re-engineered to provide explicit support
for roles through the inclusion of a ROLE construct.

3.1 Role Templates

The primary construct for defining behaviours in ALPHA is the commitment rule.
Traditionally, these rules were located in the body of an agent program. However, in
our new framework, behaviours are defined via roles. To facilitate this, we have
defined a ROLE construct. This construct combines a unique role identifier, a set of
commitment rules that define the behaviour that underpins the role and a set trigger
conditions that cause the activation of the role. The identifier provides a unique way
of referring to a role, and takes the form of a first-order structure whose arguments are
variables; commitments rules take the same form as before, with the exception that
their scope is now restricted to the role in which they are defined; and finally, the
trigger conditions outline situations in which the role should be activated. Allowing
the identifier to take variable arguments is the mechanism by which the role is
templatised.

The instantiation of a role template is achieved through the generation of a set of
variable bindings that map the arguments of the identifier to constants. This may
occur in one of two ways: (1) via the satisfaction of a trigger condition, or (2) via the
activate(?role) action. In the former case, the variable bindings are generated from
the trigger condition (that is, each argument of the identifier must occur within each
trigger condition). Conversely, in the latter case, the relevant variables must occur

 Realising Reusable Agent Behaviours with ALPHA 213

within the action definition. We illustrate the ROLE construct through an example
that defines a Subscriber facilitator role:

 ROLE Subscriber(?agent, ?item) {
 TRIGGER BELIEF(fipaMessage(request, sender(?name, ?addr), subscribe(?item)));

 BELIEF(fipaMessage(inform, ?sender, ?item)) =>
 COMMIT(Self, Now, BELIEF(true), inform(?agent, ?item));

 BELIEF(fipaMessage(inform, sender(?agt, ?addr), cancelSubscription(?item))) =>
 COMMIT(Self, Now, BELIEF(true), deactivate(Subscriber(?agt, ?item)));
 }

The activation of this role can occur either as the result of a message from another
agent or via the activate(…)action. For example, an agent that had enacted the
Subscriber role was to perform the action activate(Subscriber(Rem,

fuelLevel(?level)), then the Subscriber role would be instantiated and activated
using the following variable binding {?agent/Rem, ?item/fuelLevel(?level) }.
This would result in all occurrences of the variable ?agent in the commitment rules
associated with the role being replaced by Rem and all the occurrences of ?item being
replaced by fuelLevel(?level). Also, the instance will be assigned the identifier
Subscriber(Rem, fuelLevel(?level)). This differentiates role templates from roles
and enforces the condition that each role instance must have a unique identifier.

3.2 Inheritance of Roles

In OOP, inheritance refers to the extension of an existing class to include additional,
or polymorph existing, behaviour/properties. In the context of AOP, the provision of
such a technique would allow the developer to identify common behaviours and to
reuse those behaviours by extracting them into an abstract role and then reusing that
abstract role in the definition of concrete roles. In ALPHA, we consider only the
inclusion of additional behaviours/properties. When an existing role is extended, the
developer may specify additional commitment rules and trigger conditions in the sub-
role. Additionally, the developer may include additional variables in the identifier of
the sub-role. Whenever an instance of the sub-role is activated, the variable binding
is applied to both the sub-role and all parent roles.

Use of the extension mechanism is realised through the optional EXTENDS
keyword as is shown in the example below which illustrates how a Senior Lecturer
role can be defined in terms of a Lecturer role:

 ROLE SeniorLecturer(?subjects, ?admin) EXTENDS Lecturer(?subjects) {
 ... role body defined here ...
 }
 ROLE Lecturer(?subjects) {
 .. role body defined here ...
 }

3.3 Composition of Roles

From an OOP perspective, composition and aggregation are similar techniques for
building a composite object out of a number of other objects. The primary difference
between these techniques arises from the lifetime of the component objects. With
composition, the component objects cannot exist without the composite object. That

214 R. Collier, R. Ross, and G.M.P. O’Hare

is, if object A is composed from object B and C, then object A must be created before
objects B and C, while objects B and C must be destroyed before A can be destroyed.
Conversely, with aggregation, the component objects can exist before the aggregated
object is created. In ALPHA, we consider only composition of roles, and support this
through the inclusion of a USES construct. This construct is used within the body of a
role to specify any component roles that are used by that role. For example, consider
the estate agent role discussed above. The segment of code below illustrates how this
role can be represented in ALPHA:

 ROLE EstateAgent(?area) {
 USES Valuer, Auctioneer, Salesman;
 ... role body defined here ...
 }

This code specifies that that an Estate Agent role uses three component roles: a
Valuer role, an Auctioneer role, and a Salesman role. The main purpose of the
construct is to ensure, at run-time, that the agent has the necessary component roles
required to realise the composite role.

4 Discussion

This paper presents a framework for reuse in AOP languages that is founded on the
notion of a role. Specifically, this framework presents a model of agents whose
behaviour is specified as a set of roles that can be dynamically activated and
deactivated at run-time. In addition, we argue that the most appropriate approach to
representing the roles that an agent can play is through the use of role templates.
These templates are, in essence, parameterised definitions of the expected behaviours
that an agent playing that role should realise. Further, we have motivated the inclusion
of two reuse mechanisms, namely composition and inheritance. These mechanisms
enable developers to easily construct new roles that are based upon pre-existing roles.

A key difference between the approach presented here, and that presented in [5]
arises from their specification, which seems to limit an agent to only one active role at
a time. Once activated, this role exclusively drives the agents subsequent behaviour,
and will continue to do so until it is deactivated and another role is activated. This is
in contrast with the more widely accepted view that an agent will potentially have (1)
many activated roles at any given instant in time [14], and (2) some of those activated
roles may be different instantiations of the same role.

This work introduces the first AOP language that implements support for reuse
through a combination of role templates and OOP inspired reuse mechanisms such as
inheritance and composition. It is out view that the inclusion of such support is vital if
AOP languages are to become a viable option for the development of agent-oriented
applications.

References

[1] B. Bauer, J. P. Muller, and J Odell. Agent uml: A formalism for specifying multiagent
interaction. In Paolo Ciancarini and Michael Wooldridge, editors, Agent-Oriented
Software Engineering. Springer Verlag, 2001.

 Realising Reusable Agent Behaviours with ALPHA 215

[2] G. Cabri, L. Ferrari, L. Leonardi, F. Zambonelli, Role-based Approaches for Agent
Development, in Proceedings of the 3rd International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-04) , NY, 2004

[3] R. W. Collier. Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications. PhD Thesis, Dept. of Computer Science, Univ. College Dublin, 2001.

[4] M. Dastani, B. van Riensdijk, F. Dignum, and J-J Meyer. A programming language for
cognitive agents: Goal directed 3apl. In Proc. of AAMAS2003, Melbourne, 2003.

[5] M. Dastani, M. Birna van Riems-dijk, J. Hulstijn, F. Dignum, and J. Ch. Meyer. Enacting
and deacting roles in agent programming, In Proceedings of the 2nd International
Workshop on Programming Multi-Agent Systems PROMAS2004), 2004.

[6] I. Dickinson and M. Wooldridge. Towards practical reasoning agents for the semantic
web, In 2nd Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS-
03), Melbourne, Australia, 2003.

[7] A. Karageorgos, S. Thompson and N. Mehandjiev, Specifying Reuse Concerns in Agent
System Design Using a Role Algebra. In: Agent Technologies, Infrastructures, Tools, and
Applications for e-Services. ecture Notes in Artificial Intelligence LNAI, 2592. Springer-
Verlag.

[8] C. Muldoon, G.M.P. O’Hare, D. Phelan, R. Strahan, R. Collier, ACCESS: An Agent
Architecture for Ubiquitous Service Delivery, Proc 7th Int’l Workshop on Cooperative
Information Agents (CIA2003), Helsinki, 2003.

[9] H. Nwana, D. Ndumu, L. Lee, and J. Collis. Zeus: A toolkit for building distributed multi-
agent systems. Applied Artificial Intelligence Journal, 13(1):129–186, 1999.

[10] J. Odell, H. Van Dyke Parunack, S. Brueckner, and J. Sauter. Temporal aspects of
dynamic role assignment, in Proceedings of the 4th International Workshop on Agent-
Oriented Software Engineering (AOSE2003), 2003.

[11] G. M. P. O'Hare and M. J. O'Grady, Gulliver's Genie: A Multi-Agent System for
Ubiquitous and Intelligent Content Delivery, In Press, Computer Communications,
Elsevier Press, 2003.

[12] R. Ross, R. Collier, and G. O’Hare. Af-apl: Bridging principles & practices in agent
oriented languages, in Proc. 2nd International Workshop on Programming Multiagent
Systems Languages and tools (PROMAS2004), New York, USA, 2004.

[13] N. Ubayashi and T. Tamai, RoleEP: role based evolutionary programming for
cooperative mobile agent applications, in the International Symposium on Principles of
Software Evolution, Kanazawa, Japan, November 2000.

[14] M. Wooldridge, N. R. Jennings, and D. Kinny, The gaia methodology for agent-oriented
analysis and design, Autonomous Agents and Multi-Agent Systems, 3(3):285–312, 2000.

Multi-agent System Specification Using TCOZ

Tim Miller and Peter McBurney�

Department of Computer Science,
The University of Liverpool, Liverpool, L69 7ZF, UK

{tim, peter}@csc.liv.ac.uk

Abstract. TCOZ is a specification language that combines the strengths
of Object-Z and Timed CSP with the goal of specifying distributed sys-
tems containing objects that act independently and concurrently. Such
goals are similar to the goals of the autonomous agent paradigm, in which
agents are entities in an environment that act independently of one an-
other, concurrently, and work proactively to achieve certain goals. This
paper discusses the suitability of several TCOZ constructs in specifying
multi-agent systems.

