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Abstract. We introduce and discuss a new method for segmentation
and classification of cells from 3D tissue probes. The anisotropic 3D
volumetric data of fluorescent marked cell nuclei is recorded by a confo-
cal laser scanning microscope (LSM). Voxel-wise gray scale features (see
accompaning paper [1][2]), invariant towards 3D rotation of its neigh-
borhood, are extracted from the original data by integrating over the 3D
rotation group with non-linear kernels.

In an interactive process, support-vector machine models are trained
for each cell type using user relevance feedback. With this reference
database at hand, segmentation and classification can be achieved in
one step, simply by classifying each voxel and performing a connected
component labelling, automatically without further human interaction.
This general approach easily allows adoption of other cell types or tissue
structures just by adding new training samples and re-training the model.
Experiments with datasets from chicken chorioallantoic membrane show
encouraging results.

1 Introduction

In biological and medical research as well as in histopathologic diagnosis, the
localization and classification of cells is an everyday business. A vast number of
research techniques and treatment methods require detailed information on the
amount, type, localization and state of cells in a given probe of tissue or dilution.
Locating, classifying and analyzing cells is not a simple task, very time consum-
ing, and in most cases a human expert is needed. The demand for automation is
continuously growing with the large number of applications in biotechnology and
medical research. But so far this problem is not satisfyingly solved in general.
Although there are various methods around, which perform quite well for simple
tasks like counting or the segmentation of cells in dilution, most problems are
still subject to basic research.
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Concerning the algorithms introduced in the literature so far, most of them
suffer from the fact that they have been developed for one special purpose only
and cannot be easily generalized to other cell types or tissues. Besides that, seg-
mentation is often an unsolved problem as well, and many algorithms require
manual interaction. We introduce a new general purpose algorithm using voxel-
wise gray scale invariants([1][2]) for both, segmentation and classification of cells
in 2D and 3D probes, and provide some first, promising experimental results.
Motivated by the work of [3] and [4], gray scale invariants were very successfully
applied to individual pollen recognition in [5] [6]. A major problem of cell classi-
fication in tissue probes is segmentation. In order to achieve good classification
results, supervised-learning classifiers rely on proper segmented training samples
and classification probes. Proper segmentation is hard to realize without higher
semantic knowledge about the object to segment. But the use of a-priori knowl-
edge or manual segmentation is not suited for a fully automatic general purpose
approach.

For this reason we developed a self learning segmentation algorithm by use of
gray scale invariants, which is capable of performing segmentation and classifica-
tion in one step. Gray scale invariant features are extracted from the surrounding
neighborhood of each pixel/voxel. In an interactive procedure, a support-vector
machine model is trained. Once this model has been obtained for the requested
types of cells, segmentation and classification can be performed automatically
without any further human interaction.

This paper is structured as follows. Section 2 gives a brief introduction to
voxel-wise gray scale invariants. In section 3 we introduce the actual segmenta-
tion using an interactive training method and support-vector machines. Finally,
in section 4 we present some experimental results.

2 Voxel-Wise Gray Scale Invariants

Gray scale features, invariant towards Euclidean motion, using Haar-integration
over the whole transformation group of an n-dimensional data set X, are calcu-
lated as follows: [3] [5]

T [f ](X) :=
∫

G

f(gX)dg (1)

where G denotes the transformation group, g one element of G, f a nonlinear
kernel function and gX the transformed n-dimensional data set. If the kernel
function f only depends on a few points of the image or volume, i.e., if we can
rewrite f(X) as f

(
X(x1),X(x2),X(x3), . . .

)
, where X(xi) is the gray value1 at

position xi we only need to transform the kernel points x1, x2, x3, . . . accordingly,
instead of the whole data set X. This transformation of the kernel points is
denoted as sg(xi), rewriting (1) as

1 We use the term “gray value” even for color or other multi-channel data. In this case
one “gray value” has multiple components.
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T [f ](X) :=
∫

G

f
(
X(sg(x1)), X(sg(x2)), X(sg(x3)), . . .