1 Introduction

Autonomous agents are software entities that have control, to a greater or lesser
extent, over their own execution. With the recent rise of the Internet and of
distributed computing systems, the autonomous agent paradigm has become
important in designing, understanding and managing complex computer sys-
tems.

While much research into formal agent logics and languages is focused on
modelling beliefs, desires, intentions, and knowledge of both individual agents
and groups of agents, [13] languages for specifying and designing agent systems
have received far less attention. In addition, much of the research in this area has
focused on logic programming languages for agents, such as AgentSpeak(L) [9],
or extending existing graphical languages to include the agent paradigm, such
as the Agent UML [1]. Our focus is on the formal specification and verification
of entire multi-agent systems and the environment in which they operate, with
the aim that these specifications can be used as a starting point for system
design. A formal specification of a system provides a precise and unambiguous
description of the system’s behaviour, and can serve many purposes, for example:
providing a starting point for the design and implementation of the system;
allowing developers to prove that certain properties hold or certain properties
are achieved; and providing a starting point for test case and test sequence
generation.

� The authors are supported by the Personalized Information Platform for Health
and Life Sciences (PIPS) Project (EC-FP6-IST-507019) and from the UK EPSRC
Market Based Control of Complex Computational Systems Project (GR/T10657/01),
respectively.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 216–221, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Multi-agent System Specification Using TCOZ 217

There are examples of agent specification languages that provide good sup-
port for specifying agent systems, including the interactions between agents.
AgentZ [2] is an agent-oriented extension to Object-Z, which includes concepts
such as roles, agents, and environments. The OZS notation [5] is a hybrid of
Object-Z and statecharts. Object-Z is used to specify the states and operations
of an agent, and statecharts are used to specify the reactive properties of the
agents. SLABS [14] is an agent-specific formal specification language that has
constructs resembling classes and objects. While all of these languages are useful
for modelling the states of agents, little support is provided for asynchronous,
concurrent, autonomous behaviour. Concurrent MetateM [4] allows specifica-
tion of agents using executable temporal logic, but state and composition are
not as straightforward to model as the state-based approaches above.

In this paper, we present an existing language called Timed, Communicat-
ing Object-Z (TCOZ) [7], which is used for modelling real-time, concurrent sys-
tems by combining the strength of Object-Z [11], a state-based, object-oriented
specification language, with Timed CSP [10], a real-time, concurrent language
for modelling processes and their interactions. The goals of TCOZ (providing
distributed, timed, concurrent, active objects) are similar to that of the agent
paradigm. We discuss some of the constructs available in TCOZ that we believe
are useful in specifying multi-agent systems. In an extended version of this pa-
per [8], we evaluate TCOZ as a specification language for multi-agent systems by
specifying a small, yet non-trivial example of a multi-agent system for handling
resource allocation.

2 TCOZ for Agents

In this section, we present some aspects of the TCOZ language, and discuss
why we believe this is suitable for modelling software agents in a multi-agent
environment.

2.1 Object-Z and State

Object-Z is an extension of the well-known Z specification language [12]. Among
other things, Object-Z extends Z by the addition of a class paragraph, which re-
sembles the class construct found in the object-oriented programming paradigm.
A class consists of a state, which declares the state variables and their set of pos-
sible values, an initial predicate, which constrains the initial state value, and zero
or more operations, which define transitions over the state.

Figure 1 shows the specification of a clock class, whose scope is defined by
the box named Clock . The unnamed box in the class represents the state of
class, and contains a variable time : N, representing the current time. The INIT

schema contains a predicate restricting the initial value of the clock’s time to
0. The operation Tick increments the time by one, and the operation SetTime
allows the environment to set the time via the input variable time?. Object-Z
follows the style of Z by decorating input, output, and post-state variables with
?, !, and ′ respectively.

218 T. Miller and P. McBurney

Clock

time : N

INIT

time = 0

Tick

Δ(time)

time ′ = time + 1

SetTime

Δ(time)

time? : N

time ′ = time?

Fig. 1. Clock Class in Object-Z

We can create an instance of Clock by using a variable declaration c : Clock .
The commonly used “dot” notation is used to reference the state variables, for
example, c.time, and to invoke operations, for example, c.SetTime. Operation
variables can be renamed using the same notation as Z’s variable renaming. For
example, if we have a variable newTime in scope, we can set the time to the value
of newTime like so: c.SetTime[newTime/time?], which will substitute newTime
for all occurrences of the name time? in the operation.

These features of Object-Z are suitable for modelling the internal state of
agents, such as the perceptions that an agent has of its environment. While it
may be non-trivial to model beliefs about the environment, particularly nested
beliefs (that is, beliefs about other agents’ beliefs), many multi-agent systems,
especially containing only software agents, need not model beliefs, and when they
do, their beliefs are simple enough that they can be modelled using Object-Z.

2.2 Processes

Timed CSP [10] is an extension of CSP [6]. A specification of a process in CSP
contains the set of events in which the process can take part, called the alphabet
of the process, and the set of possible event traces that the process can per-
form, including communication between other processes (discussed further in
Section 2.4). A specification of a system in CSP is the combination of those
processes, which can be either synchronous or asynchronous. Throughout the
section, we assume that P and Q are processes, a and b are events, and A is a
set of events.

a → P is a process that is enabled when a occurs, and then behaves like
process P . The environment can choose between two processes using the external
choice operator: �. Using this, a → P � b → Q specifies an event in which either
a or b is chosen to occur by the environment, and then behaves as either P or
Q respectively. The distributed choice operator allows the choice between an
arbitrary number of events: � a : A • P(a) specifies the process in which an
environment chooses an event in A to occur, and then behaves as the process
P(a).

Multi-agent System Specification Using TCOZ 219

Internal choice, which allows the process itself to make the choice, can be
specified in the same way as external choice, except using the � and� operators
respectively.

Two processes can be combined to behave in parallel asynchronously using
the ||| operator, which specifies that P ||| Q execute concurrently without any
synchronisation. A distributed version of the operator is available, used like so:
||| a : A • P(a).

Processes provide an excellent way to model agents in a multi-agent environ-
ment, because they allow agents to have their own thread of control; something
that is not possible using a state-based approach such as Object-Z.

2.3 Timing

Timed CSP extends CSP by adding the set T, denoting the set of all moments
of time, and timing primitives. The set T is a subset of the reals, so we can use
the Z toolkit’s arithmetic operators on time. For example, in the Clock class in
Figure 1, we can replace all references to N with T, while still using the arithmetic
operator +.

TCOZ supports several of the Timed CSP timing primitives, but the only
one relevant to this paper is P • WaitUntil t , which enforces that if P takes
less than t units of time to execute, then delay the process until t seconds has
passed from the start of P . Other timing primitives include deadlines and events
occurring at a particularly time.

This allows us to model timing properties in agents. While this is not so
important in most multi-agent systems, it is not difficult to find examples in
which timing is important. The case study in the extended technical report
version of this paper [8] is such an example.

2.4 Communication Channels

Communication between CSP process is achieved using channels. TCOZ allows
channels to be declared in the state of an object. If a channel c is declared like
so: c : chan, then the event c.v is defined as v being sent on channel c. Channels
are untyped, and can therefore carry any expression. As with CSP, TCOZ uses
the notation c?v to specify that a process receives v on channel c, and c!v to
specify that a process sends v on channel c.

Using communication channels in TCOZ enables modelling of communication
between agents. The object-oriented paradigm commonly discusses operation
invocation as message passing, that is, invoking an operation on an object is
defined as passing a message to that object. However, explicit communication
channels provides agents with a way to pass messages to agents that are not
visible to them, and a way of modelling the way the communication in the
system will actually occur.

2.5 Active Objects

TCOZ allows the specification of two types of object: passive and active. Pas-
sive objects are objects that are controlled either by the environment or other

220 T. Miller and P. McBurney

objects in the system. Active objects have their own thread of control, and their
operations are hidden from all other objects. Dong and Mahony [3] discuss active
objects in detail.

Specifying active objects is achieved by declared a operation called Main.
Main operations are non-terminating processes that define the behaviour of
objects. For example, our clock example in Figure 1 can be improved such that
it updates its own time by the addition of the following Main operation:

Main == μC • (Tick • WaitUntil 1s) o
9 C

In this definition, we use CSP’s μ operator to specify a unique solution within
the set of possible traces. The o

9 operator in this definition is sequential composition
of operations. So, the behaviour of the clock is to Tick once, and then wait until 1
unit of time has passed (Tick is constrained to take less than 1 unit of time), and
recurse this behaviour. Any objects using this clock need not (cannot!) invokeTick
to update the time; any instances of Clock will keep time themselves.

Active objects are central to the reason that we have evaluated TCOZ for
agents. One of the primary differences between objects and agents is that agents
are autonomous. That is, they maintain their own thread of control, and do
not necessarily act when asked to perform a task. Active behaviour is a way
to operationalise autonomy. It also provides a way for an agent to be proactive.
That is, it’s behaviour is directed by the goals that it wants to achieve. By relying
on other agents to send it messages, an agent can never be proactive.

3 Conclusion

In this paper, we discuss the use of TCOZ for modelling multi-agent systems.
We believe that TCOZ, which combines the strengths of Object-Z and Timed
CSP, provides many of the necessary constructs for specify multi-agent software
systems, both at a level of individual agent specifications, and at a higher level
of specifying interactions and cooperation between agents. These constructs in-
clude: state, which allows agents to record their aims and their perceptions of
their environment; process primitives, which allow us to specify agents as having
independent threads of control; communication channels, which allow us to spec-
ify the interactions between agents at a message passing level; and active objects,
which allow us to specify agents as entities that are active and autonomous, and
unable to be controlled by the environment in which they reside.