)
dg . (2)

The direct evaluation of the integral (2) is usually too slow for real applications.
[5] presented a fast calculation method (using FFTs) for a certain class of kernel-
functions (so called separable two-point-kernel functions) of the form

f(X) = fa

(
X(0)

)
· fb

(
X(q)

) fa, fb : any nonlinear functions that
transform the gray values

q : span of the kernel function
(3)

Calculation of Voxel-Wise Gray Scale Invariants: The voxel-wise extrac-
tion of invariant features follows the same theory as above, restricting the trans-
formation group to rotation. A major drawback of voxel-wise calculation with
two-point-kernel functions is that the resulting features are not only invariant
towards rotation, but also towards arbitrary permutation of neighboring gray val-
ues. To overcome this problem, we introduced a fast approximation using FFT
and 3D separable three-point-kernel functions [2] of the type (see accompaning
paper [1])

f(X) = fa

(
X(0)

)
· fb

(
X(q1)

)
· fc

(
X(q2)

)
(4)

Multichannel Features: As illustrated in Fig. 1, biological probes are often
stained with different fluorescent markers, which are recorded as multi channel
datasets. Kernels of the form (4) can be evaluated over several channels, using
the voxel-wise gray-scale representation of the recorded volumetric datasets Xv,
where Xvi gives the gray-value for the i-th channel.

Kernel Functions: To increase separability, several features with different
spans and non-linear mappings are combined to feature vectors for each voxel.

In the case of a compact transformation group, like rotation, any kernel
function returning a scalar value may be used, because after parameterization,
an integral with fixed borders (e.g., integration from 0 to 360 degrees) can be

Fig. 1. By staining with different fluorescent markers and variation of the ecitation
wave length, several data channels can be recorded from a single sample at once
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Fig. 2. From left to right: original data, classification of features without exponential
kernels, classification with the same training samples but with some features calculated
on the ”inverse data”

found. For the later described segmentation we use simple non-linear functions
like f(v) = v2

i , v3
i , v4

i , . . . or
√

vi with spans from 2,4,8 up to 32. While small
spans extract local object features (high frequencies), it is useful to have some
larger spans covering the entire object (low frequencies). In addition, we perform
Gaussian filtering previous to the non-linear mappings for increased local support
[1][2]. For datasets with high valued object gray-values and low background
values an additional problem arises: due to the nature of Haar-integration, the
foreground values dominate the result of the voxel-wise features which leads to
a reduced separability of the background close to objects. A solution is provided
by calculating some features which are sensitive to the background. This can be
achieved by use of an appropriate kernel function like:

f(X) =
√

X(0) · e−X(q1)2 two-point exponential kernel function (5)

3 Segmentation

After the voxel-wise extraction of feature-vectors using two- and three-point ker-
nels, a support-vector machine (SVM) [7][8] model is trained in an interactive

Fig. 3. Framework for interactive model training: xy-slices (bottom left) and yz-slices
(bottom right) are moved through the volumetric dataset (top) and training samples
are selected manually via ”mouse clicks”.
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procedure over several iterations: First a small number of training samples (vox-
els) is manually selected for each class (Fig. 3). Second, a SVM model is trained
based on the training feature-vectors. In the last step of one iteration, all vox-
els are classified against the previously trained model. After each iteration new
training samples can be added in order to improve segmentation and classifica-
tion results until the model reaches a ”stable” state, e.g. the support-vectors do
not change after adding new samples. In order to avoid overfitting and to find the

xy-slice

yz-slice

Fig. 4. The interactive training process - 1st row: 3D reconstruction of the original
data, 311 training samples set for the first iteration of training. 2nd line - from left to
right: section of xy-slice of original data as indicated in the 3D reconstruction, result
after the first iteration (56 support vectors in model), result after 2nd iteration,result
after the 3rd iteration (642 training samples, 129 support vectors in model). 3rd line:
section of yz-slice of original data, results after 1st to 3rd iterations in yz-slice.

optimal SVM model, we perform a grid-search over SVM-kernel parameters and
cost-function with cross-validation model selection in each training round. One
of the major advantages of our approach is, that the obtained model can easily
be extended with samples from other datasets and and even new classes, sim-
ply by executing additional training rounds. With the model at hand, objects in
datasets which have been recorded under similar conditions (staining, excitation,
etc.) can be segmented and classified fully automatically: voxel-wise features are
extracted and classified. In a final step the labeled voxels are combined to closed
objects by connected component labeling.
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4 Experiments

In this section we present some experimental results and compare the perfor-
mance of the previously described algorithms with a standard Watershed region
growing approach.