In the extended technical report version of this paper [8], we evaluate TCOZ
by specifying a non-trivial example of a multi-agent system being used to allocate
resources. While TCOZ may not provide all of the necessary constructs to
specify agents systems, it is clear that the goals of TCOZ (providing distributed,
timed, concurrent, active objects) are similar to those of the agent paradigm.

3.1 Future Work

This preliminary paper leaves us with several important areas of future work:
– Investigate ways for TCOZ to support additional agent-specific constructs,

such as roles and protocols.

Multi-agent System Specification Using TCOZ 221

– Investigate ways to model more complex agent states such as knowledge,
beliefs, desires, and intentions, to increase the scope of possible agent systems
that can be specified using TCOZ.

– Examine ways that libraries of complex interactions can be specified in
TCOZ for use in specifications.

– Evaluate TCOZ’s applicability to agent development frameworks.

References

1. B. Bauer, J. P. Müller, and J. Odell. Agent UML: A formalism for specifying
multiagent interaction. In Agent-Oriented Software Engineering, pages 91–103.
Springer: Berlin, Germany, 2001.

2. A.A.F. Brandao, P. Alencar, and C.J.P. de Lucena. Extending (Object-)Z for
multi-agent systems specification. In International Bi-Conference Workshop on
Agent-Oriented Information Systems, LNAI. Springer-Verlag, 2004.

3. J.S. Dong and B. Mahony. Active objects in TCOZ. In Proc. of the 1998 IEEE In-
ternational Conference on Formal Engineering Methods, pages 16–25. IEEE Com-
puter Society Press, 1998.

4. M. Fisher. A survey of concurrent MetateM — the language and its applications.
In Temporal Logic — Proc. of the First International Conference (LNAI Volume
827), pages 480–505. Springer-Verlag, 1994.

5. V. Hilaire, O. Simonin, A. Koukam, and J. Ferber. A formal approach to design
and reuse agent and multiagent models. In Agent Oriented Software Engineering,
volume 3382 of LNCS, pages 142–157. Springer, 2004.

6. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

7. B. Mahony and J.S. Dong. Timed Communicating Object-Z. IEEE Transactions
on Software Engineering, 26(2):150–177, Feb 2000.

8. T. Miller and P. McBurney. Multi-agent system specification using TCOZ. Tech-
nical Report UCLS-05-007, Department of Computer Science, University of Liver-
pool, 2005.

9. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Proc. of the Seventh Workshop on Modelling Autonomous Agents in a Multi-
Agent World, pages 42–55. Springer-Verlag, 1996.

10. S. Schneider and J. Davies. A brief history of Timed CSP. Theoretical Computer
Science, 138:243–271, 1995.

11. G. Smith. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers, 2000.

12. J. M. Spivey. The Z Notation: A Reference Manual. International Series in Com-
puter Science. Prentice-Hall International (UK) Ltd, second edition, 1992.

13. M. J. Wooldridge. Reasoning about Rational Agents. Intelligent Robotics and
Autonomous Agents. MIT Press, Cambridge, MA, USA, 2000.

14. H. Zhu. SLABS: a formal specification language for agent-based systems. Inter-
national Journal of Software Engineering and Knowledge Engineering, 11:529–558,
Nov 2001.

ABACO, Coordination of Autonomous Entities

René Schumann1 and Jürgen Sauer2

1 OFFIS, Escherweg 2 26121 Oldenburg Germany
rene.schumann@offis.de

2 University Oldenburg, Computer Center, 26121 Oldenburg, Germany
juergen.sauer@uni-oldenburg.de

Abstract. This paper presents an approach for the coordination of
scheduling systems in production networks, where the schedulers are seen
as autonomous entities using different scheduling systems for their own
but shall also achieve the common goals of the network. We assume
that the order of actions in which to achieve a certain goal is fixed and
known. The task is to distribute the actions among the agents, so that
the common goal is achieved in an efficient way. ABACO carries out this
distributed scheduling, additionally it offers the possibility of reactive
scheduling and improving the global schedule. The challenging thereby
is to maintain the autonomy of the entities. ABACO was designed to do
so. That is why the ABACO method may be useful in other contexts for
coordinating the scheduling systems of autonomous agents itself, too.

1 Introduction

We present a method for coordinating the scheduling systems of autonomous
entities. To point out the advantages of the method we chose the coordination of
scheduling systems of autonomous entities in a production network as scenario.
A production network is formed by a set of possibly independent enterprises,
e.g. production companies, whose production process is distributed among the
entities. A supply chain is an example of such a network (see e.g. [1]). The
coordination task is to schedule the activities that have to be completed for
achieving a common goal, for example to fulfil a single order.

An important point in the coordination of such autonomous entities is to
preserve the autonomy of each entity. The coordination of autonomous entities
is addressed in fields of research like multi-robot coordination and application
of multi-agent systems (MAS) in the supply chain management (SCM).

Among coordination methods for multi-robot scenarios the level of preserved
autonomy among robots can widely differ [2]. According to [3] the distribution
of depending tasks among autonomous robots is an open field of research so far,
only the article by Kalra & Stentz [4] is mentioned.

The research in the SCM domain evolved from distributed scheduling in
the production planning context, therefor solutions where presented e.g. in [5]
and [6]. An actual outline of the research done on the coordination of supply
webs is presented in [7]. A lot of previous presented methods are based on auc-
tion mechanisms (e.g. [8]) or on a hierarchical structure among the agents (e.g.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 222–228, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

ABACO, Coordination of Autonomous Entities 223

MUST [9]). Both approaches seem inadequate or functionally incomplete. A de-
tailed discussion of the inadequacy of both groups can be found in [10]. A more
promising technique may be bargaining processes. These methods base on the
idea of self-interested agents trying to improve their local profit. Assignments
are determined by agreements/contracts among the agents. Bargaining methods
have been adopted to a number of requirements, respecting the autonomy of
the entities, for instance. A review can be found in [7], too. The here presented
ABACO method can coordinate autonomous entities, precisely their scheduling
systems, maintaining a high level of autonomy for each entity.

2 Constraints for Coordination Methods

To be independent from any special scenario we first introduce the term plan-
ning authority (PA). A PA is an (autonomous) organisational entity, internally
using a scheduling system. A set of planning authorities can form a production
network. A sketch of two production networks is shown in figure 1. To fully cover

1P P P P P

planning authority

2 3 4 5

Network 1

P

Network 2

i

Fig. 1. A draft view of production network

the concept of production networks we assume that the planning authorities are
autonomous in legal and economic sense. The following list of coordination con-
straints is mainly motivated by the autonomy of the planning authorities and
an excerpt from [1] and are explained in detail in [10].

– No information disclosure: local sensitive knowledge is not used
– No hierarchy among the planning authorities is necessary
– A PA can participate in more than one production network
– Network optimisation in respect to local autonomy
– Networks are dynamic
– Reactive scheduling is necessary
– Local scheduling systems as black boxes

As already stated, the coordination methods presented so far are not capa-
ble to solve the coordination problem under these constraints. The hierarchical
methods are not applicable, because they rely on a hierarchy among the planning
authorities. The methods based on simple market mechanisms are not sufficient,
because they do not offer the possibility of reactive scheduling.

There is some research in the area of coordination scheduling systems of
autonomous entities, for instance see [11] or [12], but these approaches can only
cover some of the constraints stated above.

224 R. Schumann and J. Sauer

3 The ABACO Method

3.1 Modelling a Production Network

A PA is an autonomous entity, trying to achieve its individual goals while co-
operating with other planning authorities in one or more production networks.
To maintain this autonomy in the coordination model, every PA is represented
by an autonomous agent, a so called planning authority agent (PAA). The local
scheduling system of the PA is wrapped by the PAA.

As mentioned before a PA can participate in a number of networks simulta-
neously and can leave or enter networks at will. In respect to this flexibility of
each PAA and to reduce the communication cost within a network we introduce
another component called communication server(CS). The CS provides some
significant infrastructure to the network. A network therefore consists of a set
of PAAs and a CS, as sketched in figure 2. In contrast to the PAAs the CS acts

Planning authority agentCommunication server

P5

Net 1
Net 2

2S

4PP32P

1S

1

S

P

i
P

i

Fig. 2. Draft representation of a production network

only reactive and consequently is not autonomous. For that reason, we do not
call the CF an agent1.

3.2 Architecture of a PAA

The architecture of a PAA is shown in figure 3. All information for the ini-
talisation process and the local schedule is stored in the database. The ’world
model’ represents the known world of the agent. The communication manager is
responsible for sending and receiving messages to/from other agents. The agent
control component is responsible for reasoning about the actions the agent per-
forms. Every agent has to be customised to be able to represent its PA. Therefore
some localisation modules exist, which are dynamically loaded when the agent
is initialised. This modules have to

– implement an interface between the PAA and the local scheduling system.
– specify the bargaining strategy for the agent.
– make improvement proposals for the local schedule, this is needed during

the improvement discussions described later on.
1 Using the definition from [13] an agent is autonomous by definition.

ABACO, Coordination of Autonomous Entities 225

PAA

world
agent control

database

localisation
modules

manager
communication

model

Fig. 3. Architecture of a PAA

3.3 Coordination Protocol

Several protocols are used for the coordination of predictive and reactive schedul-
ing and schedule improvement. They are explained in detail in [10].

Initialisation. The CS is the first component which has to be run to initialise
the network. Then agents can subscribe to the network by register themselves
with their name and a list of activities the agent wants to offer within this
network. A PAA can leave a network by un-register itself from the specific CS.

Predictive Scheduling. Predictive schedule for an order can start when all
necessary activities to fulfil this order are offered by at least one agent. The
network orders are scheduled sequentially. There could exist alternative activity
sequences, which have to be evaluated. This is done by a method similar to the
contract net protocol [14]. The CS functions as the manager trying to contract
activities to the agents. During this process only information about the activity
names and the associated time slots are exchanged.

After all possible sequences have been evaluated, the CS can choose the
best alternative. All agents which where determined to accomplish activities
of the chosen sequence are informed by the CS. Each agent that received an
confirmation for an offer has to confirm its offer again. This is necessary, as the
situation of the PAA may have changed during the contracting process. When
confirming an offer the agent has to ensure that he can fulfil his offer towards to
network.

Reactive Scheduling. Reactive scheduling becomes necessary when an event
in the environment changes the situation the global schedule relies on. If such an
event occurs, the existing global schedule can become partially invalid. Examples
for such events are the quitting of an agent or the change of conditions of a
network order. The reactive scheduling is started by the CS, which can initialise
different reactive scheduling schemes, depending on the event that occurred.
The rescheduling is based on the main idea of using an alternative PAA for a
given activity when the originally assigned PAA can not fulfil its confirmation

226 R. Schumann and J. Sauer

for whatever reason. If that strategy fails all scheduled orders which are affected
by the occurred event are cancelled and these orders are scheduled again, using
the predictive scheduling scheme described above2.

Improvement Discussions. Improvement discussions are a special feature of
the ABACO method. They allow to improve the global schedule by discussions
among the PAAs. We only sketch the major aspects of improvement discus-
sions here to give an impression of the abilities of this approach. Improvement
discussions rely on the following two assumptions:

– Each PA wants to optimise its local schedule.
– The local optimisation potential for a PA is limited by its commitments

towards the production networks it is participating in.

The second assumption is true, because a PAA generates its offers based on a
given time slot, which has not to be optimal for the PAA. Beneath that the local
schedule of a PAA can become suboptimal through changes in the environment.

To improve a local schedule, it can be necessary to change the actual com-
mitments towards a production network. This can only be done with the con-
firmation of the other concerned entities within the production network. This is
evaluated in the process we call an improvement discussion.

Before starting such a discussion a local improvement has to be found. This
is done by a special localisation module. After a possible improvement was found
the agent has to try to change its commitments to the network. This is done
within an improvement discussion.

Discussion Rules: For the execution of an improvement discussion, some rules
have to be respected. Discussions are forbidden as long unscheduled network
orders exists. After all network orders are scheduled, the CS sends a message,
telling every agent that they are now allowed to initialise discussions. When an
agent has received such a message it starts to search for local improvements. If
the necessity of reactive scheduling occurs, the CS has the opportunity to cancel
ongoing discussions. During an improvement discussion undesired side effects
can occur. For example one can think of situations where

– a discussion about all activities of a network takes place.
– some discussions could be based on not widely agreed changes.
– there may occur cyclic or contradictory change proposals within a discussion.

To avoid such side effects, there is the need for further discussion rules. The fol-
lowing very restrictive rule set prevents the occurrence of undesired side effects.

– Only one activity can be the topic of an improvement discussion.
– Only one discussion can take place at a time in a network.
– The number of agents allowed to participate in a discussion is limited to a

maximum of three, namely the agent which starts the discussion and the
agents assigned to the predecessor and successor activity in the activity
sequence and the CS3.

2 This is a quite simple strategy but similar to the one presented in [11].
3 A comparable limitation can be found in [4], too.

ABACO, Coordination of Autonomous Entities 227

It has to be mentioned, that these rules are much more restrictive then necessary
to prevent the side effects described. But, as far as we can see, the weakest
sufficient discussion rule set to prevent such side effects is yet unknown.

Improvement Discussion Protocol: There exist two kinds of discussions:

1. Discussions about a change of the time slot for an activity.
2. Discussions about finding another PA for an activity4.

The main idea of this protocols is, that every participating agent evaluates the
consequences of the discussed changes on its local schedule and sends the result of
this evaluation to the agent which initialised the discussion. If the positive effects
outweigh possible negative effects and no agent rejects the change proposal then
the change is done. This results in an overall improvement.

4 Conclusion and Further Work

In this article we described the coordination problem among autonomous
scheduling entities, trying to achieve a common goal. We point out a number
of constraints a coordination method has to respect to be applicable in such a
scenario. We then presented the ABACO method, based on a MAS capable to
coordinate the tasks among the agents and preventing the autonomy of each
agent. The ABACO method was implemented prototypically.

Next steps should lead to benchmarks with conventional coordination ap-
proaches using real-world data. It can be expected that the performance of the
ABACO approach is not as good as conventional approaches, but in contrast the
ABACO approach is based on weaker preconditions and is applicable in a wider
area of applications. Although a very challenging aspect is the participation of
a PA in independent or even competing networks.

In a broader sense the ABACO approach deals with the coordination of differ-
ent self-interested agents with dependent goals and activities, with the boundary
constraint of maintaining the autonomy of each agent. We are convinced that
ABACO is applicable in this broader sense as well.

References

1. Corsten, H., Gössinger, R.: Unternehmensnetzwerke: Grundlagen - Ausgestaltungs-
formen - Instrumente. Schriften zum Produktionsmanagement 38, Lehrstuhl für
Produktionswirtschaft Universität Kaiserslautern (2001)

2. Gancet, J., Lacroix, S.: Embedding heterogeneous levels of decisional autonomy in
multi-robot systems. In: 7th Int. Symposium on Distributed Autonomous Robotic
Systems. (2004)

3. Lemaire, T., et al.: A distributed tasks allocation scheme in multi-uav context. In:
IEEE 2004 Int. Conf. on Robotics and Automation. (2004)

4 In general this implies an additional discussion about changing the time slot.

228 R. Schumann and J. Sauer

4. Kalra, N., Stentz, A.: A market approach to tightly-coupled multi-robot coor-
dination: first results. In: Proc. of the ARL Collaborative Technologies Alliance
Symposium. (2003)

5. Smith, S.F.: OPIS: A Methodology and Architecture for Reactive Scheduling. In
Zweben, M., Fox, M.S., eds.: Intelligent Scheduling. Morgan Kaufmann (1994)

6. Liu, J.S., Sycara, K.: Distributed scheduling through cooperating specialists. In:
IJCAI-93 Workshop on Knowledge-Based Production Planning, Scheduling and
Control. (1993)

7. Stockheim, T., et al.: Coordination of supply webs based on dispositive protocols.
In: 10th European Conf. on Information Systems. (2002) 1039 – 1053

8. Schmidt, C.: Marktliche Koordination in der dezentralen Produktionsplanung Ef-
fizenz - Komplexität - Performance. Galber (1999)

9. Sauer, J.: Modelling and solving multi-site scheduling problems. In Jorna, R., van
Wezel, W., Meystel, A., eds.: Planning in Intelligent Systems: Aspects, Motivations
and Methods. Wiley (2005 (to appear))

10. Schumann, R.: Ein agentenbasiertes Verfahren zur Koordination von Planungssys-
temen. Diplomarbeit, Carl von Ossietzky Universität Oldenburg (2004)

11. Frey, D., et al.: Integrated Multi-agent-based Supply Chain Management. In: Proc.
5th. Int. Workshop on Enabling Technologies: Infrastructure for Collaborative En-
terprise. (2003) 24 – 29

12. Kawamura, T., et al.: Development of a Distributed Cooperative Scheduling Sys-
tem Based on Negatioations between Scheduling Agents. Systems and Computers
in Japan 31 (2000) 92 – 101

13. Wooldridge, M.: An Introduction to Multi Agent Systems. Wiley (2002)
14. Davis, R., Smith, R.: Negotiation as a metaphor for distributed problem solving.

Artifical Intelligence 20 (1983) 63 – 109

Agent-Based Simulation for Testing Control

Software of High Bay Warehouses

Cornelia Triebig�, Tanja Credner�, Peter Fischer◦, Titus Leskien◦,
Andreas Deppisch◦, and Stefan Landvogt◦

�University of Würzburg, Department of Artificial Intelligence
◦SSI-Schäfer-Noell GmbH, Giebelstadt

Abstract. In this contribution we want to present a collaboration
project in which multiagent technology is applied to an industrial prob-
lem: testing the control software for automatic high bay warehouses.
Before the hardware will actually be accessible, a virtual warehouse rep-
resented as a multiagent system serves as an intelligent testbed. This
project is a cooperation between the Department for Artificial Intel-
ligence at the University of Würzburg and SSI Schäfer Noell GmbH
(Giebelstadt).

1 Introduction

Simulation forms an important and well established method in scientific and
industrial applications for improving comprehension and increasing quality of
design and control of complex systems. Mainly the reduction of time and thus of
cost gained in industrial applications is an important aspect for the increasing
number of applications of simulation methods.

In the area of high bay warehouses and other material flow systems, simu-
lation is applied mostly for generating performance measures or testing layout
design. There, established simulation technology like queuing systems or object-
oriented simulation is used rather successfully. However, there are additional
and attractive scenarios for using simulation supporting high bay warehouse
construction:

– testing control software using a virtual version of the high bay warehouse
before the real system is implemented and in use.