Table 1. Overview of all used three- and two-pint gray-scale invariants of type f(X) =
fa(X(0)) · fb(X(q1)) · fc(X(q2)) . qα denotes the size of the scope, vi the i-th channel.

f1 f2 f3 f4 f5 f6 f7 f8

fa Xv1(0) (Xv1(0))5 (Xv1(0))5
√

Xv1(0) (Xv1(0))2
√

Xv1(0) Xv1(0) (Xv1(0))2

fb Xv1(0) (Xv1(q2))2 (Xv1(q2))5 e(−Xv1 (q4))2 (Xv1(q4))5
√

Xv1(q4) Xv1(q4) (Xv1(q8))5

fc - (Xv1(q2))2 - - (Xv1(q4))5
√

Xv1(q4) Xv1(q4) (Xv1(q8))5

f10 f11 f12 f13 f14 f15 f16

fa (Xv1(0))5
√

Xv1)(0) (Xv1(0))5 Xv1(0) e(−Xv1 (0))2 (Xv1(0))5 (Xv1(0))5

fb e−Xv1 (q16)
√

Xv1(q16) (Xv1(q16))2 Xv2(q2) e(−Xv2 (q2))2 (Xv2(q2))2 (Xv2(q2))5

fc -
√

Xv1(q16) (Xv1(q16))2 Xv2(q2) e(−Xv2 (q2))2 - (Xv2(q2))5

f18 f19 f20 f21 f22 f23 f24

fa (Xv1(0))2 e(−Xv1 (0))2 (Xv1(0))5 (Xv1(0))2
√

Xv1(0) (Xv1(0))5 (Xv1(0))5

fb (Xv2(q4))5 e(−Xv2 (q4))2 (Xv2(q4))2 (Xv2(q8))5 (Xv2(q8))5 e−Xv2 (q16) (Xv2(q16))2

fc - - (Xv2(q4))2 - (Xv2(q8))5 - (Xv2(q16))2

f26 f27 f28 f29 f30 f31 f32

fa Xv2(0) e(−Xv2 (0))2 (Xv2(0))5 (Xv2(0))5
√

Xv2(0) (Xv2(0))2 e(−Xv2 (0))2

fb Xv1(q2) e(−Xv1 (q2))2 (Xv1(q2))2 (Xv1(q2))5 e(−Xv1 (q4))2 (Xv1(q4))5 e(−Xv1 (q4))2

fc Xv1(q2) e(−Xv1 (q2))2 (Xv1(q2))5 - e(−Xv1 (q4))2 - -

Data: The experiments were performed on 3D volumetric data samples of
chicken embryo chorioallantoic membrane (CAM) probes recorded by a con-
focal laser scanning microscope (LSM). The CAM is a widely used model for
angiogenesis research. For angiogenesis research at cellular level, an automatic
localization and identification of the different cell types is crucial. Understanding
angiogenesis has been found key to treatment of many frequent diseases, includ-
ing cancer and heart ischemia. The samples were prepared as described in [9][10]
and treated with YoPro-1 and SMACy3 fluorescent markers.

Methods: A model was built performing the interactive training procedure on
several training data sets. Other samples were classified against this model. As
reference to our approach we performed seeded watershed segmentation with
about one hundred manually set seeds for each cell. A median filter was applied
prior to the watershed procedure. For this part we omitted the classification,
since the classes were set manually.
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Fig. 5. Sample data, cross section of a capillary. Cell types with 3D reconstruction: 1.
erythrocyte (Ery), 2. endothelial cell (EC), 3. pericyte (PC), 4. fibroblast (FB), 5.
macrophage (MΦ).

Fig. 6. Results of voxel-wise gray-scale invarinat segmentation in xy-slices. First line:
raw data. Second line: watershed reference. Third line: results of our approach.

Fig. 7. Results of voxel-wise gray-scale invarinat segmentation in zy-slices. First line:
two channels of raw data. Second line: watershed reference and results of our approach.
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Results: For the experiment sown in (Fig. 6), the features in (Table 1) were
used. Three-point kernels were restricted to have the points on one straight line
and were approximated only by the first coefficient of the series [1].

Conclusion and Outlook. Our algorithm is able to automatically detect previ-
ously learned objects. Low fluorescent activity and strong intra cellular structures
do not cause false or partial segmentation results. But still the low z-resolution
is responsible for miss-classifications at object borders and some noise (Fig. 6).
The rather simple approach of connected component labeling is the major draw-
back at this state - it is neither capable of suppressing small fractions of noise,
nor splitting touching objects of the same class.
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