– supporting requirement acquisition in discussion with the customer
– simulation of the warehouse and control system for user training
– generating reproducible error situations

Beyond appealing graphics, specific requirements are posed on the simulation
software used for these application scenarios. The simulation software should be
able to represent the warehouse on a high level of detail; current changes in the
warehouse configuration should be easy to adapt in the simulation and also fast
to perform. Due to high project pressure, the construction of a model should be

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 229–234, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

230 C. Triebig et al.

speed up; modeling should not require simulation experts but should be manage-
able by warehouse experts themselves. These requirements are hardly fulfilled
by standard simulation systems and languages. In the scope of our collaboration
project we were able to show that the agent paradigm allows highly flexible mod-
eling on a level of preciseness that is accomplishable without expensive training
in modeling and simulation techniques.

2 Related Work

With this collaboration project we briefly refer to simulation as well as to agent-
based technology. Therefore let us have a look at work concerning these subjects.

There are few simulation tools designed for the application field of produc-
tion and material flow systems. One of them is the commercial simulation tool
eM-Plant [1]. It can be used for visualization, planning and optimization of pro-
duction and logistics. eM-Plant provides several building block toolboxes for
various domains e.g. automatic guided vehicle systems, airport, assembly, etc..
These toolboxes contain different building blocks which can be adapted to the
requirements of a specific project and combined together. Another commercial
simulation tool is FlexSim [2]. FlexSim enables ”fast and easy modeling, clear
visualization as well as reuseability of models”. FlexSim, like eM-Plant, can be
applied in various domains. It can be used as vending tool, because of the visu-
alization, as well as for planning, design and simulation of different systems.

There are many other simulation tools but they are all similiar to the tools
presented above. However, for the choice of an appropriate simulation environ-
ment they were not considered.

The application field of agent-based technology is extensive and can be found
in almost every domain. However, ”although agent technology is an accepted
research area, it has not gained wide-spread industrial acceptance until now”[3].

This research area is now drawing more attention on itself because it is being
recognized a powerful tool for the development of large and complex systems
and it is also beginning to gain industrial relevance [3]. In [4] Jennings, Sycara
and Woolridge give a roadmap of agent research and development and an over-
wiew on agent-based industrial and commercial applications. The main areas in
which agent-based approaches are already in use are e.g. manufacturing, process
control, telecommunication, air traffic control, transportation systems, informa-
tion management, electronic commerce, etc.. With regard to our project there
are some interesting approaches in manufacturing and process control. Timm,
Herzog, Woelk and Tönshoff engage in improvements of information logistics in
the area of production engeneering [5]. They present an agent-based approach
to the integration of process planning and production control and of making
the workflow more flexible by using co-operative agents systems as described in
[5]. They try to fill the gap which arises from ”strong borderlines between pro-
cess planning, production control and scheduling systems, caused by extreme
specialization and independent historical paths of system evolution”.

Another agent-based application on manufacturing was developed by a Daim-
ler Chrysler-led consortium [6]. Bussmann and Schild present their auction-based

Agent-Based Simulation for Testing Control Software 231

approach to manufacturing line control in [7]. In this approach which is applied
in the domain of automobile industry, workpieces auction off their current task,
while machines bid for tasks.

3 The Simulation Environment SeSAm

For the our project we use the generic environment SeSAm (Shell for Simulated
Agent Systems, www.simsesam.de) that allows high-level visual programming
of multi-agent simulations. This open-source project is developed by the De-
partment for Artificial Intelligence (University of Würzburg). SeSAm provides
a generic environment for modeling and analyzing with agent-based simulation.
The focus lies on providing a tool for easing the construction of complex models.

SeSAm offers several categories of objects that can take part on simulations.
Naturally, agent classes can be implemented. Objects that don’t act themselves
but only are used to act with can be added as ressources. The so-called world rep-
resents the environment and is in fact a specialized agent. Each of these objects
can handle a number of own variables, which are used to store the knowledge of
the agent and for interactions. The behavior of an agent must be defined as an
activity graph. The syntax is abutted to UML. Actions an agent should perform
are defined by combining the atomic activities that are offered by SeSAm. Such
actions are grouped into activities connected with directed edges that represent
a condition. If this condition is evaluated as true during a simulation run the
agent will continue with the next activity.

For creating a real simulation run, a situation for the model needs to be built.
Instances of the agent classes are placed on the map, if desired the starting values
of their variables can be edited. After this, the real simulation can be started.
Additionally it is possible to define analyzing functions and to decide whether
variables are logged during the simulation.

For defining ordinary simulations as described above, not a single line of Java
Code needs to be written because everything is implemented via manipulating
graphical elements. If special requirements arise, e.g the need for communication
with external systems, SeSAm can easily be extended by Java-Plugins. Generic
interfaces in the internal structure of the project allow new data types, atomic
primitives and also new complex GUI elements to be added.

4 Agentbased Simulation for High Bay Warehouses

A high bay warehouse basically consists of transport routes for transport units,
pallets or bins, and high bay storage and retrieval. In particular, there are dif-
ferent modules like variable conveyor elements, scales and scanners (with er-
ror probabilities), storage elements, but also human operators. Each of these
elements may be treated as an agent with specific behavior. The modularity
of warehouse components facilitates the mapping of warehouse components on
agents: real component behavior is mapped to agent behavior.

232 C. Triebig et al.

Agents realized in this way are also layout independent. That means, these
agents can be applied in any model. As each project requires an adapted com-
bination of warehouse components, this property facilitates and accelerates the
modeling of specific projects. This enables models with variable structures.

A further property of agents is that it is facile to build them in a generic way.
Generic built agents make it possible to reuse them in all models of this domain.
The generic-ness of agents maintaines the extensibility and also the adaption of
agent behavior in succession of improvements or innovations.

One of the most important aspects of using agent-based technology for the
simulation of high bay warehouses is the detailed simulation with the integration
of involved persons. Human operators are employed as part pickers at picking
stations or to manually control the conveyor lines. As a result of this, these
human operators are also able to compensate errors or malfunctions with their
natural intelligence. The agent-based approach makes it easier to simulate human
behavior than other technologies. Typical agent properties enable a better and
more detailed mapping of human intelligence, perception and thus the resulting
and actual behavior in the simualtion than it is achieved by other technologies.

5 SeSAm-Based Models of High Bay Warehouses

Different modules like conveyor elements, scales and scanners, storage elements,
but also human operators are the basic elements of a high bay warehouses. Each
of these elements may be treated as an agent, that means, as a more or less
autonomously intelligent building block with local sensors and effectors. Beyond
communication within the virtual high bay warehouse - that is with other agents,
there has to be also communication with the warehouse control software.

Until now the construction of eight actual high bay warehouse projects have
been supported by agent-based simulation for testing the control software. The
general procedure is that we develop a multi-agent model of the high bay ware-
house in SeSAm. The real warehouse is concurrently built up. Thus, details of
the real-world warehouse can be adapted almost synchronously.

As far as the use and functionality of the basic elements are concerned all
warehouses are similiar, a fixed number of agents was implemented like different
kinds of conveyors, shuttle vehicles, storage and retrieval machines or human part
pickers. The use of these precasted agents speeds up the modeling. However, be-
cause of the requirements of specific virtual high bay warehouses, some adaptions
of the applied agents must be conducted. Therefore we decided to design these
agents as generically as possible. The fixed number of reusable agents should
be minimized. This level of modeling is sufficient for the application scenarios
in requirements engineering and training, but not for the primary application,
namely the test of control software. Therefore a special adaption or connection
between the virtual warehouse - represented with agents, and the specific soft-
ware is required. This adaption is more or less easily to build, because of the
Plugin-concept of SeSAm mentioned above. The generic-ness of the agents also
supports the communication between control the software and agents. This com-

Agent-Based Simulation for Testing Control Software 233

munication is datagram-based, much like some proprietary ACL-messages. The
control software to test sends commands in reaction to notifications or alarms
the agent. This is implemented using the Plugin-concept.

Agents may be grouped to higher-level components with some fixed organi-
zational structure that again may be integrated into the overall virtual high bay
warehouse in the same way as ”atomic” agents. We developed aggregates with
complex synchronization protocols, like

– storage-and-retrieval machines within their working environment (There you
can also observe the actual process of storage and retrieval in the warehouse.)

– carousels for transport and delivery (especially used in bin conveyor systems)
– complex conveyor lines, which can change their transport direction
– ”intelligent” conveyor lines, which can route transport units in a new direc-

tion when accumulations on some routes occur
– vertical conveyors and (multi) shuttle vehicles

6 Example Project

In this section we want to present a successfully implemented project. In figure 1
you see the complete virtual warehouse. For better understanding we separated
the illustration in two sections and added a legend showing the used agents: the
Storage and Retrieval Area (1) and the High Rack Storage Area (2).

Section 1 of figure 1 shows Storage Points, conveyor line elements and Re-
trieval Points. On Storage Points Transport Units (TUs) enter the warehouse
system. On Retrieval Points, they leave the system. The three Storage Points
which you can see in this area are connected to a conveyor line. Conveyor lines
consists of two different conveyor elements: Simple and Generic Conveyors. Sim-
ple Conveyors manage only one direction, Generic ones manage several directions
in which TUs can be routed. Each of these agents is able to take only one TU
at the same time. In this project, there are two ways for TUs arriving at the
High Rack Storage, as the arrows show. The right side of section 1 is responsible
for retrieval of TUs out of the system. This part of the system consists only of
Simple and Generic Conveyors as well as of Retrieval Points. In the High Rack
Storage (section 2 of figure 1) you can additionally see the Storage Retrieval Ma-
chines serving the actual storage. The representation of the storage is facilitated
because there is no need in this project to show in which way and on which
place TUs are stored. If TUs enter the storage they will be destroyed. In case of
a retrieval request of stored TUs Storage Points reproduce them.

As soon as the warehouse system is represented and customized in a SeSAm-
model software tests are started. To customize the model the initial agent vari-
ables ar adapted, e.g. the setting of the conveying direction. The software test
consists of successive software unit tests. Each component of the whole warehouse
control software is tested on its own. Therefor special datagrams are generated
and TU orders are sent to see if the generated TUs take the specified desti-
nation and arrive at a given position. Thus, the warehouse control software is
proofed and should work correctly after copious tests. In this model stadium the
simulation is also used as presentation tool for customers.

234 C. Triebig et al.

Fig. 1. Screenshot of a high bay warehouse simulated with SeSAm

7 Conclusion

At the moment eight projects are successfully completed, other four are in pro-
cess and further projects are planned. Already with the first virtual warehouse
we used, several errors in the control software could be found and fixed before
the real-world warehouse was available. With each virtual warehouse the effort
for its modeling decreased due to an improved set of agents. That way several
ten thousands of Euros could be saved.

References

1. http://www.emplant.de
2. http://www.g-f.at
3. http://www.agentlab.de
4. Jennings, N.R., Sycara K., Woolridge, M.: A Roadmap of Agent Research and De-

velopment. Auto. Agents and Multi-Agent Syst., Vol. 1, No. 1, July, 1998, pp. 7-38.
5. Tönshoff, H.K., Woelk, P.O., Herzog O., Timm I.J.: Integrated process planning and

production control - A flexible approach using co-operative agent systems. Proc.
10th Int. Conf. on Prec. Engineer., Yokohama, Japan, July, 2001, pp. 857-861.

6. Jennings, N.R., Bussmann, S.: Agent-based Control systems. IEEE Control Systems
Magazine, Vol. 23, June 2003, pp. 61-73.

7. Bussmann, S., Schild, K.: Self-organising manufacturing control: an industrial ap-
plication of agent technology. Proc. 4th Int. Conf. on Multi-Agent Systems, Boston,
MA, 2000, pp. 87-94.

Collaborative Agent-Based Knowledge Support for
Empirical and Knowledge-Intense Processes

Andrea Freßmann1, Kerstin Maximini1, Rainer Maximini1, and Thomas Sauer2

1 University of Trier, Department of Business Information Systems II,
54286 Trier, Germany

{andrea.fressmann, kerstin.maximini,
rainer.maximini}@wi2.uni-trier.de

2 rjm Business Solutions GmbH, 68623 Lampertheim, Germany
t sauer@rjm.de

Abstract. Independent from specific application domains, similar requirements
can be identified regarding information needs during daily work. For coping with
generality on the one hand and domain specificity on the other hand the Collab-
orative Agent-based Knowledge Engine CAKE is currently developed that com-
bines agent and workflow technology in an innovative way. Agent technology is
used for integrating various services, whereas workflow technology is used for
coordinating collaboration among agents.

1 Collaborative Agent-Based Knowledge Engine (CAKE)

Motivated by requirements derived from different application domains like fire services,
agile software engineering, medicine, and geographical information systems a domain-
independent system called Collaborative Agent-based Knowledge Engine (CAKE) [1]
is currently developed aiming at supporting empirical and knowledge-intense processes.
Empirical processes [2] are mostly unpredictable, unrepeatable, and are subject to
change as they are enacted. Knowledge-intense processes like identifying, creating, and
sharing of knowledge require sophisticated knowledge management strategies.

For enabling domain-specific applications CAKE provides the possibility to expand
a general data and process model individually. It makes use of workflow technology for
facilitating knowledge intensive tasks required for context-based information support
and agent technology for integration of various services.

CAKE requires a lot of flexiblity, e.g. for coping with changes during runtime on
behalf of end-users. In particular, context-based information has to be adapted to chang-
ing situations of system users. Conventional software reaches the end of its capabilities
here, requiring mostly predetermined paths. CAKE overcomes this challenge with the
provision of agile workflows. Agile workflows offer the options of either modelling
single tasks in detail or modelling abstractly, supporting late modelling as well. Tech-
nically, this kind of workflows is supported by Case Based Reasoning (CBR) [3] search
technology: When proceeding to an abstractly planned task the workflow engine allows
the corresponding user to retrieve a suitable workflow definition in a special workflow
database. In that scope, ad-hoc planning is facilitated during runtime.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 235–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

236 A. Freßmann et al.

Besides widening the flexibility given by agile and knowledge-intensive workflows
there is also a challenge to incorporate business-relevant information in form of integra-
tion of retrieval engines in order to access distributed knowledge sources. While access
to distributed databases and retrieval engines is necessary, incompatibility is often a
drawback. For coping with compatibilities CAKE also includes an agent framework
that enables and mediates arbitrary access and communication to different agent-based
services. From a conceptual point of view, CAKE does not only distinguish between
information agents that provide knowledge and user agents that request knowledge,
but knows a third kind, namely collaboration agents that manage the collaboration
between other agents based on collaboration patterns. These patterns are technically
described as workflow definitions and organise the agents’ collaboration. In contrast
to conventional agent-based approaches that provide agents to get in contact to other
agents for pursuing their goals, CAKE makes use of collaboration patterns to exploit
combinations of various information sources and best practices. Collaboration patterns
encompass domain-specific and domain-independent search strategies with respect to
potential types of agent collaborations. For enabling a convenient usage CAKE hides
these strategies from users without the need of specification which agent users intend
to request. In order to realise the concepts described above CAKE makes use of agent
technology for combining services provided by the workflow engine manager and exter-
nal services, e.g. retrieval engines. The flexibility of agile workflows is carried forward
to the agent framework by providing a dynamic set of agents whereas agents are able to
enter and leave the CAKE agent society based on the concept of network agent society
as proposed by Dignum et al. [4].

In summary, CAKE consolidates both technologies basically: agent technology for
providing the integration of various services and external technologies, workflow tech-
nology for both coordinating collaboration among agents and supporting context-based
information. Particularly, the presented collaboration patterns facilitate the management
of agent collaborations based on best practices or on configurable patterns. Furthermore,
these patterns enable routing facilities for transferring knowledge within organisations
which means high universality to CAKE.

Acknowledgements. The authors acknowledge the European Commission for funding
AMIRA under grant number FP6, project IST-2003-511740.

References

1. Freßmann, A., Maximini, R., Sauer, T.: Towards collaborative agent-based knowledge sup-
port for agile projects. In Althoff, K.D., Dengel, A., Bergmann, R., Roth-Berghofer, T., eds.:
WM2005: Professional Knowledge Management Experiences and Visions, Kaiserslautern,
Germany, DFKI GmbH (2005) 383–388

2. Advanced Development Methods, Inc.: Control chaos: Living on the edge. the origins of
scrum, http://www.controlchaos.com (1996)

3. Weber, B., Wild, W., Breu, R.: Cbrflow: Enabling adaptive workflow management through
conversational case-based reasoning. In Funk, P., Calero, P.A.G., eds.: Advances in Case-
Based Reasoning, Proceedings of 7th European Conference, ECCBR 2004. LNAI3155,
Madrid, Spain, Springer Verlag, Berlin-Heidelberg (2004) 434–448

4. Dignum, V., Weigand, H., Yu, L.: Agent societies: Towards frameworks-based design. Lecture
Notes in Computer Science 2222 (2002) 33ff

Experiments in Neo-computation Based on Emergent
Programming

Jean-Pierre Georgé, Marie-Pierre Gleizes, and Pierre Glize

IRIT, Université Paul Sabatier, 118 route de Narbonne,
31062 Toulouse cedex, France

{george, gleizes, glize}@irit.fr

1 Emergent Programming

The general objective of this work is to develop a complete programming language
in which each instruction is an autonomous agent trying to be in a cooperative state
with the other agents of the system, as well as with the environment of the system.
By endowing these instruction-agents with self-organizing mechanisms[2], we obtain
a system able to continuously adapt to the task required by the programmer (i.e. to
program and re-program itself depending on the needs). The work presented here aims
at showing the feasibility of such a concept by specifying, and experimenting with, a
core of instruction-agents needed for a subset of mathematical calculus. In its most
abstract view, Emergent Programming is the automated assembling of instructions of
a programming language using mechanisms which are not explicitly informed of the
program to be created. We chose to rely on an adaptive multi-agent system using self-
organizing mechanisms based on cooperation as it is described in the AMAS theory[1].
An important part of our work on Emergent Programming has been the exploration of
the self-organization mechanisms which enable the agents to progress toward the ade-
quate function, depending on the constraints of the environment but without knowing
the organization to reach or how to do it.

2 The Elementary Example

The elementary example we choose is constituted of 6 agents: 3 "constant" agents, an
"addition" agent, a "multiplication" agent and an "output" agent. A "constant" agent is
able to provide the value which has been fixed at his creation (cf. Figure 1). The values
produced by the system are results from organizations like (A + B) ∗ C. AgentOut
transmits the value he receives to the environment and is in charge of retrieving the
feedback from the environment and forward it into the system. It is important to note
that this information is not in any way an explicit description about the goal and how to
reach it (it only informs that the value has to be higher or lower).

The size of the complete search space is 65, that is 7776 theoretically possible or-
ganizations, counting all the incomplete ones (i.e. where not every agent has all his
partners). Among them, we have 6 types of different functional organization (they can
actually calculate a value) (cf. Figure 1). The aim is to start without any partnerships
between agents and to request that the system produces the highest value for example.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 237–239, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

238 J.-P. Georgé, M.-P. Gleizes, and P. Glize

��

A
B

C
��

2

10

100

20

120

��

A
C

B
�

2

100

10

200

210

��

B
C

A
��

10

100

2

1000

1002

��

B
C

A
��

10

100

2

110

220

��

A
C

B
��

2

100

10

102

1020

�

A
B

C
��

2

10

100

12

1200

OUT

OUT

OUT

OUT

OUT

OUT
2

3

1

5

6

4

Fig. 1. The 6 different possible types of functional organizations for the elementary example

2.1 Reorganization Mechanisms

The agent’s self-organizing capacity is induced by their capacity to detect NCS (Non-
Cooperative Situations), react so as to resorb them and continuously act as coopera-
tively as possible. This last point implies in fact that the agent also has to try to resorb
NCS of other agents if he is aware of them. We will illustrate this with the description
of a simple NCS and how it is resorbed.

NCSNeedIn detection: the agent is missing a partner on one of his inputs. Since to
be cooperative in the system he has to be useful, and to be useful he has to be able to
compute his function, he has to find partners able to send values toward his input. Most
NCS lead the agent to communicate so as to find a suitable (new) partner. These calls,
because the agents have to take them into account, also take the shape of NCS.

NCSNeedIn resorption: this is one of the easiest NCS so resorb because the agent
only has to find any agent for his missing input. The agent has simply to be able to con-
tact some agent providing values corresponding to his own type (there could be agents
handling values of different types in a system). So he generates an NCSNeedInMessage
describing his situation and send it to his acquaintances.

NCSNeedInMessage detection: the agent receives a message informing him that
another agent is in a NCSNeedIn situation (the sender is missing a partner on one of his
inputs).

NCSNeedInMessage resorption: the agent is informed of the needs of the sender of
the NCS and his cooperative attitude dictates him to act. First, he has to judge if he
is relevant for the needs of the sender, and if it is the case, he has to propose himself
as a potential partner. Second, even if he is not himself relevant, one of its acquain-
tances may be: he tries to counter this NCS by propagating the initial message to some
acquaintances he thinks may be the most relevant.

It is important to note that the information which is given as a feedback is not in any
way an explicit description about the goal and how to reach it. Indeed, this information
does not exist: given a handful of values and mathematical operators, there is no explicit
method to reach a specific value even for a human. They can only try and guess, and
this is also what the agents do. That is why we believe the resolution we implemented
to be in the frame of emergence.

Experiments in Neo-computation Based on Emergent Programming 239

3 Results

First, the internal constraints of the system are solved very quickly: in only a few re-
organization moves (among the 7776 possible organizations), all the agents find their
partners and a functional organization is reached. Then, because of the feedback from
the environment, other NCS are produced and the system starts reorganizing toward
its goal. Since the search space if of 7776 possible organizations, a blind exploration
would need an average of 3888 checked organizations to reach a specific one. Since a
functional organization possesses 4 identical instances for a given value (by input per-
mutations), we would need 972 tries to get the right value. Experimentation shows that
the system needs to explore less than a hundred organizations among the 7776 to reach
one of the 4 producing the highest value. We consider that this self-organization strat-
egy allows a relevant exploration of the search space. A noteworthy result is also that
whatever organization receives the feedback for a better value, the next organization
will indeed produce a better value.

4 Discussion

If we define all the agents needed to represent a complete programming language (with
agents representing variables, allocation, control structures, ...) and if this language is
extensive enough, we obtain maximal expressiveness: every program we can produce
with current programming languages can be coded as an organization of instruction-
agents. In its absolute concept, Emergent programming could then solve any problem,
given that the problem can be solved by a computer system. Of course, this seems quite
unrealistic, at least for the moment.

But if we possess some higher-level knowledges about a problem, or if the problem
can be structured at a higher level than the instruction level, then it is more efficient and
easier to conceive the system at a higher level. This is the case for example when we
can identify entities of bigger granularity which therefore have richer competences and
behaviors, maybe adapted specifically for the problem. Consequently, we will certainly
be able to apply the self-organizing mechanisms developed for Emergent Programming
to other ways to tackle a problem. Indeed, instruction-agents are very particular by
the fact that they represent the most generic type of entities. The exploration of the
search space, for entities possessing more information or more competences for a given
problem can only be easier. For example, we think that problems like Ambient Intelli-
gence or Autonomic Computing are ideal candidate for a problem solving by emergence
approach.

References

1. M.-P. Gleizes, V. Camps, and P. Glize. A theory of emergent computation based on coopera-
tive self-oganization for adaptive artificial systems. In Fourth European Congress of Systems
Science, Valencia, Spain, 1999.

2. F. Heylighen. Encyclopedia of Life Support Systems, chapter The Science of Self-organization
and Adaptivity. EOLSS Publishers Co. Ltd, 2001.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 240 – 241, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Framework Based on Multi-agent Systems for
Information Retrieval Through Mobile Devices

Angela Carrillo Ramos, Jérôme Gensel, Marlène Villanova-Oliver,
and Hervé Martin

LSR-IMAG Laboratory, SIGMA Team. B.P. 72,
38402 Saint Martin d’Hères Cedex, France

{carrillo, gensel, villanov, martin}@imag.fr

Abstract. In this paper, we describe PUMAS, a framework based on Multi-
Agent Systems (MAS) for accessing Web Information Systems (WIS) through
Mobile Devices (MD). The goal of PUMAS is to provide nomadic users with
adapted information taking into account, on the one hand, their preferences and
history in the system and, on the other hand, the limited capacities of their MD.
We describe the four MAS of PUMAS which handle the adaptation process. We
also describe how the user’s queries are redirected towards one or several WIS
which contains the information for answering them.

1 Motivation

In order to provide the nomadic user only with “the right information in the right
place at the right time", a Mobile Device (MD) application must embed mechanisms
for propagating the user’s queries towards the “right” information sources which can
answer these queries taking into account the user’s preferences, the features of her/his
MDs, her/his location, etc. For this purpose, we have defined PUMAS, a framework
based on Multi-Agent Systems (MAS) for retrieving information distributed between
several WIS and different types of MDs. Through PUMAS, our final objective is to
build and propose a framework which is, beyond the management of accesses to WIS
performed through MDs, also in charge of performing an adaptation of information.
We briefly present the architecture of PUMAS as well as the Query Routing process
[4] executed in PUMAS by a Router Agent in order to redirect the queries formulated
by the user towards the different WIS.

2 The PUMAS Framework

The architecture of PUMAS [1] is composed of four MAS, each one encompassing
several ubiquitous agents: First, the Connection MAS provides the mechanisms for
facilitating the connection from different kinds of MD to the system. Second, the
Communication MAS ensures a transparent communication between the MDs and the
system. It also applies a Display Filter for displaying the information to the user ac-
cording to the technical constraints of her/his MD. Third, the Information MAS which
receives the user’s query, redirects it to the “right” WIS, applies a Content Filter
according to the user’s profile and returns the filtered results to the Communication
MAS. Finally, agents of the Adaptation MAS communicate with the agents of the three
other MAS in order to exchange information about the user and her/his MD.

 A Framework Based on MAS for Information Retrieval Through Mobile Devices 241

The Knowledge managed by the PUMAS agents for achieving their adaptation
tasks is stored in Knowledge Bases (KBs) in the form of pieces of knowledge. We call
these pieces “facts” and define them using JESS (http://herzberg.ca.sandia.gov/jess/).
A complete description of the Knowledge Management in PUMAS is presented in [2].

The Query Routing process in PUMAS is achieved by the Router Agent which re-
ceives the query together with the characteristics of the user and of her/his MD. In
order to redirect the query to the “right” IS(s), a strategy is chosen by the Router
Agent and depends on several criteria: user’s location, preferences, etc. The strategy
can lead to the sending of the query to a specific WIS, or to the sending of the query in
a broadcast way, or to the split of the query in sub-queries, each one being sent to one
or several ISAgents (which execute on the WIS and search for the asked information).
The Router Agent is also in charge of compiling the results returned by the ISAgents
and of analyzing them to decide whether the whole set of results or only a part of it
will be sent to the user. In PUMAS, the Query Routing process consists of three activi-
ties (based on the work of Xu et al [3]): First, the analysis of the query (related to the
possible split of the query in sub-queries). Second, the selection of the Information
Sources (the Router Agent computes the network of neighbors, based on ideas of
Yang et al [4]). The last activity is the redirection of the query to the neighbors.

3 Conclusions and Future Work

In this paper, we have described PUMAS, a framework composed of four MAS (one
connection MAS, one communication MAS, one information MAS and one adaptation
MAS) which retrieves adapted information according to the user’s characteristics and
those of her/his MD. We also described the Query Routing process performed by the
Router Agent which is composed of three activities: an analysis of the query, a selec-
tion of the information sources and a redirection of the query. We now aim at imple-
menting each MAS of PUMAS. For this purpose, we have chosen JADE-LEAP
(http://jade.tilab.com/).

References

1. Carrillo-Ramos, A., Gensel, J., Villanova-Oliver, M., Martin, H.: PUMAS: a Framework
based on Ubiquitous Agents for Accessing Web Information Systems through Mobile De-
vices. In proc. of the 20th ACM Symposium on Applied Computing (SAC 2005) (Santafe,
New Mexico, USA, March 13 - 17, 2005), ACM Press, New York, NY (2005) 1003-1008.

2. Carrillo-Ramos, A., Gensel, J., Villanova-Oliver, M., Martin, H.: Adapted information
retrieval in Web Information Systems using PUMAS. To appear in 7th Int. Workshop on
Agent-Oriented Information Systems (AOIS2005) (Utrecht, Netherlands, July 25, 2005).

3. Xu, J., Lim, E., Ng, W.K.: Cluster-Based Database Selection Techniques for Routing Bib-
liographic Queries. In proc. of 10th International Conference on Database and Expert Sys-
tems Applications (DEXA 99) (Florence, Italy, August 30 - September 3, 1999), LNCS,
Vol. 1677, Springer-Verlag, Berlin Heidelberg (1999) 100-109.

4. Yang, D., Xu, L., Cai, W., Zhou, S., Zhou, A.: Efficient Query Routing for XML Docu-
ments Retrieval in Unstructured Peer to Peer Networks. In proc. of the 6th Asia Pacific Web
Conference (APWeb 2004) (Hangzhou, China, April 14 - 17, 2004), LNCS, Vol. 3007,
Springer-Verlag, Berlin Heidelberg (2004) 217-223.

CASCOM: Context-Aware Service

Co-ordination in Mobile P2P Environments�

Heikki Helin1, Matthias Klusch2, António Lopes3, Alberto Fernández4,
Michael Schumacher5, Heiko Schuldt6, Federico Bergenti7, and Ari Kinnunen8

1 TeliaSonera Finland Oyj, Finland
Heikki.j.Helin@teliasonera.com

2 Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany
klusch@dfki.de

3 Associação para o Desenvolvimento das
Telecomunicações e Tecnicas de Informática (ADETTI), Portugal

antonio.lopes@we-b-mind.org
4 Universidad Rey Juan Carlos (URJC), Spain

alberto.fernandez@urjc.es
5 Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

michael.schumacher@epfl.ch
6 University for Health Sciences, Medical Informatics and

Technology (UMIT), Austria
heiko.schuldt@umit.at

7 FRAMeTech S.R.L., Italy
bergenti@cs.unipr.it

8 EMA Group, Ltd., Finland
ari@ema.fi

Abstract. The research project CASCOM (Context-aware Business
Application Service Co-ordination in Mobile Computing Environments)
will implement, validate, and trial value-added support for business ser-
vices for mobile workers and users across mobile and fixed networks. The
vision of the CASCOM approach is that ubiquitous application services
are flexibly co-ordinated and pervasively provided to the mobile users by
intelligent agents in dynamically changing contexts of open, large-scale,
pervasive environments.

1 CASCOM Overview

The essential approach of the research project CASCOM is the innovative com-
bination of agent technology, semantic Web services, P2P, and mobile comput-
ing for intelligent P2P (IP2P) mobile service environments. The services of our
environment are provided by agents exploiting the coordination infrastructure
to efficiently operate in highly dynamic environments. The IP2P infrastructure

� This work has been supported in part by the European Commission under the project
grant FP6-IST-511632-CASCOM.

T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 242–243, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CASCOM: Context-Aware Service Co-ordination 243

includes efficient communication means, support for context-aware adaptation
techniques, as well as dynamic service discovery and composition planning.

Software agents will be a key technology to address the challenges of our
architecture. IP2P networks provide an environment for agents to collaborate
as peers sharing information, tasks, and responsibilities with each other. Agents
help to manage the P2P network complexity, and they will improve the function-
ality of conventional P2P systems. Our innovations in this domain will concern
the development of context-aware agent-based semantic Web services, and flex-
ible resource-efficient co-ordination of such services in the nomadic computing
field. Further, context-awareness is investigated in the context of IP2P environ-
ment and we will develop context-aware agents which provide various business
application services.

Service co-ordination mechanisms of P2P systems can be applied to multi-
agent systems to improve their efficiency. Although this may be accepted on a
conceptual level, the combination of agents and P2P environments certainly de-
serves more innovative research, especially regarding nomadic environments. The
dynamic topology of IP2P networks, characteristics of wireless network connec-
tions, and the limited capacity of mobile devices pose several challenges that have
been addressed inadequately in service discovery architectures. In CASCOM, we
will investigate mechanisms for service discovery algorithms for dynamic IP2P
environments.

The problem of service co-ordination can be split into several sub prob-
lems: discovery, composition planning, execution monitoring, and failure recov-
ery. CASCOM will advance the state of the art by carrying out innovative re-
search on how these problems can be solved in IP2P environments. Especially
CASCOM will provide flexible and efficient matching algorithms to be performed
in large scale and resource limited IP2P environments.

Using AI planning formalisms in service composition and planning are devel-
oped for problems where the number of operators is relatively small but where
plans can be complex. In Web service composition for open, large-scale IP2P
environments planning methods dealing with huge number of possible service
are required. However, plans are not necessarily very complex, and therefore
planning methods must follow more closely the structure of the service directo-
ries. CASCOM will develop planning mechanisms that establish plan fragments
directly on top of the service directory to solve this problem.

In general, it is expected that the outcomes of the project will have significant
impact on the creation of a next-generation global, large-scale intelligent service
environment. Both, research results on methods for service provision, discovery,
composition and monitoring, and the deployed prototype of an open IP2P service
environment in the context of nomadic computing will advance the state of the
art of European and world knowledge in areas related to the deployment of
services in open systems.

More information about CASCOM can be found from our homepage at
http://www.ist-cascom.org/.

Author Index

Aberer, Karl 1
Avila-Rosas, Arturo 204

Becker, Marc 94
Bergenti, Federico 242
Blankenburg, Bastian 47
Bosse, Tibor 165, 191
Braubach, Lars 82

Cabac, Lawrence 179
Carrillo Ramos, Angela 240
Chen-Burger, Yun-Heh 35
Collier, Rem 210
Credner, Tanja 229
Cudré-Mauroux, Philippe 1
Czap, Hans 94

Dang, Jiangbo 59
Deppisch, Andreas 229
Despotovic, Zoran 1
Dikenelli, Oguz 141

Fernández, Alberto 242
Fischer, Peter 229
Freßmann, Andrea 235

Garćıa, Benito Mendoza 106
Gensel, Jérôme 240
Georgé, Jean-Pierre 237
Gleizes, Marie-Pierre 237
Glize, Pierre 237
Gümüs, Özgür 141
Guo, Li 35

Helin, Heikki 242
Hoogendoorn, Mark 191
Huang, Jingshan 106
Huhns, Michael N. 59, 106

Isern, David 118

Jmaiel, Mohamed 153
Jonker, Catholijn M. 165, 191

Kacem, Ahmed Hadj 153
Kardas, Geylani 141
Kinnunen, Ari 242
Klusch, Matthias 47, 242
Lamersdorf, Winfried 82
Landvogt, Stefan 229
Lehmann, Kolja 179
Leskien, Titus 229
Lopes, António 242
Löser, Alexander 15

Martin, Hervé 240
Maximini, Kerstin 235
Maximini, Rainer 235
McBurney, Peter 216
Meyer, John-Jules Ch. 27
Miller, Tim 216
Moldt, Daniel 179
Moreno, Antonio 118

O’Hare, Gregory M.P. 210

Pokahr, Alexander 82
Poppensieker, Malte 94

Regayeg, Amira 153
Renz, Wolfgang 71
Robertson, Dave 35
Rölke, Heiko 179
Ross, Robert 210

Sánchez, David 118
Sauer, Jürgen 222
Sauer, Thomas 235
Scholz, Thorsten 130
Schuldt, Heiko 242
Schumacher, Michael 242
Schumann, René 222
Spittel, Rainer 130
Staab, Steffen 15
Stotz, Alexander 94
Sudeikat, Jan 71

246 Author Index

Tempich, Christoph 15
Timm, Ingo J. 130
Tiryaki, Ali Murat 141
Treur, Jan 165
Triebig, Cornelia 229

van der Meij, Lourens 165

Villanova-Oliver, Marlène 240

Zavala Gutiérrez, Rosa Laura 106

	Frontmatter
	Invited Contributions
	On the Convergence of Structured Search, Information Retrieval and Trust Management in Distributed Systems
	Semantic Methods for P2P Query Routing
	Programming Cognitive Agents

	Workflows and Group Interaction
	Enacting the Distributed Business Workflows Using BPEL4WS on the Multi-agent Platform
	BSCA-P: Privacy Preserving Coalition Formation
	Towards Service Coalitions: Coordinating the Commitments in a Workflow

	Reasoning about Utility
	Modeling Minority Games with BDI Agents -- A Case Study
	A Goal Deliberation Strategy for BDI Agent Systems
	Estimating Utility-Functions for Negotiating Agents: Using Conjoint Analysis as an Alternative Approach to Expected Utility Measurement

	The Dynamics of Knowledge
	Reconciling Agent Ontologies for Web Service Applications
	An Agent-Based Knowledge Acquisition Platform
	An Agent Architecture for Ensuring Quality of Service by Dynamic Capability Certification
	Engineering a Multi Agent Platform with Dynamic Semantic Service Discovery and Invocation Capability

	Methodology and Simulation
	Towards a Formal Methodology for Designing Multi-agent Applications
	LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn

	Agent Tools and Agent Education
	Towards a Distributed Tool Platform Based on Mobile Agents
	The Distributed Weighing Problem: A Lesson in Cooperation Without Communication

	Short Papers
	An Adaptive Reputation Model for VOs
	Realising Reusable Agent Behaviours with ALPHA
	Multi-agent System Specification Using TCOZ
	ABACO, Coordination of Autonomous Entities
	Agent-Based Simulation for Testing Control Software of High Bay Warehouses

	Posters
	Collaborative Agent-Based Knowledge Support for Empirical and Knowledge-Intense Processes
	Experiments in Neo-computation Based on Emergent Programming
	A Framework Based on Multi-agent Systems for Information Retrieval Through Mobile Devices
	CASCOM: Context-Aware Service Co-ordination in Mobile P2P Environments

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

